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ABSTRACT

The method of steepest descent of the calculus of
variations is used to determine the optimal flight
profile of a hypothetical tilt wing aircraft travel-
ling a distance of 50 miles. Direct operating cost,
(as derived from the ATA formulation) is minimized
using aircraft lift coefficient and power as control
variables each with upper and lower limits. Only
the portion of the flight from the end of transi-
tion to the beginning of retransition was considered,
with both initial and final values of velocity,
flight path angle, and altitude specified.

The results show that full power is used to
accelerate and to climb at a speed about twice the
value for maximum rate of climb. At 12000 feet,
power is reduced to flight idle and a high speed,
power off glide is made to destination. A rapid
deceleration is made at low altitude to achieve the
specified conditions for retransition. While the
optimal profiles for velocity, altitude, and power
are greatly different from the nominal profiles
chosen to design the aircraft (Ref. 5), the opti-
mal trip cost of $30.54 is only slightly less than
the nominal trip cost of $31.60.
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CHAPTER I

INTRODUCTION

Airlines have long been faced with the question

of how to operate their aircraft most economically.

An important aspect of this question is that of what

altitude and velocity profile should be flown so as

to minimize direct operating cost (DOC). This re-

port presents a mathematical optimization technique

for determining optimal altitude and velocity pro-

files which will result in minimum direct operating

cost for a flight of any given range.

Many aircraft optimal profile problems have been

solved where either fuel or time were minimized. For

the problem treated here, where direct operating cost

is to be minimized, the DOC is approximated by a

linear combination of fuel burned and time of flight

since the controllable cost of a flight are linearly

related to these factors. The coefficients of this

linear equation are empirical and are based on air-

line experience with various types of aircraft.

Historically, long range aircraft have been de-

signed and flown with emphasis placed on the cruise

portion of the flight. Formerly, aircraft were de-



signed and flown at an altitude and velocity which

resulted in maximum lift to drag ratio and the ob-

jective was to minimize fuel consumption. In recent

years, however, airlines have come to realize the

overall cost advantage of high speed flight, where

there exists the potential of increased utilization

and lower DOC per flight. For example, high speed

operation results in the saving of crew and mainte-

nance costs per flight since these costs are, for the

most part, based on flight time, not distance. Modern

long range aircraft are, of course, still designed

with emphasis placed on the cruise portion of the

flight, since this constitutes a major portion of a

long range trip. For these aircraft, optimum cruise

is usually at high speed and high altitude, and is

specifically described by the aircraft manufacturer

for every user. The time and fuel penalties of

climbing and accelerating to these cruise conditions

are generally small in comparison to the gains of

optimal cruise, and a variety of climb and descent

profiles are used by different airlines for the same

type of aircraft.



DISTANCE

Figure 1. Typical Altitude Profiles for Various Flight Distances of
Commercial Aircraft (not to scale).



With the potential advent of short haul and

very short haul aircraft, this operating philosophy

is no longer valid. For example, it can be seen in

Figure 1 that an attempt to fly a commercial short

haul aircraft at a high altitude cruise condition

is impractical if not impossible. If a high cruise

altitude can be attained, the benefits of efficient

cruise generally may not be worthwhile, since the

short time of cruise flight may not offset the cost

of climbing to this altitude. For very short haul

aircraft, high cruise altitudes will never be at-

tained because of the short trip length. Since the

costly climb phase is now a major portion of the

total flight profile, the question of what total

integrated altitude and velocity profile should be

flown to minimize direct operating cost is now con-

fronted.

In the studies of the possible future application

of VSTOL aircraft for the Northeast Corridor described

in Ref. 5, the question of which profile should be

used in the design procedures was answered in a typi-

cal engineering manner. Various selections of cruise
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were made for various ranges, and the aircraft were

climbed at a speed for maximum rate of climb. It

was recognized however, that these selections of

speed and altitude were probably non-optimal and

that they were a sensitive input to both the de-

sign of the vehicles and the cost of their opera-

tion particularly at shorter ranges. Arguments

could be proposed for various profiles, and the

profiles could be tested, but it was clear that

the questions could never be resolved satisfac-

torily unless an attempt was made to use rigorous

mathematical methods for determining least cost

profiles. Even if the resulting profiles were im-

practical because of passenger comfort, or air traffic

control reasons, the knowledge of how to use the ex-

cess power of the VTOL vehicles in speed and height

profiles was needed to direct the selection of simple

and feasible profiles for the engineering design.

This report describes the effort to apply present

methods from the calculus of variations to solve such

a problem for a Tilt wing aircraft travelling a dis-

tance of 50 miles from the end of transition to wing
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borne flight to the beginning of re-transition. The

method can be applied to flight profile optimization

for any type of short haul aircraft.



CHAPTER II

TECHNICAL APPROACH

The technique set forth in this report to the

solution of this problem is the method of steepest

descent in the calculus of variations. Basically,

the technique involves commencing with a guess of a

nominal flight control history which will result in

a reasonable flight profile. Small changes in the

control history are then made so as to change the

flight profile from the nominal in a direction that

will reduce the performance index (the DOC in this

case). This procedure is repeated until no further

reduction in performance index is possible. The con-

trol history and flight profile are then considered

optimal. Since the aircraft system equations are

very nonlinear, the aid of a computer is mandatory

in the solution of this problem. The theoretical

aspects of the technique are presented in Appendix A.

A hypothetical short haul vertical takeoff and

landing (VTOL) tilt wing commercial aircraft is used



in the demonstration of the flight profile optimiza-

tion technique. A description of this vehicle is

presented in Section 2.1. An empirical formulation

based on the Air Transport Association of America

direct operating cost formula is used to relate DOC

to aircraft design and operating characteristics.

This formulation is presented in Section 2.2. Section

2.3 presents the aircraft system equations and the

formulation of these equations for computer solution

of the optimal profile. Appendix B describes the

computer programming procedure. Successful compu-

terization of a theoretical approach to the solution

of a problem is not always straight forward. This

is particularly true with regards to numerical stabi-

lity and accuracy. With this in mind, Appendix B

describes the program and highlights some of the im-

portant computational problems. Some of the computa-

tional procedures used can probably be successfully

applied to the solution of similar steepest descent

problems.



2.1 Aircraft Description

A hypothetical commercial short haul vertical

takeoff and landing tilt wing aircraft with four turbo-

shaft engines powering propellers is used in the demon-

stration of the flight profile optimization technique.

The significant design parameters of the aircraft are

presented in Figure 2. This aircraft design was de-

rived from research conducted for the U.S. Department

of Commerce to determine the feasibility of commercial

short haul air transportation in the Northeast Corri-

dor of the United States5,6.

The aircraft has a design range of 200 statute

miles. However, as with other types of commercial

aircraft, it will at times operate at less than this

range. In fact, flights of 50 miles or less are

envisioned. For these short ranges, it is reason-

able to assume that the aircraft will not operate at

its design cruise velocity or altitude anywhere

along its flight path. However, it is not ob-

vious what profiles this aircraft should fly for

optimum operation. A 50 mile range



DESCRIPTION OF HYPOTHETICAL COMMERCIAL

SHORT HAUL VTOL TILT WING AIRCRAFT

Design Range

Design Altitude

Design Velocity

Gross Weight, Wgr

Number of Passengers

Crew

Payload

Engine Normal Rated Power, NRP

Engines

SFCO, specific fuel consumption

@ S.L. and NRP

Propeller-Transmission efficiency,

n
Engine weight, WE
Fuel weight

Oil weight

Wing area, WAR

Wing efficiency factor, e

Aspect Ratio, AR

Profile Drag Coefficient, D

200 St. miles

20,000 ft.

400 m.p.h.

57,244 lb.

80

Pilot and Copilot

16,600 lb.

18,800 H.P. @ S.L.

4 turboshaft

.55 lb. of fuel per hr./HP

.72

3539 lb.

4080 lb.

140 lb.

686.5 sq. ft.

.85

9.5

.024917

Figure 2



case is evaluated to illustrate a typical solution to this

problem. The aircraft is assumed to fly in a two dimensional

vertical plane, since direct flight between two locations

is considered.

The 50 mile flight optimization is calculated for the

segment of flight where the aircraft is in a conventional

flight mode, that is, from the end of transition (takeoff

phase) to the beginning of retransition (landing phase).

Ideally, the optimization technique should be performed from

lift-off to touch-down. However, excluding the transition

and retransition phases of flight (where the wing is at an

angle other than zero degrees) does not detract from the

demonstration of the technique or the realism of the problem

since these phases constitute a very small portion of the

total flight time, distance, and fuel burned for this type

of aircraft. The main advantage of this simplification is

the elimination of wing angle as a control variable and

avoidance of nonlinear equations required to describe the

flow field over the wing at low forward speeds and high wing

angles.

The aircraft control variables used in the optimization

program were lift coefficient, CL, and power level, designated

as Power. The lift coefficient was considered to be the most

practical variable to use in controlling the aircraft in the

direction normal to its flight path. In actual operation,



control in this direction is accomplished by variation of

wing angle of attack, a, and the use of flaps. The choice

of CL, therefore, combined two control variables into one

and, consequently, eliminated complex interrelated control

of a and flap position. The profile drag coefficient, CDo'

has been taken to be constant for all lift coefficients

even though this assumption is slightly wrong in the case

where flaps would need to be used. However, the resultant

error in drag at this flight condition is negligible. The

lift coefficient was limited to a maximum value of 3.0, which

is a practical upper limit for an aircraft using auxiliary

high lift devices. The magnitude of the control variable

Power was based on "equivalent sea level horsepower" and

limited to a maximum value of normal rated power (NRP =

18,800 horsepower) and a minimum value of 10% NRP. The later

limit was based on the requirement that a minimum positive

power level must be maintained to keep the engines operating

at idle and this appeared to be a practical lower limit for

current turboshaft engines. The former limit was chosen for

the sake of simplicity even though it is possible to operate

turboshaft engines above NRP for short periods of time.

The engine fuel flow rate, Q, was based on typical

turboshaft engine experience. It is a function of Power

level and altitude as presented below.
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SFC
alt 3600

where P alt is the altitude corrected engine power and is

empirically formulated as

P = Power(l .55h
alt 30,000

SFC is the specific fuel consumption at power level Power

and is also empirically formulated as

.36

SFC = SFC NRP
o Power

Substituting, we obtain

SEC .64+ .36 .55h
Q =360 (Power) (NRP) (1- 30,000

The propeller thrust is based on simple momentum theory

where the propeller is treated as an actuator disc with

a propeller-transmission efficiency n. It is formulated as

550 P n
T = alt

Substituting for Palt results in

550(Power)n (1 - 355h
T = 30,00
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In addition to the reasons presented earlier, the

determination of the optimal profile for this type of

aircraft is also particularly interesting since it has

a large power to weight ratio required for vertical take-

off and landing and is, therefore, overpowered for the

conventional mode of flight. It is not obvious whether

the aircraft should use the total excess power available

in this mode. If the excess power is used to attain high

velocity, the aircraft may suffer a penalty of high fuel

costs. On the other hand, operating at lower levels, and

therefore lower velocity, could result in high time costs.

Determining the proper balance between these two extremes

over the total integrated flight profile is accomplished by

the optimization program.

The initial and final aircraft flight conditions

specified for the optimized portion of the flight profile

were selected to be

Velocity

V(to) = V(tf) = 160 fps

Flight Path Angle:

y (to) = y (tf) = 0 radians

Altitude:

h(to) = h(tf) = 3500 feet
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The altitude was selected on the basis of having adequate

clearance above the ground for safe aircraft operation

during wing conversion (moving the wing with respect to

the fuselage in transition). The flight path angle was

selected on the basis that wing conversion would probably

be performed in level flight. The velocity was selected

so that the lift coefficient would be near its maximum

allowed value at the beginning and end of the conventional

portion of the flight.

The propeller efficiency was taken to be constant at

.8. No reduction of efficiency due to compressibility effects

was made since the maximum velocity was not that large. The

transmission efficiency was taken to be .9 which resulted

in a combined propeller-transmission efficiency, n, of .72.
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2.2 Formulation of Performance Index

The performance index, o, is based on an estimate

of the direct operating cost of the tilt wing VTOL aircraft.

The DOC of an aircraft owned by a particular airline is

determined by their operational experience. However, for

the aircraft considered here, the direct operating cost

was based on average industry experience. This experience

has been empirically formulated by the Air Transport Assoc-

iation of America (ATA)4.

Broadly speaking, the DOC can be divided into two

major components, fuel cost and time cost. The time cost

can be subdivided into cost of

1. Oil

2. Crew

3. Direct Maintenance

4. Applied Maintenance Burden

5. Depreciation

6. Insurance



The importance and control of the cost of each of these

elements is a function of the time base in which they are

being evaluated. For example, applied maintenance burden

is the cost for maintenance facilities and is fixed in the

short run. If the time base was several years, or the

life of a fleet of aircraft, this cost would be variable,

and, therefore, controllable. The time period being

considered in this problem is the time of one 50 mile flight

(less than 15 minutes). Therefore, the cost of applied main-

tenance burden is not part of the performance index, that

is, the performance index is only a function of the controllable

elements of the short term DOC. Depreciation is considered

fixed for the same reason. Since the cost of insurance is

based on miles flown, it is also a fixed cost. Therefore,

only items 1 through 3 are considered controllable since

they are in whole or in part a function of the time of flight.

An evaluation of these three costs plus fuel costs is

presented below. The equations presented are a summary of

the pertinent ATA empirical cost relationships.

Fuel Cost

The cost of fuel, b, for the turboshaft engines was

taken to be .01743 dollars per pound. The fuel used was

assumed to be JP-4 with a density of 6.5 pounds per gallons

and a cost of 0.1133 dollars per gallon (domestic rate,



including tax). Therefore, the total cost of fuel for the

optimized segment of the flight profile was

tf

Fuel Cost = bQ dt

t
0

where Q is the fuel flow rate in pounds per second and t

is in seconds.

Oil Cost

The cost of oil is a function of the time of flight

since the rate of oil consumption is taken to be 2/3 pounds

per hour per engine. The oil density is assumed to be 8.1

pounds per gallon with a cost of 6.20 dollars per gallon.

Therefore, the cost of oil for this four engine aircraft is

tf

Oil Cost = 2.045 dtJ 3600
to

Crew Cost

A crew of two is assumed; pilot and copilot. The cost

of both crew members consists of an annual base rate plus

adjustments for such factors as the number of hours flown,

the number of miles flown, and the aircraft gross weight.

The airline operator must also take into account allowances

for such indirect costs as vacations, training, and over-

nighting expenses. Some of these crew costs are not functions



of flight time and, therefore, are not inputs to the

performance index. Since it would serve no purpose to

elaborate on the details of the crew costs and the structure

of its formulation, a summary of the controllable components

of this cost is presented below. The aircraft gross weight

factor has not been combined with the other terms to allow

for the possibility of changes in the aircraft design.

tf 28.06 + 4.637x10-5 W
Crew Cost =gr dt

3600

Wgr is the aircraft gross weight.

Direct Maintenance

Direct maintenance cost is divided into maintenance

of engines and maintenance of aircraft. Aircraft maintenance

includes the airframe plus all related equipment such as

radios and navigation equipment. These direct maintenance

costs are further subdivided into labor costs and material

costs. The formulation of these costs is presented below.

Engine Labor Cost

The empirical equation for engine labor cost is

Engine Labor Cost =Ftf 3.09(NE)(KLE) dt
E 3600
to

where
NE = number of engines = 4



The coefficient 3.09 is the labor cost in dollars per

man-hour and K LE is the labor required in man-hours per

flight hour per engine. The later is formulated as

K 545.16 + .05852 (ESHP) + .1LE TBO

where

ESHP = equivalent shaft horsepower = 1.053 (NRP)

TBO = time between overhaul = 4000 hours

Aircraft Labor Cost

The empirical equation for aircraft labor cost is

-tf 3.09 KL
Aircraft Labor Cost =300LA dt3600

t
0

Again, the coefficient of 3.09 is the labor cost in dollars

per man-hour. The constant KLA is the aircraft labor

required in man-hours per flight hour and is formulated as

KLA = 3.0 + 6.7 x 10-5 WA

where WA is the basic weight of the aircraft less engine

weight. It is determined by subtracting the weight of payload,

fuel, engines, and oil from the gross weight.
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Engine Material Cost

The engine material cost is determined by

Engine Material Cost = tf
K ME(NE)

3600 dt

where K ME is the cost of materials in dollars per

flight hour per engine and is empirically formulated as

K ME
5.59x10 5(CE) (SPF) - 0.484

KTBO

where

CE = cost of one engine

= 300 (WE)/(NE)

WE = Weight of all engines

SPF = Spare Parts Factor = 1.5

KTBO = 2.1 x 10 (TBO) + 0.769

The formulation of KTBO is used to relate the cost of

materials with time between overhauls.

Aircraft Materials Cost

Aircraft Material Cost =
6MA

3600 d

KMA is the cost of aircraft materials in dollars per flight

hour and is empirically formulated as



KI = 2.58 + 8.14 x 10 CA

where

CA = cost of aircraft less engines

= 68.2 W.

Cost Summary

The controllable portion of the direct operating

cost (performance index) can be summarized as follows:

= tf z dt

where

z = a + bQ

and

a = (43.67 + 4.637 x 10 W
gr

+ 7.62 x 10 WA

+ .01563 WE + 1.90 x 10~ NRP)/3600

Substituting the design parameters of the short haul tilt

wing aircraft results in

a = .03620 $/second

Also

b = .01743 $/lb



2.3 System Equations

Formulation of the system equations and associated

equations required for the solution of the optimal flight

profile is performed in this section. The system equations

describe the dynamics of the aircraft and its operating

characteristics. The associated equations are required for

the steepest descent optimization process as described in

Appendix A. These equations were programmed for digital

computation as presented in Appendix B-

The aircraft has been modeled as a point mass since

the aircraft pitch dynamics are at a much higher frequency

than the flight path dynamics. If the aircraft pitch mode

had been included as part of the system dynamics, the

resultant optimal solution would have been essentially the

same. As shown in Figure 3, the thrust is assumed to

always act along the flight path. This assumption serves

to simplify the equation formulation and introduces very

little error. The relationship of the other system variables

is also shown in this figure.



D
H Mg

S(to) S S(tf)
DISTANCE

Relationship of System Variables

T

Figure 3.



Several other assumptions that were made are as

follows. The 'gross weight was taken to remain constant

even though fuel was being burned throughout the flight.

This is a reasonable assumption since the fuel burned in a

50 mile flight only amounts to about one per cent of the

gross weight. Also, incompressible flow is assumed for

both airframe and propellor operation since the maximum

velocity attained was not unreasonably high. The flight

path was considered to be in the vertical plane only, and

zero wind velocity was assumed. Also, there were no state

variable inequality constraints, as might be required if

there had been air traffic control limitations.

In the initial phases of research for this report,

time, t, was taken to be the independent variable and the

equations of motion of the aircraft were

D= - g sin ym

g cosry = -- cos y

h= V sin y

s = V cos y

Since the performance index was, in part, a function

of time, and the stopping condition a function of distance,

the time vector had a variable length. Therefore, this
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resulted in a variable length control program, u(t). The

result of this approach was an unsatisfactory computational

process, since the terminal region of the control vectors

could not be determined analytically when a change in the

control program resulted in a flight profile whose time

increased relative to the previous nominal profile. Increases

in flight time usually were experienced when the optimizing

program was making a large effort to improve the value of

terminal conditions. Several techniques were tried in an

effort to determine reasonable values of the control vectors

in this undefined terminal region, but all were essentially

unsatisfactory guesses which often resulted in making the

terminal conditions worse. Consequently, an excessive amount

of computation was required when trying to improve terminal

conditions. This undesirable characteristic was eliminated

by changing the independent variable to distance, s. Presented

below are the system equations and variables used in the

formulation of the program using this new technique.

Control Variables, u

CL' Power

State Variables, x

V, y, h, z

Independent Variable

s
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Matrix Notations

C L
u(s) = Kom = 2

Power

V(s)

y (s)
x(s)- n=4

h(s)

z(s)

fi1

f(s) =2 ,n =4

f3

f4

4

= L2 , p= 3
T3
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System Differential Equations

dV l T--D
1 Vcosy _ m- g siny

f2  dy mcosy 12 a-s V2

f dh

3 ds
tany

f dz _ l

4 ds Vcosy [a + bQ]

In addition, time of flight and fuel burned can be determined

by

dt 1
ds Vcosy

dFUEL
ds

Q
Vcosy

Performance Index

= z(sf)



Terminal Constraints

= V(sf) - V= 0

2 = Y (S)y = 0

*

T 3 = h(s) - h =0

*
where ( ) are the specified terminal conditions as

discussed in Section 2.1 and reviewed below.

*
V = 160 fps.

y = 0 radians

h = 3500 feet

The initial conditions had the same value as the terminal

conditions.

Stopping Condition

Q = Sf - s = 0

where

*
s = 264,000 feet = 50 miles

Calculation of F matrix

The F matrix, defined by equation (A.2.4) is

evaluated as follows



af
ax1

F=

af
ax 1

-
1

V V 2
coSy

f 1 
1

Dy Vcos 2 y

9h -mVcosy

f

az

f 2
DV

Df
2

ay

. 2T+D]
g siny - m

siny - g

ra T aD]
La-h -hi

-0

2g

v 3

L tany

mV 2cosy

30

9x4

* * * '

x4

where

f 1
3x2

3

af 1
3x 3

f2
x

x 2



Df2
Dh

af2
ax3

3f2
ax 4

af 3

ax1

2

af3

3f

mV 2cosy

=0

=0

= sec 2y

af3
a f3 = 0

@h

a + b Q

S2 cosy

_ (a+bQ) tany
- Vcosy

b Q
Vcosy (h 30,000

.55

=0

f3

Dx
4

af 4
3x1

f 4
x2

af 4
3x 33

af 4
ax

Df
4

aV

af4
y-

af4

D f4
3 z
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Calculation of G Matrix

The G matrix, defined by equation A.2.5, is

evaluated as follows

af1

Bu

3f 4

u 1

_3fl

3C L

1 f I
aPowe

f2

CL

f2
3Powe

f
3

3CL

afi1

au2

Bu2

1 2L
mVcosy 7e(AR)

1 T
r mVcosy Power

_ p (WAR)
2mcosy

r

0

w2
=0

3Power

where

f 1

Bu

1
afl

Du
2

2

af2
u2 1

f f3
u 2

'9f 3

u2 1



a _ 4 0
au 1 CL

af 4 - 4 64 b Q
au2 @Power Vcosy Power

It is observed that as Power approaches zero, the value

af4/au 2 approaches infinity and the problem becomes

insolvable. This would be the case if the minimum power

constraint boundary were equal to zero. Fortunately,

this constraint boundary was set to 10% of NRP as determined

from physical considerations.

Terminal Values of A

T (f
A(s [ D a (D a0 1(

= [0, 0, 0, 11

T
A (sf) =

3X

3x

4

a T3
a x4

S=Sf

1, 0, 0, 0

= 0, 1, 0, 0
0 0, 1, 0

S Sf
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xT(sL) = FV' y D' h D' DzJ0 L75V Dy" hs=sg

= [0, 0, 0, 0]

Other terms

Several other terms are needed for the solution

of the optimal profile. These are presented below

de= _dz
ds ds

d_ _

ds ds

dTP
3

ds

s=sf

d%
dE

dy
ds

dh

ds

r

dQ
ds

x =

x' 0
4

XQ
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T T * 13 1

d dT d1
XOI I__s ds 2' ds 3

41 43 4

Auxiliary Equations

Auxiliary equations needed for completion of the

system equations are presented below. The aircraft lift

and drag are formulated as

L = pV2 CL (WAR)
L = 2

D = PV2 C (WAR)
2 D(WR

where the drag coefficient is a function of profile and

induced drag as

CD = D + CD.
0 i

C 2

CD . fe(AR)

Also needed are

L 1V2 CL (WAR) ah

D 2 2 apaD 1 V2 CD (WAR) 9
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The atmospheric density, p, is determined by

p = .002377(1 - .6875 x 10-5 h)
4.2561

which is a model of the ICAO standard atmosphere ranging

from 0 to 36,000 feet. The rate of change of density

with altitude is easily determined to be

.2926 x 10~4p

1- .6875 x 10-sh

Standard atmospheric temperatures have been assumed. As

defined in Section 2.1, fuel flow rate and thrust are

Q SFC 0_Pwr (R)-36( .55h

3600 (Power)-6 4(NRP) 36 ( 30,000

55h
550(Power) n(l - 30,00

T 30,000
V

It can be easily determined that

3T T
3h h -30,000

.55

Control Variable Inequality Constraints

. As described in Section 2.1 there are inequality

constraints in both control variables. These are summarized

below. The value of CLm.
min

p
h

is arbitrary.
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CL = 3.0
max

CL . = 0.0
min

Powermax = 18,800

Power . = 1,880

Formulating the control variable inequality

constraints according to equation 2.3.1 results in

C1 = (CL - CL )(CL 0L
min max

C2 = (Power-Powerm in) (Power-Powermax) <

When either of the control variables are on the constraint

boundary, the adjoint equation is modified by the addition

of AF as

-[F - AF] TX

where

3f 3 C~ 3C

A discussion of these equations has been presented in Section

A.3 of Appendix A.

However, because the inequality constraints of this

problem do not involve state variables, AF equals zero and

no change in the form of the adjoint equations is ever needed.
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CHAPTER III

RESULTS AND CONCLUSIONS

The optimum profile and control history for a fifty

mile flight of the commercial tilt wing VTOL aircraft is

presented in Figures 4 through 8. Given that the lift

coefficient and power were controlled as indicated in

Figures 7 and 8, the optimal profile presented would

result in a minimum value of the performance index of

30.54 dollars. This value is considerably smaller than

the 84.48 dollars calculated for the initial steady

state profile.

Since the aircraft is assumed to be flying at

steady state conditions before and after the optimized

flight region, the magnitude of the variables for these

steady state conditions are shown on each plot. To make

the plots easier to read, the abscissa scale in Figures 6

and 7 are expanded at the low and high values of distance.
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The time cost is the major component of the DOC

as is shown below.

Time Cost Fuel Cost
% DOC %/ _ DC

Initial Steady State 84.48 70.7% 29.3%
Profile

Optimum Profile 30.54 63.6% 36.4%

DOC Profile 5  31.60 57.2 42.8

Therefore, an intuitive conclusion would be that the

aircraft would want to accelerate rapidly to a high velocity

so as to minimize the time of flight. It is observed from

the plots that this indeed does happen. To accomplish the

high acceleration, Power is set at its maximum level at the

beginning of the flight. The lift coefficient, CL' is also

rapidly reduced since this also contributes to acceleration

of the aircraft and does so in two ways. First, the reduction

of CL greatly reduces the induced drag coefficient and,

therefore, allows the aircraft to accelerate faster than it

otherwise would. The reduced CL also allows the aircraft to

drop in altitude which in turn provides additional acceleration

due to gravity. The reason for the peaking of CL at the beginning

of the profile is not clear. The peaking at the terminal phase

of the flight profile is apparently required to guide the

aircraft to the specified terminal conditions.



It is also observed that the aircraft climbs to

a relatively high altitude to take advantage of less

dense air which results in lower drag and, therefore,

less total power required. Apparently, the penalty of

climbing to this high altitude is more than compensated

for by the minimum power glide that follows. In fact,

a second advantage of climbing to a high altitude is

the resultant capability of then reducing power to a

minimum. The fuel cost is then a minimum for the later

half of the flight while high velocity is still main-

tained by the minimum power glide. The maximum alti-

tude attained was 12,625 feet.

Since it is important from the time cost point of

view that a high velocity be maintained for as long as

possible, the aircraft flies below the terminal altitude

as it approaches the terminal conditions and then dissi-

pates its high kinetic energy by climbing very rapidly.

The minimum altitude attained was 636 feet. It can be

seen from Figure 5 that the true airspeed decreases

slightly during descent, although the equivalent air-

speed is increasing (CL decreases slightly in descent).

The peak velocity over the profile was 551 feet per

second while the average velocity was 492 feet per second.
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A comparison of this "optimal" profile and the

nominal DOC profiles used in Refs. 5, 6 can now be

made. Figure 4 shows that the aircraft would like to

climb to over 12000 feet at full power, and then re-

duce the power for a high speed glide to destination.

The nominal DOC profile climbed (at maximum rate of

climb) to 6000 feet, and spent a considerable portion

of the trip in the cruise made at partial power.

Interestingly, the optimal profile has the air-

craft climb at a speed varying from 400-500 fps or 270-

340 mph, and a rate of climb of around 3440 fpm which is

quite comparable to present jet transports. The nominal

profile used a speed of 154 mph to achieve a maximum

rate of climb around 7000 fpm.

Although the nominal cruise speed of this vehicle

is 400 mph, the speed maintained during the glide on the

optimal profile is only about 90% of this value, and

varies slightly during descent. The nominal profile

descends at a higher speed and rate of descent, and

apparently uses speed brakes to kill its speed in level

flight as opposed to the zoom required by the system

equations for the optimal profile.



47

The purpose of determining the optimal profile

was to gain insight into the economics of flying future

commercial short haul aircraft. The optimal profile

and its associated control program presented do indeed

clear up the question of how to fly the aircraft for

minimum cost. The answer is that full power should

be used in the initial stages of the trip in order to

accelerate and climb. The climb should be made at a

high speed well above the speed for maximum rate of

climb or for minimum L/D ratio. At the point where

an altitude and speed are reached such that a power

off high speed glide can be made to reach the desti-

nation, power should be put to minimum fuel consumption.

The high speed during glide should be maintained to the

point where deceleration using full braking capabilities

will return the aircraft to the desired transition speed.

It would seem desirable that this type of aircraft be

equipped with speed brakes to assist in this decelera-

tion.

In essence these are the practical results of the

application of this mathematical technique. Because

of passenger comfort, and ATC difficulties, it is not
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likely that one would attempt to fly the optimal profile.

Operating within these constraints now indicates that

full power should be used to get as high as possible.

The climb speed should be about twice that for maximum

rate of climb, and if possible a high speed descent

should be made with power off. The selection of pro-

files can now proceed on this basis for engineering

design, while considerations can continue of improving

the mathematical techniques to incorporate these types

of restrictions. The comparison shows that on a dollar

cost basis, the nominal DOC profile is very close to

the optimal trip cost, even though the altitude, speed,

and power profiles are quite different.
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The Mathematical Technique

Several questions can now be raised as to the

shortcomings of the optimization technique used and

what research could be performed in the future to im-

prove its usefulness. For example, the CL control

program shown in Figure 5 makes a step change coming

from and going to the steady state flight conditions

at the beginning and end of the optimized flight

profile. Physically, of course, this is impossible.

This step is due to the fact that the initial and final

values of CL were allowed to seek an unconstrained opti-

mal level rather than start at the value required for

steady state value at the very beginning and end of the

profile. A rate constraint on CL could also be applied

to simulate the time lag in the control process.

Another undesirable feature of the profile is the

fact that the aircraft goes below the terminal altitude

by an unacceptable amount. To prevent this, linear and

quadratic altitude penalty functions were attempted as

part of the research for this report. They unfortunately

resulted in computational instability and were discarded.

The application of a state variable inequality constraint

technique may work more successfully.
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The application of inequality constraints on CL and

Power to limit the normal and longitudinal accelerations

that the passengers would encounter is another important

contribution that could be made to the problem. It was

determined, for example, that for this aircraft the passengers

would be subjected to about .75 g's in the longitudinal

direction at the beginning of the flight. This is too high

for commercial operation. Similar acceleration perturbations

were observed in the normal direction. It would be of

valuable interest to determine how much the optimum DOC

changes if all of the above constraints were introduced, as

well as to determine the DOC penalty due to air traffic

control constraints.

Significant improvements in the application of the

calculus of variations to this problem is also important. The

outstanding difficulty with the steepest descent method

used was the extremely slow rate of convergence to the optimal.

This is evidenced by the large amount of computing time

necessary to solve the problem. Using the computational

techniques that were found to perform best, approximately 150

control program iterations were required to reach the optimum

from the original steady state nominal. Each iteration

required about 2 minutes of IBM 7094 computing time, which

amounts to approximately 5 hours of computation. This does

not include the many hours of computing time used in developing



a satisfactory approach to the solution of the problem.

The extremely long computation required seems to be due to

a very nonlinear function space created by the unusual

performance index and the nonlinear equation for the fuel

flow rate.

Significant improvements in the application of the

technique must be made if we are to benefit from its theoretical

capabilities. One possible approach to solving the above

problem is to find a method to determine the best direction

as well as step size of 6u in function space which will

maximize the reduction of the performance index in a stable

fashion, as indicated in Appendix B. This might be

accomplished by the proper control of the weighting factor,

W. Two other calculus of variations techniques that may be

useful in the efficient solution of this problem are the

conjugate gradient and the second order methods. Much more

research is also required to gain a better understanding of

the numerical solution of the steepest descent method and to

develop better techniques to insure computational stability.

One of the major shortcomings of the solution of all

optimal control problems requiring numerical solution is that

the most efficient and successful techniques used are generally

different for each type of problem. Much more research is

needed to develop good numerical techniques and procedures that

can be more universally applied.
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NOMENCLATURE

a time cost coefficient of DOC, dollars/second.

AR wing aspect ratio.

b fuel cost coefficient of DOC, dollars/lb. of fuel.

C generalized control variable inequality constraint.

CD profile drag coefficient.

CL lift coefficient.

D drag, lbs.

D AT G

DOC direct operating cost, dollars.

dP total change in 6u

e wing efficiency factor.

TE A G

f( ) function of ( )

FUEL fuel consumed, lbs.

F perturbation matrix of x.

2g acceleration of gravity, ft/sec

g( ) function of ( ).

G perturbation matrix of u.

h altitude, feet.

I YyI , I ( auxiliary integrals.

L lift, lbs.

m aircraft mass, slugs.

NRP engine normal rated power, horsepower.
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Power engine power, horsepower.

Q fuel flow rate, lbs/sec.

s horizontal distance, feet.

SFC specific fuel consumption.

SFCO specific fuel consumption at NRP.

t time, sec.

T thrust, lb.

u vector of control variables.

V velocity, fps.

WAR wing area, sq. ft.

WA weight of airframe, lb.

WE weight of engine, lb.

Wgr aircraft gross weight.

W matrix weighting factor.

x vector of state variables.

z DOC, dollars.

y flight path angle, radians.

6 perturbation.

n propeller-transmission efficiency.

A adjoint variable (influence function).

p air density, slugs/ft3

performance index.

T constraint on terminal conditions.

Q stopping condition.

d_ specified change in terminal conditions.

dT error in terminal conditions.



Subscripts:

( ) initial conditions.

( )f final conditions.

( ) beginning of constraint boundary.

S)2 end of constraint boundary.

(_) vector or matrix.

Superscripts:

( ) time derivative.

( )' distance derivative.

( )* specified terminal conditions.

( )T matrix transpose.

( ) matrix inverse.

( ) nominal program.



Appendix A

OPTIMIZATION THEORY

A.1 Nomenclature description

As a means to determining the optimal flight profile

program, a convenient formulation of the calculus of

variations problem which lends itself to digital computer

solution is presented. An unspecified terminal time problem

is considered and terminal constraints on some or all of

the state variables is optional.

The basic objective is to determine the control

vector time history u(t) in the interval t 0< t < tf which

will maximize a performance index

D = cD[X(tf), tf] (A.l.1)

subject to three sets of constraints,

= f = f[x(t), u(t), t] (A.1.2 )

system differential
equations, to and x(to) given.
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T= T[x(tf), t f] = 0 (A.l.3)

terminal constraints.

= Q[x_(tf) tf] = 0 (A.l.4)

stopping condition.

In contrast to a calculus of variations problem where a

closed form solution is possible, the addition of T and Q

constraints to the formulation is necessary when a digital

computer step by step solution is to be employed. The T

constraints are necessary to satisfy the terminal boundary

conditions while the Q constraint simply specifies when

integration operations have reached a desired stopping

condition. The nomenclature for the above is:

ul(t)

u(t) = (A.l.5)

um(t)

an m x 1 matrix of control variable programs
which we are free to choose.

x 1 (t)

x(t) = (A.1.6)

xn(t)

an n x 1 matrix of state variables which result
from the choice u(t) and x(t ).



fx x (t)

f = . (A. 1.7)

f x (t)
n n

an n x l matrix of known system differential
equations of x(t) u(t) and t.

T1I

= (A.1.8)

Tp

a p x 1 matrix of terminal constraints where
p < n. Each is a known function of x(tf) and tf.

cD is the performance index to be maximized and is
a known function of x(tf) and tf*

0=0 is the stopping condition which determines tf
and is a known function of x(tf) and tf*

A steepest ascent method in the calculus of variations

can now be derived to determine the control vector time

history, u(t), which will satisfy the three sets of constraints

and maximize the performance index, 5. A digital computer

can be used to perform these repetitive operations. Basically,

the technique starts with a nominal control program and

determines the resultant history of the state variables by

integrating from x(t ) to the stopping condition, Q = 0. The



control program is then improved, in a finite step by step

fashion, in an attempt to converge on the specified constraints,

as well as minimize 0. Improvement of the control program

is accomplished by determining what effect local finite

linear perturbations of u(t) (about its nominal value) has

on the three sets of constraints. Appropriate finite changes

in the control program are then made so as to approach the

desired constraint relations. The process is repeated until

all constraints are reasonably satisfied. The rigorous

mathematics necessary to obtain an optimal control program

efficiently is presented in the next section.

A.2 Steepest Descent Method in the Calculus of Variations

Assuming that a nominal control program has been

specified and the state variable time history determined, it

is desired to make improvements in the control program. The

objective is to satisfy the stated constraints, T and Q, and

minimize the performance index, 5. The technique of steepest

descent, presented by Brysoni, works well in this case.

First, consider small linear perturbations, 6u(t), about the

nominal control program where

6u(t) = u(t) - u(t) (A.2.1)

and u(t) is the nominal program

u(t) is a change in the nominal program
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These perturbations will cause perturbations in the

state variables, 6x(t), where

6x(t) = x(t) - (A.2.2)

Substituting these relations into the differential equations

(2.1.2) we obtain to first order in the perturbations.

6x = F(t) 6x + G(t)6u

a f

axn

afn
* * ' xn

.f

9f

m

n

m

n x n matrix

, n x m matrix

(A.2.3)

(A.2.4)

(A.2.5)

and where the partial derivatives are evaluated along the

nominal path.

where

afn
ax,

@f
1

9u 1

n
Bu 1
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Now introduce the linear adjoint equations which

are associated with equation (A.2.3)

T
-F (t)x (A.

This equation applies to three sets of adjoint

variables associated with the constraint functions, that

is,

k D Tk, XQ (A.

2.6)

2.7)

where

= [XcD 1

T
T

'P

. . , x, I]
n

x I

T p . . . ,
T
np

(A.2.8)

(A. 2.9)

-Q n
(A.2.lO)
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The important attributes of the X's is that they are

influence functions, i.e., they specify how much the

terminal conditions will change with small changes in the

state variables.

The terminal values of the adjoint variables are

determined by

XT ((aoA_,(tf) - (4y)
- t=t f

T (3T
_ ( t ) )

- - t=tf

XT (t (aQ
_D(tx) = 3x

- ttf

3x 
' '~ 'f E

t=tf

1 1

p 1
3x 1 ' ' ' ''* -n~

x ' ' '' n1 -t=tf

1 x n matrix

(A.2.ll)

p x n matrix

(A.2.12)

1 x n matrix

(A.2.13)

The terminal values of the adjoint variable, X(t f)i

are evaluated for the nominal path. The value of X(t) along

the path can be obtained by integrating backwards from the

terminal value. The adjoint variables may now be used to
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determine the changes in 0, Y, and Q due to small changes

in the control program, the initial condition, 6x(to),

and terminal time, dtf, by applying the following relation-

ships.

t

d =

to

tf

d= {

t 0

t f
d =

T T +
X ( (t)G(t)6u(t)dt + X ( (t 0)6x(t 0 + 4)dt f

X (t)G(t)6u(t)dt + X (t )6x(t ) + dtf

T TX (tG~t6u~~dt+ x~ (t )6x(t) + odtXQ () _G(t) _u(t) t _Q 0 0f

where ;, \ and 2 are defined on the nominal path as

(M) + f± f)

=Y [ + )T f

(D- + Do f)3t Dx

(A.2.17)
t=tf

(A.2.18)
t=tf

(A.2.19)
t=tf

(A,2.14)

(A.2.15)

(A. 2. 16)
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The value of 6x(t0 ) will be taken to be zero for

this formulation since the initial time is considered to

be fixed.

We now add an additional scalar constraint, (dP)2 ,

whose function is to specify the "total accumulated change"

in the control program over the interval to < t < tf and

is defined as

tf

(dP)2  J 6u(t) W(t)6u(t)dt (A.2.20)

t
0

where W(t) is an arbitrary m x m matrix of weighting

functions which are used to adjust the relative magnitude

of the elements of 6u(t). It can also be used to decrease

the magnitude of 6u(t) in certain sensitive regions of the

trajectory, if necessary. With this constraint, a small

value of dP may now be arbitrarily chosen which will

sufficiently insure small perturbations of 6u(t), the result

being that the linearity assumed in the development of the

steepest descent equations will be reasonably valid. The

magnitude of dP which will sufficiently insure linearity

seems best determined by experience in operating the optimization

program on the computer.

The proper choice of 6u(t) which will minimize the

performance index and satisfy the terminal constraints can

be shown to be
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6u(t) = + W G (Act4 -1 )-x TT-I ) L(dP ) 2 -ad T ila
- IT T_

-1 T -1
+ W G A I dQ m x 1 matrix

(A.2. 21)

where

dQ = dT - X T(to) 6x(t0)

A = X

T

- - =--

-TJQ -T _

tf

T T

T -1 T
A W GA dt

p x 1 matrix

n x 1 matrix

n x p matrix

p x p matrix

I (to) = O

-1 TA dt-'14- - - -D p x l matrix

I (t)= 0

T - T dt
-44 2- - -4 Q4

1 x 1 matrix

IcM( (to) = 0

(A.2.22)

(A. 2. 23)

(A.2.24)

('A.2.25)

I t

I = t

-t

(A. 2. 26)

(A.2.27)
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Observing the formulation of equation (A.2.22) it

is clear that the second term of the right hand side is

zero for the problem being considered since x(to) is

fixed. Note also that the numerator in the square root

of equation (A.2.21) can become negative for large values

of d , thus there is a limit to the magnitude of d for a

given value of dP. A positive sign is used in front of

equation (A.2.21) if the performance index is to be

maximized, a negative sign if it is to be minimized. The

predicted change in 0 for a change in the control program,

equation (A.2.21) is

dO = ±[(dP2 - d TI d )(I -I I I )]

T -l T
+ I I dQ + X T(to)6x(to) (A.2.28)

If x(to) is fixed (as in this problem) and the terminal

constraints are satisfied, T = 0, then equation (A.2.28)

can be reduced to

d} = 0(0 - I TI IT)0 (A.2.29)

which is the gradient of the performance index with respect

to dP. As the optimal program is approached, this gradient

will tend to zero. Using the change in the control program,

6u(t), determined by equation (A.2.21) an improvement of

the nominal program can be made by specifying a new control
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time history as

u(t) = u(t) + 6u(t) (A.2.30)- new - old

The new control program is then used in the new system

differential equations (A.l.2). The whole optimization

process is repeated until the terminal constraints are

satisfied, T = 0, and the gradient (A.2.29) is very small.

A.3 Control Variable Inequality Constraints

For the optimization problem being considered

inequality constraints on the control variables are required

if the results are to be of practical value. The essentials

of a technique to accomplish this requirement are presented

below

Consider a control inequality constraint of the

form

C[x(t), u(t), t] < 0 (A.3.1)

where C is a scalar function, u(t) is a scalar control

variable, and -- X 0 for all u. Only a scalar quantity

is considered for simplicity of presentation. The solution

of optimal control problems with inequality constraints on the

control variable is calculated in the same manner as the

previously described unconstrained system except in the

constraint boundary region. The adjoint equations necessary for
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determining an optimal solution with a control constraint

are

i = -FT (t) X

i = -[F(t) - AF(t)] X

when C < 0, i.e., the system is off
the constraint boundary

(A.3.2)

when C = 0, i.e., the system is on
the constraint boundary

(A.3.3)

where

3f 3C -13C
AF = ( )

- u
n x n matrix (A. 3.4)

n x 1 matrix (A. 3.5)

. .,.D, 11 x n matrix
n

if -

3 f
n

3CW

C C
2- -1f (A. 3.6)
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Also, C(x(t), u(t), t) = 0 determines u(t) when C = 0,

otherwise, u(t) is determined by the change in the nominal

control program as follows

6u(t) = W wjl
-1

(D -x I
(dP) -d I dT I 2

I -I I 1

-1 +f T+ W I xQI Td t < t (A.3.7)

t > t 2

where t1 and t2 are the initial and terminal states of

the region where u(t) is on the inequality constraint

boundary, C = 0. Also

fl ft
-I + I

to t2
t 

t

o 2D

t 
t2

t t2

T af W

To DU

T f -A =W
-OQ 9u

( -) X dt

fT x dt

(,a)T A dt

(A.3.8)

(A.3.9)

(A.3.lO)
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The weighting factor W-1 can be used to control integration

between t1 and t2, that is, set W-1 = 0 when on the constraint

boundary. All other variables used here are consistently

defined in previous sections.

At the ends of the constraint boundary special procedures

are necessary to handle changes in t1 and t2. Several

alternate techniques to handle this difficulty are possible.

The technique used in this report seems to work quite

satisfactorily and is described in Appendix B.



APPENDIX B

COMPUTATION PROCEDURES

In the previous Appendix the analytical structure

needed to solve for the optimal flight profile by the

steepest descent method in the calculus of variations was

developed. In this section, the numerical computing

procedure used in the implementation of this method is

presented. Since the experience gained in the development

of the numerical program is generally applicable to the

solution of other similar nonlinear optimal control

problems, all significant operational problems and techniques

are discussed.

B.1 Basic Computing Procedure

The basic computing procedure used in the solution

of the optimal flight profile is presented in this section,

while the sections that follow go into more depth as to how

the procedure was implemented. The procedure is as follows:



(a) Select and store an initial nominal control program

which will result in a feasible and reasonable initial

flight profile.

(b) Compute the nominal profile by integrating the state

differential equations forward from the initial condi-

tions to the stopping conditions, Q = 0, and store the

state variables.

(c) Determine the values of the adjoint variables, X, by

simultaneously evaluating F and integrating X backwards

from A(se). At the same time calculate G and store

A G and A G. Also, perform the integrations necessary

to obtain the numbers IT, IT, and 10.

(d) Determine the gradient dO/dP and the error in the

terminal conditions, T. If both are equal to zero,

or nearly so, then the profile is at an optimum and

computation is terminated; otherwise, continue.

(e) Calculate a value of d which will improve the terminal

conditions.

(f) Select a reasonable value of dP.

(g) Using the value of the variables above, determine the

change in the control program, 6u, necessary to make

a reduction in the performance index or to improve the

terminal conditions.

(h) Obtain a new nominal control program, u , by

u =u + Su-new -old -

Then continue the optimization procedure by restarting

at (b).



B.2 Computer Program

The procedure presented in the previous section

was computerized using the MAD programming language and

processed on the IBM 7094 computer at M.I.T. An outline

of the computer program is shown in block diagram form

in Figure 9. Each of the program blocks are discussed

in the sections that follow. This block diagram schematically

illustrates the procedure listed in Section B. However,

since the Initialize Program routine, block 1, simply reads

in constants, coefficients, and initial and final conditions

required for the operation of the program, it will not be

discussed. Block 4 is equally straight forward and will

not be discussed either. The D and E matrices in block 5

are simplifying notations as follows:

D = AT G
E TG

TQ

B.3 Initial Nominal Control Program

This section presents a discussion of the selection

of the initial nominal control program, u, shown in program

block 2 of Figure 9.

The choice of the initial nominal control program is

theoretically unimportant if the function space of the problem

is convex since the optimum profile can be reached from any



Initialize Program

2
Select initial
nominal u

Integrate and
store x

4
Evaluate and store

5
Evaluate F and G

Integrate X and I

Store D and E

6
Calculate and test
Y = 0 and

d- 0dn

no

Calculate 6u and u

Computer Program Flow Diagram

yes
-* STOP

Figure 9.
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location in that space. However, the efficiency of

numerical solution of a nonlinear problem depends, to a

great extent, upon the selection made. In an attempt to

find a good nominal control, three initial control program

techniques were tried.

The first was a technique of initially determining

the optimal control program of a very short range flight.

This required significantly less computing time to solve

than the fifty mile range case. The proposed procedure was

to use the proportionally streched optimal control program

of the short range as a near optimal initial nominal for

a slightly longer range. This procedure would be continued

until the 50 mile optimum was achieved. Each of the short

ranges selected were binary sub-multiples of 50 miles and

range increases were accomplished by doubling the previous

range. However, this technique proved to be less than

desirable for this problem since each of the initial nominal

control programs for an increased range were not near the

optimum and, therefore, a significantly large amount of

computing time was needed for each range case before the

optimal for that range could be reached. It was concluded

that starting with a good choice of an initial nominal at

50 miles would be more efficient.

With that in mind, an attempt was made at guessing a

nominal control history which would result in a low value of



the performance index while flying a reasonable flight

profile. The guess was guided by an analytical technique

which, unfortunately, could not take into account the

dynamics of the system. Consequently, the flight profile

was far from realistic since the altitude and velocity

oscillated severely, the altitude went significantly

negative at times, and all state variables satisfied the

desired terminal conditions poorly. The later consequence

was quickly and automatically rectified by the program, but

the former situations resulted in a very nonlinear function

space. The performance index obtained by this technique was

very low and, in fact, near the optimal. However, the

program progressed so slowly toward the optimum from this

point in function space that, for all practical purposes,

it did not move at all.

Both of the techniques discussed above for determining

the initial nominal control program were abandoned in

preference for the following technique which was much simpler

to initiate and results in a function space which is more

linear. This is desirable since the more linear the function

space is, the faster the program moves toward the optimal.

The technique was simply to fly the aircraft at the values of

the initial conditions of the state variables over the 50 mile

range. This resulted in a large value of performance index,

but progress toward the optimal profile was effectively faster

than the other two techniques.
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B.4 Integration Technique

Integration of the state variables, x, the adjoint

variables, X, and I shown as program blocks 3 and 5 of

Figure 9 was carried out by the use of the Runge-Kutta

fourth order integration technique using an integration

interval, As. The general equations employed in the

forward integration of the state variables are illustrated

as follows:

x = f(u(s), x(s))

x' = f (U(s) + u(s+As) x(s)+x'
-2 2- 2

11(s) + u(s+As) + As
3 2 ' (s) + x

x = f (u(s+As), x(s) + xI As)
-43

x(s+AS) = x(S) + -s- [x' + 2(x' + x') + x']6 -2 -3 -4

These integrations are performed from x(s0 ) to the stopping

condition, Q = 0.

The general equations employed in the backwards

integration of the adjoint variables are also illustrated as

follows:



A' = g(u(s) , x (s) , A (s) )

u R(s)+u(s-As) x(s)+x(s-As) _
-2 2 ' 2 - 1 2

U (s)+u(s-As) x (s)+x (s-As) s)
- 2 2 -22

AL' = g(u(s-As), x(s-As), A(s) - X'As)

A(s-As) = A(s) - [A + 2(A' + A') + A']6 2 -3 -4

These integrations are performed from x(sf) to so. The

integration procedure used in obtaining I is essentially

the same as for A.

To insure stability and accuracy of the numerical

integrations, the size of the integration interval, As,

was based on the criteria that the equivalent time step at

all positions along the flight profile was to be less than

one-tenth the period of the highest frequency component

of the system, as well as less than the smallest time constant

of any damped component of the system. The critical frequency

component of this system was a 22 second phugoid oscillation

of the aircraft at the initial and final flight conditions

of 160 feet per second. Since the phugoid frequency decreases

with speed, and since the aircraft is at 160 feet per second

for only a very short time, a value of As equal to 400 feet

was selected even though this violated the previous criteria

slightly.



B.5 Test for Optimality

A test to determine if an optimal flight profile

has been achieved is included in the optimization procedure

as illustrated in block 6 of figure 9. Both the gradient

and the terminal conditions are evaluated. If both are

equal to zero, then the optimal profile has been achieved.

However, for practical reasons, neither of these terms

need be exactly zero. The question is, at what value of

gradient and terminal conditions do you stop computing

and accept the current profile as being optimal.

In the derivation of the gradient equation, A.2.29,

the terminal conditions have been assumed to be satisfied

exactly. However, it has been observed that the value of

the gradient for the 50 mile flight profile case is relatively

insensitive to small errors in the terminal conditions.

Therefore, the terminal conditions were arbitrarily considered

to be effectively zero if:

T |I < 1 fps

IT2 | < .002 radians

I31 < 10 feet

As for the gradient, an interesting relationship was observed

for this problem. It was found that generally the gradient

changed rather slowly when the program was making progress

in reducing the performance index and, therefore, also making
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changes in u(s) and x(s). As the flight profile approached

the optimum, this relationship was reversed; that is, little

or no change in the values of 0, u(s) or x(s) were observed,

but the value of the gradient decreased rapidly. After

this condition was observed for several program passes, the

program was stopped and the current flight profile was

considered to be the optimum. It was found to be much more

practical and effective to monitor the program visually,

than to have the program automatically evaluate itself for

optimal conditons.

B.6 6u Calculation

If the flight profile is not optimal as evaluated

above, then a change in the control program, 6u, is evaluated

with the objective of reducing the performance index and/or

improving the terminal conditions. A new nominal control

program is then obtained by adding 6u to the old program.

As given by equation A.2,21, the determination of 6u consists

of terms which have been evaluated along the nominal profile

(block 5 of figure 9), as well as three variables that

we are at liberty to choose; dS, dP and W-1 . The manner in

which these three variables are chosen is important to the

stability of the numerical computation as well as the rate

at which the optimization process proceeds towards the optimal.
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The technique employed in the selection of these variables

is the substance of discussion in this section.

Again referring to equation A.2.21, it is observed

that the second term on the right-hand side is only used to

make changes in the terminal conditions, and is accomplished

by controlling the value of dQ. If no change is needed or

desired, 66 is set to 0. The function of the first term of

this equation is to specify a change in u for the purpose

of reducing the performance index. The magnitude of the

control program change is specified by the value of dP, but

tempered by the desired change in the terminal conditions,

d , in the square root term. Care must be taken to insure

that da is not so large that the numerator of this term

becomes negative. The value of dP was chosen to always insure

that the system responded nearly linearly to 6u. Further

discussion of this is presented later in this section.

The procedure used in making a change in the control

program for this problem was to either make an effort to

only decrease the performance index or to only improve the

terminal conditions, but not both. This procedure made it

easier to monitor the operation of the computer program and

to detect the onset and cause of any computational instabilities.

The program control policy was to always improve the terminal

conditions in preference to reducing the performance index

if any of the terminal conditions were poorly satisfied.



For most of the optimization process, the tolerated errors

in the terminal conditions were set to fairly large values,

since these errors made little difference in the ability

to reduce the performance index. In fact, if only small

errors had been tolerated, the computer program would have

spent most of its time and effort correcting these errors

since the terminal conditions always change by at least a

small amount when effort is made to reduce the performance

index. The maximum values of |j| tolerated were 5 feet per

second, .025 radians, and 100 feet for V, y, and h respectively.

Therefore, dB was set to 0 when all of the terminal errors

were less than these values. When the flight profile was

very near its optimal, then the tolerated values of the

terminal errors were reduced to those specified in Section 6.5.

When only the terminal conditions were to be improved,

the numerator of the square root term in equation A.2.21 was

set to zero, and the value of da was set equal to the

terminal errors as follows:

d = - T

This procedure usually resulted in almost completely eliminating

the terminal errors when the specified control purturbation,

6u, resulted in a linear response of the system. To insure

linearity, the numerator of the square root term of equation

A.2.21 was evaluated. Since the value of dP was always chosen

to insure that the system responded nearly linearly to 6u,
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a negative value of the numerator indicated that the system

would probably respond nonlinearly to the value of dg

commanded. If this was the case, d was repeatedly

decreased by fifty per cent until the numerator was equal

to or greater than zero. Several computer passes would

then be required to satisfy the terminal conditions.

Whenever it was desired to change the performance

index, d was set to 0. Therefore, dP determined the

magnitude of the perturbation in the control program, 6u.

dP was evaluated on the basis of an approximate application

of equation A.2.20 as follows:

dP = dP [(AuT W Au) (S - s )K - 0

where Au was the nominal control change desired over the

flight profile and was selected as

AC L '1

Au =
APower 1000

The additional term, dP is described further on in this

section. The weighting factor, W, compensates for the differ-

ence in magnitude of the two control variables and was



selected as

1 0

W = 0 10-8

The inverse of this term was used in equations A.2.21,

.25, .26 and .27 and was held constant over the complete

flight profile. Substituting the above values results

in

dP = dPK[ .02 sf]2  = 72.6 dPK

since s equals 50 miles and s0 equals zero. This equation

was an integral part of the computer program.

The addition of the dPK term in the equations above

provided an easy method for changing the magnitude of

Au whenever desired. At the beginning of the optimization

process it was arbitrarily set to 1.

Since it was important that the optimization process

proceed toward the optimal flight profile rapidly, it was
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desirable to have dP set to as large a value as possible,

but not so large that the system responded nonlinearly to

the control program perturbation, 6u. The criteria used

for determining linearity was to compare the actual change

in the performance index with the change predicted by

equation A.2.28. If the ratio of actual to predicted was

greater than 1.50 or less than .67, then the system response

to 6u was considered to be too nonlinear and dPK was

decreased by 50 per cent. If the ratio of actual to

predicted was between .83 and 1.20, then the system pertur-

bation was considered to be more linear than necessary and

dPK was increased by 50 per cent. The criteria given above

was established only after considerable experience with the

program had been attained. It worked quite satisfactorily.

The last important topic in this section is the control

of the weighting factor, W~ 1, in equations 2.2.21, .25,

.26, and .27. As stated earlier, the inverse of weighting

factor selected for the initial evaluation of dP was used

in these four equations. The weighting factor specifies

how the total control change will be distributed between

the two elements of 6u and, therefore, specifies the direction

the system will move in function space. The initial value

of W"1 stated earlier worked quite adequately at the beginning

of the optimization process. However, as the process evolved,



it was found that this distribution began to favor changes

in CL. The resultant consequence was that the rate of

reduction of the performance index became very slow. In

fact, the changes in CL became so large that the computational

process became unstable. The most efficient and direct

remedy to this problem was to visually monitor the magnitude

of the calculated control changes, make value judgments

as to if and how the distribution should be changed, and then

to input a new weighting factor to the program when required.

An important conclusion gained from the experience of

controlling W 1 was that there is probably an optimum

weighting factor, which may vary over the flight profile,

that will maximize the rate of reduction of the performance

index, 0. However, no theoretical technique was found that

would determine this weighting factor.

B.7 Inequality Constraints

If the flight profile optimization problem had no

inequality constraints on the control variables, the des-

cription of the computing procedure would now be complete.

However, since this is not the case, this section presents

a brief description of the inequality constraint techniques

used in this problem.
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The computational theory applied when the control

variables encountered boundary constraints is presented

in section A.3. As implied by the integration intervals

t 1 and t2 in that section, the control variables are

assumed to go on and come off the boundary constraints

only once. To eliminate this restriction and to provide

computational flexibility, a vector of flags associated with

each control vector was established. A corresponding flag

was then set at each integration step whenever a control

variable was on the boundary. This resulted in a very

simple program control and allowed the control variables to

go on and come off of the constraint boundaries an unlimited

number of times.

With this technique, the integrations of I,

equations A.3.8. .9, and .10, were handled very easily by

simply setting the appropriate element of W- 1 to zero

whenever a control variable flag was found set, and then

resetting that element of W 1 back to its previous value

when off the boundary. The evaluation of 6u, equation A.3.7,

was handled in the same manner. As derived in Section 2.3

the value of AF, equation A.3.4, was always zero. Therefore,

no special computational procedure was required for the

integration of x when on any constraint boundary.



After the calculation of unew it was necessary

to determine if any segment of either control vector along

the flight profile had encountered a constraint boundary.

Therefore, each point of the control program along the

flight profile was evaluated to determine if it had violated

the inequality constraint, C, equation A.3.1. If so, the

appropriate control variable was set equal to the value of

that boundary and the associated flag turned on. Special

consideration must be given to allow the control variable

to come off the constraint boundary. Several computerized

techniques were tried but, unfortunately, each had draw-

backs that resulted in computational unstability and in-

efficiency. The procedure that was finally accepted was to

monitor the program visually. By observing the shape of

the control program, one could easily tell when and where

the control program should come off the boundary. Releasing

a control variable from a boundary was accomplished by

simply setting the control flags in this region back to

zero. As a measure of caution, the first and last few flags

on a bounded control variable were occasionally set to zero

even though it lpoked as though the variables would not have

come off the boundary.


