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FOREWORD

This report attempts to put together all of the optimal

computer models concerned with scheduling and routing problems for

passenger transportation systems. By placing them in one place,

classifying them, and using a consistent notation, it is hoped

that the models' relationships to each other can be seen, and that

a clear picture of the state of the art in model building and

solving can be shown. The emphasis of the report is on optimal

models which use well-known optimization techniques from mathe-

matical programming. Work which uses heuristic computer methods

in this area is quite extensive, but is not described here.

The models are oriented towards public transportation

systems operati-ng on a short haul network. Generally a cyclic

or repetitive schedule of services is assumed, and a single

vehicle rather than a train of vehicles is being dispatched.

Within those assumptions, the models can find applicability to

schedule planning for a wide range of public transportation

systems, not necessarily just airline systems. The research is

supported in part by the Office of High Speed Ground Transpor-

tation, Department of Transportation, and is pointed towards

producing schedules for both high speed trains and future

V/STOL aircraft. The models are useful to planners and regula-

tors in studying problems in corporate planning, in transporta-

tion systems planning, and in regulation of transportation

industries.

An extensive bibliography accompanies each class of models

in this report. If it is not complete (with respect to optimal

models), I would appreciate receiving additional references
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from interested readers. One of the reasons for writing this

report is to give a good bibliography for various groups of

present researchers who seem to be unaware of segments of the

literature, or of each other's activities.

Much of the content of this report has been taken from

lecture notes prepared by the author for an MIT graduate

course, "Flight Transportation Operations Analysis", given

by the author for the past few years. Students from that

course will recognize the examples as being homework problems

involving "Tech Airways", and I am indebted to them since some

of their computer solutions are used as examples in the report.

As well, the report gives an overview of current research

activity in this area in the MIT Flight Transportation Labor-

atory. A previous report, FTL R68-5 by Professor Amos Levin

describes some of the Fleet Routing models and computational

methods for solving them. Other reports and theses from the

laboratory are referenced where appropriate. I must also

recognize the work performed by Dave Benbasset, Norm Clerman,

and Thor Paalson in providing computer runs for several of

the examples.
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Definitions and Symbols

1. Indices

p,q = station origins and destinations for traffic

pq = a city pair, or market

i,j = stations on a route

ij = a link between two stations on a route map

a = aircraft type

m = number of intermediate stops on a route

f = flight

s = service

r = route

T = time period for planning

2. Traffic Symbols

P

P
pq

= average traffic, passengers/cycle

= average traffic/cycle for system in period T
from p to q

P = the proportion of traffic P
pqira aircraft type a

on route r, and

P = average traffic/cycle on flight f

LF average load factor over planning period

k
Ppq

Pt

= slope of market share curve for segment k, market pq

= number of passengers arriving in interval (t,t+l)

RPM = revenue passenger miles for system in period T

.RPM IFd -.P
R T j pqr pqraT

a pq r



Definitions and Symbols (continued)

3. Aircraft Symbols

Aa = number of active aircraft of type a

A'
a

= upper limit on A

S = seat capacity of type a

A
paT

paT

= average fleet total block hours/cycle

= average active aircraft utilization,
block hours/aircraft-cycle

u =U Aa a a

= number of aircraft a bought under purchase
arrangement p which are in the fleet in
period T.

= number of aircraft a bought under p which are
sold at the beginning of period T subsequent
to delivery.

ApaT = paT-1 -s paT

= number of aircraft a leased under lease 1
covering periods T .

BU pa, BL = upper, lower bounds on buying aircraft a
in period T under plan p.

SU pSL = upper, lower bounds on selling aircraft apaT paT in period T under plan p.

LUla, LLla = upper, lower bounds on leasing aircraft a
under lease 1
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Definitions and Symbols (continued)

4. Value Symbols

DCraT

vii

= marginal direct operating cost for aircraft a
on route r in period T (generally without
ownership costs)

= marginal direct hourly operating cost for air-
craft a in period T

.'. DC = CHR . t = c + c . d
raT raT ra 0 l r

where C0, c1 are aircraft cost coefficients

= aircraft ownership cost/cycle

= system indirect costs for period T

. 0 IC = c + c.P + c - D + c - (RPM )
T 2 3 T 4 5 T

where c , c , c , c are system cost coefficients
2 3 4 5

= revenue yield per passenger on flight f

= net revenue for flight f = yield x passengers

= net income for a flight f in period T

CHR aT

OC

IC

yf

r f

I fT



Definitions and Symbols (continued)

PP = present value of progress payments for aircraft
a in period T under purchase arrangement p which
covers periods T . T has an initial period T .

p p p1

LPlaT = present value of lease payments for aircraft a
in period T under lease arrangement 1 which covers
period T .

MV = present value of forecast market value or selling
aircraft a purchased under plan p in period T.

BV = present value of the depreciated value (book value)
in period T for aircraft a purchased under plan p.

DEPpaT = present value of depreciation cost in period T for
aircraft a purchased under plan p.

DEPpaT = BVpaT-1 - BVpaT

CFT = cash flow for system in period T

CHT = cash on hand for system in period T

.*. CH = CHT-l + CF

d = present value of capital raised, under debt plan
i which describes the repayment plan over future
periods, T.. T. has an initial period T. .

I li

DViT = proportion of d scheduled to remain as debt in
year T

DPiT = proportion of d scheduled to be repaid in year T
as principal

. . DP. = DV. - DV.lT iT-l lT
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Definitions and Symbols (continued)

IP. = proportion of d. scheduled to be repaid in
year T as debt costs

D/A = maximum allowable debt/asset ratio for airline

A* = airline non-aircraft assets scheduled for period
T exclusive of cash on hand

CH - min. amount of cash on hand desired
min

TD = proportion ofbefore tax profit to be paid in
taxes and dividends in year T
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Definitions and Symbols (continued)

5. Time Symbols

= time of day, time of cycle

= departure time from i for s

= arrival time at j for s

= ready time at j for s th

th

service from i to j

service from i to j

service from i to j

= time at which aircraft becomes available for
next service out of j

Tb.. = block time or trip time using aircraft a
i3sa

Tt.. = minimum turnaround time for aircraft a
i3sa

. . td.. + Tb..
13s 1ijsa

ta.. + Tt..
13s ijsa

= ta..
13s

= tr..

Tb..
1J

ij . r

= sum of segment block times for

aircraft a on route r

= maximum cycle time, or index for planning period

= passenger waiting time for next departure

= timetable consisting of set of t ,t for
a d

all services

t

td

ta..
13S

tr..
13s

Tb

T

W
TT



Definitions and Symbols (continued)

6. Route Map Symbols (See Figure la)

Q

E

d..
1J

R

d
pqr

Routing

= set of cities p,q,i,j

= set of edges or links ij in a route map

= distance of link ij

= set of routes r representing specific paths on
a route map

= distance from p to q on route r

= a subroute or portion of route r. An m-stop

route contains (m+2)(m+1) routings, eg. a 2 stop

route ABCD has 6 routings: non-stop AB,BC,CD;

one-stop ABC,BCD; two-stop ABCD. A single

link routing is called a route segment.

R = subset of R such that every r contains a routing
-pqm

connecting p to q in exactly m stops

R =U R
-q m -pqm

= subset of R such that every r contains

a routing connecting p and q

R.. = subset of R such that every r uses link ij

R = subset of R such that every r originates at p,
..-pqm

and ends at q with exactly m intermediate stops



Definitions and Symbols (continued)

7. Schedule Map Symbols (See Figure lb)

S = set of non-stop services or flights between cities at

specific cycle times = service arcs s

G = set of ground arcs g in schedule map

C = set of cycle arcs c in schedule map, one for each station

A = complete set of arcs in schedule map

JAI = number of arcs in schedule map

=jL+12+jqI j 31L + 2(Q

N = set of nodes in schedule map

INI = number of nodes in schedule map

(21SI + 21QI

8. Flights, Services

F = set of flights , f, representing specific paths
on a schedule map

Service = opportunity to use a portion of a flight f. An

m-stop flight provides (m+2)(m+l) services corres-

ponding to the routings of its route. A non-stop

portion of a flight is called a flight segment.

F = subset of F such that every f provides m-stop
service between p and q using aircraft a

F = subset of F such that every f connects p and q

xii



Definitions and Symbols (continued)

8. Flights, Services (continued)

F..
-13

F'-pqm

F
-r a

= subset of F such that f contains flight segment ij

= subset of F such that every f starts in p, ends in
q with exactly m intermediate stops

= subset of F such that every f is along route r
and uses aircraft a

9. Frequency of Service/Cycle

n =IFI= total number of flights/cycle for the system schedule

n = IF = number of flights/cycle which connect p
pqma -pqma and q with m-stop service using aircraft a

n =IF = number of flights/cycle connecting p and q
pq -pq

nra = IFra= number of flights/cycle along route r using
aircraft a

n.. =1F..
r L R. .

-1J

D =
iji

N.min pqm

NM .
mn pq

N
max p

. .
1)

n = total number of flights/cycle on
r link ij

= total system departures/cycle = flight
segments/cycle

= minimum number of m-stop services/cycle
required for market pq

= minimum number of services of M stops or less
required for market pq

= maximum number of daily departures allowed at
station p

xiii



Definitions and Symbols (continued)

Example of Definitions

Route Map

R, Routes F, Flights n R R R'r -ACO -ACl AC

r =ABCD fr= 1,2 2 ABCD

ABC 3 1 ABC ABC

AB 4,5,6 3

AC 7,8 2 AC AC

ACD 9,10 2 ACD

ACE 11,12 2 ACE

CE 13,14,15 3

FA = Flights

FAC = 3,7,8

n = [F= 15

AC = ABCD

1, 2, 3, 7, 8, 9, 10

nABC + nAC + nACD + nACE = 2 + 1 + 2 + 2 + 2 = 9

D = n. ,=n +n +n + +nC
.1 . 1 AB AC BC 6 D CE

= 6+6+3+4+5 = 24

xiv
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A0600

Time

ground Service Arc, S
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1.0 Introduction

1.1 The Scheduling Process

This report deals with optimization models which might

properly be described as "schedule construction" models.

As such they are part of a much larger scheduling process

called the "schedule planning" process which is followed by

most major airlines. Figure 2 attempts to show the relation-

ships of data and models (or analytic activity) in this

schedule planning process in a diagrammatic fashion. The

rectangular boxes contain deterministic information; the small

circular elements contain forecast, or predicted information

subject to some uncertainties.

The two large circles contain two types of analytic

processes which are amenable to model building. The first is

the traffic forecasting process, which accepts as inputs

information on general economic activity, on levels of adver-

tising, on the levels of service provided by the system compared

to alternative systems, on fares, and which produces as output

a forecast of traffic by route, by flight, etc., as an average

over the period of time considered for the schedule plan.

Computer models of this traffic forecasting process exist, but

are not considered in this report. It is pertinent to note

that for good schedule planning, not only are good averages

for traffic data needed, but also the gradients in traffic

with respect to inputs arising from levels of service offered

by the timetable. It would be nice to be able to predict how

traffic loads will change as daily frequencies, time of departure,

number of stops, etc. are varied. At present, human judgement



FIG. 2 THE SCHEDULE PLANNING PROCESS
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arising from past experience is necessary, and thereby plays a

critical part in the schedule planning process.

The second set of models are the schedule construction

models described in this report. They accept as input informa-

tion forecast traffic, profitability by flight, and route

structure data, and proceed to construct a timetable for the

system subject to various kinds of system constraints. The

timetable determines the system operating cost and profitability,

and provides a summary of detailed planning data.

The first feedback loop is concerned with considering

constraints and factors which are presently outside the

schedule construction models such as air crew scheduling,

station operation requirements, maintenance requirements of

aircraft, and an evaluation of "on time" performance or system

schedule reliability. This loop is called the schedule evaluation

loop where inputs from the evaluation process cause iterations

of the schedule construction process. In most airlines, a

wide variety of operating personnel become involved in this

process, and the loop is iterated many times in producing a

final plan.

The second loop is called the "level of service" feedback

loop in this report. It is mainly of concern to academic

students of transportation in a rather vague description of how

supply and demand levels are determined for transportation

systems of all types. Airline thinking recognizes competitive

airlines' systems, and talks of "market shares" but very

rarely recognizes any overall traffic stimulation through

increased service levels. Thus, it is not usual for an airline

schedule planning process to determine a timetable, and return



to the traffic forecasting process to regenerate new traffic

data on the basis of the new timetable. It is a real feedback,

particularly in competitive airline markets, or short haul

markets where the air system competes with automobile traffic,

and some of the models in this report will show its inclusion

in a very basic way.

For domestic airline systems, the basic schedule plan

which is finally produced is generally maintained over an

extended period of months. Within that period, a schedule

cycle over a day (or a week) is repeated many times without

any major changes. Variations in traffic are accommodated by

load factors on the vehicles, and no use is made of real time

data, or advance reservations information. The schedule plan

is "static" in the sense that it is maintained over the period.

It is possible to consider "dynamic" scheduling processes, where

no fixed schedule plan is maintained, and real time information

is used to adapt or augment a schedule plan or to dynamically

dispatch vehicles in real time. The Eastern Airlines Shuttle

is the only example for present airlines systems. A taxi fleet

wi-h radio dispatching or a bank of automatic elevators are

examples of a "dynamic" scheduling system. References 1 to 7

describe some recent work in this area.

When a fixed schedule plan has been adopted, the problems

which arise in carrying out that plan in the face of weather,

aircraft breakdowns, unexpected events, etc. are best des-

cribed by the phrase "schedule control". Here, some central

point in the system is faced with decision making in real

time which involves thousands of dollars in revenue and cost

as various flights are cancelled, crews are deadheaded, and

spare aircraft are ferried to where they are needed.



The Fleet Routing models discussed later in this report are very

adept at assisting in this decision making process (see

reference 1).

1.2 Classification of Models

This report describes mathematical models of various

problems arising in schedule construction. A brief review of

available techniques for finding optimal answers to these

models is given in the next section. Here we shall attempt

to describe the models in general terms, and to classify them

into certain groups.

A model is an idealized representation of a problem and

its variables in a mathematical form. In general terms, the

models of this report can be stated as:

Find a combination of values of x, (the

problem variables) that optimizes an

objective function, R(x) and which satis-

fies a number of conditions, or constraints,

on x, g (x) = 0.

Typical objective functions and constraints for schedule

construction models are shown in Table 1. By choosing one

objective, and some combination of the constraints, one can

formulate a large number of models. Only models which have

been studied by staff and students in the Flight Transportation

Laboratory are listed here (partially to enable us to see

which models we have or have not yet studied). There are many

others, and it is hoped that thescheme of classification will

enable us to give a quick, descriptive name to newer models.



Table 1 - Components of Schedule Construction Models

Objective Functions, R(x)

Rl Minimize Fleet Size

R2 Minimize Operating Cost

R3 Maximize (Revenue-cost) for the system operator

R4 Maximize (Total social benefits - costs)
for operator and public

Model Constraints, g (x)

i = 1. Demand-capacity relationships

2. Restricted numbers of different types of aircraft

3. Cyclic station balance constraints for aircraft
movements

4. Route frequency

5. Restricted number of operations/cycle at a station

6. Fleet continuity constraints

7. Airline Financial constraints

8. Multiple departure times for any service

9. Routing constraints on aircraft services

10. Restrictions on number of gates at a station

These constraint numbers shall be used throughout the

report.



Depending on the mathematical characteristics of the model,

techniques such as linear, dynamic, or combinatorial programming

are used to find an optimal answer for the model. The solution

techniques play a strong role in model formulation, since it

is easy to conceive of models which are not computationally

feasible. The model classification scheme which follows tends

to be based on solution techniques, and the particular models

discussed are generally computationally feasible for the size

of present airline systems.

Fleet Assignment Models

These are generally LP models which assign aircraft

types to a set of routes on a route map. They will use objective

functions, R2 , R3 and R , and can contain all the constraints

except 6, 8, and 9.

Fleet Planning Models

These extend a basic fleet assignment model over a

set of planning cycles, and introduce fleet continuity con-

straints. They are LP models, suitable for decomposition

techniques.

Dispatching Models

For a single route, these models will determine an

optimal pattern of times for dispatching flights given

some information on time of day variation in demand. They

generally use dynamic programming. They use objective functions

R3 or R4, and can use constraints 2, 4, 5, and 8.

Aircraft Routing Models

These models attempt to determine optimal routings

for individual aircraft given a schedule map. They may be



viewed as extensions of the dispatching models onto a network,

which add the routing constraints 9.

Fleet Routing Models

Here the optimal set of routings for a fleet is

determined without identifying individual vehicles. Network

flow methods canbe used on single fleet models which use

objectives R1 , R2 or R 3 , and constraints 2, 3, and 9. When

constraints 4, 5, 8, 10 are added, they impose "bundle"

constraints on the network flow and require special combina-

torial programming techniques. For different types of aircraft

in the fleet, we have to impose "multi-copy" constraints on the

network, and this requires similar computational techniques.

This classification scheme is used in this report to

organize the work which has been done in this area. In

each class, some of the existing models are identified and

discussed. Computational experience is given where

appropriate.



1.3 Methodology Review

A brief review of the computational techniques used in

these models is given here with some comments on present

computational capabilities and running times. It is assumed

that the reader is generally familiar with mathematical

programming. Reference texts are suggested at the end of the
report .

1.3.1 Linear Programming - (LP)

The mathematical problem is stated as:

Minimize Z = c.x

such that A.x = b

E >' 0

where c = cost vector

A = constraint matrix

b = constraint vector

x = problem variables, as real numbers

The model finds an optimal value for a linear

objective function subject to a large number of constraints

which can be expressed as linear equations in the problem

variables. Most computers have standard codings to solve this

problem. Their present capacity is approximately 4000 rows (or

constraint equations), and virtually unlimited numbers of

columns (or variables). Present speeds are very good. For

the MPS 360-65 at MIT, the times are roughly expressed by the

following formula:



Running time(minutes) = 4xlO-6x (No. rows x No. variables)

The range of variation is rather large since simply

changing the objective function can cause +50% variations

from the above estimate.

1.3.2 Integer Linear Programming

The problem statement is identical to that above

except that x must take on integer values. There are now a

variety of techniques for finding integer solutions after

obtaining the LP solution. The fastest technique for models

described in this report appears to be the group theoretic

approach developed for solving large scale set covering

problems which appear in the crew scheduling process. This

technique and its variants are described in reference 7 of

the Fleet Routing bibliography.

1.3.3 Combinatorial Programming

The two techniques, branch and bound, and implicit

enumeration, are techniques which efficiently search for a

best combination of variables as a solution to some programming

problem. Both can be used quite successfully on fleet routing

models which have the auxiliary or bundle constraints provided

the combinatorial size does not become too large.

By using MPS, a Land and Doig routine has been coded

for the Flight Transportation Laboratory. It solves the LP

problem, chooses a routing variable which should be integer

(0,1), sets this variable to either 0 or 1 and computes bounds

on the best integer answer by solving the new LP problem. At

some point a solution tree (or branching tree) is found

where one can show that a best integer answer has been found.

10



1.3.4 Network Flow (OKF)

The mathematical problem is a special case of the LP

problem called a minimum cost constrained network circulation

flow problem.

Minimize Z = c - x

such that 1) Flow is conserved at every node

S 13 x jk=0
i k

2) Flow in an arc is bounded

1.. 4= x.. -4u..i

where x is a circulation 'flow on a network

1, u are lower and upper bounds on x

For every node there is a node price . For every

arc bound, there is a marginal cost c.. representing the
1J

marginal change in Z if the arc bound were changed.

Rather than use an LP statement and simplex steps,

it is far more efficient to store the network information

in lists, to insist that the input flow be conservative so

that constraints 1) can be satisfied in an implicit manner,

and then use a tree search routine called "labelling" to

construct an optimal, feasible network circulation flow.

This allows very large problems to be handled and solved very

quickly. The FTL version of OKF (Out of Kilter Flow) for the

MIT 360-65 can handle up to 15000 arcs and 4500 nodes.



Computation times depend on the number of arcs which are

"out of kilter" for the input circulation.

1.3.5 Dynamic Programming - (DP)

From a graph theory viewpoint, it's possible to

classify discrete dynamic programming as a tree construction

routine. An optimal tree is built as the routing proceeds

rather than searching for an optimal tree on a given network.

There is an associated network described by a branching logic

which knows the branching or decision process at every node.

For complex networks, the branching logic may be inefficiently

coded, and may create the necessity of large blocks of storage

space to contain information for an expanded network.

The mathematical model is expressed as:

Find Min Z = R (x, Y, ,t)

t = 0, N

subject to constraints on x, Y, or I variables

g. (x, Y, i) = 0

and given initial and/or final state space
boundary conditions

Y ,y-t=0 -t=N

where x are called decision or control variables and are

represented by arts of the associated network.

Y are called state variables and are represented

by the nodes of the associated network at a given

stage.



t is a particular state variable used for indexing

called the stage variable.

IT are the node prices for the tree representing

path variables which are determined during the

tree construction process and are a function of

the tree path to a given node.

If there are d components to the Y vector, the state space at

any stage consists of d dimensions for the Y nodes.

Eg. if d = 2, and we have 100 discrete increments in both

dimensions, the state space consists of 1002 = 104 nodes.

If there are also 100 stage increments, we have 106 nodes

in the associated network, and this determines the size of the

low speed memory requirement, NL, for the computer. The more

critical storage is the high speed memory requirement, N H

which is at least twice the number of nodes in the state
4.

space, i.e. N = 2 x 10 in our simple example.
H

Viewed as a network, there are a variety of tree

search routines which may be used. Dynamic programmers usually

use a relatively inefficient one involving the following

recursive equations;

R? = Min RY + c.
3 . t iJi

t

where R? = optimal value of Z from an initial state
it

to the state represented by node i

at stage t

c.. = arc cost for going from node i to node j
iJ
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2.0 Fleet Assignment Models - (LP)

The early applications of linear programming to these

problems describe variations of a model originally described

in 1954 by Dantzig and Ferguson which assigns aircraft of

different types and operating costs to a given set of non-

stop routes, ensuring that sufficient seating capacity is

supplied, and that aircraft are available. The models as-

sume a fixed time period, T, and that an estimate of the

average traffic in that period for each route, P pq exists.

As well, a load factor assumption LF for each aircraft
pqa

using the route must generally be made in order to relate

supply and demand. These models do not route the aircraft,

and thus require a second critical assumption regarding air-

craft average utilization. The results are generally non-

integer assignments which may not be critical depending on

the purpose of the model. (One may interpret the fraction-

al assignment as an average over T.)

The first model given here is representative of this

type of model. It is posed for an average daily time period

where the variables n ain the LP represent the frequency of

daily service by aircraft on the routes. Thus, the airline

"frequency pattern" which is required for initiating time-

table construction is the primary output of the model.

The model has been posed for other contexts which use

equivalent variables.

The second model is an extension to include multi-stop

routes as opposed to the direct non-stop city pair route

used in the first model. Because of historical reasons or



legal restrictions, the airline system may have a set of

non-stop and multi-stop routes it wishes to operate, and

the object of the model as posed here is to determine the

frequency pattern nra for the daily number of trips by air-

craft a on multi-stop route r.

The third model extends the first one to include com-

petitive market share of the air traffic on the route pq.
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2.1 Model FA-l Least Cost Frequency Pattern, Non-Stop, (LP)

2.1.1. Problem Statement

Given a set of routes pq on which there exists an

average daily traffic P which must be carried by a fleet
pq

consisting of limited numbers of different types of aircraft,

find the least cost assignment of aircraft to routes such

that a minimum frequency of daily service on each route is

satisfied, and such that aircraft movements balance at every

station while not exceeding a daily allowable maximum imposed

by airport congestion.



2.1.2. Model Formulation

Let n be the number of daily non-stop flights
pqa

on route pq between cities p and q by airplane type a.

Objective Function

Minimize operating costs (for fixed revenue)

Minimize 4 9 DC - n
pq a

where DC = an appropriate direct operating cost
for an aircraft a on route pq

Constraints

1. Demand on all routes must be carried

4 LF -S -n = P ppq
a pqa a pqa pq

where LF = assumed load factor for aircraft apqa on route pq

Sa = seat capacity for aircraft a

P = estimated average for daily traffic
from p to q

This requires that passengers on all routes be carried

and fixes the revenue. One may wish to relax the equality

and allow passengers not to be carried. In this case a slack

variable is added, with a cost appropriate for yield per pas-

senger on route pq. The minimization is then over operating

cost and lost revenue.



2. Fleet availability must not be exceeded

Tb - n - U - A'
pq pqa pqa a a a

where Tb = block hours for aircraft a to
pqa fly route pq

U = assumed average daily utilization
for fleet a

A = number of aircraft in fleet a
a

This requires that aircraft must be available given a

certain fleet size. Ua must be predetermined for the fleet

regardless of the set of routes which fleet "a" may eventual-

ly be assigned by the optimal solution. Since Ua is strongly

determined by average stage length, it may have to be changed

after the LP solution is obtained.

3. Aircraft movements must balance over the day
at every station

npq - n =04
4 npga -S nqpa =0Pp, a

q q

For a cyclic daily schedule, the number of arrivals of

a given aircraft must balance the number of departures for

every station in order to conserve the flow of aircraft.

These constraints ensure that any resultant n vector will

be a feasible vector for routing vehicles. If the demand

data is symmetric in that P = P qp (daily flows are equal
pq q

both ways) then these constraints may be omitted. If they

are omitted, then the LP is simply mapping a set of aircraft



types onto a set of routes with no network structure. The

double index pq can then be replaced by a single index r for

a route, or class of routes. If demand is symmetric, the

problem size is thereby reduced since the number of routes

is halved.

4. Minimum daily frequency must be maintained on
each route

npa min pq 'rpq

where N . = a specified minimum level of ser-
min pq vc

vice

Because of competitive reasons, or traffic generation,

or management policy, there may exist a desire to have at

least N . daily services on route pq. This constraint
mnpq

ensures that this will occur, and prevents use of large size,

low cost aircraft on routes where the value of n for that
pqa

route would be very low (<< 1 for example). The value of

Nmin pq is related to the estimate for P input to the model.

5. Maximum daily departures at a station are limited
due to airport capacity

55n (pqa max p p
a q

At airports where capacity quotas have been established,

this constraint limits total daily activity.
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2.1.3 Problem Size -

a) Number of rows 4 21E1 + jai + IQI

Constraints 1. lEt = no. of links pq in route map

2. lal = no. of aircraft types

3. (Omitted)

4. lEt (not necessary for every route)

5. IQI = no. of cities in route map

b) Number of Variables 4 IEI .IaI

variables npqa

e.g. Suppose we have 20

types:

Constraints I4

Variables 4

: lE|.tal = links x aircraft types

cities, 200 routes, and 5 aircraft

400 + 5 + 20 = 425

200(5) = 1000

For problems of this size, a preprocessor coding

accepts a simple description of the input data, and creates

the input for the LP coding. A postprocessor coding is

also used to give a useful output format.

(Symmetric Demand)



2.1.4. Comments

Various versions of this model have been reported

in the literature (e.g. references 1, 2, 3) through the years.

Unless the fleet availability constraints, or the minimum

frequency constraints are binding, it produces a rather tri-

vial result of assigning sufficient numbers of the least

cost aircraft to each route. The LP result gives non-integer

answers for n , but since averages are used for traffic,- pga
utilization, and load factor, these values can also be viewed

as averages over T.

Because of its assumptions, this model and its

variants have not received much airline usage for assigning

aircraft to routes. The historical frequency pattern avail-

able for modification as new aircraft are added to the fleet,

and other political or marketing factors have been dominant

in determining airline frequency patterns on a piecemeal

basis.
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2.2 Model FA-2 Extension to Multi-stop Services - (LP or ILP)

2.2.1. Problem Statement

Given a predetermined set of multi-stop routes r,

and an average daily traffic P between points p,q which must

be carried by a fleet consisting of limited numbers of differ-

ent types of aircraft, find the least cost assignment of air-

craft to routes such that various routing and operating con-

straints are satisfied.



2.2.2 Model Formulation

Let r be any path sequence of edges or arcs in a

route map representing a possible multi-stop route connecting

city p to city q. Let i and j be consecutive stops on

the route where i precedes j, (i< j).

Let R be a predetermined set of routes the system

would like to consider, and R be the subset which connects
-pqm

city p to city q in exactly m stops. Let Ppgra be the

number of passengers travelling from p to q which uses

aircraft a and route r.

Objective Function

Minimize operating cost (for fixed revenue)

Min. DC . n ra
r a raa

Constraints

l.a) All demand must be served

r ga pqra pq pq
-pq

where R = U R all routes connecting p & q
pq m ixia

lb.) Average daily load on any route segment must
not exceed a desirable load factor for an
aircraft

Segment load for link ij on route r, aircraft a

-pqra for all p. q on route r
pcj

i<q



e.g. Route r, aircraft a

1 i j k m

Daily segment load, link ij = Plja + Plka + Plma

+ P.. + P
i-a ika

+ P.ima

The route segment constraint may then be written for

each aircra ft on the route

Ppqra
- LF . S .n 40

ra a ra
Y segments ij
Yr, a

or alternatively,

lc.) Average daily load for all aircraft on any route

segment must not exceed a desirable load factor.

P - LF .S .n 6 segments ij
a P- i pqra a ra a ra 0
a p~j a i

i~q

Here we reduce the number of constraints lb) by

cumulating them, and simply insist that for every

segment of a route, there must be enough daily

seats over all aircraft flying the route to cover

the variations in average daily load on the seg-

ment. If any aircraft route becomes overloaded

p<j

i4q



on a segment, passengers can be carried on another

aircraft type flying the same route, and offering

through plane service.

or alternatively,

ld.) Average daily load for all aircraft flying a seg-

ment by any route must not exceed a desirable

load factor

1 P pqra- aF S n a 4 0 'Osegments ij

r C R a p4j r IR-pq -pq
iCq

Here we further reduce the number of constraints

by simply insisting that there must be sufficient

seats on every link of the route map to cover the

variations in daily load expected on the link.

If any route segment becomes overloaded, passen-

gers can be carried on another route traversing

that link by changing planes.

2.) Fleet availability must not be exceeded

Tb .n U -A' a
ra ra a a

r

where Tbra= block time on route r



3.) Aircraft movements must balance at every station

Er
q r

where A'
-pq

n -' 4j n = 0 Yp,a
-R' q rER'

pg -qp

is the subset of R for routes starting

from city p and ending in city q

4a.) A minimum m-stop service must be supplied for every

city pair market

r E R
-pqm

a
*r N .r a min pqm pq, m

or alternatively,

4b.) A minimum level of service must be supplied for

every city pair market

m = 1,M rf R
-Nqm

where NM .
min pg

n >
ra NM .min pq

represents a minimum number of

daily services for market pq with M or less stops.

5) Maximum daily departures at a station are limited due

to airport capacity

a j rIR..
-13J

n
ra N

max p
i

pq



2.2.3 Problem Size -(Symmetric Demand)

a) Number of rows.(EI+tal+tQI+ 21pqI+ JRI
m pq -pqm

+ R. .-ij + R. .kj
13 a ij

Constraints l.a) Jpq- number of O&D city pairs

l.b) I Rija = aircraft-route
a i 1segments

or 1.c) 1R. 1= route segments
iJ

or l.d) IE(= edges, or links in
route map

2. tal= aircraft types

3. (Omitted)

4.a) f lRI= city pair m stop
m pq services

or 4.b) Ipg|

5. (Q- no. of cities

b) Number of variables(al- ( -R( + g R )

Variables n ra (al= aircraft-routes

P :jai R (=icatctpqra pq
pq pair routes

e.g. Suppose we have 20 cities, 200 city pairs, 5
aircraft types, 100 links in the route map,
500 routes, 700 route segments, 600 city pair
routes, and 400 city pair m stop services, and
assume constraints lb) are not used.

Constraints 4 100+5+20+2(200)+400+700 = 1625

Variables ( 5(500 + 600) = 5500
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2.2.4 Comments

This problem generally has more constraints than

the original problem, and many more variables. If there

were sufficient aircraft available, and the minimum fre-

quency constraints were not binding, the LP solution would

choose the cheapest aircraft-route for every city pair and

assign sufficient daily frequency to that service to carry

passengers at exactly the assumed load factor. Because of

the cost structure of airline service, this would mean the

most direct or least stop service available using the best

aircraft. If non-stop routes for every city pair existed

in R, they would be used reducing this problem to the origi-

nal model, FA-1.

However, if a city pair does not have a non-stop route,

it must choose the cheapest multistop route, or a routing

portion of some other route. If the latter occurs, the whole

route is flown with a lower load factor appearing on the re-

maining segments.

Also, if the minimum frequency requirements for every

city pair are not satisfied by the simplistic solution, the

model will rearrange the routings to meet the daily required

frequencies at lowest incremental cost. This rearrangement

also may cause the lower load factor to appear on some

flight segments.

While these two possibilities may cause flight segments

with available space to appear in the system, the LP solution

usually avoids this by rearranging the frequency pattern to

fill this available free space. A very small number of flight

segments are slack, and one may generalize the model results
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by stating that the LP solution tends to find a frequency

pattern of multistop routes such that all flight segments

are at equal load factors (max. allowable load factor). In

airline terms, the LP solution performs the "load building"

job in using multistop routes.

To make this model meaningful, it should be solved as

an ILP where n must be integer. As has been noted in the
1 ra

literature , only the ILP model correctly describes the prob-

lem of determining a least cost frequency pattern for multi-

stop or transshipment routes. The integrality constraint

also causes slack flight segments at lower load factors to

appear.

The objective function of this model may be modified

to include terms which express the travel costs of passen-

gers for using indirect, multi-stop routings, i.e. the

objective function is of class R4 where total social costs

are being optimized. An example of this model is used in

the work associated with reference 5.

1. The discussion in Chapter 3.4 of reference 3 describes
this problem.
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2.3. Model FA-3 Maximum Income, Competitive Market Share (LP)

2.3.1. Problem Statement

Given a set of non-stop routes pq for which there

exists a market share curve relating traffic carried to daily

frequency n , an aircraft fleet consisting of limited num-

bers of different types of aircraft, find the maximum income

assignment of aircraft to routes such that a minimum daily

frequency of service is maintained, and such that aircraft

movements balance at every station while not exceeding an

allowable maximum imposed by airport congestion.

2.3.2. Model Formulation

Let P be a convexstepwise, linear function of

n , the total daily frequency of service on route pq as in-
k eth lpeo tekth

dicated by Figure 3. Let p be the slope of the k segment,
pq

n be the breakpoints in total frequency, and nk the value of

total frequency for the kth segment.

The model formulation as an extension of model FA-l

is given by Figure 4.



Ppq P3
Average Traffic

P 2

pk = Slope of Market Share Curve on Segment k
Pn

n I n 2 n 3

npq = npqa , Daily Frequency of Service

FIG. 3 A TYPICAL MARKET SHARE CURVE



OBJECTIVE FUNCTION - Maximize Income for System

Ma x Ypq'Ppq - I Y DCpqa n pqa
pq pq a

CONSTRAINTS

L.a) Maximum allowable aircraft load factor on all routes

ILFmaxpqa - Sa -npqo - Ppq 0 ypq

L.b) Traffic carried is a function of total daily frequency

i ppk- npq- Ppq 2 0 ypq
k

I.c) Total daily frequency is sum of segment frequencies

I npga - 7 npq = 0 ypq
o k

I.d) Segment frequencies are bounded at breakpoints
k q pq

O fnpq nk-nk - ypq,k

2. Fleet availability must not be exceeded

ITbpqaonpqa S U0 A ) y
sq

3. Daily aircraft movements must balance at a station

7 npg, -Inqpo =0 Y p10
q q

4. Minimum daily frequency on each route

I npga y Nminpq Ypq

5. Maximum daily departures at a station

I npq S Nmaxp yP
oq

FIG.4. MARKET SHARE MODEL-FA3



2.3.3 Problem Size

a) Number of rows 4 3|E + (at + IQI

Constraints l.a) (Ej= no. of links pq in
route map

b) (El

c) (El

2. lat = no. of aircraft types

3. (Omitted)

4. (Omitted)

5. IQI= no. of cities in route map

b) Number of variables < IEl- (Ia( + K + 1)

Variables n :IEl- (al
pqa

k
n :(El- K where K = average no.
pga

of breakpoints in market share

curve for city pairs

P : El

c pq oE -

c) Number of bounds (El.- K

Constraints ld) IE( - K

e.g. For 20 cities, 200 city pair links, 5

and K = 3

aircraft types,

Constraints

Variables

Bounds

600 + 5 + 20 =

200 (5+3+1)

.< 600

625

= 1800
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2.3.4. Comments

This model links together a traffic forecasting

model for market share, with a schedule construction model.

The passengers carried, the system revenue and market load

factor are all variables in the optimization. The previous

load factor assumption is not used, except as an upper bound

constraint upon physically realizable load factors. Without

this constraint, the usage of a small size vehicle on a large,

busy route could lead to load factors over 100%.

Fare structure now becomes an important parameter

for the model since it determines the levels of service to

be offered by a profit seeking carrier. If subsidy income

can be related to passengers carried and daily frequencies

by type of aircraft, it also becomes a parameter which deter-

mines service levels. These problems would be of interest

to industry planners and regulators.

The traffic-frequency curves, or market share curves

have to be known for all competitive routes pq. To calculate

them, the rule of thumb "market share = frequency share"

could be used, with an estimate of expected competitive fre-

quencies. The market share for the particular airline sys-

tem may then be directly computed and approximated by the

step-wise linear curve. Better market share predictions may,

of course, be available, and the model creates an incentive

for obtaining good data.

The minimum frequency constraints of previous



models are no longer necessary on a competitive route. (In

fact, they were a particular form of traffic-frequency curve

as illustrated in Figure 5a.) However, for political or

strategic reasons, the carrier may wish to maintain a mini-

mum frequency which might be uneconomic at present. This

is shown in Figure 5b. The breakpoints shown in that figure

are the usual points in the optimal solution, although any

point on the boundaries is possible. One can put a break-

point for every integer frequency, and thereby obtain integer

solutions.

The initial value p for a given market share
pq

curve represents the load which is generated by offering

one service frequency. If it is less than the (max. load

factor x seating capacity) of the smallest plane on the

route, then constraints la) are not necessary. Also, to

be "economic" any p value must be greater than the lowest

breakeven load for any airplane;

k DC
i.e. p k pga for some a on pq

pq Ypq

If this is not true, then the demand curve may be

truncated by dropping segment k and any subsequent segments.

The actual load factor achieved on a given competi-

tive route is now output from the model.

Ppg
LF pp

pq S -npqa
a

The model usually indicates optimal load factors

which are less than the maximum allowable for highly competitive

routes.
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2.4 Tech Airways Example - Market Share

An example of model FA-3, the market share modelis

given here. It is a homework problem for a Tech Airways

system of 1990. The route map is shown in Figure 6b; it

has 24 non-stop routes connecting 10 cities. Four types

of aircraft are considered, and a description of their econom-

ic performance, along with assumed net yield, allowable load

factor, etc. is given in Table 2.

Typical market share curves are given by Figure 6a and

the market size is given for each route along with the results

for the route in Table 4. There were four cases of different

fleet sizes as described in Table 3.

The LP problem size was 148 rows and 432 variables.

The four cases were solved with MPS on an IBM 360-65 in

less than one minute. The results in Table 4 give the pas-

sengers carried, the market load factor, and the daily fre-

quency (integerized) for each route. Notice that type of

aircraft and frequency of service change quite considerably

as the fleet sizes were increased. Also, because of competi-

tive reasons, a number of the routes are flown at less than

the maximum allowable load factor, and not all the passengers

available to the system are necessarily carried.
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TABLE 2

Tech Airways Data

1. Aircraft Characteristics

Type DOC Capacity
$17Er. seats

DC-9

B727

B707

450

550

800

DC10 1050

120

150

300

Utilization Block time Max. Range
hrs./day hrs. miles

.179+.00207D

.226+.00185D

.300+.00192D

.300+.00175D

1000

2000

3000

3000

D = Distance

2. Net Yield = Fares - less indirect operating costs

= $1.00 + 0.060D

3. Max. Allowable Load Factor all routes = 65%

4. Ownership Costs/Day

DC-9 $600
B-727 $700
B-707 $1000
DC-10 $2000



TABLE 3

FLEET AVAILABILITY CASES

DC-9 DC-10 B727 B707 Results

Case #1 25 10 40 20 All aircraft were

fully utilized

Case #2 43 12 50 28 Only 16 B707
were used

Case #3 56 14 60 20 Only 9 B707, and
50 DC-9 were used

Unlimited aircraft

Case #4 available. Optimal
(30) (28) (34) (9) no. of each aircraft

N_ shown(_)



TABLE 4. TECH AIRWAYS RESULTS

CASE #1 #2 #3 #4
Route 1-3 - 1188 mi.;Mkt.size-119

Passengers 0 35 95 95
Load Factor % 0 29 20 20

# of Flights:
DC-10 0 0 0 0
B 727 0 1 4 4
B 707 0 0 0 0

Route 1-10 - 1972 mi.;Mkt.size-450
Passengers 360 371 371 371
Load Factor % 65 65 65 65
# of Flights:

DC-10 0 0 0 0
B 727 2 5 5 5
B 707 2 0 0 0

Route 3-8 - 447 mi.;Mkt. size-298
Passengers 0 184 244 244
Load Factor % 0 41 34 34
# of Flights:

DC-9 0 5 8 8
DC-10 0 0 0 0
B 727 0 0 0 0
B 707 0 0 0 0

Route 4-8 - 353 mi.;Mkt.size-1080
Passengers 950 1050 1050 1050
Load Factor % 65 65 65 65
# of Flights:

DC-9 0 10 10 10
DC-10 0 0 0 0
B 727 12 6 6 6
B 707 0 0 0 0

Route 4-10 - 854 mi.;Mkt.size-748
Passengers 598 657 748 748
Load Factor % 65 65 65 65
# of Flights:

DC-9 5 11 16 16
DC-10 0 0 0 0
B 727 0 0 0 0
B 707 3 0 0 0

Route 8-10 - 570 mi.;Mkt.size-1260

CASE #1 #2 #3 #4
Route 1-9 - 1697 mi.;Mkt.size-1840

Passengers 1840 1840 1840 1840
Load Factor % 65 65 65 65
# of Flights:

DC-lO 9 9 9 9
B 727 0 0 1 1
B 707 1 1 0 0

Route 2-9 - 1718 mi.;Mkt.size-1100
Passengers 1100 1100 1100 1100
Load Factor % 65 65 65 65
# of Flights:

DC-10 1 1 3 3
B 727 0 0 7 7
B 707 9 9 0 0

Route 3-9 - 552 mi.;Mkt.size-1320
Passengers 1295 1321 1321 1321
Load Factor % 65 65 65 65
# of Flights:

DC-9 0 0 0 0
DC-10 0 0 1 1
B 727 10 12 15 15
B 707 5 4 0 0

Route 4-9 - 538 mi.;Mkt.size-3772
Passengers 3772 3772 3772 3772
Load Factor % 65 65 65 65
# of Flights:

DC-9 0 0 0 0
DC-10 14 15 16 16
B 727 0 0 8 8
B 707 11 9 0 0

Route 8-9 - 291 mi.;Mkt.size-7750
Passengers 5319 7633 7633 7633
Load Factor % 65 65 65 65
# of Flights:

DC-9 90 85 92 0
DC-10 0 0 0 39
B 727 0 34 28 0
B 707 0 0 0 0

Route 9-10 - 316 mi.;Mkt.size-10350
Passengers
Load Factor %
# of Flights:

DC-9
DC-10
B 727
B 707

1114
65

0
0
0
11

1260 1260 1260
65 65 65

15 16 16
1 0 0

Passengers 10350
Load Factor % 65
# of Flights:

DC-9 1
DC-10 0
B 727 132
B 707 0

10350 10350 10350
65 65 65

0 0 0
10 12 53

107 103 0
0 0 0
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3.0 Fleet Planning Models - (LP Decomposition)

Fleet Planning models are concerned with determining an

optimal program for buying, selling and leasing aircraft for

the airline system over some future planning horizon. They are

extensions of the Fleet Assignment models in that they repeat

some basic fleet assignment problem over multiple periods, T.,

which make up the planning horizon. Typically, the periods

may be a year, (or a peak or off-peak season), and the planning

horizon extends perhaps 5-7 years into the future. Because of

a need for expressing fleet continuity between these periods,

the fleet assignment problem for a given time period is not

independent of other time periods. Fleet composition at the

end of one time period becomes the available fleet for the

next time period.

These models tend to be strategic models by nature. The

details of each period may not be fully represented in that

individual routes may be aggregated to form classes of routes

such as short: medium: long haul or domestic: international -

and aircraft may be similarly grouped into 1960; 1970; 1980, or

short: medium: long haul - subsonic jet, supersonic transport,

or V/STOL - 40: 80: 120 passenger,etc.

The models do require good forecasts of future traffic on

the routes, of future competition, future yields, future

availability and price of newer types of aircraft, future

selling prices for present aircraft, etc. Given such data,

an optimal fleet plan program can be determined, and sensiti-

vity of that program to variations in the forecast easily

determined.
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The models are useful to transport aircraft manufacturers

in studying industry wide needs for present or newer types

of aircraft, and in investigating the introduction of new air-

craft versus possible new aircraft programs initiated by their

manufacturing competitors. It also becomes an aid in the

sales approach to a prospective airline system in studying

their future needs, and in determining the value of possible

interim leasing arrangements which could be offered.

For the operator, the models are useful for longer range

planning of fleet requirements, and in carrying out the

financial planning associated with buying, selling and

leasing aircraft.

The models are also useful to government planners and

regulators in studying the effects of new route awards,

subsidy programs, future airport loadings, industry profitability,

and introduction of new aircraft such as the jumbo jet or SST.
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3.1 Model FP-3 Maximum Income Fleet Planning - (LP)

3.1.1 Problem Statement

Given a forecast of traffic and competitive frequencies

for a set of routes covering some future set of time periods

and a forecast of prices for buying, selling and pleasing

available types of aircraft, determine the programs for

owning, operating, and financing the airline fleet which

maximize reported profit.



3.1.2 Model Formulation

This model is an extension of the basic Fleet Assign-

ment model FA-3, using r instead of pq to designate non-stop

routes. The basic model is repeated over a sequence of peri-

ods T using forecasts of future data describing an average

cycle of that period. Let nraT be the average number of

frequencies/cycle operated on route r by aircraft a in peri-

od T, and let NCP be the nudber of cycles per period.

Aircraft are assumed to be bought at the beginning of

a period. Let ApaT be the number of aircraft a bought under

purchase plan p. This purchase plan consists of a schedule

of present value progress payments PPpaT to the manufacturer

prior to delivery and a schedule of depreciation costs DEP
paT

to be used for accounting purposes subsequent to delivery.

There may be a number of such purchase plans corresponding

to a given aircraft purchase.

Aircraft are assumed to be leased at the beginning

of a time period. Let 1la be the number of aircraft a

leased under lease arrangement 1. This lease arrangement

describes the flow of cash payments to the leasing agency

for aircraft a during the periods T1 associated with the

lease. Let LPlaT be the present value of a payment.
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Aircraft are assumed to be sold at the beginning

of a time period. Let spaT be the number of aircraft a

purchased under plan p sold at the beginning of period T.

The market value for selling aircraft a in period T is

forecast to be MVaT, and the depreciated book value BVpaT'

The system indirect operating costs for period T, IC T

may be expressed as a linear function of system variables

such as revenue passenger miles, RPM T, passengers boarded,

P , and total system departures, D,

RPM = 4 d - P where d = route distance
T r rT r

r

T rT

r

D = n
D nraT

r R.. a

ICT c2 + c3 T + c4 - D + c5 T RPMT

The c values are cost coefficients determined for the

particular airline system. This expression gives the present

value of system indirect costs per cycle, and is multiplied

by NCP.
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Interest or debt cost payments per period are scheduled

under the repayment plan described by IPiT, the proportion

of the debt borrowing, d. covering periods T. which is paid

as debt cost in period T. Fixed debt plans already obli-

gated can be grouped together under one schedule to initiate

the model.

Objective Function

Find the program of buying, selling, leasing, and

operating aircraft, and a financial program for raising

new capital which maximizes the present value of system

profit before taxes over some future planning horizon.

Maximize Z = ZT

where ZT = before tax profit (or loss) in period T

= NCP E yrT rT System revenues/period
r

- NCP - DCra * nraT System DOC (less depre
r a ation)/period

- NCP ICT

LP laTLlaT
1 a

- IiT di

System IOC/period

Aircraft leasing costs/
period

Debt costs/period
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DEP -A
paT paT

(MV -By )-s
paT paT paT

Aircraft Depreciation
Costs/period

Capital gains from
Aircraft Sales

Constraints

la) Maximum allowable load factor for the route

r, TLF max * S - n - P > 0
raT a raT rT

lb) Traffic carried is a function of daily frequency

k
nrT

k rT
r, T

- rT

lc) Total daily frequency is sum of segment frequencies

n T
raT k

k
nrT = 0 r, T

ld) Segment frequencies are bounded at the breakpoints

r, k, T0 4 nk< nr - nr
k k-l

2) Fleet Availability

Th *n -UraT raT aT paT
p

laT

a,T

where UaT is the forecast of aircraft average block times/

cycle for fleet a in period T.
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4) A minimum frequency of service may be required

on a route

nraT N minrT r, T

where N min
rT

= minimum frequency of service on route r,
period T

5) A maximum for daily departures at a station exists

n 4 N max
a q R' n raT pT p, T
a q rR' -pq

where N max pt
= maximum daily or cycle operations at station

p in year T due to airport congestion

6) Fleet Continuity is assured

a) Purchased Aircraft

ApaT (ApaT-1 - paT tp,a,T ) T
ps

For the initial period, the initial fleet is described

by its residual payment and depreciation schedules. Initial

fleet size and the prospective short term deliveries of

aircraft on order are controlled by bounds on ApaT'



b) Leased Aircraft

LlaT -L = 0 '(l, a, T T1

If Lla aircraft are leased under lease 1, it equals the

number available to the system in a year T1 of the lease,

LlaT'

7) Airline Financial Constraints

There are a variety of financial constraints which

may be placed upon a model of the airline financing problems.

Here we shall insist that "cash on hand" remain above a

given level, and that new debt can be incurred only such

that the ratio of total debt to total assets remains be-

low a given value.

The cash income for the system differs from before

tax profit because of the variance between declared de-

preciation schedules and ownership costs through progress

payments and debt costs, and between book value and market

value. Thus the cash flow in period T, CFT becomes:

CFT = ZT + j E(DEPPaT -PpaT )ApaT depreciation
p a or progress payments

+ BVpaTO 5paT book value on
aircraft sales

p a
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DP iT- d principal payments on debt

- TD - ZT taxes and dividends

+ d new capital raised in T

Thus, cash flow is before tax profit with the hypothetical

costs of aircraft depreciation and book value removed, and

the real costs of progress payments, principal payments on

debt, and taxes introduced. Capital raised through new

debt is treated as cash income.

We nowrite a constraint defining the average cash

on hand for the system. The cash flow, CFT, is allowed

to be positive or negative for a given period, providing

cash on hand does not fall below a required level, expressed

as a lower bound on CHT'

7a) Cash on Hand Constraint

CHT - (CHT-1 + CFT-l) =0 T

There is a limit on the ability of the system to

raise new capital. Here this is expressed as a limit

on the ratio of debt to total airline assets, D/A, commonly

called the debt/asset ratio. It is equivalent to another ratio

called the debt/equity ratio.

The assets of an airline can be expressed as the sum

of cash on hand (or current assets), non-aircraft assets,



and aircraft assets expressed as a program of progress pay-

ments and book value for each aircraft purchase. Typically

the aircraft assets represent about 85% of the total.

The long term debts of an airline for a period can

be expressed in terms of the repayment schedules for debts

d. which the airline has incurred in the past, and will

incur in its future.

7b) Debt-Asset Constraint

D/A (i (PP paT+BVpaT )-A paT + CHT + *T) -T DViT di > 0 T
p a

This constraint restricts the debt program from ex-

ceeding a desired ratio of the asset program for all peri-

ods T. If it becomes tight, the airline cannot raise new

capital and must be able to maintain cash on hand levels

either through profitability, or selling of aircraft.

Bounds

1) The number of aircraft which are purchased in

any plan is subject to upper and lower bounds

BL iA 4 BU a, p
pa paT 1  pa

The system may have incurred an obligation to purchase

aircraft a in year T p. The upper bounds usually arise

from availability of new aircraft in the early years of

the manufacturing program.



2) The number sold in any year is restricted

SL < s < SU a, T ppaT paT paT

Management policies may restrict the selling program

for the present fleet. Constraint 6a) places an upper bound

on s which prevents selling aircraft not in the fleet. ApaT
policy not to sell any of aircraft a before year T can change

both the aircraft acquisition program and the operating program.

3) The number of aircraft available under any lease

arrangement is restricted

LLla Lla 4 LUla

4) The amount of debt which can be raised under

any debt plan may be bounded

DL. < d. < DU.

5) The cash on hand must not fall below a given

desired level for period T.

CHT >CHMIN T



3.1.3 Problem Size

a) Number of rows < T - (3 lEt + jai + IQI) +

Constraints 1.a)

T (2 + tal - P - (-) + T

T -Et

.b) T - 1EI

.c) T - 1E1 where P = number of purchase

2. T - tat

5. T - 1QI

plans per period

T = average duration of

lease

6.a) T tal - P - (T-l)/2

.b) T Ill

7.a) T

.b) T

b) Number of variables 4 T-IE - (K + tat + 1) + T - (2tal-P + 1+3)

+ Il( (1 + T

k
Variables n :

rT
n :
raT

rT

A
paT

s
paT

LlaT

Lla

d. :

CHT

CFT

Z T

T - IE- K

T - El - a

T - 1E1

T - jal P

T - lat P

Ill

where K = average number of
segments per route

I = number of debt
plans per period

T I

T

T

T



c) Number of bounds T - El K + T.(2tatP-+21+l)

+ 21a- P + 2-Ill

Constraints ld)

Bounds 1 .

2.

3.

4.

5.

T - lEg - K

2 jai - P

2 jai - P - T

2 ill

T (21)

T

e.g. Suppose we have the same problem as used in the

Fleet Assignment chapter with 20 cities, 200 city

pairs, 5 aircraft types, K = 3, 5 lease arrange-

ments averaging 4 periods duration, two types of

purchase arrangements and two types of debt repay-

ment for each aircraft purchase, and T = 10 periods.

Then, constraints

variables

bounds

10(625) + 10(2 + 10.9/2) + 4(5) = 6740

10-200- (3+5+1)+10(20+5)+5(1+4) = 18275

10- 200 -3 + 10.2. (11)+10+10(5) = 6280



3.1.4 Comments

Various types of leasing arrangements may be

modelled. A lease-option arrangement makes little sense

in a deterministic model since if the option should be

exercised, it will be cheaper to purchase the aircraft

initially. However, often a manufacturer may respond

to a new aircraft from a competitor by offering a favor-

able lease of his present aircraft in the interim period

until his next new aircraft becomes available. By using

the bounds on leasing and buying, or by writing a con-

straint expressing the obligation to buy the new aircraft

as a linear function of the number on interim lease, such

offers may be incorporated in the model. Similarly, any

trade-in arrangement can be modelled where the manufacturer

agrees to purchase present fleet at guaranteed prices in

exchange for new aircraft sold to the airline.

There is an initial cost associated with intro-

ducing a new type of aircraft in the fleet which is not in

the model. As well, there are strong operating cost reasons

for not having two similar types of aircraft from different

manufacturers in the fleet. If problems associated with

these costs arise, they can be handled by parametrically

controlling fleet acquisition variables, ApaT'
Associated with a decision to buy aircraft is a

number of ways of raising the money required to make progress

payments and the delivery payment. Independent of a repay-

ment schedule for the loans required, there are progress

payments, and a depreciation schedule for the aircraft
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which gives tax benefits, and perhaps an investment tax

credit. It is possible to consider a variety of the pos-

sible financial planning problems in the model if it seems

pertinent. Any financial constraint affects both the

buying and selling programs, and also the operating program -

the frequency pattern, aircraft used on a route, total traffic

and revenue - all can be affected by these constraints.

The model uses a great deal of forecast informa-

tion as input data, and the results generally are sensi-

tive to the assumed forecasts. Since the data is uncertain,

sensitivity testing should be performed.

Because of the sequential, periodic structure of

the problem, this model is easily formulated as an LP de-

composition problem. The optimal frequency pattern for

each period could be determined independently, except that

constraints 6, and 7 link the problem for various periods.

The next section shows how this decomposition may be carried

out since for most airline formulations, the size of this

model would be beyond the capacity of present computer LP

codings.
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3.2 Model FPD-3 Maximum Income Fleet Planning - Decomposition

3.2.1 Problem Statement

This is identical to model FP-3.

3.2.2 Model Formulation

The decomposition may be carried out in a number of

ways. Here we shall take constraints 2, as well as constraints

6, and 7 into the master problem. In this way the buying,

selling, leasing variables, and the financial planning con-

straints are all contained in a master LP of reasonably small

size. The large subproblems become frequency pattern deter-

minations for each period. A Dantzig-Wolfe iteration technique

shall be used since it seems to be preferable to any imbedded

iteration technique.

Let X Tj be the fraction of the solution at iteration
j for subproblem T to be used in the master problem formulation.

Let Z .be the true value of the subproblem objective function

when the augmented dual costs are removed. The formulation for

the master problem is given by figure 7a. The sets of bounds

from model FP-3 are not shown. Constraints 0 ensure a

feasible set of subproblem solutions.

Let r%2aTj-l be the dual variables associated with

the fleet availability constraints 2 of the j-1 master problem

solution. The cost of operating a given route is modified as

shown in the objective function of figure 7b) such as to ex-

press the cost of the fleet constraints from the master in the

subproblem solution.
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OBJECTIVE FUNCTION - Maximize the present value of future income

Maximize Z = Z Z X - Z . + XX (MV - BV )-s
T Tj T P

-XX DEP -A
paT paT

-XX LP L -ZIP d
2 a T tat iT i

CONSTRAINTS

0. Combine the sub-problem solutions

Tj I

2. Fleet availability

XX X .
j r Tj

- Tb *n .raT ralj -U (XA +XL ) s0
T paT f taT

6.a) Fleet continuity

A
paT - (A pa 1 I - s

paT -y p,a, T>Tp1

6.b) Leased Fleet

L - L =0
eaT to

7.a) Cash on Hand Constraint

CHT+1- (CH T+ CFT) = 0

y to,T f

where CFT= X Z .+ 22 ((DEP -PP )-A -BV -s )-DP -dTj Tj Tj p paT paT paT paT paT iT i
7.b) Debt-Asset Constraint

D/A (X X(PP +BV )* A +CH +A* )-DV -d > 0 T
p paT paT poT T T iT

FIG. 7a THE MASTER PROBLEM, FLEET PLANNING MODEL FPD-3
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OBJECTIVE FUNCTION - Maximize "operating income" at iteration j
for system in year T

Max Z NCP (Y -P .- L (DC +Jr -Tb )n -ICTj \r rT rTj r a raT 2aTj-1 raT raTj T/
where Tr2aTj-1 are dual prices from the master problem

for constraints 2.

CONSTRAINTS

I.a) Maximum allowable aircraft load factor for route

XLFmoxraT - o -nraTj ~ rTj 2 0 Yr

L.b) Traffic carried is a function of total daily frequency
k k -P >0KrTn rTj rTj Y r

I.c) Total daily frequency is sum of segment frequency

IXn =0 Yrn
a raTj k nj = 0Yr

I.d) Segment frequencies are bounded at breakpoints

O5 nk < nr - n rY

4. Minimum daily frequency on each route

X nraTj 2 NminrT Yr
a

5 Maximum daily departures at a station

EY rT Nmax Ypq aRpq pT

FIG. 7b. THE SUB-PROBLEM FOR PERIOD T, MODEL FPD -3



The iterative technique starts by finding a set of solu-

tions to the subproblems which produce a feasible master

solution. Then, the dual prices from the master are added

to the subproblems, and starting from the old solutions, a new

solution to each subproblem is obtained. If the new subproblem

solution can be useful in improving the present master solu-

tion, a new variable A Tj of cost Z Tj is added to the master

problem. The master is then solved starting from its old solu-

tion. This iteration cycle is continued until at some point

no new subproblem solutions will improve the master problem,

or if desired, until the improvements in the master problem

are very small. Because of the similarity of the subproblem

structures, and the weakness of the linking constraints, this

problem is ideally suited for decomposition and seems to con-

verge very fast.



3.2.3 Problem Size

Master Problem

a) Number of rows 4T-(3 + lal + al -P- (2 1) + 11- T

Constraints 0. T

2. T - lal
6a.) T - a - P 2(T-l)

b.) T -IlI

7a.) T

b.) T

b) Number of variables 4 T- (2 a - P + I + 2 + IjI)

+ l - (1 + T1)

Variables x Tj

A
paT

spaT

LlaT

d.
CHT

CFT

: T -jl

ST ai - P

: n

Tl

1

:T -I

c) Number of bounds / T- (21a -P + 21 + 1) + 2al-P

+ 211

Bounds 1. 21a1- P

2. 21a1- P - T

3. 2111

4. T - 21

5. T
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Subproblem T.
J

a) Number of rows < 3 JEt + |QI

Constraints la) |E|
b) |E|

c) IEI
5. |0|

b) Number of variables <jE- (K + al + 1)

Variables nrT :E- K

nT :lE -fat

rT

c) Number of bounds 6 lEl .K

Constraints ld) E1 - K

e.g. for our example used with Model FP-3

Master Problem

Constraints < 10 (3 + 5 + 10.9) + 5(4)2 = 550

Variables

Bounds

Subproblem

(10 (20+2+2+ j ) + 5(1+4) = 265 + 10

410 (20+4+1) + 20 + 10

Constraints 4 600 + 20

Variables

Bounds

200 (3+5+1)

4 200 (3)

66

= 280

= 620

= 1800

= 600



3.2.4 Comments

This decomposition is attractive since it creates a

large subproblem solely concerned with determining an optimal

frequency pattern for the system, and has a small master problem

which contains all the essential components of fleet planning,

and financial planning for the fleet. Given a solution j for

subproblem T, the data needed for the master problem is only the

true value of the objective Z Tj' and usage of each aircraft

type,

u . $Tb *n
aTj raT raTjr

Given the master problem solution, a new "operating"

cost for every route is computed using the dual price associated

with the availability constraint for each aircraft type.

As seen from the problem sizes for master and sub-

problem, they become computable within present codings. The

master problem grows in number of variables as the iterations

progress, but convergence seems fairly rapid. The subproblems

are of same size as a basic Fleet Assignment model, and although

there are T such problems to be solved at each iteration, the

problems are similar. Old solutions can be saved to ensure

that only a small number of simplex steps are required to ob-

tain a new solution.
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3.3 Example - Tech Airways Decomposition

The previous Tech Airways example is extended over

three successive periods (years) assuming an average growth

in traffic of 14% on all routes. Table 5 shows an assumed

initial fleet composition, the prices for buying, selling, or

leasing, and the constraints on buying, selling, or leasing.

There is a 3 year lease available for either 8 B727's or

5 B707's and a lease for one DC-10 over the last two years.

The results are shown in Table 6. It shows that

B707's were sold off as fast as possible during the period.

These results are a function of assumed buying, selling, and

leasing prices which are not realistic. One of the routes is

shown to indicate how frequency patterns can change throughout

the period. The route has roughly 16 flights/day on the

average for each year-, with larger sized aircraft being

introduced as demand grows.

The decomposition technique required 10 iterations for

this problem with the optimal value available on iteration 6.

The subproblem took 221 simplex steps initially, a few dozen

steps over the first two iterations, and no more than 9 simplex

steps were needed over the remaining iterations. The master

problem required 17 steps on the first two iterations, and less

than 6 on the next two, and only one step on the remaining

iterations.



Table 5 - Tech Airways Fleet Planning Constraints

Type Fleet PP Buying SP Selling LP Leases

Size $/day Constraints, BU $/day Constraints, SU $/day Year 1, 2, 3

Year 1, 2, 3 Year 1, 2, 3

00, , 0 .

5, 5, 

5, 5, v

0, 0, 0

600

700

1000

2000

L _______ 1 -_________________ I

5--5 0

8 -8 ---8

5-5 --- 5

0 1 --a1

20

40

15

DC-9

B-727

B-707

DC-10

800

900

1500

2500

on, Io, 0

5, 5, 0

5, 5, 0

5, 5, 5

400

500

800

1800



Table 6 - Fleet Planning Results

6.1 Aircraft Acquisition Program

Initial Year 1 2 3

Fleet b s 1 b s 1 b s

DC-9 20 7.3

B-727 40 5 5

B-707 15 5 5 5

DC-10 0 5 5 1 5

6.2 Typical Route Frequency Assignment

Route 3-9 Average Flights/day

Year 1 2 3

DC-9 6.7 0 0

B-727 9.3 15.4 13.3

B-707 0 0 0

DC-10 0 .7 2.7
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4.0 Dispatching Models - (DP)

In the Fleet Assignment and Planning models, time of day

did not enter as a problem variable. We now introduce it in

the simplest way. Dispatching models are concerned with problems

of determining an optimal time pattern for departures at a

single station and along a single route.

In the schedule construction process, one may have

determined an optimal frequency pattern for the system, and the

next step is to find a good set of times for dispatching n
pq

flights on route pq. If this is done route by route without

any regard for network considerations, an "initial timetable"

is constructed. This step is generally performed manually

although a number of initial timetable generators have been

coded. The dispatching models pose some optimization problems

which can be solved (generally using dynamic programming), and

which may be useful in such generators.

As basic input data for all models, a time of day variation

in demand P (t) is assumed known. This may be viewed as the
pq

arrival distribution at the station of passengers for a non-

reservation system, or as the latent time distribution of

demand in the absence of any fixed timetable. Traffic for

any scheduled service can be generated from this distribution

using various assumptions, eg. all demand arrives and awaits

the next schedule time, all demand is attracted to the nearest

scheduled service, etc. A loss in demand may be incorporated as

a function of waiting time for service. All of these considerations

effectively become a traffic forecasting model for the route

as a function of the dispatch schedule and its level of service.



Competitive services could also be assumed, in which case

a "market share" traffic model would be necessary. The

weakness of dispatching models lies in the lack of good

analytical traffic models for the various airline situations

which exist in the real world. If such models do not

exist, then human judgement will be applied in determining

good service times for each route. The existence of methods

to select a good set of service times given various con-

straints creates a need for research into developing good

traffic forecasting and market share models as a function of

time of day schedule patterns.



4.1 Model D-1 Minimum Social Cost (DP)

4.1.1 Problem Statement

Given a time of day distribution P (t) for non-
pq

stop service on route pq, find the number of dispatches and

their daily pattern which minimizes a weighted sum of costs

for operating a dispatch and passenger waiting time.

4.1.2 Model Formulation

The associated network for the dynamic programming

formulation of this model is showA in Figure 8. The stage

variable is time, t, and the single state variable, y, is the

number of passengers waiting for service at time t. The

decisions at almost every state node are "dispatch" or "no-

dispatch" and are represented by the arcs of the network.

The "no-dispatch" arcs go from a state y at time t

to a state (y + pt) at time t + 1, where pt is the number of

passengers due to arrive in interval (t, t + 1) determined from

P (t). Since pt may be predetermined, the network can be

preconstructed, and is shown for constant pt in Figure 8. The

cost of a "no dispatch" arc can also be precalculated. If it is

to be a linear function of passenger waiting time, it takes

the form

C.. = K(y + hp). A t where K = $/minute
13 t

The 'Uispatch' arcs go from state y, to the greater of y = 0,

or y = y-Sa for a dispatch at time t. The arc cost is given

as DC , an operating cost for a dispatch.

If the network is preconstructed, the problem is simply

a least cost path problem from state (0,0) to state (0,T).
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State Variable,
=Waiting Passengers

Dispatch Times

Vehicle Capacity = 4

0 I 2 3 4 5 6
Stage Variable, t = time

FIG. 8 NETWORK FOR DISPATCHING PROBLEM



4.1.3 Problem Size

State Space - If dynamic programming is used, the dom-

inant storage space requirement is a high speed memory space for

twice the number of nodes at a given stage. This is N =2P
H max

where Pmax is the maximum number of passengers allowed to be

waiting. There will be N =T.P nodes in the associated
h max

network where T is the maximum stage value,and secondary stor-

age of at least this size must be provided.

Arcs - There are generally two arcs for every node

(except for the nodes y = 0, y = P ). A computation time can
max

be associated with each arc.

eg. If we use 5 minute intervals between 6 am. and 12 pm.

T = 216, and if Pmax = 100 passengers, there are 21,600 nodes

and 43,200 arcs in the preconstructed network of figure 8.

Dynamic programming would require at least 21,600 storage

spaces to determine the optimal path. The high speed memory

requirement is only 200.

4.1.4 Comments

There are several extensions to this model where the

delay cost becomes non-linear, more than one vehicle is dis-

patched at a given time, different kinds of vehicles and

dispatching costs exist, a line of stations is collapsed into

a collective P .. for dispatching along the line, etc.
pq q2

See reference 1 of the dispatching model references.

The model effectively assumes an infinite supply of

different types of vehicles at p. It ignores the cost of owning

the vehicle, or the arrival of vehicles at p during the day.

It assumes a fixed demand independent of the number or pattern

of dispatches, and that passengers will wait for the next

available seat.
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4.2 Model D-2 Least Passenger Delay for n Dispatches

4.2.1 Problem Statement

Given a time of day demand distribution P (t)
pq

for a non-stop route pq find the daily pattern of n dispatch

times which minimize passenger waiting time.

4.2.2 Model Formulation

The model can be formulated exactly as D-l,

and a parametric or Lagrange variable added to the dispatch

cost. By parametrically controlling this variable, the

number of dispatches in D-1 can be controlled, and a few

iterations will normally give exactly n dispatches.

However, it is shown in reference 3 that the

optimum minimum waiting time distribution is a unique

function of the first two dispatch times. An optimum dis-

patch pattern for n dispatches given an initial dispatch

time can quickly be found by varying the second dispatch

time until the n+1 dispatch occurs at the initial time of

the next day's cycle. Then the initial dispatch time can

be varied to find the optimal dispatching pattern. This

computational technique is faster than dynamic programming

but is less flexible in considering more than one vehicle,

vehicle capacities, etc.

4.2.3 Comments

This model does create a good pattern of dis-

patching if exactly n dispatches are desired, and has

been used in generating initial timetables given the fre-

quency pattern for a network. At high frequencies of daily

dispatch, it is not significantly different from "equal

load" dispatching patterns.
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Demands AB, AC, BC
Dispatch Routings AB, AC, BC, ABC

Y, = Pax waiti
for AC

Dispatch
BC

Vehicle capacity = 3

Dispatch
AC

y2 = Pax waiting
for BC

y3 = Pax waiting for AB

FIG. 9 STATE SPACE DIAGRAM FOR MULTI-STOP DISPATCHING
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4.3 Model D-3 Maximum Income (DP)

4.3.1 Problem Statement

Given a time of day distribution P (t,w) where the

traffic carried is a function of time of day and passenger wait

for service, w, find the number and daily pattern of dispatches

which maximizes operator income.

4.3.2 Model Formulation

The passenger wait for service can be defined as a

function of Wd, the time from the previous dispatch on the

tree path. This is a "path" variable in dynamic programming

and a id can be associated with every node in the tree. If

P (t,w) is known, and r d is given for nodes in the tree,

the number of people waiting to be served at t+1 can be computed.

This determines the j node for a "no-dispatch" arc. Here the

network cannot be preconstructed since the "no-dispatch" arcs

are a function of a path variable, IW d.
The costs of "no-dispatch" arcs are all zero. For

"dispatch" arcs, the cost is r = passenger revenue - dispatch

cost = system income for the dispatch.

4.3.3 Problem Size

Here, IT d must be known for every node at a given

stage, so there must be at least 4Pmax storage spaces of high

speed memory. For our example, this is still only 400 spaces.

4.3.4 Comments

For the operator, the difficult task is correctly

defining P (t,w) for a market pq where alternative nodes
pq

or competitive services may be offered. This is a micro

traffic forecasting (or market share) model which should be



able to predict for all daily patterns, competitive services,

etc. what the traffic load will be on every dispatch. Here

it is assumed that factors other than passenger waiting time

canbe ignored in such a model, and for airline scheduling

this is not realistic. For example, on some routes arrival

times rather than departure times or wait for service may

dominate the determination of P . However, if the model
pq

for P is known, it should be possible to incorporate it
pq

in a dynamic programming model such as D-3.
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4.4.1 Problem Statement

Given time of day demand distributions between

points i and j on a route r from p to q, and a set of possible

dispatch routings, determine the number and pattern for

every dispatch routing which minimizes a weighted sum of

dispatching and passenger waiting costs.

4.4.2 Model Formulation

For every station p. we have a set of demands P (t)

for stations q downstream of p. For every such demand, a

dimension is added to the state space, which causes the state

space to increase very rapidly. The stage variable can be taken

as time for the first station, and all other P (t) translated
pq

to the equivalent time using interstation travel times.

For every dimension, there is a dispatch set of

arcs similar to previous dispatch arcs. However, now one may

use a multi-dimensional dispatch routing satisfying more than

one demand. These "dispatch" arcs, go from a node in the

state space back towards y.=O at time t such that on-board

loads do not exceed capacity. Figure10 shows a 3 dimensional

state space at a given time t, and shows a few of the possible

dispatch arcs. Simple priority rules for loading a dispatch

may reduce the number of dispatch arcs which are possible;

eg. all possible passengers at a given station are picked up

giving them priority over downstream passengers.

4.4.3 Problem Size

For an m-stop route, the number of demands which can

be considered is
n = (m+2) (m+l)

2

4.4 Model D-4 Minimum Social Cost on a Multi-Stop Route (DP)



and the number of dispatch routings which can be considered is

m
r = 4 (p+2) (p+l)

p=l 2

State Space - The dominant requirement for high speed

memory is twice the number of nodes at a given stage which
n n

now becomes N =2(P ) . Secondary storage of size N =T.(P )
H max n max

must also be provided.

Arcs - There are at least r branches for every node,
n

so the number of arcs for the problem is r.T.(Pmax )

eg. for the simple route of figure 9 and the example for model

D-1, high speed storage requires 2x106 spaces, secondary

storage 2.16x10 spaces and there are at least 8.64x108

computations to be performed on the arcs. This high speed

memory requirement is beyond present computers for this very

minimal extension to a multistop route.

4.4.4 Comments

Since the state space size increases exponentially

with the number of stops on a multi-stop route, and even for

a one-stop route becomes computationally infeasible, this

approach is not practical. The model is included to demonstrate

this fact. If one attempts to go to a network where a number

of multi-stop routes are available between city pairs, the

model is even more impractical.

The combinatorial complexity of this model which

arises when one attempts to go to a network is due to

every time of day being considered feasible for dispatching
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a vehicle on every possible route through the station. Both

the optimal number and the pattern of dispatches are determined.

If the number of dispatches desired on a given route is

known (say, by results from a Fleet Assignment model), then

a range of feasible departure times for every service can

be specified. Rather than attempt to construct a complete

timetable from zero specifications, such an approach allows

a partial specification of the timetable as input, and the

best timetable is then selected from this much smaller

combinatorial set. This approach is described later by the

"multi-departure" fleet routing models.
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4.5 Example - Least Delay for n Dispatches,D-2

An example of least passenger delay dispatching is shown

using a P (t) corresponding to a weekly average of daily

demand on the Eastern Airlines Shuttle. The distribution is

given by a histogram of average hourly traffic, and flights

can be dispatched at 6 minute intervals. Passengers are

assumed to arrive and wait for the next service.

There are three dispatching patterns shown in figure 10.

The first is the full load pattern, where a dispatch occurs

as soon as the vehicle is full. The average wait for this

case is 0.74 hours, and 12 dispatches are made.

The second uses 18 dispatches at a 66% load factor and

reduces the average wait to 0.49 hours. The dispatching

pattern is shown, with the height of the bars representing

the on board load.

The third pattern uses 28 dispatches at a 44% load

factor and reduces the average wait to 0.34 hours. Again the

time pattern for the 28 dispatches is shown with the on board

loads.
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5.0 Vehicle Routing Models - (DP)

In the previous models, routing constraints for vehicles

have not been applied. We introduce them in this section which

considers the problems of routing individual vehicles operating

non-stop services on a given network structure. Generally,

it is assumed that a description of scheduled services S, or

the demand distribution P (t) is known. The models propose

to find an optimal set of routings for every individual vehicle

in the fleet.

Since routing constraints are applied, the number of air-

craft in the system becomes an explicit variable. In the Fleet

Assignment and Planning models, the critical assumption of

daily utilization was made in order to relate number of aircraft to

usage in terms of block hours per cycle. Here, the number of

aircraft is known, and the actual utilization of each aircraft,

and fleet average utilization are given as output.

Although these models preceded the Dispatching models, they

may be regarded as extensions of them onto the network. The

solution technique is again dynamic programming and once again,

computational problems arise as the size of the state space

increases as a power of the number of vehicles in the fleet.

As a result, a sequential optimization routine has been sub-

stituted in practice which leads to a set of "good" but not

necessarily optimal set of routings for the fleet.

Only two models of the vehicle routing class are described

here. There are many variations possible some of which have

been described in the literature. Here it is assumed that S

is given rather than P in order to relate these models

to the Fleet Routing models described later.



Maximum Income, Single Aircraft

5.1.1 Problem Statement

Given a schedule of possible non-stop services, S

with an income for each service, find the routing for a single

aircraft which maximizes its income.

5.1.2 Model Formulation

The state space diagram for the dynamic programming

formulation of this problem is shown in Figure 11. A node now

represents a space-time position for the aircraft. The diagram

is essentially a route map with added "route" nodes at stage

increment, 4 t, intervals along each non-stop route. For

every route node, the aircraft is automatically transferred

to the next node as the stage variable is incremented. There

is no decision at these nodes.

At station nodes,there may be a decision to "dis-

patch" a flight if S indicates there is a service from the

station at that time. Such station nodes are called "event"

nodes (station arrival nodes are also event nodes), and the arc

representing the decision to dispatch is called the "dispatch"

arc. The cost or value of dispatch arcs is the given income for

the service. All other arcs have zero cost.

By replicating the state space diagram for every

time t, we form the network associated with the dynamic program.

The existence of a given schedule, S allows this replication to

be simplified by omitting routes from non-departure nodes at a

station, and the result is essentially a schedule map with a

great many added route nodes. This is shown in Figure 12, and

has been used in some dynamic programming formulations.
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FIG. 12 DYNAMIC PROGRAMMING NETWORK FOR AIRCRAFT ROUTING



However, it is possible to redefine the state space

such that an aircraft is k units of stage away from a given

station. Thus, two aircraft arriving at a station at the

same time but along different routes are lumped together in

the same state. Figure 13 shows the state space diagram for this

definition. A single inbound path is established for each

station and dispatch arcs are joined to this path at appro-

priate times. This diagram is again replicated for every stage.

The problem is now a shortest path problem on the

associated networks. Figure 12 shows the origin, 0, of this

path connected to all stations at the earliest event node, and

the destination, D, connected to all latest event nodes.

5.1.3 Problem Size

State Space - The number of nodes in the state space

diagrams depends on the number of stations, and the total length

of the route map measured in stage increments. The reduced

state diagram has a similar dependency upon problem structure.

If L is taken as the node length of the longest route, an upper

bound on the number of nodes is (IQI . L) where IQI is the

number of stations. The high-speed memory requirement is

therefore NH 4 2 JQI . L.

The total number of nodes in the associated network

is NL k T. 121. L where T is the number of stage increments.

This is low-speed memory requirement.

Arcs - There is one arc for every node in the network

except for the event nodes which also have a dispatch arc. For

the reduced state space, there would be less than NL + ISI arcs.
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FIG. 13 REDUCED STATE SPACE DIAGRAM FOR VEHICLE ROUTING



eg. for 20 cities, and 500 services in S of longest length

50, there would be a high speed memory requirement for

2(20 x 50) = 2000. If the problem were continued over 300

stages, the secondary memory requirement would be 3 x 105

spaces. Computation would be done on (3 x 105 + 500) arcs.

5.1.4 Comments.

The dynamic programming formulation is an extremely

inefficient formulation for this problem. It is much more

efficiently solved as a least cost path problem on a schedule

map which eliminates all non-event nodes and their arcs.

Most formulations have ignored station balance con-

straints. The time dimension should be continued over several

cycles of the schedule until the aircraft overnights back at

its origin station. Then there will be several aircraft on

this routing cycle with a sequence of individual aircraft over-

nighting at each station on the cycle.

Path constraints such as flying time between over-

nights at maintenance bases, interconnections between flight

segments can be incorporated into this formulation. These con-

straints are the only reason for this formulation of the problem,

since otherwise the least cost path methods may be used.
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5.2 Model AR-2 Maximum Income, Multi-Aircraft

5.2.1 Problem Statement

Given a schedule of possible services, S, with an

income for each service, find the set of individual aircraft

routings which maximizes system income.

5.2.2 Model Formulation

Extending the previous formulation to include more

than one aircraft adds a new dimension to the state space

diagram for each additional aircraft. Thus, for every node

in the first aircraft's state diagram, a complete state space

diagram exists for describing the position of the second

aircraft.

Now, each aircraft can be a different type of vehicle

with different capacity costs and speeds, and more than one

vehicle can be considered for dispatch on a given service. A

fixed number of aircraft can be specified, or by using a given

cycle ownership cost, the most profitable number of aircraft

can be determined. Station balance constraints should be applied

for a cyclic schedule.

5.2.3 Problem Size

State Space - The high speed memory requirement now

becomes that required for a single aircraft raised to the

power A , where A' is the maximum number of aircraft considered.

If we use the upper bound estimate for the reduced state space

from model AR-1, the high speed memory requirement is roughly

N i 2 ( Q . L)A
H -M



The low speed memory requirement for a stage length T

becomes

N T (JQJ. L)A
L -1

The number of arcs on which computations are done becomes

C 4 NL + IS . A

eg. for the previous example of 20 cities, 500 services,

longest length of trip = 50, 300 stages, and now considering

10 vehicles

N . 2 (1000)10 = 2 x 1030
H 11

10 32
N 4 300 (1000) = 3 x 10
L

N 1 N + 5000 = 3 x 1032
CL

This is clearly computationally infeasible even if just

two aircraft were used instead of ten.

5.2.4 Comments

The model can be extended such that P (t), etc.
pq

exists for every route as in the dispatching models. It is

then possible to extend any of the dispatching models on to a

given route map, and open up every time of day for a possible

dispatch on a route.

However, as with the attempt to extend the dispatching

models to multi-stop services, the attempt to extend them to more

than one vehicle is more conceptual than practical because of the

exponential growth of the size of the state space. The key



requirement here is the identification of the best routing for

individual vehicles. If that is dropped, and we consider routing

a fleet of similar vehicles, this same problem may be posed as

a "fleet routing" problem of the next section.

In the absence of computational feasibility, a number

of approximate computation methods have been used. The air-

craft manufacturers and airlines have adopted a sequential method

of solving model AR-1, then removing the single aircraft's

optimal services or demand from the problem, and repeating for

every aircraft until either aircraft or profitable routings

are exhausted. Computation times seem to be measured in hours

for present airline systems. This sequential process is not

optimal, but a theoretical iterative improvement process does

exist (reference 3). As well, reference 5 suggests an iterative

approximate procedure. Unless there is a real reason for

identifying the routing of each individual vehicle, such optimal

seeking procedures are unprofitable in view of the models of

the next section.
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5.3 Aircraft Routing Example

A simple example of an aircraft routing problem is des-

cribed in reference 3. It consists of 47 individual routings

on a network given by Figure 14. Data on aircraft, flight

services, their values, ferry flights, etc. is described

in reference 3. Computation of these 47 routings apparently

required 3 minutes on a Burroughs B-5500. As each routing

was found, its services were removed from the problem before

the best routing for the next aircraft was computed. The

process is therefore sequential, and can be sub-optimal.

Figure 15 shows the variation from the optimal

results for this example. Since the units of income are

arbitrary, the best measure of optimality is the difference in

numbers of aircraft required for a given income. This was as

much as three aircraft, and at the end, when all of the pro-

fitable flights are flown, and the system income only differs

by the cost of ferry flights, a higher income can be gained

with 45 aircraft than this sequential routine achieves with

47 aircraft.
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AIRPORTS

I SAN FRANCISCO 6 WASHINGTON
2 CHICAGO 7 DETROIT
3 NEW YORK 8 SEATTLE
4 LOS ANGELES 9 DENVER
5 MIAMI 10 KANSAS CITY

FIG. 14 ROUTE MAP, VEHICLE ROUTING EXAMPLE
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6.0 Fleet Routing Models

Fleet routing models consider every vehicle in the

fleet to be essentially similar, and find an optimal routing

pattern for the entire fleet without identifying individual

aircraft. When two or more aircraft are available at a sta-

tion to take a given service, the aircraft used is not ex-

plicitly identified by the solution. Given an optimal fleet

routing, individual aircraft routings may later be construc-

ted, and there exist a very large number of such decompositions

of the optimal fleet routing. This large number of decomposed

sets of routings caused the combinatorial complexity of model

AR-2. It also allows any constraints or individual aircraft

routings arising from turnaround times, maintenance, etc. to

be satisfied after the optimal fleet routing has been found.

The models of the next few sections all assume a cyclic

timetable TT consisting of a set of possible flight services

S between stations. This data is used to construct a "sched-

ule map" (see Figure 2). All of the fleet routing models can

be posed as network flow problems on such a network where the

circulation flows must be integer.

The schedule map consists of vertical time lines for

each station consisting of "ground" arcs which join event

nodes at the station. An "overnight" or "cycle" arc joins

the last event node of the cycle back to the earliest event

node at that station. Flight services are represented by

"flight" or "service", or "dispatch" arcs leaving a station

i at time tdig, and arriving at a time taij or arriving at
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a "ready" time trij which is the first time at which an

aircraft for this service could be ready to depart.

For all routing models, the network flow must be

integer valued. It is not meaningful to have 1/3 of an

aircraft follow one branch while the remainder continues

on, and rounding such values does not lead to optimal or

even feasible routings. The routing problems are combina-

torial programming problems, and require special computa-

tional techniques, which tend to be problem dependent, and

even dependent upon the size of a given problem. The fleet

routing models have been grouped according to computational

techniques.

The first group are single fleet, fixed timetable models

for which efficient network flow algorithms like the Out of

Kilter method are applicable. The second and third groups

add auxiliary constraints called "bundle" constraints to

the network flow problem, and require a variety of appropriate

computational techniques from present day combinatorial pro-

gramming. The fourth group of models are the multi-fleet

models where copies of the schedule map are repeated for

each fleet of a different type of aircraft, with auxiliary

constraints on network flows in the individual copies.

While most of the airline fleet routing models are

several years old, they have not received much attention

in the literature. Apart from the first group for which

large scale problems can be easily solved, there has not

been any successful computational techniques until the

last few years. Now these models have a variety of tech-

niques to choose from, and the question of which technique

is best seems to be dependent on the particular problem and

its size.
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6.1 Single Fleet, Fixed Timetable Models - (OKF)

This section deals with models which can be solved using

the Out of Kilter algorithm of network flow theory. This

algorithm finds a least cost network circulation flow on a

network subject to bounds on arc flow. It is briefly des-

cribed in Section 1.

These models assume that a fleet of a single type of

vehicle is to be routed on a schedule map. The flow on a

given arc represents the number of aircraft using the arc

and must be integer valued. A fixed timetable of services

S is given, and the value of each service in terms of net

income may be known. A known minimum turnaround time is

ad'ded to each flight time to calculate a tr.. "ready to
1J

depart" time as the arrival event node in the schedule map.

Thus, a network flow into a station can immediately depart,

and this case would represent an aircraft arriving and

making a minimum time connection to a departure service.

Network flow in ground arcs therefore represents spare

ground time in making connections.

The first model gives a minimum fleet size and its

fleet routing to cover the schedule. As indicated in refer-

ence 6, this is a trivial counting problem, but is given

here as a means of introducing fleet routing models. The

second model determines maximum income, the associated ser-

vices flown and fleet routings, and the number of aircraft

which can be profitably flown. If this fleet size exceeds

the available fleet, the third model shows how the OKF

routine may be parametrically controlled to produce the

most profitable set of routings given A' aircraft. The
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last model shows a network structure which can be used to

include one-stop flight itineraries in the problem and still

use the OKF algorithm.
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6.1.1 Model FR-1 Minimum Fleet Size (OKF)

6.1.1.1 Problem Statement

Given a fixed schedule of non-stop services which

must be flown by a fleet of aircraft of similar type, what

is the minimal fleet size required and the fleet routing?

6.1.1.2 Model Formulation

A schedule map network is constructed using the

set of services S, their departure times at every station,

td.. and calculating the "ready" times, tr.. for given min-

imum turnaround times. Let the flow in the network, x, re-

present the number of aircraft on any arc of the network.

Flight Service Arcs, S - for every service in S construct

a flight service arc leaving station i at time td.., and

becoming ready to depart at station j at time tr...
1D

Put U.. 1, so only 1 aircraft flies the service
J

1.. =01
IJ

Ground Arcs, G - for every service two ground arcs are

usually constructed in the schedule map. The number of

ground arcs can be greatly reduced by collapsing the string

of successive event nodes at a station onto all arrival

nodes which follow a departure node.

Put u.. =O
JJ

l.. 0
1J

c.. =0
1J
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Cycle Arcs, C - from the last event node at every station

a cycle arc returns the overnight aircraft to the first

event node at that station

Put u.. =00
J

1.. =0
IJ

c.. = 1, so that overnight aircraft are counted.

Objective Function,Z - since the only arcs which have a

cost are the cycle arcs, Z will take on the value of the

fleet size. We solve for a minimum

Z = min c.. x. c.. x..
opt fA 13 i C 13 1

This assumes that there is some period of each night

when the entire fleet is scheduled to be on the ground. This

is generally true for domestic short haul systems. Otherwise,

a particular "counting" arc must be constructed corresponding

to some given time like 0001Z (Greenwich time) and inserted

into every flight still airborne at that time.

6.1.1.3 Problem Size

As indicated in the brief description of a schedule

map in the section giving definitions and symbols,

AI = no. of arcs ( 31S I + 21CI

INJ = no. of nodes e 21SI + 21C1

This assumes the trick of collapsing ground arcs has not

been used.

e.g. Suppose we have 20 cities, 200 city pairs with an average

of 5 flight/'day, or 1000 services.
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JAI 4 3000 + 40 = 3040

INI 4 2000 + 40 = 2040

This is well within the present coding capabilities given

in section 1.

6.1.1.4 Comments

Since every flight must be flown, one can insert

flow into the service arcs "a priori", and compute the mini-

mal flow in the loop of ground arcs and cycle arc. This process

is the "counting" process of reference 6, and it provides a

method for finding a good initial, feasible network flow for

any of the routing models. For this model, it gives the op-

timal answer, and the corresponding fleet routing without using

OKF. For other models, it greatly reduces the running time

for OKF, but, of course, increases the running time for the

preprocessor coding.

This model clearly places time of day routing constraints

on aircraft in the fleet. The station balance constraints

which ensured that the number of services flown into and out

of a station were in balance for the Fleet Assignment models,

are implicitly handled by the schedule map construction. For

this model where every service is flown, the number of service

arcs into a station must equal the number outbound, and this

forms a useful check on network construction. In later models,

the node conservation constraints ensure that the number of

arrivals equals the number of departures for any fleet routing.
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6.1.2 Model FR-2 Maximum Income (OKF)

6.1.2.1 Problem Statement

Given a schedule of non-stop services, an associated

income for each service, and a cycle ownership cost for an

aircraft, what set of services should be flown for maximum

system income?

6.1.2.2 Model Formulation

A schedule map is constructed as in model FR-1, with

x representing the fleet routing network flow.

Flight Service Arcs, S - every flight arc now represents a

possible service for a city pair, time of day market (e.g., a

morning service A to B, or a 9:00 a.m. departure from A to B).

A forecast is made for the number of passengers in that mar-

ket given the expected total daily frequency of service from

the system, and the level of competitive services. Effective-

ly, it is assumed that the traffic for a given service is in-

dependent of the selection of other services in that city pair

market since the expected daily frequency is not guaranteed

by this model (See model FR-2 DC5). From the traffic forecast,

net revenue, r., for the flight (e.g., traffic x fares, less

indirect costs for boarding, ticketing, reservations) may be

estimated in dollars. A marginal direct operating cost, DC..,

for this type of vehicle (e.g. excluding ownership, or other

fixed costs) can be assigned for every service.
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Then, for all arcs in S

Put U. . = 1
ILJ

c.. = DC.. -r..
13 1J 1J

1. . = 0
1J

Here, the arc cost c. . for the OKF formulation is the
1J

negative of net income, I... Effectively, the negative sign
1J

changes the OKF minimization to a maximization of total system

income.

Ground arcs, G

Put u. .=O
1]

c. .
1J

= 0

1. . = 0
1J

Cycle Arcs, C

LetOC be the daily or cycle ownership costs for this type

of vehicle. As each aircraft traverses the cycle arc, it pays

its daily cost.

Put u.. = C0
1J

c.. = OC
ILJ

1.. = overnight maintenance requirements
for each station.
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Objective Function

Min k-Z = (DC..
S

- r. .) - x. . +oc * x
J 1J 1lJ j

= Max tZ = (r. - DC..) x..
S iJ 1J 1L
S

- OC- A3.

where A = x. . = fleet size

C

Z = maximum income for system - dollars/cycle

x..
-- J

= optimal fleet routing

x.. = 1, service has been selected
.1J

x.. = 0, service is not flown

6.1.2.3 Problem Size

The size is identical to model FR-l.

6.1.2.4 Comments

The optimal fleet routing solution is given by the network

circulation, x.., and is such that no additional aircraft can

be profitably routed. The solution may be decomposed into

individual aircraft routings in many ways, but no cycle can

be found which is not profitable. The solution represents a

true optimal routing given A vehicles, and is equivalent to the
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dynamic programming formulation, model AR-2.

Additional information about the optimal solution is

available from the cU.. values. They indicate how Z will
1J

change as x.. is changed. For example, if service arc ij
1J

is in the solution, with x.. = 1 = u.., c.. 0, then c..
13 1J 1J J

represents the marginal value of the service to the system

given the present solution. It is a lower bound on the in-

come loss if x.. were forced to zero by putting u.. = 0, and

the next best solution were found. Similarly, for services

not in solution, the F.. > 0 values represent a lower bound
1J

on the income loss if we insisted that this service be flown

by putting 1.. = 1.
J

Because of the schedule map structure, and the daily

ownership costs, services which have a positive cost, (DC. .-r. .
IJ LJ

or in other words seem to be "income loss" flights should be

included in S if this loss is less than OC. It is possible

because of their position in the schedule map, that such a

flight may act as a "ferry" flight, saving an additional air-

craft for the fleet. This "income loss" service can then be

routed as part of a profitable daily cycle for the fleet, with

a c.. value for the arc which becomes negative indicating the
1J

true marginal value of the service to the system.

If we insist on l.. aircraft overnight at given mainte-
1J

nance stations, a positive c.. indicates the marginal daily
1J

cost of this requirement for the last vehicle required. This

daily cost can be weighed against the costs of performing mainte-

nance elsewhere in the system.
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The model is similar to FA-3 in that income is being

maximized, and traffic or revenue is a variable in the

problem. Its formulation thus gives a representation of

constraints 1) from the Fleet Assignment models. The station

balance constraints 3), and routing constraints 9) are ob-

viously part of this routing model. Most of the remaining

constraints are incorporated in later models.

For large systems, a preprocessor program should be

used to construct a reduced schedule map input for OKF. It

is generally advantageous to put flow in every profitable

service arc, and compute the resulting station flows in the

preprocessor. This initial circulation flow greatly reduces

the number of arcs which are "out of kilter", and thereby

reduces OKF computation times.

Normally, a set of possible services S corresponding to an

average weekday cycle are used as input. Weekend cycles may be

sufficiently different that different S sets may be desirable.

The cycle period can represent a week or a sequence of dissi-

milar days; e.g., an average weekday S can be followed by a

Saturday and Sunday S before the cycle arcs return the fleet

to the weekday services. The value of the services, and rental

costs have to be appropriately chosen. If the number of air-

craft overnighting at each station remained identical, each S

could be solved separately. If it changes then Friday and

Monday transition schedules may be different from the normal

weekday schedule. In this case, one may only be able to

collapse Tuesday, Wednesday, Thursday into one common daily

schedule, and publish varying schedules for Friday, Saturday,

Sunday and Monday services. The weekly cycle variation will

determine how this problem is approached.
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6.1.3 Model FR-3 Maximum Income for a Given Fleet Size

6.1.3.1 Problem Statement

Given a schedule of possible flight services S, an

associated income for each service, and a cycle ownership

cost for an aircraft, what set of services should be flown

to maximize income such that exactly A' vehicles are used?

6.1.3.2 Model Formulation

This is model FR-2 with a single additional constraint,

x. 1 = A', or A - A' =0

This problem may be solved in a number of ways. The

simplest seems to be an iterative OKF solution of model

FR-2 using a Lagrange multiplier technique. We form a new

objective function by adjoining the new constraint:

S' = S - IT- (A-A')

At an optimum for 5', B' = Z

A A'

The model is now formulated with the arcs S , G , C as in

model FR-2, except that the cost on the cycle arcs, C, becomes:

c.. =OC +'W
1J
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For a given I value, the new OKF problem is solved

to obtain

= l.A = IT. ;:x..
C

where A is the number of aircraft used in the new solution.

A solution which uses exactly A' aircraft can be found by

iteratively solving the OKF problem using judicious r values.

The following formula for choosing the I values is

suggested.

Define: = 0 and solve FR-2 for ZI, A .

0 1,and A =0
A 0

A1

Then i (i-1 i-2 ). (A. 1 - A )
Then = (A. i- A. ) ~

z - 1.-1

For example, IT= 0 + (0-A1 ) . (A1 -A') = (A -A') .
A

A10 - A1  1

Using T produces a solution B2' A2'

Then, = + (1' - I)
3 2 2 1 (A2-A')

1 2(A1-A2

= A2-A' 1.

A1-A2
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This process should converge fairly rapidly to a solu-

tion Z,,A','. The iterative OKKF solutions are very fast

since only |I arcs are being changed, and therefore could

possibly be out of kilter for the next solution.

6.1.3.3 Problem Size

The size is identical to Model FR-l.

6.1.3.4 Comments

The new constraint is the fleet availability constraint

2) from previous models since unless the number of aircraft

available is less than the optimal number, this model would

not be useful and Model FR-2 would be used.

This model only differs from FR-2 in the addition of a

toll or fee, 1 to the cycle arcs. Asfis increased, the

apparent daily ownership cost for each aircraft increases, and

every aircraft in the fleet must earn more thanOC+IT to re-

main profitably routed. As T increases, aircraft and their

routings drop out of the solution until ireaches a value where

no aircraft can be profitably used. This value of If would be
the net income of the single aircraft optimally routed as in

Model AR-I.

The relationship of A & Z to the parameter T is illus-

trated by figure 16. As I is increased, both A and Z decrease.

Actually since A is discrete, the A-Z curve is stepwise dis-

continuous at various points where 1 or more aircraft may

drop out of the optimal fleet routing. At these discontinuous

points, the value of t' represents the marginal income to the

system for operating the aircraft which are being dropped.
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i.e. h =- at points where A changes.&A

A

The capability of this model changes the strategy of

listing the services for the schedule map. Now one should

include every possible service for which an independent es-

timate of the net income can be estimated, and should not

be guided by selecting the best n service times for the

city pair. All reasonable services should be included in

every market since the model will be selecting the best set

of services for an optimal routing of a fleet of A' vehicles.

Given this routing, the value of IT indicates the additional

income for adding one more aircraft to the system given the

remaining unflown set of market opportunities. This appli-

cation has been successfully used in airline schedule plan-

ning since 1962.

The model also has a very direct application to the

problem of real time schedule control. Here the schedule map

is constructed from the actual timetable, and real time data

from the reservations system is used to update the traffic

and income values for each service. As described in reference 1

of section 1, various modifications of the network can be applied

to represent aircraft breakdowns, airport closures, flight can-

cellations, etc. In a matter of seconds, the model gives the

schedule controller the most economic decisions for keeping

the system operating, and returning it to normal operation.
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6.1.3.5 Model FR-3 as a Decomposition Model

It is instructive in view of later models to consider

solving model FR-3 by using the Dantzig-Wolfe decomposition.

In this case the single additional constraint is made part

of the master problem. Let \k be the proportion of sub-

problem solution k used in the master solutions. Then the

model is formulated as:

Master Problem - find the optimal mix of subproblem

solutions such that exactly A' aircraft are used.

Objective Function

Maximize Z= *,\k Zk
k

where Z k = value of objective function for kth sub-

problem

Constraints Dual Variable

0) = 1 S
k

2) -kAk = A' "l
k k k k+1

where Ak x = aircraft used by kth subproblem solution.

C

The master problem has only 2 rows: the first assumes

that the subproblem solutions form a complete solution; the

second ensures that the solution uses exactly A' aircraft.
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Sub-Problem k - maximize system income for the modified

costs of iteration k.

Objective Function

Maximize Z = Zk -k-l - A

The subproblem may be solved on a network using OKF

since it is essentially Model FR-2. The same schedule map

is used, and similar to Model FR-3,the costs on all cycle

arcs become,

c.. = OC+T
13 k-1

For a given value of from the master problem, we
k k

obtain a solution Z , X , k for this subproblem where X

is an integer network flow. If this solution is useful

to the master problem, a new variable X k is created and

added to the master. The master is then solved to produce

a new IV value for the next subproblem solution. This process

is repeated until the optimal answer is obtained.

Now the master problem has exactly two equations or

constraints which means that only two variables can be non-

zero in any solution. They may or may not be the last two

variables ( k-1' k) generated. If they are, another itera-

tive formula for is generated, and we do not have to solve

the master problem as an LP.

ChooseWI such that Z = 0, A = 0

(, = 0 such that Zi, A1 are answers for Model FR-2
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From the master problem, we can solve for the dual vari-

ables, S2 and 2'

S + lT * A = Z
2 2 o o

S + * A = Z
2 2 1 1

Subtracting I:(A -A ) = Z - z
20 o 10 1

or I - -
2 A -A A

Zk- -Zk-
In general, k-l k-2

k Akl - Ak-2

which is the slope of the secant between points k-l and k-2

on the Z-A curve of figure 16. The shape of this curve may

be such that the best solution does not fall on the other

side of A' from the present solution. In this case, the two

variables in the LP solution will not be the last two genera-

ted, but a simple test can produce the proper interpolation

for computing Ir.

This iterative formula is different from the one suggested

for Model FR-3. The previous one seems to be preferable be-

cause of a faster convergence.
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FIG. 16 RELATIONSHIP OF 7r, A, AND Z, MODEL FR3
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6.1.4 Model FR-4 Maximum Income including Multi-Stop Flights

6.1.4.1 Problem Statement

In models FR-l,2,3 the set of arcs S represented non-stop

flight services with an estimate of the traffic on board the

flight segment ij. By appropriately adding a set of "multi

stop" arcs M to the network, it is possible to consider con-

necting non-stop flight segments together to form a multi-stop

flight. The problem statement "what set of services should be

flown, etc." is expanded to read "what set of non-stop ser-

vices should be flown, and how should they be combined into

multi-stop flights" etc.

6.1.4.2 Model Formulation

The arcs S, G, and C are given values as in model FR-2.

We add appropriate sets of "multi-stop" arcs Ml, M2 as follows.

The "One-Stop" Arc Ml

We now add arcs Ml to the network to allow consideration

of connecting certain S arcs together into a one-stop flight.

Figure 17a shows how two non-stop segments are bridged by a

one-stop arc. A node is placed on flight ij and flight jk

and a "one-stop" arc joins these two nodes.

This construction allows either ij or jk segments to be

operated as non-stop flights independently. Any previous ar-

rivals at j cannot use the attractive "one-stop" arc joining

the two flights. There are two zero cost arcs created for use

if the flights operate independently. If the flights are
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u= o
a c =0

ONE STOP ARC

U =I
C = cij+Cijk

cij

Cjk

cij= rij -DCj

cijk =rik
Cjk = rik - DCjk

FIG. 17a ADDING "ONE STOP" ARCS, Mi

TWO STOPARC (1>

+ cjk
I u

Cij

Cjk

+ Cijk+Cjkt+Cijke

C k-1

Cjkt= rj-g
Cijki= ri4

FIG. 17b ADDING " TWO STOP" ARCS,
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connected, the x..flow directly transfers to the x. flow
1J Jk

and receives an additional benefit of r. for doing so.

The "Two-Stop Arcs, M2

Figure 17b shows the network construction for a two-

stop flight combination. Here the two "one stop" arcs for

ij-jk, and jk-kl are bridged by an il "two stop" arc. Here

we can have 3 separate non-stop flights (ij, jk,kl) or two

one stops (ijk, jkl), or the two stop flight (ijkl). Unfor-

tunately, it is possible for the two stop flight (ijkl) and

non-stop flight (jk) to co-exist, so that an auxiliary or

"bundle" condition is necessary:

i.e. x +±x. + 1
ijkl jk

The existence of this type of auxiliary constraint places

this model with the next set of models which use other solu-

tion techniques.

However, if segment jk is not to be considered as part

of a service originating in j, the dispatch arc from j to

the multi-stop node can be omitted, and this auxiliary con-

dition dropped. In this case, the multi-stop service options

are (ijk), (ijk,kl), (kl), (ijkl), (ij), (ij,kl), or none of

them.

6.1.4.3 Problem Size

An additional node is required for every service arc

which may be considered for potential use as part of a multi-

stop flight. One or two stop arcs can be flown out of this
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node connecting to other similar nodes.

If we assume one half the flight services might be con-

sidered for multi-stop flights, and they average three possi-

ble connections, then for our previous example

No. of arcs 3040 + 3(500) = 4540

No. of nodes 4 2040 + 500 = 2540

6.1.4.4 Comments

The extension of model FR-2 to include multi-stop ser-

vices differs from the extension of FA-1 to model FA-2 in

that here the multi-stop flight itineraries are not prede-

termined. This model allows the optimization process to de-

cide about putting multi-stop flight segments together to

form a multi-stop flight itinerary.

If a multi-stop service is predetermined, then the net-

work representation should simply be an arc from the initial

departure to the final arrival time, and information should

be retained about intermediate station times.
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6.1.5 Fleet Routing Example - Tech Airways

An example of a fleet routing problem was constructed

using the B 727 frequency pattern for case 4 of the previous

Fleet Assignment example for Tech Airways. These 34 aircraft

were used on 144 daily non-stop services connecting 9 of the

10 cities. Using n results, and an assumed daily variation

in demand, optimal dispatching times were computed for each

route, thereby constructing an initial timetable of services

with a given load and revenue for each service. An appropri-

ate schedule map was then constructed by a preprocessor program

which clears the map of unnecessary ground arcs and nodes, and

which loads an initial circulation flow. Only 252 arcs and

107 nodes were used, and the OKF coding solved 8 fleet size

cases in less than 30 seconds.

The overall set of services flown for each case is too

lengthy to be completely shown. Figure 18 shows the variation

in system income as fleet size was reduced. The optimal fleet

size was 27 aircraft with 9.2 hrs/day average utilization and

8 services were not flown even though they were marginally

profitable. As fleet size is reduced, the best set of ser-

vices to be flown with the restricted fleet was determined.

A given service may be dropped, only to reenter a later solu-

tion because of its position relative to the flights being

flown in the later solution. This is indicated by Table 7

which shows the services operated on route 3-9, and 9-3 as the

fleet size was reduced. Notice that the routes dropped may be

more "profitable" than some of those retained. Also the service
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from 3-9 at 1851 is not flown on the first two solutions which

correspond to 27 and 24 aircraft, and yet it is part of all

subsequent solutions for lesser fleet sizes. Because of the

time of day routing constraints, the value of a service to

the system varies depending upon its position relative to

the complete set of services which are going to be flown. The

simple net income for the flight segment is not a good indi-

cator of the flight's value, e.g. notice that the 1441 service

on 3-9 earns $3410 compared to $1464 for the 1851 service, and

yet it is dropped from the optimal solutions for less than 20

aircraft while the 1851 service is retained. Overall, the sys-

tem can earn more money with 20 aircraft by a set of routings

which does not fly the 1441 service and does fly the 1851 ser-

vice.
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FIG. 18 FLEET ROUTING EXAMPLE, TECH AIRWAYS
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9-3,3-9, Tech Airways, B727 Schedule

Fleet Size (X = service not flown)
Departure

Time Income 27 24 23 20 16 13

645 1771

759 2386

832 3410 X X

955 1157 X X

1037 2386 X X

1321 1464 X X

1518 3410 X X

1716 3410 X

1941 1464 X

2027 1464

645 1771

759 3410 X X

913 3410

955 1157 X X

1037 2386 X X

1441 3410 X X X

1720 2727

1811 2727 X X

1851 1464 X X

2103 1464
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6.2 Single Fleet, Multi-Departure Models

The models of this section avoid the use of a fixed time-

table by allowing some variation in the actual departure times

for a given service. Instead of opening up every time of day

like the dispatching models, it is assumed that a range of

departure times exist for every service. Every service is

considered independent of other services as assumed in models

FR-2, 3, and there may be some variation in load and revenue

for different departures within the range. The model now

determines not only the best set of services to be flown, but

also the associated departure times within each range.

The use of a bundle of arcs to represent a given service

is important because of the routing constraints. The variable

times for a service allow different connections to be made

between services, and can greatly improve aircraft utilization.

Since only one departure time can be used from a bundle

of services, a "bundle" constraint must be added to the models.

The addition of these constraints destroys the guarantee of in-

teger optimality for an LP statement of the problem, although

it seems as though a high percentage of problems would still

have integer optimal answers. As a result special computational

techniques such as parametrically investigating network flow

solutions-, implicit enumeration, branch and bound, or the group

theoretic ILP approach are used, and all seem to have reasonable

success.
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6.2.1 FR-ID Minimum Fleet, Multi-Departure Models

6.2.1.1 Problem Statement

Given a schedule of services to be flown by a fleet

of aircraft of a single type, where a bundle of discrete

departure times are given for each service, what is the

minimal fleet size?

6.2.1.2 Model Formulation

There are a variety of formulations which are possible.

If we follow the network flow formulation, the sets of arcs

G and C are identical to those in FR-l. The set of flight

services, Snow consists of bundles of arcs for each service,
th

where we identify the bundle as set of arcs B for the s
-S

service. Previously, the bundle consisted of one member,

andmany of the services in this model may still consist of

only one member. A multi-departure bundle is shown graphically

in figure 19.

We then adjoin to the OKF formulation for FR-1 a

set of bundle equality constraints

x.. =S1 se' S
13

ije B

Since x.. can only take the values 0 or 1, we are
JJ

effectively selecting the best arc out of the bundle, and

the problem becomes combinatorial in nature. We want to find

the best integer network flow which satisfies these bundle

constraints.

Branch and bound, or implicit enumeration techniques
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can be used (see reference 5) in an attempt to search the

network flow solution space, but since the probability of an

integer LP solution seems very high, the preferable technique

seems to be to use an LP formulation of the model. Reference 3

uses a Land & Doig algorithm in the event that the LP solution

is not integer, with a branching strategy of picking the

"earliest" fractional flow arc in the schedule map. The group

theoretic approach used on crew scheduling in reference 7 has

also been successfully used since experience has shown the

size of the determinant associated with the basis of the LP

solution is usually very small.

6.2.1.3 Problem Size

For the LP formulation, the number of rows in the LP

statement as given in reference 3 is:

Isi
No. of rows = S + $ ( B i

s=1

eg. for 500 services averaging 3 departure times per service,

the number of rows would be 2000. The LP computation time at

this size is currently measured in hours'.

6.2.1.4 Comments

A related heuristic routine (reference 6) has been

used in a variety of transportation planning studies. Various

codings of it exist which can rapidly produce an answer for

problems which have up to 10,000 services. Experience on a

limited number of comparisons is given in Table 8. For the

optimal models (FR-lD) there are three arcs in each bundle: one

at each end of the range and one in the middle. For the
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heuristic routine, departures could leave at 6 minute

intervals through the range.

Various problems of different size and route maps

were solved. For example, problem 3 is the B727, Tech

Airways problem used as an example in the previous section.

Where the LP model assumed 34 aircraft at 8 hours/day

utilization, and the optimal answer for the timetable

of the previous section required 27 aircraft, we now

see that all services in this timetable can be flown

with only 23 aircraft at an average of 11.8 hours/day

for an active aircraft. The ranges assumed for depar-

ture times are indicated in reference 10. Table 8 shows

that the initial timetable required 30 aircraft, and the

heuristic routine required 1 pass to reduce this to 25

aircraft. The optimal model required 1.71 minutes where

the heuristic took 10 seconds on the same computer.

The purpose of the experiments described in Table 8

was to evaluate the heuristic Reducta. It requires only a

small fraction of the LP solution time and can handle ex-

tremely large schedules. The results for an improved

heuristic called REDUCTA 2 show that it can produce the

optimal answer for small fleet problems, but tends to

diverge as much as 10% as problem size increases. A

complete description of these tests is given in References

10 and 11.
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6.2.2 Model FR-2D - Maximum Income for Multi-Departure Times

6.2.2.1 Problem Statement

Given a schedule of possible services, where a bundle

of discrete departure times are given for each service, and an

associated income is known for each departure time, which

departure services should be flown, and what is the fleet

size required for maximum systems income?

6.2.2.2 Model Formulation

If we follow the network formulation of FR-2, the

sets of arcs G and C are similar. The set of flight services

S now consists of bundles of arcs, B for the sth service.

Each bundle arc is defined similar to the service arcs where

c.. now represents an estimated income (negative value) for
1J

the service if operated at this departure time.

We then adjoin to the problem a set of bundle

inequality constraints which allow the service not to be

operated if that is desirable.

x (l ~se&S
1)

ijO B
-s

Since we are seeking an integer network flow, where

x.. can be either 0 or 1, the constraint effectively states
1J

that, at most, only one arc out of the bundle can be used.

The problem thus becomes combinatorial similar to FR-lD

There are a variety of techniques which have been

used to solve this problem. One approach is to use a searching

technique which solves an OKF network flow problem while

controlling the upper bounds on members of each bundle. This
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approach is described in references 8 and 9, and other unpub-

lished FTL work. The model has been solved using a Land & Doig

technique as formulated in reference 3 (ILP 3.4), and using

the group theoretic techniques.

A decomposition approach has also been attempted.

Here the bundle constraints are kept in the master problem

so that the subproblem (model FR-2) can be quickly solved

using OKF. A price is added to each member of a bundle

until the adjoined constraints of the master problem are

satisfied. If the optimal answer to the LP is integer, it is

possible to obtain a single subproblem network solution which

is optimal in this manner. In general, decomposition will give

an optimal mix of the integer subproblem solutions which will

not be integer itself.

6.2.2.3 Problem Size

In the LP formulation, the number of rows is identical

to model FR-lD. If the network flow formulations are used,

151
No. of arcs 3 BI +2

s=l

No. of nodes 2\ B + 2
s=1

eg. for 500 services averaging 3 departure times/service over

20 cities,

No. of arcs 4 4540

No. of nodes 43040
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6.2.2.4 Comments

If there were no ownership cost for vehicles, the

most profitable arc in each bundle would be flown. As owner-

ship (or cycle arc costs) are increased, fewer aircraft are

used since they must earn at least the cycle arc cost during

the rest of the day. The multiple departure times for a given

service allow many more connections between services and

provide opportunities for more services to be flown by a

given number of aircraft. It is a valuable extension of the

model for the schedule planner.

At the present time, there is no clear answer to the

question of a preferable solution technique. This will vary

with the problem and its size, and there probably will be fur-

ther development of improved solution techniques for this

problem, and the other "bundle" network problems. Experience

with the LP formulation has indicated so far a very high pro-

portion of integer optimal answers. This fortunate occurrence

has directed attention towards formulating the model as an LP,

and using the Land and Doig or group theoretic techniques to

find the ILP answer only when the LP solution turns out to be

fractional. As problem sizes increase, and LP solution times

increase, the percentage of integer LP solutions may decrease,

and a combinatorial search using network methods may become

preferable.

136



6.2.3 Model FR-3D Maximum Income, given Fleet Size

6.2.3.1 Problem Statement

Given a schedule of possible services S, where a bundle

of discrete departure times is given for each service, and an

associated income is known for each departure time, which depar-

ture services should be flown to maximize system income given

the number of aircraft in the available fleet?

6.2.3.2 Model Formulation

This model is a simple extension of FR-3 to handle

multi-departure bundles of arcs. The network formulations used

on FR-2D are not attractive for this model. It is easier to

use the LP formulations of the problem, adding the single addi-

tional bundle constraint,

x.. =A'
C

Since A' is an integer number, this constraint tends to

aid the LP solution in finding an integer solution. One can

add a similar constraint to FR-lD and cause the LP solution to

give an integer optimum.
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6.3 Single Fleet, Bundle Constraint Models

Since the ILP or combinatorial programming methods allow

optimal solutions to be found, any of the constraints from

section 1 which were applied to the Fleet Assignment models

can be considered for application to the Fleet Routing models.

Here we shall define three such models: the first applies the

constraints ensuring that certain city pair routes are flown

at least a minimum number of times per cycle; the second

applies constraints to the maximum number of cycle operations

at a given station; and the third introduces a new constraint

on the number of aircraft which can be served simultaneously

at a given station.

They are posed here as extensions of model FR-2D the maxi-

mum income, multi-departure times model, and their model

name has been framed so as to indicate this fact. The behaviour

of the models will depend upon the number and type of constraints

added to the basic fleet routing problem. They are just

formulated here for definitional purposes.
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6.3.1 Model FR-2DC4 Maximum Income, Route Frequency Constraints

6.3.1.1 Problem Statement

Given a schedule of possible services, S, and a bundle

of departure times for each service with an associated income

for each departure, what set of departures should be flown

to maximize system income such that the number of services

flown on a given route exceeds a minimum required frequency,

N min ?
pq

6.3.1.2 Model Formulation

The problem is similar to model FR-2D, with the

additional "service" constraints applied. For a given city

pair, pq, we define a bundle B consisting of all services

(or bundles of services) possibly flown for that city pair.

The additional constraint is number 4 in Table 1.

ie. x.. N min pq
1J

ijE B
-pq

The constraint is shown in graphical form in figure 20,

where BAB represents a constraint over all bundle members for

AB services. BAB contains the departure bundles as subsets.
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6.3.2 Model FR-2DC5 - Maximum Income, Airport Constraints

6.3.2.1 Problem Statement

Given a schedule of possible services, S, and a bundle

of departure times for each service with an associated income

for each service, what set of departures should be flown to

maximize system income such that the number of services flown

into a given airport does not exceed a maximum limit imposed

by airport congestion, N max ?

6.3.2.2 Model Formulation

The problem is similar to model FR-2D, with additional

"airport" constraints applied where.necessary. For a given

station p, we define a bundle B consisting of all services

(or bundles of services) into (out of) the station.

Then, the additional constraint is number 5 in Table 1.

x.. N max p
ijeB 1

-p

The constraint is shown in graphical form by figure 21

where Bpa represents a constraint over all services into

city a. The bundle B a contains other departure bundles

as subsets.
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6.3.3 Model FR-2DC10 - Maximum Income, Gate Constraints

6.3.3.1 Problem Statement

Given a schedule of possible services, S, and a bundle

of departure times for each service with an associated income

for each service, what set of departures should be flown to

maximize system income such that the number of active aircraft

on the ground does not exceed the number of available gates?

6.3.3.2 Model Formulation

The problem is similar to model FR-2D, with additional

"gate" constraints which are probably added to the formulation

after a tight situation occurs at some station. Although these

constraints can be expressed without adding new nodes or arcs,

the model is most easily explained by defining two sets of arcs:

1) "unload"arcs, set U

2) "load" arcs, set L

For every ground arc in G, there is an associated

bundle B consisting of the arcs in U and L which coexist

within the time of the ground arc. This is illustrated in

figure 22 where the dotted lines indicate the bundles for

each ground arc.

We now define a variable N = number of aircraft on
gp

the ground either loading, unloading, or idle at station p

N = x.. for every ground arc g.

gp ij6 B 0
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The gate constraint is a bound upon Ng

N 4 Gg p

It is possible, of course, to place the constraint

upon the unload-load arcs only, assuming that idle aircraft

can be towed away from a gate.

6.3.3.3 Comments

The "gate" bundles as formulated here are independent

of the departure bundles of service arcs, Bs , and do not

contain any other bundles as subsets.
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6.4 Multi-Fleet Routing Models

We now extend the fleet routing models to cover multiple

fleets of different types of aircraft. The different types

of aircraft will have different operating costs, different

capacity, and varying speed and range capabilities which

will make them preferable for use on certain services. For

some services, certain aircraft may not be eligible because

of stage length or traffic load size.

As a result we can associate a "copy" of the schedule

map with each type of aircraft. The copies will not be iden-

tical, but will overlap since certain services will be pos-

sible with two or more types of aircraft. Bundle constraints

are then applied over the arcs representing the same service

appearing in different copies of the schedule map.

While the flow in each copy may be integer, the bundle

constraints may cause the LP statement of the model to give

a fractional flow at the optimum. The special techniques for

integerizing such answers, or for searching for the optimal

combination of integer network copy flows can again be suc-

cesfully applied. Experience again seems to indicate a high

percentage of integer LP solutions.

Here two multi-fleet models are formulated simply for

definitional purposes. All of the previous fleet routing

models may be extended as multi-fleet models, but computa-

tional experience has not been achieved with such extensions.
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6.4.1 Model MFR-1 Minimize Total Fleet Size

6.4.1.1 Problem Statement

Given a set of non-stop services S to be flown by

a fleet consisting of different types of aircraft, and a copy

of the schedule map Sa constructed for each aircraft type

using its speeds and eligibility for each service, find the

minimal number of aircraft required, and the routing pattern

for each aircraft type such that every service is flown.

6.4.1.2 Model Formulation

This is an extension of model FR-1 to cover the

multi-fleet problem. Let the copy of the schedule map for

aircraft a be represented by Sa. Let the set of bundles of

arcs representing a given service S in two or more copies be Ms'

Then we adjoin a set of constraints for each service

i x.. =1 seS
ij c M

-s

to the multicopy network formulation. Since the values which

x.. can take are 0 or 1, we are finding the best combination
13

of integer flows on schedule map copies which satisfies these

constraints.
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The model can be posed as an LP problem with the multi-

copy constraints added. Then the Land & Doig, or group

theoretic methods can be used to find the best integer flows.

If the number of multi-copy constraints is not too large,

and the individual copies are network flow problems solvable

by OKF as postulated here, a branch and bound technique simi-

lar to that used in reference 8 can be used to search for the

best combination of integer network flows.

6.4.1.3 Problem Size

If there are lal types of aircraft, and MC multi-

copy constraints, the number of rows in the LP formulation

becomes,

No. of rows K 2 I + 'MC
aa

where there are (al copies of the basic LP formulation of

FR-l, and an additional MC rows of multicopy constraints.

For the branch and bound search, as many as 21al net-

work flow problems must be solved at each stage of the solu-

tion tree, and there are MC stages of lal branches at each

stage.
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6.4.1.4 Comments

The Land & Doig algorithms and the group theoretic

ILP methods seem to work successfully on these problems.

However, large scale, airline size problems have not yet

been tried. The mathematical problem is well known as a

multi-copy or multi-commodity network flow problem for which

several proposed techniques now exist. The best technique

for schedule map or routing networks is yet to be determined

since the solution efficiency varies with the size and type

of problem.
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6.4.2 Model MFR-2 Maximum Income

6.4.2.1 Problem Statement

Given a set of non-stop services S to be flown by a

fleet consisting of different types of aircraft, and a copy of

the schedule map S constructed for each aircraft type using

its speeds, eligibility for service, its income value if it

flies the service, and its daily ownership costs, find the

combination of routing patterns for each aircraft type which

maximizes system income such that every service is flown

at most by one aircraft type.

6.4.2.2 Model Formulation

This is an extension of model FR-2 to cover the multi-

fleet problem. If the bundle of arcs representing a given

service, s, common to two or more copies be M , then we ad-
-S

join a constraint

[ ..x l s f. S
ijG M

-s

to the multi-copy formulation. This ensures that the service

can be flown by at most one type of aircraft. The model can

be formulated as an LP problem which has to be integerized,

or as a branch and bound search using network flow solutions.
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7.0 Summary

This report has described the state of the art for computer

models concerned with scheduling problems for public transpor-

tation systems for which optimal solutions can be obtained with

present computer technology. As computer hardware and software

improves, and as new methodology is added to mathematical pro-

gramming techniques, larger and more sophisticated models can

easily be envisaged. There is still much work to be done in

generating good software and gaining computational experience

with the models described in this report.

It is difficult to comment generally on the usefulness

-of the models in view of the spectrum of users and their goals.

In some cases, these models have seen many years of successful

application in airline schedule planning. Others have been used

once or twice in various planning studies with apparent satis-

faction to those involved in the study. It must be remembered

that they are models of the real world problems, and as such

are idealized representations. This report has emphasized the

description of the models, and has placed them together in order

to make some analysts realize the shortcomings of their models

in certain aspects. For various purposes, the models can be

extremely useful to an analyst providing he has a broader under-

standing of scheduling problems which permits him to apply the

appropriate model to his problem. Model building is an excel-

lent way to gain this broader understanding since it forces one

to be quite specific about describing the way in which various

factors enter these problems. This process also clearly deline-

ates the need for other studies that should be done , e.g.,
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there are a number of econometric studies of traffic forecasting

and market share models suggested by model FA-3 and extensions

of it.

There is a clear division of the categories of models of

this report as to their usage. Both Fleet Assignment and Fleet

Planning models are strategic models in the sense of giving an

incomplete answer to schedule construction. Their output is a

frequency pattern for the system under the assumed aircraft

utilization. While this result can be useful for many long

range planning purposes in that some idea of the levels of

service and operating costs for the system are obtained, the

assumed utilization means the exact fleet size is not known,

and the time of day schedule and aircraft routings are unknown.

The Fleet Routing models allow this next improvement, and are

useful in performing shorter range schedule planning and playing

a role in the actual schedule planning process. The purpose of

the study, the required accuracy and confidence of its answer

will determine whether it is necessary to consider a much larger

routing model rather than the more approximate "usage" or "assign-

ment" models.

There are so many directions of future development of com-

puter models in this area, it would be difficult to describe

them all: problems of traffic flowing over a network in various

ways, the generation of optimal multi-stop itineraries, problems

which arise in scheduling cargo or freight delivery systems, the

prospect of using real time traffic information for dynamic

scheduling or partially dynamic scheduling of transportation

systems, a number of detailed problems in schedule control are

all areas for a great deal of interesting future work. As well,

it seems clear that econometric traffic forecasting models in
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which we have some confidence will be required before useful

computer applications can be envisaged. Trend forecasting

will not be useful, and a great deal of study seems to be in-

dicated to relate past traffic statistics to levels of service

in the various markets.
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