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Abstract

This 1ape' presents a complete description of a digital flight
data processing platform designed to support a range of airborne or
flight simulator based experiments requiring the acquisition, processing,
and display of information. The Programmable Pilot Oriented Display
(PPOD) is based on IEEE S-100 bus standard equipment and readily available
software utilities. The design philosophy and techniques used to achieve
project objectives with a minimum of hardware/software customization
are discussed. System resources include three Z80 processors,
intelligent 10, complete interprocessor communications firmware, and
RS-170 composite video output. Discussion of both PPOD capabilities

and the steps required to employ PPOD in future experimental setups are
presented in the context of a mobile test run.
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PPOD: Programmable Pilot Oriented Display

A Digital Platform for Airborne Experimentation

Chapter I

Introduction and Background

The innovative application of advanced electronics to the needs of

the general aviation conmunity has been a slow process. Economics, govern-

ment certification requirements, reliability considerations, and pilot

resistance are some of the factors which have caused this lag. These

reservations have been aggravated by a scarcity of reliable experimental

information concerning control systems involving human decision making in a

hybrid man/machine environment. Qualitative models of isolated sensory/

motor subsystem-s under rigidly controlled test conditions are available;

however, the performance of the human operator under any realistic task

constraint requiring the interaction of many sensory/control subsystems has

only been characterized in task specific terms. This type of task specific

characterization does not lend insight into the internal functioning of the

human operator as a control loop element and thus is of limited usefulness

in anticipating human performance in an environnent only slightly altered

from that of the original test conditions. Many instruments in use today,

especially in general aviation, trace their ancestry back to the early days

of aircraft development when the skies were not crowded and night or bad

weather operations were rare. Before new display and other man-machine

interface technoloqies can, with confidence, be integrated into the cockpit



further quantitative and qualitative experiments oriented toward iathemati-

cal characterization of the pilot as a control element wil be required.

Today, researchers in a variety of disciplines are actively pur-

suinq the answers to questions which have a bearing on instrument design.

This type of inquiry has taken on a particular urgency as the capabilities

of both airframe/power plant and electronics have continued to expand in

concert with a rapid increase in the demands placed on the pilot. Of late,

particular attention has been focused on the transmission of data to the

pilot and the reverse process, means whereby the pilot can communicate his

The tradenames listed below are used throughout this paper and
belong to the indicated organizations.

MicroAngelo, Screenware PakI, Screenware PakII are

tradenames of the Scion Corp.

FCD-1, 1^2 are tradenames of Teletek Inc.

CP/M, PL/I-80, LINK-80 are tradenames of Digital Research Inc.

DM6400 is a tradename of Measurement Systems and Controls Inc.

Vedit is a tradename of CompuView Products, Inc.

Northstar 6000 is a tradename of Digital Marine Electronics Inc.

Z-80 is a tradename of Zilog Inc.

8080 is a tradename of Intel.



control outputs to the aircraft. The pilot/instrument interface seems to

be one of the major bottlenecks in the aircraft control loop. The limited

nature of the present day data paths between airplane and pilot first

became evident in military applications. Faced with a rapidly evolving

task such as target acquisition, performance of evasive maneuvers, or

aircraft carrier landings the combat flyer must monitor a large number of

critical parameters while simultaneously providing control outputs. The

advent of STOL/VSTOL and ducted fan types of craft has also compounded the

difficulty of the control task in both the input and output areas.

In the civilian sector, pilots are increasingly required to adsorb

large amounts of data. Crowded skies, a proliferation of navigation data

sources, and increased night/marginal weather operations have demonstrated

the inadequacy of many of the common techniques for presenting flight data.

As the necessity for increasing the capacity of the aircraft-pilot data

channel has been more clearly demonstrated, more basic research has been

focused on the human operator and his input/output channels. Results from

modern control theory have been combined with conclusions based on data

gathered from rigidly controlled experiments with human subjects to yield

mathematical models describing the internal functioning of the human opera-

tor. In addition, information transmission theory and statistics have been

used to construct measures of channel capacity which can be applied to both

machine-machine and man-machine data links. The Shannon-Weiner information

measure provides a useful measure of data channel performance. According

to this result information is quantized in units of bits with the infor-

mation provided by an event 'x' concerning event 'y' given as I(x,y)=Log2



P( y)/P(x) [Ref. 1]. The utility of this measure has been deimonstrated in

a variety of experiments involving humans in control and pattern recogni-

tion tasks [Ref. 1-6]. Although nost of the tasks described in the

experiments referenced are simple, they highlight many of the individual

characteristics which are combined in a complex task such as vehicle

control.

Large budgets and more acute needs have placed the military and

commercial manufacturers in the forefront of workload/human factors eng-

ineering research. To date the techniques of this type of research have not

been extensively applied to the general aviation area. Special con-

sideration has only of late been given to the needs of the general aviation

pilot flying in the single pilot IFR regime. In the past, providing

general aviation with means of travelling with increased ease and safety

has been a subject of ongoing research by the participants of the NASA

Tri-University Program for research in Air Transportation. Recent work on

the applicability of Loran-C to general aviation area navigation has

demonstrated that this data source holds great promise. Flight test

experience with Omega, Loran-C, and preliminary work on Global Positioning

System Navstar combined with the previously mentioned needs for increased

channel capacity for pilot-craft links has provided the motivation for the

work reported in this paper. In the past much difficulty recording, for-

matting, and processing the output data from onboard experimental equip-

ment has been encountered. Frequently pilots found extremely accurate

position information difficult to interpret because the display format wa's

unfamiliar or ambiguous. These observations demonstrated that it is



possible to degrade overall pilot performance despite better situation

information if this data is presented in a confusing format. Ideally it

should be possible to alter the presentation of flight information indepen-

dent of the source of the raw data.

This paper contains documentation on a flight data processing

platform which provides a means of addressing all of the questions detailed

above. The Programmable Pilot Oriented Display (PPOD) project has as its

objectives, the creation of a digital flight data processing and display

system which supports the testing of both new navigation and new display

concepts. An additional objective was to determine the extent to which

standard microprocessor technology could be conveniently adapted to the

airborne environment. These goals have resulted in a development program

which differs considerably from market prototype production. Size, weight,

factors while still a consideration have been relaxed. Room for future

expansion and easy access for hardware maintenance/modification have taken

precedence over visual appeal. Every attempt has been made to allow for

system upgrade and to support the greatest possible range of experiments.

Such a development philosophy can result in a device which presents the

potential user with such a bewildering set of features, options, and recon-

figuration choices that overall device utility is minimal. A major motiva-

tion for the use of standard hardware and proven software was the desire to

avoid complexity. PPOD and the documentation contained in this paper

constitute a compromise between ultimate flexibility and basic simplicity.

PPOD hardware, software, and the Interprocessor Communications Package pro-

vide a coherent operating environment in which it is possible to design



experiments. This paper also provides a description of the boundaries to

the operating environment and various techniques for exploiting the

available system capabilities to their greatest extent.

One in flight function of PPOD is workload experimentation.

Especially critical for the evaluation of new display technologies is the

question of how the new medium affects the intelligability of the data

represented. When a programmable link connects the data source with a CRT

the type of data presented to the pilot and the way in which this data is

shown can be altered in flight. In addition PPOD is able to generate

secondary tasks or to contaminate valid flight data with extranneous visual

information while simultaneously monitoring and recording the subject

pilot's performance. Essentially PPOD functions as one of the primary data

paths between the pilot and his flight environment. Since PPOD is program-

mable this data link can be artificially loaded until it saturates or dif-

ferent display formats can be subjectively evaluated in a similar flight

regime. In addition the information processed by PPOD can be recorded for

post flight analysis. Similar techniques have yielded important insights

about the maximum channel capacity of the human sensory system under

various conditions.

Initially PPOD will be used primarily for researching workload con-

ditions in the single pilot IFR regime. The experimental program has been

designed to progress through three levels of complexity. These levels are

distinguished primarily by the type of communication between aircraft

equipment and the digital processors residing in PPOD. Since each test



level contains a very large range of possible experiments, the test program

was not outlined as a schedule but rather as a conceptual breakdown enu-

merating three general classes of experiments which will be of interest in

the immediate future. The first level involves no physical connections to

the aircraft except for power cables. PPOD will function primarily as an

electronic copilot at this level. Through a series of ground simulations

and flight tests, the extent to which an electronic scratchpad can aid a

pilot will be determined. Especially in the GA single pilot IFR situation

pilots are required to utilize information from charts, approach plates,

and instruments, as well as heeding the instructions of a ground

controller. A small computer with easy data/command entry and CRT display

could provide a convenient method of organizing headings, tower frequen-

cies, takeoff or approach checklists, airport elevations. Projected appli-

cations include fuel consumption and weight and balance calculations for

optimizing range. An onboard real time clock will be used to schedule the

presentation of critical flight information. PPOD can be instructed to

measure time intervals and remind the operator to check flight status when

a certain time has elapsed. Storage of takeoff, landing, and emergency

procedure checklists is also anticipated.

The second level involves one-way data channels from aircraft

instrumentation to PPOD's digital 10 ports. This level will include

automatic selection of position information from several avilable data

sources. Engine status although a desirable feature may not be tested

except in ground simulations. Because a dedicated test aircraft is not

available, it is not possible to conduct tests requiring modifications to



PPOD Lavel I Objectives

1. Teal TLrwe Clock/Pacar Functions

a) Deliver pilot promts on a preset schedule
during critical flight phases.

2. Takeoff/Landing, Emergency checklists

a) Autoatic checklist display/verify.

3. Storage of inforration pertaining to flight conditions
or destination

a) Information available at operator request.

b) Information displayed at a scheduled time.

4. Flight Computer Functions

a) Cruise perfornance tables, takeoff distance, etc.

b) Flight planning computations- fuel consumption,
wind corrections, weight and balance conputations

PPOD Level I Objectives

Figure 1



PPOD Level II Objectives

1. Navigation

a) VOR, Loran-C, and other interface capability

1) PPOD auto-selects from several data sources.

2) Coordinate transfori-tion and display format.

b) Multiple waypoint storage-- automatic switchover
when way-point is reached.

c) Variable display forirat

1) Mbving Map Display

2) -North Up Fbrrrat

3) Expanded Scale Fonrat

2. Flight Status Warnings

a) Engine/ Electronics

b) Aircraft Configuration

c) Airspeed, Stall warnings

d) Altitude Advisory

e) PPOD system fault detection/ self test

3. Other Functions

a) Kalrran filtering of navication data

b) Enhanod IIS display rodes

c) DABS message display, weather data

PPOD Level II Objectives

Ficure 2



the instrument panel or the mounting of remote sensors in the enqine com-

partment. To date most of the development work has been directed to this

second level. Presently a Northstar 6000 Loran-C receiver is being used in

a test level two mode. PPOD has been programmed to monitor two data

channels which the receiver multiplexes onto a single data bus. Based on

signal to noise thresholds PPOD automatically selects the channel which

provides the best position information. The raw data in the two channels

provides enough information to compute position, estimated time of arrival,

and ground speed. An enroute navigation display is generated from these

variables. Eventually this data will be applied to final approach and

enhanced ILS displays as well.

The third level of test complexity is characterized by two way

interactions between PPOD and the on board equipment. Although PPOD

already contains the processing power necessary to handle rudimentary auto-

matic control functions, a great deal of work remains before any signifi-

cant experiments at the third test level can be conducted. Instrumenting

an aircraft with sensors which would allow PPOD to monitor all aspects of

the flight will be a time consuming task. If a digitized measure of fuel

flow were available the data could be combined with navigation data to com-

pute projected range. As modern autopilots are providing digital ports, .it

will be possible to connect PPOD to these devices providing automatic

course following ability. Digital tuning of nav/com receivers is another

application to which PPOD is well suited. Although scanning DME receivers

are very expensive, costs are dropping. Coupled with the processor speed

and 10 flexibility of PPOD one of the scanning DME receivers would provide

a wide coverage RNAV dependent only on an existing network of transmitters.



PPOD Level III Objectives

PPOD/Autopilot Link for automatic course following

Message Downlink capability

Avionics frequency/rrode control

a) Automatic selection of Loran chain and stations
based on SNR and grid orthogonality considerations.

b) Digital tuning of conventional Nav/Com receivers.

PPOD Level III Cbjectives

Figure 3



Although lack of a dedicated test aircraft has limited the type of

experiments done to date, PPOD has been designed to support a long range

flight test program encompassing all of the levels mentioned above. Ground

simulation work is not correspondingly limited. Extracting flight and

engine status information from a simulator is electrically simpler and does

not compromise flight crew safety. Some work has been done with simulated

landings using a prototype ILS display generated by PPOD and driven by

digitized position signals from within the analog simulator (Ref. 7).

These experimehts have demonstrated that the combination of analog flight

simulator, PDP-11/10 computer, and PPOD represent an expensive yet ver-

satile simulation setup. The PDP-11 can be used to simulate the digital

outputs from navigation devices ranging from VOR to Loran-C to scaning DME.

In addition the PDP-11 could be used to generate digitized engine status

data. Digitized information whether artificially generated or based on

flight simulator outputs can then be fed to PPOD for processing and display

generation. A human subject completes the test control loop as shown in

figure 4.

The level I, II, III test plan organization has served as a guide

in determining the required capabilities of the hardware and software

included in the PPOD system. Since the experiments at each level demand

different performance it was necessary to select several component sub-

systems able to support the experimental objectives and to operate in a

conceptually straight forward fashion. The PPOD system architecture

reflects the underlying structure of the objectives mentioned above. This

underlying task structure dictated a modular approach at the hardware/



00,

Loran VR/DME GPS
CRT PPOD

PPOD/Pilot/Aircraft Data Flow

Figure 4



firmware level of system integration. Following the outline of the test

program the choice of hardware and software utilities was reduced to selec-

tion of conponents able to perform 10 formatting and data acquisition,

coordinate conversion and arithmetic processing, and finally generation of

video output. The rich array of experiments, both in progress and pro-

jected, is dependent on this modularity. PPOD actually consists of three

Z-80A CPU chips and support circuitry hereafter designated PO,P1,P2. In

any of the operational modes PPOD's task can be divided into three distinct

subtasks; 1)-data 10, 2)- control-coordinate conversion-number crunching,

and 3)-video display generation. PO,P1,P2 are assigned to each of these

three subtasks as illustrated in figure 5. PO handles storage, formatting,

and control functions related to the two 8 bit bidirectional data ports, 16

latched control output lines, and 12 status input lines. PO may also

handle reformatting and transmission error checking before the data is

passed to P1. All code dependent on the 10 format of the device being

tested in allocated to PO. P1 has the most general task of the three

units. Pl's duties include coordinate conversion, generation of commands

to PO and P2, user data entry processing, and synchronization of the opera-

tion of all three CPUs. Hardware failure detection is also allocated to

P1. P2, the video processor, accepts commands mainly from P1 although it

can also handle light pen inputs. P2 generates a bit map containing the

picture information based on these graphic command inputs.

Division of a task among three CPU's has as its main advantage an

increase in system throughput. This throughput improvement, however, is

highly dependent on task organization and interprocessor resource sharing.
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Task/Subtask Breakdown

NAVAID------->

I . I

IO formatting

Processor 0

IA2*

MMPE and
coordinate conversion

Processor I

FDC-I*

Figure 5

- > PILOT -

iVideo displayl
generation

TASK

Processor

MicroAngelo*
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Care must be taken in the design of any multiprocessor algorithm to ensure

that two processors do not attempt to access the same portion of memory at

the same time. It is desirable to exploit the maximum concurrency in any

given task; however, this objective must be balanced against the possibi-

lity of resource conflicts. Modern nultiprocessor systems employ spe-

cialized software to maximize system throughput without incurring resource

conflicts. The control task is generally divided between two specialized

pieces of software. A control portion of the code adapted to synchroniza-

tion of the processors functions in an executive capacity allocating memory

space and peripheral access time. The executive is in turn controlled by

an execution lattice. Each task given to a multiprocessor is divided into

subtasks. A subtask is allocated to each processor. The execution lattice

contains all information relating to the order in which the subtasks can be

performed. Following the structure of the execution lattice, the executive

enforces the sequencing of subtask execution so that the maximum con-

currency of the job is exploited without causing resource conflicts.

Extremely careful analysis of the job is required to produce an efficient

execution lattice without creating these conflicts. Considerable skill is

required to divide a job into a series of efficiently executing subtasks

and create the proper execution lattice and executive. The expertise and

effort required for truly flexible multiprocessing have led to the adoption

of a simpler approach in PPOD architecture. Generally two of the scarcest

commodities in any multiprocessor network are memory and communications

channel capacity. Since PPOD's processors have memory areas reserved for

each CPU, the communications resource is a more critical constraint. An

Interprocessor Commmunications Package (IPCP) has been implemented to ease



this constraint. This body of firmware is written in assembly language but

can be accessed from high level languages. Thus the multiprocessor

hierarchy is largely transparent to the experimenter despite the potential

for vastly increased throughput which results.

The preceding pages have desribed some of the experiments which

PPOD makes possible. Considerable effort has been put into creating a

basic structure of compatable hardware and software forming a skeleton upon

which high level expe'riments can be based. Because the capabilities and

limitations of PPOD are to a large extent defined by the interaction of the

submodules outlined above the remainder of this paper is devoted primarily

to their documentation. Subsequent chapters will detail the hardware and

software associated with each submodule or task element.



Chapter II

System Hardware

PPOD hardware consists of a variety of S-100 bus compatable cards,

an S-100 mainframe, keyboard entry device, and CRT. In addition" a dual 8

inch floppy disk drive, video terminal, and line printer are used during

software development. Hardware selection was based on the following

criteria: versatility, low cost, ease in system- upgrade, reliability, low

power consumption. A secondary consideration affecting choice of com-

ponents was size. The GA aircraft places severe space restrictions on

avionics. While these space considerations are less important in a

research application, every attempt has been made to integrate several

functions into a single board thus reducing power use and keeping mother-

board slots open for future experimental projects.

PPOD hardware resides in a metal case containing a 12 slot mother-

board, AC power supply, and cooling fan. Forced air cooling is required

for several of the logic cards because of the high component density. A

circuit breaker is included in the power-on switch. No front panel

controls are available to the user except for a system reset button.

Connectors for two RS-232-C serial ports with handshaking lines, disk

drive, composite video, and parallel port are provided at the back of the

cabinet. Cabinet dimensions are approximately 12X8X18 inches.

The AC input power supply is sufficient for all laboratoy simula-

tion and software development work. For flight tests a 300 watt DC/AC



power inverter is used. The inverter unit takes as input 10-18 volts DC

and supplies 120 volts 60Hz output. Some undesirable characteristics of

the power inverter are its square wave output and the inefficiency inherent

in two levels of voltage conversion. The harmonics in the square wave

power output do not effect the digital logic but increased jitter in CRT

images has been observed. This noise source does not affect the Loran-C

reception if care is taken to ground the receiver. Both electrical waste

and the added weight of a combined DC/AC power inverter and AC/DC power

supply could be saved if an airborne power supply capable of supplying +8

volts and +/- 16 volts DC was available. At present attempts are being

made to locate a manufacturer who will supply a switching power supply of

sufficient wattage. Switching supplies achieve efficiencies in excess of

90% and are capable of both step-up and step-down operation. Because of

the low dissipation in a switching supply and the absence of a large trans--

former, switching supplies are generally smaller and lighter then conven-

tional power sources of the same wattage. These properties recommend the

switching unit for airborne applications where excess weight is to be

avoided and electrical power is not abundant.

Resources of the system are divided among the three processors.

Each processor and support circuitry resides on a standard bus card. In

addition two memory cards, a 64k dynamic RAM and a 32k EPROM card, are

attached to the bus. There are several different standards for arranging

the power and communication connections in digital systems consisting of

several physically separate units. The S-100 bus standard was preferred

for several reasons. Of primary importance was the popularity of this



particular bus with the manufacturers of the subsystems required for a

complete microcomputer system. The S-100 bus supplies a greater number of

communications lines between the devices attached to the bus.

Compatability with newer 16 bit microprocessor chips was also an important

consideration.

PO, the 10 processor, has 2k dynamic RAM and 2k EPROM which con-

tains a control program. Data transfers to P1 are via direct memory

access (DMA). PO is capable of transferring up to 1k bytes and can access

or store data anywhere in the P1 memory map. PO directly controls two 8

bit bidirectional data ports, two 6 bit status input ports, and two 8 bit

latched control output ports. In addition status and control/command bytes

can be passed between P1 and PO through data port 04FH. PO can communicate

with peripheral devices either through the terminated status input lines or

by Z-80 mode 1 interrupt. The factory supplied 10 routines have been

patched at location 068H and a jump to scratch pad RAM placed at this

address. Any interrupt to PO will vector directly to the jump instruction

at 068H. The user is expected to insert the appropriate device handler at

the target address of the jump instruction.

P1, the main processor responsible for numerical work, coordinate

conversions, and subtask synchronization utilizes a full 64k address space.

A Measurement Systems and Controls 64k dynamic RAM board and a 32k EPROM

card fill the P1 address space. The RAM board supplies on board

transparent refresh eliminating the need for external refresh generation

circuitry. RAM and EPROM can be overlayed in blocks as small as 4k; RAM



can be deselected in blocks ranging from 4k to 32k; EPROMs can be indivi-

dually enabled or deselected. An additional 4k of memory is located

directly on the P1 board. This memory block extending from FOOO-FFFF con-

sists of two 2716 EPROM sockets. Memory address conflicts between P1

onboard memory and off board RAM or EPROM are automatically resolved by P1

address decoders making it unnecessary to deselect off board memory from

FOOO-FFFF. A block of 4k RAM (FOO-FFFF) exists which cannot be accessed

by P1. Essentially there is an additional 4k RAM available to any pro-

cessor capable of sharing P1 memory. One of the two EPROM sockets on board

P1 is occupied by a 2k monitor supplied by the manufacturer. This monitor

provides assembly language subroutines for basic communication with

peripherals. P1 has access to two serial ports, one and a half parallel

ports, and up to eight floppy disk drives or an intelligent hard disk. A

real time clock is also implemented. Standard Zilog interrupt daisy

chaining is employed for all interrupt sources on board P1. This scheme

permits nested interrupt execution. The daisy chain control signals

interrupt enable out (IEO) and interrupt enable in (IEI) are available at

the parallel port B connector for adding other boards or external devices

to the low priority end of the daisy chain. Interrupt daisy chaining is

fully documented in the Zilog product descriptions and applications notes

for the Z-80 SIO, PIO, and CTC chips. P1 utilizes the Z-80 node 2

interrupt protocol. A time history of a mode 2 interrupt sequence is

shown in figure 6. A low level on the processor INT line indicates an

external device is requesting attention. Device priority is determined by

the position of the requesting device in the daisy chain. The CPU

acknowledges the interrrupt request by raising the INTA, bus pin number 96,



CPU completes execution of
'. current instruction

before a'cknowledge,'

INT

INTA.

Interrupting
device puts its 8 bit',

,' interrupt vector on
,' the data bus during the \

CPU interrupt acknowledge
cycle.

Simplified Mode 2 Interrupt Cycle

Fi gure 6



to a high level. Upon receipt of the INTA high level, the interrupting

device places an 8 bit interrupt vector on the data bus. This interrupt

vector is combined with an interrupt table base address to yield a 16 bit

absolute memory address. The contents of this address and the next sequen-

tial location contain the 16 bit address of the code to service the

interrupting device. Although the mode 2 interrupt level requires more

hardware and involves more critical timing than the mode 1 interrupt level

employed by PO, the mode 2 level supports a greater number of interrupt

sources and the location of the individual service routines can easily be

altered since the table of service routine addresses resides in RAM.

P1 runs at 4 MHz clock speed. Jumper options on the processor

board program the unit to automatically insert 1 wait state for all on

board memory access. Any reference to locations in the range FOOO-FFFF

automatically generates a wait state. The 32k EPROM card generates 1 wait

state independent of processor wait state mode.

P1 and support circuitry consists of a Teletek FDC-1 r.2. In addi-

tion to the jumper settings which are fully documented in appendix C,

several slight modifications have been made to the P1 card. DMA operations

require that the S-100 address, data, status, and control lines be tri-

stated according to rigidly specified bus timing instructions as part of

the transfer of control to a temporary bus master. The stock FDC-1 r.2

unit does not handle the transfer of bus control properly. Two minor manu-

facturer suggested modifications were performed to correct this problem.

The changes are fully described in appendix C. Future revisions of the

FDC-1 processor card should not require this alteration.



P2, the video processor, is a Scion Corp. MicroAngelo monochrome

graphics board. This unit accepts command bytes at port OFOH and provides

status information at OF1H. In addition, provision is made for a light pen

graphic input however this feature is not utilized at present. Outputs

from the MicroAngelo board are both direct drive and composite video. A

graphics package is supplied by the manufacturer. The graphics routines

are contained in two 2k EPROMs and are described in chapter III. Sockets

are provided for two additional EPROMs. This extra space is reserved for

the addition of extensions to the originally supplied graphics primitives.

Scion Corp. is marketing a 4k extension, PAKII, which includes a variety of

curved primitives.

The suggested method of communication between a host system, in

this case P1, and the MicroAngelo board, P2, is a polled method in which

the host reads the status port, OF1H, and passes a command byt'e to the data

port, OFOH, when a ready condition is detected. The objective of this com-

munication method is to prevent host command bytes from being written over

each other in the MicroAngelo communication buffers. In an application

where large amounts of data are to be transmitted from host to video unit a

great deal of time can be lost in polling the P2 status port. This wasted

time translates into decreased system throughput since the host processor

and the video processor are both tied to the communications task. Another

negative feature of the polled interface is that the waiting time between

commands is a function of the execution speed of previous commands.

During execution of code with timing constraints entry into an idling loop

could adversely affect performance. For these reasons a buffered interrupt



driven Interprocessor Connunications Package (IPCP) has been written. The

two communication protocols are diagrammed and compared in figures 7 and

8. The firmware aspects of the IPCP will be explained in a subsequent

chapter.

MicroAngelo only supplies status information at port OF1H. Jumpers

are provided to patch the status signals to the vectored interrupt lines

of the S-100 bus however P1 expects all interrupts to conform to Z-80 mode

2 specifications. To remedy this inconpatability the interrupt jammer

diagrammed in figure 9 was created. Jammer circuitry monitors the S-100

INT, INTA lines, the P2 status lines, and the P2 status port. Whenever P2

status port bit 0 falls to a low level indicating a ready condition, the

jammer latchs an interrupt request pending signal. The D FF and nand gate

save this pending interrupt until all prior interrupts are no longer being

serviced. P2 interrupt request is then latched by the upper S-R flip-flop

which passes the request to the S-100 bus interrupt line. S-100 INT is

held at a low level until an INTA signal from P1 indicates that the request

has been aknowledged. The rising edge of INTA clears the interrupt request

and enables the outputs of two 74LS173s which are connected directly to the

S-100 bus. An interrupt vector unique to P2 is thus placed on the data

bus. INTA falling edge disables the 173s freeing the data bus for other

operations. 74LS221 dual monostables have been used for edge/level and

level/pulse conversions. An S-100 compatable prototyping card carries all

of the jammer hardware. Communication between P2 and the jammer card is

via vectored interrupt line 0, S-100 pin 4.
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Addition of the jamming circuit to the graphics board as purchased

from the manufacturer provides system users with a second high speed method

of passing data from P1 to P2. In depth analysis of optimun use conditions

for the two protocols is postponed until chapter III. A second hardware

addition to the P2 processor communications circuitry allows the video

board to receive data/command information via data port OF2H in addition to

port OFOH. Addition of the circuit shown in figure 10 was motivated by a

need to support a high level graphics command set capable of suspending any

lower level command execution. Use of the added data port will be detailed

in a later section.

Remaining hardware items are the inflight data entry device,

graphic output screen, and development console. Any video terminal uti-

lizing RS-232-C standard data transmission can be used in the laboratory.

Graphic and alphanumeric output from P2 is displayed on a 9 inch diagonal

Motorola monitor. The display phosphor is P31, a relatively long per-

sistance green phosphor. Both 120/220 volt AC power settings are standard

for the video monitor. The unit used with PPOD has been modified to accept

12 volt DC as well. In flight data entry is through a full size alpha-

numeric keyboard. Such a unit is not practical for pilot data entry on pro-

duction equipment where an 8, 12 , 16 key unit provides the necessary

number of inputs. PPOD's research orientation demands a full size keyboard

capable of modest inflight system reconfiguration. The 8 bit PIO port on

the P1 card is used for keyboard input. Power for the keyboard is taken

directly from the P2 processor card.



P2 Hardware Modification

U44 Pin 1

U45 Pin 11

U29 Pin 1

U9 Pin 9

'LS367
P2 Data Bus

- Bit 4

B -

U29 Pin 11
U53 Pin 11

Modification Procedure

Cut trace from U45 Pin 9 to U29 Pin 11

Cut trace from U45 Pin 9 to U53 Pin 11

Connect remaining jumpers as indicated above

NOTE: All IC designations for this figure correspond

with those of the P2 (Scion Corp. MicroAngelo)

user's manual.

Data Port F2 Addition

Figure 10



Chapter III

The Interprocessor Communications Package

Complete subroutines for data transmission between the processors

are provided by the Interprocessor Communications Package (IPCP) firmware.

IPCP routines are divided into task dependent routines and those which may

be used in any experimental setup.

The PO control program represents the majority of the task depen-

dent code. Specific input device formats, rudimentary calculations, and

data stream filtering are tasks which vary from device to device. A speci-

fic control program example is given below to illustrate the utility of the

parallel processor hierarchy and the method of communication between P1 and

P0.

Digital data from a Northstar 6000 Loran-C receiver has been used

in a series of experiments. The Northstar supplies a serial output data

stream at a rate of approximately 75,000 bits per second. By taking data

out of the receiver at the input to a parallel to serial converter, a

series of 15 bit words at a lower data rate of 5000 words/sec.. can also be

taken from the receiver. The format of these words and a sample digital

recording of position are given below. Fifteen bit words are multiplexed

into one of the PO 8 bit input ports by two of the PO control output lines.

Figure 11 shows the hardware used to buffer the receiver data bus and per-

form the multiplexing.
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Each 15 bit word is composed of 8 bits of data, 3 bits of address

(which device the data is sent to), and 4 identification bits as shown in

figure 12. Four devices external to the Northstar 6000 can be addressed.

Each device is expected to observe the address bits of every data word and

latch those which are sent to it. For the purposes of mobile testing it

was desired to consider data from two of the four available devices. The

required data streams are those for the GPIA (address 010) and for the

EPSCO plotter (address 001). A GPIA data frame consists of 27. bytes con-

taini'ng time differences, latitude and longitude, and auxilliary data for

one of the stations in the Loran-C chain being monitored. Auxilliary data

provides signal to noise ratio, envelope cycle discrepancy,and tracking

mode number for each station. Latitude and longitude is based on the first

slave (Sl) and the second slave (S2) time differences (TDs). TDs and

lat/long are available about once every 2.7 seconds with auxilliary data

for all stations in a given Loran chain available once every 16 seconds

[see fig. 13]. EPSCO data frames consist of 12 bytes giving S1 and S2 TDs

in binary coded decimal [see fig. 14]. These data frames are available

about once every 2 seconds. A higher update rate is preferable so whenever

S1, S2 TDs are reliable EPSCO data should be sent to P1 for further pro-

cessing. Low SNRs as indicated by auxilliary data from the GPIA stream

require a reversion back to the longer although slower data stream.

All communication between PPOD and the Northstar 6000 is handled by

PO which is in turn directed by its control program. This control program,

IUSER3, is flowcharted in figure 16. Control program processing follows

the sequence described below. Latching of a new 15 bit word at the



Northstar 6000 Data Word Format

Data representation inside the Northstar 6000 Loran receiver is as

shown below. These data words are available in serial form at the

receiver digital output jack and can also be accessed in parallel directly

from the receiver's internal data bus.

<A2><A1><AO><I3><I2><I1><IO><D7><D6><D5><D4><D3><D2><D1><DO>

Where

A2-AO determine which of four possible output devices

is being addressed. .

13-10 identify which word in the device data frame

is being transmitted (see device data frame formats).

07-DO contain the data for the device and word specified by

the contents of the A and I fields.

Figure 12

Ref. Digital Marine Electronics Corp.
"Northstar 6000 Remote Serial Data Format"



Northstar 6000 GPIA Data Output Format

NunbWord

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

er Identifica

F

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(See Note)

tion Bits Content

GRI count (16 bit binary, MSB)

GRI count (16 bit binary, LSB)

TD1 (24 bit binary, MSB)

TD1 (24 bit binary)

TD1 (24 bit binary, LSB)

TD2 (24 bit binary, MSB)

TD2 (24 bit binary)

TD2 (24 bit binary, LSB)

TD3 (24 bit binary, MSB)

TD3 (24 bit binary)

TD3 (24 bit binary, LSB)

TD4 (24 bit binary, MSB)

TD4 (24 bit binary)

TD4 (24 bit binary, LSB)

Latitude (8 chars, Packed BCD)

Latitude (8 chars, Packed BCD)

Latitude (8 chars, Packed BCD)

Latitude (8 chars, Packed BCD)

Long. (8 chars, Packed BCD, MSB)

Longitude (8 chars, Packed BCD)

Longitude (8 chars, Packed BCD)

Long. (8 chars, Packed BCD, LSB)

Auxilliary data

Figure 13
Sheet 1/3



Auxilliary data

Auxilliary data

Auxilliary data

Auxilliary data

NOTE: Identification bits for auxilliary data determine which of the

following formats applies.

Identification Bits Content

1 Master auxilliary data

2 TD1 auxilliary data

3 TD2 auxilliary data

4 TD3 auxilliary data

5 TD4 auxilliary data

6 Common data

Master and TD auxilliary data is given in the following format.

Byte

23

24

25

26

27

Common

Byte

23

Content

Cycle warning, mode (C---MMMM)

SNR, 2 words, 10 bit binary in form (OOOSSSSS)

SNR, (SSSSSOOO)

Blink SNR, 10 bit binary (OOOSSSSS)

Blink SNR, 10 bit binary (SSSSSOOO)

auxilliary data is given in the following format.

Content

Manual cycle flag (0= manual cycle)

Figure 13
Sheet 2/3

24.

25.

26.

27.



24 GRI, 16 bit binary MSB

25 GRI, 16 bit binary LSB

26 Not used

27 Not used

GPIA Data Frame Format

Figure 13
Sheet 3/3

Ref.- Digital Marine Electronics corp.

"Northstar Remote Serial Data Format"



EPSCO Plotter Data Frame Format

Information is transmitted from the Northstar 6000 receiver to the

EPSCO plotter in a series of data frames. Each data frame consists of the

following sequence of words

Identification Bits

000

001

010

011

100

101

110

111

13 is zero for the first

slave TD. Each TD is encoded in

slave TD and

BCD with one

Contents

RESET command

Rightmost digit-1

Digit 2

Digit 3

Digit 4

Digit 5

Leftmost digit-6

LOAD command

one for the second

digit per data word.

Figure 14

Ref.-Digital Marine Electronics Corp.
"Northstar 6000 Remote Serial Data Format"

NumberWord

1.

2.

3;

4.

5.

6.

7.

8.



IUSER3 Variables and Flags

The Northstar 6000 interface code can be configured in several dif-
ferent- ways. The various options can be selected by the user at source
code assembly time by programming the control/status variables listed
below.

STATWD(1293)--The STATWD provides bits for passing status information

between parts of the program.

Bit 0: H-->A GPIA frame is being accumulated.
Bit 1: Reserved for future use.
Bit 2: H-->A GPIA frame is ready for tranmission to host.
Bit 3: H-->SNR levels for first and second slaves

are above required thresholds.
Bit 4: H-->An EPSCO frame is being accumulated.
Bit 5: Reserved for future use.
Bit 6: H-->EPSCO frame is ready for transmission to host.
Bit 7: Reserved for future use.

SNRWD(1206)---The SNRWD indicates the history of the SNR levels for the

first and second slaves. If both SNRs were above the

required minimum level then both bits 1,2 will be high. If

either bit is low then one of the stations is not being

received well and the full GPIA data frame should be passed

to the host.

Bit 0: H-->Next byte from receiver will contain SNR
data for either S1 or S2.

Bit 1: H-->Last SNR checked was above the required minimum.
Bit 2: H-->Last SNR checked was above the required minimum.

CONWD(1205)---The CONWD location controls the type of data sent from

PO to P1. The IUSER3 control program can decode either

EPSCO or GPIA data frames, decode both types of data,

or select the optimal data frame based on SNR criteria.

Figure 15
Sheet 1/2



Bit 0: H-->Decode GPIA data.
Bit 1: H-->Decode EPSCO data.
Bit 2: H-->Decode the best data based on SNR levels.

The remaining named locations in the source code listing pertain to

features of the PO hardware and are fully documented in the user's manual

for that processor.

Figure 15
Sheet 2/2



IUSER3 Flowchart
Figure 16



Figure 16 Cont.



Figure 16 cont.



Figure 16cont.



receiver produces a mode 1 interrupt to PO. PO enables the outputs of the

high order latch, reads the contents of the latch, and examines the address

bits. If the device address is not EPSCO or GPIA then no further pro-

cessing occurs. If address bits are correct then the data is placed in a

a ring buffer where it is stored for subsequent processing. PO places the

high order latch outputs in the high impedence or disabled condition and

enables the low order output data which is also placed in the ring buffer

at the location immediately following the high order byte. Enough space in

the ri'ng buffer is'allocated to contain two entire frames, one of EPSCO and

one of GPIA data. Thus, the buffer will be filled once every 2.7 seconds

under normal operating conditions. Use of the ring buffer as a temporary

storage location for incoming data significantly relieves the software

timing requirements. The double buffered scheme allows processing to con-

tinue during the gaps when no data is being transmitted from receiver to

PO. Idle time is used to process any bytes in the ring buffer.

Once data has been placed in the PO ring buffer processing is

synchronous. A read pointer (RP), a write pointer (WP), and a count of the

number of bytes waiting to be processed (BTG02) indicate the buffer status.

Sequential processing continues until no bytes are left in the buffer.

The synchronous portion of the control program reads each data word from

two successive locations in the ring buffer, determines the device address

and enters the appropriate processing subroutine. EPSCO data is

transmitted with plotter control commands preceding and following each TD.

The EPSCO data routine deletes these command bytes from the data sent to

P1. GPIA processing code assembles complete GPIA data frames. Length



checking is done on each frame to make sure that noise has not introduced

extranneous bytes or caused a byte to be lost. SNR limits are continuously

compared with the S1,S2 SNR values embedded in the auxilliary data portion

of GPIA frames.

When sent to P1, both GPIA and EPSCO frames have as the first byte

a special tag indicating whether the contents of the frame are EPSCO or

GPIA. All data transfers are by DMA operation. The DMA target address in

the P1 memory space can either be set at assembly time or dynamically

changed by a sequence of command bytes sent to the PO command/status port,

04FH. Before sending a fresh data frame to P1, PO checks to see if the DMA

target address location contains a non-zero value. If the target address

contains zero then P1 is done with the last data frame and the DMA opera-

tion is completed. If the target address location contains a non-zero

value then the previous frame is still being processed and PO begins accu-

mulation of another data frame. Another degree of communications control

is provided by the CONWD. Various bits control the decoding of the EPSCO,

GPIA devices. Bit 0 high enables GPIA device decoding, bit 1 high enables

EPSCO decoding, bit 2 high causes conditional decoding of either EPSCO or

GPIA device channels according to the SNR criteria mentioned previously.

Task independent code consists primarily of FUSER6. This body of

code passes command bytes to P2 from P1. P1/P2 communications occur either

according to the manufacturer suggested polled mode or by an interrupt dri-

ven mode. Operation of the polled transmission link has been described.

To pass a command byte to MicroAngelo, P2, via the interrupt driven link,

all the user must do is place the byte to be transmitted in the A register



and call an FUSER6 subroutine named OUTBT. OUTBT places the command byte

to be sent to P2 in a 115 byte first in first out (FIFO) buffer. This pro-

cess is illustrated schematically in figure 17. FIFO buffer addresses are

stored in the form, base address + offset, so the entire buffer is easily

relocated in memory simply by changing the buffer base address. Buffer

organization is preserved by two pointers; the write pointer location indi-

cates the offset from base address of the next empty location in the

buffer; the read pointer contains the offset from base address where the

next byte to be read and transmitted to P2 is located. The difference mod

115 of the two pointer values is the number of bytes currently waiting to

be sent to P2. Number of bytes left in buffer is stored in a separate

location, BTGO. The FIFO is defined to be empty when BTGO=0, i.e. both

read and write pointers are indicating the same location. In addition to

the 115 byte FIFO created in P1 memory space an equivalent FIFO exists in

P2 memory. Thus a total buffer space of 230 bytes is reserved for command

storage.

Consider an example in which it is desired to create a moving map

display or some other form of visual output which evolves in real time.

Assume that new data is available every 2 seconds as with the Northstar

6000 and that a new map indicating position.with respect to certain land-

marks is to be generated with each position update. In addition the entire

map requires 200 bytes to specify (200 bytes = 40 vectors). Since vector

generation routines are among the slower elements in the manufacturer

supplied graphics package, P1 will load up the 115 byte FIFO buffers.

Before placing a byte in the FIFO P1 checks to see if BTGO is zero. If
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Variables and Flags for FUSER6

TDF(EFC3)-

RPA(E7F1)-

ERRCNT(E6FF)-

BTGO(E7F2)-

BASE(E7F4)-

START2(F852)-

A non-zero value stored at this location enables software
performance monitoring code embedded in the P1 real time
clock interrupt service routine.

This location serves as a read pointer and contains the
offset from buffer base address of the next command byte
to be read from the ring buffer and transmitted to P2.

If enabled the software performance monitor code will
store the number of errors detected and corrected since
system start in this location.

BTGO contains the number of bytes in the ring buffer
waiting to be transmitted to P2.

BASE is the base address of the ring buffer. All buffer
operations occur relative to memory locations which are
addressed as offsets of this base address.

Location of the start of the routine to service the
interrupts generated when P2 requests another command
byte from the P1 ring buffer.

CNTST(E7F3)- Flag/status variable. Bit functions are as follows..

Bit 0- H->Next attempt to put a byte in buffer will fail
L->Next attempt to put a byte in buffer will not fail

Bit 1- H->Ring buffer is full
L->Ring buffer is not full

Bit 2- H->Buffer is non-empty and transfer is in progress
L->Transfer is not in progress

Bit 3- H->Check bit used for error recovery processing

Bit 4- H->Use buffered transfer mode
L->Use polled transfer mode

Bit 5- H->Reserved for future use
L->Reserved for future use

Bit 6- H->Buffer control bit used to synchronize buffer
emptying operation when an overflow condition occurs

Figure 18



FUSER6 Flowchart
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FUSER6 Flowchart
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FUSER6 Flowchart
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BTGO is in fact zero then P1 will write the byte to P2 ccamand port OFOH.

Since P2 has a second 115 byte FIFO in addition to P1's command buffer,

FUSER6 will pass the first 115 bytes written into the P1 command buffer

directly to the P2 command buffer. When P2's FIFO is full the remaining

bytes will be accumulated in P1's FIFO buffer.

Once all 200 bytes have been placed in one of the two FIFO command

buffers, P1 can continue execution of some other task. P2 will begin pro-

cessing the command bytes one by one until its own 115 byte buffer is not

full. Whenever P2's buffer becomes not full an interrupt will be generated

to P1. Upon receipt of a "buffer not full" interrupt from P2, P1 will

check to see if there are any bytes remaining in its own control/command

buffer. Bytes remaining will then be send to the P2 command buffer until

the P2 buffer is once again filled or until BTGO is zero. Since the P1/P2

data transfer is interrupt driven, P1 is not occupied polling the P2 status

port during execution of the entire map regeneration example. The

interrupt driven protocol allows P2 to excecute autonomously for up to one

second.

Data transfer between P1/P2 depends on a cyclic flow of

command/data/status information. P1 sends a byte to P2. When P2 reads the

byte an interrupt request is sent to the interrupt jammer circuit described

in chapter II. The jammer passes the INT request to Pl; P1 responds by

passing the next byte to P2. Clearly momentary hardware failure at any

point in this cycle will cause the operation to 'hang' indefinitely.

Especially critical are the status generation circuitry on board P2 and the



jammer circuit. Due to the high noise environment and the catastrophic

nature of even momentary hardware malfunction, a performance monitor (PMON)

routine has been created. PMON executes once each second. Execution

history of the P1/P2 data link is contained in the bytes to go word, BTGQ,

and bit 4 of a special control byte(CNTST). Every time a byte is sent from

P1 to P2, BTGO is decremented and control word bit 4 is reset. Every

second PMON sets bit 4 of the control word to a high level. If after the

next second, PMON finds that bit 4 is still high then no transfers have

taken place in the last second. A malfunction is indicated if BTGO is non-

zero and no transmissions have taken place in the previous second. In this

case PMON will attempt to restart the cycle. For diagnostic purposes a

running total of the failures detected and corrected for is kept in the

variable ERRCNT. PMON contributes significantly to the reliability of the

data link yet adds only a short section of code (41 bytes) to the total

length of the RTC (real time clock) interrupt service routine. In addition

PMON provides protection against externally induced failures and no command

bytes are lost in the restart process.

Since the IPCP allows P1/P2 data transfer either in polled inter-

face or interrupt driven mode and the channel mode can be changed under

software control without losing command bytes, the user must choose care-

fully the mode appropriate to his application if the objective is to opti-

mize system throughput. The code required to manipulate FIFO pointers and

status flags adds a measurable overhead to the data transfer operation.

This overhead can be avoided by using the polled interface. If P1/P2 data

transfers will generally be in small, infrequent bursts then the buffer



control overhead of the interrupt driven mode may actually increase the

amount of time spent on communications related tasks. On the other hand,

tasks requiring frequent graphic output involving large amounts of vector

generation/blanking or region shading will benefit from the interrupt dri-

ven mode.

A choice between the two methods of P1/P2 communication should be

based on the following benchmark data. The routine to place a byte in the

P1 graphics command buffer will take on the average 230 microseconds. An

additional 135 microseconds is required to transfer the byte from the P1

graphic command buffer to P2. The polled interface, in contrast, takes

about 33 microseconds to transmit a single byte from P1 to P2; however,

this figure only applies if the first transfer attempt is successful.

After 12 loops the polled interface becomes slower than the interrrupt dri-

ven mode. A conservative calculation indicates that the interrupt driven

protocol should be used whenever more than 175 command/data bytes are to be

sent to P2 in a continuous stream. More exact calculations depend on the

type of graphic commands being transmitted.

A set of graphics primitives and utility routines is provided by

the MicroAngelo manufacturer. This package, Screenware PAKI. provides

point, vector, region (rectangular), crosshairs, and tracking cross

graphics primitives. A full ASCII character set in both single and double

height is available as is a complete set of user definable characters for

high resolution character mode graphics. A significant lack is curved pri-

mitives such as circular regions or portions of arcs. The gaphics board



manufacturer, SCION corp., has recently made available a 4k extension to

correct these omissions. This extension will) be integrated in the near

future.

Generally PPOD will be operated in a task environment requiring a

large synchronously executed body of code (hereafter referred to as the top

level code) and one or more smaller code segments invoked asynchronously by

interrupt requests (interrupt service routines). P1 is responsible for

coordinating operation of the other two processors and will usually execute

the top level code and interrupt service routines with interrupt requests

generated by PO, P2, and other devices external to the PPOD multiprocessor.

All command and status information is passed between P1 and P2 via data

ports FO and Fl; however, the status information supplied by P1 does not

indicate whether the command bytes passed to P2 originate from top level

code or service routine code. If the P1/P2 command byte stream contained

only single byte commands this absence would not be important. Since most

P2 commands require more that one byte, top level code interrupted by a

service routine may produce garbled graphic output from P2. To draw a vec-

tor the following sequence of command bytes must be passed to P2; 91 01 00

01 00. This command byte stream draws a vector from the graphics cursor

location to the point with coordinates 0100H, 0100H. Upon receipt of the

"draw vector command code", 91, P2 assumes the next four bytes will specify

the end point of the vector to be drawn. Assume an interrupt occurs after

top level code has transmitted the 91 and before transmission of the vector

endpoints. Assume also that the interrupt service routine requires that

the character 'E' be typed in the lower left corner of the CRT. Following



transmission of the ASCII '45' (code for 'E'), P1 returns to execution of

top level code and resumes sending the remainder of the draw vector com-

mand, 01 00 01 00. The command stream sent to P2 will thus be 91 45 01 00

01 00. P2 takes the four bytes immediately following the 91 as the vector

endpoints so the vector will actually be drawn to 45 01 00 01 rather than

01 00 01 00. A further complication is that the service routine may alter

P2 internal status registers so that top level code execution cannot resume

normally. Of primary importance are the gaphic cursor location and the

position of the alpha cursor. The alpha cursor indicates the position of

the next character to be written on the screen. A similar function is

assigned to the graphic cursor for vector, point, and region operations.

The garbled graphics caused by command meshing will occur whenever top

level code producing graphic output can be temporarily suspended by a lower

level routine also producing video commands. The seriousness of the degra-

dation in CRT image will be a function of the number of possible interrupts

and their frequency.

No degradation of video image would occur if it were possible to

instruct P2 to suspend operation of the current command, save graphic and

alpha cursors, and wait for a new command to be given. Of course a command

to reverse this process-restore cursors and resume the previous comnand

-would also be needed. Essentially two commands are required; a SAVE and a

RESTORE environment instruction. The environment is assumed to consist of

the positions of both cursors and the bytes already received in the current

active command. It might seem that all that is required is the definition

of two new P2 command bytes. This approach is not adequate for two



reasons. Any byte appearing at port FO could be part of some other graphic

instruction hence the SAVE/RESTORE command bytes would be doubly defined.

A related consideration is that the SAVE/RESTORE instructions must be able

to override any command in progress. It must be ensured that the environ-

ment manipulation command codes do not occur in any other possible instruc-

tion sequence.

A set of modifications was performed to solve these problems. The

hardware addition described earlier makes P2 sensitive to port F2 in addi-

tion to FO and Fl. Command byte ambiguity is resolved by sending normal

command/data bytes to FO as described in the MicroAngelo user's manual.

SAVE instructions are sent to port F2 and suspend execution of any process

initiated via bytes previously received at port FO. A software addition

to the standard P2 operating system was also required. It must be remem-

bered that P2 operates in a fashion similar to P1. Whenever a byte is

written to P2, an interrupt to the P2 CPU is generated. This interrupt

invokes a service routine which determines the source of the request and

takes appropriate action. The code flowcharted in figure 21 has been added

to the standard P2 service routine to support SAVE/RESTORE operations. A

SAVE operation records the cursors and saves all processor registers as

well as the return address in an auxilliary push-down stack. Subsequent

RESTORE codes pop these values off the stack. In the previous example, if

the service routine interrupting top level code issued a SAVE command the

cursor values and the processor registers would be saved. Just before

return to top level the service routine would then issue a RESTORE command

code resetting cursors to their former positions and restarting execution



Variables and Flags for MACOD3

Name Location

- 00E7

---- 003B

- 0128

---- 012C

PPEND F944

MSP F940-1

FF42

Function

Entry point to PAKI interrupt service
routine.

Entry point to PAKI idling loop. All
command executions are initiated from
within this loop.

Exit point from PAKI interrupt service
routine. Exit returns to standard register
set and enables interrupts.

Exit point from PAKI interrupt service
routine. Exit returns to standard register
set but does not enable interrupts.

PPEND=0 then normal command processing
is assumed. PPEND<>0 implies that a
SAVE/RESTORE operation has been requested
by the host. The main command buffer is
allowed to become completely empty before
proceeding.

These two bytes contain the
auxilliary stack pointer where
processor registers and cursor
values are stored by the SAVE
special command.

Number of command bytes in the main
command buffer waiting to be processed
is stored at this location.

Figure 20



This code segment is attached to the standard PAKI interrupt

service routine. Special commands are the SAVE and RESTORE

envi ronment functions.

MACOD3 Flowchart

Sheet 1/4
Fi gure 21
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of the 91 operation. Whenever P2 receives an interrupt, the address of the

next instruction to be executed is pushed onto the processor main stack and

execution vectors to the appropriate interrupt service routine. The SAVE

routine pops this return address information off the main stack and saves

the return address on the auxilliary stack. A subsequent RESTORE will

load the program counter with the return address from this auxilliary stack

following restoration of the other processor registers and cursors.



Chapter IV

System Software-Utilities and an Experimental Example

A large amount of commercial software is available to the PPOD user.

The hardware and firmware sub-modules described earlier provide experimen-

tal flexibility: it is the high level language capability which makes this

flexibility accessable on a rapid turn-around basis. The same criteria.for

hardware selection; modularity, simplicity, reliability, were the basis for

software selection.

CP/M is a widely used operating system for disk supported 8 bit

microprocessors. This operating system is adaptable to a range of hardware

and once customized does not demand user expertise to write code exercising

the full system capability. In addition, since CP/M is extensively

marketed there exists a large number of compatable software utility pack-

ages and special purpose 10 drivers. The standard CP/M System includes the

Basic 10 System (BIOS), a text editor, Dynamic Debugging Tool (DDT), and

several assemblers (ASM and RMAC). Both ASM and RMAC produce executable

code from 8080 assembly language mnemonics. In addition RMAC supports a

full line of macro facilities. These macro facilities have been used to

implement the Z80 command set through the RMAC 8080 assembler and a Z80

macro library. RMAC produces relocatable object modules which can sub-

sequently be linked together forming an executable memory image. DDT is

used for loading, tracing, and executing 8080 hexadecimal instruction

codes. Via DDT memory locations and processor registers can be examined

and altered.



Although DDT and RMAC allow relatively convenient assembly language

programming a high level language is generally preferred. In the disk based

development configuration, PPOD supports a PL/I compiler. The compiler

accepts PL/I source code and produces relocatable object modules similar to

those generated by RMAC. Through the LINK utility PL/I modules can be

linked directly to assembly language 10 drivers or interrupt service code.

PL/I was selected as the high level language because it allows character

and bit string manipulations. Bit string manipulations are vital when it

is necessary to control specialized hardware from a high level language.

The CP/M operating system is compatable with a number of languages

including BASIC, FORTRAN, and APL however these high level languages have

not been purchased. To further increase the convenience of high level

programming the VEDIT text editor has been purchased. VEDIT allows complex

text handling procedures whose effects are immediately visible on the CRT

screen. It is expected that VEDIT will greatly facilitate the development

and documentation of high level source code.

One problem with the standard PL/I compiler is that the code produced

is not formatted in such a way as to be directly put into EPROM. The main

difficulty is that PL/I code employs a large language data area (approx.

8k) which is accessed by various PL/I library functions. In order to pro-

perly execute code generated by the PL/I compiler the 8k language data area

must be initialized to the correct values. Although the starting address

and extent of the language data area is easily determined the function of

each entry has not been documented and is not so easily determined. Since

the 8k data area would occupy one quarter of the available EPROM it is not



practical to store the entire data base with every program. Prof. Antonio

Elias has overcome the difficulty by writing routines to compress the

entire region into.less than 2k bytes. The program, ANAMEM, does this data

compression. Another program, STAR, recohstructs the entire data base from

the output of ANAMEM. By exploiting the large number of zero entries in the

standard language data base, this data compression technique allows ini-

tialization of large areas of RAM without having to store each byte's ini-

tial value. Generally, the compressed data base is stored in EPROM and

STAR is used to reconstruct the full data base at the start of processing

code.

In addition to the ABSOLUTE, CODE, DATA, and COMMON segments listed

in a program's linking statistics there are two other portions of memory

which must be preserved if reliable operation of the ROMed program is to be

insured. The first is that occupied by the compressed language data area.

This data must reside at the location expected by the reconstruction

routine, STAR. The second auxilliary area is the region from 0000-0100

which is used by CP/M for storage of system parameters. These memory loca-

tions should be programmed into EPROM following a successful load and exe-

cution of the program to be ROMed. Prior load and execution ensures that

the system parameters put in EPROM will be exactly those needed. by the

running program. It is prudent to alter the system parameters slightly by

programming a RET instruction at the BOOT and BDOS entry points (0000 and

0005).

Programming of EPROMs must be preceded by creation of a fully

debugged and properly executing CP/M program. If the program to be placed



in ROM is named 'RMCD' then the executable menory image will be stored in

the disk file 'RMCD.COM' following a successful link. The COM file can be

loaded into system RAM via the DDT utility. Once the file has been suc-

cessfully loaded, the processor monitor is reentered by depressing the

system reset button on the mainframe front panel. This reset operation

terminates any running program but does not reset the system RAM, thus the

executable memory image loaded with DDT is not destroyed by the reset

operation. The monitor command 'P <starting address> <end address> F800'

will then program the memory segment <starting address> to <end address>

into the (blank!) EPROM located at F800-FFFF. Repetition of this process

will place the entire executable memory image in EPROM.

Before execution of the EPROM based program, the P1 memory map must

be reconfigured so there are no address conflicts between RAM and EPROM.

The RAM from E700-FOOO must never be deselected. These locations are used

by the P1 monitor initialization code. P1 will not run any code if the

system RAM and stack space have been overlayed with EPROM. Following

reconfiguration of the memory map, the ROMed code can be invoked by

resetting the system and issuing a 'G <starting address>' instruction from

the user consol. For PL/I code developed under the CP/M operating system

the starting address will be 0100H.

ANAMEM and STAR when combined with standard CP/M utilities allow

the production of ROM based programs written in PL/I. Since most

experimental applications preclude disk drives, the development of a

technique for creating ROMed PL/I programs constitutes a vital extension of

the standard system software.



Using the procedure described above a prototype Loran-C based RNAV

has been implemented. Portions of the RNAV processing are done by the PO

control program described earlier in connection with the task dependent

portion of the IPCP. The bulk of the data processing is done by PL/I

routines burned into EPROM. PL/I code for the RNAV was written by Prof. A.

Elias. This prototype RNAV has been tested in an automobile. A plot of

Loran-C data from this test run is shown in figure 22. Inputs to the PL/I

processing code are derived from two sources; the Loran-C receiver and the

RNAV user keyboard. Present position is provided from the receiver in

latitude/longitude. The RNAV user can program a sequence of waypoints to

his destination. Provision is made for adding, deleting, and inserting

waypoints in a numbered waypoint list. Although the position fix is based

on Loran-C signals, waypoints are specified relative to the existing VOR

network. As with conventional RNAVs waypoints can be defined at a named

VOR or at an entered range and bearing from a named VOR. Use of this

'pseudo VOR' approach to defining waypoints has several attractions.

Pilots are familiar with the existing YOR network and rho/theta navigation.

The VORs and connecting radials appear on air route charts and the VOR

geographic positions can easily be stored in EPROM. Once the VOR positions

are stored in EPROM, the excellent accuracy of the Loran-C network is

accessable without the inconvenience of time difference coordinates.

Waypoints can be defined simply by entering a VOR name, radial, and offset

through the command entry keyboard. The entire operator command set for

entering, deleting, and changing waypoints is given in figure 23.

Calculations involving geographic coordinates are done assuming a

spherical earth; however, a series of linearized correction factors are



Mobile Test Run Data Plot
Unfiltered Loran-C Data
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Figure 22



Comand Code

G, 10

T

R 1 110

D

S n

A n

E 1 BOS

Format

Error Messages

INSUFFICIENT DATA-

INCORRECT DATA-

WP NOT DEFINED-

NAMED WP NOT FOUND-

INTERNAL CONVERSION ERROR-

Command string too short.

Alpha/numeric expected in place of
numeric/alpha in command string.

User has tried to navigate to a way-
point which has not yet been entered
via the E 'comm'and.

User has tried to define a waypoint
not contained in the system waypoint
data base.

Overflow/underflow in software
arithmetic function.

RNAV program commands and error ressages

Figure 23

Effect.

Set CDI gain to 10

Current course is toward
Waypoint

Current course is from
Waypoint

Set desired radial to 110

Delete waypo'int shown

Show name, radial, off-
set of nth waypoint

Navigate toward nth
Waypoint

Navigate toward previous
Waypoint

Define BOS VOR as first-
Waypoint

Insert waypoint before
Waypoint shown

I1



used to account for the deviation in bearing angle with longitude. The

correction factors are computed preflight and are entered directly into the

program at compile time. The equations used for computation of position

relative to a desired course are given in figure 24 and are based on those

given in Ref 8. The magnitude of error incurred by the spherical earth

approximation is well within acceptable limits for enroute navigation at up

to 500 nm ranges. These approximations would not in general be acceptable

for non-precision approach flying.

A sample RNAV output CRT image is shown in the succeeding figure.

In addition to the CDI arrow near the center of the screen there are three

regions of interest. The first is the active waypoint display shown at the

top of the screen. This region indicates the name, number, course, radial,

ground speed, and time to go relative to the waypoint whose position is

used in the cross-track deviation calculation (the active waypoint). At

the lower most edge of the screen is the area used for command and error

message display. Immediately above the command/error message display is

the temporary waypoint display region. This portion of the screen is used

for review of previously defined waypoints and the display of other tem-

porary command/status data. The active waypoint display is independent of

the content of the temporary waypoint display. Only the 'A', 'B' comands

directly alter the contents of the active waypoint region.



Arc-length and Bearing Calculations

Under the assurption of a spherical earth the follcwing

equations can be used to co-pute the arc distance and bearing

frm north of two points, A and B, with kncwn latitude and

longitude.

A AA are latitude/longitie of point A

B' AB are latitude/longitude of point B

AA =AA AB

9= cosB* sin A

C s2= osA* sin-B sinA* cos 4IB* co-sA

- 3= sin"A * sintB + coslA* cos@ * c)A

Angle of the arc from A to B rreasured from true North is

-t=t~1 2 (C 2

Arc-length from A to B is given by

p = a{tan ~ ((C 2 os +C 1sin* )/C 3

a= 3443 nm.

Navigation Equations for RNAV Program

Figure 24
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Chapter V

Conclusions and Recommendations for Continued Research

The previous chapters have covered the existing PPOD system from

hardware, firmware, and software perspectives. Clearly PPOD can support a

very diverse set of experimental objectives both airborne and in the

laboratory. Because of PPOD's versatility any comprehensive listing of

future objectives would be nothing more than a hinderance to future users;

rather I shall list a few areas of immediate interest some of which have

served as the seeds from which the PPOD project sprang and some of which

have grown out of the systems integration and development effort.

The PPOD project development effort has achieved several important

results. A simple but nevertheless crucial task was the selection of the

stock electronic boards on which the system is based. From the large array

of manufacturers offerring various combinations of features it was

necessary to chose three or four whose products could form a substrate upon

which further enhancements would be based. The wide range of possible

applications for the PPOD multiprocessor is an indication of success in

meeting this requirement. Initial component selection and purchase was

followed by a series of enhancement modifications. These enhancements

include addition of Z80 mode 1 interrupt support to the PO processor, the

creation of circuitry and firmware to allow interrupt driven communication

between the P1 and P2 processors, and perhaps most important the addition



of the electronics and the graphics operating system extension required to

nultiplex several video data sources onto a single CRT. Each of these

modifications has been successfully implemented as an extension to the

capabilities of the equipment as originally purchased. Another objective

of the process of integrating the stock components was to make the func-

tional extensions mentioned above without impacting the performance of the

electronic submodules when operated in more conventional applications. In

every case this objective has been met. None of the hardware/firmware

modifications described in preceding chapters detracts from the operation

of the units when operated in the manner intended by the manufacturer.

The capabilities of the PPOD system have been verified in a mobile

environment through an automobile test run. This test involved observation

of the performance of a prototype Loran-C based RNAV with CRT display.

Addition of a latched 8/16 bit multiplexor circuit to the Loran-C receiver

data bus provided a convenient method of taking position information from a

Northstar 6000 receiver and the multiplexor also eliminated interference

between the PPOD and receiver digital data buses. An assembly language

program run by the PO microprocessor controlled the multiplexing and pro-

cessing of receiver data. Following coordinate conversion calculations a

CRT image providing destination, cross-track error, and groundspeed infor-

mation was displayed to the operator. Loran-C position data was also

recorded for later analysis. Successful implementation of the RNAV

demonstrates the power of a multiprocessor configuration, the convenience

of high level language capability, and the ease with which PL/I code can be

linked to hardware dependent utility routines.



From the results achieved a number of general conclusions can be

drawn. Experience to date with the Loran-C based RNAV and CRT display

indicates that the inconvenience of time difference coordinates and

hyperbolic grid navigation can be shifted to a digital processing system

with moderate intelligence. Once these details are relegated to a

computer, use of the Loran-C system will cause no increase in pilot

workload as compared to a conventional RNAV system. Use of the PPOD system

has demonstrated that 'off the shelf' electronics can be used to achieve a

variety of experimental objectives both in the air and on the ground.

Detailed knowledge of the internal stiucture of the standard components can

be used to integrate several modules into a multiprocessor. In addition

the PPOD development effort has shown that some of the advantages of

multiprocessing can be achieved with ordinary equipment and carefully

engineered interface modifications. Throughput increases- are available -

without the necessity of formulating the experimental task in terms of many

subtasks, an execution lattice, and a multiprocessor executive.

Most of the immediate needs relate to improvements in the

peripheral equipment. A high resolution direct drive CRT of standard

instrument bay size would ease the logistics of flight testing. The rather

awkwardly packaged unit in use does not allow mounting close to other

critical flight instruments. A similar need exists on the input side. A

small key array, perhaps kneepad or instrument panel mounted, would

contribute greatly to flight tests and add to the realism of ground

simulations. PPOD's multiprocessor organization and multiple memory maps

provide a solid platform for experiments with voice input/output. This is



an area which has not been extensively researched and may provide some

relief for the already crowded visual data channels. Addition of an S-100

compatable voice synthesis board would not require extensive software

modification. A simple voice feedback for keyboard input would allow

pilots to enter command/request data while looking at flight instruments.

Simulation flight testing offers unique opportunities and savings in cost.

Before extensive simulation testing can be done, improvements will have to

be made in the analog/digital converters presently available. Preliminary

work has indicated that the conversion spe.ed and resolution of the 12 bit

A/D units now installed in the PDP-11/10 computer are not adequate for pro-

ducing a stable display driven by analog simulator outputs [Ref. 7].

Reduction in conversion granularity especially would improve the usefulness

of the simulator/PPOD/PDP-11 combination.

Great possibilites exist for the coupling of a digital autopilot

with PPOD. Experiments involving RNAVs based on various raw data sources

are only a few of the opportunities. Implementation of weight, balance,

and range optimization calculations do not require any additional hardware.

A series of qualitative workload studies would be the next logical step

following implementation of an electronic copilot of the type described

earlier. These are some of the possible experiments as outlined under the

three test levels described in chapter 1. To date most of the research

effort has been devoted to definition of the PPOD architecture and

implementation of a prototype Loran-C based RNAV. The computational power

and mission flexibility of the PPOD multiprocessor should in the future be

utilized at all three of the experimental levels of chapter 1.



The current pace of hardware development makes is difficult even

for rapidly moving production operations to keep abreast of the latest

innovations. In the space of a year most of the digital circuit boards

used in PPOD have been obsoleted by new models and board revisions. In

spite of this fact, PPOD will retain its utility as an experimental

tool. PPOD interfaces with much of the older equipment and its

components will be compatable with the S-100 equipment of the next several

years. System architecture provides for modular upgrade as well.

Although designed to fulfill the general requirements of the three

test levels described in chapter 1, already PPOD's versatility has led to

unanticipated applications. Two examples are use as a microprocessor

development system for remote manipulator firmware simulation/design and as

a development environment for a microprocessor based airline scheduling

system. There is little doubt that PPOD multiprocessor versatility will

continue to be utilized in a range of imaginative test programs.
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Appendix A

Software Listings---
Source listings for programs described in the body of the

paper are provided in this appendix.



ISUER5 is a revision of the Northstar 6000 10 control program
IUSER3. This proqram controls the acquisition, error checking, and
formatting of the Loran-C data.

;IUSER4 IS A RELOCATABLE VERSION OF IUSER5
;IUSER5 IS ASSMBLD RELATIVE TO 29A SINCE IT WILL
;BE PLACED AT THAT ADDRESS WHEN MERGED-WITH THE
;STANDARD 1^2 OPERATING CODE, basker.

;REVISION FOR INTERFACE TO PL/1 LORAN CODE.
;DECODES ONLY GPIA DATA AND SENDS AN INTERRUPT TO
;HOST AFTER EVERY 1-2 TO HOST DATA XFER. INTERRUPT VECTOR IS PIOV
;STATWD BIT DEFINITIONS

BIT 0: H-GPIA FRAME IN PROGRESS
BIT 1: RFU
BIT 2: H-GPIA FRAME READY FOR' XMIT
BIT 3: H-SNRS OK ON S1 AND S2
BIT 4: H-EPSCO FRAME IN PROGRESS
BIT 5: RFU
BIT 6: H-EPSCO FRAME READY FOR XMIT
BIT 7: RFU

;CONWD BIT DEFINITIONS
BIT 0= H-DECODE GPIA
BIT 1= H-DECODE.EPSCO
BIT 2= H-DECODE BEST SOURCE

;SNRWD BIT DEFINITIONS
BIT 0= H-CHECK SNR ON NEXT BYTE
BIT 1= H-LAST SNR OK
BIT 2= H-LAST SNR OK

ORG 029AH

ICON EQU 03000H
COMSTA EQU 05000H
ADR1 EQU OBOOOH ;I^2/HOST STATUS PORT
PIOV EQU OF8H ;HOST PIO INT VECTOR
GPIA EQU 020H ;GPIA FRAME ID BITS
EPSCO EQU 010H ;EPSCO FRAME ID BITS
ETAG EQU O1H ;GPIA FRAME ID TAG
GTAG EQU 02H ;EPSCO FRAME ID TAG
SNRTHR EQU 04H ;SNR LEVEL THRESHOLD
IRAM EQU 01000H ;BASE OF TRANSMIT BUFFER
MOVER EQU' 0151H ;ADDRESS OF DMA TRANSFER ROUTINE

;IN 1^2 BASIC KERNEL
INTVCT EQU 023BFH ;HOST INT VECTOR STORAGE LOCATION
DMADDR EQU 023B8H ;DMA ADDRESS STORAGE LOCATION
WTFLG EOU 023B5H ;DMA DIRECTION CONTROL BYTE LOC.
MAXL EQU 060H ;MAX RING BUFFER LENGTH
BOTM EQU 01200H ;BASE OF PROGRAM SCRATCH RAM
GADDR EQU BOTM+1



EADDR
INLOW
INHGH
CONWD
S NRWD
GBASE
EBASE
BASR
SCRAT1
BTG02

OBASE1
OBASE2
STATWD

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

GADDR+1
EADDR+1
I NLOW+1
INHGH+1
CONWD+1
SNRWD+1
GBASE+28
EBASE+13
BASR+96
SCRAT1+2

GBASE
EBASE
BTG02+1

JMP SUPR
INTSEV: PUSH PSW

MVI A,082H
STA 08001H
LDA 08000H
DB ODDH,077H,00
ANI 070H
JZ OK6
DB OCBH,6*8+A+4
JNZ OK6
LDA BTG02
CPI MAXL
DB ODDH,23H
CALL LCHK2
MVI A,081H
STA 08001H
LDA 08000H
DB ODDH,077HOO
DB ODDH,23H
CALL LCHK2

OK6: POP -PSW
El
RETI
DB OEDH,4DH

LCHK2: LDA BTG02
INR A
STA BTG02
DB ODDH,22H
DW SCRAT1
LDA SCRAT1
CPI MAXL
JC OVE2
DB ODDH,21H
DW BASR

OVE2: RET

;TEMP. STORAGE FOR LOW BYTE INPUT
;TEMP. STORAGE FOR HIGH BYTE INPUT
;LOCATION OF CONWD
;LOCATION OF SNRWD
;GPIA FRAME BUFFER BASE ADDR.
;EPSCO FRAME BUFFER BASE ADDR.
;RING BUFFER BASE ADDRESS
;SCRATCH PAD RAM LOCATION
;CONTAINS # OF BYTES IN RING
;BUFFER WAITING FOR PROCESSING

;STATWD LOCATION

;JMP TO INITIALIZATION CODE
;START OF NORTHSTAR 6000 INT
;SERVICE ROUTINE
;ENABLE HIGH ORDER BYTE

;READ HIGH ORDER BYTE

;CHECK ADDRESS BITS FOR GPIA,EPSCO

OH
;IF WRONG DEVICE THEN QUIT
;CHECK TO SEE IF RING BUFF IS FULL

;CHECK BUFFER LENGTH
;ENABLE LOW ORDER BYTE

;READ LOW ORDER BYTE

;SAVE LOW ORDER BYTE

;RETURN FROM INTERRUPT

;INCR # OF BYTES IN RING BUFFER

;LOAD SCRATI INTO IX

;PUT BYTE INTO RING BUFFER



BYTES FROM THE RING BUFFER AND ACCUMULATES DATA
BUFFERS RESERVED FOR EACH TYPE OF DATA FRAME

EXINT:

;GET A BYTE FROM THE RING BUFF.
;SAVE IN A TEMPORARY LOCATION
;GET THE LOW BYTE FROM RING BUFF.
;SAVE IN A TEMPORARY LOCATION

;CHECK ADDRESS BIT TO SEE IF IT
;IS PART OF A GPIA FRAME
;IF NOT GPIA THEN CHECK TO SEE
;IF IT IS PART OF AN EPSCO FRAME

;GO TO EPSCO PROCESSING CODE

;GET A BYTE FROM THE RING BUFFER - -

;RETURNS WITH A BYTE FROM THE RING BUFFER IN THE "A" REGISTER

GETBT: DB OFDH,O7EHOO
PUSH PSW
DB OFDH,23H
DB OFDH,22H
DW SCRAT1
LDA SCRATI
CPI MAXL
JC OVE3
DB OFDH,21H
DW BASR

OVE3: LDA BTG02
DCR A
STA BTG02
POP PSW
RET

;PROCESS GPIA DATA

GPROC: PUSH PSW
PUSH H
PUSH D
LDA INHGH
RRC
JNC NST

;DECREMENT BYTES LEFT IN BUFF.

;ROUTINE PROCESSES
;FRAMES IN SPECIAL

PUSH PSW
PUSH H
PUSH B
CALL GETBT
STA INHGH
CALL GETBT
STA INLOW
MVI AGPIA
MOV B,A
LDA INHGH
ANA B
CNZ GPROC
MVI A,EPSCO
MOV B,A
LDA INHGH
ANA B
CNZ EPROC
POP B
POP H
POP PSW
RET



RRC
J NC
RRC
JNC
RRC
JNC
iMP

NST: LDA
DB
C NZ
POP
POP
POP
RET

NST

NST

NST
LCHK
STATWD

OCBH,O*8+A+40H
SAVE
D
H
PSW

;START OF FRAME MARKED BY 'OF' BYTE
;IF START OF FRAME GOTO LCHK

;IS A FRAME BEING ACCUMULATED?
;YES-THEN SAVE THE BYTE
;NO- THEN EXIT WITHOUT SAVE

LDA GADDR
CPI 01BH
CZ MVE
CALL RESYNC
CALL SAVE
POP D
POP H
POP PSW
RET

;HAS A PREVIOUS FRAME BEEN FILLED?

;IF YES THEN SET FRAME COMPLETE FLAG
;IF NO THEN START A NEW FRAME
;SAVE FIRST BYTE IN NEW FRAME

LDA STATWD
DB OCRH,0*8+A+OCOH
STA STATWD
XRA A
STA GADDR
RET

LDA
DB
DB
STA
RET

STATWD
OCBH,2*8+A+OCOH
OCBH,O*8+A+OCOH

STATWD

;SET STATUS TO INDICATE THAT A
;GPIA FRAME IS BEING ACCUMULATED

;SET GPIA BUFFER POINTER TO BOTTOM
;OF GPIA BUFFER

;SET STATUS TO INDICATE THAT A FULL
;FRAME IS READY TO BE SENT TO HOST

A BYTE IN GPIA BUFFER

LXI H,GBASE
LDA GADDR
MOV E,A
INR A
STA GADDR
XRA A
MOV D,A
DAD D
LDA INLOW
MOV M,A
CALL SNRCHK
RET

;PUT BASE ADDRESS OF GPIA BUFF IN 'HL'
;GET OFFSET FROM BASE FOR NEXT
;EMPTY LOCATION.

;SAVE BYTE IN EMPTY LOCATION
;CHECK SNR LEVEL

LCHK:

RESYNC:

MVE:

;STORE

SAVE:



;PROCESS EPSCO DATA

PUSH PSW
PUSH H
PUSH D
LDA INHGH
ANI OFH
JZ ECHK
LDA STATWD
DB OC
CNZ SAVE2
POP D
POP H
POP PSW
RET

BH,4*8+A+40H

;LOOK FOR START OF EPSCO FRAME
;IS EPSCO FRAME ALREADY BEING
;ACCUMULATED?
;YES-SAVE BYTE
;NO EXIT

;CHECK FOR START OF FRAME

ECHK: LDA STATWD
OB OCBH,4*8+A+OCOH
STA STATWD
LDA EADDR
CPI OCH
CZ MVE2
XRA A
STA EADDR
POP D
POP H
POP PSW
RET

;MOVE EPSCO BUFFER

MVE2: LDA STATWD
DB OCBH,6*8+A+OCOH
STA STATWD
RET

;SAVE EPSCO DATA BYTES

SAVE2: LDA INHGH
ANI 07H
CPI 07H
RZ
ORA A
RZ
LXI H,EBASE
LDA EADDR
MOV E,A
INR A
STA EADDR
MVI DOOH
DAD D

;SET STATUS TO INDICATE THAT AN
;EPSCO FRAME IS BEING ACCUMULATED.

;IS A PREVIOUS FRAME FULL OR
;IS THIS THE FIRST ONE.
;IF NOT FIRST ONE THEN SEND-FULL
;FRAME TO HOST AND SET BUFFER
;POINTER TO BOTTOM OF BUFFER

;SET EPSCO FRAME FULL STATUS

;IS IT AN EPSCO DATA WORD

;YES BUT IT IS A LOAD
;COMMAND SO DONT SAVE IT
;IT IS A RESET COMMAND,
;DONT SAVE IT
;PUT EPSCO BUFF. BASE IN 'HL'

;ADD OFFSET TO BASE

EPROC:



LDA INLOW
MOV M,A
RET

;ROUTINE TO CHECK

;PUT BYTE IN FREE LOC.

SNR LIMITS

SNRCHK: LDA GADDR
CPI 017H
CZ DCHK
LDA GADDR
CPI 018H
CZ SNRC
RET

DCHK: LDA INHGH
ANI 07H
CPI 02H
JZ SKP
CPI 03H
JNZ EXT5

SKP: LDA SNRWD
DB OCBH,0*8+A+OCOH
STA SNRWD
RET

EXT5: LDA SNRWD
DB OCBH,0*8+A+80H
STA SNRWD
RET

SNRC: LDA SNRWD
DB OCBH,O*8+A+40H
JZ EXT5
LDA INLOW
CPI SNRTHR
JM LSNR
LDA SNRWD
DB OCBH,1*8+A+40H
JZ OK1
DB OCBH,2*8+A+OCOH

OK1: DB OCBH,1*8+A+OCOH
DB OCBHO*8+A+80H
STA SNRWD
RET

LSNR: LDA SNRWD
DB OCBH,1*8+A+80H
DB OCBH,0*8+A+80H
DB OCBH,2*8+A+80H
STA SNRWD
RET

;SUPERVISOR
;-FOLLOWING
;-THIS LOOP

;SNR DATA WILL BE IN BYTES 23,24

;IS IT BYTE 23?

;IS IT BYTE 24?

;BYTE 23 INDICATES THE SLAVE #
;FOR SNR DATA IN BYTE 24

;IS IT DATA FOR SLAVE #1
;OR SLAVE #2

;IF FOR #1,#2 THEN SET STATUS
;SO NEXT BYTE WILL BE CHECKED
;AGAINST THE SNR THRESHOLD

;COMPARE SNR VALUE AGAINST SNR THRESH
;IF SNR TOO LOW THEN JMP TO LSNR

;OTHERWISE SET AN SNR OK FLAG

;IF SNR TOO LOW THEN RESET THE
;SNR-OK FLAGS

ROUTINE
THE INITIALIZATION PROCEDURE AN IDLING LOOP IS ENTERED
SCANS THE RING BUFFER AND PROCESSES THE INCOMING BYTES



;-AS THEY ACCUMULATE IN THE RING BUFFER. WHENEVER A COMPLETE DATA
;-FRAME, EPSCO OR GPIA, IS READY AN ATTEMPT IS MADE TO TRANSFER THE
;-DATA TO THE HOST PROCESSOR AT THE DMA TARGET ADDRESS

SUPR: PUSH PSW
PUSH H
XRA A
STA SNRWD
STA EADDR
STA GADDR
STA STATWD
STA INTVCT
STA GADDR
STA EADDR
STA SNRWD
STA STATWD
STA BTG02
MVI A,01H
STA CONWD
MVI A,083H
STA 08001H
LXI HADR1
SHLD 023B8H
MVI A,PIOV
STA INTVCT

DB
DW BASR
DB
DW

;ENABLE

;DISABLE 1^2 TO FDC-1 INTS

;ENABLE GPIA DECODING

;DISABLE OUTPUT ON DPTL

;SET DMA TARGET ADDRESS TO ADR1

;1^2 WILL RETURN PIOV DURING HOST INT
;ACKNOWLEDGE CYCLE IF PIOV<0
;INITIALIZE RING BUFFER POINTERSDDDH,21H

OFDH,21H
BASR

MODE 1 INTERRUPTS

DB OEDH,56H
EI
POP H
POP PSW

SUPR1: LDA STATWD
DB OCBH,2*8+A+40H

CNZ XGP
LDA STATWD
DB OCBH,6*8+A+40H
CNZ XEP
LDA BTG02
ORA A
CNZ EXINT
JMP SUPR1

;IS A GPIA FRAME READY?

;IF YES THEN TRY TO SEND IT

;IS AN EPSCO FRAME READY?
;IF YES THEN TRY TO SEND IT
;ARE BYTES WAITING IN RING BUFF?

;YES-GO TO PROCESSING ROUTINE
;LOOP BACK TO IDLING LOOP

TO PROCESS A GPIA DATA FRAME

LDA CONWD
DB OCBH,0*8+A+40H
CNZ SEGP

;DOES HOST WANT GPIA FRAMES?

;YES TRY TO SEND

;CODE

XGP:



LDA CONWD
DB OCBH,2*8+A+40H
CNZ BSRCE
LDA STATWD
DB OCBH,2*8+A+80H
STA STATWD
RET

SEGP: XRA A
DCR A
STA WTFLG
LXI B,01H
CALL MOVER
LDA IRAM
ORA A
RNZ
LXI H,IRAM
MVI A,GTAG
MOV M,A
LXI B,01CH
LXI HOBASE1
LXI D,IRAM+1
DB OEDH,OBOH
XRA A
STA WTFLG
LXI B,01CH
CALL MOVER
CALL OPCOM
RET

;BSRCE

;MAYBE-IS GPIA THE BEST SOURCE?

;ALTER BUFFER STATUS FLAGS

;SET WTFLG FOR HOST->I^2 TRANSFER

;GET IST BYTE FROM FDC-1 DATA BUFF

;IS FIRST BYTE =0?
;IF NOT THEN HOST IS STILL USING
;LAST FRAME

;SET WTFLG FOR XFER TO HOST

;SET UP FOR XFER TO FDC-1, 'lC' BYTES
;CALL ROUTINE TO DO DMA
;CALL ROUTINE TO GENERATE INT TO HOST

DETERMINES WHICH OF THE TWO FRAMES, GPIA OR EPSCO, IS PREFERRED

BSRCE: LDA SNRWD
DB OCBH,1*8+A+40H
JZ SEGP2
DB OCBH,2*8+A+40H
RNZ

SEGP2: CALL SEGP
RET

;CODE TO SEND AN EPSCO DATA FRAME

;WERE SNRS ABOVE THRESHOLD
;ON FIRST AND SECOND SLAVES?
;IF NOT THEN SEND GPIA FRAME

;CALL ROUTINE TO SEND GPIA DATA

XEP: LDA CON
DB
CNZ SEP(
LDA CONt
DB
CNZ BSR(
LDA STA
DB
STA STAl
RET

BSRCE2: LDA SNRW
DB

OCBH,1*8+A+40H

WD
OCBH ,2*8+A+40H
CE2
TWD
OCBH,6*8+A+80H
TWD

D
OCBH ,1*8+A+40H

;IS EPSCO DATA WANTED?

;IF YES THEN TRY TO TRANSFER

;IS PREFERRED SOURCE WANTED?
;ALTER BUFFER STATUS.

;WERE LAST TWO SNRS ABOVE THRESHOLD?
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RZ
DB OCBH,2*8+A+40H
RZ
CALL SEPC
RET

;RETURN IF NOT

;RETURN IF NOT
;IF BOTH OK THEN SEND EPSCO DATA

TO SEND EPSCO DATA FRAMES TO HOST PROCESSOR

SEPC: XRA A
DCR A
STA WTFLG
LXI B,01H
CALL MOVER
LDA IRAM
ORA A
RNZ
LXI H,IRAM
MVI A,ETAG
MOV M,A
LXI B,ODH
LXI H,OBASE2
LXI D,IRAM+1
DB OEDH
XRA A
STA WTFLG
LXI B,0DH
CALL MOVER
CALL OPCOM
RET

;ROUTINE TO GENERATE
OPCOM: PUSH PSW

PUSH H
LXI H,ICON
LDA INTVCT
ORA A
JZ GONE
LDA INTVCT
STA COMSTA

OPCo: MOV A,M
DB OCBH
JNZ OPCO
MVI A,010H
MOV M,A

OPCl: MOV A,M
DB OCBH
JZ OPCl
XRA A
MOV M,A

GONE: POP H
POP PSW
RET

;SET WTFLG FOR XFER FROM HOST
;GET ONE BYTE FROM HOST MEMORY
;IF FRST BYTE=O THEN THE DATA IS USED

;ATTACH EPSCO TAG TO FRAME

;OK, SEND 'D' MORE BYTES TO HOST
;MOVE FROM TEMPORARY BUFF. TO 10 BUFF.

,OBOH

;SET WTFLG FOR XFER TO HOST MEMORY
;'D' BYTES TO XFER
;CALL ROUTINE TO DO DMA
;CALL ROUTINE TO GENERATE HOST INT.

INTERRUPTS TO HOST

;IF INT VECTOR ZERO THEN LEAVE

;PUT INT VECTOR IN OUTBND DATA LATCH

,3*8+A+40H
;WAIT FOR IEI

;INTERRUPT HOST

,1*8+A+40H ;WAIT FOR HOST TO AKNOWLEDGE INT

;CLEAR INTERRUPT TO HOST

;CODE
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FUSER6 supports both polled and interrupt driven data communication bet-
ween P1 and P2. FUSER6 is used to pass data and command bytes through a
double buffered interface.

PUBLIC OUTBT
PUBLIC START1
MACLIB Z80

OEFC3H
QE7F1H
OE6FFH
OE7F2H
OE7F3H
OE7F4H
OF853H
OE6FEH

;SOFTWARE ERROR DET. ENABLE
;COMM. BUFFER WRITE POINTER
;ERROR COUNT
;# OF BYTES WAITING TO BE SENT
;STATUS/CONTROL BYTE
;COMMAND BUFFER BASE ADDRESS
;ADDRESS OF ROUTINE TO INIT. INTS
;TEMPORARY STORAGE LOCATION

BIT DEFINITIONS
BIT 0= HIGH IF NEXT XFER TO BUFFER WILL FAIL
BIT 1= HIGH IF XMIT BUFFER TO UA IS FULL
BIT 2= HIGH IF A XFER IS IN PROGRESS (IE INT PENDING)
BIT 3= CHK BIT USED FOR ERROR RECOVERY PROCESSING
BIT 4= FORCE XFER BIT, IF=O THEN ROUTINE WILL WAIT

UNTIL THE OUTBOUND BYTE CAN FIT IN BUFFER
BIT 5= RESERVED FOR FUTURE USE
BIT 6= BUFFER CONTROL BIT USED TO SYNC BUFFER

EMPTYING OPERATION IN INTERRRUPT MODE.

OUTBT: PUSH PSW
STA NXTBT
LDA CNTST
BIT 4,A
CNZ OUTBT1
LDA CNTST
BIT 4,A
CZ OUTBT2
POP PSW
RET

OUTBT2: LDA BTGO
ORA A
JNZ OUTBT2

OUTB2A: IN OF1H
ANI 01H
JNZ OUTB2A
LDA NXTBT
OUT OFOH
RET

;TRANSFER IN POLLED OR BUFFERED MODE?
;BUFFERED MODE

;POLLED MODE

;CHECK TO SEE IF COMMAND BUFFER
;IS EMPTY- IF NOT THEN WAIT TILL
;IT IS BEFORE SENDING A BYTE IN
;THE POLLED MODE

;WAIT UNTIL MICROANGELO READY
;GET COMMAND BYTE
;SEND TO MICROANGELO

;START OF CODE FOR BUFFERED COMMUNICATIONS BETWEEN FDC-1 AND MICRO-ANGELO

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

TDF
R PA
ERRCNT
BTGO
CNTST
BASE
START2
NXTBT

;CNTST
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;COMMAND BYTES ARE STORED IN A 115 BYTE RING BUFFER AND TRANSFERED VIA
;AN INTERRUPT DRIVEN INTERFACE. THIS CODE SHOULD NOT BE USED UNLESS
;THE THE "FDC-1 EXT. INT SUPPORT" (FOOO-F7FF) AND "EXT. INT TABLE"
;(F800-FFFF) ARE ON BOARD FDC-1 AND THE S-100 PROTO BOARD IS ATTACHED
;TO THE BUS.

OUTBT1:

OTE:
OUTBT3:

CALL OUTBT3
LDA CNTST
BIT 6,A
JNZ OTE
JMP OUTBT1
RET
DI
PUSH D
PUSH H
MVI A,OFFH
STA TDF

LDA NXTBT
ENTR: CALL IWP

LDA CNTST
BIT O,A
JNZ EXT1
RES 1,A
STA CNTST
CALL START1
XRA A
POP H
POP D
EI
RET

EXT1: SETB 1,A
STA CNTST
BIT 2,A
CZ STARTI
MVI AOFFH
POP H
POP D

;TRY TO PUT THE BYTE IN THE BUFF.
;WAS ATTEMPT SUCCESSFUL?

;YES-RETURN TO CALLING CODE
;NO- TRY AGAIN

;NO INTS ALLOWED DURING BUFFER
;POINTER MANIPULATIONS

;SET TDF HIGH TO ENABLE SOFTWARE CHECKS
;MONITOR AND ERROR CORRECTION CODE EMBEDDED
;IN 1SEC INTERRRUPT SERVICE ROUTINE.

;CALL ROUTINE TO INCR. WRITE POINTER
;IS BUFFER FULL?

;YES IT IS FULL

;NO- CLEAR BUFFER FULL FLAG
;GENERATE AN INT IF NECESSARY

;BUFFER MANIPULATIONS DONE, INTS OK

;SET BUFFER FULL FLAG

;IF XFER NOT IN PROGRESS THEN START ONE

RET

;ROUTINE TO INCREMENT WRITE POINTER

PUSH PSW
LXI HBTGO
MOV A,M
CPI 073H
JNC LP1
LDA CNTST
RES O,A
STA CNTST

;IS COMM. BUFF FULL?

;YES - JMP
;NO -RESET BUFFER FULL FLAG

IWP:
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INR M
DCX H
DCX H
MOV A,M
MOV E,A
INR A
CPI 073H
JC LP
XRA A

LP: MOV M,A
MVI DOOH
LXI HBASE
DAD D
POP PSW
MOV M,A
LDA CNTST
SETB 6,A
STA CNTST
LXI H,BTGO
MOV A,M
CPI 073H
JC SKP
LDA CNTST
SETB 0,A
STA CNTST
RET

LP1: LDA CNTST
SETB O,A
RES 6,A
STA CNTST
POP PSW

SKP: RET

;INCR. # OF BYTES IN BUFFER

;GET WRITE POINTER OFFSET

;INCR. WRITE POINTER OFFSET
;IS WRITE POINTER AT TOP OF BUFF.
;NO - THE JUMP
;YES- THEN ROLLOVER TO BUFF. BASE

;ADD WRITE POINTER TO BUFF. BASE

;SAVE THE COMMAND IN BUFF.

;SET BUFFER CONTROL BIT

;DID LAST BYTE FILL BUFFER

;IF YES THEN SET BUFFER FULL
;OTHERWISE JUST RETURN

;SET BUFFER FULL FLAG

;RESET BUFFER CONTROL BIT

FLAG

ROUTINE TO INITIATE INTERRUPTS FROM MICROANGELO

A TRANSFER IS PENDING IF THE COMMAND BUFFER IS NONEMPTY,
I.E. A BYTE HAS BEEN WRITTEN TO MICROANGELO AND FDC-1 IS
WAITING FOR AN INTERRUPT. IF NO TRANSFER IS IN PROGRESS,
BUFFER IS COMPLETELY EMPTY OR MICROANGELO FAILED TO GENERATE
THE NEXT BYTE REQUEST INTERRUPT, THEN START1 WILL CALL START2
TO RESTART THE INTERRUPT SEQUENCE.

START1: LDA CNTST
BIT 2,A
CZ START2
RET
END

;IS XFER PENDING
;IF NOT THEN CALL START2
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MACOD3 allows graphic output from several tasks to be multiplexed onto a
single screen.

;MACOD3 ALLOWS THE HOST TO SAVE ALL PROCESSOR REGISTERS, ALPHA,
;AND GRAPHIC CURSORS, AND THE CURRENT RETURN ADDRESS VIA AN '01'
;COMMAND SENT TO PORT OF2H.

;THE REGISTERS, CURSORS ARE RESTORED AND EXECUTION BEGUN AT
;THE SAVED RETURNIADDRESS WHEN AN 'AC' COMMAND IS RECEIVED AT
;PORT OFOH.

;THESE TWO COMMANDS CAN BE USED TO KEEP MULTI-BYTE GRAPHICS COMMANDS
;FROM TWO DIFFERENT CODE SEGMENTS RUNNING IN THE HOST PROCESSOR
;FROM GETTING MERGED.

;THIS REVISION CALLS RESTORE AS A SYNCHRONOUS OPERATION

OFFFBH
OFFFCH
OFFF9H
OFFFAH
OFFDOH
OFFD1H
OFFCEH
OFFCFH
0F940H..
0F942H
OF943H
0F944H
OFAC2H-080H
OF945H
OF946H

;MOBY STACK POINTER, 2 BYTES
;LENGTH OF CURRENT COMMAND
;NO OF BYTES LEFT TO GET
;RESTORE ERROR FLAG<>O THEN RESTORE PENDING
;BASE OF COMMAND LENGTH TABLE
;NO OF BYTES IN CURRENT COM. IN MAIN BUFF
;TEMPORARY STORAGE FOR INPUT BYTE

;SAVE BC

;SAVE HL

;SAVE FLAG/STATUS

;POP RETURN ADDRESS OFF STACK

;SAVE RETURN ADDR. ON MOBY STACK

CX1
CX2
CY1
CY2
AX1
AX2
AY1
AY2
MSP
CMDL
MORE
PPEND
TBLBS
NUMB
TEMP

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

INX H
MOV M,C
INX H
MOV MB
POP B
INX H
MOV M,C
INX H
MOV M,B
POP B
INX H
MOV M,C
INX H
MOV M,,B
POP B
INX H
MOV M,C
INX H
MOV M,B
INX H
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LDA OFF42H
ORA A
JZ SWBUFF
MVI A,OFFH
STA PPEND
JMP 012CH

CKBT: LDA OFF42H
ORA A
JNZ 012CH

SWBUFF: IN OOH
CPI 01H
JZ SAVE
JMP 0128H

;GET BUFFER FULLNESS

;IF BUFFER IS EMPTY THEN PROCEED
;OTHERWISE SET PENDING FLAG

;EXIT FROM PAKI WITH NO EI
;IS BUFFER EMPTY YET

;IF NON-EMPTY THEN EXIT WITH NO El AND
;WITHOUT READING THE COMMAND BYTE
;01=SAVE COMMAND

;IF NOT 01 THEN DON'T DO ANYTHING

;SAVE MICROANGELO ENVIRONMENT

DB OEDH,05BH9040HOF9H
LXI H,AY1
LXI B,04H
DB OEDH,OBOH
LXI H,CY1
LXI B,04H
DB OEDH,OBOH
MOV H,D
MOV L,E
SHLD MSP
DB OD9H,08H
PUSH PSW
PUSH H
LHLD MSP
MOV M,E
INX H
MOV M,D
INX H
MOV M,C
INX H
MOV MB ;SAVE
POP B
INX H
MOV M,C
INX H
MOV M,B ;SAVE
POP B
INX H ;SAVE
MOV M,C
INX H
MOV M,B
POP B ;POP
INX H
MOV M,C ;SAVE
INX H
MOV M,B
INX H

;LDED MSP - COMMAND

;LDIR COMMAND

;LDIR COMMAND

;SAVE-STACK POINTER

;GET MOBY STACK POINTER

;SAVE DE

BC

HL

FLAG/STATUS

RETURN ADDRESS OFF STACK

RETURN ADDR. ON MOBY STACK

SAVE:



106

SHLD MSP
XRA A
STA PEND
MOV A,H
CPI OFFH
JZ 0HO
JMP 003BH

;ROUTINE TO RESTORE

RESTR: EQY $
DI
LHLD MSP
MOV A,H
CPI OFAH
JNC OK
MOV A,L
CPI OD4H
JNC OK
JMP EXIT3
POP H
LHLD MSP
DCX H
MOV B,M
DCX H
MOV C,M
PUSH B
DCX H
MOV B,M
DCX H
MOV C,M
PUSH B
DCX H
MOV B,M
DCX H
MOV C,M
PUSH B
DCX H
MOB B,M
DCX H
MOV C,M
DCX H
MOV E,M
DCX H
SHLD MSP
DB 08H,OD9H
LHLD MSP
LXI D,CX2
LXI B,04H
DB OEDHOB8H
LXI D,AX2
LXI B,04H
DB OEDH,OB8H

;CLEAR PENDING FLAG
;TOP OF STACK IS AT OFFOOH

;STACK OVERFLOW CAUSES RESET
;ENTRY POINT TO START A NEW COM.

ENVIRONMENT

;CHECK TO SEE IF ANYTHING IS ON STACK

;BOTTOM OF STACK IS AT OFAD4H

;IF ALREADY AT BOTTOM THEN DON'T RESTORE
;POP OLD RETURN ADDRESS OFF STACK

;PUSH OLD PSW ON STACK

;PUT OLD HL ON STACK
;GET OLD BC

;GET OLD DE

;SAVE MOBY STACK POINTER VALUE
;RETURN TO TEMPORARY REG. SET
;PUT MOBY STACK POINTER BACK IN HL

;LDDR COMMAND

;LDDR COMMAND

OK:
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MACOD3 allows graphic output from several tasks to be multiplexed onto a
single screen.

;MACOD3 ALLOWS THE HOST TO SAVE ALL PROCESSOR REGISTERS, ALPHA,
;AND GRAPHIC CURSORS, AND THE CURRENT RETURN ADDRESS VIA AN '01'
;COMMAND SENT TO PORT OF2H.

;THE REGISTERS, CURSORS ARE RESTORED AND EXECUTION BEGUN AT
;THE SAVED RETURN ADDRESS WHEN AN 'AC' COMMAND IS RECEIVED AT
;PORT OFOH.

;THESE TWO COMMANDS CAN BE USED TO KEEP MULTI-BYTE GRAPHICS COMMANDS
;FROM TWO DIFFERENT CODE SEGMENTS RUNNING IN THE HOST PROCESSOR
;FROM GETTING MERGED.

;THIS REVISION CALLS RESTORE AS A SYNCHRONOUS OPERATION

OFFFBH
OFFFCH
OFFF9H
OFFFAH
OFFDOH
OFFD1H
OFFCEH
OFFCFH
OF940H
OF942H
OF943H
0F944H
OFAC2H-080H
0F945H
OF946H

;MOBY STACK POINTER, 2 BYTES
;LENGTH OF CURRENT COMMAND -
;NO OF BYTES LEFT TO GET
;RESTORE ERROR FLAGOO THEN RESTORE PENDING
;BASE OF COMMAND LENGTH TABLE
;NO OF BYTES IN CURRENT COM. IN MAIN BUFF
;TEMPORARY STORAGE FOR INPUT BYTE

;SAVE BC

;SAVE HL

;SAVE FLAG/STATUS

;POP RETURN ADDRESS OFF STACK

;SAVE RETURN ADDR. ON MOBY STACK

CX1
CX2
CY1
CY2
AX1
AX2
AY1
AY2
MSP
CMDL
MORE
PPEND
TBLBS
NUMB
TEMP

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQ~U
EQU
EQU
EQU

INX H
MOV M,C
INX H
MOV M,B
POP B
INX H
MOV M,C
INX H
MOV M,B
POP B
INX H
MOV M,C
INX H
MOV M,B
POP B
INX H
MOV M,C
INX H
MOV M,B
INX H
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LDA OFF42H
ORA A
JZ SWBUFF
MVI A,OFFH
STA PPEND
JMP 012CH

CKBT: LDA OFF42H
ORA A
JNZ 012CH

SWBUFF: IN OOH
CPI O1H
JZ SAVE
JMP 0128H

;SAVE M

SAVE:

;GET BUFFER FULLNESS

;IF BUFFER IS EMPTY THEN PROCEED
;OTHERWISE SET PENDING FLAG

;EXIT FROM PAKI WITH NO El
;IS BUFFER EMPTY YET

;IF NON-EMPTY THEN EXIT WITH NO EI AND
;WITHOUT READING THE COMMAND BYTE
;01=SAVE COMMAND

;IF NOT 01 THEN DON'T DO ANYTHING

CROANGELO ENVIRONMENT

DB OEDH,05BH,040H,OF9H
LXI HAY1
LXI B,04H
DB OEDH,OBOH
LXI HCY1
LXI B,04H
DB OEDH,OBOH
MOV H,D
MOV L,E
SHLD MSP
DB OD9H,08H
PUSH PSW
PUSH H
LHLD MSP
MOV M,E
INX H
MOV M,D
INX H
MOV M,C
INX H
MOV MB ;SAVE
POP B
INX H
MOV M,C
INX H
MOV MB ;SAVE
POP B
INX H ;SAVE
MOV M,C
INX H
MOV MB
POP B ;POP
INX H
MOV M,C ;SAVE
INX H
MOV M,B
INX H

;LDED MSP - COMMAND

;LDIR COMMAND

;LDIR COMMAND

;SAVE STACK POINTER

;GET MOBY STACK POINTER

;SAVE DE

BC

HL

FLAG/STATUS

RETURN ADDRESS OFF STACK

RETURN ADDR. ON MOBY STACK

I
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SHLD MSP
XRA A
STA PPEND
MOV A,H
CPI OFFH
JZ OOH
JMP 003BH

;ROUTINE TO RESTORE

RESTR: EQY $
DI
LHLD MSP
MOV A,H
CPI OFAH
JNC OK
MOV A,L
CPI OD4H
JNC OK
JMP EXIT3

OK: POP H
LHLD MSP
DCX H
MOV B,M
DCX H
MOV C,M
PUSH B
DCX H
MOV B,M
DCX H
MOV C,M
PUSH B
DCX H
MOV B,M
DCX H
MOV C,M
PUSH B
DCX H
MOB B,M
DCX H
MOV C,M
DCX H
MOV E,M
DCX H
SHLD MSP
DB 08H,OD9H
LHLD MSP
LXI D,CX2
LXI B,04H
DB OEDH,OB8H
LXI D,AX2
LXI B,04H
DB OEDHOB8H

;CLEAR PENDING FLAG
;TOP OF STACK IS AT OFFOOH

;STACK OVERFLOW CAUSES RESET
;ENTRY POINT TO START A NEW COM.

ENVIRONMENT

;CHECK TO SEE IF ANYTHING IS ON STACK

;BOTTOM OF STACK IS AT OFAD4H

;IF ALREADY AT BOTTOM THEN DON'T RESTORE
;POP OLD RETURN ADDRESS OFF STACK

;PUSH OLD PSW ON STACK

;PUT OLD HL ON STACK
;GET OLD BC

;GET OLD DE

;SAVE MOBY STACK POINTER VALUE
;RETURN TO TEMPORARY REG. SET
;PUT MOBY STACK POINTER BACK IN HL

;LDDR COMMAND

;LDDR COMMAND
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INX H
SHLD MSP
XRA A
STA PPEND
DB OD9H
DB 08H
POP H
POP PSW
EI
RET

PUSH PSW
XRA A
STA PPEND
POP PSW

;MSP MUST POINT TO A FREE LOCATION
;SAVE MOBY STACK POINTER

;CLEAR BAD XFER FLAG

;EXX, EXAF-RETURN TO WORKING REG. SET
;POP OLP VALUE OF HL OFF STACK
;POP OLO VALUE OF PSW OFF STACK

JUMP BACK TO OLD ADDRESS

EI
RET

INTPS contains assembly language extensions to the 3.2(b)
P1 monitor program. These extensions include interrupt handlers
and the appropriate interrupt table additions for the MicroAngelo
and PMON service routines. The enhanced capabilities of INTPS are
enabled by making the changes listed below to the 3.2(b) monitor.

3.2(b) Monitor Revision Procedure

Program the instruction given at the indicated location.

Location

F079

F6EA

F6EE

Instruction

JMP F800

JMP F880

JMP F8AA

;PARAMETER INITIALIZATION COMMANDS
ENDL EQu $

DB OA8H,OF9H,RESTR-OF900H.
DB OA7HOOH,07H,OF9H,040H
DB OD4HOFAH,OOH,OOH,OOH,OOH,OOH
DB OA7H,00H,02H,OFFH,OC6H,047HOF9h
DB OA7H,OOH01H,OFFHOC8H,03H
ORG OF800H

;THESE PARAMETERS ARE FOR THE BUFFERED INTERFACE TO THE GRAPHICS
;BOARD, MICROANGELO

OED74H
OED75H
OED76H

;COMMAND BUFFER WRITE POINTER
;COMMAND BUFFER READ POINTER
;# OF BYTES WAITING TO GO TO MICROANG.

EXIT3:

WP
R PA
BTGO

EQU
EQU
EQU
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;STATUS/FLAG BYTE, SEE FUSER6 FOR DETAILS
;BASE ADDRESS OF COMMAND BUFFER
;DIAGNOSTIC LOCATION

SHLD 08000H
LXI HWP
XRA A
MOV M,A
INX H
MOV M,A
INX H
MOV M,A
INX H
MOV M,A
LXI H,INTP
SHLD OEEDEH
LHLD 08000H
LXI D,OEEEOH
JMP OF07CH
RST 7
RST 7
RST 7
RST 7
RST 7
RST 7

;TEMPORARILY SAVE HL IN 08000H
;INITIALIZE PARAMETERS LISTED ABOVE

;INTERRUPT VECTOR FOR GRAPHICS INTERFACE IS 'DE'
;RESTORE THE PREVIOUS VALUE OF HL
;RESTORE PREVIOUS VALUE OF DE
;JMP BACK TO FDC-1 MONITOR INITIALIZATION CODE
;SAVE SOME ROOM FOR FUTURE EXPANSION

ROUTINE TO INCREMENT READ POINTER
THIS ROUTINE IS USED BY THE MICROANGELO INTERRUPT
SERVICE ROUTINE TO MANIPULATE THE COMMAND BUFFER
READ AND WRITE POINTERS.
INCRP RETURNS WITH HL=ADDRESS OF NEXT BYTE IN BUFFER.

INCRP: LXI H,BTGO
MOV A,M
ORA A
JZ LOOPC
DCR M
DCX H
MOV A,M
MOV E,A
INR A
CPI 073H
JC LOOPB
XRA A

LOOPB: MOV M,A
MVI A,OFFH
LXI HBASE
MVI D,00H
DAD D
RET

;ARE ANY BYTES WAITING TO GO TO MICROANG.

;IF NOT THEN TO TO LOOPC
;DECR # OF BYTES WAITING TO GO

;INCR. READ POINTER. IF >073H THEN ROLL UNDER

;ADD READ POINTER TO BASE TO GET ABS. BUFFER ADDR.

CNTST
BASE
ERRCNT

EQU
EQU
EQU

OED77H
OED78H
OED72H
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LOOPC: LDA CNTST
ANI OFBH
STA CNTST
XRA A
RET

;SET CNTST BITS TO INDICATE EMPTY BUFFER

INTERRUPT SERVICE ROUTINE FOR UA INTERRUPTS

INTP: PUSH PSW
PUSH H
PUSH D
CALL START2
POP D
POP H
POP PSW
EI
DB OEDH
DB 04DH

START2: LDA CNTST
ORI 04H
STA CNTST
CALL INCRP
ORA A
JZ CLAL
MOV A,M
OUT OFOH
LDA CNTST
ANI OF7H
STA CNTST

CLAL: LDA CNTST
ANI OFCH
STA CNTST
RET
RST 7
RST 7
RST 7
RST 7
RST 7
RST 7
RST 7

;ED,4D=RETI

;SETB2 OF CNTST

;GET ADDRESS OF NEXT BYTE TO GO

;IF A=O ON RETURN THEN BUFFER IS EMPTY
;OTHERWISE GET BYTE FROM COMMAND BUFFER
;SEND IT TO MICROANGELO
;SET CNTST TO INDICATE XFER IN PROGRESS

;RESET BUFFER FULL FLAG IN CNTST
;SEE FUSER6 LISTING FOR FULL DETAILS

ON CNTST BIT DEFINITIONS

;SAVE SOME ROOM FOR FUTURE EXPANSION

;TIMR IS AN EXTENSION TO THE STANDARD FDC-1 REAL TIME CLOCK
;INTERRUPT SERVICE ROUTINE. TIMR CHECKS THE PERFORMANCE OF.THE
;FDC-1 TO MICROANGELO DATA LINK ONCE EACH SECOND AND TAKES CORRECTIVE
;ACTION IF NEEDED. IN ADDITION AN ERROR COUNT AT ERRCNT IS INCREMENTED
;WHENEVER AN ERROR IS DETECTED AND CORRECTED.

TIMR: PUSH PSW
PUSH H
LDA CNTST
ANI 08H ;HAS BIT 4 OFCNTST BEEN RESET SINCE
JZ EXT4 LAST SECOND.
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LDA
ORA A
JZ EXT4
NOP
PUSH D
PUSH H
PUSH PSW
CALL START2
POP PSW
POP H
POP D
LXI H,ERRCNT
INR M

EXT4: LDA CNTST
ORI 08H
STA CNTST
POP H
POP PSW
RET

;THIS

USOUT:
LOOPD:

END

;IF NOT THEN CHECK BTGO

;IF BTGO=O THEN THERE IS NOT FAILURE

;IF BIT 4<>0 AND BTGO
COMMUNICATIONS
MICROANGELO BY

<>0 TRY TO RESTART
BETWEEN FDC-1 AND
CALLING START2

;INCREMENT THE ERROR COUNT

;IF NO ERRORS DETECTED THEN EXIT HERE

IS THE DRIVER CODE FOR MICROANGELO
WHENEVER THE KEYBOARD IS ASSIGNED AS THE INPUT DEVICE
THIS DEVICE HANDLER IS ENABLED AS THE OUTPUT DEVICE

PUSH PSW
IN OF1H
ANI 01H
JNZ LOOPD
POP PSW
OUT OF OH
R ET

;GET MICROANGELO STATUS

;LOOP UNTIL NOT BUSY

;SEND TO MICROANGELO

The program, 'anamen', uses data compression techniques
to reduce data base mamory requirements. This routine can be
used to compress the language data area associated with PL/I programs
so that less EPROM is required to initialize the data area.

anamen:
proc options(main);

dcl meml(32767) fixed bin(7) based(mlp);
dcl mem2(32767) fixed bin(7) based(m2p);
dcl (mlp,m2p) pointer;
dcl m1pb bit(16) based(mlpp);
dcl m2pb bit(16) based(m2pp);
dcl (mlpp,m2pp) pointer;
m1pp-addr(mlp);
m2pp=addr(m2p);
dcl (i,j,length, ipos,opos) fixed bin(15);

put list('ENTER STARTING ADDRESS: ');
get edit(mlpb)(b4(4));
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put skip list('ENTER LENGTH: ');
get list(length);
put skip list('ENTER TARGET ADDRESS:
get edit(m2pb)(b4(4));

0 Dos=1;
i_pos=1

do while(i pos <= length);

if mem1(i_pos)%=O then do;
do i=1 to min(127,length-1Pos+1);
if ((mem1(i_pos+i)=0)&(mem1(ipos+i+1)=O)) then go to donel;
end;
i=min(127,length-ipos+1);

mem2(o_pos)=i;
o pos=opos+1;
do j=1 to i;
mem2(o_pos)=mem1(ipos);
o_pos=o pos+1;
i_pos=ipos+1
end;
end;

else do;
do i=1 to min(127,length-ipos+1);
if meml(i_pos+i)%=O then go to done2;
end;
i=min(127,length-ipos+1);

mem2(opos)=-i;
opos=o pos+1;
i_pos=i pos+i;
end;

end;
mem2(o pos)=O;
put edit(opos,' BYTES WRITTEN OUT OF ',i_pos)

(skip,f(5) ,a,f(5));
end;

STAR reconstructs a data base from the compressed information
contained in the output of 'anemem'.

EXTRN TEST
MACLIB Z80

LXI B,0000H
LXI H,06800H
LXI D,08000H

LOOP1: MOV A,M

;CLEAR BC
;SOURCE ADDRESS
;DEST ADDRESS

;LOAD NEXT BYTE

donel:

done2:

' );



115

CPI
JZ
JM
INX
MOV
LDIR
JMP

ZEROS: XCHG
MOV
MVI

LOOP2: MOV
INX
INR
JNZ
XCHG
INX
JMP

DONE: EQU
MVI
S TA
STA
JMP

0
DONE
ZEROS
H
C,A

LOOP1

C,A
A ,0
M ,A
H
C
LOOP2

H
LOOP1

$
A,OC9H
OOOOH
0005H
TEST

;COMPARE WITH ZERO:
;IF ZERO, DONE
;IF NEGATIVE, LOAD ZEROS
;GET NEXT BYTE
;PUT COUNT IN C
;TRANSFER LIKE CRAZY
;GET NEXT BLOCK
;REVERSE ROLES
;PUT (NEGATIVE ) COUNT IN A
;ZERO ACCUM
;STORE A ZERO
;INC DEST ADD (NOW IN HL )
;DECREMENT NEGATIVE COUNT
;AGAIN UNTIL DONE
;RESET ROLES OF HL AND DE
;PREPARE HL ADDRESS FOR NEXT BYTE
;AND GET NEXT BYTE

;PATCH A RETURN AT LOC 0000 HEX
;AND AT LOCATION 0005 HEX
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Appendix B

Hardware Modification Schematics



Interrupt Jamner Rev.2

k+5

NTA INT 07 06 05 04 03 02 95 DO a
96 73 43 93 92 91 42 41 94 95 49 Figure B-1

HCBF
4
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P2 Har dware Modi fi cation

u44 Pin I

U45 Pin 11

U29 Pin 1

'1LS367

U9 Pin 9 D10

P2 Data Bus
Bit 4

U29 Pin 11
U53 Pin 11

Modification Procedure

Cut trace from U45 Pin 9 to U29 Pin 11

Cut trace from-U45 Pin 9 to U53 Pin 11

Connect remaining jumpers as indicated above

NOTE: All IC designations for this figure correspond

with those of the P2 (Scion Corp. MicroAngelo)

user's manual.

Data Port F2 Addition

Figure B-2
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-- -<2 Sel. irb er by te
--- <.] Sel. upper byte f rom PO

9 +5

07
06
05
04
03 To PO
02
01
00

Shift/Load IJ
from Northstar 6000*

Northstar 6000*/ PPOD interface

figure B-3

Northstar 6000 is a tradename of Digital Farine Electronics

10
11

12
13

DO

D1

D2
03
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FAN FINGER GUARD

0

0

CRCUIT
BREAKER Q

~Li~I~hiiI0 o[rS--0V SIo A tu 8

Video Output]

01Disk Drive

PIO A

Ahil 0
POLARIZED POWER

RECEPTACLE

OUTSIDE VIEW OF REAR PANEL
Data 10 Connector Locations

Figure B-4

j 0D

1 0
0

0

I I
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Serial

Contact #

Paralle

Contact #

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

I/0 Connector Wiring

Function

Not Used

RS-232 Data input to PPOD

RS-232 Data output from PPOD

Ground

1 Port A Connector Wiring

Function

Data bit 7

-12 v. dc supply for keyboard electronics

Data bit 6

Reset

Data bit 5

+5 supply for keyboard electronics

Data bit 4

Ground

Data bit 3

PIO B strobe

Data bit 2

PIO B ready

Data bit 1

PIO A strobe

Data bit 0

PIO A ready
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34. Direction

36. Step pulse

38. Write data

40. Write gate

42. Track 00

44. Write protected

46. Read data, composite

48. Not used

50. Motor control (optional)

Ref---FDC-1 User's Manual, Teletek corp.
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Appendix C

Hardware Jumper Settings and Customization Procedures

This appendix is organized into four subsections. Each section

deals with one of the three processor cards; the fourth is devoted to

configuration of the two memory cards. The page numbers listed in each

subsection will refer to the user's manual for the device being described.

PO (Teletek 12)
Option- DMA Priority- Set to FF (p. 4).

Option- Wait State Generation- Set for one wait state on M1 cycles
(p. 5).

Option- Interrupt line- Connected to S-100 pin 73 (p. 6).

Option- Interrupt Daisy Chain- IEI connected to PINTE (p. 7)

Option-. EPROM sockets- EPROM socket should be configured for 2716
EPROMs (single supply, 400ns access time) (p. 8)

The following procedure adds mode 1 interrupt capability to PO.

1. Cut trace between U40 pins 16,17. This trace is located on
the top side of the board under the U40 socket and can be
cut by drilling through the bottom side of the PC board.

2. Tie U40 pin 17 to +5 volts DC.

3. Add a 1k pullup resistor to U40 pin 16.

4. Connect the interrupt source to U40 pin 16.

P1 (Teletek FDC-1)

Option- Prewrite Compensation-. Set jumpers to provide 250ns
compensation for eight inch disk drives (p.10).

Option- Mini/Maxi Floppy Selection- Select maxi (8 inch)
drives (p.11).
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Option- Extended head load- Select standard value (240ms)
head load time (p.1 2 ).

Option- Wait States- Select one wait state for onboard memory
access only (p. 14).

Option- CPU/Intelligent Controller- Select CPU mode (p.15).

Option- CPU clock- Select 4Mhz. operation (p.16).

NOTE: P1 is configured with Memory option 2 (p.18)

The following procedure adds DMA support making P1 compatable with

PO DMA operations.

1. Connect S-100 pin 45 to U31 pin 9.

2. Connect S-100 pin 77 to U31 pin 8.

3. Connect U31 pin 10 to U30 pin 5.

4. Connect U30 pin 4 to U30 pin 12.

5. Connect S-100 pin 68 to U30 pin 6.

6. Bend U7 pin 3 outwards (no contact with socket).

7. Cut trace to U12 pin 5.

8. Connect U31 pin 13 to U12 pin 15.

9. Connect S-100 pin 18 to U31 pins 11,12.

10. Add a 1k pullup resistor to U31 pins 11,12.

P2 (Scion MicroAngelo)

Option- No user options are changed from the standard values.

The following procedure allows command/data to be passed

to P2 via data port F2.

1. Cut trace from U45 pin 9 to U29 pin 11.

2. Cut trace from U45 pin 9 to U53 pin 11.

3. Connect remaining jumpers as indicated on figure 10.
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NOTE: The P2 -12v DC supply line has been connected to the PIO connector

pin 2 on the mainframe back panel. This voltage is required by the

keyboard presently used for flight data entry.

32k EPROM memory board set-up.

Various options on the EPROM card may be selected by the settings

of four banks of DIP switche. Most of the switches are set by the user to

determine the system memory map. These settings are fully documented in

the user's manual for the card. A few of the settings depend on the

hardware operating environment. Specifically, S1 #5 (disable) should be

off, Si #6 (enable) should be on, S1 #7 (wait state generation) should be

on, and Si #8 (C/NS) should be off. In addition the Bank Data swithes, S4,

should all be in the off position.

Measurement Systems and Controls DM6400 RAM Board.

The 64k RAM card is configured by adding jumper wires to two DIP

headers. The headers should be wired as follows.

Header #1- 18 pin DIP

1-2 Jumper

4-5 Jumper

6-5 Jumper

9-11 Jumper
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13-12 Jumper

15-14 Jumper

17-18 Jumper

Header #2- 16 pin DIP

1-2 Jumper

3-11 Jumper

6-7 Jumper

9-8 Jumper
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Appendix D
PO, Pl, P2 Memory Maps are given in this appendix.
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I2 Memory Map

Use

0000-021A

021 B-07FF

Basic kernel of control
program in EPROM.

Space in EPROM for user
control program.

o800-OFFF

1000-1400

1401-IFFF

2000-23FF

2400-2440

3000

5000

6000

7000

8000

8001

8002

8003

Not used

1k byte communications
buffer.

Not Used

Scratch pad RAM and
User code area.

System Stack

Control/Status port

Command/Status port

Read/Write buffer

Address latch (upper 5 bits)

Left data port

Left control port

Right data port

Right control port

PO Memory Organization

Figure

12 is a tradename of Teletek Corp.

Reaion
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FDC-1 Memory Map

Use

0000-EDFF RAM available for user
code and data.

Reserved RAM for interrupt
table and system data base.

Teletek Monitor 3.2b in
EPROM.

EPROM programming socket

P1 Memory Organization

Figure

FDC-l is a trade name of Teletek Corp.

Region

EEOO-EFFF

FOO-F7FF

F800-FFFF
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*
Mi croAngelo Memory Map

Use

0000-OFFF

1000-7FFF

8000-F7FF

Screenware Pak I in EPROM.

Not Used

Visible Display bit map.

2.5 Visible Scan lines

User defined characters or
user code area.

Screenware Pak I working RAM

P2 Memory Organization

Fi gure

MicroAngelo is a tradename of Scion Corp.

Region

F800-F8BF

F940-FF3F

FF40-FFFF
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APPENDIX E

Sources for PPOD Major System Components

The vendors below are not necessarily the producers or copyright

holders on the products listed. In many cases the vendor markets a

specialized revision of the product under a sales license from the

copyright holder. An example is the CP/M system sold by Leapac services

under agreement with Digital Research. The Leapac CP/M BIOS has been

customized for compatability with the Teletek FDC-1 processor.

Component

Mainframe 2200
Motherboard 2501

S-100 EPROM card, 32k

DM6400, S-100 Dynamic RAM

PO processor card,I^2

P1 processor card,FDC-1

P2 processor card,
MicroAngelo

Source

California Computer Systems
250 Carribean Drive
Sunnyvale, CA --94086--

Digital Research Computers
P.O. Box 401565
Garland, TX 75040

214-271-3538

Measurement Systems and Controls inc.
867 North Main Street
Orange, CA 92668

714-633-4460

Teletek
9767F Business Park Drive
Sacramento, CA 95827

916-361-1777

Teletek
9767F Business Park Drive
Sacramento, CA 95827

916-361-1777

SCION Corporation
8455-D, Tyco Road
Vienna, VA 22180

703-476-6100
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Loran-C Receiver,
Northstar 6000

Digital Marine Electronics Corp
30 Sudbury Rd
Acton, MA 01720

617-897-6600
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SOFTWARE VENDORS

Leapac Services
8245 Mediterranean Way
Sacramento, CA 95826

916-381-1717

FDC-1 3.2(b) Monitor

Screenware PAKI

PL/I 80

Vedit
Full screen editor

Teletek
.9767F Business Park Drive
Sacramento, CA 9582

916-361-1777

SCION Corporation
8455-D, Tycho Road
Vienna, VA 01720

703-476-6100

Westico Inc.
25 Van Zant Street
Norwalk, Con. 06855

203-853-6880

The Discount Software Group
6520 Selma Ave.
Suite 309
Los Angeles, CA 90028

CP/M


