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ABSTRACT

A method of vehicle routing and scheduling for an air based

intraurban transportation system is developed. The maximization of

level of service to passengers in a system operating under time varying

demand is considered on both the optimal and heuristic levels. It

is shown that while the determination of an optimal schedule is

mathematically feasible, it is computationally impractical. Heuristic

vehicle control algorithms are developed and tested using computer

simulation. It is shown that, as compared to fixed routing strategies,

dynamic vehicle routing strategies provide a greater level of service

to passengers while substantially reducing the direct operating costs

of the system.
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Chapter 1

INTRODUCTION

1.1 Motivation for Research

The Ultra Short Haul (USH) system is an air-based intraurban

transportation system. The combination of advances in V/STOL technology,

and a degradation in the quality of surface travel, has made USH a poten-

tially attractive alternative transportation system in some urban areas.

The USH system has significant advantages over ground-based systems in

the urban environment. Since its only ground facilities are terminals,

the USH system requires a fraction of the land necessary for a comparable

ground-based system. The resulting community impact (noise, exposure,

housing and business displacement) is also far less. Since the vehicles

do not travel on fixed tracks or guideways, vehicle routings are not

built into a USH system as they are in ground-based systems. This makes

the air-based system more adaptable to changing transportation patterns

of the area it serves.I

To become operational, the USH system must break into a

market against established, subsidized competition. The system's

greatest attraction for passengers is high level of service (low travel

times). But this system is relatively expensive to operate, and the

passengers receive this better service at the expense of higher fares.

While there is a market for this type of service, the fraction of

travelers with a high enough value of time to use the system regularly

is probably small.



In order to attract enough demand to maintain operations, the

USH system must offer a high level of service (LOS) to all potential

customers. The system's ability to offer this high LOS depends on good

overall design, and effective use of resources during operation. System

design involves the selection of an operating area, and the determination

of network layout and fleet requirements. Operations deal with the

routing and scheduling of vehicles, the goal of which is to offer the

maximum LOS to passengers. The operations of the USH system are compli-

cated by the nature of the demand, a significant portion of which comes

from the journey-to-work market. This demand is highly directional and

concentrated in the morning and evening rush hours. Therefore, the

feasibility of the USH system, to a large extent, depends on its ability

to operate efficiently under significantly varying demand patterns

during the day.

A total system analysis and optimization was conducted by

Mann, and a system to serve the Long Island area was designed.2 ,3 The

aircraft requirements and schedules were determined using a fleet

assignment model FA-4.54. This model assumes that daily demand for a

particular origin-destination pair is strictly a function of frequency

of service. That is, for a given number of departures, there is a

unique demand. This arises from the assumption that average wait time,

and hence average trip time, depend only on headway. For a system with

relatively constant demand over time, and evenly spaced departures, this

is a reasonable model. But in a system with significant time variations

in demand, the LOS offered to a particular passenger depends not only on

"low-



the total number of daily departures, but also on their times, and on

the time at which service is requested. This aspect of the USH system

makes the applicability of FA-4.5 questionable.

A review of existing vehicle routing and scheduling methods

concluded that no techniques truly applicable to the USH operating

environment are available. It is the lack of such a design tool which

provides the motivation for this study. The goal of this work is to

develop a method of vehicle routing and scheduling to be used as part

of a total USH system design.

1.2 Summary

The anticipated result of this study is a methodology to be

used in USH system analyses, the usefulness of which depends on its

applicability to future USH systems. Since methods are developed for

use with, and tested on particular systems, it is essential that these

testing scenarios be representative of realistic USH systems. The last

section of this chapter is dedicated to identifying such an environment.

This is done in two parts. First, the characteristics common to all

USH systems are identified. Next, those factors unique to each operat-

ing scenario, which significantly affect system performance are

considered. These factors vary widely between different areas, but the

range of values is narrowed by restricting consideration to those areas

highly conducive to successful USH operations. The factors determined

in the actual system design, such as fleet size, vehicle characteristics,

are treated as freely varying parameters.
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The USH scheduling problem is first approached on the optimal

level. The objective is to minimize the average time spent in the system

by all passengers. The optimal schedule can be obtained as the solution of

a shortest path problem. While this formulation assures the existence of an

optimal schedule, it is computationally impractical. A brief discussion of

optimal scheduling for the USH system appears in Appendix A.

The scheduling problem is next approached on the heuristic level.

A simulation model for the USH system is developed and is used as a testbed

to compare various vehicle control algorithms. This model is described in

Chapter 2. The development and testing the control algorithms is described

in Chapter 3. Two classes of controls (fixed and dynamic) are tested. The

fixed controls are used to check out the simulation model, and to estimate

the performance of the USH system when it is operating in a manner similar

to existing transportation systems. The dynamic controls route the vehicles

and schedule departures according to actual system conditions. Two types of

dynamic control strategies are investigated, these are routing and holding

controls. Dynamic vehicle routing enhances the system's ability to cope with

varying demand patterns, and reduces the sensitivity of system performance

to demand peaking and directionality. Holding controls are used to adjust

the pace of the system to changing magnitude of demand. Three holding stra-

tegies are investigated. The first two, minimum headway, and an extention

of the routing strategy, proved to be ineffective. The third strategy, based

on system operating cost, offers significant reductions

in operating cost with only a small degradation in LOS. The results of this

, ""W04



investigation indicate that system performance is maximized when the vehi-

cles are routed dynamically and are held according to this final strategy.

Three areas for further research related to the USH system are

suggested in Chapter 4. These areas are: 1) Application of the

simulation model and control algorithms to USH sensitivity analysis;

2) Modification of the algorithms to more fully exploit the capabilities

of the USH system; 3) Investigation of basic transportation questions,

such as fixed versus dynamic scheduling, and the determination of a good

measure of LOS.

1.3 Terminology

To reduce the possibility of ambiguity in this study, we now

state definitions for several commonly used terms.

The time required for a passenger to travel from his origin (home

or business) to the nearest system terminal is access time. Egress time

is defined to be the time spent from deboarding the vehicle and leaving

the system until the final destination is reached. For the remainder

of this study, the terms origin and destination refer to the terminal

where a passenger enters and leaves the USH system. Arrival time is

defined to be the time at which the passenger enters the system. The

time spent in the vehicle is ride time. Travel time is defined to be

the sum of the access, wait, ride and egress times, or the total time

spent in transit. The time the passenger spends in the system is the

tri time, the sum of ride and wait times (see Fig. 1.1). Level of

service, LOS, is a measure of the cost of travel time to the passenger.



LEAVE HOME ENTER TERMINAL BOARD VEHICLE DEBOARD VEHICLE ARRIVE AT WORK

Figure 1.1 - Timeline for journey to work trip.



In general, LOS refers to average travel time. But in the urban

environment, there is evidence that the uncertainty (or variance) of

travel time is also a significant factor.5 While this can be justified

intuitively, a precise definition of LOS is not offered here. The

realization that both the mean and variance of travel time are involved

must suffice. Travel time depends on access and egress times and hence

on system design (number and locations of terminals) which is beyond

the scope of this study. Therefore, LOS will refer only to trip time.

The direct operating cost, DOC, for each vehicle is the total cost

incurred by flying the aircraft. This cost includes crew, fuel, depre-

ciation, maintenance, and insurance costs. The system DOC is the sum

of the costs for each vehicle. System performance is a measure which

relates system costs and LOS offered to passengers. To a first approxi-

mation, performance relates average trip time and system DOC. Consider

a system operating under three different policies (Figure 1.2). Clearly,

maximum performance is not achieved at B, since the same LOS can be

offered for less cost (A), and better service can be offered at the same

cost (C). But without more information, we cannot establish whether

the maximum performance is achieved at A or C. In the example, A and

C comprise the set of Pareto Optimal points. More precisely,

P. = (E(T)i, DOCG), is a Pareto optimal point, if E(T). < E(T)., and,

or DOC 1.< DOCG, for all i and j. In a system design, many operating

configurations are investigated. While the best operating point depends

on system objectives (max profit, max market share, etc.), it is obvious

that the system should be operated at a point on the Pareto optimal



Average
Trip
Time

Average
Trip
Time

e c

System Operating Cost

Figure 1.2 - Illustration of system
performance measure.
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Figure 1.3 - The Pareto Optimal Boundary.



boundary (see Figure 1.3). The goal of this study, in this context, is

to develop methods to establish the Pareto optimal boundary over a wide

range of system configurations and operating costs.

1.4 The USH System

In this section, the USH system and its operating environment

are described. The purpose here is to establish guidelines for the

development of operating policies and to determine the basic character-

istics of the scenario in which these policies will be tested.

The USH system operates in an urban environment, which can

be divided into a suburban region and a central business district (CBD).

As indicated before, the fraction of all travelers who place a great

enough value on their time to regularly patronize the USH system is

likely to be small. Only in an urban area is the population large

enough to insure a sufficient level of patronage to maintain operations.

In this environment, ground transportation systems are more prone to

congestion. By degrading the quality of surface travel, this congestion

makes the air-based system more attractive to individual passengers.

The urban environment is essential to USH operations for both reasons.

USH demand is comprised of commuter and general travelers.

The demand from the commuter, or journey-to-work market is strongly

time-dependent and highly directional. All requests for service from

this group are made during the morning and evening rush hours. During

the morning rush hours, almost all commuter trips are made from the



suburbs to the CBD, while in the evening, almost all requests are for

trips from the CBD back to the suburbs. The total number of trips made

by this group in the morning and evening rush hours is roughly equal.

The demand from the general travel group displays neither time dependence

nor directionality. There are three types of trips made by general

travelers. These are: CBD to suburbs; suburbs to CBD; and suburbs to

suburbs. The total demand for each type of trip will be assumed roughly

equal, and the rate at which requests for service, for each type, arise

will be assumed to stay constant throughout the day.

Passenger arrivals at the USH terminals are random. There

are many factors which affect the actual arrival times of individual

passengers. Each passenger is expected to act and be affected by them

independently. Under these conditions, the level of uncertainty is

such that knowledge of past arrivals is worthless in predicting the

exact times of future arrivals. For these reasons, the arrival of passen-

gers is modeled here as a Poisson process. The general passengers

arrive according to a homogeneous Poisson process. The commuter passen-

gers arrive according to a nonhomogeneous Poisson process, where the

average arrival rate, (or "intensity function") depends on the time of

day. For a particular OD pair, serving both passenger types, the total

average arrival rate at a given time is the sum of the average rates

for the two passenger types.

Due to the directional nature of the demand in the USH system,

three types of nodes (or stations) can be identified. There are morning
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(evening) commuter origins (destinations), which are located in the

suburbs. Also, there are the morning (evening) commuter destinations

(origins), located in the CBD. Both of these types of nodes display

not only time-varying demand, but also unbalanced demand during the

rush hours. The third type of node displays some daily variation in

the level of demand, but the demand is balanced. That is, the number

of passengers entering and leaving the system are roughly equal through-

out the day. This is the pattern of demand at, say, airports.

The USH network is a complete graph. That is, a potential

direct route exists between every pair of nodes. This property yields

a tremendous amount of routing flexibility to the system, and makes the

USH system truly unique among urban transportation systems.

For a particular system, the geography of the operating area

plays a major role in determining the relative attractiveness of air

and ground-based travel. Natural barriers, such as water and mountains

can degrade the quality of surface travel, and hence reduce its market

share. Bottlenecks at bridges and tunnels affect the quality of surface

travel due to congestion, and the cost of tolls. These barriers also

constrain suburban growth, the effect of which is to force a longer

commuting distance, since the suburbs must grow away from the CBD at

a rate greater than in a physically unconstrained area. For example, in

a coastal city where the suburbs are forced to grow to one side of the

CBD, the maximum commuting distance is about 40% longer than in a non-

coastal city of the same area. In a city on an island or in the



mountains, the suburbs may be constrained to grow along a corridor,

which could easily double the maximum commuting distance.

The effect of greater commuting distance on travel time is

much more profound on surface than air travel.6 This can be illustrated

by comparing a plot of time versus distance traveled for the two modes

(see Figure 1.4). The air-based system has higher zero length costs

due to greater access and egress times, a result of having fewer termi-

nals. As distance increases, the air system's speed becomes a signifi-

cant factor, making this mode increasingly attractive. In summary, the

USH system captures its largest market share in areas where natural

barriers and congestion make surface travel long and difficult.

Also affecting system operations is the fraction of total

demand which comes from the commuter market. This fraction determines

the level of demand-peaking, which can have a profound effect on system

efficiency. If fleet requirements are determined on the basis of the

off-peak periods, which prevail for the greater part of the day, conges-

tion during the peak periods can cause a drastic reduction in LOS to

passengers served during the rush. This variation in LOS during the

day can cause a lack of confidence in the system, and a significant

reduction in overall demand. If, on the other hand, the system is

designed to handle the peak demand, then for most of the day, it is

underutilized.
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Figure 1.4 - Comparison of surface and air travel times.
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Chapter 2

SIMULATION MODEL FOR THE USH SYSTEM

In this section, the basic characteristics of the Simulation

Model for the Ultra Short Haul transportation system (SMUSH) are

described. SMUSH was developed specifically to analyze the performance

of the USH system operating under various vehicle routing and scheduling

strategies. A user's manual, containing a source list and sample input,

is presented in Appendix B.

SMUSH is written in the GASP IIA simulation language. GASP

is a collection of FORTRAN subroutines which provide the general frame-

work for event paced simulation. A model written in GASP is a FORTRAN

program, consisting of GASP and user provided subroutines. Due to this

structure, the simulation methodology and program code are completely

accessible to the user. Only a basic understanding of FORTRAN and simu-

lation techniques is required to implement and modify the language.

Also a GASP model can be run on any FORTRAN compiler. These are the

primary reasons that GASP was chosen for this model.

SMUSH is composed of around 20 subroutines of which about

half are standard GASP routines. The GASP portion of SMUSH provides

the mechanism to store and retrieve data, advance the simulation clock,

and collect statistics. The non-GASP portion is dedicated to the input,

output, and handling of data unique to the USH system.

SMUSH is structured such that the following information is



specified by the user.

- Network layout

- Fleet size, and vehicle parameters

- Route structure

- Average passenger arrival rates, as a function of time of

day

The output of SMUSH consists of the following:

- Vehicle schedule map

- Passenger trip time statistics

- Direct operating costs

- Vehicle load factors

2.1 GASP

GASP is a general framework for discrete event simulation.

In event paced simulation, system parameters are considered and updated

at discrete points in time. These points correspond to the occurrence

of events, such as passenger arrival, and vehicle departure events. The

versatility of GASP stems from the fact that the user defines and

provides the logic for all events.

GASP controls the progress of the simulated system by

maintaining a list of future, or pending, events. Each entry in the

list consists of an event code and time of occurrence. This list is

ordered chronologically, with the most pending events first. Upon

completion of an event, GASP advances the simulation clock to the time

of occurrence of the next item on the list. System parameters are then



updated in a manner corresponding to this event code.

System parameters are stored in a series of files. File 1 is

always the event file, and contains the information corresponding to the

list of pending events. Files 2 and beyond are for the storage of user

defined system parameters. (In SMUSH, for example, File 2 is used to

maintain information about passengers waiting at the nodes in the USH

network.) Each entry in a file contains a set of system attributes.

For example, an entry in the event file corresponding to a vehicle

departure contains the following information.

- Event code for vehicle departure

- Time of departure

- Station number from which vehicle is leaving

- Station number at which the vehicle will next arrive

- Route number

All file entries, and their associated attributes, are stored in two

one-dimensional arrays (NSET and QSET). Integer valued parameters (such

as event code) are stored in NSET, real-valued parameters are stored in

QSET. (For simplicity, let NSET refer to both NSET and QSET.) The

attributes associated with an individual entry are stored together as a

block in NSET. But in order to save storage space in NSET, entries in

each file are not stored sequentially, or necessarily together. When

a new file entry is made, it is loaded into the first available block

in NSET. To keep track of the files, GASP stores (in conmon) the

addresses of the first and last entries of each file. And for each



entry, GASP stores the addresses of the predecessor and successor entries,

in that file, along with the associated attributes. So for the previous

example of the event file entry, the list of attributes is increased by

two, and the following is added.

- Location in NSET of the event just prior to this one.

- Location in NSET of the event immediately after this one

Obviously, care must be taken in manipulating entries of these files to

maintain order. Fortunately, the GASP language provides the algorithms

to locate, add, and delete entries, and to update the file pointers.

For example, the algorithm to locate a file entry (Subroutine Locat) is

as follows:

1. Find address of first file entry.

2. Go to this address in NSET.

3. If this is the desired entry STOP.

4. Find address of successor entry, go to 2.

To remove an entry from a file, once the location is known, Subroutine

RMOVE is used. RMOVE deletes the entry, calls Subroutine SET to update

the file pointers, and loads the attributes of this entry into two

buffer arrays, ATRIB (real values) and JTRIB (integer values). These

buffer arrays are the method of communicating information between NSET

and the rest of the program. To add an entry to a file, the attributes

must be loaded into the buffer arrays, then Subroutine FILEM is called

to make the addition, and update the file pointers.

Simulation time is controlled by the repeated application of

the following algorithm.



1. Locate and remove the first entry in the event file.

2. Advance the simulation clock to the time of occurrence

of this event.

3. Call the subroutine corresponding to this event.

For any simulation variable statistics can be collected for

either sample values or time weighted values of the variable. This is

done by calling subroutines COLCT (sample values) and TMST (time weighted

values) during the simulation. These routines maintain the following

parameter statistics.

- minimum observed value

- maximum observed value

- sum of values

- sum of the squares of the values

- total number of observations

A flow chart for a general GASP model is shown in Figure 2.1.

2.2 USH Simulation

Using the GASP framework, SMUSH models the USH system by

simulating the movements of passengers and vehicles. These movements

are controlled by the use of the following five events:

- System Initialization

- Passenger Generation

- Passenger Arrival

- Vehicle Departure

- Vehicle Arrival
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Figure 2.1 - Flow chart for a general
GASP model.



Corresponding to each event is a subroutine in SMUSH, which is called

when the event occurs. These subroutines update system parameters and

set up future events as necessary.

The movements of vehicles and passengers are handled

separately in SMUSH. The actual simulation process can be illustrated

by considering first the handling of passengers, and then the control of

vehicle movements through the network.

2.2.1 Passenger Simulation

All passengers and their arrival times are generated using

the algorithm which is outlined fn Section 2.2.2. At the time of gene-

ration, an entry into the event file is made for each passenger. This

entry corresponds to a future passenger arrival event. The arrivals

of all passengers can be generated at the start of simulation, but this

would require an entry to be stored simultaneously for all passenger

arrivals. To conserve storage space and to avoid the possibility of

overflowing NSET in a long run, SMUSH generates passenger arrivals in

half hour blocks. For example, at the start of simulation SMUSH gene-

rates and stores arrival events for all passengers who will arrive in

the interval 0 to .5 hours. Another passenger generation event is then

stored to occur at .5 hours into the run.

We will now trace a single passenger through the system. At

the time of generation, the following attributes are stored in the event

file.

- Event code for passenger arrival



- Time of passenger arrival

- Passenger's origin node number

- Passenger's destination node number

- Passenger type

Suppose this passenger is traveling from i to j and has an arrival event

scheduled to occur at time ta. When the simulation clock is advanced to

ta, this entry in the event file is removed, the attributes are placed

in the buffer arrays, and the subroutine corresponding to a passenger

arrival event is called. The passenger arrival event updates the number

of passengers waiting at node i and stores the passenger's attributes

in File 2. File 2 is a list of the attributes of all passengers waiting

at the nodes in the network. This passenger remains in File 2 until a

vehicle departure event occurs, which satisfies all the following condi-

tions.

- Vehicle is leaving from node i

- The vehicle will stop at node j, on its present route

- There is a seat available on this vehicle

If these conditions are satisfied, the passenger's attributes are removed

from File 2, and the following entry is made to File 3. (It should be

noted that the entries in File 2 are maintained in the order in which

they are made. When File 2 is scanned for passengers to board, the

oldest entries are removed first. Hence, the passenger loading disci-

pline is FIFO.)

- Passenger type

- Origin (i)

-~- ~-~-



- Destination (j)

- Vehicle number

- Time of arrival (t a)

- Time of boarding (tb)

At this point, the number waiting at node i, and the number of seats

available on this vehicle are both decreased by one. The passenger then

remains in File 3 until a vehicle arrival event occurs which satisfies

the following conditions.

- Vehicle number corresponds to that which the passenger

boarded

- Vehicle is arriving at j

If these conditions are met, the passenger is removed from File 3, and

the following statistics are collected.

twait =tb - ta

tride =tnow - tb

ttrip twait tride

It should be noted that as the passenger's attributes are transferred

from one file to the next, the space left behind is cleared, and is used

by future passengers. And once the passenger's entry is removed from

File 3, and the final statistics are collected, SMUSH is done with him.

Table 2.1 illustrates the handling of information for a single trip.



ta = time of arrival

tb = time of boarding

PTYPE - passenger type

1) commuter

2) general

*Event code for passenger arrival

Table 2.1 - Flow of passenger data in SMUSH.

Passenger Arrives at Boards Arrives at
Generated Origin Vehicle Destination

File 1 2 3 -

ATRIB(l) ta ta ta

ATRIB(2) - - tb

*
JTRIB(l) 2 PTYPE PTYPE -

JTRIB(2) ORIGIN ORIGIN ORIGIN -

JTRIB(3) DEST. DEST. DEST. -

JTRIB(4) PTYPE - VEH. # -



2.2.2 Simulation of Passenger Arrivals

The arrival of passengers into the USH system is stochastic.

To model this, SMUSH generates individual passengers according to a time

varying Poisson process. Generation of the appropriate exponentially

distributed interarrival times is a common method of determining arrival

times in a homogeneous Poisson process. When an arrival occurs, the

time of the next arrival is calculated as the sum of the present time

and a random deviate corresponding to the interarrival time. The system

does nothing until this next arrival occurs, and then repeats the process.

Consider a non-homogeneous arrival pattern, such as the one shown in

Figure 2.2. Suppose an arrival occurs at t1. An interarrival time with

parameter Xl is then generated (At). The algorithm then sits and waits

until t2. By this time, the arrival rate can change significantly, but

the system is still operating under the conditions at t1. One would

expect a time lag and a significant difference between the expected and

actual arrivals using this algorithm in the nonhomogeneous case. Suppose

that when the system is initialized, the first arrival is calculated from

to. At this point, X = 0, and the first interarrival time is infinitely

large. In this pathological case, no arrivals are generated at all.

Obviously, this method of generating arrivals is not applicable to the

USH simulation.

Consider that portion of the passenger arrival rate curve

between ti and t 2. SMUSH generates arrivals in this interval using the

following algorithm.
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Figure 2.2 - Time varying average arrival rate of passengers.



1. Calculate the mean average arrival rate, A, in this

interval.

2. Construct a..pdf (figure 2.3) by normalizing the area

under the arrival rate curve, between t1 and t2 to one.

Figure 2.3

Sx(X )

0 At
X 0

3. Use the probability integral transformation method to

generate random deviate, R, having exponential distribu-

tion with parameter T.

4. If E R1 > t2 go to step 8.

5. Using probability integral transform of the pdf

constructed in step 2, generate the random deviate R2.
6. Passenger arrival time = tI + R2'
7. Go to step 3.

8. STOP.

For each O-D pair, the SMUSH user inputs values of average

arrival rates, of individual passengers, versus time. SMUSH assumes

that the rate between the data points is linear. The calculation of A

and the probability integral transform (in step 5) can be done in terms

of the values of X at the endpoints of each linear segment. This algo-

rithm is invoked and completed automatically in SMUSH.
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Due to the randomness of passenger arrivals, the performance

of the real (as well as the simulated) system, is subject to daily

(single run) fluctuations. To get a good estimate of system performance,

it is necessary to look at data averaged over several days (or several

runs). For this reason, SMUSH is set up as a Monte Carlo model. In a

single run of SMUSH, the entire system can be simulated several times

(the number of times is specified by the user). The output of SMUSH is

the average of these runs. Ten is a reasonable number of runs for

convergence of the results. But even a single run provides sufficient

accuracy for the investigation of general trends.

We will now show that the proposed passenger generation

algorithm preserves the fundamental properties of the Poisson type

process. In a Poisson arrival process, the probability of exactly n

arrivals occurring in the interval (0, to +At), Pn(t +At), is given by

Equation (2.1).

Pn(t+Lt) = Pn (t )Pr(no arrivals in (t 0, t0 +At))

+ Pn- 1 (to)Pr(one arrival in (to, to+At)) (2.1)

By definition of the Poisson process, the probability of exactly one

arrival in the interval (to, t0+At) is equal to X(t0)At, the probability

of more than one arrival is negligible, and hence the probability of

zero arrivals is 1 - X(t )At. Substituting this into Equation (2.1)

yields the following.

P (t +At) = Pn(t )[l - X(t )At] + P (2(t))[X(t)At](2.2)



Rearranging and taking the limit as At -+ 0 results in the following

differential equation

dPn(t )
dt = (t)n-(t) - Pn(t)] (2.3)

Clearly, the distribution of n depends on X(t) in the interval. The

algorithm proposed suggests that for a given interval (O,t0), n is

distributed as a Poisson random variable with parameter T(t ), where

T(t0) is the average value of X(t 0) in the interval, and is defined

as follows

T(t )=(x)dx (2.4)0 to 0J
0

-T~(t )t

Pn ( t ) o0 0 ~ (2.5)
n! n = 0, 1, ...

If this does represent the correct distribution of the number of arrivals

in the interval, then n and its assumed distribution should satisfy the

differential equation (2.3). Substituting (2.4) and (2.5) into (2.3)

yields

dPn(t) n ( n-l tn e-( t 0 0(t)
dt = Tt o at

+ -L T(t0)n tn-l -(t )t (2.6)

1n -T(t )t T 0)
+ Tn o o ( 0 t(t ) - t



Note that

Ba(t 0) o

t ' ~ X(x)dx + X(t )
t 0

=biu[(t )7-T(t)

Substituting (2.7) into (2.6) yields,

dP n(t ) n n-i n1 -i(t )t0 (
dt j = -3 (t0) to e L X(to)~(t )+(t )

T(t 0)t0
+ -n -~ -At ~)

n-i n-i -X(t )t T(t)_ t__t
=_ X (t ) to e 0 [(t) - n

- X(t 0 )[((t 0)t )n-1 e 
o

(n - 1)*!

= X(to )[Pn-l(t ) - Pn (t 0)]

(T(t )to )n e

n!

Therefore, the assumed distribution of n is valid for the nonhomogeneous

case. This is a very significant result; it means that the total number

of arrivals in an interval for any Poisson process can be simulated, if

the mean arrival rate in the interval is known.

Now, consider the interval (t., t ). Recall that the proposed

algorithm calls for a pdf to be constructed from the function of X(t)

(2.7)

-(t 0)to 0

(2.8)



in this interval. This is done by normalizing the area under the curve

to one and then shifting the curve so it begins at zero (Figure 2.4).

We will define x = to - ti, and A = i X(t)dt. The probability that

a given arrival occurs in the interval (t , to + dt), corresponds to

the area of the strip (x0, x0 + dx) which equals f X () = X(t )/A dt.

Since there are n independent arrivals in this interval, the probability

of any one arrival occurring in (t , to + dt) is;

Pr(arrival in (t0 , to + dt)) = (nX(t0)/A)dt

This probibility can be found as follows:

00

Pr(arrival in (t , to + dt)) = 1 PN(n )Pr arrival in (to, to + dt),
n0 =0 given there are n

o arrivals in the
entire interval (0, t)

00 n X(t)
= PN(no )- 0 A dt
n =00

00

A dt n Pn(n0)n =0

A dt E(n) (2.9)

It was just shown that n " P(T), so the expected value of n is as

follows.

E(n) = (t )(t. - t)t

= (t. - t.) X(x)dx
3 (t. - t.3 1 ti (2.10)

= A substitution into 2,9 yields,
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Figure 2.4 - The Construction of the PDF From the Arrival Rate in an Interval
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Pr[arrival in (to, to + dt)] = X(to)dt (2.11)

Recall that for each passenger arrival, a random deviate is

calculated using the probability density integral transform method.

These are independent, identically distributed random variables, there-

fore arrivals are independent.

In summary, the algorithm generates independent arrivals, and

the probability of an arrival in a given interval (t0, to + dt) is

X(t )dt. These are the basic characteristics of a Poisson arrival

process. Hence, the algorithm in SMUSH does generate Poisson arrivals.

The average arrival rate for each OD passenger type is input

at discrete points in time. SMUSH assumes the arrival rate to be linear

between these points (Figure 2.5). When the passenger generator is

called, the passengers arriving in the next half hour are generated.

While this half hour may contain several data points, and several linear

segments. the generation algorithm is applied to each linear segment

separately. So, X(t) in the interval is linear.

During simulation, the actual number of arrivals is determined

by generating exponentially distributed (with parameter T) interarrival

times, R . The value of n is determined as the largest integer satis-

fying the following.

n
R < t - t

It is now necessary to determine the placement in Ii. of these

n arrivals. The following pdf is constructed from the curve of X(t) in

I (see figure 2.6).
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Figure 2.5 - Piecewise Linear Arrival Rate Used in SMUSH
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Figure 2.6 - The PDF Constructed from I

where a = XA/(Ati) , b X x./(AtK), and where At = (t. - t.).

a + b-aAt

fX(xo) = -

0 < X < At

elsewhere

To generate random deviates according to this pdf, the

probability-integral-transform method is used.

1) Determine cumulative distribution of X F )

(2.13)
x 0

FX o (x0 x(t ) dt = a + ( ) t dt

0 ,x
0

F (x ) = -ax + x2

x.1 x 

< 0

> At

0 < x < At

2) Set R 2 U (0, 1) equal to F (x ), solve for x .

(2.14)



R2 = axo + (b - a)/2 tAx2  (2.15)
0

If a = b + 2 = ax0

x = R 2/a = At R2

If a / b, substitute for a & b,

2X. 2(X. - X ) 2
R = 1 x1+2 A t(X + XAo + At X + X) 2At

S[1 + (2X) ( - x)] (2.16)R . + + .!

Solving (2.16) for x0 yields:

Xt At [X(l - R2 ) + 2 ' Xi] (2.17)
J l R2 -

For each of the n arriving passengers in this interval, R2 is

drawn and x0 is calculated. The arrival time of an individual passenger

is then,

Time of arrival = ta = t + x

When the passenger generator is called, this algorithm is

carried out for each linear segment between Tnow and Tnow + .5, for

every 0D pair. Another passenger generation event is then stored to

occur at T + .5.

1W- ""00 -- - ,MR- N - -



2.2.3 Vehicle Simulation

SMUSH controls the vehicles with a simple routing scheme.

Every vehicle is assigned to a specific route. Each route has a

successor route. When a vehicle completes its assigned route, it

immediately begins the completed route's successor. To invoke a

fixed control, all routes and their successors are specified, and each

vehicle is assigned an initial route, before the simulation begins. In

this manner, the complete routing for each vehicle is determined. If

dynamic controls are invoked, SMUSH constructs routes and determines

their successors for each vehicle during simulation.

The actual control of vehicle movements is also straight-

forward. Basically, a vehicle departure causes a future vehicle

arrival event to be stored, and vice versa.

During system initialization, SMUSH stores vehicle departure

information on File 1. The attributes associated with each departure

event are as follows:

- Event code

- Vehicle number

- Route number

- Stop index (this is the stop number on the route,
first, second...)

- Time of occurrence

A vehicle departure event invokes the following:



- Search File 2 for passengers to load

- Transfer from File 2 to 3 those passengers which meet
boarding requirements

- Store an arrival event at the next stop on the route

The attributes associated with a vehicle arrival event are the same as

those for the vehicle departure. A vehicle arrival invokes the following:

- Search File 3 for passengers to unload

- Remove passengers meeting the unloading conditions

- If this is the last stop on the route, determine next
route

- Store a departure event.

The last two items carried out during a vehicle arrival (deter-

mine next route, and schedule a departure) are simply a restatement of

the vehicle control strategy. Although the logic to make these routing

decisions may be complex, its addition to SMUSH is simple.



Chapter 3

SIMULATION INVESTIGATION OF USH PERFORMANCE

Completion of the simulation model marks the end of the

preliminary work. We can now begin the actual evaluation of various

vehicle routing and scheduling strategies. This evaluation, based on

system performance, is carried out in two phases. First, the system

operating under simple fixed routing strategies is simulated. Next,

the system is simulated while operating under dynamic controls.

3.1 TheOperating Scenario

The operating scenario is based on the Long Island area. The

population density and the presence of natural barriers to surface

transportation make this area conducive to successful USH operations.

Mann's study provides an estimate of daily demand volume and patterns

from this area. The overall characteristics of the testing scenario

are as follows:

1. Total demand is 4000 one-way trips per day

2. The ground facilities consist of 6 terminals, 2 located

in the CBD, and 4 in the suburbs

3. The general layout is as shown in Figure 3.1.

3.1.1 Heliport Location

In an unconstrained system, the heliports would be located

such that the expected access/egress time for passengers is minimized.

But heliports are not the best of neighbors (although they could be
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made so at a cost 8). One would expect restrictions to be placed on

terminal location due to noise and safety considerations. In general,

the terminals would be located as follows. First, each area is divided

into single terminal regions. Then, in each region, the terminal is

located according to local restrictions (independently of all other

terminals). With no prior knowledge of local restrictions, there is

considerable uncertainty as to the location of each terminal. In fact,

the location may be considered a random vector, distributed uniformly

over the region. This is the approach used to simulate the location of

the ground facilities in this study, see Figure 3.2.

3.1.2 The Demand

The market for USH operations is made up of the commuter and

the general travel group. Mann estimated that the total trip volume

for each group is equal. (From each group, there are 2000 one-way trips

per 12 hour day). During morning operations, all commuter trips are made

from the suburbs to the CBD, and occur between 6:30 and 9:30. The total

magnitude of commuter traffic versus time of day is shown in Figur 3.3a.

(Since morning and evening operations are roughly symmetric, only the

period from 6 a.m, to 12 a.m. is simulated,) The trips generated by

the general travel group are distributed evenly over time. There are

three types of trips taken by this group, suburbs to CBD, CBD to suburbs,

and suburbs to suburbs. The total number of trips of each type is equal

to 1/3 of the total. The rate at which trips of each type is generated

is about 60 per hour (see Figure 3.3b). A schematic view of the daily

demand is shown in Figure 3.4a and b.
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If the demand density (trips/mile 2 ), for each trip type, is

assumed to be uniform throughout the suburbs and also CBD, and if all

passengers enter (leave) the USH system at the station closest to their

origin (destination), then the actual demand rate for each OD pair

(origin and destination pair) is proportional to the catchment areas

of the origin and destination stations. These assumptions allow the

demand rates to be broken down into 0D demand data, necessary for the

simulation. The actual OD demand rates are shown below, in Table 3.1.

AVERAGE ARRIVAL RATES TRIPS/HR

Origin/
Destina- Commuters 7-9 a.m. General
tion

1 2 3 4 5 6 1 2 3 4 5 6
1 0. 0. 0. 0. 29. 71. 1 0. 3. 4. 6. 4. 10.
2 0. 0. 0. 0. 22. 54. 2 3. 0. 3. 4. 3. 8.
3 0. 0. 0. 0. 31. 77. 3 4. 3. 0. 6. 4. 11.
4 0. 0. 0. 0. 34. 82. 4 6. 4. 6. 0. 5. 12.
5 0. 0. 0. 0. 0. 0. 5 4. 3. 4. 5. 0. 0.
6 0. 0. 0. 0. 0.0. 6 10. 8. 11. 12. 0. 0.

Table 3.1

The actual arrival of passengers follows a Poisson process.

This process is simulated using the algorithm discussed in 2.2.2 in

conjunction with a pseudo random number generator. The pseudo random

number generator calculates a string of numbers recursively and

although these numbers appear random, they are not. This same string

can be reproduced exactly, if desired. So, while the simulated arrivals

of passengers approximate a Poisson process, it can be reproduced also..

In this study, the same arrival process is used for each simulation
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run. By exploiting this reproducibility, all control algorithms are

compared on the basis of operations during a single day. Of course,

there are random fluctuations in the performance of a single day. But

since the purpose of the study is the investigation of general trends

rather than precise performance, the results based on a single day of

operation provide sufficient accuracy.

3.1.1 The Vehicles

The aircraft type used in this study is typical of the next

generation of helicopters. It is similar to the tandem rotor vehicle

which is deseribed in Appendix C. The vehicle characteristics are as

follows:

Capacity: 50 seats

Cruise speed: 100 m/hr.

DOC: 600$/flight hour

100$/cycle

Take-off/landing cycle time:

Max: 9 minutes

Min: 3 minutes

The take-off and landing cycle time is comprised of the time required

for deceleration and descent from cruise, ground maneuvers, ascent and

acceleration to cruise. The minimum cycle time corresponds to the

time required for the air maneuvers. The difference between minimum

and maximum time represents the time to load the vehicle to capacity.

It is assumed that this time is a linear function of the number of



passengers loaded (see Figure 3.5).

Cycle time = min + (max - min) nucapacitaded

So, for this vehicle, cycle time is found as follows:

Cycle time = 3 + 6 (number loaded)/50 (minutes)

3.2 Fixed Control Strategies

Two general classes of fixed vehicle routing strategies are

considered in this section, these are allstop and nonstop. The allstop

strategy is similar to that used by bus and subway lines. On a single

trip through the network, each vehicle stops at every station, in a

prescribed order. The nonstop strategy is a point-to-point routing.

There is no mechanism by which the vehicle routing can adjust to meet

changes in the system conditions (varying demand patterns, or conges-

tion). These are very simple strategies, since no decisions are made

during system operations, and no system information is necessary.

These two strategies provide an estimate of system performance

in two extreme service situations. Each OD pair is served with a maxi-

mum frequency in the allstop case, but the average time required to

complete service (ride time) is also a maximum. In the nonstop case,

both frequency of service and average ride time are at a minimum. This

is an interesting trade-off to be investigated.

The effect of demand peaking on the performance of the system,

operating under each strategy, is also investigated. Demand peaking
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causes a reduction in the probability that a given passenger will be

able to board the next departure from her origin, which leads to conges-

tion. The system can be designed for the peak demand period such that

congestion never occurs, but this is an expensive way to go. A trade-

off to be investigated is, how much congestion is tolerable for a given

system and by what amount is operating cost reduced by allowing this

amount of congestion. Also, are there any simple controls, within the

guidelines of this section, which can reduce the effects of congestion

on LOS?

3.2.1 Allstop Routing

The allstop routing strategy is similar to that used in

uncontrolled linear networks (bus and subway systems). All vehicles

travel the same route, and on this route stop at every station. In

this study, the route is chosen such that all stations are visited with

a minimum total distance traveled (the traveling salesmen route). The

routing is shown in Figure 3.6.

1 2

4

5 5 3

Figure 3.6 - Allstop Vehicle Routing

To avoid congestion in this network, the flow of seats

available must be greater than or equal to the demand flow on each arc.

-IMPOW -WA



In this system, the most heavily traveled arc is obviously 35 (the arc

connecting nodes 3 and 5). During the morning rush, all the commuters

must travel across this arc. The maximum average commuter flow is 400

trips/hr, the average general traffic brings the total expected flow

to 483 trips/hr. A vehicle can complete one trip around the network in

about 1.5 hrs,., and each vehicle has a capacity of 50 passengers.

Therefore, the contribution of each aircraft to system capacity is

around 33 seats/hr across each arc. So, to avoid congestion, the

number of vehicles needed is 483/33 ~ 15.

The morning operation of this USH system is simulated using

the allstop routing with 15 vehicles. The average systemwide travel

time is about 1 hour, which is pretty mediocre for such an expensive

system. By referring to the load factor histogram (Figure 3.7), it

can be seen that there is some congestion, as evidenced by'the 60 full

flights. As expected, these are departures from 3 during the peak

hours. So, there was no serious congestion problem. A most shocking

result though is that nearly 200 (of 400) flights are made empty. This

is due to the effect of vehicle clumping.

Clumping is a phenomenon demonstrated daily by uncontrolled

linear networks. Clumping results from a tendency for headways which

are shortened by perturbations to the system to become shorter still,

until the headway goes to zero, and the vehicles travel together in a

clump. The mechanism which makes the system of headways unstable is

the dependence of cycle time on the number of passengers loaded and
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unloaded. In an actual system, for example, a bus line, vehicles are

spaced evenly at the start of a run, randomness in traffic conditions

provides the perturbations to begin clumping. The evenly spaced

vehicles tend to form pairs, these pairs form quads, etc... Although

vehicles in the USH system are not affected by traffic conditions, the

randomness in passenger arrivals, and hence cycle time, produces the

perturbations necessary to start the clumping process. Figure 3.8

illustrates what happens to vehicle spacing in the 15 aircraft case.

The inner circle indicates the location of the vehicles (small circles)

in the network. The light and shaded regions represent ground and

flight time, respectively. Initially, the vehicles are spaced evenly

around the network. After 4 hours of operation, 4 clumps have formed,

and after 8 hours, all the vehicles are in two massive clumps of

whirling rotors. Before making any rash judgments to the effect that

helicopters are more prone to clumping than buses, it should be remem-

bered that these vehicles ran uncontrolled for 8 hours, where buses run

for about 30 minutes before they are respaced.

This clumping has a pronounced effect on LOS over the course

of the day. Initially, the headways are all .1 hours, thus the average

passenger wait is .05. By the end of the run, the average headway is

.75 hours, and the average wait is now .37. This represents a 30%

increase in average trip time.

The effects of clumping and congestion on LOS are illustrated

in the Figure 3.9. Average travel time increases gradually during the
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rush, due to congestion, and then drops back off, at the end of the

rush. At around 11:00, clumping shows its effect, by driving average

time back up by about .25 hours.

Another result of clumping is a tremendous waste of vehicle

resources. After waiting 20 minutes for a bus, it is not uncommon to

have a caravan of 4 buses arrive, in which the first bus is full, and

the trailing 3 are empty. This effect also appears in the already

under utilized USH system. The LF Histogram, Figure 3.10, illustrates

this effect. After 4 hours into the run, this particular vehicle did

not pick up a single passenger. Unfortunately for the USH system, this

is the rule, not the exception. In fact, by the end of the 8 hour run,

2 vehicles (one in each clump) are picking up what few passengers there

are, at each stop. The problem of clumping and some possible controls

is addressed in a later section.

Having witnessed the mediocre service in the 15 vehicle case,

its time to plunge into the realm of the poor and terrible service as

the system is simulated with 10 and then 6 vehicles. This illustrates

the horrendous effects of congestion on LOS, and the system's inability

to recover from overloading. At first glance, the results of the

simulation for these cases do not look so bad; average trip times

are 1.37 and 1.65 hours for the 10 and 6 vehicle runs, respectively.

But these average values belie the terrible service provided to

passengers in both cases. Shortly after the rush begins, the 35 arc

becomes congested. This congestion then starts to spread back upstream
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through the suburbs to station 2. This means that not only are the

flights from the suburbs to the CBD full, but the vehicles arriving at

3 and 4 are full also. This creates tremendous passenger queues at 3

and 4, since the only seats available to passengers entering the system

are created by passengers leaving at these stations. This leads to the

following observation. When the allstop system is running at capacity

into a station, there is a conservation of flow at this station. The

number of passengers allowed to board is equal to the number leaving

at this station. During the rush, severe congestion occurs due to the

strong directionality of the demand. For example, between 7:00 and 9:00,

station 4 is the origin for 150 passengers per hour, but 4 is the des-

tination for only 30 passengers per hour. So, when vehicles arrive at

4 full, passengers back up at a rate of 120 per hour. The result of

this effect is illustrated in the figure 3.11. There are a few obser-

vations to be made from this figure. First, in the 6 vehicle case,

there are still 600 passengers waiting at the end of the run. Because

of this, the actual system average trip time should be adjusted upward;

a reasonable estimate for the trip time is 2.3 hours. In this same case,

the number waiting at both 3 and 4 is nearly equal to the total number

of passengers which have arrived-so far. This indicates that the system

became congested at these stations almost immediately after the rush

began. Notice that in the 10 vehicle case, the congestion did not reach

4 until 8:30 and ended at 9:30, while at 3, the congestion is as bad in

the 10 vehicle case as in the 6. This illustrates the progressive nature

of the congestion (recall that 4 is upstream of 3). Even more critical
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is the progressive manner in which congestion clears, moving back

downstream. Notice that the number waiting at station 4 at 11:00 (10

vehicle case) has just gotten below 50 (vehicle capacity). At this time,

there is a dramatic clearing at node 3, since vehicles are no longer

arriving full. The progressive nature of the buildup and clearing of

congestion creates an inequity in LOS throughout the network. While

passengers are served FIFO at each station, the passengers at downstream

stations are served only after all the upstream passengers are served.

This effect can be seen by comparing the average trip times for up and

downstream 0D pairs (see Table 3.2).

AVERAGE TRIP TIME (hrs)

0D Pair 10 Vehicles 15 Vehicles

1-6 1.44 1.44

2-6 1.33 1.29

3-6 2.17 0.82

4-6 1.44 1.06

Table 3,2

Obviously, this is no way to run an airline. Service is being

eroded by congestion and clumping. Simple solutions to these problems

are investigated in the following section.

3.2.1.1 Simple Controls for Allstop Routing

A dispatching rule which provides a minimum spacing between



the vehicles is used to reduce the effects of clumping. To implement

this control, the time of the last departure from each station is

recorded. When a new departure is scheduled, the headway between this

and the most recent departure is determined. If this proposed headway

is greater than the minimum, the departure is made as scheduled. If

the headway is less than the minimum, the vehicle is held until the

minimum headway is achieved.

Congestion is controlled by limiting the number of commuters

boarded at stations 1, 2 and 4. This limits the tendency for vehicles

to arrive at 3 and 4 full, during the rush period. Ideally, only the 35

arc will run at capacity, and the number of each commuter type on the

arc should be proportional to the total number requesting service. This

policy will control the crowding at 3 and 4, and should provide a more

equitable LOS to passengers in the suburbs.

The system is simulated using these controls for the 15 and 10-

vehicle cases (the 6 vehicle case is dropped since LOS is so poor). The

system-wide trip times are shown below in Table 3.3

Number of Vehicles 10 15
Average Trip Time 1.47 0.97

Table 3.3

These results are somewhat underwhelming. LOS seems to be degraded in

the 10 vehicle case, and there seems to be no difference in the 15 vehicle

ase. But there are positive effects of these controls. In the 15 vehicle



case, there is an obvious (but insignificant) change in the distribution

of load factor (see Figure 3.12). The total number of empty flights is

reduced to 40, from 190 in the uncontrolled case. This and the fact

that the number of 2 passenger flights increased are evidence that the

minimum headway rule is controlling clumping. The minimum headway was

set at .05 hrs. While this eliminates vehicle clumps, it still does not

provide even spacing. At the end of 8 hours, the vehicles travel in a

large bunch, and the headway distribution is as follows:

[ .05 hr, with probability 14/15
h = I 75 hr, with probability 1/15

The resulting average wait is .2 hours. Clumping is still taking its

toll, but not as badly as in the uncontrolled case where the average

wait is .37 hours. The effect of the controls are shown in Figure 3.13.

By the end of the simulation, there is a significant difference in LOS

between the controlled and uncontrolled cases. The effects of the

inequity of service of the controls is shown in Table 3.4. As expected,

the quota has little effect on the 15 vehicle case, since congestion is

not a problem here. But in the 10 vehicle case, the quota works as

planned. The difference in LOS for the various OD pairs is reduced,

but the price of this smoothing is increased systemwide trip times.
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AVERAGE TRIP TIME (hrs)

OD Pair 10 Vehicles 15 Vehicles

1-6 1.89 1.41

2-6 1.95 1.25

3-6 1.80 0.86

4-6 1.64 0.99

Table 3.4

The performance of the USH system using the allstop routing

scheme is poor. The system's sensitivity to demand peaking is illus-

trated in the Figure 3.14. With 15 vehicles, equilibrium during the

peak loading is achieved, average trip time leveled out during the rush.

In the 10 vehicle case, this does not happen. Recall that passengers

queued up at station 3 (at a rate of 80 per hour) during .the rush.

These passengers are cleared out only after the rush ended. Because of

this congestion, the average travel time more than doubled for the

passengers entering during the rush. In the 6 vehicle case, not only do

passengers back up during the rush, they're still waiting at noon. The

reason that the observed average trip time drops after the peak at 8:00

is that only the lucky passengers who received service are counted.

Another problem with the allstop strategy is the interdepen-

dence of service between different OD pairs. This effect makes it diffi-

cult to improve the service to one OD pair without degrading service to

others.
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The last point to be made is that this service is expensive.

The variation of average travel time with operating cost is shown in

Figure 3.15.

3.2.2 Nonstop Routing

We now consider a simple nonstop strategy. As in the allstop

case, vehicle routing is fixed. Under the nonstop strategy, individual

vehicles are assigned separate routes, and serve only a few pairs (under

allstop controls, each vehicle serves all OD pairs). For example, a

vehicle may be assigned the route 6-2-3-6 which it flies continuously.

OD pairs 62, 23 and 36 are served exclusively by this vehicle.

Nonstop routing has several advantages over the allstop

strategy. Since each OD pair is served by only one vehicle flying a

closed loop, and the time required to complete a loop is nearly constant

throughout the day, even headways are maintained. Also, only one 00

pair is served at a time, so when a vehicle lands, everybody gets off,

which insures the availability of 50 empty seats on each departure.

Thus, the problems of clumping and progressive congestion are avoided.

In the test scenario, there are 28 OD pairs requiring service.

To simulate the operation of the system using the nonstop strategy,

routing patterns are determined such that all OD pairs are served with

reasonable frequency. This is done by assigning each 00 pair to a

particular vehicle. Figure 3.16 shows the assignments for the 6, 10

and 15 vehicle cases. The goal of these assignments is to provide

equitable service to all passengers throughout the system. This is done
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by inspection, no attempt at optimization, or use of a formal algorithm

is made.

The results of three simulation runs are shown below in Table

3.5.

AVERAGE TRIP TIME (hrs)

15 10 6

Nonstop 0.63 0.89 1.37

Allstop 1.02 1.37 2.3

Table 3.5

The results are quite interesting; the nonstop cases with 6

and 10 vehicles do as well as the allstop cases with 10 and 15 vehicles,

respectively. There are several reasons for this. As mentioned before,

the nonstop routing avoids the congestion of the allstop scheme. The

effect of congestion in the allstop cases is to reduce the number of

available seats on each departure. So, even though the service is less

frequent in the nonstop case, the rate at which available seats are

leaving some stations (3 and 4) is greater than in the allstop case.

There is also a significant difference in ride time between these two

cases. In the allstop case, the average ride time is .8 hours, in the

nonstop, it is .3 hours. Although average wait time decreases with the

number of vehicles, this ride time is constant. So, no matter how many

vehicles are flying, the average trip time is always greater than the

ride time. Figure 3.17 summarizes the results.

-411 , - . 110-
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The performance of the system operating under the nonstop

strategy is clearly greater than under the allstop strategy. This is

due to the reduced sensitivity of LOS to overloading during the rush

hours. Even though the nonstop strategy represents a tremendous

improvement in system performance, average travel time still varies

significantly during the rush hours. In fact, only the 15 vehicle case

achieved equilibrium during the rush hours (see Figure 3.18).

3.3 Dynamic Vehicle Controls

In the previous sections, it is shown that the USH system,

operating under a fixed routing policy, needs a surprising number of

vehicles to provide reasonable service to all passengers. This results

from the fact that while the routing is fixed, the system conditions

vary substantially during the day. A fixed route system designed to

handle the peak demand is tremendously under utilized during most of the

day. But a system which allows some overloading delivers degraded

service to rush hour passengers. A goal of this section is to develop

a system which provides good, efficient service throughout the day.

To achieve this goal, the system is controlled by a strategy which

reacts to changes in the demand pattern and to system conditions. The

control algorithm must decide which passengers to service, when and

what type of service is to be provided, and how the vehicles should be

routed to provide this service. To make this a tractable problem, the

decisions are simplified. The problem considered here is: given a

vehicle which has just finished service to a particular OD pair, which
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OD pair should be served next by this vehicle? When the decision is

made, nonstop service to these passengers begins immediately. Later,

the control is relaxed to allow some onestop service. Finally, vehicle

holding strategies are introduced, to add some freedom in the decision

as to when the service takes place.

3.3.1 Dynamic Vehicle Routing

In developing vehicle control strategies, some simple rules

come to mind. These are service criteria such as serve an OD pair if

the number waiting is greater than a certain level, or serve an OD pair

if the maximum wait for this group is greater than a certain time limit.

Although these rules are reasonable intuitively, they have some serious

problems, particularly in the USH environment. First, the determination

of the limit values is critical. It is unlikely that limits designed

to provide good service during the rush will work well during the slack

period. As demand patterns vary during the day, so also must the limit

values. Also, these rules are simply constraints on service. It seems

more reasonable to use criteria such as serve the OD pair with the most

passengers waiting, or serve the pair with the maximum waiting time.

The first rule should work well except during the rush. Since the OD

pairs with the most passengers waiting for service will almost always

be the commuter pairs, the general passengers are given virtually no

service during the rush hours. The second rule is more equitable for

the general travelers, but it tends to slow down the larger group of

commuters. This rule would serve a single passenger who has waited for



1 hour before 100 passengers who have waited for 59 minutes. It seems

that a viable rule should consider both, the number of passengers

waiting and the maximum wait in each group, to choose the OD pair for

service. This indicates a need to establish a cost $/hr, for passenger

waiting time. The interest in controlling the long waits suggests

that this cost per unit time is increasing with the length of wait.

The proposed model of passenger waiting cost is illustrated in Figure

3.19. If a passenger waits w hours, the total cost to the system is,
w

(a + bx)dx = aw + _- W2 (3.1)J 2
0

An optimal strategy is one which minimizes the total passenger

waiting cost to the system. This is no easy task on the optimal level,

but the following heuristic is proposed with the same objective. The

OD pair to receive service is chosen on the basis of the rate at which

passenger cost is accumulating. This rate is equivalent to the marginal

cost, MC, of delaying service to the OD pair. The OD pair with the

highest MC is the most attractive to serve. This marginal cost is the

change in total cost, TC, per unit time, for the OD pair.

MC = (3.2)

It is necessary to devise a method to calculate, or at least

estimate the marginal cost for each OD pair. Consider an OD pair where

passengers begin arriving at t = 0, at an average arrival tate of X(t).

The total cost to the system at the time of the next
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departure, td, is the sum of the cost to each passenger arriving in this

headway. The individual passenger cost depends on the actual time of

arrival. Since passenger arrivals are uncertain, the total cost to the

system is a random variable and cannot be determined in advance. But

we can determine the expected total cost. The cost to a passenger

b 2arriving in the interval (s, s+dt) is a(td - s) + (td - s). The

probability of an arrival in this interval is X(s). So, the expected

total cost to the system given a departure occurring at td is

E(TC) [a(td - s) + (td - s) 2] X(s) ds (3.3)
' d

0

The expected marginal cost of delaying service is then,

E(MC) = a E(TC) = - d [a(td - S) + (t - s)2] X(s) dsat at Jfs + ( ds s ds
0 (3.4)

Integrating yields:

E(MC(td)) = a[L(td) - L(O)j + b[ (td) - (0)]

where
d

L(td) = X(x) dx
0

and t

(td) = J L(x) dx
0

so

E(MC(td)) = aL(td) + bX(td) (3.5)



where A and b are the intercept and slope of the individual waiting

cost curve.

This expression for expected marginal cost can be simplified

by making the following observations. The parameter L(td) is the

expected number of passengers to arrive in this headway E(n), andf(td)

is the expected number of passenger hours which have accumulated in the

headway. If the average rate of passenger arrival is constant (a reason-

able assumption for short headways), the expected number of passenger

hours is simply the expected number of arrivals times the average wait,

td/ 2.

E[f(td)] = E[N] td/2  (3.6)

Substituting into Eq. (3.5) yields,

E(MC) = aE(N) + bE(N) td/ 2

= E(N)[a + td] (3.7)

where t
d

E(N) = X(x) dx

0

This results in an expression for expected marginal cost which is much

simpler than before.

Since the control decisions are made during system operation,

the algorithm has access to the actual number of passengers waiting.

MC can be estimated directly by replacing the expected number waiting



E(N), with the actual number, N. More care is necessary in replacing t.

It must be remembered that td is not the time since the last departure,

but rather the time since passengers of this group started arriving.

Clearly, td is the maximum wait, w, for this group. So, MC is estimated

as follows

MC = N(a + b w) (3.8)

which is the key result for this section. This expression for MC is

precisely of the form motivated earlier. The marginal cost of not serv-

ing the OD, or the attractiveness of serving the pair, depends on both

the number waiting and the maximum wait. The two factors which intui-

tively should appear do, and are combined in a simple way by the passen-

ger cost parameters. Possibly the most important aspect of this result

is that the information required to ;calculate MC is minimal.

For each OD pair, 2 values are required. In a real system, these values

can be maintained by recording passenger arrivals. In the simulation

model, these Values are readily available.

The effect of the parameter b can be seen from this expression

for MC. If b = 0 (constant cost function per unit time) MC is propor-

tional to the number waiting. Recall that this is one of the service

criteria suggested earlier. In this case, OD pairs are chosen to mini-

mize systemwide average travel time. But as indicated earlier, there

is an inequity in LOS to passengers of low demand rate OD pairs. Consider

two OD pairs with average arrival rates 10 and 100 passengers/hour. If

I -



the 0D pair to be served is chosen only on the basis of the number

waiting, the high arrival rate pair is served ten times as often as the

low rate pair. During a 2-hour period, the low arrival rate passengers

most likely receive no service at all. This is the situation faced by

the general passengers during the rush hour in the USH system. The

effect of increasing b is to reduce this difference in service frequency.

In fact, for a = 1, b = 10, the frequency of service to the low rate

passengers is increased from 1/10 to 1/4 the frequency of the high rate

passengers. The result is a decrease in the uncertainty of travel time

throughout the system. But for b greater than zero, the system objective

is no longer the minimization of average travel time. The objective

becomes the minimization of a function of both average and maximum travel

time. As b increases, average travel time does also. This relationship

between the average travel time and the variance of travel time can not

be avoided, but the parameter b allows the tradeoff to be controlled.

Now, how should this expression for MC be used to control

vehicle routing? Consider a vehicle which is finishing service to an

OD pair, the system must now decide which pair to serve next with this

vehicle. The MC for several OD pairs is determined, and at first it

seems reasonable that the OD pair with the greatest value of MC should

be served next. But the vehicle is a scarce resource in the system,

and the time it is tied up serving one OD pair, making it unavailable

to the rest of the system, needs to be considered. It has been shown

that in priority queues, with certain cost functions, the optimal
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ordering by which customers are served is determined by the ratio of

waiting cost to service time.9 Using the same reasoning here, the most

attractive OD pair to serve is the one with the largest value for the

ratio,

MC i /S

where MC and S are the marginal cost and service time, respectively,

for OD pair i to j. Note that if the vehicle is at i, and it is decided

to serve OD pair jk, the time required to complete service is S.. + Sjk'
since the vehicle must fly from i to j and then to k to complete the

service. Obviously, this system favors short flights, and service to

OD pairs originating at the vehicle's present position.

Now that it has been determined how to identify the OD pair

to serve, we must decide which pairs to consider and when the routing

decision is to be made. Once again, a simple strategy comes to mind.

When the vehicle lands at i, choose the pair ij, which maximizes MC /S ,

fly to j immediately. In a system with demand distributed uniformly

between all OD pairs, this rule may work. But in a system with strong

one-way flow, problems develop. Consider a commuter origin during the

rush, there is heavy traffic out of this station, but light traffic in.

A situation can occur where there are many passengers waiting to leave

this station, but there is no demapd into the station. This strategy

only considers service to OD pairs which originate at the present vehicle

locations. Since there is no demand into this station, and hence no

vehicles arriving here, the algorithm never "sees" the commuters waiting



to leave. Service in this case is somewhat haphazard, since service to

the heavy traffic out of some stations depends on the light traffic into

these stations. This myopia can be avoided with a two-look ahead

approach. Consider the following algorithm. When the vehicle lands at

i, choose pairs ij and jk which maximize MC ./S.i + MCjk Sjk, fly to

j immediately. So a vehicle at station i considers the value of serving

the combination ij and jk. In this way, all OD pairs in the system are

considered. There is a subtle problem here though, vehicle interference.

This results from a lack of communication between the vehicles. Suppose

there are many jk passengers waiting for service, and a vehicle initially

at i flies to j to serve the jk passengers. At the same time, another

vehicle has seen the need for jk service, and flies from i' to j. In

the meantime, the first vehicle arrives and serves the jk passengers,

and when the second vehicle arrives, jk service is no longer very

attractive. If there are other OD pairs leaving j, the trip by the

second vehicle wasn't made completely in vain, but obviously, this

duplication of effort reduces system performance. Consider the same

situation, but this time the first vehicle flags the jk pair as having

a service pending. The flag in effect sets MCjk to zero until service

is begun. This discourages other vehicles from flying to j, in hope of

serving the jk passengers. Of course, we can't have the vehicle flag jk,

fly to j, look around and then decide to fly to k'(leaving the jk

passengers in limbo). So, once the vehicle chooses to fly ij and jk,

it is obligated to complete the flight to k. This algorithm (summarized
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below) is invoked at every second step, since things are fixed at j.

When the vehicle lands at i, choose the pairs ij,
and jk which maximize the following.

MC i/Sij + MCjk/Sjk

fly to j immediately. Flag the OD pair jk, such that
it is not considered for service (by other vehicles)
until this vehicle reaches j. Fly to k.

SMUSH was modified to incorporate this algorithm. The system

was simulated using fleet sizes of 6 and 10 vehicles. There is nothing

unexpected in the results of the simulation. The most surprising aspect

is that this simple strategy works so well. Table 3.6 summarizes the

results. Total Trip Time

Average Average Standard
Wait Deviation

a = 1, b = 0 0.84 1.17 .77

6 Vehicles a = 1, b = 10 0.89 1.20 .69

Fixed Route 1.04 1.77 .81

a = 1, b = 0 0.42 .73 .43

10 Vehicles a = 1, b = 10 0.44 .76 .33

Fixed Route 0.59 .89 .54

Table 3.6

Considering that the original nonstop case has a reasonable

route structure, it is remarkable that LOS was improved so much, on the

first cut with this simple strategy. In the 10 vehicle case, average

waiting time is reduced 25% with the dynamic routing algorithm. As



anticipated when b is increased, the uncertainty in trip time is reduced,

and average trip time increases. What is surprising is that a substan-

tial decrease in standard deviation is achieved with only a slight

increase in average time. The effect of the reduced uncertainty can be

more dramatically seen in the total system trip time histograms (Figures

3.20, 3.21). Notice that when b is increased to 10, both tails of the

distribution are brought in; there are few very short and very long trips

made.

Recall that when the vehicle chooses a route, the next two

stops j and k are determined. Because of this, some passengers at i,

going to k, can be boarded; they receive one-stop service. A modifica-

tion was made to SMUSH to allow this one-stop option. Again, the system

is simulated with 6 and 10 vehicles using this one-stop service policy.

This strategy yields an additional increase in LOS over the previous

cases. The results are summarized in Table 3.7.

Total Trip

Average Average Standard
Wait Deviation

6 Vehicles a = 1, b = 10 .82 1.16 .62

10 Vehicles a = 1, b = 10 .39 .75 .32

Table 3.7

The system's enhanced ability to cope with the demand peaking

is illustrated in the plot of average travel time vs. arrival time

(Figure 3.22). Note that the 10 vehicle case achieved stability during
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the rush. And although there is some congestion in the 6 vehicle case,

the effects are substantially reduced by this strategy. This route

choice algorithm has tremendously reduced the system sensitivity to

demand peaking and overloading.

The method developed here is significant because it is

applicable to any USH system. Recall that for the original nonstop

case, a routing structure had to be determined before the system could

be operated. To intelligently determine a set of routes, some informa-

tion about the individual system is necessary. With the method

described here, no prior information is required to set up the system.

Once the system starts, it essentially runs itself. Therefore, this

strategy can be applied to any USH network without modification.

3.3.2 Vehicle Holding Strategies

Vehicle holding is employed to control the pace of the system

and to reduce operating costs (and in some cases to improve LOS). In

the previous sections, the aircraft fleet was sized such that the peak

demand could be met without serious congestion. Although the demand

drops off after the rush, the system continues to run at a high rate.

Algorithms are now introduced to judiciously slow the system in the off-

peak hours. Of course, in doing this, LOS in the slack periods drops

off slightly.

Three holding strategies are considered. The first, a minimum

headway strategy, is employed to increase LOS (the reduction in operating

cost is a side benefit). The second algorithm is an extension of the

-- ~



route choice scheme. The last strategy considers both passenger waiting

cost and system operating costs, and allows the tradeoff between operat-

ing cost and LOS to be controlled during system operation.

3.3.2.1 Minimum headway controls

This strategy improves LOS provided to passengers by controlling

the randomness in service. More precisely, a lower bound on headways

is maintained by holding vehicles. This strategy was developed by

Osuna and Newell. 10

Consider passengers of a particular OD pair waiting to be served.

For simplicity, assume that passengers arrive deterministically at a

rate of 1 per minute. Suppose the headway for this pair is 5 minutes.

It is a simple matter to calculate a waiting cost, C, for this group.

Suppose the service is delayed one minute. All the passengers already

waiting must wait an extra minute in which time one new passenger will

arrive. This delay will increase the total cost of this group by some

AC. The change in cost due to the one minute delay can be found by

summing up the extra cost to each passenger, or by making the following

observation. The two groups are identical, except the delayed group now

has one passenger which must wait 6 minutes. This one passenger forms

a new subgroup placed on the long end of the original group. The waiting

cost to this subgroup is AC. In general, the effect of delaying service

to an OD pair is the creation of a subgroup such as the one described

here. The extra cost of this delay is simply the cost to the passengers



in this subgroup.

It was shown that for a particular OD pair that the following

strategy minimizes average passenger cost. Hold the vehicle if the cost

to the subgroup created by the lengthened headway is less than average

passenger cost. Using the headway distribution for this 00 pair, the

average passenger cost is calculated using random incidence arguments.

The passenger cost function shown in Figure 3.19 is again used. The

cost to a passenger waiting to is

ato + b t2a0  2 o

The expected cost per passenger in a headway of length h0 is
h

E(c h) = a(h s) + b (ho - s)2 ds

0

= h + b h2 (3.9)

Let w be the length of the headway entered by random incidence.

E(w) = (3.10)

So, the expected cost for a passenger entering the system at random is

E(cost/passenger) = [a + b E(w)] (3.11)

The expected cost to the subgroup created by extending the headway from

h0 to h0 + dh is

ah0 + b h2  (3.12)0 0

1 - i"NOW-M-1-1-M-WRINO, 0 4 1 i



So, the optimal holding strategy becomes, hold if

E(h ) b E(h2 )
ah + - h2 < 0 [a + - ] (3.13)
0 2 0 2E(h 0 ) 3 E(h0)

If a >> b, this becomes

E(h2

hold if: h0 < This is the classic
o2E(h)

strategy developed by

Osuma & Newell

If b >> a, this becomes:
2E(h2)

hold if: h <
0 /3 E(h)

So, as long waits become more costly, the holding strategy becomes more

stringent, forcing more headways close to the expected value.

To determine the impact of this strategy on system performance,

information about the headway distribution for each OD pair is neces-

sary. Fortunately, this information is available from the previous simu-

lation runs. But which case or cases should be considered? A minimum

headway rule was already applied to the allstop routing case. This

strategy would have no effect on the fixed nonstop routing case, since

the headways are nearly constant. The only situation for which this

strategy is assessed for the 10 vehicle case with a = 1 and b = 10.

Only two OD pairs are considered, 4 commuter pair 36, and a general

travel pair 34. Headway data is collected and the distribution param-

eters are estimated as shown in Table 3.8.
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H .87 .54

S.D. .51 .31 E(h) H

E(h) .87 .54 2 2 -2
E~h2)1.2 39E(h )Z(S.D.) + (H)

E(h2) 1.02 .39

Table 3.8

The control rule reduces to a quadratic in h min the minimum headway.

3-4 hmin = .67 hrs.

3-6 hmin = .41 hrs.

Based on the amount of time the vehicles would have been held,

it is concluded that the effect of this strategy, if implemented, is

minimal. Although the effects on LOS and operating cost are small, they

are positive. In some systems, this strategy can improve service (such

as the allstop case). But the results here suggest that the vehicle

controls are operating the system in such a way as to make this holding

strategy superfluous.

3.3.2.2 Holding based on the marginal cost

The holding strategy discussed in this section is an extension

of the vehicle routing algorithm described in 3.3.1. Recall that this

algorithm chooses the OD pair to serve next, based on a value to the

system for service, MC/S. The OD pair with the maximum value of this

ratio is the most attractive to serve. The same idea is used here, but



the choice is not between different OD pairs, but rather between serving

an OD pair now or waiting some At for service to begin. The strategy

is this, given that an OD pair, ij, has been selected for service, hold

the vehicle at i if

MC(t ) MC(t + At)now now (.4
S S + At

and the number waiting < capacity.

Recall that the marginal cost can be estimated as

MC = N(a + bw/2)

where N = number waiting

w = maximum wait in this group

a,b = parameters of the passenger waiting cost function.

Substituting into (3.14) yields

N (a + - w) (N + XAt) (a + } (w + At)

S S + At

Upon simplification, the rule becomes:

-a + bw
Hold if: N < Xs + Nreq (3.15)

la + k(w - S)]

and

N < Capacity

There are some intriguing and perplexing aspects to this rule.

Obviously, the rule is simple. At the time of a departure, this is a

go or hold rule based on the number of passengers waiting and the maximum



waiting time. The decision is illustrated in Figure 3.23. For specified

a, b, s, and X(t), the holding region is shown in terms of number waiting

and the maximum wait. An interesting aspect of the rule is that it gives

a clear-cut criterion for holding the vehicle until full, Xs > capacity.

Intuitively, this is reasonable, since it suggests that the vehicle should

be held to achieve higher loading if either arrival rate is high, or

service takes a long time.

When b = 0, the rule becomes: hold if N < X(t)S, or if
N
S< (t). This says hold if the service rate is less than the arrival

rate. This is reminiscent of the stability condition for a queuing sys-

tem, but there is no intuitive justification for the relationship here.

This rule reacts to varying demand rate, since X(t) appears. Also, the

holding criterion is completely independent of headway distribution,

which means no prior information is necessary to implement the rule.

A most disturbing aspect of this dispatching rule is the

appearance of the term (w - S) in the denominator. This is not only

difficult to justify intuitively, it is disastrous mathematically. For

ranges of S and w, the number required for dispatch can be either infi-

nite or negative.

The dependence on b of N is also troublesome. Strangely

enough, as b increases, so does Nreq (Figure 3.24). A possible effect

of this dependence is that the algorithm may manufacture extra delay

costs, by holding some passengers if their individual costs increase

rapidly enough. Of course, this self-serving characteristic of the
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rule helps no one.

SMUSH was modified to incorporate this holding rule. If at

the time of departure, the number waiting is less than the calculated

value for Nreq, the departure is postponed for 3 minutes. This cycle

is repeated until the departure occurs. The morning operations are

simulated using 10 vehicles under the control of this rule used in

conjunction with the dynamic route choice algorithm. The results are

disappointing, but not surprising. Where it is expected that vehicles

are held only during the off-peak hours, under this rule, vehicles are

held almost uniformly throughout the day. The holding does reduce

operating cost somewhat, and travel time increases. The overall effect

of this rule is to slide the system up the LOS-cost curve (see Fig.

3.25).

One reason for the disappointing results is the myopic

character of this rule. The holding at a station depends only on the

conditions of a single OD pair. The rule is completely oblivious to

changes occurring in the rest of the system. This leads to an explana-

tion for vehicles being held during the rush period. Suppose a vehicle

is in the CBD and it chooses to fly to the suburbs and then back to the

CBD to serve commuters during the rush. This choice is made primarily

on the basis of the large MC for the OD pair coming into the CBD. Now

when the vehicle tries to leave the CBD, the rule sees that there is

not much demand out of this station and decides that there is no need to

hurry. So, the vehicle is held on the first leg of the trip even though
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there may be a tremendous need for service on the second leg. This

problem can be eliminated by considering the MC on the second leg of

the trip also. The algebra is messy, but the result is a strategy

as follows: at the first station of the two-leg trip (i-j-k), hold

if

a + ) w
N < XS -5  . + H (3.16)

where H depends on the number waiting at j, S , Sjk, and Xjk(t), the

arrival rate of passengers at j. Although the correction should help

this strategy, it was not implemented.

It was decided that further work should be concentrated on

the final holding strategy, which is more justifiable on both mathe-

matical and intuitive levels.

3.3.2.3 Holding based on waiting and operating costs

The objective of the strategy developed here is to minimize

the sum of the daily total vehicle operating and passenger waiting

costs. Since a nearly constant number of passengers are served each

day, this objective is equivalent to minimizing the average cost per

passenger. This cost is the sum of the waiting and the operating cost

associated with service. The expected value of both these costs can

be found in terms of the headway, h, in which a passenger arrives. As

was derived earlier, the expected cost per passenger arriving in a

headway of length h is,
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ah/2 + bh2/6

where a and b are the parameters of the individual cost function

(Figure 3.19). The expected direct operating cost per passenger is

approximately the total cost of flying from the origin to destination

divided by the expected number of passengers on board.

Expected = DOC $/cycle + DOC $/f hr(flight time)
(Operating Cost) Expected number of arrivals in h

= c/hX(t)

Let z be the sum of these costs per passenger, z is minimized by

setting the derivative w.r.t.h to zero.

a b 2z = h + - h + c/h(t)

az a + b h c 03 h2 X(t)

or

b h3 + 2 - c = 0 (3.17)

To take advantage of the knowledge of actual system conditions, the

following replacements are made,

h w w = maximum wait

X(t) ~ N/w N = number waiting

- 4 klw 'Op""O"N" I



102

Substitution into (3.16) yields

bw3 + a W2 - 0
3  2 N/w

or

b2 + w -c/N q 0 (3.18)

a quadratic in w instead of a cubic in h, computationally a very fortu-

nate side effect. The optimal maximum wait is then found using the

quadratic formula.
-a/2 + a2/4 + 4bc/3N

w* = N, b > 0 (3.19)
2b/3

w* = 2c/aN for b = 0, N > 0

Once again, this is a simple rule to implement for a

particular OD pair. When a departure is scheduled to take place, w*

is determined, if the maximum wait for this group is less thanw* , and

the number waiting is less than the vehicle capacity, the departure is

postponed for some At.

Since this algorithm is to be used in conjunction with the

dynamic vehicle routing algorithm, a correction for the myopic character

of the holding rule is considered. Suppose the vehicle is scheduled to

fly i-j-k and is scheduled to leave i at time t,. The decision to hold

at i needs to consider conditions at j as well as at i. At t w*

is calculated, and the optimal time to begin the first leg of this

journey, tt is determined. Also, while at i, the best time to begin
1
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the second leg of the trip, t* can be found by calculating wjk. Based

on these two values, the decision to hold at i can be considered as

one of the following cases.

1. If t now> t*i, the vehicle leave immediately, regardless

of the conditions at j (see Figure 3.26a).

2. If tnow < t , AND tt + S.. < t*, hold the vehicle at i.

In this case, both best departure times can be met (see

Figure 3.26b).

3. If t < t* AND t* + S > t*, both departures cannot

occur at the best times (see Figure 3.26c).

Clearly, in this case, either one or both of the departures will miss

the best time. We will define te as the total time by which both

departures miss the best times.

t =t*+S.. - t*

t = t + te e* e.

The departure from i will occur te early and the departure from j will

be te late. The total error is divided between the OD pairs based on

the expected number of passengers affected at each station, such that

the bigger error affects the fewest number of passengers (see Figure

3.26d).

t = t N k + j X k lj (3.20e e N ii+ N jk + Xjk Sij,



104
Time b

(a)

now

(t1 = Time of actual departure from node i)

(b)

Tnow t1
*
t+

(c)
T * *Tnow -i .-i

tZ te
te.j
t t

Figure 3.26 - Illustration of Two-Stop Holding

*
t +s.

(d)



105

To implement this rule, we need to determine the values of

2the parameters a, b and c. For this case, a = 10$/hr and b = 10$/hr

Now, what does it cost to fly rather than hold? The direct operating

cost is made up of flight time and cycle costs. The cost per hour is

the sum of depreciation, insurance, crew, fuel and maintenance costs.

If the vehicle is holding ready to fly, the system is still paying for

depreciation, insurance and crew. The marginal cost of flying rather

than holding is not the total DOC, but rather some fraction of it.

This fraction is approximately 1/2. The parameter c is then given as

follows:

c = 100 ($/cycle) + (300$/f-hr) (Flight time)

(Note that the flight time is different for each OD pair, and, therefore,

so is the cost of service.)

Using this holding rule in conjunction with the dynamic vehicle

routing algorithm, the system is simulated with a fleet of 10 vehicles.

The results are shown in Table 3.9.

10 Vehicle Nonstop Average # Cycles Fhours DOC$
Trip Time

Dynamic Routing with Holding .87 186 43 44,000

Dynamic Routing No Holding .75 269 60 63,000

Fixed Routing .89 275 62 65,000

Table 3.9

1
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It can be seen that the effect of dynamic versus fixed routing

is to decrease average travel time. Now, the vehicle holding permits a

tradeoff between average time and operating cost. In fact, the total

cost is cut 40%, with no loss in LOS, from the fixed to holding case.

Next, the system is simulated using the holding strategy in conjunction

with the one-stop service option of the routing control. Once again, a

significant decrease in operating cost is achieved with a modest increase

in travel time. The results are summarized in Table 3.10.

One-Stop Average Trip Time # Cycles F hours DOC

6 Vehicles 1.39 119 29 29,000

10 .87 184 40 43,000

15 .77 206 46 49,000

Table 3.10

Notice that in the 15 vehicle case the total number of takeoff and

landing cycles is cut by over 200 in the 8 hour simulation run. At a

cost of 100$ per cycle, this is a savings of 20,000$. In each case,

this strategy provides a large saving in direct operating cost while

providing comparable LOS to the passengers.

An investigation of the sensitivity of average trip time and

total DOC to the parameter c yields additional insight into the workings

of the system and holding algorithm. In setting the value of c, the

actual cost of service, it is estimated that this cost is 1/2 the
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original DOC. If instead of 1/2, this value is 1/3, shorter headways

and greater total operating cost should result. Similarly, if the

actual cost is 2/3 the original DOC, larger headways and reduced total

operating cost should result. By varying this fraction, the tradeoff

between LOS and cost can be controlled. The one-stop system with 10

vehicles is simulated once again, this time c is varied. The results

are shown in Figure 3.27.

3.4 Summary of Results

The purpose of this study is to investigate the effects of

general strategies on USH performance and to develop new routing schemes,

making the USH system more efficient, through an improvement in LOS, and

a reduction in operating cost. The control strategies which evolved in

the course of this study do achieve these goals. In fact, the improve-

ment in USH operations is very impressive. This can be illustrated by

comparing the LOS provided to passengers by the system operating a 10

vehicle fleet, under various controls. From Figure 3.28, it is obvious

that the fixed routing system can not cope with the peak demand. In

neither the allstop nor the nonstop cases is a stable condition achieved

during the rush. This means that if the rush lasted for another hour,

average travel time would continue to increase. The effect of the demand

peaking is significantly reduced in the dynamic routing cases. In the

case without holding, the average travel time increases during the rush,

levels off, and then decreases again after demand subsides. The effect

of holding is to decrease this variation of travel time over the day.
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In the holding cases, it is difficult to tell where the rush hour begins

and ends, from variations in the travel time. In terms of LOS, this

is a very stable system.

How much does it cost to run this system? Consider first the

variation in average travel time with the number of takeoff and landing

cycles (cycle costs are a major portion of total system costs)(Figure

3.29). In all but the holding cases, the number of cycles and the

operating cost of the system depend only on the number of vehicles.

The effect of the holding strategy is to reduce this cost and slide the

curve to the left. As it turns out, the most stable system is also the

cheapest to operate! Also, the variation in average travel time with

operation cost is shown (Figure 3.30). The Pareto-optimal boundary here

is defined by the system operating vehicles using dynamic routing and

holding. More points on this bounqary could be found by varying the cost

parameter in the holding rule.

One item concerning the 4ynamic routing algorithms developed

in Section 3.3 should be stressed. The use of nonlinear waiting costs

in this algorithm is not meant to reflect passenger psychology. These

costs are strictly a modeling tool, and one which proved to be very

useful. By varying the relative values of the cost parameters, the

tradeoff between the mean and the variance of trip time can be con-

trolled. Intuitively, it seems reasonable that reducing the uncertainty

in trip t me increases the LOS to passengers. In the next chapter, a

passenger-oriented model is postulated which provides more justification
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for controlling this uncertainty, and makes use of the algorithm's

ability to do so.

The most significant aspects of the dynamic control algorithm

is its generality and simplicity. The fleet of vehicles was routed and

departures were scheduled using a minimum amount of real time data.

The algorithm has no prior information as to actual passenger arrivals

or even the average arrival rates of passengers. In fact, the only

prior information the control algorithm has is a distance matrix and

vehicle parameters. The real time information which is used is simple.

For each OD pair, two numbers (number waiting and maximum waiting time)

are required. In the simulation model, this is the only information the

control algorithm uses. In fact, if an actual USH system existed, this

algorithm could be used without modification to control it. The real

time information necessary to drive the algorithm can be collected by

counting and timing passenger arrivals at each station. This information

can be relayed to a central facility via phone lines. The route choice

calculation can be made there. These calculations would require a

machine no larger than a programmable calculator, Instructions (next

destination, departure time) can then be relayed back to the stations.
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Chapter 4

SUGGESTED TOPICS FOR FURTHER RESEARCH

This study was undertaken in order to develop a scheduling

and routing methodology for the USH system, and to model realistically

the operations of the system. The results of this work are to be used

in a more general study of USH system feasibility. In this chapter,

topics for further research aimed at determining USH feasibility are

suggested. This additional research consists of three general areas.

The first area is the immediate application of the existing models to

the investigation of USH system sensitivity. Next, modifications of

the algorithms and of the simulatipn procedure are suggested in order

to make the models more realistic in a USH analysis. Finally, some

questions involving fundamental transportation issues are raised.

4.1 Immediate Applications of Mods

With the existing algorithms and present version of SMUSH,

many aspects of USH system design pan be investigated. A few of the

more pertinent questions, which may be answered through the use of the

existing software, are listed below.

1. What is the effect of city geometry? How are USH opera-

tions and system performance affected by the relative locations and

size of the suburbs and CBD?

2. How sensitive is the system to demand peaking and direction-

ality? At what level of peaking does congestion significantly degrade
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LOS? How is this level affected by vehicle parameters, the number of

stations, or individual passenger cost parameters?

3. What is the relationship between the mean and the variance

of trip time? Does the effort to reduce uncertainty in trip time

increase the likelihood of congestion?

4.2 Modifications to Models

Multiple stop service and load building is an important feature

of the USH system, but so far, it has not been fully exploited. While

the dynamic control algorithms allow some one-stop service, only non-

stop service is considered in determining vehicle routing. Although the

modifications necessary to consider explicitly one and two-stop service

will add to the complexity of the decision algorithm, the improvement in

system performance should make this work worthwhile.

Throughout this study, it is assumed that demand is independent

of the schedule. Obviously, this is not a realistic assumption. The

probability that a particular passenger chooses the USH system (and

therefore the total demand) depends on fare, convenience, and LOS. So,

in a given system with some potential demand, a particular schedule will

result in some actual daily demand. But the schedule generated by the

algorithms developed in this study in turn depends on the actual demand.

There is an equilibrium demand and schedule, but due to the complexity

of the problem, they cannot be found analytically. The equilibrium con-

ditions can be found using the following iterative method. Some LOS

is assumed, the associated demand is estimated, and the system is
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simulated. If the esti ated and actual LOS differ significantly, LOS

is re-estimated and thlystem is simulated again. Although this proce-

dure should converge to the equilibrium condition, it is not obvious

how fast this will occur. So, while this method will yield a good

estimate of USH operations, it may be prohibitively expensive.

4.3 Fixed vs. Dynamic Scheduling

With the algorithms developed in this study, the system oper-

ates with no timetable (or with a dynamic schedule). This type of policy

gives the system the ability to cope with random fluctuations as well

as with (unanticipated) overall variations in demand. A system with

a fixed departure schedule loses this ability. But availability of a

timetable to passengers should reduce the average waiting time through-

out the system. The tradeoff between fixed and dynamic scheduling can

be evaluated by comparing the effects on LOS of the reduction in waiting

time associated with the availability of timetables, and the benefits

associated with the ability to cqpe with the variations in actual

demand.

Although the average arrival rate of passengers into a

scheduled system depends on the times of departure, the actual times

of arrival are random (see Figure 4.1). The reduction in average

waiting time to the passengers depends on the amount of influence of

the schedule on the arrival rate. This dependence can be estimated by

observing the arrival rates of passengers into existing transportation

systems operating with a fixed schedule and relatively short headways.



117

Fixed Schedule
(Oith Time Tables)

Dynamic
Schedule

Vehicl-e
Depatures

Time of Day

Figure 4.1 - Illustration of the effects of time tables on the average
arrival rate of passengers into a transportation system.

Average
Arrival
Rate



118

Examples of this type of system include the Eastern Shuttle, NYAW,

and some bus systems.

The effect on LOS of the system's ability to cope with

variations in demand can be estimated with the existing computer models.

A fixed schedule can be generated by running the system dynamically and

recording the vehicle movements and departure times. This same schedule

can be used on other days, where the overall demand patterns are the

same, but where individual passenger arrivals are different. The effect

of the loss of flexibility can be seen by comparing the LOS on the first

and subsequent days.

This analysis should provide a reasonable answer to the fixed

versus dynamic scheduling question. But whatever the outcome, the

vehicle control algorithms and simulation model can still be used to

generate the schedules.

4.4 LOS

Throughout this study, the term LOS has been used as a measure

of system performance. It was suggested in the first chapter that this

term depends on both the mean and variance of travel time. A justifica-

tion for this conjecture, and a proposed measure for LOS are now pre-

sented.

LOS is a measure of the cost, in time, associated with travel.

This generally refers to the time spent in transit. The maximization of

this measure of LOS is equivalent to the minimization of average travel

time. But there is also a cost to the passenger associated with the



119

actual arrival time at the destination. Consider a businessman who must

meet with a client at a certain time. There is a cost in loss of good-

will or actual dollars associated with being late (see Figure 4.2a). A

general traveler also has an arrival cost (Figure 4.2b). Here, the costs

are much lower, since the ramifications of being late to a movie or

department store are not as great as those associated with the business

meeting. Note that there is also a cost associated with being early,

for an early arrival may result in waiting outside for a business to

open or a long wait to enter a theater, etc. Obviously, these costs

vary with the individual and passenger type, but for a class of

travelers, these general forms should apply.

Now, consider an individual commuter who has determined the

cost spent in travel to be C $/hour, and the time by which he arrives

early to be worthless. For example, if he allows one hour for the trip

to work and arrives early, the total cost is $C, regardless of the

actual arrival time. Furthermore, suppose that he has determined an

arrival cost of the simplified form shown in Figure 4.3.

The total cost of making the trip (TC) is then,

TC = C - (T.A.) + L6 (4.1)

where TC E total cost

TA time allowed

0 early
1 1ate
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In the long run, it seems reasonable to assume that this commuter will

want to minimize average cost, which is found as follows:

E(Cost) = C - (TA) + L - P(Late) (4.2)

The probability of being late, P(Late), is the probability that the

actual trip takes longer than the time allowed.

P(Late) = P(Trip Allowed < Trip Time)

P(Late) = 1 - P(Trip Time < X0) X > 0 (4.3)

If the commuter knows the cumulative distribution function for his trip

time (Figure 4.4a), he can determine P(Late) as a function of time

allowed (Figure 4.4b). With this information, he can calculate the

expected total cost in terms of time allowed. Finally, he can determine

the amount of time to allow (TA*) in order to minimize expected cost

(Figure 4.5).

Now, while the precise roles of mean and variance in the

minimum cost depend on the trip time cdf, it should be clear that mini-

mum cost depends on both terms.

For a system with fixed average travel time as the variance

increases, the minimum expected cost associated with travel will also

increase. In Chapter 3, it was shown that for a particular system

using dynamic vehicle controls the effect of decreasing the variance

of travel time is to increase the mean. This leads to a most interesting

optimization problem. At what point should the system operate in order

to maximize the average LOS offered
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to passengers? Recall that this operating point is controlled by the

slope of the individual waiting cost curve, b. So, if the costs asso-

ciated with travel and arrival times are determined, can the value of

b be determined to maximize average LOS to all passengers? If all

passengers had this information and made the correct decisions, the

minimum expected cost would be a good measure of LOS. Obviously,

passengers do not have this complete information, but this is reason-

able passenger behavior. While it is not obvious whether this measure

of LOS is mathematically tractable, it may be an interesting concept

to pursue, in the context of incomplete or bad information.
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APPENDIX A

In this section, methods of generating an optimal schedule

for the USH system are briefly discussed. By optimal, we mean the

maximization of LOS to all passengers. A method developed by Devanney

for ground transportation, generates an optimal schedule in two steps.11

First, the network is decomposed into individual OD pairs, and optimal

departure schedules for each pair are determined using Dynamic

Programming. Next, the network is reconstructed, and the minimum number

of vehicles necessary to achieve the departure schedules for the entire

network is determined, using Simpson's fleet reduction program

(REDUCTA).12  If it is assumed that the demand for a given departure

depends on the LOS as well as time of day, the decision variables in

the Dynamic program are the number of departures, the time and the

capacity of each departure. It was shown by Vom Saal that if the

dependence of demand on the schedule is eliminated, and if the vehicles

have sufficient capacity to serve all passengers waiting for each

departure, then the number of decision variables necessary in the optimi-

zation is reduced to one. 13 This represents a tremendous simplification

in the optimization process. This method works well and can be used

to generate a schedule in a large network, but it does not accurately

model, or fully exploit the capabilities of the USH system.

Next, a shortest path formulation of the USH scheduling problem

is described. This formulation will utilize Vom Saal's simplifications.
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The vehicle scheduling and routing are considered

simultaneously in this optimization process. It is assumed that the

demand is known, and is independent of schedule. And for now, it is

assumed that vehicles have unlimited capacity. Due to the explosive

nature of the state space, it is difficult to obtain the optimum in

even a moderately-sized network. The technique is demonstrated on a

trivial system, and extensions to a more realistic network are then

discussed.

Consider the network shown in Figure A.10; passengers arrive

at nodes I and 2 at known rates of arrival. They are transported to

their common destination, node 3, by a single uncapacitated vehicle.

The state of the system will be defined as the time of the most recent

departures from 1 and 2, (S , S2), or equivalently, as the time at which

the last service to each OD pair began. The initial state -of the system

is defined to be (SI = 0, S2 = 0). For simplicity, only discrete values

of S1 and S2 are considered. With this restriction, the state space

can be represented by a two dimensional array of points (see Figure 2.lb).

As the day progresses, each service to the OD pairs redefines

the state of the system. The system state changes via a transition

which is defined to occur when the vehicle stops at node 3. There are

only four combinations of stops by which the vehicle can leave 3, pick

up passengers at one or both origins, and return to 3. Each combination

corresponds to a transition (Figure A.2).

-- *4k* 40"P"- I - 11 1
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Figure A.lb - State Space
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Transition Type Vehicle Routing

A 3-1-3

B 3-1-2-3

C 3-2-1-3

D 3-2-3

Figure A.2

Note that passengers can receive either nonstop or one-stop service.

Suppose that the system leaves state (Si , S2) via a transition

of type B (this corresponds to the vehicle leaving 3, stopping at 1 and

2, and then returning to 3). Let the departure times from 1 and 2 be

Sj, and S , respectively. Assuming that 1 and 2 are distinct nodes and

that the vehicle moves at a finite speed, there is a minimum time a12'
required to fly between the two stations. (In general, a.. is defined

to be the minimum time between departures from i and j, a.. = block time

+ minimum ground time). Therefore, the following constraint can be

placed on the departure times:

S > Sj + a12

Suppose that the system entered its present state via a transition of

type A. The vehicle routing for the present and most recent transitions

can be represented schematically, as in Figure A.3.' From this figure,

it is obvious that S depends on SI* The constraint is as follows:

S > S + a13 + a31 = S1 + 2
I -13 1 =Sl +2 a13



Transition

A u

a31, a31 a 31 1-a23
Node

Flight Time

figure A.3' - Timeline for A, B Transitions.
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In general, there are constraints on the times of future departures

from each node, which depend on S1, S2 (present system state) and the

vehicle routing (transition type). But it can be shown that these

constraints do not depend on how the system reached its present state.14

In summary, the states which the system may next enter depend on the

present state (S , S2) and the transition type by which this state is

left.

There is one additional constraint; all passengers must be

served. This requires that exactly one departure occur after the last

passenger arrives at each node.

Consider the following example. Passengers arrive at nodes

1 and 2 at rates fY(t), and f2(t) (Figure AA a). The minimum times

between departures are a12 = .2, a13 = .3, and a23 = .4 (hours).

Discrete values of SI and S2 are considered at .1 hour intervals. The

vehicle departure schedule is as shown below (Figure A.4b).

Node Departure Time Transition

2 0.20
1 0.40 C
3 0.80
1 1.20
2 1.40 B
3 1.70
2 2.00 D3 2.30
1 2.70 A

Figure A.4b

The path of the system through the state space is shown in
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Figure A.4c. It should be noted that the final state of the system

satisfies the constraint, S, > 2, S2 > 2. Also note that the transitions

in which the vehicle stops at one node to pick up passengers are parallel

to the axes, while the transitions in which the vehicle stops at both

nodes 1 and 2 are diagonal.

There is a cost in passenger-hours to the system in jumping

from state Sg , 2 to Si, S . This cost is the sum of the waiting and

ride times for those passengers served on this transition. The total

waiting time associated with the transition is

2 Si

. f(x)(S! - x) dx

The ride time for the passengers also depends on transition type since

the transition type determines whether a passenger receives one-stop

or nonstop service.

Given that the system is presently in state SP , S2 the

constraints on future departure times determine which states the system

may next enter, and the cost associated with each transition (pax-hrs)

can be found. If the state space is considered a network, and the

cost associated with each possible transition a distance, then the

optimal schedule is the shortest path from the initial state to some

final state S', S2, where S" indicates a time after the last passenger

arrival.

Now, this schedule can be generated using a shortest path

algorithm. To determine an eight-hour schedule with time increments
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Figure A.4a - Passenger Arrival Rates
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of .1 hours, the network necessary contains about 6400 nodes. This can

be solved on the computer with a small amount of storage and time, but

this is still a trivial problem. More meaningful results come at the

cost of a much larger state space and associated network.

Finite vehicle capacity can be modeled with the addition of a

variable corresponding to an overflow number of passengers for each OD

pair. For the two OD pair case, the system state can be defined as

(S9 , S2, W1, W2), where WI is the number of passengers at node i who

were not boarded on the last departure, due to capacity constraints.

The initial state of the system is (0, 0, 0, 0) and the final state is

(S1', Sg, 0, 0). Although this is a simple addition conceptually, the

extra variables add two more dimensions to the state space. If values

for W i are considered in a range of 0 to 100, the network from the

previous example would now have 64x10 6 nodes. This is no longer a

simple problem for computer application of the shortest path algorithm.

A more reasonably sized USH system could have 10 OD pairs. The state of

the system would now be defined in 20 dimensions. The size of the state

space would be (100x80)l0  or around 10 The addition of multiple

vehicles adds still more complications to this already astronomical

state space.

This formulation is a victim of the "Curse of Dimensionality."

The fact that the entire state space must be stored to obtain the optimal

solution using the shortest path algorithm makes computer applications

impossible. So, while the determination of an optimal schedule using

Dynamic Programming (in the form of the shortest path) is conceptually

feasible, it is totally impractical from the computational point of view.
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Appendix B

SMUSH User's Guide

Introduction

The Simulation Model for the Ultra Short Haul transportation

system (SMUSH) was developed to investigate the effects of vehicle

routing and scheduling strategies on the performance of the USH system.

SMUSH is written in the GASP IIA simulation language. GASP is a collec-

tion of FORTRAN subroutines which provide the general framework for

event-paced simulation. SMUSH is a FORTRAN program, consisting of

standard GASP and non-GASP subroutines. The GASP portion of SMUSH

provides the mechanism to store and retrieve data, advance the simulation

clock, and collect statistics. The non-GASP portion is dedicated to

the input, output and handling of data unique to the USH system. Due

to this structure, the simulation methodology and program code are

completely accessible to the user.

The user of SMUSH provides the following system parameters:

Network layout

Fleet and vehicle parameters

Passenger arrival rates

Routing and scheduling structure.

The output of SMUSH consists of the following system performance data:

Vehicle schedule map

Passenger trip time statistics

Vehicle utilization statistics
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System operating costs

Vehicle Control Options

The user of SMUSH hasthe option of two general vehicle

control strategies, these are fixed and dynamic controls. In both

options, the basic mechanism by which the vehicles are routed is the

same. Each vehicle flies an assigned route. When this route is

completed, the vehicle immediately begins the completed route's succes-

sor. The minimum time to complete each takeoff and landing cycle is

assumed to be a function of the number of passengers boarded, see Figure

B.l. (The actual cycle time may be increased by holding.)

Cycle
Time

9 1
(Number Boarded)/Capacity

Figure B.l - Takeoff and Landing Cycle Time

At each stop, the vehicle normally boards all passengers

whose destination is on the remaining portion of the route. But if the

present route is its own successor, then passengers are boarded whose

destination is any node on the route. For example, if the route calls

for stops at nodes i, j, and k, at node j only, jk passengers are

boarded. But if this route is its own successor, the vehicle will stop

at i, j, k and then i, j, k again. So, at node j, jk and ji passengers

are boarded.
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Under the fixed control option, the complete routing for each

vehicle is specified by the user. The vehicle flies its initial route,

this route's successor, etc. When the dynamic controls are invoked,

routes are constructed for each vehicle during system operation. The

routes and successors are determined according to the algorithm developed

in Section 3.3.1.

If the fixed control option is used, the user must provide

the following data:

- Complete list of routes

- Successor for each route

- Initial route and starting time for each vehicle

- Minimum headway

- Maximum number to be loaded on one vehicle for each OD pair.

If the dynamic control option is invoked, the user must provide

the following data:

- Passenger cost parameters

- Initial node and starting time for each vehicle.

The user must also specify whether all passengers will receive nonstop

service or if some one-stop service is to be provided, and whether the

vehicles will hold according to the algorithm described in 3.3.2.3.

Inputs to SMUSH

For each run, input is made in two parts; these are model

controls and individual case data. The model controls appear once per

run, the case data is input for each case to be run.
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The first three lines of input are the model control data,

these are as follows:

Number of cases to be run (< 10) Format (15)

Number of Monte Carlo iterations for each case Format (1015)

Begin and end time for each case (2F5.2)

The individual case data is made in ten sections (See Figure

B.2). The first case must contain an entry for each section (even if

default values are used). In the following cases, only those sections

in which inputs change between successive cases need to be entered.

In this manner, some duplication of input data is avoided. Each case

must begin with a title card and end with a "99" card.

Title Card

01 Network data

02 Passenger arrival data

03 Minimum headway

04 Maximum loading of each OD pair

05 Routing option and passenger cost parameters

06 Vehicle parameters

07 OD pair identification

08 Output parameters

99 End of case

Figure B.2

The data input in each section is as follows:

01 Number of nodes (< 10) Format (I5)
Distance Matrix (iiles) Format (10F5.0)
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02 Number of Arrival Rate Tables Format (15)
Arrival Rate Tables (passengers/hr) Format (1OF5.0)
Number of Passenger Types Format (15)
For each Passenger Type - The Number of Data Points ,Format (I5)
For each Data Point - A Time and Corresponding Table ID Format

(F5.2, 15)

03 Minimum Headway (hours) Format (F3.1)

04 Maximum Boarding for each OD Pair. Format (1215)
Default: -1, No Maximum Format (I5)

05 Passenger Waiting Cost Parameters a, b. Format (2F10.7)
Routing Options NRTS, MHOLD . Format (215)

If NRTS > 0, NRTS = Number of Routes (Fixed Routing)
If NRTS = -1, Dynamic Routing, Nonstop Service
If NRTS = -2, Dynamic Routing, Some One-Stop Service

If MHOLD = 0, No Holding
If MHOLD > 0, Dynamic Holding

06 Number of Vehicles, Capacity, Speed (m/hr), Cycle Time Min (hrs)
Cycle Time Max (hrs), DOC $/hr, DOC $/cycle
Format (215, F5.0, 2F5.2, 2F5.0)

Initial Route (Fixed Routing) or Initial Node (Dynamic Routing)
and Starting Time Format (I5, F5.2)

07 Number of OD Pairs , Format (I5)
(If number of OD Pairs < 0 SMUSH Assigns Identification)
OD Pair Identification Format (1215)

08 Number of Route Histograms Format (I5)
Route Numbers for Histograms Format (I5)
Number of OD Histograms Format (I5)
OD Number of Histograms Format (15)

On the following pages appears an example input deck. This is a setup

to run 2 cases. The first case uses the dynamic routing with one stop

and holding options to control a fleet of 10 vehicles. The second case

is a fixed routing setup with 15 vehicles. Notice that the network and

passenger arrival data is the same for both cases, and does not need to

be repeated in the second case. Only those parameters which are changed
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between cases need to appear in both cases.
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Sample Input to SMUlSH

//G.rVJN On 0

1 1
ftnr soonn

'WNAmIC QOUTING
nI

5.
14..
1 .
?4..
10.

n.

4.
6.
4.

10.

0.

0-.
0.
0..
i.

8.0
4

n

n.0

04

->1

.3
4

t

C.

0.
14.
15~.
2'.
2 3.

4.
3.
0.
6.
4.

11.

0.

0.
0.
0..
n.

0.
0.0.
0.
0.
0.
.

10.0

JTH HOLDINf". ONE S7OP SEVI!CE

?'4,28.

5.

3.
4.

0.
0.

29.
?2.
31,.
34.

0.
0.

0,
0..
0..
n.
0..
'0.

'Lumber of Cases (15)
Number of MC iterations for each case (1015)
Begin and end time (2F5.2)
Title (15A4)

lumber of nodes (15)

Distance matrix (10F5.0)
(iles)

Number of arrival rate tables (5)
ID number for first table (15)

10.
R.
1.1.
12.

0.
0.

71.
;4.
77.
-A.
0.
0.

0.
0.
0.
0.
0.
Om

1

50 100.. .o' .15 0OO. 100.-
n. 2c;
0.2c;
0.25
0.25
0.25

Arrival rate table (pax/hr) (10F5.0)

ID number for second table (15)

Arrival rate table

Table .3

hanber of passenger types (15)
lumber of data points for type 1 (15)
Time and table ID (F5.2.15)

.Number of points for passenger type 2 (IS)

Time and table ID (F5.2,I5)

Minimum headway F3.1

Nlaximum 00 pair loading (IS) .

Passenger cost parameters a..b i.<10.7)
NRTS, MHOLD (215)

NWEH, CAP, VELC TCMIN, TCMAX, 'COST, CCOST
(2I5,F5.0.F5.2,2F5.0)

Vehicle initial routes and times (15,F5.2)



Jwt±lal *odes .and starting times cont'd

JIODPR (15)

4umber of-route time histograms (I5)
Number of OD pair histograms (15)

DD pairs for which histograms are printed (15)

EOUTING. A-L-STOP WITH

50 100.
0.?5n .,

r.25

f0

0.30
0.40

n.50

End of first case
CRITICAL LINK QUOTA. MIN HDWY a 0..05 HPS

.05 .1'% 600. 100.
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Output

The output of SMUSH consists of the following:

1. Summary of input data

2. Schedule map

3. GASP summary report, for each run

4. Average economic results

5. Histograms of system parameters

The summary of input data and schedule map are self-explanatory. For

each simulation run, a GASP summary report is printed. This report,

entitled, "Generated Data," lists statistics collected for sample values

of the following parameters.

1. Wait, ride and total trip times
- for the entire system
- for each route
- for each OD pair

2. Vehicle load factor
- for the entire system
- for each route

3. Average trip time vs. arrival time for each passenger trip

4. Number of each passenger type waiting at the stations
during the run

For each parameter, the following statistics are printed:

- mean

- standard deviation

- minimum observed value

- maximum observed value

- total number of observations
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The nth report gives statistics of all observations made in the first n

Monte Carlo runs. Associated with each variable is a numeric code;

Figure B.3 provides the key to this code.
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GASP SUMMARY REPORT

Generated Data

Parameter

Passenger Wait Time
Passenger Ride Time
Passenger Trip Time

Passenger Wait Time
Passenger Ride Time
Passenger Trip Time

Route 2

The code number for Route n Wait Time = 3n + 1
Ride Time = 3n + 2
Trip Time = 3n + 3

Route 30

Load Factor
Load Factor

Load Factor

Passenger Wait
Ride
Trip

System
Route

Route 30

Time
Time
Time

Wait Time
Ride Time
Trip Time

Wait
Ride
Tri p

OD Pair 1

OD Pair 2

OD Pair 90
Time
Time
Time

Code

System

Route 1

124

127
128
129

394
395
396
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The code number for OD Pair n Wait Time = (n + 41)
Ride Time = (n + 41)
Trip Time = (n + 41)

Trip Time (hrs) for Type 1 Passengers Who Arrive
in the Interval

Trip Time (hrs) for Type 2 Passengers Who Arrive
in the Interval

System Load Factor during the Interval

401

402

420

421

440

441

460

461

462

*3 + 1
*3 + 2
*3 + 3

(0, .5)
(.5, 1.0)

(9.5, 10.0)

(0, .5)

(9.5, 10.0)

(0, .5)

(9.5, 10.0)

(0.0, 0.5)
(0.5, 1.0)

(9.5, 10.0)

Number of Type 1 Passengers Waiting at Node 2
during the Interval

Number of Type 1 Passengers Waiting at Node 10
during the Interval

Number of Type 1 Passengers Waiting at Node 1
during the Interval

480

481

500

641

660
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Number of Type 2 Passengers Waiting at Node 1

Number of Type 2 Passengers Waiting at Node 10

661

680

841

860
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LIST OF SUBROUTINES

GASP Subroutines

The following is

documentation of

GASP

LOCAT

FILEM

RMOVE

SET

COLCT

TMST

SUMRY

Non-GASP Subrouti

a list of the GASP subroutines used in SMUSH. Complete

them may be found in Reference 7.

- Controls the simulation start and finish
- Advances simulation clock

- Locates address of particular file entry

- Loads entry into NSET

- Removes entry from NSET

- Updates file pointers in NSET

- Collects sample statistics

- Collects time weighted statistics

- Prints GASP summary report

nes

DATAX - Modification of DATAN (see Ref. 7)
- Initializes GASP variables

EVENTS - Calls subroutine corresponding to the
pending event

INTL - Event #1; Initialization
- Initializes non-GASP variables
- Prints input data summary
- Stores initial events (vehicle departures,

passenger generation)

PXARV - Event #2; Passenger arrival
- Transfers passenger data from file 1

to file 2

VEHDP - Event #3; Vehicle departure
- Loads passengers
- Stores arrival event



150

VEHAR

GENPX

GRATE

HISTO
OTPUT
HPLOT

PSET

REX

XRUTE

MCOST

HOLD

The following is

common variables

ARATE(N,I,J,K)

MRT(IJ)

NSTOP(I)

NPX(L)

NXRT(M)

D(IJ)

VELC

NWAIT(N,J)

- Event #4; Vehicle arrival
- Unloads passengers
- Stores departure event

- Event #5; Passenger Generation
- Venerates passengers arriving in the interval,

Tnow < T < Tnow + .5 (hours)

- Stores generation event for Tnow + .5 (hours)

- Interpolates linearly to determine the average
passenger arrival rate at any time

- Prepares and prints output

- Prints contents of NSET (diagnostic)

- Generates exponentially distributed random
deviate

- Determines next route (dynamic routing)

- Calculates marginal cost for an OD pair

- Determines whether to hold vehicle or go now.

a description of SMUSH common variables. (The GASP

are described in Ref. 7.)

- Average arrival rate of passenger type N, going
from i to j at time = TRATE (NK)

- Node Number of the jth stop on Route i

- Number of stops on Route I

- Number of passengers on board vehicle L

- Successor Route to rate m

- Distance (miles) from I to J

- Velocity of vehicle (mph)

- Number of passengers waiting of type n at node J



TRATE(N,K)

TCOST

CCOST

NCYCL

FTIME

PMILE

NNODE

NRTS

TDEL

NOD(IJ)

NODPR

CBX

CAX

JHOLD(L)

MNOLD
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- Time of the Kth OD arrival rate matrix of
passenger type n

- DOC $/HR

- DOC $/CYCLE

- Number of T/O-landing cycles

- Total flight time (hrs)

- Total passenger miles

- Number of nodes in network

> 0 # routes

- 1 flag for dynamic nonstop
- 2 flag for dynamic one-stop

- Time between successive calls to passenger generator

- Identification number of OD pair i j

- Number of 0D pairs; if < 0, SMUSH determines NODPR

and identification numbers itself

- Slope of passenger waiting cost curve

- Intercept of passenger waiting cost curve

- Number of times vehicle L holds at present node

- 0 No holding

1 Holding

The following is a source list of SMUSH.
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SMUSH Source List

nTMENSION %lSET(lPnn0),QSETt4onn)
CnMMON TDgyMgTKITTgJFIMTgJMNITsMFA,4sTOpgmxMXCeNCLCT.NHTST.

I NnQqN0RPTq \I',) To NlPQk4SoNOIJ IoNRUNc,,NSTtiT*UI)Tg I SFFnoTNOW*
2TqF69TFTNtVXXqNPONToNrRD49NEPeVNQ(4)*IMMtMAXOSeMAXNS
CnMMON ATRTq(ln;*FNO(4)eINN(4)*JCFLS(2n922),KQANK(4)*MAXNM(4)o
IMFE(4)oMLC(4)ok4LF(4)9 ICE -S(;-10).@NO(4)oPARAMI?094)OQT14F(4)94;4;UMA
2(1095)oSUMA(InnngS)VNAMF(6)vqoooiemn49NDAYoNYP*JCt.Q.pJTCT.R(I?)
COMMON/TUB-/MPT(10*lnloNSTOP(14)*NPX(e0)*AQATF(2olOolO*10)*MYPT

I(Ig))-vD(10910)-PVF-LC-PNWAIT(2910)qTRATF(2,olO)-PNTTMF(?)eTCnST*rrt)IqT*
PNCYCLoFTIMroPUTLF9 ipiOnF-94RTSqTnFL94n)(login)*NlOnPRgTCMTN*TrmaN
39T&IAP(2092nD)omAo(2n9pooo5)gMhDX(PO)oNDRW(170)*TCAD*mpnD(10,1n)
49THMItJvNVEI*TLAST(10)*TFL(10910)gNWOD(90)oFAPI-y(90)*TrirRv(c)n),Cax
5qCbXqJH0LD(?n),MHOLn
nTMFNSION 4PN(10)

r
C MAIfq PROGPAm
r PFAn NUmBER IF CASFS*.TPUNS
C PFAn NUmBER IF m C TTERATIONS..NIIRUN(T)
C QFhn TIME L14ITq,, TRFG* TFIN

C
WpnR=s
NPRNT=6
loutj=o
RvAn(sqjnon)IpijNr.

1000 FOPMAT(15)
RFA0(59l001)(NPN(DqI=jqIRUNS)

1001 FOR14AT (101:;)
PFAn(S9l0ln)TRFGoTFIN

1010 FnRMAT(2FS,2)
I 10t)N=IQUN*l
NQUNS=NPN(TRUM)
NPIJN= I
IqEED=S
TnEL=*2S
CALL GASP(45ET*QqFT)
CALL OTPUT
IF(TRUNLT.IQllhlS)GO Tn I
ISTOP
ENID
SUBROUTINE EVNTS(IoNSFT92SET)
DTMENSION VSET(I)qQSFT(l)
CnMMUN TD*T'AoTkITT-PJEVKITgJMNIT94FAgmsTOpqmxomXC*NCLCTeNHIST9
INnOtNOPPTe4nT9 IPOMSqNIPUNgNRUN59NSTAT90UT919FEnsTNOW*
PTnEGeTFI 194YX*NP*NT9mrRn49NEpgvNn(4)*ImMqMAXQSeMAX4S
CnMMON ATP'r:;(In)eFNo(4)*INN(4)*JCFLS(2ng?2)*WPAMK(4)94AXNM(4)0
IMIrF (4) PmLC (4) -P"L (4) eNCELS (20) 9NO (4) 9P4RAM (P094) PQTT4F (4) 9qvllmA
?(10.05)9sume.(lnMn*9)*NAMF(6)gNPqnj94OV9NnAY*NYRgJC;.99JTRIR(I?)
CnMMON/TU4r/MRT(10olO)*NSTOP(3n)otlPX( !0)*AQATF(791091nglO)qNXPT
1(10)oD(I()gln)-PVFLCqNWAIT(2910)qTRATE(2910)omlrmr(2)*Trt)ST.r-r.()rT.o
?NrYCLgFTIM:'*PMILPqNlNnmFqNRTSgTnFL94n)(1091n)*NonPRoTCmTN*TCMAX
39TOAP(PO92nO)9MAP(20*?009S)*MAOX(21)*NDRW(120)oTCAPompnn(1001n)
49THMINeNVF4*TLAST(10)qTFL(109111)tklWOD(QO)*FARLY(90)oTqFRV(90)gCPX
99CAXqJHOLn(po),m"0Ln

r
C CALI SUBROlJTTN4E .OOPFSPONn-ING Tn ONF OF FivE FVENTS



10'

153

IF(IEo.0)50 Tn 9999
GO TO(1929194sS)9I

I CALL TNTL(N5ET*QSFT)
Gn TO 9999

2 CALL PXARV(NSFT*OSET)
GO TO 9Q99

3 CaLL VEHDP(NSFT90SFT)
GO TO 9999

4 CALL VEHAR(NSET90SFT)
Gn TO q999

5 C4LL GENPXINSFT90SET)
q9gQ RFTURN

Emn
SURPOUTINE INTL(NSET90SET)

r 141TIA117E EVENT 4UMRFR I
nTMENSION VSET(1)q09FT(j)
COMMON ID-PT491NITgJEV lTgJMNIT*MFA*MqTO09MXqMXC-oNCLCTgNHIST9

INnGo'40RPToYOT-o )POMRokJPONIoNRUNS*NSTaTqOI)T-elqFF-n*TNOWe
?T9EGgTFINovxxqNIPPNT*NrRORINEP*V 10(4)*IMMOMAY059MAXNS
r.n?4MON ATRTq(ln)eFKIO(4)91NN(4)*JCFLS(20*22)*KPANK(4)oMAXNn(4)9
IMFE(4),eMLC(4)qMLF(4)gtfCE:-S(20)*NO(4)*PARAM(7094)oQTTMF(4)ogq(JMA
;-)(1095)gSUMA(InnntS)qNAMF(6)oNPOOJo4ON94DAYtNY09JCLQ*JTPTRIIP)
CnMMON/TUR'!/MPT(10910)INSTOP(30)9 IPX(20)oAPATF(?910910olOloNXRT
1(30)90(1091())-VFLC*NWAIT(2910)*TPaTF(2*10)eNTTMF(?)oTroSToCCOqT*
2NCYCL*FTIMr*PMTL;'gp.lrjnnF-.PNHTS-PTnFL.oNn:)(1091(i)oNnnPR*TCMTN.pTCMAY
39TMAP(2092nO)9mAP(PO9POn95)9k4APX(?O)*NOPW(170)*TCAD*monn(ioolo)
49THMINoNVE-I*TIAST(10)*TFL(10*ln)oNWf):)(90)*FARLY(90)gTrFRV(9o)OCQX
S*CAXvJHOLn(?n),MwnLO
OTMENSION XTM(70)oJPT(20)qXRATF(InolOtIO)OTTL(19)

c
C INITIALIZE S14E VAPTABLFS FOR EACH TTFRATION

on 90 J=1910
TLAST(J)=O,
nn go i=lgp

90 NWAIT(19J)=n
on 91 J=1970
JHOLD(J)=O

91 NPXCJ)=G
Dn 95 1=1*40
TqFPV(I)=l
NWOD(I)=O

Q5 EARLY(T)=T9EG

C SKID TO 16 Ir THTS IS NnT A NEW CASE
IF(NRUNGT.I)Gn TO 16

C
c INITIALIZE VARIARLES FOP NEW CASF

NCYCL=O
FTImE=O.
PMILE=no
On 7 1=192n
MAPX(T)=O
On 7 J=192nn

7 4AP(IoJql)=-l

C
C QEAn DATA

PrAD(59'36) (TTL (1) 91=1 915)
36 FOPMAT(JSA4)
50 PFAD(5960)TZEAn
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60 FORMAT(12)
IF(IREAD.El.99)Gn TO 16
IF(IREAD.LE.0.nR.IPEAn.GE.9)CALL FDP)R(IREan)
GO TO(51,5P,53.54,55,56,57,58),TREAD

51 CONTINUE
C
C REAn NETWORK DATA

RFAD (5, 1)N'fDE
1 FORMAT(15)
DO 2 1=1lN4ODF

? Rl:AD(5.3)('(I,J) ,J=1,10)
3 FORMAT(10F;.0)
GO TO 50

C qFAn DEMAND DATA
5? CONTINUE

READ (5,1) Nw
DO 4 K=1,Nx
OFAD(5,1)Kv
Dn 4 1,N90DE

4 PFAD(5,5) (RATF(T,JKY) ,J=lNnODE)
5 FORMAT(10F.O)

RFAD(5,1)NDTYP
00 8 KP=1,92TYP
RFAD(5,1)NTTMF(KC)
NT=NTIME (K2)
on 8 K=1,NT
READ(5,6)TlATF(KD,K),.(X

6 FORMAT(F5.',IS)
DO 8 1,400F
D 8 J=1,N4ODF

A ARATE(KPIJK)=XRATE(I.JKX)
GO TO 50

C
C PEA) MIN HEAIWAY

53 CONTINUE
501 RFAD(5,40)TAMIN
40 FORMAT(F5.3)

Go TO 50
C
C READ MAX LOADING FOR EACH DD PAIR

54 CONTINUE
R-AD(5,1)MAXOO
IF(MAXOD.Lr.0)GO TO 20
DO 9 1=1,tN40E

9 READ(5,11)(mPn0(TJ)qJalNNODE)
Go TO 32

29 DO 31 I:1,%i JrfF
Do 31 J=1,94oE

31 MPOD(I.J)=100
3? CONTINUE

GO TO 50
C
C RFA PAX COST PAPAMETEPR A4D CONTROL OPTIONS

55 CONTINUE
RFAD(5,61)'CAXC9X

61 FORMAT(F5.?e5X,F5.?)
PcAD(5,62)VQTS.M4OLD

6? FORMAT(215)
IF(NRTS.LT.1)nO TO 50
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DO 10 I1=,'RTS
10 PFAD(5,11)4STOP() ,NXQT(I),(HRT([,J),J=1,10)
11 FoPMAT(121)

GO TO 50
C
C QEAn VEHICLE PAPAMETERS

56 CONTINUE
READ(5912) VEMICAP.VFLC,TCmTN,TCMAXTCOSTCCOST

12 FORMAT(215.5.0,2F5.?,2F5.0)

C QEAn INITIAL POqTTTONIN FOR EACH VEHICLE
DO 13 JO=1.NVEH
PEAD(5,14) JDT(J) ,xTM(JD)

14 FORMAT(I5,75.2)
13 CnNTINUE

GO TO 50
C
C PEA) OD IDENTIFTCATION nATA

S7 CONTINUE
RFAD (5.1) NSDPR
IF(NODPP.Lr.0)GO TO 17

DO 30 K=1,900PR
Pr AD (5, 35) u, I, j

3' FORMAT (315)
30 NOD(IJ)=N

GO TO 24
C
C nEFAULT ID ODTION

17 K=0
Do 18 I=1,vvoF
DO 19 J=1,NOF
IF(I.EQ.J)30 TO 75
K=K+l

NOD(IJ)=K
?' CONTINUE
19 CONTINUE
1A CONTINUE

NODPR=K
24 CONTINUE

GO TO 50
C
C PEAD HISTOGRa4 DATA

S CONTINUE
O 20 1=1,120

20 NORW(I)=0
RFAD(5,1)N-RT
IF(NHPT.LE.0)GO TO 27
00 21 I=1,NHRT
RFAD(5, 1) J

21 NORW(J)=I+3
?7 PEAD(5,1)N40D

IF(NHOD.LE.)Gn TO 23
DO 22 I=1,9Mo
K=NHRT+1+3
IF(K.GT.NHTST)GO TO 7
RFAD (5,1) J
NnRW (J*30) =K

22 CONTINUE
23 CONTINUE

GO TO 50
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16 CONTINUE

C STOPE INITIAL' PAX GENERATOR EVENTS
Do 26 I=1,99TYP
ATRIB(1=TWATE(I.1)
JTRIB(1)=5
JTRIB (4) =1

26 CALL FILEM(1,NSETOSET)
C
C STOPE INITIAL DEPARTURE EVENTS

n 15 Jn=1.NVEH
ATRIB(l)=XT4(Jl)
JTRIB(1)=3
JTRIB(2)=J)
JTRIB(3) =JRT (Jn)
JTRIB (4) =i
Ir(NRTS.GT.0)GO TO 2A

r
C CALCULATE INITIAL ROUTES FOR DYNAMIC RaUTING OPTION

M=(JD*2)-1
MqT(M,1)=JzT(Jn)
MRT(M,2)=JzT(JO)
NXRT (M) =0
NqTOP(M)=2
JTRIB(3)=M

24 CONTINUE
CALL FILEM(1,NSET,0SET)

15 CONTINUE
C CALCULATE FLIGHT TIME TABLE

0 92 I=1,94oF
DO 92 J=1,9qoE
TFL(IeJ)=D(IJ)/VELC

92 IF(I.EO.J)TFL(T.J)=0o.S
IF (NRUN.GT .I) RFTURN

C
C PRINT INPUT JATA IF THIS IS A NFW CASE

WPITE (6,100)
100 FORMAT(1H1,40X,2?H**INPUT DATA SUMMA4Y**///)

WPITE(6,104)(TTL(I)qT=1,15)
104 FORMAT(//,10X.15A4//)

WPITE(6.10;)NN0E
105 FnRMAT(10X,,NUMBER OF NDDES =9,15/)

WDITE (6,110)
110 FORMAT(1OX.'DISTANCE MATRIX*/)

WQITE(6,115)(JJ=1,NN0DE)
115 FoRMAT(20X.10I5)

Dn 120 I=1,94NnE
120 WolTE(6,125)I,(n(IJ).J=1lNNfE)
125 FORMAT(15XI5.10F5.0)

Ir(NRTS.LE.0)GO TO 139
WPITE(6,130)NPTS

130 FORMAT(////,10X,'NUMRFR OF ROUTFS=9,1 3 /)
WoITE(6,13i)

13q FORMAT(1OX,QRO1TE NEXT ROUTE STOPS'/)
DO 138 I=1.JRTS
JX=NSTOP(I)

13A WPITE(6,14n)I.NXRT(1),(MRT(IJ),J=1,JX)
140 FORMAT(10X.I3,6X,13,10X,

10I 5 )
139 IF(NRTS.LE.0)WQITE(6,141)CBXCAX
141 FORMAT(////,10X,'ROUTFS ARE DETERMINED DURING SIMULATIT0, R= *.
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lFc;,2-P A =ItFc;,79//)
wolTE(6914i)NVFH

14S F0PMAT(///*l0X,#NUmRF0 OF VEHICLES =O9T3/)
IF(NRTS.GT,0)WRITF(6qj50)

150 FORMAT(12xg$A/C CAPACITY VELOCITY INITIAL ROI)TE START TTMF

ICYCLE TIME DOC I/HR DOC S/CYcLEI)
IF(NRTSLF.0)WQITE(69151)

151 FORMAT(12X*'A/C CAPACITY VELOCITY INITIAL NonE START TT4F

ICYCLE TIME DOC %/HR DOC' S/CYCLE#)
On 155 J=IoNVFH

ISS WPITE(6916n)JgTCAPgVFLCgJRT(J)*XTM(J)gTCMIN*TC04AXoTC6qTtC'OeT
160 FoRmAT(lOX9T396X9l496X9F4oO98X9T2911XOF6*296X9F4*292X9F4, ,olXo

jFf,*?q5XqF6.?)
Do 170 KP=19NPTYP
wPITE(69167)KO

16? FnPMAT(///*l0X91PASSENGF4 TYPF9919)
NT=NTImF(KD)
nn 170 K=194T
WoITE(6q16;)T0ATF(KP9K)

169 FnRMAT(//91OXqtAvERAGF ARRIVAL PATE AT TIMF =ooF6o?/)
W0TTE(6q11i)(J*J=1qNNnDE)
DO 179 1=19NNnnE

17q WOTTE(6*12;)19(ARATE(wPgl*JoK)9j=l9N4onE)
17n CONTINOE

WOTTE(6918n)
IAM FnRmAT(//9lnX9lO0 PATP TO FROM / TOl/)

WQITE(6,jjS)(JJ=jqNNnDE)
Dn 210 1=1*4NOnE

21A WOITE(69215)1*(Non(Toj)gJ=19NNnDE)
21S FnRMAT(15XIllq)

RFTURN

FKID
SiiBROUTINE PXaRV(NSFT*GSET)

c PAX ARDTVAL*o, EVENT VU48ER 2

DIMENSION 4SET(1)90SET(l)
COMMON lOtTMoTi ITT*JFVNIT*JMNTT94FA*mSTOPqMXeo*xcoNCLCTgk)HISTo
INOQoNORPToNOTeNPPMSoNOUN*NRUNS*NSTAT90UToISFFn*TNOW9
2TREGgTFTN94XX*IIPPNTgNrR[)49NEPoVNQ(4)9Lm649M&xDq9uAXNS
cnMmON ATRTR(ln)*ENG(4)*INN(4)oJCELS(20922i*KRANK(4)oMAXNf)(4)0
IMFE(4)9"LC(4)qMLF(4)*NICELS(20)*NG(4)*PARAM(70*4),PGTYMF(4)oe,,qUm&.
2(10*5)gSUMA(10nnoS)*NAMF(6)9.4PPOJ*4049NDAY*NYPoJCLRoJTRTR(l?)
CnMMON/TU9C/mPT(10910)gNSTOP(lq)oNPX(20)oAQATF(PolOolftelOisNXPT

1(10)gD(10910)gVELCgNWAIT(2910),TRATF(2910)qNTTk4F(2)*TcnST*rrt)q;Te
PNCYCLgFTIM--gPMTLEg iNOnE94RTSgTnFL*403(10910)oNonPRoTCMTNoTCMAX
39TMAP(2ni2no)gmAP(?09PO095)*MAPX(PO)oNr)RW(1?0),TCADomon[)(10910)
49TH 4INoNVE49TLAST(IO),TFL(10910)oNwnD(qo)oFapt-y(go)tTqFpvfqo)gcpx
5qCAXqJH0LD(20)9MHOLn

c
C STOPE PAX DATA IN FILE P

C COUECT STATTSTTCS AND IJPDATE COIJNTERS
r

T=JTRIB(2)
J=JTRIR(3)
Kp=jTR18(4)
JTRIB(I)=Ka
CALL FILEM(?*NSET90SET)
K=NOD(19J)

NIJOD (K) =NWID (K) * I
IF(NWo0(K).EQj)FAPLY(K)=TNOW
NioAIT(KP91)=NWATT(KPqT)+l

-, 11 11 11 "" Wompo"* 40.0 " , - -
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CALL HISTO(TNOWon.5090.5091)
AT=TNOW*2.
KTI=INT(AT)*2n*(T-I)*461
KT2=KTI+20n
Wl=FLOAT(N4AIT(I9l))
W?=FLOAT(N4AIT(2qD)
CALL COLCT(wlwTI)
CALL CnLCT(02,KTP)
RFTURN
ENIO
SijRPOUTINE VEHqP(NqETGSET)

VEHICLE DF--'ARTS EVENT NUMBOR I

nTMENSION VSET(DqOSFT(l)
DYmFNSION 4LOAn(ln)*NHOL3(20)
CnmmON TntfmglNITqJEV JT*JMNIT*MFA94ciTO13.pmxmxCNCLCTpNmTSTO
IN109NORPT94OTeNPQMSgNPUNgNRUNS*NSTAToOUTolqFFneTNOWo
?TPEGgTFINg AXXoNPDNT*NrRD'I*NE09VNG(4)OIMMOMAXOSeMAXNS
COMMON ATRI (ln)*ENQ(4)*INN(4),JCFLS(20922)oKPANK(4)omAxNn(4)9
JMFE(4)-)04LC(4),oMLF(4)qktCELS(20),NO(4)*PAPAM(70*4)onTTMF(4)oqti)mA
?(1095)-PSUMA(IOnntS)*NAMF(6)9NPPOJ*4n49NnAYgMY49,)CLQqJTRTA(12)
CnMP40N/TUB^/MPT(In.10)tNSTop(3n),NPX(20)gAPATF(291091091019MYOT
1(10)tD(10910)oVELCgNWAIT(2910)oTRATE(2910)*NTTMF(2)*TCnST*CCOqT'
PNCYCLgFTIMr*PMTLrvki ionE94PTSgTr)ELgNn)(Joglo)*NnnPReTCMTN*TrMAW
IPT'AAP(2092nO)oMAO(209?0095)oMAPX(?O)gNnRW(1?0)qTCADemonD(10910)
4,tTHMIN-PNVE-foTl-A4;T(I())qTFL(IO91n)gNWO)(C)O)tFARLY(90).PTqFPV(9n)"rpx
59CAXvJHOLD(20)qMHOL0

r
C nETERMINE ORIGIN A40 DEqTNATION WES FOR T4TS FLIGHT

Lf)AD=O
Do I T=1910

I Ni.OAD(D=0
LnuiTRTB(2)
IQT=JTRIR(l)
19TOP=JTRlq(4)
TnRG=MRT(I*TgTqTnP)
jSNXT=ISTO2+I
IPaNSTOP(PT)

c nETFPMINE IF THIS IS A FAKE FLIGHT (ORIGIN a nESTTNATION)
jr(IOPGEQORT(IQT91SNXT))GO TO 9

C
C IF mORODY IS GOING TO SHOW UP.,,it)

PATE=0e
00 100 KP=192

CALL GRATE(KPgTOPGoMPT(TIT91SNXT)tTN3w9RPAX)
Ion R4TE=PATE+4PAX

Ir(RATELE,0*)AO TO 11
r nFCTDE TO HOLO no Go
C TF HOLD STORr NFw nEPARTUPE FOR TNOW+0,05 ANJ O-TtiRN

C TF nO CONTINIE
IF(MHOL0-Lr.0)AO TO ii
KnEST=MPT(TQT9TSNXT)
CALL HOLD(TnRA*KnEST9LDqKHOLD)
IF(KHOLneEl.0)A0 TO 11
NwOLD(Ln)=NHOLn(Ln)*i

CALL FILEM(1qNSET905FT)
GO TO In

11 CnNTINUE
c
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C ETFiR4INE WHICH 00 PAIRsi WILL sr LOADE)
JHOLO (Ll) =f
I1=ISNXT
IF(IF4TeF0.',XRT(!RT) )11
DO 2 J=110T2
IrEST=MRT (T4Tqj)
InX=Nonl( IO*GTnqT)

P IqERV(TOX)zI
r
C qEAoCH FILE P FOO PAW TO LOAD

KfrOL=MFE (?
IPINPX(LD).GEoTCAP)GO TO 3

7 IF(KCnLEQ.O)IV) TO I
INfl=LOCAT (','(eL,?,N5rT,2SET)
jnPG=NSFT T'JD)
Tr(JOpGNF.IOPA)G0 TO 4
jnEsT=NSET (TNn.l)
DO 9 J=Tl,!?P
Tr(J0EST.EleMT(TT,))) 30 To A

q CONTINUE
(iO TO 4

A CONTINUE
Ir(NLOAD(JVEST),GEMPMD(JORG,JnFST))3O TO La
KrOL1=NSET(1InO.3)

C
C 0FnV PAX FZOOM FILE 2

CALL PMOVE(KCOL,?*NSFTOSET)

C UonaTE COUTEZS AND LOAD PAX INITO FILE I
ATRIB(2)=T%IOW
JTPIR (4) =L
KP=JTPIR (1)
CALL FILEM(3,NSFTOSET)

C
c iiDnATE COUNTrRS

NI. OAD (JOErT)=NL-OAD (jnFST) .1
NOX (LD) =NPY (Lnl)1
LOAD=LOAD. 1
TnX=NO(10OGqjnEST)
N1WOD( V)= pOfl( IfX) -1
EAPLY (IfX) =ATOTR ()
NWAIT (KP. T'))=NWATT (kP, IORG)-I
TF(NPX(LD).GE.rCAP)Gn To 3
KrOL=KCOL 1
Go TO 8

4 KrOLN5JET(TNDi)
A IF(KCOLLT.7777) GO TO 7
1 CONTINUE

C
C COUiECT LOAD FACTOR STATISTICS

A=FLOAT (NPx (Ln))
R=FLOAT (ICiAP)
FI.OAO=A/B
CALL COLCT(FLOan,94)
CALL COLCT(FL0Afl,94+IQT)
AT=TNO W/. 5
KT=INT (AT)
CALL COLCTIFLOAO.,KT*441)
CaLL HISTO(FLoanoo.flS,O0,3)
SCONTINUE
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c
C SET UP ARRIVAL FVFNT

JTRIB(I)=4
JTRIS12)=Ll
JTRIB(3)=TzT
JTRIB(4)=lq4XT

C
IF(IOPGEQMRT(TqT.PT,;KjXT))GO TO Ic;
FTTME=FT147+TFL(TORGMRT(IRTTgNXT))
NCYCL=NCYCL*l

IS CMNTINUF
TtOAD=FLOA')*(TrMAX-TCuIN)
TwOLD=TLAST(JORG)+THMTN-(TNOW+TLOAD)
Ir(THOLnoLT,0.)TH0l.n=n.

ATRIB(I)=T4nW+TLOAn+T4OL3+TFL(TnRG*mRT(IRT*TRNXT))
c
C qTOPF ARQIVA,-,EVFNT

CALL FILEM(IoklqET90SET)
c
c tionATE SCHEDULE MAP IF THIS IS FTQST ITERATIO4 OF CASE

IF(I0RGFnMRT(IQTvI5NXT))GO TO In
Tl-AsT(InRG)=TNnW+TLOAn*TlOL0
lr(NRUNGTI)Gn TO 10
TNEX=TNOW*TLOan+THOLD
MAPX(Ln)=MhPX(I-n)+l
N=MAPX(LD)
TMAP(t.DgN)=TNFY
MAP (LnoNo I) =1
MAP(LD*Noa)=IOPG
MaP(LD9N93)=LOAO
mAP(LD9N94)zNPX(Ln)
MAP(LDoN*S)=NwnLn(Ln)
NHOLD(LO)=q

10 CONTINUE
RrTURm
E'60
SUBROUTINF VEHAR(NSFTeGS7T)

c VFHTCLr 0PIVES EVENT NUMBF-P 4

nTMENSION Y5ET(I)qnSFT(I)
COMMON lD9T491MIToJEVKIT*JMNITqMFA94sTOP9mx9mxCqlklCLCToN41ST9
INnQ-PNORPT-tMf)TofklPOMSoNOU 19NRUNS*NSTAT*OIJT91SFFn#TNOW9
?TQE69TFINtvXXqtIPO ITNt Rn49NEPRVNG(4),pl4M9M4X()S.pMAXMI.g

CnmmON ATRTR(ln)*ENO(4)91NN(4)*JCFLS(ieM922)*KRANK(4)oMAxmn(4)e
lmrE(4)gMLC(4)tmLF(4)9NCELS(20)#NO(4)*PARAP4(PO94)*GTIMF(4)or,4;tjma
2(109S)*SUMa(IOnn,9)qNAMF(6)oNPPOJqMn49NDAY*NYRoJCLQoJTRIR(121
CnmmON/TUR! /MPT(10910)oNSTOP(34)oNPX(2n)*ARATE(?91091"91019NXQT
1(10)gD(IO-PIO)*VELC-PNWAIT(2910)-PTRATE(2910)91,ITTMF(2)9TCOSToCcnqT'
2NCYCLoFTIM='oPmTLFp ihinnFg'4RTSqTnFL94OD(10910)*NonPReTCMTN*TCMAX
3*TMAP(2097-nn)gmAD(20970095)oMAPX(20)oNDRW(120)qTCAPomPon()Ooln)
4*THMINoNVF-igTt.,%ST(I())*TFL(1091n)oNWnD(QO)vESRLY(90)oTSFRV(9A)*CPX
S9CAX9jHnLD(?0)qmqOLn

c nFCnDE SUFFE2 APPAY
C Ln AIRCRAFT N11649ER
C TPT ROUTE 4UMRFP

C TDFqT = NODF NUVQFP

Ln=JTRIR(P)
T9T=JTRI8(l)
TqTOP=JTRT;(4)
InFST=MRT(T4T9TSTOP)
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LnAO
Ir(NRIJN.GT.1)CA TO 10

c
C 'JPDOTFE SCHEnJLE MAD

MAPX(LD)='4APX(LD)+1
N=MAPX (LD)
T" AP (LD *N) = TNnw
MAP (LDgNe 1) '
maP (Ln9N92)=jnrlST
MaP (LD,,4) :NPx (Ln)

Inl Cn'NTINUF
KX=IRT*3

r,
C qEAOCH FILE I~ ANA) REMOVE PAX WHO UNLOA3 HERE

Kf'OL=MFF (3)
I Iv(KCOLoEQ~n) 60 TA 1

Tr(KPX(LD).EQ~n) GO TA 1
IkDLOCAT (>9KcnL,4*NSFT21SET)
Jn=NSET (INI)
rr(JU.NE*LI)Gn Tn 2
,mFST=NSET (INn-I)
IF(JDESTeNF.IflFST)GO TO 2
e,OL*=NqET(IN*)
CALL PM0VE(KCnt.*!1,NSFT*OSET)
Kp=jTPIP (fl
Kfl=NOD(jTqT1(7) 9.TPIR(3))
KV= (KtP.41) '3
TWAlT=ATRIj (2)-ATRTR(l)
ToI0E=TNOW-ATqT9 (2)
TTPIP=TWAIT+TPTOE
NI'X(LD) =NPK (L)) -I
PmiILE=PMIL7+D( ITQIR(?) ,JTI9(3))
LOAA=LOAD, 1
AT=2o*ATPIl (1)
JT=INT (AT)
KT=JT+2O*(<D-1) 401

C
C COL, ECT STATTSTICS

CALL COLCT(TWATT91)
CALL COLCT(TRInE,?)
CALL COLCT(TTOTP'3)
CALL COLCT(TWATTqKX+1)
CALL COLCT(TpIOE*KX+2)
CALL COLCTCTTPTP,KX+I)
CALL COLCT(TWATT,,v.1)
CALL COLCT(TPTnE*KY+P)
CALL COLCT(TTPTPKY*q)
CALL COLCT(TTOTPqKT)
CiLL HISTn(TTPJP,0.20,.'O,?2)
IF(PNDRW4(IPT).rTf)CALI HISTO(TTRTPO.20,O.2O.NnQW(TQT))
Ir(NDPW(KD+30).GT.0)CALL HISTO(TTPIP.0.00nNDRj(Kn3l))
('OL=KCOL 1
Sn TO 5

P KCnL=N9ET (YNJD.j)
S IF(KCOLLT,7777n GO TA 3
I CONTINUE
MAP(LDN,3)=LAAD

r.
r IqETIiP DEPARTjRE FVENT

ATPIB( 1)=T\OW.TCM~IN
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JTPIB-(1)=3
JTRIB (2)=Ll
JTPIB()PT
JTPIB(4)=ISTOP

C CHECK IF THE4E APE M4ORE ST3PS ON THIS ROUTE
C IF THIS IS LAST STnP GET NEXT ROMiE

IiI5STOP@LTNeTOD(TRT))G3 TO 4
JTR18 (3) NXZT (T RT)
IF(NXRT(IRT).LF.l)CALI XRUTE(Lfl.InFST)
JTRIB(4)=l

IC IF THE FIRST STnP OF NFXT ROUTE IS NOT THIS NOnE CALL FQROP
IF(MRT(JTRT9H3,91).NF.I0E-ST)CALL FQRR(17)

C qToPE DEPARTJQE FVFNT
4 CA~LL FILEm(1,NSETOSET)

50,ROUTINE GENPX CNSFT.osET)
C *~* ~GENJFRATE PAqqFNGPS...EVPNT NUMSEP q

DIMFNSION 45ETfI),OSFT(1)
DTt4ENSION l~l)(0X(lfl)
COmmON 10,T'4, NTTJEVtTeJMNTFA.4STOP,mx.MXCq,jCLCTNHIST,
INnO.NORPT,%JOTNPOMS.NOIJN.NRUNSNSTATOUTI1EFl,*TNOW*
?TqEGgTF IN, 'AXX ,NINTvNrRD~qNED 9vNO (4) 9 m,4AWOSqMAXNS

CnMMON ATPT9(lfl),FNO(4),INN(4),JCFLS(Zfl,22).KPANi((4).MAXNO(4)e
IlMFE(4) ,MLC(4) qt,4LF(4) ,NicELS(20) -sNO (4) 9PAP AM( 70*04) TJMF(4) *S9SIJMA
?(1O .5) ,sUmA ( lnn .5) NA4F (6) .%POOj9a40InfAY.NYR. JCLQ, JTyII(1?)
Cr)mmON/TUBC/MPT(1O*ll) NSTOP(In) .NPX (2q) ,A4ATF(?,10,10,10) ,NEPT

1(1V) .(10,10) ,VELC.NWAIT(2,1o) ,TPATF(2.1) .NTTMF(2) ,TrnST.rrnOST.
?NCYCLFTIMPmLP,,NInnE, JRTSpTnFLg0) (10, in) ,NonPPR(.'TNTCMAlt

4,THMINNVE4,TLAST(1fl).TFL(1O,10),NW0)(90),EAQLY(90),ISFRv(Qn),cmK
5,CAXJ'40L0(?0).M'4OLf)
KPzJTPIR(4)
NT=NTIME (KD)

C
C IF TNOW IS PAST L-AST DATA 20INT RETIIRN

Ir(TNOW.C'E.TPATE(KPqNT) )-ETURN
C STOOF NEXT CALL TO GENOX

ATPIH (1)=TOW+TnPL
CALL FILEMC I NSFT*0SFT)

C STEP TNPOUJGH OD PAIRS TJ
no ion 1=1.'JNO E
on 101 jhl.%JNOOE
IF(I.EQ.J)5) TO 101

C
C SET UP DATA 7IR PAX ARRIVAL EVENT

JTRI8(1)2?
JTRIB(?)=T
JTPIB(3)=J
JTRIB (4)=Ko

2n CONTINL'E
C
C COUNT DATA P'INTS IN THTS INTERVAL
C FOP EACH sEGvENT DFTEPMTNE THE APPIVAL RATE FOR THE FNDPOINTS A Amfl 4

T=TNOW
CALL GPATE(KP9T#.JTPATE)
A =RATF
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T=TNOW+TnE
CALL GRATE(KPqY9,fqT9PATF)
R=PATF
nn 1 K=191n
Jr(TRATF(K2,K).Gr.TNnw)GJ TO p

I CnNTINIJE
7 KI=K

Ir(TRATF(K0,K).'4r.TNnw)KI=K-j

no 3 K=Ivln
Tr(TRATF(KDqK).Gr.T)Gn TO 4
CnklT I NUF

4 K>=K

L=1(2-VI
0(1)=TNOW
0(L+I)=Ttjn4+TnvL
Py(l)=A
PY(L+I)=R

TF'(L-F,0,1)",O TO 0
ni 7 m=P*L
Qf(M)=ARATr(K0-TqjqKl+4-1)

7 0(M)=TRATE(KP9KI+M-1)
4 CnKITINUF

C OrTOP-AINE THE Nll)04RrP ANJO PLACEME14T OF AP-IIVALS TN FIACH SErWENT
01 5 K=19L
nFL=0(K*j)-O(K)
A=RX(K)
R=PX(K+I)

APAP=(A+B)/P,
TrO(K)

6 T4nn=PEX(ARAP)
jr(T+TADDITn(K+I)iGn TI 10

T=T+TAr)n
CtLL DRAND(TqFFnqP)
TF(A*FQ,6)11 Tn IP

Tw=(DEL)/(A-A)*(S-A)
7n TO 13

IP Twzr)EL*P
11 ATRTB(I)=O(K)+TW

C
C rTODE APPTVA - FVFKIT

Tr(TW.LT-QzQ9Q.)CALL rILEm(jNISFTqrT)
Go TO 6

9 CnNTINOF
10 COMT I HIM

101 CnNITIMUE
inn CnNT I NUE

RsrTURN

EMn
SuRROUTINE IQATE(KP9T9JeTsRATF)
nTMENSTON qSET(I)e SFT(J)
r-nMMON IDYT%49TKITT9,)FVIIITqJMNITgMFA94STU09MXoL4XCtNCLr.TPNHISTo

INI)09NOPPTokInTqtJPOM'qo"IPUK19lIRUN'Re ISTAT90I)TglRFFngTNOWe
PTCFGgTFIN*VXXqNP2NTkirRnRgNEPgVNQ(4)ol4M9MAXf,)S.omAXN-S
CMMMOM ATRTR(Ift)eFNO(4)oINN(4)*JCFLq(,2f)*?2)*KRANK(4)qM&Xt4M(4)e
IMFE(4)94LC(4)*mLF(4)eNICELS(20).NG(4)gPAPAM(PO94)90TIMF(4)*RqtjmA
2(10*5) eqU,4A(innngc;) glIAmF(6) gNPQOJ94n49ND4Y, IYP*.)CL09JTPIR(I,*)
Cnm OON/TU9C/MPT(InglO),NSTOP(3n),NPX(dO)*ARATF(PolnolnolO)gNXPT

1(10)gr)(10910)*VF-I-C.pNWAIT(2-pin)*TRATF(2910)*KITTMF(2)oTrnST.crnqT'
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P.NrYCLgFTIM---qPMTLFeNNnnF94PTS*TnFLoNOD(IOtIft)*NnnPR*TCMTN*TCMAN
I*TMAP(2oqpnn)944AP(?0970095)94APX(Pn)*Nf)RW(ipn),TCAP, 4PnD(10,10)
49THMINeNVE49TLAST(IO)*TFL(10#10)oNW03(00)$EARLY(90)*TSFRV(90)gCRX
5*rAX*JHOLD(20)q4H0Ll)

r

C GFT RATE***LTNEAPLY INTFRPILATE
C I(P PAX TYPF
C T ORIG
C J DEST
C T TIME
C R RATE
r

RaTE=0e
NT=NTTMF(KO)
no I K=I*NT
IF(TRATF(K29K),En*T)GM TO 2
IF(TRATF(K3*K).GT.T)Gn TI 3

1 CnNTINUF
PrTURN,
PATE=ARATE(KPqT9.JqK)
RFTURP4

I lr(K*GT,1)50 TO 4
RFTURN

4 P4TE=ARATE(KP*TtjgK-I)+(T-TRATF(KcgK-1))*(ARATE(KPtToJgK)
I-ARATE(KPtToJK-1))/(TPATE(KP*K)-T ATE(KPqK-1))
PFTURN
EmD
SiiAPOOTNE XRIITF(LX*TX)
COMMON lD9T49TMITgJFVNTtJMNIT-oMFAgm,;TUP*mXqMXC* ICLCTtNHI';To
IN009NORPTo4OT9NPOt4S9NPUNtNRt)NS*NSTAT*UUTgIgFEnoTNOW*
PTQFGoTFTNg AXX*NPQNT9NrRn49NEPqVNG(4)91MMqMAXOSgMAX45
CnmvON ATPTR(in)oFKIG(4)*INN(4)*JCFLR(20972),KPANK(4)oma*NM(4)o
IAFE(4)tMLC(4),PMLO'(4)eNICELS(20)oNG(4)gPARAM(7094)90TTMF(4)eqgtlMA
2(1095) *SUM A( I (I ii nt 5) QPlt4MF(6) -oNPDOJ940NONt)AY*NYRo,)CLQ.PJTQ 1 '3(1?)
COMMO J/TURr/MPT(10910)gNSTOD(3n)tNPX(20)oAQATF(?910910910)qMXPT
1('40)oD(lO,,lO)*VELCgNWAIT(2910)oTRATF(2-PIO)tNTTMF(?)*T(,nST*Crn,;To
PNCYCL9FTIMFtPMTLrq j ir)nE,'4wTsoTnFLp4OD(IO-elO)*Nt)MPRqTCLiTNeTCMAX
19TUAP(20921D)9mAD(?OoPnn95)94APX(?O)gNnRW(1?0)*TCAPoMPnD(10olOI
4qpTHMIN-PNVF-4*TI-AST(lf))*TFL(IO91t))qNWOD(QO)gEARLY(90)gTgFRV(90)oCPX
S*CAXtJHOLn(?O)omwnLD

c
r nFTFPMINE THr NFXT POUTF FOR DYNAmIC Q3UTING OPTTnN
C LX = AIRCRAFT N0149FR
C TX = PRESENT POSITTON

T=TX
L=LX
CM=D,

c
c nETFRMINE J AND K SUCH THAT THE MARGINAL COST/SERVICF TTME
C FOR TJ AND J< IS MAXIMT7En

nn I JX=lq,-i4OnF
lr(T*EQJX)GO TO I
SI=TNOW+TCOIN
CALL MCOST(SlqyqJX*Cl)
S;)zSI*TFL(T*Jx)#TCMIN
nn 2 KX=jqVNVF
TF(JXEOoKX)Gn Tn P
CALL MC0ST(S29,JX9KXqC?)
CmX=(Cl+C2)/(SP+TFL(.)WoKX)-SI)
TF(CMX-LE.l.ft4)6n TO ? I
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J=Jx
K=K(X

P CMNTINIUF
I CflNTIMIJE

M=(2*L) -1
TF(CMGT.0.)GO Tq 6
NqTOP (M)=2
4DT (P,1) :
MrOT(h.2) =1
NYQT (4) =0
JTPIB(I)=M
Go~ TO 4

A CONTINUE
1-

c tJpDaTF SEPVI': OFNO)IN FLAGS
rnl=NOD (lI J)
In2=NnD (j,-.)
Inl=NOO(I~r)
rcSE-v(i-l) =0
TqFPV~lr)=0
IF(NRTS+2)1335

C; CMONTINIJF

r. NjOnkTOP SFRVTCE ON'LY..SFT JP 2 NONSTOP RniuTER
4=m~1
P4PT(M4,1)1I
P4,T (p.) =J
MOT (1N ) =J
moT (N,?) =i
NcSTOP (L)=2
NJqTOP (N)=?
NXQT(M) =N
NxPT (N) =0
JTQ I B(3) =14
60) TO 4

i CONTIfNUE

C ONE STOP SEPR'ICF..SET UP 04JE 2 STODP QOJFI:
NqTOP (4)=3

LnT CM9?) =J
LinT (P,3) 1(
NWRT(H) =0
JTPIBJ(3) M
M&'OD( I J) TCAp
M0DO0l(J9K)=TCAP

1F(I.F0,K);30 TO 4
IEPV (I'3) =0

1C PUT LIMITS ONJ NIJM9FP OF IK PAX TO qnAQ)
M0OD( I K)=TCAP-NWJO( TnL)
IF(NWO0(I).,GTNWO0cTn2))GO Tn 4
mPoon( 19K) =TCAD-4WOD)(Tl2)

4 CONTINUE
JwOLD CL)=
RFTORN

,I IRPOJT I NE CsTSTj)

CnMiON 1D,TT,ITTP,JEVMITJMiNITpk4FA,4TOD,.MXmxCNiCLCTNIHIST*
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INMt)oNOPPT94ITgNPO 41qgNPUNoNRUN4;*NSTAT90I)TPIFEntTNOW.p
PTQFGtTFIN94XXoNPPNToNrRn4tNEPgVNQ(4)91MMgMAXOSoMAXNS
rOMMOM ATRTI(IA)oENQ(4)91NN(4).JCELS(24*22)*KPAMK(4)ombXNM(4).
ImVE(4)oMLC(4)oMLE(4)-,NCELS(20),oNf3(4)gPARAM(2094)oQTTmF(4)ofqllmA
P(1095)tsUma(lnnngS)qNAMF(6)tNPoOigMO49NDAY*NYQoJCLPoJTQTR(17)
Ct) IIAON/TIJRC/%4PT(1091(1).pNSTOP(1(1)gNPX(2n)qARATF(PolOolAolOlgNXPT
lf'40)91)(I()olln)oVELC.pNWAIT(2,plo),TPATF(2910)qNTTMF(2)*TrnSTrrneT'
PNCYCLtFTIM 9PMTLrq iNonE94RTSgTIELqNni(iooio)oNonPR*TCMTNeTCM&x

I*TMAP(2092nD)*mAP(209?0095)oMAPX(20)oNORW(120)vTCAPgmonD(inoin)
49THMINqNVF4.PTItiST(I())gTFL(10,oln).oNW():)(90)-PIFARLY(90)oTqFPV(C)tl)*rPX
SrAXgJHOLD(?0),MHnLO

c
C nFTFRMIMF MA!7SIMAL CnST AT TImE q FOR ID PAIR TJ

CZ0,
K=NOD(I*J)
IF(ISFRv(K)oFno)QFTUPN
p=0 a
nn 1 KP=192
CALL GRATF(<P9TqJ9S9QATF)

I R=R+RATr
Wl=FLOAT(Nd0D(W))
W=Wl+Q*(S-TV0W)
C=W*(CAX+(':'RX/P.)*(S-FARLY(K)))
PrTORN
FEW)
coiRMiTINE -i0l-f)(TqJ9L*KHOLD)
CnMMON lOoTmeTNIT9.JFVklTgJMNITgMFAomc)TOPgmXomxC*mCLCT*441STo
l InIgNOPPT9%JIT*NIPPMS9 IDI)NqNRUN4;.eNSTAT-PUI)Toll;F-FngT-NOWO
?TnFGgTFINgvXXo IPO',IT.,NrRn: -oNEPoVNQ(4)-PI%4M9#4AWO';*mAX4';
C14"ON ATRTI(In)*ENO(4)91NN(4)*JCFL9(2noP2)qKRANK(4)oMAXNM(4)o
lmrE(4)tMLC(4)964LF(4)9KICEI-S(20)*NO(4)oPAPAM(2094)-PQTTMF(4)gqelimoi
2(1095)95UM6(lnnno5)tN64F(6)oNPQOJMnYtNDAYoNYP*JCLQtJTPTR(171
Cn IMON/Tt)Rn/MPT(InolO)tNSTOP(in)qN*X(20)944ATF(PolnolnglO)ohlXPT

1('40)-iD(10-PIO)-oVELC*NWAIT(2,olo).,TRATE(2910).PtlTT4F(P)OTrnsT.rrnrT'
2 ICYCLgFTIMF*P"TLFoNNOnEeNkTSgTIELgNnD(10910)qNnnPRoTCMTNqTCMAY
19TMAP(2092nn)*MAO(2O92On95)oMAPX(?O)#NIPW(170)qTCAO*mpnD(Ioeln)

49THf4IN9t4VE49TLAST(10)qTFL(IO91n)gNWO)(90)oEARLY(90)019FRV(90)-PCRX
sorAXojHnLD(20)tm4nLn

r
47 nETFPMINE WHrTHFO TO HnLD OR GO ON FL13HT FROm I TO

KHotn -401-n
C KHOLD

K=JHOLD(L)

IFLAG=K
KHOLD=O
T1=0*
T2=09
Tc'=0 o
TFI=0.
M=I
N=J
S=TFL(MgM)+TCMTN

I WizNOP (M 9 N)
Nw=Nwor) (Mlj)
IF(mRTS+2)1091Q91S

in TF(K*FQ,0)4W=Nw*NDX(L)
lr(KoEQOl4oTFLAG.NE.K*3k.I.FO.K)Gn TO 35
TK=NOD(19K)
Nij=NW+Nwon(IK)

35 CnNTINUE
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IF(0lW9En-0)GO TO 3
Wq=FLOAT(Nd)
Tr(,,jwon(MN),Enn)Gn Tn 36
W=TNOW-rARLY (MN)
Go TO 37

3A IF(KeP0,O)3n Tn 2n
IF(K*GT.0)4=TNn%4-EAPLY(T,()

37 C-)MT I NUF
NjK=O
T W=0,
TF(TFLAG.Fl.K)7o To 2
PiK=S/W*WN
NIK=INT(Pj<)
TiK=S

I Ir(NW+NJK-TCAP)6qpn*pn
,s C=CCOsT+TCIST*TFL(MgN)/?*

IF(CBX.LE.n.)rO TO 4n

F=SQRT(F)
wrTAR=(F-(CAX/->.))/(?.*C3x/3.)

4n TF(CSX*FOn*)WqTAP=(P.*C)/(CAX*WN)
C
r THII; IS A us--Fui- nTAGNOr.TUC
r I;r(TNO4,GT,3..ANn.TNIW*LT.5.)WDTTF(6,2nOO)L*WNoWgWqTAD

TF(TNoweLE,;'*)14" 'TTF(6,2()OO)Lpwhoewt,4rTAR
700n FlPlUT(SX050FA.4)

lr(W*TJK-WqTAD)397*7
7 TF(IFLAG-K)99'>ngq
I TF(PJWEQ*n)WSTaP=ln,
IC(IFLAGeEIO)GO Tn 4
Tj=FAPLY(M4)+WcTAQ
IrLAG=o
N I =fJW
WNjl=WN
M=J
N=K
GO TO 1

4 TF(K9Ef)90)v0 Tn 10
IF(NIE0,0,ANn.NWFOn)G3 TO In

9 TP=FARLY(MI)+WqTAR
Tr(Tl+S-T2)10*5q5

S Tr=TI*S-T2
TFI=TE*(WN+(WN*S/W))/(WN1+WN+(WN*S/W))
TF(TI-TEI-TNOW)2nq?0q10

11 KwoLD=l
P.n CI)NTINUE

c
C THIq IS A USrFUL nTAGNOqTTC
r Tc(TNnw.LT,3.,OPTNOWGTS,)RFTIIRN

lr(TNOW.GT.?.)PFTURN
r, WPTTE(6tlOnn)&119',JW.PltjqKoTNOW.PWPTI-PT2-ITE*TF-l9TJKtNJKoleHOLn
100n F(iPMAT(jXqjI5*7FQ,2*?T5/)

RvTURN
Emn
SURPOLITTNE 3TD'lT
OTMFNSION VqFTfJ)qnSrT(l)
OTMFNSION TTLI(lq)qTTi-2(5)gTx(Pn)opx(2o)*KrFLS(72opo)
rnMMON lOoTmoTP4TTtJEV iT*JMNITek4FA94qTO09MXgMXCgNCt-CToNHIST9
]NnOoNORPTgMOT*KIPQMS9401JN*NRUNSoNqTAT90t)TtISFEn*TlYOW9
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PTqEGoTFINoMXXoNPRNT*NrRDRoNEOeVNQ(4)914#49MAXOSoMAXNS
COMMON ATRTR(IA)qENO(4)*INN(4)gJCFL%(2o922)*KDANK(4)omAxNn(4).

IMFE(4)qMLC(4)941-F(4),oNCELS(20).NO(4),PAQAM(;P(194)*OTT%4F(4)eqlgtlMA
2(1095)tqU 4a(Innn*S)*NaMF(6)9NPonj94n494oAYoNYP9.)CLQoJTRTR(IP)
COMMON/TUR"/MOT(10910)gNSTOP(3n)gNiox(2n)*A;STF(7910914*1019MXPT
1('%O)tD(IO-PIO),,VELC*NWhIT(291o)qTRATE(eelfl)*NTTMF(P-)-PTrnSTercncT,
PNcYCLgFTIMC*PmlLFeNNOnE94RTSTnFLoNOD(10910)oNOMPReTCMTNgycmAy
loTMAP(2092AD)gMAD(2092oo95)*MAPX(?O)qNMRW(170)oTCAPqmono(lovin)
49THMINgNVE49TLAST(10)vTFL(10910)*NWOD(90)9EARLY(90)919FRV(9n)*CRX
5qCAX9JH0Ln(20) sW400)
DATA TX/9 too SyoqoSTE4990TQIP99t TIo*'mFS 190ACTU099AL to

IIVALS991 LIAItD FA1qvCT3R1q9 R*q90UTElsoTTMFv9f HQqoq

29 OD 991PATRIet Too/

nATA PX/1 it*$ 2101 3191 4999 Sol# 6901 79
It, 8999 glee 10990 11991 IP199 130*9 14@99 151
;),@ 16tot 17091 189,9 190,01 ?no/

X0=FLOAT(N:4UNq)
Nf!YCL=NC YCL:/NQI INC%

PMILE=PMILr/XD
FTIME=FTIMr/XP
TCz(FLOAT(4CYCL))*rCOST+(FTIMF*TCOST)
Pm=TC/PMILr
WPITE(691)

I FnRmAT(jHj*40X92PH**STMULATION RE4;(ILTS**//)
nn 2 1=19?P

r
C TRANSPOSE HjqTOG0av nATh

nn 2 JzIqn
p KrFLS(19J)sJCFLS(JoT)/NRJNS

K=NCELS(l)
K;)=K*2
nn 3 jxI*K7

3 WOTTE(6v4)Jo(,JrF-L'r%(To,))olzl92O)
4 F nR?4 A T ( I X 9 ? I I q)
WDITEmsin)WYCL

In FnRt4AT(/////91nX*9AVF0AGE NUMAPR OF CYCLES
WPTTE(6911)FTTvg

11 FORMAT(3OX99AVFRAGF FLIGIT Timr
WOTTE(691P)DMILF

IZ FnRMAT(30X*IAVFRAGE PASSo--NGER MTLF5 soF9.0)
WPTTE(6913)TC

11 FnRMAT(30X*'TnTAL DIRFCT OPERATT4G C3ST v9FA,0)

WOTTE(6-14)PM
14 FnRMAT(30X*IDTPFCT Cn"T *ER PAX MILE #,FA*4)

nn 15 KP=1*2
W Q I T E (6 9 9 0 n )

90n FnPMAT(////)
DO 16 NNZ196
Nq=20*(NN-I)*?nO*(XP-I)+461
NF=NS#15

16 WPTTE(6991M)(51)MA(NtS)oN=NSoNF)
91n FIRMAT(IA916FAO)
15 CONTINUE

WolTE(6910on)
lonn FnPMAT(lHle///*4nXgl6k**SCHEDULE MAP**)

Dm 100 LD=igNVFH
Jr(MAP(LD*jq1).LT,0)Gn TO UP
WOTTE(691010)LI

1010 FnRMAT(////94nX*#VFHTCLF$914o//)
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nn 110 i1.200
IF (MAP (LO, V* 1)) 112, 1fl; 104

10? woTTE(6.1070)maD(LlT,2),T4AP(Lflqy),4AP(Lfl9y,4),MAD(LnT,,)
10?fl FnRMAT(5X,,APVF NoE9914,. AT TTAiE'.F5.,q WTTH.,T4,P

It ON SOARI 'NLOAD',14)
Go TO 110

104 WOITE(6,10P5)MAP(LgT,2),TMAP(LflI).9AD(L0,T,4),MAp(LlI.,)
I .MAP(LDI,;)

10295 FOPmAT(5xg#LEAVE NOflE'9I4,e AT TTA#pF.q WITH99T49
It ON SOARI) LOADS,149' AFTFR HO0-.OTNG *.J4*9 Tl4Pqo)

Iln cONTINUE
112 CONTINUE
100 CONTINtJE

C IqET LIP ACTUAL PAW ARRIVAL IIISTOGPAM
on 19 JW=1,15

1Q TTL1CJW)=TY(1)
n0 20 JW=295

P0 TTL1(JW)=TX(JW+S
n 22 JW=1*5

27- TTLP(JW)=Tv(l
TTL2 (2) =TX( 16)
TrL2 (3) =TX ( 17)
Do 23 K4=1?22

CALL HPLOT(1jCFI~e(I)+.KC."C LSc1.1P) ,0O.O50.TTL.TTLP')

C SYSTEM TRIP TTMF HTST0RGRA4
nn 25 JW=1915

TiL 1 (3) =TX (2)
T;Ll (4)=T)((3)
no 27 JW=1.3

27 T+L1(JW+5)=TXUJW.3)
CALL HPLUT(NCFLS(2).?,KCELS(1.2).0.O,0.20,TTLI.TTL2)

C ROUTE TIME HTSTO(nDA4
TTL1 (2)=TXd14)
TTLI (3)=TX(15)
TcINRTS.LE.n)nn TO 3?
DA 30 JW=1.94RTS
Ir(NRWJW.eEO0GO TO 31
T+L1 (4)=PX(JW)
K=NDRW (JI")

CALL HPLOT(NCFLS(K).?,KCEFLS(1,K9e)0.0,0.20,TTLI.TTL2)
31 CONTINIJE
30 CONTINUE~l
32 CONTINUE

C
c 00 OAIR HTSTnRAPA

TVLI (2)=TXUIR)
TLI1 (3) =Tx (1Q)

nn 50 K=194ODPO
4=NDRW (K.3ln)
Ic(M*.E0,0)30 TO ';i
1)0 70 I=1,'PJOnF
DO 70 J~1,JmJOnF
IF(NOD(IJ)*En.K)Gn TO AO

7n CONTINUE
8n CONTINUE
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TiLlW=Tx(l)
TF(KeLF.2n)TTL1(4)=PX(K)

T+L1 (9) =PX (T)
TTLl(l0)=Tw(2n)
T4Ll(ll)=Px(j)
CALL HPLOT(NCFLS(M)+?,KC-cLS(lom)90-090.209TTLIoTTLP)

91 rnNTINUF
50 CINTINUE

r
C LOAD FACTOR 41STnqQAM

no 28 J14=1915
2Q T+Ll QW) =Tx (1)

TTL 1 (3) =T)c (2)
TTL 1 (4) =T X (3)
T+Ll(5)=TX(1l)
TiLl(6)=TXf12)

TTLI (7) =TX 0 3)
On 29 iwxl.5

2q T+L2(Jw)=Tx(l)
CALL HPLOT(4CELS(I)+?,KCSLs(Igll'O-040-OSOTTLITTLP)
RrTURN
F ,0
SuRPOuTINE -iIrT0(Xl9hWq4)
nTmENSION ',1SET(j)90';FT(l')
COMMON 109149TNTTvJFVNTvJMNITo"FAsmsTU*omxqMXC*NCL.CT*4HIST,
INnOgNORPT9v3T*NP MS*NPUN*NRI)NroNSTAT,9011TPISFFneT,4OWo
?TqEGqTFINvVYXoNPDNTNrRn;gNEPtvNQ(4)tlmk49M4XQS-,MAX4S
cnmmON ATRTI(14)qENO(4)91NN(4)eJCFLr,(20922)*KPANK(4)gMAXNn(4),
IMFE(4)gMLC(4)gmLF(4)eMCFI-5(20)oNQ(4)OP444M(70*41#OTTMF(4)99%UMA
P(1095)gSUMA(lAnOoS)tNA4E(b)tNPQOJomn4o4DAYONYRqJCLRoJTPTB(I?)
jr(N-NHISTill.11,2

2 WOTTE (PJPRNT9?50) AJ
250 FnPMAT(lXoerRPnR IN HTSTOGRAmool4/1)

CALL EPPOR(62)
11 IF(N)29293
3 X=Xl-A

Ir(X)697o7

Gn TO 8
7 Trux/w*?,

IF(IC-NCEL%(N)-l)89aqq
9 IC=NCEL%(N)+?
13 JCELS(NqIC)=JCFL%(N91C)*l

RrTURN
Pin
SURROUTINE HPLnT(t)PTSelTiBPXA91(WgTTTLEI-PTITLFP)

c GFNERALIZEI HTSTnGRAM PLOT
DTMENSION I-TNF(sn)gXLTNF-(S*O).,TTAR(5(1)tTITLFI(IS)oTITLFP(5)
OTMENSTON rT44(30)
DATA K8LAN</t I/gKAST/9*9/tKX/ext/gLENn/50/gm/6/
V1 z 0*
DM 20 J=19%10TS

C TvMPORARY
FTAR(j) = TTAR(J)

21 V1 = AMAXI(VI*FTAB(i))
WPITE (moll) TTTLFl

IM FnQMATQHle30Xqlc5A4q//)
JqCAL = MAXl(l.oVl/5n,)
IF (Vl#GT*rLOAT(JSCAL*50)) JSCAL JSCAL*l
19CAL=2
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KVAY = 1,41 Nn(I tJCAL'0;)
LTNF(1) = <AST
In = 91*JSI!AL
T'JC = j0*j4;CAL
on 200 L=1*50

If) = 10-JS"AL
LhPFL = KRL41JI(
On 100 J2LF~if

100 LTNE(J) = <RLANK
Ir (lO.GTq<A'AY) MO TO 140
nn On J=l.kJPT4;
K = J*1qCAL:+;)
TP (IO-LE,?TAq( I)) Lj~'F(<) =Kv

130 CnOMTINJF
14tM rnNTPI'JE

IF ('4of(IoqT~.J),,m',.) rO TO 1?fl
LTNE(2) =<AST
W0'ITE(6921l) I0,LT~lF

;!ln FnPMAT(?4XT4*2XeSOAI)
Gm TO 215

17nl WETTE(M,2l,)LTIIF
2? FOPmAT(30K.SOa1)
?Ic CONTINUE
70n COn~T I NLF

Do 220 J=I.LFJO
??n LTNF(J) = <AST

W01TEP4,2l) Ifl.LTNP
xi TNEMl = YA

no 230 J?2.h
23n XLINE(J) =XLTIF(J-)+A1*XW

WDITE (M,?40) (XL!NF(J)9J1,bNl)

241 FOQMAT(26Xs12(4X9F4,1)l
WQTTE (Mo?;n) TTTLPP

250 FnRMAT (/4nX,5A4)
RrT(UPN

SlPROUI;TNE GA!;P(%lSETenSET)

INnO0.NOPPT,4IT.NP24S,IPUNNRUN5,NSTAT90JT.1SFFl9TOW9

* COMM4ON ATPTR(Ifl).FNO(4),INN(4),JCFLS(2fl,22).KA4K(4)MAX~n(4),
lMFE(4) ,LLCr(.) .uLF(4) , ACELS(2l) NO(4) ,i&RAM4('fl4) ,OTP4P(4) .~qIjma
?(lO .5) ,SUma (1000 5) ,NAtF (6) NP0Oj,'4OJ,'JAY.MIYQ.,CLQ.JTR ( ?)

nTkMFNSIONl 'IET(l)*.qFT(l)
I CALL DATAX(NSFTql5FT)

JrVNT = 101

c CALL MONTP(4SVTOSFT)
W"TTE (N~PPT94n3)

401 FnRMAT (iHI ,3Jl~,4H**TNTER4ED1ATE RESULTS**//)
1n KrOL = mFFA1)

CALL R.i4nVE(KCCL.1 ,kI5FTq5ET)
T-OW =AV4AX1 (TNOW.ATQTP(j))
JPVNT = JTITR(l)

11 1 JFVKIT
CALL EVNTSCIN9FT*OSET)
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yr (MSTOP) 4004070f
40 mqToP = 0

I-- (N(ORPT) 14.?,4P

P? CALL SIJMRy
42 Tr(NQUNSNIN'L~)4992
23 NPIJN=N9IJN+I

r~rn TO 1
14 CaLL EPPOR(93)
A CALL MO"JTR

Go TO 10
1) Ir (J"NIT) 14*10o.l1

G;4 TO In
31 JmNI~T = 0

Go TO 10

3? JTOI~j(j) = JEV~iT
jpkT= ion

CALL MONTR
sn TO 10

Q DCTURtJ

~q ROI-Ttt'F DATaxs&"FT.nS;7T)
nTmFNS;InIj F'rT(fl.OSFT(l)

CAI4UON Ir), 4,INiTo )FVMITJJ4NTMFAgTODmXoMECIJCLcTkjflIT0

lmrFC(4) ,'4LC (4) ,mLF-(4) otCFI.S (20) *NO (4) 9PARAM (Pfl94) 9,OTIMF (4) eggi9ma

NrLCT=1000
NqTAT=10
Io=2000

Imm=2

MXC~o
sAiTOP1l

nn' I 1=192n
I .irELS(1)2

ni 2 Tu1,4

P IN(1) 1
00n 3 1=191!

ATPli8(I)0.,

TSI'OW =T4ES
3" 142 J1.%JOI1

147 QTIME(J) = TNOW
26s YANIT =2

CALL SET(l.*JSFT,'lSET)
JTpIB(1)1l
AYPTa( 1) T%IOW
CALL F!LFM(1,MqFTelSFT)
IC(N,4UN,.GT.1.A,,Ifl.JCLP.?Fnso)GO TO AO

1A IF (NSTAT) 117,110,117
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117 In 360 T=194ST4T
qlzUMA(T*I) = TMOW
nn 370 j=2*3

37n qcUmA(19J) = n,
SqtjMA(194) = I.EPO

360 SzUMA(195) = -I*F2n
lin IF (NCLCT) IIA*609116
IIA nn 18 I=ItVrLCT

on 17 J=lel
17 qljmA(T*J) = 09

911MA(194) = lec*?n
IR SIJMA(li,9) = -IGE20

no 20 1=1*Pn
on 20 j=192?

2n Jf4FLS(1vJ)=0
6n RFTI)RPJ

SioRROUTTNE FILFM(JQ*McFT*QSET)
DNENSION 4SET(I)*0qVT(I)
COMMON lD9T491NIT*JFVKIToJMNIT*MFAgMSTUPoMX*mXr.qNICLCT*46415Tq

INO')qNORPT94OTgNPPMSqNDUNeNRU4';,eN'gTAToUtIToll;rrn-PT,4nwe
: TaEGgTFIN*oxxqNPONTqNrRnRtNEP*vNJQ(4)014mqt4aw"*MAX4S
rnk4mnN ATRTR(ln)*FNO(4)*INN(4)*.ICFLR(2n922)oKPANK(4)okqAxNn(4)e

104rF(4)gmLC(4)4'ALF(4)*IICFLS(;?O), 10(4).ptJAQAM(2fto4)*OTTk4VP4).egflMA
?(10*5)ostjoA(Innnqs)*NAAF(6)oNponjgmnNol4nAY-PNYQq,,JCLQ-PJTPIR(I?)
IF (MFA-1n) Pq?9l

I WPTTE (NPRNiT*4)
4 FOPMAT (//;04H nVFPLAP SFT GIVFM 91704/)
CALL EPPOP(97)

7 INnX = (mFA-1)*Tmm
nn I i=ii4A
TNOX = INnY+l

I QqET(INr)X) = ATRTR(T)
lhjDX = (MFA-1)*MXX
nn io 1=19TM
INtnX = INnY+I

14 NqET(INDX) = JTQTR(T)
CaLL SET(JloNRFT*0SET)
RrTURN
EmD
Sij9POoTlNF- -7mn%/E(KC0Lej0qNSET*f)SET)
nTmEN.rInN %JSET(1)q04;FT(j)
CnMMON lDqT'49TNITTgJFVtlTqJMNIT*%4FA*mqTOP*mXomXC*PICLCT-PhIMISTo
IN009NOPPT94ITgNPQMSqNDON*NRUNqoNStAT*Ol)TtlqFFn9T4OWo
?TaEG-oTFINgmYXt iPPNTqNrRn49NEP*VNQ(4)*IMMoMAWMqo%4AX45
CnMMON ATRT3(ln)*E ig(A)eINN(4),JCFLq(20922)*KPANK(4)944XNM(4)o
IMFE(4)gMLC('+)emLE(4)9 ICELS(20).ND(4)gPARAM(2094)90TTOF(4)oqqlfmA
7(1095)*SUmA(Jnnnqc;)*4AME(6)tNPPOJ94049NDAYoNYQojCLRoJTCIR(I?)

IF (KCOL) 16,06,0
16 CiLL EOPOR07)
7 MI.C(JO) = <COL

INIOX = (KCIL-I)*Tmm
ni 3 I=lvlvm
iNr)x = i,,.jn)(#i

I ATPIBM = ISFT(INDX)
Tf-jr)X = (Kr.)L-))*mXX
On 10 1=19TV
Thir)x = INDY+1

In JTPI9(j) NSFT(TNnX)
MiT
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CALL SET(J3,NSFTe0SET)
P TIJRN

StRO~TM SET(ithoNqFT~flSET)
nT' ENSIO0J 4JET Cl)qf'T (1)
CfMMOt4 TD9 T".PJtT.JFVIT, JMN!T.mFA,'4STOPMXMXCIbCLCTNs.!ST,
1NfO.NOPPT,4gfTNP4SqNINNRUNSNSTATOtjTIFfl.TOW,

?TFgF,,9Xoi TN~~Nov 4* ImM.MAE~qoMAX4jS
Cfsk4AON £TRT3(in) oFN (&) *INN (4) .JCFL9 (2n*l?2) 9KRtsK(4) 9MAKXO(4) 9
IMrE(4) ,MLC(4) ,mL(4) .NCELS(20) .M'q(4) ,PARAM(7fl.*4) .TT'4P(4) .gSJ'4A

2A K'nL =7777

KLF =9949

max'oS = ID*M
MA)(NS = Iln*XX
in 2 j=l~tmAx0S

2 OcFT(J) = no
nn" 4 J=1,M&YNq

4 N;4VT(J) = n

no I 1=11
T.NIOE = T*t4xW
NI;ET(INnxl-) = 1+1

I NqET (IPnX) = T-l
tJqET(MiAXNS-1) = '(OF

NoWK 0
Mi.C (K) 0
mFE(K) =0

MAY(K') = 0
MLE(K) a 0

FN()= 0.
VhiO (K) = 0.

I3 OT!P4E(KM TNOW
MFA = 1
INYT = 0
OuT = 0.
(0 TO 9Q

27 MFFX = MFE(JO)
KNiT =2
KS s KRANK(JO)
KqJ = 1
IF (KS-100) 1n0.100*1000

10an ,cqJ= 2
Kq KSi-100

10?n yr (OUT) InOPo5
A PODX = ?4FA*54XY...

NvFA = NSET(pilK)

7 MI.EX =MLE(JQ)
IF (MLEX) 100910911

1n INDX = MFA*M4XX
NcET(TNOX) = L
MFF(JO) = %4FA

17 1 .nx = F4x-
MqET(INnx) = n

MLE(JO) =OF'A

C
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14 4rA NXFA

IF (MFA-K(V) ?17.23A*738

EMCO(JQ) = :%O(.j(0)XN*(TOW-fTTMF(J0))
Vki(jo) = ~If(,iO),XNQO*XN)*(TNflWOTTmr-(JO))

OTIME(JO) =TNnw
kln(JQ) = N(O+
'4tXMJ(JO) = MAYO(MAXkNO(J3) 940( iQ))

MtC(jo) = 4lFEUQO)
Go TO 9q

Ilot) pin'flI = (W'A-1)*TMM+Krz
INOX2 = (4LEX-l)*Imm+K(S
IF (QSET(!%,~xj1-nS:T(TNnX2)) 17,11#13

Ipjr)X2 = (Mi-X- 1)*Mxx~e.;(
IF? (NSET(I\J'X)-KSET(TNnx2)) 17913913

ii T~flx= MLEX*MXX-1
'4qU =NSET(INnx)
NqET(INDX) = "FA
PJIDX = MFA'O4XY
NqET(INlA) =MLFX
CO TO (18917), '(NT

1q I#~ifx = MFA*4XX-1
N'qET(INflx) = msIJ
INhIfX = lsUu*4xx
NqET(INnX) = PA
Go TO 14

I? KNT I
INrX =MLE*4XX
MIEX =NSET(I~flX)

IF (LFX-KLE) 11916911
ip im~ox = mFA*M4XV

mqET(INDX) = wi.E
MFE(JLJ) = F

26 *pfirX = mFA*'4XX-1
Ne.ET(INflx) = kMFFX
i'kiOx s mFEY*m4xx
NqET(INDX) = mFA
rn TO 14

6 IF (4FEX) 100*10.19
19 Gn TO (l20n,1?O) KS.)

INflx2 =(MrEX-l)*1M4*KS
IF CQSET(INI0X1)-q)SFT(TNDX2)) 2fl,21921

122(1 NO~XI = (M--A-1)**4XX,'(q
TIOx2 = (MEX-1)*4XX,(S

IF (NqFT(I0~X1)-NSFT(TNflX2)) ?fl,21,21
20 KKIT =1

MORE =MFEW

=mD MFEXOMLXX-1
MrXX NSET(P1O)
IF (MFEX-K'IL) IQ,24,1Q

P1 GtI TO (?2206)-p KNT

2? '(NT =2

24 INDX =mFA*?4XX
NqE:T(INfnx) = m~
I\nOx = 9PRr*MXX-1

4*
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NqET(INDX) 2mFA

Gn TO (17924)9 KN*T
q M"IlT =0,

INM' CML^(JO)-l)*Tmm
On 32 1=10T4M
TlmDX =INDw.1

3? 04;ET(INlx) = o
rKiDx = cMLr'(Jn)-1)*Mxx
On 1300 1=1,14

NIX= INnfl.
13n4l NSP:T(TPJfX) =0

IND = MLC(JQ)*m4xx
AL = NSFT(T4r)X-1)
JI( = NSET(TJDX)
T ' (JL-KOL) 1334.33

31 IF (JK-KLE) 3R,369a35
35 yNC'X = JK*i4xX-1

MrecMT(nfx) = *JL
IKIDX = L*aIXX
NqET(INox) = Jt(

17 NO~'Y = MLC(J'))*14YX-1
NcF~T(INnX) = PWA
NJcFT(1'jfxl.) = L
IF (MFA-Kor) ?140?35,235

714 I~JQx =MFA*Xxx
M;jFT(PlDX) = tAC(JG)

23S tAFA = MLC(J)
MiLC(J) 2 mFE(.JQ)

Et'O(JO) = NG(J0)+XNn*(TlOW-OTymF(.jn))
VAIO(JO) = (J)XN*XNa(TNflW-0TTmE-(JQ))
OTImE(Jn) aTNnw
NO(JQ) z IJn-

GM TO 99
36 TNO)X =JL*o4XX

NqET(1N(OX) =KIE
?4FE(JO) = JL
01) TO 37

14 IF (JK-IKLE) 3A93993A
3q Im = )K**4xx~l

NqET(1Nnx) = KnL
MLE(JG) =J
rin TO 37

39 mFF(JO) = n
tLF(JQ) a nl

rin TO 37
101 CALL EPROPR8)
9Q QrTlJRN

SliJ3OUT!NF 5Us"Qy
CAMMON It).T4'. INJITJFVMlTJMNIT04FAPSTODmXMXC,#,JCL-T,~II4TST,
IN0NR~vTNO~MUgRN.SAqU95~qNW
'T'EGTFIN. AXX ,NPqttT,'a4C~foNED~INIo (4) , 1.MMAxO;,omAXJS
COMMON ATRT4(1l),FNIQ(4),INN(4),JCFLS(2l,?2),KANK(4)MAXaJ(4).
IMrE(4) .NLC((.) ,4LF(4) ,'CELS(20) ,NO(4) ,PAQAM(,fl4) .OTmrc4) .CUMA
P(1O.5) .SU04& (1000.5) ,NJ6MF(b) ,NPQ0J.%eO'J,%JAY,kyR,JCLq.JTQIR(1?)

?1 FnP'4AT CI1l3Qv,?3L4**AAS- SLJpARtY IRFzOQT**/)
147 Ir (NCLCT) 59nq

5 WPITE (NPP'JT*1Q9)
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JQQ FJPMAT (///36xq26HERpnR EXIT9 TYPF 94 ERROR.)

STOP
66 WRITE (NPR\lTvpl)
?3 FnR4AT (//44X,1l3,4**GFP'EPATEr) n&TA**/P7Xo4HCr)r)F**4X94HMFaNgAXtAHSTI),

lr)FVgSX94HVIN,97X94HMbX.oSX94HnRS./)
DO 2 1=19NI-'LCT
Ir (SOMA ( I * 3) ) 9-o2961

61 Xq = SUMA(Tql)
XSS = SUMA(197)
XNJ = SUMA(T*3)
AVG = XS/X\i
Ir (XN-loonol) gogAlgAl

An 'qTD = 0,
rn TO Rp

41 STO =SORT(AMAXI(n.g(XNI*xSS-XS*xS)/(X\I*(XN-1.)))I
A? N = XN

WPITE (NPQ\lT*?4) TAVresTD-PStima(lo4)eSIIMA(TqPS),oN
?I. FnPmAT (27X91394F11*4917)
p CmNTINUE

6n Ir (NSTAT) 596794
4 WPITE (NPR\IT9?Q)
PQ FnQmAT (//4i&XsP3&4**TP4E 37ENERATF0 naTA**/27Xo4HrODFo4Xs4Hk4FAM96we

19HSTD.DFV.oSX94HMIN*97X94HMAX.,IxqlnqTMTAL TT"F/)

Dn 6 1=19NQTAT
Tr (SSUMA(Tol)) c;9697?

72 XT = SSIPW1911
xc = SSI)mA(T*P)
Xss SSUMA(191)
AVG = XS/Xr
STn =s0pT(A4AXl(n.*xqq/xT-AVG*AVG))
WPITE (NPRVT93n) 19AVGqSTDtSsij&4a(194)gqSUMA(Tog)tXT

In FnPmAT (27yolleSF11,4)
A CnNTINUE
67 CONTINUF
75 Dr) 15 1=19NIM
1c; CALL PRNTOM

R TURN
EKiD
SiMPOUTINE COI.rT(X*N)
COMMON TD9T49TNTTQJEV IT*JMNIToMFA94STOPgMXoMlCoNCLCTtNHISTe

INnOgNORPT94ITqKIPQMqoNPUNgNRUNc,%NSTATqOuTeISFEngYNOW9
PTPEGTFINgvXX*KIDONTNCqn49Nro9VNQ(4)*IMM*MaXMq*MAX49
COMMON ATRT3(in).Et,1(3(4)91NN(4)eJCELS(21)gP-2)*KPANK(4)*mAxNn(4),o
ImPE(4)gmLC(e*)*MLF(4)oNICELS(20),NO(4)gPARAM(PO94)90TTMF(4)egqt)MA
2(1095)*SUMA(IOnAqS)gNAME(6)gNPQOJ94049NDAY9 IYPtJCLRgJTP19(12)

Ir (N) 29201
7 CALL EPROR (90)
1 IF (N-NCLCT) Iol-P2
I SI)MA(Nol) = SlJmA(Nol)+X

S!jMA(N*?) = SOmA(N*?)*X*K
Sl IMA (No 3) = l.;lf"A(N-v3)+le

Sl IMA (N 9 4) =AMTNl(';1J4A(Nq4)oX)
SijMAN95) =A4AXj(SllMA(N*5)qX)
P;-TURN
EMD
SiMR-OUTTNE Tm4;T(Y*TtN)
COMMON IDiT49TNTTgJFVKITvJMNIT94FAeMSTOPoMXoMXCqNCLCT94HISTo

IKIO09NORPT911T.t lP MI;,pNDLJ 19NR.U-41;.NSTATPO()T.PlrFFn-ITNOWO
;?TqEGoTFTN*vxxqhlPONT*NrPnRoNEPtvNn(4)91MMeMAXOI;*MAXNS
Cel*40AON ATRT3(ln)*F l()(4)91NN(4)-JCFLS(20922)oKPAmK(4)om&XNO(4)'
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lmrF-(4),,PiLC(4),MLF(4)oNICELS(2n)*NQ(4)gPARAM(PAo4)OOTTMF(4)ocqt)mA
: (ln*S)qSU46(lAnnocl)oNAMF(6)oNpQOJ*MO494nAY*NYR*JCLQoJTRTR(12)

Ir (.14) 292*1
P CALL FQPOR(91)
I IF (N-NSTAT) 1,392
1 T+ = T-SSUVAPtel)

CCUMA (No I ) z qql)UA(Ngl)*TT
5 e, OMA (N 9 2) = SqlJ%,'A(N9;')+X*TT
SqlJMA (tj 9 3) = cclJMA(N9l)+X*X*TT

ecUmA (No 4) =AtATNI (QqlJmA (V94) 9X)
ccUmA(NsS) =AAAXl(SSlJmA(V95)qX)
RrTURN
Fl,;r)
qij9QOUTlNE =QPnR(J)
CIMMOKI lDoTmolkilToJFV IToJMNIT-o4FA94STUPoMX*MXCgNCLCT* 141STs
INIO*NOQPT943T*oqPPAq*NDU IoNRONSoNSTAT*OOT*I';FFn*TNOW9
PTpgrltTFINgvYXoklPDNfToNCPnRgNEDeVNO(4)91MMgMAX(31qot4AX4'q

CnMMON ATRT ; (in) 9E"J0 (4) *INN (4) o-JCFLS(2n972) *KDANK (4) smaW (4) e
IMCE(4)iMLC((*)oMLF(4)9 ICF'-S(2n)*Nn(4)oPARAM(POe4)*QTTMP(4)oqClIMA
2(1195)oSU"A(IOnnqg)gNAMF-(b)oNppnjokif)*49Nr)AYoNY09,)CLQ*JTPIR(IP)
WPITE (NPRMTqlnn) J*TKIOW

.10n FORMAT (//lSXs164FPi7nP FXIT# TYPEoT3*74 ERPnR.//214 FTLE qTaTtl, AT
I TT4E9Fl0.4/)

C41-L SUMRY
CALL nTPlJT
CALL OUTTSM

I PFTURN
Fmn
SoiPPOUTINE PSrT(4SFTs0SFT)

nT'4ENSION klSETfj),0l;FT(l)
COMMON TDoT49TAITT*JFVNTgJMNIToMFA94sTOoomx-MXCeNCLCTeNWISTo

INnOoNOROToq3T*NPP441;9 IDIJN94RJNqoNSTAT*OUT*IqFFneyNowe
PT*FGgTFTNgvXX* IOQKIT*NrRf);-PNED-PVNQ(4) vIk4M9MAX(3'qomAXklS

COMMON A'IrRTI(in)oFNQ(4)*INN(4)oJCFLR(?n9P2).KPANK(4)omAXNn(4)9
ImFE (4) 9mLC (4) oml-V (4) oo,,CE;..S (20) NO (4) -PARAM (7094) -P()TTMF (4) 194;(IMA

P(10-PS)-P';UMA(lnnq*S)gNAMF(6)*Nppnj*4n49NnAyoNYQtJCLR*JTRIP(12)
W0ITr(6q3)(wFr(T)qT=lo3)

I FnRMAT(lXqlTln)
1=1911

ji=(I-l)*6#I
J-P=Jl+S
KIS(1-1)*4
Kp=KI+3

I WPITE(692)T*(NqFT(J)*J=JloJ2)9(OSFT(<)*KOKI*KP)
2 F0PMAT(IXv7I5o4FJ0e5)

PrTURN
P-in
SiiRROUTINE PPKITn(JO)
PFTURN
Epin
SOIRPOUTINE mnplTP
RrTURN
END
FiiNCTION LICAT (JSWoKJATTq4qFTOqFT)
nTMENSTON 4qETfDq0SFT(j)
COMMON lD9T4*TNTToJFVNT*JMNTT*MFA*MST009MX*MXC*KICLCT-PMHTSTo
lNoQeNO9PT94IToKIP '4q9NOUNeNRUNS*NSTAT90UT*ICFFn-OTNOWo
?TDFGgTFI JgmxxopjPDNITohlrPoRoNED*VNO(4)OIMM9MAXOqgmAXNS
CMM'10N AiRT (]A)oE 10(4)*INN(4)*JCFLS(20922)gKPANK(4)gMAXNn(4)9
IMFE(4)tMLC(4)gMLE(4)*NICELS(2n)oNQ(4)gPARAM(7094)VOTTMF(4)*SgtlMA
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2(1095)qSUMA(InOO*S)qNA4F(6)#NPQOJtmnNeNnAYNYPgJCLQ*JTRIR(l?)
Gn TO (?00*30n*200*30n)qJSW

2nn L=IMM
Gn TO 400

300 L=4XX
400 TF(JATT-L);noqSAAqonm
Sf) n Tr(,)SW-3) 9%(I0,PPA0'9()()n
' qO TF(K-ID) 7nnt7nOo2nnn
7on L0CAT=(K-1)*L+,)ATT

PVTIJR j
Aon lr(K-mAxQSI lonnolnnn*2000
900 TF*(K-MAxNS) loonglooo,2000
,>onn rALL EPPOR(AS)
100n LOCAT=I*(K-JATT)/L

Pc'TURN
FK-()
SisPROUTINE QUTTS(J)
WDITE(691)

I FnRMAT(I DUTTSI)
STnp

SiiRPOlITTNF DRPNr)(P;FFnP411M)
niTA IA/24PQA/*TC/Q9QQI/qm/19Qnl7/
lx=TSFFn*Te+IC
lqFEU="0D(TXq64)
QNIJM=FLOAT(TSFrn)/FLnAT(4)
P, 'UM=A9S(QVU4)
PrTURN
F,,in
rioNCT101,J PrX(A)
PPX=IEO
IP(AoLF,0e)PETIQ,,l
CALL DRAND(TSFFDoP)
PFX=-(ALOG(;))/A
RPTIJRN
E ,D
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Appendix C

SUMMARY OF FUTURE V/STOL OPERATING COSTS

In this appendix, the effects of stage length, external noise

constraints, and fuel costs on the direct operating costs of future

VTOL concepts are summarized.

In the period 1973 to 1976, NASA sponsored Conceptual

Engineering Design studies of 1985-era commercial VTOL transports. The

purpose of these studies was to assess the effects of new technology,

rising fuel costs, and external noise constraints on future VTOL air-

craft.

The design guidelines are as shown below in Table C.l.

Passengers

Stage Length

V Cruise

Hover

Initial Fabrication

External Noise

Aircraft Optimization

Cruise Altitude

100 Maximum

200 NM

Minimum DOC

Out of Ground Effect

One Engine Inoperative

@ Sea Level 32.2*C

1980 (Introduction to Service

in 1985)

95 PNdB 500 ft. Sideline

Min DOC

Min DOC

Table C.1
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The Direct Operating Costs were calculated using a 1973 NASA modification

of the AIA method for calculating operating expense (Reference 15). These

modifications appear below in Table C.2.

Year Dollars

Avionics Cost

Airframe Cost

Dynamic System Cost
Engine Cost

Crew Costs

Fuel

Oil

Nonrevenue Factor
Labor Rate

Airframe Labor

Airframe Material
Engine Labor

Engine Material
Engine TBO

Dynamic System Labor
Dynamic System Materials
Dynamic System TBO
Maintenance Burden

Depreciation
Spares:

Airframe

Engines

Dynamic System
Utilization

1974
250,000 $/Acft.

90 $/16

80 $/16

280(HP. 785) $/Rate SHP

1000 GW + 134 $/hr.

.02 $/lb.

1.24 $/lb.

2%

6 $/hr.

AIA
AIA
.65 AIA

.65 AIA

4500 Hr.
AIA
AIA
3000 Hr.

150% Direct Labor
12 Years

8%

40%
25%

2500 Hr.

Table C.2
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For performance and cost calculations, a standard flight profile

was issued. This is shown in Figure C.l.

Three helicopter configurations were studied. The designs

include tandem rotor16 , conventional and compound helicopters.17  See

Table C.3.

Two tilt rotor vehicles and short take-off derivatives were

evaluated, 16 ,18,19 see Table C.4.

Although the baseline designs were not well defined, three

lift fan configurations were evaluated.20,21 ,22 A representative

configuration is presented in Table C.5.

The direct operating cost for all configurations are plotted

vs. stage length. These operating costs are shown in terms of dollars

per hour and cents per available seat-statute mile. (Figures C.2-C.4).

The fuel cost used in this study (24/lb.) was typical for 1973.

By 1975, fuel cost had risen to between 4 and 54/lb. It is projected

that by the early 1980's fuel cost will be nearly lOt/lb. The effects

of this increase is shown in Figures C.5-C.7.

DOC Rtio =DOCDOC Ratio = DOC with Fuel at 24/lb.

(200 nm Stage Length)

For each VTOL configuration (excluding lift fan), two

derivative aircraft were designed to investigate the effects of sideline

noise constraints. The sensitivity of DOC to the noise constraints is

illustrated in Figures C.8 and C.9. One aircraft 5 PndB quieter and one

5 PndB noisier. The ratio is for DOC at a 200 nm stage length.
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ADVANCED HELICOPTERS

Vehicle Type Study

Weight Empty (lbs)
W Max Gross
Max Pass

Vcruise KTS
ALTcruise FR

PNdB
@500 ft.
Area T/O @ 95 PNdB
Area Landing

Engines
SHP

Block Time Hrs.
Block Fuel lbs.

DOC t/as-sm 6Initial Cost x 106

Tandem Rotor Boeing

40181
67175
100

165
5000

92.3

.07
.535

3
14472

1.337
5093

3.53
4.17

Conventional Sikorsky

34374
58137
100

173
5000

93.5

.075

.063

3
10605

1.331
3404

3.17
3.95

Compound Sikorsky

49564
75926
100

250
14000

95

.156

.088

3
21979

.958
5379

3.30
5.67

Table C.3



TILT ROTORS

VTOL STOL VTOL VTOL
VEHICLE TYPE BOEING BOEING BELL BELL

Weight Empty 50068 45023 33216 42720
W Max T/O 74749 68493 44848 64300
Max Pass 100 100 45 100

V Cruise 349 310 296 248
ALT Cruise 14000 14000 11000 20000

PNdB 98.2 101.3 97.2 96 00
@ 500 ft.
Area T/0 @95dB .09 .115 .083 .191
Area Landing .15 .14 .078 .098

Engines 4 4 4 4
SHP 16480 11144 9072 6765

Block Time .742 .82 .858 1.015
Block Fuel 3157 2392 2015 1888

DOC t/as-sm 6 2.41 2.31 4.87 2.77
Initial Cost x 10 5.15 4.62 3.98 4.90

Table C.4
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LIFT FAN

Weight Empty

Max T/O Weight

Max Pax

V Cruise

ALT Cruise

PNdB @ 5W Ft.

Area T/0 95 PndB

Landing

Engines

Thrust

Block Time

Fuel

DOC

Initial Cost

80,000 Lbs.

105,000 Lbs.

100

M = .75
24,000 Ft.

97 - 100

~ .11 Mile 2

~ .12

4 - 6

120,000 Lbs.

.6 Hr.

7,200 Lbs.

3.34 4/as-sm

9 - 12 X 106$

Table C.5
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1000

900

DOC ($/HR) 800

700

600

500

1 ft

Stage Length

100

(NM)

Tandem Rotor
Conventional
Compound

DOC (4/AS-SM)

100

Stage Length (NM)

Figure C.2 - Advanced Helicopter Direct Operating Costs

200

200



100 seats VTOL
-45 seats

900

800

700

600

500
30

Stage Length

10 1

(NM)

8

DOC
(4/AS-SM)

6

4

' 45 seat VTOL
100 seat

' STOL

Stage Length
200100

(NM)

Figure C.3 - Tilt Rotor Direct Operating Costs

1000

DOC
($/HR)

50 100 200
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DOC
(4/AS-SM)

100

1800

1600

1400

1200

1000

6

5

Stage Length

200

Stage Length

(NM)

400

(NM)

Figure C.4 - Lift Fan Direct Operating Costs

DOC
($/HR)

200100 400



1.6

1.5

1.4

1.3

8 10

Fuel Cost 4/lb

Figure C.5 - The Effect of Fuel Cost on Advanced Helicopter DOC
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Compound

Tandem Rotor

Conventional

Stage Length
-- 200 NM

50 NM

DOC
Rati o

1.2

1.1

1.0
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1.5

1.4

1.3
DOC

Ratio

1.2

1.1

1.0 2

100 Seat
(Boeing)

45 Seat
(Bell)

- 100 Seat
(Bell)

VTOL
- - - STOL

4 6 8 10

Fuel Cost 4/lb

Figure C.6 - The Effect of Fuel Cost on Tilt Rotor DOC



192

1.5

1.4

1.3

DOC Ratio

1.2

1.1

1.0
2 4 6 8

Fuel Cost 4/lb

Figure C.7 - The Effect of Fuel Cost on Lift Fan DOC



Tandem Rotor

Baseline

Sideline Noise -

+5 PndB

900F Hover @ 500 ft

Tandem Rotor

Conventional

Compound

Baseline +5 PndB

Sideline Noise - 900F Hover @ 500 ft

Figure C.8 - The Effect of Sideline Noise Constraints on
Advanced Helicopter DOC
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1.1

1.0

DOC Ratio

($/HR)
($/HR)

0.9
-5 PndB

1.1

DOC Ratio

t/AS-SM)
t/AS-SM)

1.0

0.9
-5 PndB
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100 Seats

45 Seats

-5 PndB Baseline

Sideline Noise -

+5 PndB

900F Hover @ 500 ft

100 Seats

45 Seats

-5 PndB Baseline

Sideline Noise -

+5 PndB

900F Hover @ 500 ft

Figure C.9 - The Effect of Sideline Noise Constraint
on Tilt Rotor DOC

1.1 1

1.0

DOC Rati o
HR

($/HR)

0.9

1.1 1

1.0
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