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ABSTRACT

A method of vehicle routing and scheduling for an air based
intraurban transportation system is developed. The maximization of
level of service to passengers in a system operating under time varying
demand is considered on both the optimal and heuristic levels. It
js shown that while the determination of an optimal schedule is
mathematically feasible, it is computationally impractical. Heuristic
vehicle control algorithms are developed and tested using computer
simulation. It is shown that, as compared to fixed routing strategies,
dynamic vehicle routing strategies provide a greater level of service
to passengers while substantially reducing the direct operating costs

of the system.
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Chapter 1

INTRODUCTION

1.1 Motivation for Research

The Ultra Short Haul (USH) system is an air-based intraurban
transportation system. The combination of advances in V/STOL technology,
and a degradation in the quality of surface travel, has made USH a poten-
tially attractive alternative transportation system in some urban areas.
The USH system has significant advantages over ground-based systems in
the urban environment. Since its only ground facilities are terminals,
the USH system requires a fraction of the land necessary for a comparable
ground-based system. The resulting community impact (noise, exposure,
housing and business displacement) is also far less. Since the vehicles
do not travel on fixed tracks or guideways, vehicle routings are not
built into a USH system as they are in ground-based systems. This makes
the air-based system more adaptable to changing transportation patterns
of the area it serves.]

To become operational, the USH system must break into a
market against established, subsidized competition. The system's
greatest attraction for passengers is high level of service (low travel
times). But this system is relatively expensive to operate, and the
passengers receive this better service at the expense of higher fares.
While there is a market for this type of service, the fraction of

travelers with a high enough value of time to use the system regularly

is probably small.



In order to attract enough demand to maintain operations, the
USH system must offer a high level of service (LOS) to all potential
customers. The system's ability to offer this high LOS depends on good
overall design, and effective use of resources during operation. System
design involves the selection of an operating area, and the determination
of network layout and fleet requirements. Operations deal with the
routing and scheduling of vehicles, the goal of which is to offer the
maximum LOS to passengers. The operations of the USH system are compli-
cated by the nature of the demand, a significant portion of which comes
from the journey-to-work market. This demand is highly directional and
concentrated in the morning and evening rush hours. Therefore, the
feasibility of the USH system, to a large extent, depends on its ability
to operate efficiently under siénificant]y varying demand patterns
during the day.

A total system analysis and optimization was conducted by
Mann, and a system to serve the Long Island area was designed.z’3 The
aircraft requirements and schedules were determined using a fleet
assignment model FA-4.54. This model assumes that daily demand for a
particular origin-destination pair is strictly a function of frequency
of service. That is, for a given number of departures, there is a
unique demand. This arises from the assumption that average wait time,
and hence average trip time, depend only on headway. For a system with
relatively constant demand over time, and evenly spaced departures, this
is a reasonable model. But in a system with significant time variations

in demand, the LOS offered to a particular passenger depends not only on



the total number of daily departures, but also on their times, and on
the time at which service is requested. This aspect of the USH system
makes the applicability of FA-4.5 questionable.

A review of existing vehicle routing and scheduling methods
concluded that no techniques truly applicable to the USH operating
environment are available. It is the lack of such a design tool which
provides the motivation for this study. The goal of this work is to
develop a method of vehicle routing and scheduling to be used as part

of a total USH system design.

1.2 Summary
The anticipated result of this study is a methodology to be

used in USH system analyses, the usefulness of which depends on its
applicability to future USH systems. Since methods are developed for
use with, and tested on particular systems, it is essential that these
testing scenarios be representative of realistic USH systems. The last
section of this chapter is dedicated to identifying such an environment.
This is done in two parts. First, the characteristics common to all

USH systems are identified. Next, those factors unique to each operat-
ing scenario, which significantly affect system performance are
considered. These factors vary widely between different areas, but the
range of values is narrowed by restricting consideration to those areas
highly conducive to successful USH operations. The factors determined
in the actual system design, such as fleet size, vehicle characteristics,

are treated as freely varying parameters.
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The USH scheduling problem is first approached on the optimal
level. The objective ijg to minimize the average time spent in the system
by all passengers. The optimal schedule can be obtained as the solution of
a shortest path problem. While this formulation assures the existence of an
optimal schedule, it is computationally impractical. A brief discussion of
optimal scheduling for the USH system appears in Appendix A.

The scheduling problem is next approached on the heuristic level.
A simulation model for the USH system is developed and is used as a testbed
to compare various vehicle control algorithms. This model is described in
Chapter 2. The development and testing the control algorithms is described
in Chapter 3. Two classes of controls (fixed and dynamic) are tested. The
fixed controls are used to check out the simulation model, and to estimate
the performance of the USH system when it is operating in a manner similar
to existing transportation systems. The dynamic controls route the vehicles
and schedule departures according to actual system conditions. Two types of
dynamic control strategies are investigated, these are routing and holding
controls. Dynamic vehicle routing enhances the system's ability to cope with
varying demand patterns, and reduces the sensitivity of system performance
to demand peaking and directionality. Holding controls are used to adjust
the pace of the system to changing magnitude of demand. Three holding stra-
tegies are investigated. The first two, minimum headway, and an extention
of the routing strategy, proved to be ineffective. The third strategy, based
on system operating cost, offers significant reductions

in operating cost with only a small degradation in LOS. The results of this



investigation indicate that system performance is maximized when the vehi-
cles are routed dynamically and are held according to this final strategy.
Three areas for further research related to the USH system are
suggested in Chapter 4. These areas are: 1) Application of the
simulation model and control algorithms to USH sensitivity analysis;
2) Modification of the algorithms to more fully exploit the capabilities
of the USH system; 3) Investigation of basic transportation questions,
such as fixed versus dynamic scheduling, and the determination of a good

measure of LOS.

1.3 Terminology
To reduce the possibility of ambiguity in this study, we now

state definitions for several commonly used terms.
The time required for a passenger to travel from his origin (home

or business) to the nearest system terminal is access time. Egress time

is defined to be the time spent from deboarding the vehicle and leaving
the system until the final destination is reached. For the remainder

of this study, the terms origin and destination refer to the terminal

where a passenger enters and leaves the USH system. Arrival time is

defined to be the time at which the passenger enters the system. The

time spent in the vehicle is ride time. Travel time is defined to be

the sum of the access, wait, ride and egress times, or the total time
spent in transit. The time the passenger spends in the system is the
trip time, the sum of ride and wait times (see Fig. 1.1). Level of

service, LOS, is a measure of the cost of travel time to the passenger.
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In general, LOS refers to average travel time. But in the urban
environment, there is evidence that the uncertainty (or variance) of
travel time is also a significant factor.5 While this can be justified
intuitively, a precise definition of LOS is not offered here. The
realization that both the mean and variance of travel time are involved
must suffice. Travel time depends on access and egress times and hence
on system design (number and locations of terminals) which is beyond
the scope of this study. Therefore, LOS will refer only to trip time.

The direct operating cost, DOC, for each vehicle is the total cost

incurred by flying the aircraft. This cost includes crew, fuel, depre-
ciation, maintenance, and insurance costs. The system DOC is the sum

of the costs for each vehicle. System performance is a measure which

relates system costs and LOS offered to passengers. To a first approxi-
mation, performance relates average trip time and system DOC. Consider
a system operating under three different policies (Figure 1.2). Clearly,
maximum performance is not achieved at B, since the same LOS can be
offered for less cost (A), and better service can be offered at the same
cost (C). But without more information, we cannot establish whether

the maximum performance is achieved at A or C. In the example, A and

C comprise the set of Pareto Optimal points. More precisely,

Pi = (E(T)i, DOCi), is a Pareto optimal point, if E(T)i §_E(T)j, and,
or DOCi f_DOCj, for all i and j. In a system design, many operating
configurations are investigated. While the best operating point depends
on system objectives (max profit, max market share, etc.), it is obvious

that the system should be operated at a point on the Pareto optimal
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boundary (see Figure 1.3). The goal of this study, in this context, is
to develop methods to establish the Pareto optimal boundary over a wide

range of system configurations and operating costs.

1.4 The USH System

In this section, the USH system and its operating environment
are described. The purpose here is to establish guidelines for the
development of operating policies and to determine the basic character-
istics of the scenario in which these policies will be tested.

The USH system operates in an urban environment, which can
be divided into a suburban region and a central business district (CBD).
As indicated before, the fraction of all travelers who place a great
enough value on their time to regularly patronize the USH system is
likely to be small. Only in an urban area is the population large
enough to insure a sufficient level of patronage to maintain operations.
In this environment, ground transportation systems are more prone to
congestion. By degrading the quality of surface travel, this congestion
makes the air-based system more attractive to individual passengers.

The urban environment is essential to USH operations for both reasons.

USH demand is comprised of commuter and general travelers.
The demand from the commuter, or journey-to-work market is strongly
time-dependent and highly directional. A1l requests for service from
this group are made during the morning and evening rush hours. During

the morning rush hours, almost all commuter trips are made from the
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suburbs to the CBD, while in the evening, almost all requests are for
trips from the CBD back to the suburbs. The total number of trips made
by this group in the morning and evening rush hours is roughly equal.

The demand from the general travel group displays neither time dependence
nor directionality. There are three types of trips made by general
travelers. These are: CBD to suburbs; suburbs to CBD; and suburbs to
suburbs. The total demand for each type of trip will be assumed roughly
equal, and the rate at which requests for service, for each type, arise
will be assumed to stay constant throughout the day.

Passenger arrivals at the USH terminals are random. There
are many factors which affect the actual arrival times of individual
passengers. Each passenger is expected to act and be affected by them
independently. Under these conditions, the level of uncertainty is
such that knowledge of past arrivals is worthless in predicting the
exact times of future arrivals. For these reasons, the arrival of passen-
gers is modeled here as a Poisson process. The general passengers
arrive according to a homogeneous Poisson process. The commuter passen-
gers arrive according to a nonhomogeneous Poisson process, where the
average arrival rate, (or "intensity function") depends on the time of
day. For a particular OD pair, serving both passenger types, the total
average arrival rate at a given time is the sum of the average rates
for the two passenger types.

Due to the directional nature of the demand in the USH system,

three types of nodes (or stations) can be identified. There are morning
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(evening) commuter origins (destinations), which are located in the
suburbs. Also, there are the morning (evening) commuter destinations
(origins), located in the CBD. Both of these types of nodes display
not only time-varying demand, but also unbalanced demand during the

rush hours. The third type of node displays some daily variation in

the level of demand, but the demand is balanced. That is, the number
of passengers entering and leaving the system are roughly equal through-
out the day. This is the pattern of demand at, say, airports.

The USH network is a complete graph. That is, a potential
direct route exists between every pair of nodes. This property yields
a tremendous amount of routing flexibility to the system, and makes the
USH system truly unique among urban transportation systems.

For a particular system, the geography of the operating area
plays a major role in determining the relative attractiveness of air
and ground-based travel. Natural barriers, such as water and mountains
can degrade the quality of surface travel, and hence reduce its market
share. Bottlenecks at bridges and tunnels affect the quality of surface
travel due to congestion, and the cost of tolls. These barriers also
constrain suburban growth, the effect of which is to force a longer
commuting distance, since the suburbs must grow away from the CBD at
a rate greater than in a physically unconstrained area. For example, in
a coastal city where the suburbs are forced to grow to one side of the
CBD, the maximum commuting distance is about 40% longer than in a non-

coastal city of the same area. In a city on an island or in the
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mountains, the suburbs may be constrained to grow along a corridor,
which could easily double the maximum commuting distance.

The effect of greater commuting distance on travel time is
much more profound on surface than air travel.6 This can be illustrated
by comparing a plot of time versus distance traveled for the two modes
(see Figure 1.4). The air-based system has higher zero length costs
due to greater access and egress times, a result of having fewer termi-
nals. As distance increases, the air system's speed becomes a signifi-
cant factor, making this mode increasingly attractive. In summary, the
USH system captures its largest market share in areas where natural
barriers and congestion make surface travel long and difficult.

Also affecting system operations is the fraction of total
demand which comes from the commuter market. This fraction determines
the level of demand-peaking, which can have a profound effect on system
efficiency. If fleet requirements arevdetermingd on the basis of the
off-peak periods, which prevail for the greater part of the day, conges-
tion during the peak periods can cause a drastic reduction in LOS to
passengers served during the rush. This variation in LOS during the
day can cause a lack of confidence in the system, and a significant
reduction in overall demand. If, on the other hand, the system is

designed to handle the peak demand, then for most of the day, it is
underutilized.
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Figure 1.4 - Comparison of surface and air travel times.
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Chapter 2

SIMULATION MODEL FOR THE USH SYSTEM

In this section, the basic characteristics of the Simulation
Model for the Ultra Short Haul transportation system (SMUSH) are
described. SMUSH was developed specifically to analyze the performance
of the USH system operating under various vehicle routing and scheduling
strategies. A user's manual, containing a source 1list and sample input,
is presented in Appendix B.

SMUSH is written in the GASP IIA simulation language. GASP
is a collection of FORTRAN subroutines which provide the general frame-
work for event paced simulation. A model written in GASP is a FORTRAN
program, consisting of GASP and user provided subroutines. Due to this
structure, the simulation methodology and program code are completely
accessible to the user. Only a basic understanding of FORTRAN and simu-
lation techniques is required to implement and modify the 1anguage.

Also a GASP model can be run on any FORTRAN compiler. These are the
primary reasons that GASP was chosen for this model.

SMUSH is composed of around 20 subroutines of which about
half are standard GASP routines. The GASP portion of SMUSH provides
the mechanism to store and retrieve data, advance the simulation clock,
and collect statistics. The non-GASP portion is dedicated to the input,
output, and handling of data unique to the USH system.

SMUSH is structured such that the following information is
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specified by the user.

Network layout

Fleet size, and vehicle parameters

Route structure

Average passenger arrival rates, as a function of time of
day
The output of SMUSH consists of the following:

Vehicle schedule map

Passenger trip time statistics

Direct operating costs

Vehicle load factors

2.1 GASP

GASP is a general framework for discrete event simulation.
In event paced simulation, system parameters are considered and updated
at discrete points in time. These points correspond to the occurrence
of events, such as passenger arrival, and vehicle departure events. The
versatility of GASP stems from the fact that the user defines and
provides the logic for all events.

GASP controls the progress of the simulated system by
maintaining a list of future, or pending, events. Each entry in the
list consists of an event code and time of occurrence. This list is
ordered chronologically, with the most pending events first. Upon
completion of an event, GASP advances the simulation clock to the time

of occurrence of the next item on the list. System parameters are then
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updated in a manner corresponding to this event code.

System parameters are stored in a series of files. File 1 is
always the event file, and contains the information corresponding to the
list of pending events. Files 2 and beyond are for the storage of user
defined system parameters. (In SMUSH, for example, File 2 is used to
maintain information about passengers waiting at the nodes in the USH
network.) Each entry in a file contains a set of system attributes.

For example, an entry in the event file corresponding to a vehicle

departure contains the following information.

Event code for vehicle departure

Time of departure

Station number from which vehicle is leaving

Station number at which the vehicle will next arrive

Route number

A1l file entries, and their associated attributes, are stored in two
one-dimensional arrays (NSET and QSET). Integer valued parameters (such
as event code) are stored in NSET, real-valued parameters are stored in
QSET. (For simplicity, let NSET refer to both NSET and QSET.) The
attributes associated with an individual entry are stored together as a
block in NSET. But in order to save storage space in NSET, entries in
each file are not stored sequentially, or necessarily together. When

a new file entry is made, it is loaded into the first available block

in NSET. To keep track of the files, GASP stores (in common) the

addresses of the first and last entries of each file. And for each
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entry, GASP stores the addresses of the predecessor and successor entries,
in that file, along with the associated attributes. So for the previous
example of the event file entry, the list of attributes is increased by
two, and the following is added.

- Location in NSET of the event just prior to this one.

- Location in NSET of the event immediately after this one
Obviously, care must be taken in manipulating entries of these files to
maintain order. Fortunately, the GASP language provides the algorithms
to locate, add, and delete entries, and to update the file pointers.
For example, the algorithm to locate a file entry (Subroutine Locat) is
as follows:

1. Find address of first file entry.
Go to this address in NSET.
If this is the desired entry STOP.

E = RS )

Find address of successor entry, go to 2.
To remove an entry from a file, once the location is known, Subroutine
RMOVE is used. RMOVE deletes the entry, calls Subroutine SET to update
the file pointers, and loads the attributes of this entry into two
buffer arrays, ATRIB. (real values) and JTRIB (integer values). These
buffer arrays are the method of communicating information between NSET
and the rest of the program. To add an entry to a file, the attributes
must be loaded into the buffer arrays, then Subroutine FILEM is called
to make the addition, and update the file pointers.

Simulation time is controlled by the repeated application of

the following algorithm.
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1. Locate and remove the first entry in the event file.

2. Advance the simulation clock to the time of occurrence

of this event.

3. Call the subroutine corresponding to this event.

For any simulation variable statistics can be collected for
either sample values or time weighted values of the variable. This is
done by calling subroutines COLCT (sample values) and TMST (time weighted
values ) during the simulation. These routines maintain the following
parameter statistics.

minimum observed value

maximum observed value

sum of values

sum of the squares of the values

total number of observations

A flow chart for a general GASP model is shown in Figure 2.1.

2.2 USH Simulation

Using the GASP framework, SMUSH models the USH system by
simulating the movements of passengers and vehicles. These movements

are controlled by the use of the following five events:

System Initialization

Passenger Generation

Passenger Arrival

Vehicle Departure

Vehicle Arrival
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Figure 2.1 - Flow chart for a general

GASP model.
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Corresponding to each event is a subroutine in SMUSH, which is called
when the event occurs. These subroutines update system parameters and
set up future events as necessary.
The movements of vehicles and passengers are handled
separately in SMUSH. The actual simulation process can be illustrated
by considering first the handling of passengers, and then the control of

vehicle movements through the network.

2.2.1 Passenger Simulation

A11 passengers and their arrival times are generated using
the algorithm which is outlined in Section 2.2.2. At the time of gene-
ration, an entry into the event file is made for each passenger. This
entry corresponds to a future passenger arrival event. The arrivals
of all passengers can be generated at the start of simulation, but this
would require an entry to be stored simultaneously for all passenger
arrivals. To conserve storage space and to avoid the possibility of
overflowing NSET in a long run, SMUSH generates passenger arrivals in
half hour blocks. For example, at the start of simulation SMUSH gene-
rates and stores arrival events for all passengers who will arrive %n
the interval 0 to .5 hours. Another passenger generation event is then
stored to occur at .5 hours into the run.

We will now trace a single passenger through the system. At
the time of generation, the following attributes are stored in the event
file.

- Event code for passenger arrival
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Time of passenger arrival

Passenger's origin node number

Passenger's destination node number

Passenger type
Suppose this passenger is traveling from i to j and has an arrival event
scheduled to occur at time t,. When the simulation clock is advanced to
ta’ this entry in the event file is removed, the attributes are placed
in the buffer arrays, and the subroutine corresponding to a passenger
arrival event is called. The passenger arrival event updates the number
of passengers waiting at node i and stores the passenger's attributes
in File 2. File 2 is a 1ist of the attributes of all passengers waiting
at the nodes in the network. This passenger remains in File 2 until a
vehicle departure event occurs, which satisfies all the following condi-
tions.

- Vehicle is leaving from node i

- The vehicle will stop at node j, on its present route

- There is a seat available on this vehicle
If these conditions are satisfied, the passenger's attributes are removed
from File 2, and the following entry is made to File 3. (It should be
noted that the entries in File 2 are maintained in the order in which
they are made. When File 2 is scanned for passengers to board, the
oldest entries are removed first. Hence, the passenger loading disci-
pline is FIFO0.)

- Passenger type

- Origin (1)
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Destination (j)

Vehicle number

Time of arrival (ta)

Time of boarding (tb)
At this point, the number waiting at node i, and the number of seats
available on this vehicle are both decreased by one. The passenger then
remains in File 3 until a vehicle arrival event occurs which satisfies
the following conditions.

- Vehicle number corresponds to that which the passenger

boarded

- Vehicle is arriving at j

If these conditions are met, the passenger is removed from File 3, and

the following statistics are collected.

twait =

teide = Tnow

t t

trip wait * tride

It should be noted that as the passenger's attributes are transferred
from one file to the next, the space left behind is cleared, and is used
by future passengers. And once the passenger's entry is removed from
File 3, and the final statistics are collected, SMUSH is done with him.

Table 2.1 illustrates the handling of information for a single trip.
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Passenger Arrives at Boards Arrives at
Generated Origin Vehicle Destination
File 1 2 3 -
ATRIB(1) ta ta ta -
ATRIB(2) - - tb -
JTRIB(1) 2" PTYPE PTYPE -
JTRIB(2) ORIGIN ORIGIN ORIGIN -
JTRIB(3) DEST. DEST. DEST. -
JTRIB(4) PTYPE - VEH. # -
ta = time of arrival
tb = time of boarding
PTYPE - passenger type
1) commuter
2) general
*Event code for passenger arrival
Table 2.1 - Flow of passenger data in SMUSH.
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2.2.2 Simulation of Passenger Arrivals

The arrival of passengers into the USH system is stochastic.
To model this, SMUSH generates individual passengers according to a time
varying Poisson process. Generation of the appropriate exponentially
distributed interarrival times is a common method of determining arrival
times in a homogeneous Poisson process. When an arrival occurs, the
time of tHe next arrival is calculated as the sum of the present time
and a random deviate corresponding to the interarrival time. The system
does nothing until this next arrival occurs, and then repeats the process.
Consider a non-homogeneous arrival pattern, such as the one shown in
Figure 2.2. Suppose an arrival occurs at ty. An interarrival time with
parameter A, is then generated (At). The algorithm then sits and waits
until t2' By this time, the arrival rate can change significantly, but
the system is still operating under the conditions at ty- One would
expect a time lag and a significant difference between the expected and
actual arrivals using this algorithm in the nonhomogeneous case. Suppose
that when the system is initialized, the first arrival is calculated from
to. At this point, A = 0, and the first interarrival time is infinitely
large. In thfs pathological case, no arrivals are generated at all.
Obviously, this method of generating arrivals is not applicable to the
USH simulation.

Consider that portion of the passenger arrival rate curve

between t] and tz. SMUSH generates arrivals in this interval using the

following algorithm.
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Figure 2.2 - Time varying average arrival rate of passengers.
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Calculate the mean average arrival rate, A, in this
interval.
Construct a pdf (figure 2.3) by normalizing the area

under the arrival rate curve, between t] and t2 to one.

Figure 2.3

fx(Xo)

0 At

%o

Use the probability integral transformation method to
generate random deviate, R, having exponential distribu-
tion with parameter X.

If 2 R] > t2 go to step 8.

Using probability integral transform of the pdf
constructed in step 2, generate the random deviate R2.
Passenger arrival time = t] + RZ‘

Go to step 3.

STOP.

For each 0-D pair, the SMUSH user inputs values of average

arrival rates, of individual passengers, versus time. SMUSH assumes

that the rate between the data points is linear. The calculation of X

and the probability integral transform (in step 5) can be done in terms

of the values of A at the endpoints of each linear segment. This algo-

rithm is invoked and completed automatically in SMUSH.
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Due to the randomness of passenger arrivals, the performance
of the real (as well as the simulated) system, is subject to daily
(single run) fluctuations. To get a good estimate of system performance,
it is necessary to look at data averaged over several days (or several
runs). For this reason, SMUSH is set up as a Monte Carlo model. In a
single run of SMUSH, the entire system can be simulated several times
(the number of times is specified by the user). The output of SMUSH is
the average of these runs. Ten is a reasonable number of runs for
convergence of the results. But even a single run provides sufficient
accuracy for the investigation of general trends.

We will now show that the proposed passenger generation
algorithm preserves the fundamental properties of the Poisson type
process. In a Poisson arrival process, the probability of exactly n
arrivals occurring in the interval (0, to+At), Pn(to+At), is given by

Equation (2.1).
Pt rat) = Pn(to)Pr(no arrivals in (to, to+At))
+ P _q1(t,)Pr(one arrival in (t , t +At)) (2.1)
By definition of the Poisson process, the probability of exactly one
arrival in the interval (to, to+At) is equal to A(to)At, the probability
of more than one arrival is negligible, and hence the probability of

zero arrivals is 1 - A(tO)At. Substituting this into Equation (2.1)

yields the following.

P (torat) = P (t )T - At )at] + P (£ )A(t)At] (2.2)
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Rearranging and taking the limit as At - 0 results in the following

differential equation

dp_(t.)
D = AP (ty) - Py(to)] (2.3)

Clearly, the distribution of n depends on A(t) in the interval. The
algorithm proposed suggests that for a given interval (O,to), n is
distributed as a Poisson random variable with parameter'T(to), where

Tlto) is the average value of A(to) in the interval, and is defined

as follows

— 1 t°

X(t,) = t—-j A(x)dx (2.4)
0
0
At )t
‘X(to)to)" e 00 t, >0
Pn(to) = (2.5)
n! n=0,1, ...

If this does represent the correct distribution of the number of arrivals
in the interval, then n and its assumed distribution should satisfy the
differential equation (2.3). Substituting (2.4) and (2.5) into (2.3)
yields

- AT 0 e

"Xty (2.6)

+ DT )" 0 e

-x(t )t ax(t )
Ytge 0 ° () -ty —z)
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Note that

ax(t :
T T2
o

tO
I Mx)dx + - A(t )
t 0

- z‘; [A(t,) - X(t,)] (2.7)

Substituting (2.7) into (2.6) yields,

dP_(t ) -1 At )t
—{;‘%L=—"TX(to)n tg"e 0 °[x(to)fx(t0)+f(to)
x(t )t
+ L (At )-8 - T(e))]
-1 a(t )t Xt ) a(t )t
= x(to)n ty e (o't [x(to) X °)n i f}
n-1 Mt n 'A(to)to
(A(t )t )" e (A(t )t ) e
- [ 0’0 0’0 ]
0 (n - 1)! n!
= Mt P, _1(t)) - P (t )] (2.8)

Therefore, the assumed distribution of n is valid for the nonhomogeneous
case. This is a very significant result; it means that the total number
of arrivals in an interval for any Poisson process can be simulated, if
the mean arrival rate in the interval is known.

Now, consider the interval (ti’ tj). Recall that the proposed

algorithm calls for a pdf to be constructed from the function of A(t)
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in this interval. This is done by normalizing the area under the curve
to one and then shifting the curve so it begins at zero (Figure 2.4).

We will define x = t - t;, and A = KJ A(t)dt. The probability that
a given arrival occurs in the interval ! (to, to + dt), corresponds to
the area of the strip (xo, Xo dx) which equals fx(xo) = A(to)/A dt.
Since there are n independent arrivals in this interval, the probability
of any one arrival occurring in (to, to + dt) is:

Pr(arrival in (to, t, + dt)) = (nA(to)/A)dt

This probability can be found as follows:

) PN(no)Pr arrival in (tg, t  + dt),
n0=0 given there are n
arrivals in the
entire interval (0, t)

Pr(arrival in (to, t, + dt))

o nox(t)
ZO PN(no) M dt

A(t 4
ME) gt n Zo n, P (n)
- Mt) 4t E(n) (2.9)

It was just shown that n ~ P(X), so the expected value of n is as

follows.

E(n) = Alt)(t5 - t5)

t.
. S
(¢ - t;) [(t_ . l x(x)dx]
TR R (2.10)

A substitution into 2,9 yields,
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Figure 2.4 - The Construction of the PDF From the Arrival Rate in an Interval
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Pr[arrival in (to, to + dt)] = A(to)dt (2.11)

Recall that for each passenger arrival, a random deviate is
calculated using the probability density integral transform method.
These are independent, identically distributed random variables, there-
fore arrivals are independent.

In summary, the algorithm generates independent arrivals, and
the probability of an arrival in a given interval (to, t0 + dt) is
A(to)dt. These are the basic .characteristics of a Poisson arrival
process. Hence, the algorithm in SMUSH does generate Poisson arrivals.

The average arrival rate for each 0D passenger type is input
at discrete points in time. SMUSH assumes the arrival rate to be linear
between these points (Figure 2.5). When the passenger generator is
called, the passengers arriving in the next half hour are generated.
While this half hour may contain several data points, and(several linear
segments. the generation algorithm is applied to each linear segment
separately. So, A(t) in the interval is linear,

During simulation, the actual number of arrivals is determined
by generating exponentially distributed (with parameter 1) interarrival
times, R]. The value of n is determined as the largest integer satis-

fying the following.

n
%R]<tj"ti

It is now necessary to determine the placement in Iij of these
n arrivals. The following pdf is constructed from the curve of A(t) in

Lij (see figure 2.6).
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Figure 2.5 - Piecewise Linear Arrival Rate Used in SMUSH
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fX(xo)

0 : At

X

Figure 2.6 - The PDF Constructed from Iij

where a = Ai/(AtX) , b= Aj/(Atx), and where At = (tj - ti)'

a+ D2y | 0 <X <At

0 elsewhere

To generate random deviates according to this pdf, the

probability-integral-transform method is used.

1) Determine cumulative distribution of Xo’ Fx(xo)

X X
0 ) b-a
Fy(x,) = J £ () dt, = J a+ (B8 ¢ dt (2.13)
) 0
0 ) x0 <0
- b-a 2
FX(Xo) = {ax, + 55 Xo s 0 <Xy < At (2.14)
1 Xo 2 At

2) Set R2 ~ U (0, 1) equal to Fx(xo), solve for Xy
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- _ 2
R2 axg + (b - a)/2 tAx0 (2.15)
Ifa=»>b~ R2 = ax0
Xy = R2/a = At R2

If a # b, substitute for a & b,

2, 2(x; - A;) x°
%2 - T3 %o * R AT 20
2 7 At + A0 %o PRy
__ 1 %5,2
Ry = MRS [7g 24 + (30) (A5 - 23] (2.16)
Solving (2.16) for X5 yields:
= At 2 71
o T X - /X1 - Ry) + Ay Ry - 2y (2.17)

For each of the n arriving passengers in this interval, R2 is
drawn and X is calculated. The arrival time of an individual passenger
is then,

Time of arrival = ta = ti + X

When the passenger generator is called, this algorithm is
carried out for each linear segment between Tnow and Tnow + .5, for
every 0D pair. Another passenger generation event is then stored to

occur T + .5,
ccur at now 5
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2.2.3 Vehicle Simulation

SMUSH controls the vehicles with a simple routing scheme.
Every vehicle is assigned to a specific route. Each route has a
successor route. When a vehicle completes its assigned route, it
immediately begins the completed route's successor. To invoke a
fixed control, all routes and their successors are specified, and each
vehicle is assigned an initial route, before the simulation begins. In
this manner, the complete routing for each vehicle is determined. If
dynamic controls are invoked, SMUSH constructs routes and determines
their successors for each vehicle during simulation.

The actual control of vehicle movements is also straight-
forward. Basically, a vehicle departure causes a future vehicle
arrival event to be stored, and vice versa.

During system initialization, SMUSH stores vehicle departure
information on File 1. The attributes associated with each departure
event are as follows:

Event code

Vehicle number

Route number

Stop index (this is the stop number on the route,
first, second...)

Time of occurrence

A vehicle departure event invokes the following:
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- Search File 2 for passengers to load

- Transfer from File 2 to 3 those passengers which meet
boarding requirements

- Store an arrival event at the next stop on the route
The attributes associated with a vehicle arrival event are the same as

those for the vehicle departure. A vehicle arrival invokes the following:

Search File 3 for passengers to unload

Remove passengers meeting the unloading conditions

If this is the last stop on the route, determine next
route

Store a departure event.

The last two items carried out during a vehicle arrival (deter-
mine next route, and schedule a departure) are simply a restatement of
the vehicle control strategy. Although the logic to make these routing

decisions may be complex, its addition to SMUSH is simple.
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Chapter 3

SIMULATION INVESTIGATION OF USH PERFORMANCE

Completion of the simulation model marks the end of the
preliminary work. We can now begin the actual evaluation of various
vehicle routing and scheduling strategies. This evaluation, based on
system performance, is carried out in two phases. First, the system
operating under simple fixed routing strategies is simulated. Next,

the system is simulated while operating under dynamic controls.

3.1 The. Operating Scenario

The operating scenario is based on the Long Island area. The
population density and the presence of natural barriers to surface
transportation make this area conducive to successful USH operations.
Mann's study provides an estimate of daily demand volume and patterns
from this area. The overall characteristics of the testing scenario
are as follows:

1. Total demand is 4000 one-way trips per day

2. The ground facilities consist of 6 terminals, 2 located

in the CBD, and 4 in the suburbs

3. The general layout is as shown in Figure 3.1.

3.1.1 Heliport Location
In an unconstrained system, the heliports would be located
such that the expected access/egress time for passengers is minimized.

But heliports are not the best of neighbors (although they could be
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Figure 3.1 - Study Network Layout
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made so at a cost8). One would expect restrictions to be placed on
terminal location due to noise and safety considerations. In general,
the terminals would be located as follows. First, each area is divided
into single terminal regions. Then, in each region, the terminal is
located according to local restrictions (independently of all other
terminals). With no prior knowledge of local restrictions, there is
considerable uncertainty as to the location of each terminal. In fact,
the location may be considered a random vector, distributed uniformly
over the region. This is the approach used to simulate the location of

the ground facilities in this study, see Figure 3.2.

3.1.2 The Demand

The market for USH operations is made up of the commuter and
the general travel group. Mann estimated that the total trip volume
for each group is equal. (From each group, there are 2000 one-way trips
per 12 hour day). During morning operations, all commuter trips are made
from the suburbs to the CBD, and occur between 6:30 and 9:30. The total
magnitude of commuter traffic versus time of day is shown in Figur 3.3a.
(Since morning and evening operations are rqughly symmetric, only the
period from 6 a.m, to 12 a.m. is simulated.) The trips generated by
the general travel group are distributed evenly over time. There are
three types of trips taken by this group, suburbs to CBD, CBD to suburbs,
and suburbs to suburbs. The total number of trips of each type is equal
to 1/3 of the total. The rate at which trips of each type is generated
is about 60 per hour (see Figure 3.3b). A schematic view of the daily

demand is shown in Figure 3.4a and b.
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Figures 3.3 a,b - Time Variations of Demand
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Figure 3.4c - Spatial Demand Patterns
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If the demand density (trips/mi]ez), for each trip type, is
assumed to be uniform throughout the suburbs and also CBD, and if all
passengers enter (leave) the USH system at the station closest to their
origin (destination), then the actual demand rate for each 0D pair
(origin and destination pair) is proportional to the catchment areas
of the origin and destination stations. These assumptions allow the
demand rates to be broken down into OD demand data, necessary for the

simulation. The actual 0D demand rates are shown below, in Table 3.1.

AVERAGE ARRIVAL RATES TRIPS/HR

Origin/
Destina- Commuters 7-9 a.m. General
tion

1 2 3 4 5 6 1 2 3 4 5 6
1 0. 0. 0. 0. 29. 71. 1 0. 3. 4. 6. 4. 10.
2 0. 0. 0. 0. 22. 54. 2 3. 0. 3. 4. 3. 8.
3 0. 0. 0. 0. 31. 77. 3 4. 3. 0. 6. 4. 11.
4 0. 0. 0. 0. 34. 82. 4 6. 4. 6. 0. 5. 12.
5 0. 0. 0. 0 0. 0. 5 4. 3. 4. 5. 0. O.
6 0. 0. 0. O 0. 0. 6 10. 8. 11. 12. 0. O.

Table 3.1

The actual arrival of passengers follows a Poisson process.
This process is simulated using the algorithm discussed in 2.2.2 in
conjunction with a pseudo random number generator. The pseudo random
number generator calculates a string of numbers recursively and
although these numbers appear random, they are not. This same string
can be reproduced exactly, if desired. So, while the simulated arrivals
of passengers approximate a Poisson process, it can be reproduced also..

In this study, the same arrival process is used for each simulation
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run. By exploiting this reproducibility, all control algorithms are
compared on the basis of operations during a single day. Of course,
there are random fluctuations in the performance of a single day. But
since the purpose of the study is the investigation of general trends
rather than precise performance, the results based on a single day of

operation provide sufficient accuracy.

3.1.1 The Vehicles
The aircraft type used in this study is typical of the next
generation of helicopters. It is similar to the tandem rotor vehicle
which is deseribed in Appendix C. The vehicle characteristics are as
follows:
Capacity: 50 seats
Cruise speed: 100 m/hr.
DOC: 600$/flight hour
100$/cycle
Take-off/landing cycle time:
Max: 9 minutes
Min: 3 minutes
The take-off and landing cycle time is comprised of the time required
for deceleration and descent from cruise, ground maneuvers, ascent and
acceleration to cruise. The minimum cycle time corresponds to the
time required for the air maneuvers. The difference between minimum
and maximum time represents the time to load the vehicle to capacity.

It is assumed that this time is a linear function of the number of
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passengers loaded (see Figure 3.5).

number loaded
capacity

Cycle time = min + (max - min)

So, for this vehicle, cycle time is found as follows:

Cycle time = 3 + 6 (number loaded)/50 (minutes)

3.2 Fixed Control Strategies

Two general classes of fixed vehicle routing strategies are
considered in this section, these are allstop and nonstop. The allstop
strategy is similar to that used by bus and subway lines. On a single
trip through the network, each vehicle stops at every station, in a
prescribed order. The nonstop strategy is a point-to-point routing.
There is no mechanism by which the vehicle routing can adjust to meet
changes in the system conditions (varying demand patterns, or conges-
tion). These are very simple strategies, since no decisions are made
during system operations, and no system information is necessary.

These two strategies provide an estimate of system performance
in two extreme service situations. Each OD pair is served with a maxi-
mum frequency in the allstop case, but the average time required to
complete service (ride time) is also a maximum. In the nonstop case,
both frequency of service and average ride time are at a minimum. This
is an interesting trade-off to be investigated.

The effect of demand peaking on the performance of the system,

operating under each strategy, is also investigated. Demand peaking
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causes a reduction in the probability that a given passenger will be
able to board the next departure from her origin, which leads to conges-
tion. The system can be designed for the peak demand period such that
congestion never occurs, but this is an expensive way to go. A trade-
off to be investigated is, how much congestion is tolerable for a given
system and by what amount is operating cost reduced by allowing this
amount of congestion. Also, are there any simple controls, within the
guidelines of this section, which can reduce the effects of congestion

on LOS?

3.2.1 Allstop Routing

The allstop routing strategy is similar to that used in
uncontrolled linear networks (bus and subway systems). A1l vehicles
travel the same route, and on this route stop at every station. In
this study, the route is chosen such that all stations are visited with
a minimum total distance traveled (the traveling salesmen route). The

routing is shown in Figure 3.6.

6 1
Vi “
5 —
3

Figure 3.6 - Allstop Vehicle Routing

To avoid congestion in this network, the flow of seats

available must be greater than or equal to the demand flow on each arc.
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In this system, the most heavily traveled arc is obviously 35 (the arc
connecting nodes 3 and 5). During the morning rush, all the commuters
must travel across this arc. The maximum average commuter flow is 400
trips/hr, the average general traffic brings the total expected flow
to 483 trips/hr. A vehicle can complete one trip around the network in
about 1.5 hrs, and each vehicle has a capacity of 50 passengers.
Therefore, the contribution of each aircraft to system capacity is
around 33 seats/hr across each arc. So, to avoid congestion, the
number of vehicles needed is 483/33 * 15.

The morning operation of this USH system is simulated using
the allstop routing with 15 vehicles. The average systemwide travel
time is about 1 hour, which is pretty mediocre for such an expensive
system. By referring to the load factor histogram (Figure 3.7), it
can be seen that there is some congestion, as evidenced by the 60 full
flights. As expected, these are departures from 3 during the peak
hours. So, there was no serious congestion problem. A most shocking
result though is that nearly 200 (of 400) flights are made empty. This
is due to the effect of vehicle clumping.

Clumping is a phenomenon demonstrated daily by uncontrolled
linear networks. Clumping results from a tendency for headways which
are shortened by perturbations to the system to become shorter still,
until the headway goes to zero, and the vehicles travel together in a
clump. The mechanism which makes the system of headways unstable is

the dependence of cycle time on the number of passengers loaded and
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unloaded. In an actual system, for example, a bus line, vehicles are
spaced evenly at the start of a run, randomness in traffic conditions
provides the perturbations to begin clumping. The evenly spaced
vehicles tend to form pairs, these pairs form quads, etc... Although
vehicles in the USH system are not affected by traffic conditions, the
randomness in passenger arrivals, and hence cycle time, produces the
perturbations necessary to start the clumping process. Figure 3.8
illustrates what happens to vehicle spacing in the 15 aircraft case.
The inner circle indicates the location of the vehicles (small circles)
in the network. The light and shaded regions represent ground and
flight time, respective]&. Initially, the vehicles are spaced evenly
around the network. After 4 hours of operation, 4 clumps have formed,
and after 8 hours, all the vehicles are in two massive clumps of
whirling rotors. Before making any rash judgments to the effect that
helicopters are more prone to clumping than buses, it should be remem-
bered that these vehicles ran uncontrolled for 8 hours, where buses run
for about 30 minutes before they are respaced.

This clumping has a pronounced effect on LOS over the course
of the day. Initially, the headways are all .1 hours, thus the average
passenger wait is .05. By the end of the run, the average headway is
.75 hours, and the average wait is now .37. This represents a 30%
increase in average trip time.

The effects of clumping and congestion on LOS are illustrated

in the Figure 3.9. Average travel time increases gradually during the
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Figure 3.8 - Clumping in the 15 Vehicle Case,
With no Minimum Headway Controls
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Figure 3.9 - Variation of LOS With Time of Day,
15 Vehicle, Allstop Routing
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rush, due to congestion, and then drops back off, at the end of the
rush. At around 11:00, clumping shows its effect, by driving average
time back up by about .25 hours.

Another result of clumping is a tremendous waste of vehicle
resources. After waiting 20 minutes for a bus, it is not uncommon to
have a caravan of 4 buses arrive, in which the first bus is full, and
the trailing 3 are empty. This effect also appears in the already
under utilized USH system. The LF Histogram, Figure 3.19, illustrates
this effect. After 4 hours into the run, this particular vehicle did
not pick up a single passenger. Unfortunately for the USH system, this
is the rule, not the exception. In fact, by the end of the 8 hour run,
2 vehicles (one in each clump) are picking up what few passengers there
are, at each stop. The problem of clumping and some possible controls
is addressed in a later section.

Having witnessed the mediocre service in the 15 vehicle case,
its time to plunge into the realm of the poor and terrible service as
the system is simulated with 10 and then 6 vehicles. This illustrates
the horrendous effects of congestion on LOS, and the system's inability
to recover from overloading. At first glance, the results of the
simulation for these cases do not look so bad; average trip times
are 1.37 and 1.65 hours for the 10 and 6 vehicle runs, respectively.
But these average values belie the terrible service provided to
passengers in both cases. Shortly after the rush begins, the 35 arc

becomes congested. This congestion then starts to spread back upstream
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through the suburbs to station 2. This means that not only are the
flights from the suburbs to the CBD full, but the vehicles arriving at

3 and 4 are full also. This creates tremendous passenger queues at 3
and 4, since the only seats available to passengers entering the system
are created by passengers leaving at these stations. This leads to the
following observation. When the allstop system is running at capacity
into a station, there is a conservation of flow at this station. The
number of passengers allowed to board is equal to the number leaving

at this station. During the rush, severe congestion occurs due to the
strong directionality of the demand. For example, between 7:00 and 9:00,
station 4 is the origin for 150 passengers per hour, but 4 is the des-
tination for only 30 passengers per hour. So, when vehicles arrive at

4 full, passengers back up at a rate of 120 per hour. The result of

this effect is illustrated in the figure 3.11. There are a few obser-
vations to be made from this figure. First, in the 6 vehicle case,

there are still 600 passengers waiting at the end of the run. Because
of this, the actual system average trip time should be adjusted upward;

a reasonable estimate for the trip time is 2.3 hours. In this same case,
the number waiting at both 3 and 4 is nearly equal to the total number
of passengers which have arrived-so far. This indicates that the system
became congested at these stations almost immediately after the rush
began. Notice that in the 10 vehicle case, the congestion did not reach
4 until 8:30 and ended at 9:30, while at 3, the congestion is as bad in
the 10 vehicle case as in the 6. This illustrates the progressive nature

of the congestion (recall that 4 is upstream of 3). Even more critical
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is the progressive manner in which congestion clears, moving back
downstream. Notice that the number waiting at station 4 at 11:00 (10
vehicle case) has just gotten below 50 (vehic]e‘capacity). At this time,
there is a dramatic clearing at node 3, since vehicles are no longer
arriving full. The progressive nature of the buildup and clearing of
congestion creates an inequity in LOS throughout the network. While
passengers are served FIFO at each station, the passengers at downstream
stations are served only after all the upstream passengers are served.
This effect can be seen by comparing the average trip times for up and

downstream 0D pairs (see Table 3.2).

AVERAGE TRIP TIME (hrs)

0D Pair 10 Vehicles 15 Vehicles
1-6 1.44 1.44
2-6 1.33 1.29
3-6 2.17 0.82
4-6 1.44 1.06
Table 3.2

Obviously, this is no way to run an airline. Service is being
eroded by congestion and clumping. Simple solutions to these problems

are investigated in the following section.

3.2.1.1 Simple Controls for Allstop Routing

A dispatching rule which provides a minimum spacing between
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the vehicles is used to reduce the effects of clumping. To implement
this control, the time of the last departure from each station is
recorded. When a new departure is scheduled, the headway between this
and the most recent departure is determined. If this proposed headway
is greater than the minimum, the departure is made as scheduled. If
the headway is less than the minimum, the vehicle is held until the
minimum headway is achieved.

Congestion is controlled by limiting the number of commuters
boarded at stations 1, 2 and 4. This limits the tendency for vehicles
to arrive at 3 and 4 full, during the rush period. Ideally, only the 35
arc will run at capacity, and the number of each commuter type on the
arc should be proportional to the total number requesting service. This
policy will control the crowding at 3 and 4, and should provide a more
equitable LOS to passengers in the suburbs.

The system is simulated using these controls for the 15 and 10-
vehicle cases (the 6 vehicle case is dropped since LOS is so poor). The

system-wide trip times are shown below in Table 3.3

Number of Vehicles 10 15
Average Trip Time 1.47 0.97

Table 3.3
These results are somewhat underwhelming. LOS seems to be degraded in

the 10 vehicle case, and there seems to be no difference in the 15 vehicle

ase. But there are positive effects of these controls. In the 15 vehicle
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case, there is an obvious (but insignificant) change in the distribution
of load factor (see Figure 3.12). The total number of empty flights is
reduced to 40, from 190 in the uncontrolled case. This and the fact
that the number of 2 passenger flights increased are evidence that the
minimum headway rule is controlling clumping. The minimum headway was
set at .05 hrs. While this eliminates vehicle clumps, it still does not
provide even spacing. At the end of 8 hours, the vehicles travel in a
large bunch, and the headway distribution is as follows:

J‘.os hr, with probability 14/15
" [ .75 hr, with probability 1/15
The resulting average wait is .2 hours. Clumping is still taking its
toll, but not as badly as in the uncontrolled case where the average
wait is .37 hours. The effect of the controls are shown in Figure 3.13.
By the end of the simulation, there is a significant difference in LOS
between the controlled and uncontrolled cases. The effects of the
inequity of service of the controls is shown in Table 3.4. As expected,
the quota has 1ittle effect on the 15 vehicle case, since congestion is
not a problem here. But in the 10 vehicle case, the quota works as
planned. The difference in LOS for the various OD pairs is reduced,

but the price of this smoothing is increased systemwide trip times.
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AVERAGE TRIP TIME (hrs)

0D Pair 10 Vehicles 15 Vehicles
1-6 1.89 1.41
2-6 1.95 1.25
3-6 1.80 0.86
4-6 1.64 0.99
Table 3.4

The performance of the USH system using the allstop routing
scheme is poor. The system's sensitivity to demand peaking is illus-
trated in the Figure 3.14. With 15 vehicles, equilibrium during the
peak loading is achieved, average trip time leveled out during the rush.
In the 10 vehicle case, this does not happen. Recall that passengers
queued up at station 3 (at a rate of 80 per hour) during the rush.

These passengers are cleared out only after the rush ended. Because of
this congestion, the average travel time more than doubled for the
passengers entering during the rush. In the 6 vehicle case, not only do
passengers back up during the rush, they'rve still waiting at noon. The
reason that tﬁe observed average trip time drops after the peak at 8:00
is that only the lucky passengers who received service are counted.

Another problem with the allstop strategy is the interdepen-
dence of service between different 0D pairs. This effect makes it diffi-
cult to improve the service to one 0D pair without degrading service to

others,
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The last point to be made is that this service is expensive.
The variation of average travel time with operating cost is shown in

Figure 3.15.

3.2.2 Nonstop Routing

We now consider a simple nonstop strategy. As in the allstop
case, vehicle routing is fixed. Under the nonstop strategy, individual
vehicles are assigned separate routes, and serve only a few pairs (under
allstop controls, each vehicle serves all OD pairs). For example, a
vehicle may be assigned the route 6-2-3-6 which it flies continuously.
0D pairs 62, 23 and 36 are served exclusively by this vehicle.

Nonstop routing has several advantages over the allstop
strategy. Since each 0D pair is served by only one vehicle flying a
closed loop, and the time required to complete a loop is nearly constant
throughout the day, even headways are maintained. Also, only one OD
pair is served at a time, so when a vehicle lands, everybody gets off,
which insures the availability of 50 empty seats on each departure.
Thus, the problems of clumping and progressive congestion are avoided.

In the test scenario, there are 28 0D pairs requiring service.
To simulate the operation of the system using the nonstop strategy,
routing patterns are determined such that all OD pairs are served with
reasonable frequency. This is done by assigning each 0D pair to a
-particular vehicle. Figure 3.16 shows the assignments for the 6, 10
and 15 vehicle cases. The goal of these assignments is to provide

equitable service to all passengers throughout the system. This is done
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6 Vehicles Destination
1 2 3 4 5 6
1 - 1 5 2 5 2
2 1 - 6 4 6 1
o 3 5 6 - 3 6 3
Origin 4 2 4 3 - 5 4
5 5 6 6 5 - -
6 2 1 3 - -
10 Vehicles Destination
1 2 3 4 5 6
1 - 5 10 10 6 1
2 6 - 9 9 5 2
Origin 3 10 9 - 7 8 3
4 10 9 8 - 7 4
5 5 6 7 8 - -
6 2 3 4 - -
15 Vehicles Destination
1 2 3 4 5 6
1 - 15 13 12 5 1/9
2 12 - 15 14 6 2/9
Origin 3 15 14 - 13 1/11 3/10
4 13 12 14 - 8/11 4/10
5 5 6 7/11 8/11 - -
6 1/9 2/9 3/10 4/10 - -

Figure 3.16 - Nonstop Routing Vehicle Assignments
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by inspection, no attempt at optimization, or use of a formal algorithm
is made.
The results of three simulation runs are shown below in Table
3.5.
AVERAGE TRIP TIME (hrs)

15 10 6
Nonstop 0.63 0.89 1.37
Allstop 1.02 1.37 2.3
Table 3.5

The results are quite interesting; the nonstop cases with 6
and 10 vehicles do as well as the allstop cases with 10 and 15 vehicles,
respectively. There are several reasons for this. As mentioned before,
the nonstop routing avoids the congestion of the allstop scheme. The
effect of congestion in the allstop cases is to reduce the number of
available seats on each departure. So, even though the service is less
frequent in the nonstop case, the rate at which available seats are
leaving some stations (3 and 4) is greater than in the allstop case.
There is also a significant difference in ride time between these two
cases. In the allstop case, the average ride time is .8 hours, in the
nonstop, it is .3 hours. Although average wait time decreases with the
number of vehicles, this ride time is constant. So, no matter how many
vehicles are flying, the average trip time is always greater than the

ride time. Figure 3.17 summarizes the results.
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The performance of the system operating under the nonstop
strategy is clearly greater than under the allstop strategy. This is
due to the reduced sensitivity of LOS to overloading during the rush
hours. Even though the nonstop strategy represents a tremendous
improvement in system performance, average travel time still varies
significantly during the rush hours. In fact, only the 15 vehicle case

achieved equilibrium during the rush hours (see Figure 3.18).

3.3 Dynamic Vehicle Controls

In the previous sections, it is shown that the USH system,
operating under a fixed routing policy, needs a surprising number of
vehicles to provide reasonable service to all passengers. This results
from the fact that while the routing is fixed, the system conditions
vary substantially during the day. A fixed route system designed to
handle the peak demand is tremendously under utilized during most of the
day. But a system which allows some overloading delivers degraded
service to rush hour passengers. A goal of this section is to develop
a system which provides good, efficient service throughout the day.

To achieve this goal, the system is controlled by a strategy which
reacts to changes in the demand pattern and to system conditions. The
control algorithm must decide which passengers to service, when and
what type of service is to be provided, and how the vehicles should be
routed to provide this service. To make this a tractable problem, the
decisions are simplified. The problem considered here is: given a

vehicle which has just finished service to a particular 0D pair, which
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0D pair should be served next by this vehicle? When the decision is
made, nonstop service to these passengers begins immediately. Later,
the control is relaxed to allow some onestop service. Finally, vehicle
holding strategies are introduced, to add some freedom in the decision

as to when the service takes place.

3.3.1 Dynamic Vehicle Routing

In developing vehicle control strategies, some simple rules
come to mind. These are service criteria such as serve an 0D pair if
the number waiting is greater than a certain level, or serve an 0D pair
if the maximum wait for this group is greater than a certain time limit.
Although these rules are reasonable intuitively, they have some serious
problems, particularly in the USH environment. First, the determination
of the T1imit values is critical. It is unlikely that limits designed
to provide good service during the rush will work well during the slack
period. As demand patterns vary during the day, so also must the limit
values. Also, these rules are simply constraints on service. It seems
more reasonable to use criteria such as serve the 0D pair with the most
passengers waiting, or serve the pair with the maximum waiting time.
The first rule should work well except during the rush. Since the 0D
pairs with the most passengers waiting for service will almost always
be the commuter pairs, the general passengers are given virtually no
service during the rush hours. The second rule is more equitable for
the general travelers, but it tends to slow down the larger group of

commuters. This rule would serve a single passenger who has waited for
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1 hour before 100 passengers who have waited for 59 minutes. It seems
that a viable rule should consider both, the number of passengers
waiting and the maximum wait in each group, to choose the 0D pair for
service. This indicates a need to establish a cost $/hr, for passenger
waiting time. The interest in controlling the long waits suggests
that this cost per unit time is increasing with the length of wait.
The proposed model of passenger waiting cost is illustrated in Figure

3.19. If a passenger waits w hours, the total cost to the system is,

w
f (a + bx)dx = aw + %-wz (3.1)
0

An optimal strategy is one which minimizes the total passenger
waiting cost to the system. This is no easy task on the optimal level,
but the following heuristic is proposed with the same objective. The
0D pair to receive service is chosen on the basis of the rate at which
passenger cost is accumulating. This rate is equivalent to the marginal
cost, MC, of delaying service to the 0D pair. The OD pair with the
highest MC is the most attractive to serve. This marginal cost is the

change in total cost, TC, per unit time, for the 0D pair.

_ aTe
MC = 5T (3.2)

It is necessary to devise a method to calculate, or at least
estimate the marginal cost for each OD pair. Consider an OD pair where
passengers begin arriving at t = 0, at an average arrival tate of A(t).

The total cost to the system at the time of the next
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departure, td’ is the sum of the cost to each passenger afriving in this
headway. The individual passenger cost depends on the actual time of
arrival. Since passenger arrivals are uncertain, the total cost to the
system is a random variable and cannot be determined in advance. But
we can determine the expected total cost. The cost to a passenger
arriv%ng in the interval (s, s+dt) is a(td -s) + %(td - s)z. The
probability of an arrival in this interval is A(s). So, the expected

total cost to the system given a departure occurring at td is
t
d b 2
E(TC) = [ [alty, - s) + 3 (t, - )21 a(s) ds  (3.3)
()

The expected marginal cost of delaying service is then,

t
d

E(MC) = 2 E(TC) = a"’—tf [aty - s) + !2’- (ty - s)27 A(s) d? |
0 3.4

Integrating yields:

E(MC(td)) = a[L(td) = L(O)J + b[ (td) = (0)]

where t
rd
L(td) = J A(x) dx
0
and

£ (ty)

td

J L(x) dx
0

S0

al(ty) + bI(td) (3.5)

E(MC(td))
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where a and b are the intercept and slope of the individual waiting
cost curve.

This expression for expected marginal cost can be simplified
by making the following observations. The parameter L(td) is the
expected number of passengers to arrive in this headway E(n), and;f(td)
is the expected number of passenger hours which have accumulated in the
headway. If the average rate of passenger arrival is constant (a reason-
able assumption for short headways), the expected number of passenger
hours is simply the expected number of arrivals times the average wait,

td/2.

EQf(td)] = E[N] t,/2 (3.6)
Substituting into Eq. (3.5) yields,

E(MC)

aE(N) + bE(N) t,/2

E(N)[a +-g t,] (3.7)

where ty
E(N) = f A(x) dx
0

This results in an expression for expected marginal cost which is much
simpler than before.

Since the control decisions are made during system operation,
the algorithm has access to the actual number of passengers waiting.

MC can be estimated directly by replacing the expected number waiting
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E(N), with the actual number, N. More care is necessary in replacing t.
It must be remembered that td is not the time since the last departure,
but rather the time since passengers of this group started arriving.
Clearly, td is the maximum wait, w, for this group. So, MC is estimated

as follows
MC = N(a + g W) (3.8)

which is the key result for this section. This expression for MC is
precisely of the form motivated earlier. The marginal cost of not serv-
ing the 0D, or the attractiveness of serving the pair, depends on both
the number waiting and the maximum wait. The two factors which intui-
tively should appear do, and are combined in a simple way by the passen-
ger cost parameters. Possibly the most important aspect of this result
is that the information required to ;calculate MC is minimal.

For each 0D pair, 2 values are required. In a real system, these values
can be maintained by recording passenger arrivals. In the simulation
model, these values are readily available.

The effect of the parameter b can be seen from this expression
for MC. If b = 0 (constant cost function per unit time) MC is propor-
tional to the number waiting. Recall that this is one of the service
criteria suggested earlier. In this case, 0D pairs are chosen to mini-
mize systemwide average travel time. But as indicated earlier, there
is an inequity in LOS to passengers of low demand rate OD pairs. Consider

two 0D pairs with average arrival rates 10 and 100 passengers/hour. If
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the OD pair to be served is chosen only on the basis of the number
waiting, the high arrival rate pair is served ten times as often as the
Tow rate pair. During a 2-hour period, the low arrival rate passengers
most likely receive no service at all. This is the situation faced by
the general passengers during the rush hour in the USH system. The
effect of increasing b is to reduce this difference in service frequency.
In fact, for a = {, b = 10, the frequency of service to the low rate
passengers is increased from 1/10 to 1/4 the frequency of the high rate
passengers. The result is a decrease in the uncertainty of travel time
throughout the system. But for b greater than zero, the system objective
is no longer the minimization of average travel time. The objective
becomes the minimization of a function of both average and maximum travel
time. As b increases, average travel time does also. This relationship
between the average travel time and the variance of travel time can not
be avoided, but the parameter b allows the tradeoff to be controlled.
Now, how should this expression for MC be used to control
vehicle routing? Consider a vehicle which is finishing service to an
0D pair, the system must now decide which pair to serve next with this
vehicle. The MC for several OD pairs is determined, and at first it
seems reasonable that the OD pair with the greatest value of MC should
be served next. But the vehicle is a scarce resource in the system,
and the time it is tied up serving one OD pair, making it unavailable
to the rest of the system, needs to be considered. It has been shown

that in priority queues, with certain cost functions, the optimal
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ordering by which customers are served is determined by the ratio of

9 Using the same reasoning here, the most

waiting cost to service time.
attractive 0D pair to serve is the one with the largest value for the

ratio,
Mcij/sij

where Mcij and Sij are the marginal cost and service time, respectively,
for OD pair i to j. Note that if the vehicle is at i, and it is decided
to serve OD pair jk, the time required to complete service is Sij + Sjk’
since the vehicle must fly from i- to j and then to k to complete the
service. O0Obviously, this system favors short flights, and service to
0D pairs originating at the vehicle's present position.

Now that it has been determined how to identify the 0D pair
to serve, we must decide which pairs to consider and when the routing
decision is to be made. Once again, a simple strategy comes to mind.
When the vehicle lands at i, choose the pair ij, which maximizes Mcij/sij’
fly to j immediately. In a system with demané distributed uniformly
between all OD pairs, this rule may work. But in a system with strong
one-way flow, problems develop. Consider a commuter origin during the
rush, there is heavy traffic out of this station, but light traffic in.
A situation can occur where there are many passengers waiting to leave
this station, but there is no demapd into the station. This strategy
only considers service to 0D pairs which originate at the present vehicle
locations. Since there is no demand into this station, and hence no

vehicles arriving here, the algorithm never "sees" the commuters waiting
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to leave. Service in this case is somewhat haphazard, since service to
the heavy traffic out of some stations depends on the light traffic into
these stations. This myopia can be avoided with a two-look ahead
approach. Consider the following algorithm. When the vehicle lands at
i, choose pairs ij and jk which maximize Mcij/sij + Mcjk/sjk’ fly to
j immediately. So a vehicle at station i considers the value of serving
the combination ij and jk. In this way, all OD pairs in the system are
considered. There is a subtle problem here though, vehicle interference.
This results from a lack of communication between the vehicles. Suppose
there are many jk passengers waiting for service, and a vehicle initially
at i flies to j to serve the jk passengers. At the same time, another
vehicle has seen the need for jk service, and flies from i' to j. In
the meantime, the first vehicle arrives and serves the jk passengers,
and when the second vehicle arrives, jk service is no longer very
attractive. If there are other 0D pairs leaving j, the trip by the
second vehicle wasn't made completely in vain, but obviously, this
duplication of effort reduces system performance. Consider the same
situation, but this time the first vehicle flags the jk pair as having
a service pending. The flag in effect sets Mcjk to zero until service
is begun. This discourages other vehicles from flying to j, in hope of
serving the jk passengers. Of course, we can't have the vehicle flag jk,
fly to j, look around and then decide to fly to k'(leaving the jk
passengers in 1imbo). So, once the vehicle chooses to fly ij and jk,

it is obligated to complete the flight to k. This algorithm (summarized
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below) 1is invoked at every second step, since things are fixed at j.

When the vehicle lands at i, choose the pairs ij,
and jk which maximize the following.

Mcij/sij + Mcjk/Sjk
fly to j immediately. Flag the 0D pair jk, such that
it is not considered for service (by other vehicles)
until this vehicle reaches j. Fly to k.
SMUSH was modified to incorporate this algorithm. The system
was simulated using fleet sizes of 6 and 10 vehicles. There is nothing

unexpected in the results of the simulation. The most surprising aspect

is that this simple strategy works so well. Table 3.6 summarizes the

results. Total Trip Time

Average Average Standard
Wait Deviation

a=1,b=020 0.84 1.17 77

6 Vehicles a=1,b=10 0.89 1.20 .69

Fixed Route 1.04 1.77 .81

a=1,b=0 0.42 .73 .43

10 Vehicles a=1,b=10 0.44 .76 .33

Fixed Route 0.59 .89 .54

Table 3.6

Considering that the original nonstop case has a reasonable
route structure, it is remarkable that LOS was improved so much, on the
first cut with this simple strategy. In the 10 vehicle case, average

waiting time is reduced 25% with the dynamic routing algorithm. As
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anticipated when b is increased, the uncertainty in trip time is reduced,
and average trip time increases. What is surprising is that a substan-
tial decrease in standard deviation is achieved with only a slight
increase in average time. The effect of the reduced uncertainty can be
more dramatically seen in the total system trip time histograms (Figures
3.20, 3.21). Notice that when b is increased to 10, both tails of the
distribution are brought in; there are few very short and very long trips
made.

Recall that when the vehicle chooses a route, the next two
stops j and k are determined. Because of this, some passengers at i,
going to k, can be boarded; they receive one-stop service. A modifica-
tion was made to SMUSH to allow this one-stop option. Again, the system
is simulated with 6 and 10 vehicles using this one-stop service policy.
This strategy yields an additional increase in LOS over the previous

cases. The results are summarized in Table 3.7.

Total Trip
Average Average Standard
Wait Deviation
6 Vehicles a=1,b=10 .82 1.16 .62
10 Vehicles a=1,b=10 .39 .75 .32

Table 3.7

The system's enhanced ability to cope with the demand peaking
is illustrated in the plot of average travel time vs. arrival time

(Figure 3.22). Note that the 10 vehicle case achieved stability during
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Dynamic vRouting, 10 Vehicles,

Figure 3.21 - System Trip Time Histogram,
b =10
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the rush. And although there is some congestion in the 6 vehicle case,
the effects are substantially reduced by this strategy. This route
choice algorithm has tremendously reduced the system sensitivity to
demand peaking and overloading.

The method developed here is significant because it is
applicable to any USH system. Recall that for the original nonstop
case, a routing structure had to be determined before the system could
be operated. To intelligently determine a set of routes, some informa-
tion about the individual system is necessary. With the method
described here, no prior information is required to set up the system.
Once the system starts, it essentially runs itself. Therefore, this

strategy can be applied to any USH network without modification.

3.3.2 Vehicle Holding Strategies

Vehicle holding is employed to control the pace of the system
and to reduce operating costs (and in some cases to improve L0S). In
the previous sections, the aircraft fleet was sized such that the peak
demand could be met without serious congestion. Although the demand
drops off after the rush, the system continues to run at a high rate.
Algorithms are now introduced to judiciously slow the system in the off-
peak hours. Of course, in doing this, LOS in the slack periods drops
off slightly.

Three holding strategies are considered. The first, a minimum
headway strategy, is employed to increase LOS (the reduction in operating

cost is a side benefit). The second algorithm is an extension of the
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route choice scheme. The last strategy considers both passenger waiting
cost and system operating costs, and allows the tradeoff between operat-

ing cost and LOS to be controlled during system operation.

3.3.2.1 Minimum headway controls

This strategy improves LOS provided to passengers by controlling
the randomness in service. More precisely, a lower bound on headways
is maintained by holding vehicles. This strategy was developed by
Osuna and Newe]].]o

Consider passengers of a particular 0D pair waiting to be served.
For simplicity, assume that passengers arrive deterministically at a
rate of 1 per minute. Suppose the headway for this pair is 5 minutes.
It is a simple matter to calculate a waiting cost, C, for this group.
Suppose the service is delayed one minute. Al1 the passengers already
J;iting must wait an extra minute in which time one new passenger will
arrive. This delay will increase the total cost of this group by some
AC. The change in cost due to the one minute delay can be found by
summing up the extra cost to each passenger, or by making the following
observation. The two groups are identical, except the delayed group now
has one passenger which must wait 6 minutes. This one passenger forms
a new subgroup placed on the long end of the original group. The waiting
cost to this subgroup is AC. In general, the effect of delaying service

to an OD pair is the creation of a subgroup such as the one described

here. The extra cost of this delay is simply the cost to the passengers
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in this subgroup.

It was shown that for a particular OD pair that the following
strategy minimizes average passenger cost. Hold the vehicle if the cost
to the subgroup created by the lengthened headway is less than average
passenger cost. Using the headway distribution for this 0D pair, the
average passenger cost is calculated using random incidence arguments.
The passenger cost function shown in Figure 3.19 is again used. The

cost to a passenger waiting t0 is

b ,2
ato * 2 to

The expected cost per passenger in a headway of length h0 is

_[° b 2
E(clho) = J a(hO -s) + E'(ho - 5)° ds
0
_ a b 2
= é‘ho + 5 hO (3.9)

Let w be the length of the headway entered by random incidence.

2
E(w) = £ (3.10)

So, the expected cost for a passenger entering the system at random is

E(cost/passenger) = E%Hl [a + %-E(w)] (3.11)
The expected cost to the subgroup created by extending the headway from
h0 to hO + dh is

b2
ah, + 5 h (3.12)
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So, the optimal holding strategy becomes, hold if

o ED) e
ah0+§h0<—-——-—[a +-§ ] (3.13)
2E(h) E(h,)
If a >> b, this becomes
E(h?)
hold if: ho < This is the classic
2E(h)
strategy developed by
Osuma & Newell
If b >> a, this becomes:
- E(h?)
hold if: ho < ——
V3 E(h)

So, as long waits become more costly, the holding strategy becomes more
stringent, forcing more headways close to the expected value.

To determine the impact of this strategy on system performance,
information about the headway distribution for each OD pair is neces-
sary. Fortunately, this information is available from the previous simu-
lation runs. But which case or cases should be considered? A minimum
headway rule was already applied to the allstop routing case. This
strategy would have no effect on the fixed nonstop routing case, since
the headways are nearly constant. The only situation for which this
strategy is assessed for the 10 vehicle case with a = 1 and b = 10.

Only two OD pairs are considered, a commuter pair 36, and a general
travel pair 34. Headway data is collected and the distribution param-

eters are estimated as shown in Table 3.8.
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3-4 3-6
H .87 .54
S.D. .51 .31 E(h) * H
E(h?) 1.02 .39
Table 3.8

The control rule reduces to a quadratic in hmin’ the minimum headway.

3-4 hmin .67 hrs.

]

3-6 hmi .41 hrs.

n

Based on the amount of time the vehicles would have been held,
it is concluded that the effect of this strategy, if implemented, is
minimal. Although the effects on LOS and operating cost are small, they
are positive. In some systems, this strategy can improve service (such
as the allstop case). But the results here suggest that the vehicle
controls are operating the system in such a way as to make this holding

strategy superfluous.

3.3.2.2 Holding based on the marginal cost

The holding strategy discussed in this section is an extension
of the vehicle routing algorithm described in 3.3.1. Recall that this
algorithm chooses the OD pair to serve next, based on a value to the
.system for service, MC/S. The 0D pair with the maximum value of this

ratio is the most attractive to serve. The same idea is used here, but
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the choice is not between different 0D pairs, but rather between serving
an 0D pair now or waiting some At for service to begin. The strategy
is this, given that an 0D pair, ij, has been selected for service, hold
the vehicle at i if

Me(t ) MC(t ,, + 4t)

< (3.14)
S S + At

and the number waiting < capacity.
Recall that the marginal cost can be estimated as

MC = N(a + bw/2)

where N = number waiting

w = maximum wait in this group
a,b = parameters of the passenger waiting cost function.

Substituting into (3.14) yields

Nh+%w) W+AMHa+%W+Aﬂ
<

S S + At
Upon simplification, the rule becomes:
Hold if: N <A 2 +.% ! ] = N (3.15) *
' S la+ %-(w - S)J - reg .

and

N < Capacity

There are some intriguing and perplexing aspects to this rule.
Obviously, the rule is simple. At the time of a departure, this is a

go or hold rule based on the number of passengers waiting and the maximum
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waiting time. The decision is illustrated in Figure 3.23. For specified
a, b, s, and A(t), the holding region is shown in terms of number waiting
and the maximum wait. An interesting aspect of the rule is that it gives
a clear-cut criterion for holding the vehicle until full, As > capacity.
Intuitively, this is reasonable, since it suggests that the vehicle should
be held to achieve higher loading if either arrival rate is high, or
service takes a long time.

When b = 0, the rule becomes: hold if N < A(t)S, or if
%-< A(t). This says hold if the service rate is less than the arrival
rate. This is reminiscent of the stability condition for a queuing sys-
tem, but there is no intuitive justification for the relationship here.
This rule reacts to varying demand rate, since A(t) appears. Also, the
holding criterion is completely independent of headway distribution,
which means no prior information is necessary to implement the rule.

A most disturbing aspect of this dispatching rule is the
appearance of the term (w - S) in the denominator. This is not only
difficult to justify intuitively, it is disastrous mathematically. For
ranges of S and w, the number required for dispatch can be either infi-
nite or negative.

The dependence on b of Nreq is also troublesome. Strangely

enough, as b increases, so does Nre (Figure 3.24). A possible effect

q
of this dependence is that the algorithm may manufacture extra delay
costs, by holding some passengers if their individual costs increase

rapidly enough. Of course, this self-serving characteristic of the
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rule helps no one.

SMUSH was modified to incorporate this holding rule. If at
the time of departure, the number waiting is less than the calculated
value for Nreq’ the departure is postponed for 3 minutes. This cycle
is repeated until the departure occurs. The morning operations are
simulated using 10 vehicles under the control of this rule used in
conjunction with the dynamic route choice algorithm. The results are
disappointing, but not surprising. Where it is expected that vehicles
are held only during the off-peak hours, under this rule, vehicles are
held almost uniformly throughout the day. The holding does reduce
operating cost somewhat, and travel time increases. The overall effect
of this rule is to slide the system up the LOS-cost curve (see Fig.
3.25).

One reason for the disappointing results is the myopic
character of this rule. The holding at a station depends only on the
conditions of a single OD pair. The rule is completely oblivious to
changes occurring in the rest of the system. This leads to an explana-
tion for vehicles being held during the rush period. Suppose a vehicle
is in the CBD and it chooses to f]y to the suburbs and then back to the
CBD to serve commuters during thé rush. This choice is made primarily
on the basis of the large MC for the OD pair coming into the CBD. Now
when the vehicle tries to leave the CBD, the rule sees that there is
not much demand out of this station and decides that there is no need to

hurry. So, the vehicle is held on the first leg of the trip even though
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Figure 3.25 - The effect of Holding on System Performance
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there may be a tremendous need for service on the second leg. This
problem can be eliminated by considering the MC on the second leg of
the trip also. The algebra is messy, but the result is a strategy
as follows: at the first station of the two-leg trip (i-j-k), hold
if

atbu

N < AS + H (3.16)
[a + % (w - S):|

where H depends on the number waiting at j, Sij

arrival rate of passengers at j. Although the correction should help

. Sjk’ and Ajk(t), the

this strategy, it was not implemented.
It was decided that further work should be concentrated on
the final holding strategy, which is more justifiable on both mathe-

matical and intuitive levels.

3.3.2.3 Holding based on waiting and operating costs

The objective of the strategy developed here is to minimize
the sum of the daily total vehicle operating and passenger waiting
costs. Since a nearly constant number of passengers are served each
day, this objective is equivalent to minimizing the average cost per
passenger. This cost is the sum of the waiting and the operating cost
associated with service. The expected value of both these costs can
be found in terms of the headway, h, in which a passenger arrives. As

was derived earlier, the expected cost per passenger arriving in a

headway of length h is,
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2
ah/2 + bh“/6

where a and b are the parameters of the individual cost function
(Figure 3.19). The expected direét operating cost per passenger is
approximately the total cost of flying from the origin to destination
divided by the expected number of passengers on board.

Expected DOC $/cycle + DOC $/f hr(flight time)
(Operating Cost) Expected number of arrivals in h

c/hx(t)

L]

Let z be the sum of these costs per passenger, z is minimized by

setting the derivative w.r.t.h to zero.

z=%h+%h2+c/hx(t)

C

a_,b
==+ =h - =0
3h ~ 2 " 3 hzk(t)
or
b ,3,6,a,2 c _
§h +§h -W—O (3.17)

To take advantage of the knowledge of actual system conditions, the

following replacements are made,

maximum wait

=
2

=

=
H

2

A(t) = N/w N

number waiting
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Substitution into (3.16) yields

b 3,a 2 ¢ _
W +§w —N/w-o
or
§w2+%w- ¢/N = 0 (3.18)

a quadratic in w instead of a cubic in h, computationally a very fortu-
nate side effect. The optimal maximum wait is then found using the

quadratic formula.

—a/2 + /a%/4 + 4bc/3N
W = N, b >0 (3.19)
2b/3

wx = 2c/aN for b=0,N>0

Once again, this is a simple rule to implement for a
particular OD pair. When a departure is scheduled to take place, w*
is determined, if the maximum wait for this group is less thanw*, and
the number waiting is less than the vehicle capacity, the departure is
postponed for some At.

Since this algorithm is to be used in conjunction with the
dynamic vehicle routing algorithm, a correction for the myopic character
of the holding rule is considered. Suppose the vehicle is scheduled to
fly i-j-k and is scheduled to leave i at time tnow' The decision to hold
at i needs to consider conditions at j as well as at i. At toow’ W?j
is calculated, and the optimal time to begin the first leg of this

journey, t? is determined. Also, while at i, the best time to begin
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the second leg of the trip, tﬁ can be found by calculating wgk. Based
on these two values, the decision to hold at i can be considered as
one of the following cases.
1. If tow g_tﬁ, the vehicle leave immediately, regardless
of the conditions at j (see Figure 3.26a).
2. If tnow < tﬁ, AND tg + Sij g_tg, hold the vehicle at i.
In this case, both best departure times can be met (see
Figure 3.26b).
3. If tnow < tﬁ AND t* + Sij > tg, both departures cannot
occur at the best times (see Figure 3.26c).
Clearly, in this case, either one or both of the departures will miss
the best time. We will define te as the total time by which both

departures miss the best times.

= t*¥ + S.., - t*
te ti S1J tj

The departure from i will occur t:e'ear]y and the departure from j will
i

be te late. The total error is divided between the 0D pairs based on
the expected number of passengers affected at each station, such that
the bigger error affects the fewest number of passengers (see Figure

3.26d).

.S J'; ’g (3.20
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Figure 3.26 - Illustration of Two-Stop Holding
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To implement this rule, we need to determine the values of
the parameters a, b and c¢c. For this case, a = 10$/hr and b = 10$/hr2.
Now, what does it cost to fly rather than hold? The direct operating
cost is made up of flight time and cycle costs. The cost per hour is
the sum of depreciation, insurance, crew, fuel and maintenance costs.
If the vehicle is holding ready to fly, the system is still paying for
depreciation, insurance and crew. The marginal cost of flying rather
than holding is not the total DOC, but rather some fraction of it.
This fraction is approximately 1/2. The parameter c is then given as

follows:

c = 100 ($/cycle) + (300$/f-hr) (Flight time)
(Note that the flight time is different for each OD pair, and, therefore,
so is the cost of service.)

Using this holding rule in conjunction with the dynamic vehicle
routing algorithm, the system is simulated with a fleet of 10 vehicles.

The results are shown in Table 3.9,

10 Vehicle Nonstop Average # Cycles Frours DOC$
Trip Time

Dynamic Routing with Holding .87 186 43 44,000

Dynamic Routing No Holding .75 269 60 63,000

Fixed Routing .89 275 62 65,000

Table 3.9
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It can be seen that the effect of dynamic versus fixed routing
is to decrease average travel time. Now, the vehicle holding permits a
tradeoff between average time and operating cost. In fact, the total
cost is cut 40%, with no loss in LOS, from the fixed to holding case.
Next, the system is simulated using the holding strategy in conjunction
with the one-stop service option of the routing control. Once again, a
significant decrease in operating cost is achieved with a modest increase

in travel time. The results are summarized in Table 3.10.

One-Stop Average Trip Time # Cycles Fhours DOC

6 Vehicles 1.39 119 29 29,000

10 .87 184 40 43,000

15 77 206 46 49,000
Table 3.10

Notice that in the 15 vehicle case the total number of takeoff and
landing cycles is cut by over 200 in the 8 hour simulation run. At a
cost of 100$ per cycle, this is a savings of 20,000$. In each case,
this strategy provides a large saving in direct operating cost while
providing comparable LOS to the passengers.

An investigation of the sensitivity of average trip time and
total DOC to the parameter c yields additional insight into the workings
of the system and holding algorithm. In setting the value of c, the

actual cost of service, it is estimated that this cost is 1/2 the
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original DOC. If instead of 1/2, this value is 1/3, shorter headways
and greater total operating cost should result. Similarly, if the
actual cost is 2/3 the original DOC, larger headways and reduced total
operating cost should result. By varying this fraction, the tradeoff
between LOS and cost can be controlled. The one-stop system with 10
vehicles is simulated once again, this time ¢ is varied. The results

are shown in Figure 3.27.

3.4 Summary of Results

The purpose of this study is to investigate the effects of
general strategies on USH performance and to develop new routing schemes,
making the USH system more efficient, through an improvement in LOS, and
a reduction in operating cost. The control strategies which evolved in
the course of this study do achieve these goals. In fact, the improve-
ment in USH operations is very impressive. This can be illustrated by
comparing the LOS provided to passengers by the system operating a 10
vehicle fleet, under various controls. From Figure 3.28, it is obvious
that the fixed routing system can not cope with the peak demand. In
neither the allstop nor the nonstop cases is a stable condition achieved
during the rush. This means that if the rush lasted for another hour,
average travel time would continue to increase. The effect of the demand
peaking is significantly reduced in the dynamic routing cases. In the
case without holding, the average travel time increases during the rush,
levels off, and then decreases again after demand subsides. The effect

of holding is to decrease this variation of travel time over the day.
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In the holding cases, it is difficult to tell where the rush hour begins
and ends, from variations in the travel time. In terms of LOS, this
is a very stable system.

How much does it cost to run this system? Consider first the
variation in average travel time with the number of takeoff and landing
cycles (cycle costs are a major portion of total system costs)(Figure
3.29). In all but the holding cases, the number of cycles and the
operating cost of the system depend only on the number of vehicles.

The effect of the holding strategy is to reduce this cost and slide the
curve to the left. As it turns out, the most stable system is also the
cheapest to operate! Also, the variation in average travel time with
operation cost is shown (Figure 3.30). The Pareto-optimal boundary here
is defined by the system operating vehicles using dynamic routing and
holding. More points on this boundary could be found by varying the cost
parameter in the holding rule.

One item concerning the dynamic routing algorithms developed
in Section 3.3 should be stressed. The use of nonlinear waiting costs
in this algorithm js not meant to reflect passenger psychology. These
costs are strictly a modeling tool, and one which proved to be very
useful. By varying the relative values of the cost parameters, the
tradeoff between the mean and the variance of trip time can be con-
trolled. Intuitively, it seems reasonable that reducing the uncertainty
in trip tJme increases the LOS to passengers. In the next chapter, a

passenger-oriented model is postulated which provides more justification
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for controlling this uncertainty, and makes use of the algorithm's
ability to do so.

The most significant aspects of the dynamic control algorithm
is its generality and simplicity. The fleet of vehicles was routed and
departures were scheduled using a minimum amount of real time data.

The algorithm has no prior information as to actual passenger arrivals
or even the average arrival rates of passengers. In fact, the only
prior information the control algorithm has is a distance matrix and
vehicle parameters. The real time information which is used is simple.
For each OD pair, two numbers (number waiting and maximum waiting time)
are required. In the simulation model, this is the only information the
control algorithm uses. In fact, if an actual USH system existed, this
algorithm could be used without modification to control it. The real
time information necessary to drive the algorithm can be collected by
counting and timing passenger arrivals at each station. This information
can be relayed to a central facility via phone lines. The route choice
calculation can be made there. These calculations would require a
machine no larger than a programmable calculator, Instructions (next

destination, departure time) can then be relayed back to the stations.
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Chapter 4

SUGGESTED TOPICS FOR FURTHER RESEARCH

This study was undertaken in order to develop a scheduling
and routing methodology for the USH system, and to model realistically
the operations of the system. The results of this work are to be used
in a more general study of USH system feasibility. In this chapter,
topics for further research aimed at determining USH feasibility are
suggested. This additional research consists of three general areas.
The first area is the immediate application of the existing models to
the investigation of USH system sensitivity. Next, modifications of
the algorithms and of the simulatipn procedure are suggested in order
to make the models more realistic in a USH analysis. Finally, some

questions involving fundamental transportation issues are raised.

4,1 Immediate Applications of Models

With the existing algorithms and present version of SMUSH,
many aspects of USH system design can be investigated. A few of the
more pertinent questions, which may be answered through the use of the
existing software, are listed below.

1. What is the effect of city geometry? How are USH opera-
tions and system performance affected by the relative locations and
size of the suburbs and CBD?

2. How sensitive is the system to demand peaking and direction-

ality? At what level of peaking does congestion significantly degrade
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LOS? How is this level affected by vehicle parameters, the number of
stations, or individual passenger cost parameters?
3. What is the relationship between the mean and the variance
of trip time? Does the effort to reduce uncertainty in trip time

increase the likelihood of congestion?

4,2 Modifications to Models

Multiple stop service and load building is an important feature
of the USH system, but so far, it has not been fully exploited. While
the dynamic control algorithms allow some one-stop service, only non-
stop service is considered in determining vehicle routing. Although the
modifications necessary to consider explicitly one and two-stop service
will add to the complexity of the decision algorithm, the improvement in
system performance should make this work worthwhile.

Throughout this study, it is assumed that demand is independent
of the schedule. Obviously, this is not a realistic assumption. The
probability that a particular passenger chooses the USH system (and
therefore the total demand) depends on fare, convenience, and L0OS. So,
in a given system with some potential demand, a particular schedule will
result in some actual daily demand. But the schedule generated by the
algorithms developed in this study in turn depends on the actual demand.
There is an equilibrium demand and schedule, but due to the complexity
of the problem, they cannot be found analytically. The equilibrium con-
ditions can be found using the following iterative method. Some LOS

is assumed, the associated demand is estimated, and the system is
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simulated. If the estigated and actual LOS differ significantly, LOS
is re-estimated and the&ystem is simulated again. Although this proce-
dure should converge to the equilibrium condition, it is not obvious
how fast this will occur. So, while this method will yield a good

estimate of USH operations, it may be prohibitively expensive.

4.3 Fixed vs. Dynamic Scheduling

With the algorithms developed in this study, the system oper-

ateswith no timetable (or with a dynamic schedule). This type of policy

gives the system the ability to cope with random fluctuations as well

as with (unanticipated) overall variations in demand. A system with

a fixed departure schedule loses this ability. But availability of a
timetable to passengers should reduce the average waiting time through-
out the system. The tradeoff between fixed and dynamic scheduling can
be evaluated by comparing the effects on LOS of the reduction in waiting
time associated with the availability of timetables, and the benefits
associated with the ability to cope with the variations in actual
demand.

Although the average arrival rate of passengers into a
scheduled system depends on the times of departure, the actual times
of arrival are random (see Figure 4.1). The reduction in average
waiting time to the passengers depends on the amount of influence of
the schedule on the arrival rate. This dependence can be estimated by
observing the arrival rates of passengers into existing transportation

systems operating with a fixed schedule and relatively short headways.
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Examples of this type of system include the Eastern Shuttle, NYAW,
and some bus systems.

The effect on LOS of the system's ability to cope with
variations in demand can be estimated with the existing computer models.
A fixed schedule can be generated by running the system dynamically and
recording the vehicle movements and departure times. This same schedule
can be used on other days, where the overall demand patterns are the
same, but where individual passenger arrivals are different. The effect
of the loss of flexibility can be seen by comparing the LOS on the first
and subsequent days.

This analysis should provide a reasonable answer to the fixed
versus dynamic scheduling question. But whatever the outcome, the
vehicle control algorithms and simulation model can still be used to

generate the schedules.

4.4 LOS

Throughout this study, the term LOS has been used as a measure
of system performance. It was suggested in the first chapter that this
term depends on both the mean and variance of travel time. A justifica-
tion for this conjecture, and a proposed measure for LOS are now pre-
sented.

LOS is a measure of the cost, in time, associated with travel.
This generally refers to the time spent in transit. The maximization of
this measure of LOS is equivalent to the minimization of average travel

time. But there is also a cost to the passenger associated with the
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actual arrival time at the destination. Consider a businessman who must
meet with a client at a certain time. There is a cost in loss of good-
will or actual dollars associated with being late (see Figure 4.2a). A
general traveler also has an arrival cost (Figure 4.2b). Here, the costs
are much lower, since the ramifications of being late to a movie or
department store are not as great as those associated with the business
meeting. Note that there is also a cost associated with being early,
for an early arrival may result in waiting outside for a business to
open or a long wait to enter a theater, etc. Obviously, these costs
vary with the individual and passenger type, but for a class of
travelers, these general forms should apply.

Now, consider an individual commuter who has determined the
cost spent in travel to be C $/hour, and the time by which he arrives
early to be worthless. For example, if he allows one hour for the trip
to work and arrives early, the total cost is $C, regardless of the
actual arrival time. Furthermore, suppose that he has determined an
arrival cost of the simplified form shown in Figure 4.3.

The total cost of making the trip (TC) is then,
TC=C « (T.A.) + LS (4.1)

where TC = total cost

TA = time allowed

0 early
1 late
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In the long run, it seems reasonable to assume that this commuter will

want to minimize average cost, which is found as follows:
E(Cost) = C « (TA) + L - P(Late) (4.2)

The probability of being late, P(Late), is the probability that the

actual trip takes longer than the time allowed.

P(Late) = P(Trip Allowed < Trip Time)
P(Late) = 1 - P(Trip Time < XO) X>0 (4.3)

If the commuter knows the cumulative distribution function for his trip
time (Figure 4.4a), he can determine P(Late) as a function of time
allowed (Figure 4.4b). With this information, he can calculate the
expected total cost in terms of time allowed. Finally, he can determine
the amount of time to allow (TA*) in order to minimize expected cost
(Figure 4.5).

Now, while the precise roles of mean and variance in the
minimum cost depend on the trip time cdf, it should be clear that mini-

mum cost depends on both terms.

For a system with fixed average travel time as the variance
increases, the minimum expected cost associated with travel will also
increase. In Chapter 3, it was shown that for a particular system
using dynamic vehicle controls the effect of decreasing the variance
of travel time is to increase the mean. This leads to 5 most interesting
optimization problem. At what point should the system operate in order

to maximize the average LOS offered
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to passengers? Recall that this operating point is controlled by the
slope of the individual waiting cost curve, b. So, if the costs asso-
ciated with travel and arrival times are determined, can the value of
b be determined to maximize average LOS to all passengers? If all
passengers had this information and made the correct decisions, the
minimum expected cost would be a good measure of LOS. Obviously,
passengers do not have this complete information, but this is reason-
able passenger behavior. While it is not obvious whether this measure
of LOS is mathematically tractable, it may be an interesting concept

to pursue, in the context of incomplete or bad information.
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APPENDIX A

In this section, methods of generating an optimal schedule
for the USH system are briefly discussed. By optimal, we mean the
maximization of LOS to all passengers. A method developed by Devanney
for ground transportation, generates an optimal schedule in two steps.1]
First, the network is decomposed into individual OD pairs, and optimal
departure schedules for each pair are determined using Dynamic
Programming. Next, the network is reconstructed, and the minimum number
of vehicles necessary to achieve the departure schedules for the entire
network is determined, using Simpson's fleet reduction program
(REDUCTA).12 If it is assumed that the demand for a given departure
depends on the LOS as well as time of day, the decision variables in
the Dynamic program are the number of departures, the time and the
capacity of each departure. It was shown by Vom Saal that if the
dependence of demand on the schedule is eliminated, and if the vehicles
have sufficient capacity to serve all passengers waiting for each
departure, then the number of decision variables necessary in the optimi-

13 This represents a tremendous simplification

zation is reduced to one.
in the optimization process. This method works well and can be used
to generate a schedule in a large network, but it does not accurately
model, or fully exploit the capabilities of the USH system.

Next, a shortest path formulation of the USH scheduling problem

is described. This formulation will utilize Vom Saal's simplifications.
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The vehicle scheduling and routing are considered
simultaneously in this optimization process. It is assumed that the
demand is known, and is independent of schedule. And for now, it is
assumed that vehicles have unlimited capacity. Due to the explosive
nature of the state space, it is difficult to obtain the optimum in
even a moderately-sized network. The technique is demonstrated on a
trivial system, and extensions to a more realistic network are then
discussed.

Consider the network shown in Figure A.1a; passengers arrive
at nodes 1 and 2 at known rates of arrival. They are transported to
their common destination, node 3, by a single uncapacitated vehicle.

The state of the system will be defined as the time of the most recent
departures from 1 and 2, (S], 52), or equivalently, as the time at which
the last service to each OD pair began. The initial state of the system
is defined to be (S1 =0, 52 = 0). For simplicity, only discrete values
of S] and 52 are considered. With this restriction, the state space

can be represented by a two dimensional array of points (see Figure 2.1b).

As the day progresses, each service to the OD pairs redefines
the state of the system. The system state changes via a transition
which is defined to occur when the vehicle stops at node 3. There are
only four combinations of stops by which the vehicle can leave 3, pick
up passengers at one or both origins, and return to 3. Each combination

corresponds to a transition (Figure A.2).
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Transition Type Vehicle Routing
A 3-1-3
3-1-2-3
C 3-2-1-3
D 3-2-3

Figure A.2

Note that passengers can receive either nonstop or one-stop service.

Suppose that the system leaves state (S], 52) via a transition
of type B (this corresponds to the vehicle leaving 3, stopping at 1 and
2, and then returning to 3). Let the departure times from 1 and 2 be
Si, and Sé, respectively. Assuming that 1 and 2 are distinct nodes and
that the vehicle moves at a finite speed, there is a minimum time ay9s
required to fly between the two stations. (In general, aij is defined
to be the minimum time between departures from i and j, aij = block time
+ minimum ground time). Therefore, the following constraint can be

placed on the departure times:
1 1
2251 * 2,

Suppose that the system entered its present state via a transition of
type A. The vehicle routing for the present and most recent transitions
can be represented schematically, as in Figure A.3." From this figure,
it is obvious that Si depends on S]. The constraint is as follows:

S1 28 vaggtag =5+ 2a]3
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In general, there are constraints on the times of future departures
from each node, which depend on S], 52 (present system state) and the
vehicle routing (transition type). But it can be shown that these
constraints do not depend on how the system reached its present state.]4
In summary, the states which the system may next enter depend on the
present state (S], 52) and the transition type by which this state is
left.

There is one additional constraint; all passengers must be
served. This requires that exactly one departure occur after the last
passenger arrives at each node.

Consider the following example. Passengers arrive at nodes
1 and 2 at rates f](t), and fz(t) (Figure Ada). The minimum times
between departures are ay, = 2, a3 = .3, and a,3 = .4 (hours).

Discrete values of S] and S2 are considered at .1 hour intervals. The

vehicle departure schedule is as shown below (Figure A.4b).

Node Departure Time Transition
2 0.20
1 0.40 C
3 0.80
1 1.20
2 1.40 B
3 1.70
2 2.00 D
3 2.30
1 2.70 A

Figure A.4b

The path of the system through the state space is shown in
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Figure A.4c. It should be noted that the final state of the system
satisfies the constraint, S, > 2, So > 2. Also note that the transitions
in which the vehicle stops at one node to pick up passengers are parallel
to the axes, while the transitions in which the vehicle stops at both
nodes 1 and 2 are diagonal.

There is a cost in passenger-hours to the system in jumping
from state S], S2 to S,, Sé. This cost is the sum of the waiting and
ride times for those passengers served on this transition. The total
waiting time associated with the transition is

2 O
1] fe) -0 o
i=1 S,
i
The ride time for the passengers also depends on transition type since
the transition type determines whether a passenger receives one-stop
or nonstop service.

Given that the system is presently in state S]. 52. the
constraints on future departure times determine which states the system
may next enter, and the cost associated with each transition (pax-hrs)
can be found. If the state space is considered a network, and the
cost associated with each possible transition a distance, then the

optimal schedule is the shortest path from the initial state to some

final state S7, S;, where S" indicates a time after the last passenger

arrival.

Now, this schedule can be generated using a shortest path

algorithm. To determine an eight-hour schedule with time increments
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f,(t) fo(t)

Figure A.4a - Passenger Arrivdl Rates

Figure A.4c - System Path Through the State Space
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of .1 hours, the network necessary contains about 6400 nodes. This can
be solved on the computer with a small amount of storage and time, but
this is still a trivial problem. More meaningful results come at the
cost of a much larger state space and associated network.

Finite vehicle capacity can be modeled with the addition of a
variable corresponding to an overflow number of passengers for each 0D
pair. For the two OD pair case, the system state can be defined as
(S], 52, N], w2). where wi is the number of passengers at node i who
were not boarded on the last departure, due to capacity constraints.

The injtial state of the system is (0, 0, O, 0) and the final state is
(sy, S5 0, 0). Although this is a simple addition conceptually, the
extra variables add two more dimensions to the state space. If values
for Ni are considered in a range of 0 to 100, the network from the
previous example would now have 64x]06 nodes. This is no longer a
simple problem for computer application of the shortest path algorithm.
A more reasonably sized USH system could have 10 OD pairs. The state of
the system would now be defined‘in 20 dimensions. The size of the state
space would be (100xi:¥0)]0 or around 1039. The addition of multiple
vehicles adds still more complications to this already astronomical

state space.

This formulation is a victim of the "Curse of Dimensionality.”
The fact that the entire state space must be stored to obtain the optimal
solution using the shortest path algorithm makes computer applications
impossible. So, while the determination of an optimal schedule using

Dynamic Programming (in the form of the shortest path) is conceptually

feasible, it is totally impractical from the computational point of view.
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Appendix B

SMUSH User's Guide

Introduction

’The Simulation Model for the Ultra Short Haul transportation
system (SMUSH) was developed to investigate the effects of vehicle
routing and scheduling strategies on the performance of the USH system.
SMUSH is written in the GASP IIA simulation language. GASP is a collec-
tion of FORTRAN subroutines which provide the general framework for
event-paced simulation. SMUSH is a FORTRAN program, consisting of
standard GASP and non-GASP subroutines. The GASP portion of SMUSH
provides the mechanism to store and retrieve data, advance the simulation
clock, and collect statistics. The non-GASP portion is dedicated to
the input, output and handling of data unique to the USH system. Due
to this structure, the simulation methodology and program code are
completely accessible to the user.

The user of SMUSH provides the following system parameters:

Network layout

Fleet and vehicle parameters

Passenger arrival rates

Routing and scheduling structure.

The output of SMUSH consists of the following system performance data:

Vehicle schedule map

Passenger trip time statistics

Vehicle utilization statistics
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System operating costs

Vehicle Control Options

The user of SMUSH has. the option of two general vehicle
control strategies, these are fixed and dynamic controls. In both
options, the basic mechanism by which the vehicles are routed is the
same. Each vehicle flies an assigned route. When this route is
completed, the vehicle immediately begins the completed route's succes-
sor. The minimum time to complete each takeoff and landing cycle is
assumed to be a function of the number of passengers boarded, see Figure

B.1. (The actual cycle time may be increased by holding.)

Cycle
Time.

1
?(Number Boarded)/Capacity
Figure B.1 - Takeoff and Landing Cycle Time

At each stop, the vehicle normally boards all passengers
whose destination is on the remaining portion of the route. But if the
present route is its own successor, then passengers are boarded whose
destination is any node on the route. For example, if the route calls
for stops at nodes i, j, and k, at node j only, jk passengers are
boarded. But if this route is its own successor, the vehicle will stop
at i, j, k and then i, j, k again. So, at node j, jk and ji passengers

are boarded.
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Under the fixed cqntro] option, the complete routing for each
vehicle is specified by the user. The vehicle flies its initial route,
this routée's successor, etc. When the dynamic controls are invoked,
routes are constructed for each vehicle during system operation. The
routes and successors are determined according to the algorithm developed
in Section 3.3.1.

If the fixed control option is used, the user must provide

the following data:

Complete 1list of routes

Successor for each route

Initial route and starting time for each vehicle

Minimum headway

Maximum number to be loaded on one vehicle for each 0D pair.
If the dynamic control option is invoked, the user must provide
the following data:
- Passenger cost parameters
- Initial node and starting time for each vehicle.
The user must also specify whether all passengers will receive nonstop
service or if some one-stop service is to be provided, and whether the

vehicles will hold according to the algorithm described in 3.3.2.3.

Inputs to SMUSH

For each run, input is made in two parts; these are model
controls and individual case data. The model controls appear once per

run, the case data is input for each case to be run.
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The first three lines of input are the model control data,
these are as follows:

Number of cases to be run (< 10) Format (I5)

Number of Monte Carlo iterations for each case Format (10I5)

Begin and end time for each case (2F5.2)

The individual case data is made in ten sections (See Figure
B.2). The first case must contain an entry for each section (even if
default values are used). In the following cases, only those sections
in which inputs change between successive cases need to be entered.
In this manner, some duplication of input data is avoided. Each case
must begin with a title card and end with a "99" card.

Title Card

01 Network data

02 Passenger arrival data

03 Minimum headway

04 Maximum loading of each 0D pair

05 Routing option and passenger cost parameters

06 Vehicle parameters

07 0D pair identification

08 Output parameters

99 End of case

Figure B.2
The data input in each section is as follows:

01 Number of nodes (< 10) Format (I5)
Distance Matrix (miles) Format (10F5.0)
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02 Number of Arrival Rate Tables Format (I5)
Arrival Rate Tables (passengers/hr) Format (10F5.0)
Number of Passenger Types Format (I5)
For each Passenger Type - The Number of Data Points Format (15)
For ?ach Data)Point - A Time and Corresponding Table ID Format
F5.2, I5

03 Minimum Headway (hours) Format (F3.1)

04 Maximum Boarding for each OD Pair Format (1215)
Default: -1, No Maximum Format (I5)

05 Passenger Waiting Cost Parameters a, b Format (2F10.7)
Routing Options NRTS, MHOLD . Format (2I5)
If NRTS > 0, NRTS = Number of Routes (Fixed Routing)
If NRTS -1, Dynamic Routing, Nonstop Service
If NRTS = -2, Dynamic Routing, Some One-Stop Service

If MHOLD = 0, No Holding
If MHOLD > 0, Dynamic Holding

06 Number of Vehicles, Capacity, Speed (m/hr), Cycle Time Min (hrs)
Cycle Time Max (hrs), DOC $/hr, DOC $/cyc1e
Format (215, F5.0, 2F5.2, 2F5.0)

Initial Route (Fixed Routing) or Initial Node (Dynam1c Routing)
and Starting Time , Format (I5, F5.2)

07 Number of OD Pairs = Format (I5)
(If number of 0D Pairs < O SMUSH Assigns Identification)
0D Pair Identification Format (1215?
08 Number of Route Histograms Format (I5)
Route Numbers for Histograms Format 5153

Number of 0D Histograms Format (I5
0D Number of Histograms Format (I5)

On the following pages appears an example input deck. This is a setup
to run 2 cases. The first case uses the dynamic routing with one stop
and holding options to control a fleet of 10 vehicles. The second case
is a fixed routing setup with 15 vehicles. Notice that the network and
passenger arrival data is the same for both cases, and does not need to

be repeated in the second case. Only those parameters which are changed
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between cases need to appear in both cases.
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Number of Cases (I5)

Number of MC iterations for each case {10I5)
Begin and end time (2F5.2)

Title (15A4)

Number of nodes (I5)

Distance matrix (10F5.0)
{miles)

Number of arrival rate tables (I5)
1D number for first table (I5)

Arrival rate table (pax/hr) (10F5.0)

1D number for second table (I5)

Arrival rate table

Table 3

Number of passenger types (15)
‘Number of data points for type 1 (I5)

“Time and table ID (F5.2,15)
MNumber of points for passenger type 2 (IS)

Time and table ID (F5.2,I5)

Minimum headway F3.1
Maximum OD pair loading (I5) -

Passenger cost parameters a,b :2i10.7)
NRTS, MHOLD (2I5)

MVEH, CAP, VELC, TCMIN, TCMAX, >cOST, CCOST
{215.F5.0,2F5.2,2F5.0)

Vehicle initial routes and times (15,F5.2)

U
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Qutput
The output of SMUSH consists of the following:
1. Summary of input data
2. Schedule map
3. GASP summary report, for each run
4. Average economic results
5. Histograms of system parameters
The summary of input data and schedule map are self-explanatory. For
each simulation run, a GASP summary report is printed. This report,
entitled, "Generated Data," lists statistics collected for sample values
of the following parameters.
1. Wait, ride and total trip times
- for the entire system
- for each route
- for each OD pair
2. Vehicle load factor
- for the entire system
- for each route

3. Average trip time vs. arrival time for each passenger trip

4. Number of each passenger type waiting at the stations
during the run

For each parameter, the following statistics are printed:

- mean

standard deviation

minimum observed value

maximum observed value

total number of observations
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The nth

report gives statistics of all observations made in the first n
Monte Carlo runs. Associated with each variable is a numeric code;

Figure B.3 provides the key to this code.
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GASP_SUMMARY REPORT

Generated Data

Code Parameter
1 Passenger Wait Time
2 Passenger Ride Time System
3 Passenger Trip Time
4 Passenger Wait Time
5 Passenger Ride Time Route 1
6 Passenger Trip Time
7
8 Route 2
9
: The code number for Route n Wait Time = 3n + 1
. Ride Time = 3n + 2
. Trip Time = 3n + 3
91
92 Route 30
93
94 Load Factor System
95 Load Factor Route 1
12& Load Factor Route 30
127 Passenger Wait Time
128 Ride Time 0D Pair 1
129 Trip Time
Wait Time
Ride Time 0D Pair 2
Trip Time
394 Wait Time
395 Ride Time 0D Pair 90

396 Trip Time



401
402

420
421

440
441

460
461

462

480
481

500

641

660
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The code number for OD Pair n Wait Time
Ride Time
Trip Time

n i u
333
+ + +
E- -1
ol vl el
N S Sm®
*

Trip Time (hrs) for Type 1 Passengers Who Arrive
in the Interval

Trip Time (hrs) for Type 2 Passengers Who Arrive
in the Interval

System Load Factor during the Interval

Number of Type 1 Passengers Waiting at Node 1
during the Interval

Number of Type 1 Passengers Waiting at Node 2
during the Interval

Number of Type 1 Passengers Waiting at Node 10
during the Interval

*

*
www
+ + +
W N —

(0, .5)
(.5, 1.0)

(9.5, 10.0)

(0, .5)

(9.5, 10.0)
(0, .5)

(9.5, 10.0)

L] .
(S =]
™
-0

—~~
[e= N o]
L] L

oo
—

(905’ ]0.0)
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680
841

860

148

Number of Type 2 Passengers Waiting at Node 1

Number of Type 2 Passengers Waiting at Node 10
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LIST OF SUBROUTINES

The following is a 1ist of the GASP subroutines used in SMUSH.

documentation of them may be found in Reference 7.

GASP

LOCAT
FILEM
RMOVE
SET
COLCT
TMST
SUMRY

Non-GASP Subroutines

Controls the simulation start and finish
Advances simulation clock

Locates address of particular file entry
Loads entry into NSET

Removes entry from NSET

Updates file pointers in NSET

Collects sample statistics

Collects time weighted statistics

Prints GASP summary report

DATAX

EVENTS

INTL

PXARV

VEHDP

Modification of DATAN (see Ref. 7)
Initializes GASP variables

Calls subroutine corresponding to the
pending event

Event #1; Initialization

Initializes non-GASP variables

Prints input data summary

Stores initial events (vehicle departures,
passenger generation)

Event #2; Passenger arrival
Transfers passenger data from file 1
to file 2

- Event #3; Vehicle departure

Loads passengers

- Stores arrival event

Complete



VEHAR

GENPX

GRATE

HISTO
OTPUT
HPLOT
PSET

REX

XRUTE
MCOST
HOLD
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- Event #4; Vehicle arrival
- Unloads passengers
- Stores departure event

Event #5; Passenger Generation
Venerates passengers arriving in the interval,

Tnow <T 5-Tnow + .5 (hours)

Stores generation event for Tnow + .5 (hours)
Interpolates linearly to determine the average
passenger arrival rate at any time

Prepares and prints output

Prints contents of NSET (diagnostic)

Generates exponentially distributed random
deviate

Determines next route (dynamic routing)
Calculates marginal cost for an OD pair

Determines whether to hold vehicle or go now.

The following is a description of SMUSH common variables. (The GASP

common variables are described in Ref. 7.)

ARATE(N,I,

MRT(I,J)
NsTOP(I)
NPX(L)
NXRT (M)
D(1,J)
VELC

NWAIT (N,J)

J,K)

Average arrival rate of passenger type N, going
from i to j at time = TRATE (N,K)

Node Number of the jth stop on Route i
Number of stops on Route I

Number of passengers on board vehicle L
Successor Route to rate m

Distance (miles) from I to J

Velocity of vehicle (mph)

Number of passengers waiting of type n at node J



TRATE(N,K)

TCOST
CCoST
NCYCL
FTIME
PMILE
NNODE
NRTS

TDEL
NOD(I,J)
NODPR

CBX

CAX
JHOLD(L)
MNOLD
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Time of the Kth 0D arrival rate matrix of
passenger type n

DOC $/HR

DOC $/CYCLE

Number of T/0-landing cycles

Total flight time (hrs)

Total passenger miles

Number of nodes in network

> 0 # routes

- 1 flag for dynamic nonstop

- 2 flag for dynamic one-stop

Time between successive calls to passenger generator
Identification number of 0D pair i j

Number of OD pairs; if < 0, SMUSH determines NODPR
and identification numbers itself |

Slope of passenger waiting cost curve

Intercept of passenger waiting cost curve

Number of times vehicle L holds at present node

0 No holding

1 Holding

The following is a source list of SMUSH.



OIIMNOD

(o
c

N\

152

SMUSH Source List

-

DTMENSION MSET(12000) «QSET(4000)

COMMON Do TUG IMTT G JFYNT ¢ IMNTT (MF A ¢USTOP (MX (MXC (NCLCToNHIST,

INNQ sNORPT g UNT «NMPOIMG ¢ ANIRTIN s NRUNS «NSTAT o VUT o ISFFN s TNOW

P2TAFEGITF INouXX ¢NPPNT JNCRDI«NEP s YNNI (4) o IMMeMAXOS ¢ MAXNS

CAMMON ATRTR (107 JENA(4) « INN(4) s JCFLS(20422) KRANK(4) ¢MAXNN(&L) o
IMFE (@) oMLC(G) oMLF (4) oMCELS(20) «NQ(4) «PARAM(P044) «QTIMF (&) ¢ SSUMA
2(10,5) sSUMA(INNNLS) yMAMF (6) ¢NPROJMOVINDAY ,NYR o JCLLRLJTRIR(12)
CQMMON/TUH?/MPT(?Ooln).NSTO°(30|.MDX(CD).AQATF(Z-IO.!O.IO).MxDT.
1(30)eD(10410) sVFLCINWAIT(2910) ¢ TRATE(2410) ¢NTIMF (2) o TENSToCCNST
PMCYCLoFTIME s PMTLFE oMNNNE s NRTS G TNEL oNND(10910) «MONPRGTCMTING TrMAX
3, TMAP (200200) eMAP(20¢200+5) yMADX (20) JNDRW(120) 4 TCADMPND(10410)
4o THMINGNVE 44 TLAST(10) o TFL(10410) oNWOD(90) 9 FARLY (90) 4 ISFRV(ON) (CRYX
Syt AX s JHOLD (20) MHOLD

NDIMENSION N3IN(10)

MATN PROGRAM

2EAND NUMBER 2F CASFS..IPUNS

REAN NUMRER NF M C TTERATIONS, MIRUN(T)

OFaAn TIME LIVITS,, TRFG. TFIN : o

1000
1001
1010

c

NARNDR=S

NERNT=6

IeUN=N

READ(S+1N0N) IRINS

FOPMAT(IS)

READ(S91001) (NPN(T) sI=19IRUNS) -

FNORMAT(1015) .

RPFAD(S+1010) TREGL,TFIN

FRRMAT (2F5,2)

ISUNZIRUN«]

NRUNS=NRN ( TRUM)

NRUN=]

1sEED=S

TNEL=,2S

CALL GASP(NSET.QSET)

CaLL OTPUT

1F (TRUNLLT,IRINSIGO Tn 1

STOP

END

SUBROUTIMNE EVNTS({INSFT,ISET)

DYMENSION NSET(1)9QASFT(})

COMMON TOeTMeINIToJEVNT 9 JMNIT oMFASMSTUP ¢MX ¢MXCoNCLCToNHIST,
INNO TNNDPPT « NOT s NPOMG o NPIN ¢ NRUNS sNSTAT s OUT « ISFEN s TNOW o
PTAEGsTFIMeUXX oNPOINT GNARNDIINEP ¢ UNND (4) o IMMoMaAXNAS e MAXNS

COMMON ATRTI(10) «FNN(4) s INN{G) « JCFLS(20422) «X¥RANK (64) ¢MAXNN (&) o
IMEE (4) oMLC (6) oMLF (6) «NCELS(20) oND(4) sPARAM (P044) sQTIMF (&) 4 SSIMA
2(1065) oSUMA (10NN 4S) «NAMF (6) yNPANJMONINDAY ¢NYR4 JC:.R 4 JTRIB(12)

COMMON/TUSC/MRT (20410) «NSTOP (30) ¢NOX(2N) «ARATE (Pe1041N0¢101 4NXRT
1(30)4D(10410) sVFLCoNWAIT(2410) ¢ TRATE(2410) «NTTME(2) 4 TCOSTCCOST
PNCYCL o FTIMS o PMTLF gMNONE « NRTS o TRFL4NND (10410) «NONPRTCMIN TCMAX
3. THAP (209200) yM4AP (20420035) +MAPX (20) «NNRW (120) 4 TCAP,MPAD (10410)
GeTHMINGNVF 4 TLAST(10) o TFL(1041N0) 4NWNI(Q0) ¢ EARLY (90) o TSFRV (90) ¢ CRX
SeAX s JHOLN (20) ¢MHOLN

ALI SUBROUTTNE CODPFSDONDING TH ONF OF FIVE FVENTS

.
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IF(1.€N0,0)59 Tn 9999
GO TO(1+429304e5) 01

1 CALL INTL(NSETWOSET)
6n TO 9999

2 CALL PXARV(NSFTQSET)
60 TO 9999

3 CALL VEHDP (NSFTsNSFT)
GO TO 9999

4 CALL VEHAR (NSFETWNSFT)
G0 70 9999

S CALL GENPX(NSET,QSET)

9999 RFTURN

EnD
SURROUTINE INTL {NSET,NSET)
deanatspat  [NITIAI [72 .eo FVENT NUMRER 1

NDIMENSION NSET(1)+QSET(1)

COMMON TD o TUs INTIToJEVMT o IMNIT oMF A+ MSTOO JMX ¢MXCoNCLECToNHIST,

INNQ yNORPT ¢ NOT ¢ NPRMS ¢ NRPUM e NRUNS «NSTAT«OUT s ISFED « TNOW,
2TQEGITFINGUXX oNPINT «NCRDIINEP «VMQA (&) « [MMoMA YNS ¢ MAXNS

COMMON ATRTR(1N) «FNQ(4) s INN(4) ¢ JCFLS(2N422) ¢KRANK (6) ¢MAXNN (&) o
IMFE(4) oMLC (&) «MLF (4) oMCE_S(20) +NQ(4) +PARAM(20,44) «QTIMF (4) 4 SSIMA
2(1045) sSUMB(1NNN,5) NAME (6) ¢NPDDJ¢MONINDAY ,NYR, JCLR, JTPIR(12)
COMMON/TURZ/MRT (30,101 «NSTOP (30) ¢MPX(20) sARATE (Pe10,10,10) 4NXRT
1(30)9D(10910) VFLCNWATT(2410) «TRATF(2410) NTIUF(2) oTCNSTCCNST
2NCYCL oFTIME o PMTLF ¢MNONE ¢ NKTS o TNFLoNNI(10s10) «NONPRGTCMTIN, TCMAYX

34 TMAP (209200) 4MAR (204200 95) 9MAPX (20) «NODRW(120) « TCADP,MPNAD(10410)
GoTHMINGNVE-eTI AST(10) «TFL(10410) 4NWNI(Q0) +EARLY (90) ¢ ISERVI90) 4 CRX
SeCAXs JHOLD (20) J4MHOALD

DIMENSTION XTM(20) s JRT (20) o XRATF (10410910)sTTL(15)

(AL 2 Y222 Y]

INITIALIZE SOME VARIABLFS FOR EACH ITEIATION
nn 90 J=1,10
TLAST (J) =0,
nn 90 I=1,2

90 NWAIT(I,J)=0

NDn 91 J=1,20
JHOLD (J)=0

91 NPX(J)=0

DN 95 I=1430
ISERV(I) =]
NWOD(I) =0

95 EARLY(I)=T3EG

SKIe TO 16 I® THIS IS NNT & NEW CASF
IF(NRUN,GT.1)Gn 70 16 R
INITIALIZE VARIARLES FOP NIW CASF
NCYCL=0 -
FTIME=0,.
DMILE:GQ
Do 7 I=1+20
MAPX (1) =0
DO 7 J=1le200
7 MAP(Iedel)==]

READ DATA
RFAD(S436) (TTL(I)«I=1,15)

36 FNRMAT(15A4)
59 RFAD(S+60) T2EAD
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C
c

C
c

c
c

c
c
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60 FNRMAT(12)
IF(IREANCEN.99)GN TO 16
IF(IREADLEL0,NR,IREAN,GE.9) CALL FORIR(IREAN)
GO TO(S519524534¢564+45545645795R) ¢ IREAD

S1 CONTINUE

REAN NETWORK DATA
RFAD(S+1)NNODE
1 FNARMAT (15)
DO 2 1=1+NNODF
2 READ(S3) (N(1,4.0) yJ=1410)
7 FORMAT(10F5,.0)
Gn YO0 SO

QFAN DEMAND NATA
52 CONTINUFE
READ (Se1)NY
DN & K=]eNX
PFAD(S+1)KY
DN & I=]9NNODE
4 READ(S45) (XRATF(TeJeKY) o J=19NNNDE)
S FORMAT(10F5,0)
RFAD(S+1)IN2TYP
DO B KP=1,N2TYP
RFAD(S41)NTIMF (KD)
NT=NTIME (K2)
DO B K=1oNT
READ(Se6) TATF (KPGK) o %X
4 FORMAT (FS5,2415)
Dn 8 I=1+NNODF
NN 8 J=1+NVODF
8 ARATE(KPsI,4JyK)=XRATE(14JeKX)
G0 T0 SO

READ MIN HEAOWAY
S3 CONTINUE

S01 RFAD(S5,40) TAMIN

4n FORMAT(FS.3)
GO TO So

READ MAX LOADING FOR FACH 0D PalR

S4 CONTINUE
READ(Sy1)Max0N
IF(MAXOD.LT.0)GO TO 20
D0 9 I=1sNNODF

9 READ(S911) (MPON(TeJ) 9+ J=1sNNODE)
Go TO 32

29 DO 31 I=l,wvoOnF
DO 31 J=1,4\NNONE

31 MPOD(I.J)=100

32 CONTINUE
GO TO 50

REAN PAX COST PARAMETERS AND CONTROL DPTIONS
€S CONTINUE
RFAD(S961) CAX 4CBX
61 FORMAT(FS5,2¢5X4F5.2)
READ (5+62) VRTS «MHOLD
62 FORMAT(21S)
IF(NRTS.LT.1)60 TO SO
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DO 10 I=1,yRTS
10 RFAD(Soll)VSTOP(I)-NXDT(I)Q(MQT(IoJ)vJ=1010)
1) FARMAT (1215)

Gn 10 S0

REAN VEHICLE PARAMETERS
S6 CONTINUE

READ (5412) WEH,ICAP,VFLCs TCUIN,TCMAX+TCOST,CCNST
1?2 FORMAT (2154F5,N42F5.242F540)

REAN INITIAL POSITIONING FOR EACH VFEHICLF
DO 13 JUD=1,NVEH
READ(S414) JRT (D) 4 XTM (D)

14 FORMAT(15475,2)
13 CONTINUE
Gn T0 So

REAND OD IDENTIFICATION NATA
S7 CONTINUE
RFAD (541)NDDPR
IF(NODPR.LZ40)6GN TN 17
DN 30 K=1,N0DPR
READ (5435 V14
35 FNRMAT(3IS)
30 NND(I4J)=N
Gn TO0 24

NEFAULT ID O°TINON

17 K=0
D0 18 I=1,uNONF
DN 19 JU=1,NNODF
IF(1.EQ.,J}50 Tn 25
K=K+l
NND(I+J) =K

25 CONTINUE

19 CNANTINUE

18 CONTINUE
NODPR=K

24 CONTINUE

* GO TO So

REAND HISTOGRAM NATA

SR CONTINUE
Dn 20 1=1,120

20 NNRW(I)=0
RFAD(Ss1IN-RT
IF(NHPT,LE.0)GO TO 27
D0 21 I=14\HRT
READ(Ss1)J

21 NNRW(JY)=1+3

27 RFEAD(Ss1)N-OD
IF (NHOD.LE.D)GN TO 23
DO 22 1=1,vHOD
K=NHRT+1+3
IF(K«GTNHIST)GO TO 22
RFAD(S.,1) 4
NNRW (J+30) =K

22 CONTINUE

23 CNNTINUF
Go TO So
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CONT INVE

STORE INITIAL: PAX GENERATOR EVENTS

26

DN 26 I=1.Vv2TYP
ATRIB(1)=TATE (141}
JTRIB(1)=5

JTRIB (&) =]

CALL FILEM(14NSETHQSET)

STOPE INITIAL: DEPARTURE EVENTS

NN 15 JN=1.\NVFEH
ATRIB(1)=xXTU(JN)
JTRIB(1)=3
JTRIB(2)=4)
JTRIB(3)=JT (UN)
JTRIB(4) =1

1F (NRTS,GT.0)GO TO 28

CALCULATE INITIAL ROUTES FOR DYNAMIC ROUTING OPTINN

29

15

M=(JD#2)~1

MRT (My1) =J3T (UN)

MRT (My2)=J2T(UD)

N¥RT (M) =0

NGTOP (M) =2

JTRIB(3)=M

CONT INUE

CALL FILEM(14NSET,QSET)
CONTINUE

CALCULATE FLIGHT TIME TaBLEZ

92

NN 92 I=1,9NONF

DO 92 J=1leuNONE
TFL(IeJ)=D(1eJ) /VELC
IF(I«EQ.J)TFL (T« =005
IF (NRUN,GT.1)RFTURN

PRINT INPUT NATA IF THIS IS A NFW CASE

100
104
108
110
115
120
128
130
13%
138
140

139
141

WRITE(6.100)

FORMAT (1H] 440X, 27HaaINPUT DATA SUMMARY=e///)
WRITE(6+106) (TTL(I)91=1,415)

FORMAT (//+10%+1544//)

WOITE (6105) NNNDE

FARMAT (10X, *NUMBER OF NODES =1,15/)
WoITE(6,110)

FORMAT(10X+*DISTANCE MATRIX'/)

WOITE(64113) (JeJ=14sNNODE)

FORMAT (20X.1015)

DN 120 I=1,NNONE

WOITE(6+4123) 14(D(1eJ) o J=19NNODFE)
FORMAT (15X, 15410F5,0)

1 (NRTS,LE.0)GN TO 139

WRITE(6+13NINRTS

FARMAT (///7+10X s 'NUMBFR OF ROUTFS=?413/)
WRITE(6,4135)

FORMAT (10X 'ROIITE  NEXT Q0UTE STOPS /)
DO 138 I=1.NRTS

JX=NSTOP(T) .
WRITE(64140) ToNXRT (1) o (MAT{Ted) 9J=19JX)
FORMAT (10X+1346Xe13910X¢1015)
IF(NRTS.LE.0)WRITE (64161)CBX,CAX

FORMAT (//7/77+10%Xs 'ROUTFS ARE DETERMINED DURING SIMULATION,
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quqz" A ='0Fq079/,)
WRITE(hy145)NVFH
145 FORMAT(///410X 4 *NUMRFR OF VEHICLES ='+13/)
IF (NRTS.GT,0)WRITF (6,150}
150 FORMAT(12X.9A/C CAPACITY VELOCITY INITIAL ROUTE START TIWF
1CYCLE TIME DOC $/HR DOC $/CYQLEY)
IF (NRTS.LFE.0)WRITE (64151)
151 FORMAT(12X+'A/C CAPACITY VELNCITY INITIAL NODE  START TIWF
1CYCLE TIME DOC $/HR DOC $/CYCLE)
DN 155 J=1eNVFH
155 WRITE(6+160) JeTCAPVELCYJRT(J) o XTM () s TCMINGTCMAX s TEOST9CrOST
160 FORMAT (10XeT30AX el sAXsF%e098XeT2011X9F6,296XeF4e242X9F%,2¢3X0
1FRe205X4F6,2)
DN 170 KP=]NPTYP
WRITE(h,162)KP
162 FORMAT(//7+10X4 *PASSENGER TYPFt415)
NT=NTIMF (K2)
NO 170 K=14NT
WoITE(641653) TRATF (KP¢K)
165 FORMAT(//410X, 'AVERAGF ARRIVAL RATE AT TIWF =1,F6,2/)
WRITE(6+115) (JeJd=1+NNNDE)
D0 175 I=1.\NODE
175 WOTTE (641235) 14 (ARATE (KPsTeJeK) ¢ J=]14NNONE)
170 CONTINUE
WwaITE(64180)
180 FORMAT(//410X,90D PATIRP ID FROM 7 TOvy)
WRITE(64115) (JeJ=14NNNDE)
DN 210 T=1.NNONE
210 WRITE(64215) 1+ (NOD(TeJ) s J=19NNNDE)
215 FORMAT (15X.1115)
RFTURN
ENnD
SIBROUTINE PXARV (NSFT.QSET)
ssansbssnt PAX ARPIVAL,..., FVENT NUMBER 2 oas#dsssses
DIMENSION NSET(1)+QSET(])
COMMON IDsTUMaTMITeJFVMNT e IMNITsUFA«MSTOP ¢MX cMXCoeNCLCToNHIST,
INNQsNORPT s NOT ¢ NPRMS ¢ NRUN ¢ NRUNS «NSTAT e OUT o ISFEN 4 TNOW,
2TREGs TFINoUXX oMPRNT ¢ NCRDISNEP yUNR (4) 9 [MMeMAXNS o MAXNS
COMMON ATRTB(10) ¢ENQ(4) s INN(4) ¢ JCELS(20022) ¢KRANK (4) ¢MAXNN(4) o
IMFE (&) sMLC(4) oMLF (&) «NCELS(20) «NQ(4) +PARAM (2044) s QTIMF (4) « SSUMA,
2(10+5) ¢SUMA(100045) sNAMFE (6) ¢sNPROJMONINDAY ¢NYR 4 JCLR G JTRIA(12)
COMMON/TURZ/ZMPT (I0410) 4NSTOP (30) 4NPX(20) s ARATF (2910,10410) 4NXRT
1(30)9D(10510) VELCINWAIT(2410) s TRATE(2410) 4NTIMF(2) 4TENSTRONST S
2NCYCL o FTIME s PMILE o MNONE ¢ NRTS 3 TNFL«NOD(10910) +NONPR,TCUTIN, TCMAX
FeTMAR(204200) ¢MAP (20420095) yMARX (20) ¢NDRW(120) o TCAPMOND(10410)
4o THMINGNVE 49 TLAST(10) « TFL(10410) «NWNI(9Q) +SARLY (90) 4 ISERV (90) 4 CRX
SeCAXs JHOLD (20) ¢ MHOLD

STORE PAX DATA IN FILE ?
COLI ECT STATISTICS AMD UPDATE COUNTERS

1=JTRIB(2)

J=JTRIB(3)

Kp=JTRIR(4)

JTRIB(1)=K>

CALL FILEM(2+NSETSQSET)

K=NOD (I+J)

NWOD (K) =NWID (K) +1

IF (NWOD(K) ,EQ.1)FARLY (K) =TNOW
NWATT(KPsI) =NWATIT (KP4T) ¢]
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CalL HISTO(TNOWsN.5040,5091)

AT=TNOW®Z2,

KT1=INT(AT)+2n8 (I=-1)+461

KT2=KT1+200n

Wi=FLOAT(NWNAIT(1.1))

W2=FLOAT(NAAIT(2,1))

CAaLL COLCT (WlexT1)

CaLL CNLCT(W2.KT?)

RFTURN

EnMD

SHHRROUTINE VEHNP (NSET,,QSET) :

anpnpsnons VEHICLE DFPARTS EVENT NUMBER 3 ##sscasses

NIMENSTION NSET (1) +0SFET (1)

DIMENSION NLOAN(1N) «NHOLD(20)

COMMON TN TMeINTToJEVMT s JIMNITeMFAsMSTOD ¢MX cMXCoNCLCToNHIST

INND oNORPT g NOT « NPMS s NPUN s NRUNS «NSTAT «OUT ¢ ISFFEN« TNOW,,
2TPEGsTFINgUXX «NPONT e NCRDIINEP g VNQ (&) o IMMeMAX NS e MAXNS

COMMON ATRIB(10) +ENQ(4) s INN(4) ¢ JCFLS(2022) yKRANK (4) sMAXNN (4) o
IMFE (4) 9MLC (4) oMLE (4) oNCELS(20) «NQ(6) +PARAM(20¢4) 9ATTMF (4) o SSIIMA
2(10+5) sSUMA (10NN 45) «NAMF (6) ¢ NPPOJoMONeNDAY yNYR, JCLRGJTRIR(12)
COMMON/TURS/MRT (30410) ¢NSTOP (30) 4MPX(20) ¢ARATF (2910,10,10) 4NXRT
1030)9D(10410) ¢ VELCINWAIT(2910) ¢ TRATE(2410) ¢NTIMF(2) e TENSTLCCOSTe
PNCYCLFTIME o PMILE oMMONE s NHTS o TOEL oNDD(10010) oNONPRTCMIN TCMAY
FeTMAP (2092N0) «MAD(20+2005) s MAPX (20) sNNDRW(120) 4 TCAD,MPAD(10,1N)
4y THMINGNVE4«TILAST(10) 4 TFL(10410) yNWOI(90) 9EARLY (90) s ISFRV(9N) 4CRX
SeCAX 9 JHOLD (20) 4MHOLD ’

NETERMINE ORIGIN AND DESTINATION NONES FNOR THIS FLIGHT
LNAD=0
0n 1 I=1s10
1 NLOAD(I)=0
LN=JTRIR(2)
12T=JTRIB(3)
1sTOP=JTRI3(4)
INRG=MRT (12T, 1<TOP)
ISNXT=ISTORe1}
12=HSTOP(IRT)

NETFRMINE IF THIS IS A FAKE FLIGHT (ORIGIN = DESTINATION)
IF{IORG.EQ YRT(IRT,ISNXT))GO TH 9

1F NORODY IS GOING TO SHOW UP,, .60
RATE=0.
DN 100 KP=142
CALL GRATE (KP+TORGMRT (TToISNXT) 4 TNIW,RPAX)

100 RATE=RATE+PAX

IF(RATE.LE.N.)GN TO 1
NFCTDE TO HOLDO 0P GO
TF HOLD STORE NFEW NDEPARTURE FOR TNDW+0.05 AND RETURN
TF nD CONTINIE
IF(MHOLN.L7T+0)R0 TO 11
KNEST=MRT (TRT 4 ISNXT)
Call HOLD(TORGAKNESTeLDe<HOLD)
IF(KHOLD.EY.0)R0 TN 1
NHOLD (LD) =NAOLND(LD) 1
ATRIB(1)=ATIR(]1)+,05
CALL FILEM(14NSET.NSFET)
6n TO 10

11 CONTINUE ' .
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DETFRMINE WHICH 0D PAIRS WILL BE LOADE)D
JHOLD (LN) =0
T1=1ISNXT
IF(IRTFQMXRT(IRT))III=]
Dn 2 J=T11,12
INEST=MRT (73T, .})
INX=NON (103G, INFST)
2 1SERV(INX) =1

SEADCH FILE » Foo pAx Tn (JAD
KrOL=MFFE (2)
IF (NPX (LD) ,GE.TCAP)GO TO 3

7 IF(KCOL,EN,N)AN TO 13
IND=LOCAT (P KONL ¢ 29 NSETHASET)
JNPG=NSET (TND)
1F(JORGNF,IO0ORG)IGO TO &
JOAEST=NSET(TNN«])
DN S J=1l.t2
IF(JOEST.EVMRT(IRTs)) 30 TO A

S CONTINUE
60 TO &4

A CANTINUE
IF(NLOAD(JDEST) «GE.MPND (JORGLJNFSTIIGO0 TO 4
KeOL1=NSET (IND+3)

PFEMNVE PAX F20M FILE 2
CaLL PMOVE (KCNL ¢ 2+NSFT4QSET)

uPNATE CNOUTERS AND LNAD PAX INTO FILF 3
ATRIB(2)=Tu0W
JTRIR(4)=L)
Kp=JTRIR(1)
CaLL FILEM(34NSETSNSET)

UPNATE COUNTERS

NIL OAD (JDEST) =NLOAD (UDFST) *]
NOX (LD) =NPX (LD) +}
LDAD=L0AD+)

INX=NOD (102G, JNEST)

NWOD (INX) =NWOD(INX) =1

EARLY (INX)=ATOTR (1)
NWAIT(KPsINRG) =NWATIT (¥PoIORG) =1
IF(NPX(LD),GE.TCAP)GN TO 3
KrOL=KCOL1

G0 70 8

KrOL=NSET (TND+3)
IF(KCOL.LT,7777) GO TN 7
CONTINUE

PR

COLI ECT LOAD FACTNR STATISTICS
A=FLOAT (NPX (LN))
B=FLOAT(ICAP)

F1.0AD=A/B

CALL COLCT(FLOANL94)

CaLL COLCT(FLNANG94+IRT)
ATITNO“/.‘;

KT=INT(AT)

CALL COLCT(FLNADKT+441)

CALL HISTO(FLOANG0.0540.0543)

Q CONTINUE
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SET UP ARRIVAL FVENT
JTRIB(1)=4
JIRIB(2)=L"
JYRIB(3)=T12T
JTRIB(4) =TSNXT

IF(IORG.EQ MRT(IRTLISMXT))IGO Tn 1S
FYIME=FTIMT+TFL (TORGWMRT (IRT(TGNXT))
NCYCL=NCYCL+1

15 CONTINUF

TLOAD=FLOAI#(TCMAX=TCMIN)
THOLD=TLAST(INRG) + THUTN=(TNOW+TLOAD)

1€ (THOLD LT 0. ) THNL.N=N,
ATRIB(L)STNOWLTLOAN+THOL D¢ TF (TNRGeMRT (IRT« TSNXT))

GTOPF ARQIVALI EVFNT
CALL FILEM(14NGET,NSET)

UPNATE SCHEDULE Map IF THIS IS FIRST ITERATION OF CASE

IF(IORG.EN,MRT(IRTLISNXT)IGO TN 10
TLAST(IONRG) =TNNW+TLOAN+THOLD
I (NRUNGT,1)6N TO 10
TNEX=TNOW+TLOANSTHNOLD

MAPX (LN)=MaAPX (1.N) ]

N=MAPX (LD)

TMAP (1.D4N) =TNF Y

MAP (LDeNs 1) =]

MAP (LDeNe2) =1INPG

MaP (LDeNs3) =L0AD

MAP (LDeN94) =NPX (LD)

MAP (LDeNoeS) sNHNLD(LD)

NHOLD (LD) =n

10 CONTINUE

RrTURN

EMD

SUBROUTINF VEMAR(NSFT.QSZT)

atesatensd  JVEHTCLF AIRIVES EVENT NUMBER 4 #Hacssnes

AIMENSION NSET(1)«ASFT(1)

COMMON TO 9TV INITeJEVNT 9 IMNIToMFASMSTOP 4MX oMXCoMCLCTeNHIST,

1NN GNORPT ¢ NNT ¢ MPOMS ¢ NPUN s NRUNS «MSTAT s OUT o ISFFN o TNOW

PTAEGes TFINs UXX o NPOMT «NCRDRsNEP ¢ VNQ (4) o TMMoMAXNS s MAXNS

CNAMMON ATRTR (10) «EMNO(4) s INN(4) ¢ JCELS (€N e22) «KRANK (&) ¢MAXNN (4) o
IMEE (&) yMLC(4) ¢MLE (4) oNCELS(20) «NR(4) sPARAM(D044) sQTIMF (&4) + SSIIME
2(10,5) sSUMA (10NN 45) ¢NAMF (6) ¢NPROJGMONINDAY (NYR, JCLR, JTRIR(12)
COAMMON/TURZ/MRT (30410) «NSTOP (3N1) ¢NPX(20) «ARATE (29104104100 ¢NXRT
1(30)90(10610) «VELCoNWATIT(2910) ¢ TRATE(2410) qMTTMF(2) o TCOSTCCNSTe
2NCYCL sFTIMT o PMTLF o MNANE y NRTS 4 TRFL 9NOD(10910) «NONPRoTCMTNe TCMAX
A TMAP (205200) 4MAD (20420095) sMARX (20) «NDRW(120) o TCAP.MPAN(10410)
GoTHMINGNVE A4 TLAST(10) «TFL{10,10) ¢NWDD(Q0) 9SARLY (90) 4 ISFRV(90) 4 CRX

SeCAX s JHOLD (20) ¢MHOLD

NDECNDE BUFFE2 ARRAY
LD = AIRCRAFT NIMSER
TRT = ROUTE NUMRFR
INDFST = NODE NUVRER
LN=JTRIR(2)
12T=JTRIB ()
1sTOP=JTRI(4)
INFST=MRT(TRTLTSTOP)
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LNAD=0
IF (NRUN,GT.1)Gn TO 10

1JPDATE SCHED JLE MAD

1n

MAPX (LD)=MAPX (LD) +1
N=MAPX (LD)

TuaAP (LD«N) =TNOW

MaP (LDeNel)=0

MAP (LDeN92)=INFST
MAaP (LDsMs &) =NPY (D)
CONTINUF

Kx=IRT#3

SEARCH FILE 3 ANN REMOVF PAX WHN UNLNAD HERE

3

KrOL=MFF (3)

IF(KCOL.EQ,n) GO TO |
IF(NPX(LD).EQ.N) GO TN 1
IMD=LOCAT(24KCOL 94 «NSFT9ISET)
JN=NSET (INY)

IF(JDNELTIGO TN 2
JNEST=NSET (IND-1)
IF(JOESTNZLINFST)RO TO 2
KrOL 1=NSET (INPs+ 1)

CALL PMOVE (<CNOL +39NSFTHOSET)
Ke=JTRIR(])
KN=NOD(JTRTR(?)+JTRIR(3))
Ky=(KD+41)#3
TwAIT=ATRIA(2)-ATRIB(Y)
ToIDE=TNOW-ATRTIR(2)
TTRIP=TWAIT+TRINE

NPX (LD)=NPX(LD) =]
PUILE=PMILZ+D( ITRIR(?) +JTRIB(3))
LOAN=L0AD+

AT=2.#ATRI3(])

JT=INT(AT)

KT=JT+20% (<2=1)+401]

CoLi ECT STATTISTICS

CalL COLCT(TWATT.1)
CaLL COLCT(TRINE.?)

CALL COLCTI(TTRTIP,Y)

CALL COLCT(TWATT«KX+1)
CALL COLCT(TRINE «KX+2)
CaLL COLCT(TTPTPKX+3)
CaLL COLCT(TWATT KY+1)
CALL COLCT(TRTINE «KY+2)
CALL COLCT(TTRIP,KY+)
CalL COLCT(TTRTIP.KT)

CALL HISTO(TTRIP,0,2040.2042)

IF(MORYW(IRT) .GToNICALI HISTO(TTRIP.0.20450.20NNRW(TRT))
IF (NDRW (KD+30) ,GT.0)CALL HISTO(TTRIP+0,2050,20NDRW(KN+30))

KroL=KCAL1

5n T0 S

KANL=MNSET(TND+1)
IF(KCOL.LT.7777) GO TN 3
COMTINUE

MAP (LDeN+3) =LNAD

SETHP DEPARTRE FVENT

ATRIB(1)=TVOW+TCUIN
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JTRIB(1)=3
JTRIB(2)=LD
JTPIB(3)=12T
JTRIB(4)=1ISTOP

CHECK IF THERE ARE MORE STOPS ON THIS R0UTE

IF THIS IS LAST STOP GET NEXT ROUTE
IF(ISTOP.LT.NSTOP(IRT))IGI To 4
JTRIB(I)=MXRT(IRT)
IF (NXRT(IRT) ,LF.N)CALI X?UTE(Ln.rnrsr)
JIRIB(4) =]

IF THE FIRST STNP OF NFXT ROUTE 1S NNT THIS NODE Capp Pnnon
IF(MRT(JTRT3(3)41) «NFLINEST)CALL FQROR(17)

STORE DEPARTIRE FVENT
4 CrLl FILEM(1,NSET,QSET)
ReTURN
FMD
SHRROUTINE GENPX (NSFT.NSET)
nanprotoaadannssnt GENFRATE PASSENGFRSe,,EVENT NUMBER § #onsanssss
DIMENSTION NSET(1)+NSET(1)
DTMENSION 2(10)+2X(10)
CNMMON to.rw.INIT-JEVNT-JMNIToMFA.M%TOD.MX.Mlc.MCLcT.NHIST,
INOQONOQPToVOTQNP’M%ONDUNONRUNQQNQTATOOUT'IQFFDQTNOH'
PTREGITFINg UXX «MPONT oNCRDIINER ¢ VNQ (4) 9 [UMoMAXNS s MAXNS
COMMOM ATRTR(10) 4FNO(4) s INN(G) ¢ JCFLS (2N 4722) «KRBNK (4) ¢MAXNN (4) o
IMFE (&) oMLC (%) oMLF (4) +NCELS(20) «NO(6) +PARAM (2N 44) sOTTIMF (&) «SSIMA
2(1065)sSUMA(1NNN,S) «NAME (6) s NPRNJ¢MNVINNAY 4NYR 4 JCLR,JTRTIR(17)
COMMON/TUBZ/MPT (10410) 4NSTOP (3N) JNPX(20) ARATF (P910410410) ¢NXPT
1(30)eD(10510) sVELCNWAIT(2510) ¢ TRATE(Ca10) oNTTMF(2) 4 TENSTCCNSTe
2NCYCL oaFTIME o PMTILF o NNNNE ¢ NRTS o TAFL 9NOD (10910) sNONPRGTEUTNG TCMAX
FeTMAP (200200) «MAD (20,2005) 9MADX (20) oNDRW(120) « TCADMOND(10,10)
49 THMINGNVE A TLAST(1N) o TFL(10410) oNW0OI(G0) 9EARLY (90) s ISFRV(9N) 4CRX
SeCAXs JHOLD (P20) «MHOLD
KP=JTRIR (4)
NT=NTIME (K2)

TF TNOW IS PAST LAST DATA POINT RETURN
1F (TNOW,GE, TRATE (KPyNT) ) RETURN

STORE NEXT CALL TN GENPX
ATRIB(1)=TYOWsTDFL
CALL FILEM(1,NSET.NSET)

STEP THROUGH 0D PAIRS TJ
NO 100 I=]1.NNONE
DO 101 J=1.NNONE
IF(I.EQ. )59 TO 101

SET UP DATA FNR PAX ARRTVAL EVENT
JTRIB(1)=2
JTRIB(2)=T1
JTPIB(3)=J
JTRIB(4)=K>
20 CONTINUE

COUNT DATA PAINTS IN THTS INTERVAL
FOR EACH SEGVYENT DFTERMINF THE APRIvAL HATE FOR THE FNDPOINTS A AMD R
T=THOW
CalLlL GRATE(KPoTs JsTeRATE)
A=RATF
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T=TNOW+TNE! .

CalL GRATE(KP+TsJeToRATF)
R=RATE

NN 1 K=141n0
IF(TRATF(K?4,K) ,GF . TNOW)GI TO 2
CONT INUE

K=K
IF(TRATF (KPeK) NFoTNNW)K1=K=]
PN 3 K=1le10
IF(TRATE (KD 4K) ,GF.TIGN TI &
CAMNTINYFE

K?2=K

L=x2-r]

N(1)=TNOW

Q(L+1)=TMNOW+TPFL

Px(1)=A

Rx{L+])=R

IF(LeFEQ,1)530 TN =

NN T M=p.L

Qe (M) =ARATZ (KD T oedoK]eM=])
Q(M)STRATE (kP 1eM=1)
CONTINUE

C DFTFRUINE THE wUMRFP ANN PLACEMENT OF ARIIVALS IN FACH SEGMENT

NA S K=1lsL
NFL=0(K+1) -3 (K)

A=RX (K)

R=RX(K+1)

APARZ (A+B) /2,

T=0(K)

TAND=REX (A3AR)
IF(T+TADDAT.N(K+1))6GN TI 10
T=T+Tann

CalLL DRAND(ISFFN,R)
IF(AFQ,B)37 TN 12

S=SART ((1l=2)# (avuD)+ (Pa(Ine2)))
Tw=(DEL)/ (3=A) #(S=p)

nn T0 13

12 Tu=NEL*A
13 ATRIB(1)=Q(X)+TW

c

Cc STNDE ARRIVAL: FVFNT

10
101
100

TF(TW.LTe923999,) CALL FILEM(1,MGFT4NSZT)

Gn 10 &

CONTINUF

CAMTIMIF

CNMNTINUE

CONTINUE

RETURN

EMD

S1BROUTINE GBRATE(KPeTeJeToRATF)

NDIMENSTION NSET(1)e SFT(1)

COMMON TDg TV TNITy JFVMT e JMNIToMFAoMSTOP ¢MX (MXC o NCLEToNHIST
INDDGNORPT o UNT « MPIMS s MRUN 9 NRUNSG JMSTAT s 0T ISFFN, TNOW,
PTEFGsTFINGUXX oNPINT JNCRNIINEP 4UNQ (4) o [IMMeMAXDS ¢ MAXNSG

COMMOM ATRTIR(10) oFMO(4) « INN(4) « JGFLS (2N e22) «KRANK (4) ¢MBXNN (&) o
IMFE (4) oMLC (%) «MLF (4) oNMCELS(20) «NQ(4) sPARAM(2044) sOTIMF (4) s SSUMA
2(10e5) «SUMACLINNNLS) ¢MAMF (6) ¢NPOOJ MNNINDAY JMYR 4 JICLR JTRIR(12)

CAMMON/TUSZ/MRT (A0,10) ¢NSTOP (30) JNPX(E€N) «ARATF (Pe1Ne1Ne10) JNXRPT
1(30)oD(10410) «VEILC,NWAIT(2010) o TRATE(Z410) ¢MTIMF (2),TENST.CONST,

.
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PNCYCL o FTIME PMTLF ¢ MNNNE G NRTS,TAFL «NND (10010) «NNNPRTCMTIN, TCMAY
FeTMAP (204200) ¢UAR (2N 420045) ¢MAPX (20) dNNRW(120) « TCARP,MPAD(10,10)
4o THMINONVEA S TLAST(10) o TFL(10510) «NWOD(Q0) +EARLY (90) « ISFRV(9N) 4CRX
SerAX e JHOLD (20) ¢MHOLD

GET RATE«.«LINEARLY INTFRPILATE
XP = PAX TYPZ

= ORIG

= DEST

= TIME

= RATE

O 4

RATE=0,.
MT=NTIMF (KD)
NO 1 K=1eNT
IF (TRATE (K2 4K) ,EN.TIGN TI 2
IF(TRATF(KDeK) ,GT.TIGN TD 3
1 CONTINUFE .
RFTURN
2?2 PATE=ARATE(KP¢Te.J9K)
RFTURY
3 IF(KeGTL1)50 TN &
RFTURN
4 RATE=ARATE (KPeToJeK=1)+(T=TRATF (KO K=1))* (ARATE (KPoT s JoK)
1=ARATE(KP 9T 9JeK=1))Z(TRATE(KP oK) =TRATE (KPoeK=1))
RFTURN
EnMD
SHRROYTINE XRUTF(LXeTX)
CAMMON TDeIMeTMIT o JFEVNMT o JMNIT ¢MF A oMSTUD ¢MX ¢MXC oeMCLCT 9NHEIST,
INNQoNORPT 4 NOT s NPRMSG ¢ NRUN s NRUNS «NSTAT s OUT 9 ISFEN« TNOW
2TAFGeTF INgUXX oMPRNT o NCRNIAINEP JUNQ (4) ¢ IMMeMAX DS ¢y MAXNS
COMMON ATRTR(1N) «FMNA(4) « INN(L) ¢UCFLS(20472) ¢KRANK (4) ¢MAXNN(4) o
IMFE (4) oMLC (6) yMLF (4) «MCELS(20) «NQ(4) sPARAM(2044) sQTIMF (4) « SSUMA
2(1065) 9ySUMA (10NN 45) MAME (6) ¢NPROJJMONINDAY ¢NYR, . JCLR,JTRIB(12)
COMMON/TURS/MRT (30410) ¢NSTOP (30) 4NPX (20) « ARATE (29104104101 4MXRT
1(30)sD(10410) e VELCoNWAIT(2010) «TRATE(2410) yNTTIMF(2) 4 TCNSTCCNST
PNCYCLoFTIME o PMILF oMMONE ¢ NRTS o TREL 9NOD (10¢10) «NONPRyTCMING TCMAYX
FsTMAP (20+200) oMAD (20420005) o MAPX (20) oNNRW(120) s TCAPMPAD (10410}
Lo THMININVE A4 TILAST(10) «TFL(10410) sNWOD(O0) sEARLY (90) s ISFRV(90) 4CRX
SeAX e JHOLD (20) ¢MHOLD

NETFRMINE THT NFXT ROUTE FOR DYNAMIC RIUTING OPTINN
LX = AIRCRAFT NU"BFR
IX = PRESENT P0SITION

1=1IX

L=LX

cM=0,

NETFRMINE J AND K SUCH THAT THE MARGINAL COST/SERVICF TIME
FOR IJ AND J< 1S MAXIMIZEN
NN 1 JX=14uNONF
IF(T.EN,JXIGO TO 1
S1=TNOW+TCHIN
CALL MCOST(S1s74JXsCD)
S2=S1+TFL(TeJX)+TCMIN
NN 2 KX=14.UNONF
IFCIX.ENKXIGN TN ?
CALL MENST(S2e.)XeKXe?) .
CMXS(Cl+C2) /7 (SP+TFL( JXeKX)=S1)
IF(CMXLE.CMIGN TD 2
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CM=CMX

J=JX

K=KX
? CONTINUF
CONTIMUE
M= (2% ) =]
IF(CM,GT.0,)GN TN A
NSTOP (M) =2
MOT (Mel) =]
MDT (M 2) =T
NYRT (M) =0
JTRIB(3)=M
GO TO &
/& CNNTINUE

—

UPDATE SERVIZZI pFNNING FLASS
IN1=NOD(1e )
IN2=N0OD(Jy <)
IN3=NOD (e <)
ISERV(IN1) =0
ISFPV(IN2) =0
IF (NRTS+2) 3e3e5
S CAMTINUF

NONSTOP SFRVTICE ONLY«oSFT JP 2 NNANSTOP RNOUTES
=Me]

MeT (My1) =1
MaT (Me2) =Y
MOT (Mel) =y
MDT (N+2) =K
NSTOP (M) =2
NQTOP (N) =2
NXRT (M) =N
NXRT (N) =0
JTRIB(3) =M
G TO 4

3 CNONTINUE

ONE STOP SERVICF,.SET UP ONE 2 STOP ROJTF
NeTOP (4) =3
MaT (M, 1) =1
MOT (My2) =y
MDT (Me3) =K
NYRT (M) =0
JTRIB(3) =M
MPOD(T«J)=TCAP
oD (JeK) =T1CAP
IF(I.FQ,X)30 Tn &
ISERV(IN3) =0

PHT LIMITS ON NUMRFR NOF IK PAX Tn 30aAR)
MPOD (I 9K) =TCAP=NWON(TN])
IF(NWOD(INY) oGTNWOD(TD2))IGO TN 4
MDOON(1eK) =TCAR-NWOD (TN2)
4 CONTINUE
JHOLD (L) =K
RFTURN
END
SHURROUTINE MCNST(SeTe.0eC)
CNMMON TDoTMeINIT o JEVMT o JMNIT ¢MFAoUSTOP 4MX qMXCoNCLEToNHIST



DOOND

n

n
<
K

30

35

INND GNORPT ¢ NIT yNPOIMS ¢ NPUN «NRUNS ¢ NSTAT « 01)T o ISFEN 4 TNOW,
PTaFGsTFINgUXX oNPRNT ¢NCRDISNEP s VNQ (4) o 1 MM MAX NS s MAXNS

COVMON ATRTI(10) ¢ENQ(4) s INN(4) ¢ JCELS(20422) JKRANK (6) ¢MAXNN (6 4
IMFE (4) oMLEC (4) oMLE (4) «NCELS(20) oNQ (&) PARAM (20 44) o QTTIMF (4) o SSIHMA
2(1045)sSUMA(100N45) ¢NAME (6) 4 NPONJoMONINDAY (NYR 4 JCLRGJTRIR(12)
CAMMON/TURS/MPT (30,10) 4NSTOP (30) NPX(20) ¢ ARATF (291041N410) NXRT
1(30)9D(10610) «VELCINWAIT(2410) TRATF(2410) dNTTMF(2) 4 TANSTCNST,
PNEYCLsFTIMT s PMILF o MNONE ¢ VRTS o TNEL «NND(10610) «NONPReTCM TN TCMAX
FeTMAP (209200) ¢MAP (20470095) oMARX (20) s NDRW(120) 4 TCAP,uPAD(10410)
GoTHMIN G NVE 44 T1 AST(10) 4 TFL(10410) sNWOD(90) ¢ FARLY (90) ¢ TSRFRV(90) . CRX
SeCAX9 JHOLD (20) ¢MHOLD ’

ETFRMINE MAIGINAL CNST AT TIME s FoR 2D PAIR 14

C=0,

K=NOD(14J)

1F (ISFRV(K) .EN,N) RETURN

R=0,

nn 1 kP=1,2

CoLlL GRATF (<PeT9s.JeSeRATF)

R=R+RATF

W1=FLOAT (N4DOD(¥))

W=W]+R% (S=TVOW)

C=We (CAX+ (7AX/2,) #(S=FARLY (K)))

RETURN

ExD

SHBROITINE HOLLN(TeJebl «KHOLD)

COMMON TDeTUeINTIT o JEVMT ¢ IMNIToMFASMSTOP ¢MX ¢MXCoNCLCToNUIST,

1MAR S NORPT g NAT «MPRMSG g MPUN o NRUNS eNSTAT s OUT 9 ISEFN ¢ TNOW,
PTIEGITFINGUXXMPONT ¢NFrRNIINEP UNN (&) 9 IMMoMAXNS e MAXNS

CNMMON ATRT3 (10) oEND(4) s INN(4) ¢ JCFLS(20422) JKRANK (4) ¢MAXNN (L) o
IMEE (4) oMLC (G6) ¢MLE (4) ¢NCELS(20) oNQ(4) «PARAM(2044) sQTTMF (4) 4 SSHIMA
2(1045) 9SUMA (10NN 5) ¢NAME (6) ¢ NPOD Jo MNNINDAY (NYR, JCLR, JTRIRB (17)
COMMON/TURS/MRT (30410) ¢NSTOP (IN) 4NOX(Z20) sAQATF(Pe1Ns10410) ¢MXRT
10(20)9D(10410) «VELCNWAIT(2+10) ¢ TRATE(2410) 4NTIUF(2) «TrOST.CCNST,
2MEYCL o FTIMT « PMTLE yNNNNE ¢ NKTS TAEL 9 NND (10910) «NONPRGTCMING TCMAY
FeTMAP (2042N0N) oMAR (20e20095) 4MARX (20) ¢ NDRW(120) ¢+ TCADMOND (1041 N)
G4 THMINOMVE 4o TLAST(10) o TFL(10410) oNWDI(90) e EARLY (90) ¢ ISFRV(90) 4 CRX
SeCAX e JHNLD (20) 4MHOLD

ETFRMINE WHETHFR® TO HNLD DR GO ON FLISHT FRoMm T TO )
HOILD = 1.0, 401D
HOLD = N,..%0
K=JHOLD (L)
IFLAG=K
KHOLD=0
T1=0.
T2=20.
TE=0.
T‘l’o.
M=1
N=J
S=TFL(M4N) + TCMTN
My=NON (MeN)
NI =NWOD (MN)
IF(NRTS+2) 30430435
TFE(KeFQ.0) NW=NWeNOX (L) .
IF(KeEQe0s VRGIFLAGINE K IR ,FNK) GO To 35
I«=NOD(TsK)
Nwu=NW+NWOD ( IK)
AANTINUE
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IF(MW,EN.0)50 0 3
WN=FLOAT(NA)
IF(NHOD (MN) EN,N)GD TN 3%
W=THNOW=FARLY (MN)

Gn TO 37

IF(KeFQ,0)530 TN 20

IF(KeGTo0) w=TNNY=EARLY (IX)
CONTINUE

NJK=0

T k=0,

IF(IFLAGFER«X)GO TO 2

P IK=S/Wi#WN

NJK=INT (PJ<)

T 1K=S

IF (NWeNJK-TCAP) Ao 2Ne 2N
C=CCOST+TCASTATFL (MoN) /R,
IF(C3XLEN)IBN TO 40
F=(CAX#02) /ho+ ( (G #CHORAX) /(3 ,0WN))
F=SORT(F)
WETAR=(F=(2AX/2,))/(2,#C3X/3,)
IF(CBXeFNeNIWSTAR=(P,#C) /7 (CAXBWN)

THIS§ IS A USZFUI. NTAGNNSTIC

2000

c

00

O

A\

10
20

TF(TNOWGOT o3¢ e ANNGTNIW LT 5. )WOTTF (642000) 4 WNeWIWSTAD
TE(TNOHLE L2 1R TTF (Ae2000)LoWNaWoWSTAR
FOPHUAT (SX4T543FR,4)

IF(WeTIK=USTAD) 34747
IF(IFLAG=K) 342049
IF(NW,EQ.N)WSTAR=]N,
IF(IFLAG.EN.N)IRO TN &
T1=FAPLY (M\) «WeTAR

IFLAG=0

NYsNW

wWal=WN

M=J

N=K

6n TO 1

TF(KeEN,0)52 10O 10
IF(N1.EN.0,ANN NW,FN,N)GI TO 1n
T2=sEARLY (MV) +WSTAR
IE({T1+S=T2)10e5+5

TE=Tle+S5-T2

TE1=TE® (WN+ (WN2S/W) )/ (WN1+WN+ (WNBS /W) )
IF(T1=TEL=TNOW)20,20,10

KuOLD=1

CNNTINUE

THIS IS A USSFUL DTAGNNSTIC

1000

1 (TNOW LT 43¢.0R, TNOW,GT4S4)RFTURN
TE(TNOW 6T, 2, ) RETURN
WRTTE(A910N0IMY oMW Ty JoKoTNOWeWoaTY o T29TESTE o TUK N JK o KHOLN
FOPMAT (1X9351547FR,242757)

RETURN

END

SURROUTINE OTPHT

DTMENSION NSET(1)+NSFT(1)

DIMFNSTON rTLI(lq).TTo?(:).Tx(?o).ox(ZO).KrFqu?z.ao)
COMMON JDeTUeTNTToJEVMT o JMNTITeMFASMSTOD (MX qMXCyNCLEToNHIST,
INNQeNORPT s MOT ¢ MPRMS 4 ADIN e NRUNS o NSTAT yOUT » ISFEN 4 TNOW,



w

¢
c T

2

10

11

13

14

90n

16

910

1000

1010

168 B

2TAEGeTFINGUXX sNPRNT ¢NCRDI«NEP s VN (4) » TUMoMAX DS s MAXNS

COMMON ATRTI(1N) ¢ENQ(G) « INN(4) o JCFLS(20922) sKRANK (4) ¢MAXNN (&) o
IMFE (4) oMLC(6) «MILF (4) oNCELS(20) «NQ(4) e PARAM (2N 44) +QTTMUF (&) (SSUMA
201045)4SUMA1NNNLS) NAME (6) ¢NPRD JoMONINDAY 4NYR 4. JCLRy JTRTR(12)
COMMON/TUBZ/MPT (30410) yNSTOP (30) yNOX (20) sARBTF (2910410¢10) oNXRPT
1(30)sD(10510) sVELCNWATIT(2010) ¢TRATE(C410) ¢NTTIMF(2) 4 TCOSTCCOST,
PNCYCL JFTIME (PMILF JMNONE  NRTS,TNFL ¢NOD(10510) «NONPR,TCMTN, TCMAY
Yy TMAP (209200) 4MAD [20+20095) ¢+ MAPX (20) +NNRW(120) ¢ TCAP«MPAN(10410)
Lo THMINGNVE 4o TLAST(10) o TFL(10410) eNWOI(90) sEARLY (90) ¢ ISFRV (90) ,CRYX
SeCAX s JHOLD (20) «MHOLD )
DATA TX/* ot SYIISTEMITRIPY " TIt,IMFS o tACFUT oAl
Jep0R] e,

19VALSY .t LOAE, 00 FA?4ICTOR 4 ReGIQUTEI 4t TIMF 940 HRSe,

20 OD "9'PATRYr TO/

NATA PX/? 10,0 2%, 3',' 40, S'o. 60 7

1o0 8, Qe 100 1lt,r 120,00 (30,0 14ter 15

?l' 16"' 17'.' ‘8’.' 19". Zﬂ'/ )

Xxo=FLOAT (NJUNS)

NRYCL=NCYCL/NRIINS

PMILE=PMILE/XP

FTIME=FTIM=/XP

Te= (FLOAT(NCYCL) ) #aCNST+ (FTIME#TCOST)

PuzTC/PMILE

WRITE(H.]) .

FORMAT (1H1 440X+ 22HaaSTMULATION RESULTS##//)

nn 2 I=1e22

RANSPOSE HISTOGRAM NDATA

NN 2 Jzle20
KAFLS(I4J) 2JCFLLS (J4 1) /NRUNS
¥=NCELS(])

K2=K+2

NN 3 J=1+K2

WOITE (644) Jo (JCELS(To ) o I=L920)

FARMAT (1Xs2115)

WOITE(6410)NCYAL

FORMAT(///77/+30% 4 AVFDAGE NUMBFR OF CYCLES = e18)
WAITE(S«11)FTIVE ’
FORMAT (30X, 'AVFRAGF FLIGAT TIMF = 1,FR.?)
WRITE(6412)PMILF

FORMAT (30X *AVFRAGE PASSENGER MILFS = 1,FR,0)
WRITE(6.1)TC

FARMAT (30Xe *TOTAL DIRFCT OPERATING COST = ¢,FR,0)
WRITE(6.14)PM

FORMAT (30X, *DIRFCT COST PER PAX MILE = ' FR,4)
PN 15 KP=1.2

WRITE(64900)

FNRMAT(//77)

DN 16 NN=1,.6

NS=20# (NN<1) +2n0n# (KP=]) +46]

NF=NS+15

WPTITE (64910) (SUMA(NS) «NINSeNF)

FARMAT (1X916F6A,0)

CONTINUE

WOITE(6410n0)

FORMAT (1H1e/// 40X 16H#2#SCHEDULE MAP")
DN 100 LD=1sNVFH
IF(MAP(LDe141)LT.0)GN TI 117
WOITE(641010)LN .

FARMAT (///7440X 4 tNEHTIALE*9164/7)
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Dn 110 I=1.20n
IF(MAP(LDyTe1))1124102,104
102 WOTITE(5,1020)MAB(LNGT42) o TMARP(LN,T) 4MAP (LD, T44) ¢MAP(LN,T,2)
1020 FNORMAT (SXe1ARPIVF NONEtel4et AT TIVE®FS,2e0 WITH' T4,
1* ON BOARH HNLOAD Y4 14)
GO TO 110
104 WoITE(6,1025)MAR(LN,T42) o TMAD(LNyT) ¢MAD (LN T44) ¢MAD(LNGT47)
1 MAP(LD,I,53)
1025 FORMAT (SX4 | EAVE NONEYeI4er AT TIVEeoFS,2e0 WITH' T4
1+ ON B0ARD LOAD®eJ4s? AFTFR HO_DING t1eT4et TIMFSH)
119 CONTINUE .
112 CNNTINUE
100 CNONTINUF
o
C SET UP ACTUAL PAX ARRIVAL HIST0GRAM
DN 19 JW=1,15
19 TTLI(JUW)=T¥ (1)
nn 20 Jw=2,.5
20 TTLI(JUW)=TX (JW+S)
Dn 22 Jw=1.5
22 TTL2(UuW)=TY(])
TTL2(2)=TX(186)
TrL2(3)=TX(17)
DN 23 Ku=1.22
23 KrELS (K& 1) SKAFLS (KGe1) #2
CALL HPLOT(NCFI.S(1)+2eKCELS(1¢1)46.040,50eTTLYCTTL?)

o0

SYSTEM TRIP TIMF HISTONRGRAM
nn 25 Jw=1.15
25 TTL1 (UW)=Tx (1)
TTL1(3)=TXx(2)
TrL1(4)=TX(])
nn 27 JW=1,3
27 TTLI(UW+S)=TX (UW+3)
CALL HPLUTI(NCFILS(2)+24KCELS(142)00.090,204TTL1.TTL2)

o0

ROUTE TIME HISTORDAM
TTL1(2)=TX(14)
TTL1(3)=TX(15)
IF(NRTS.LE,N)GN TO 32
DA 30 JW=]1,NRTS
1€ (NDRW(JW) .EN,0)GO Tn 31
TTLY (G) =PX ( JW)

K=NDRW (W)
CALL HPLOT(NCFLS(K)*24KCELS(1eK) 90,000,209 TTLY,TTL?)
31 CONTINUE
3N CANTINUE
32 CONTINUE
c
£ 0N SAIR HISTAGRAM
TrL1(2)=TX(1R)
TTL1(3)=TX(19)
NN SO0 K=z=1.NODPR
M=NDRW (K +3n)
IF(M.EQ,0) 50 Tn 51
NN 70 1=1,uNONF
DN 70 J=1,uNODF
IF(NOD(I+J) 4ENLKIGN TN RO
70 CONTINUE
RN CONTINUF



v

o

51
50

TTLL (L) =TX ())
TF(KeLE,20)TTLY (4) =PX (K)

TTL1(9) =PX (1)

TTL1(10)=Tx (20)

TrL1(11)=Px (J)

CALL HPLOT(NCFLS(M)+24KCELS(1eM) 90,000,20¢TTLL1oTTL?)
CONTINUE

CANTINUE

LOAN FACTOR HISTNnlRAM

2]

250

00 ~ » )

2n
10

PN 28 JN=1,15

TTLL (W) =Tx (1)

TTLI(3)=TX(2)

TTLL(4)=TX ()

THLI(S)=TX(1])

TTLI(6)=TX (12)

TYLI(T)=TX(13)

Do 29 Ju=1,5

TrL2(UW)y=Tx(1)

CALL HPLOT(NCELS(A) +2KCELS(193)90e0¢0,05¢TTLLITTL2)

RFTURN

FnD

SURROUTINE HISTO(X1sA4W,\)

NTMENSION NMSET (1) 40QSFT(1)

COMMON TDoTYeINTTaJFVNT o JMNIToMFA«MSTOD MX oMXC oNCLETNHIST,
INNQ «NORPT g NOT o NP IMG g NOUN ¢« NRUNS «NSTAT «OUIT s ISEFNe TNOW,
PTAEGoTFINs WYX o NPINT ¢NCRNDIINEP ¢ UNQ (4) ¢ [MMeMAXNS ¢ MAXNS

COMMON ATRTI(1N) ¢ENO(4) e INN(4) « JCELS(2N22) KRANK (4) ¢ MAXNN (&) o
IMFE (&) oMLC(4) oMLF (4) «NCELS(20) «NQ(4) «PARAM(20,44) +OTTMF (4) (SSUMA
2(1045) 9SUMA(1NN04S) yNAME (6) ¢NPROJ¢MONINDAY (NYRy JCLRo JTRIB(12)

1F (N=NHIST 11.112

WRITE (NPRNTe250) M

FORMAT (1X4 *ERPNR IN HTISTOGRAM®14//)

cALL ERROR(62)

I1F(N)2¢2+3

X=X1=A

IF(X) 69797

1c=1

Gh TO 8

1C=X/We2,o

IF(IC=NCELS(N)=1)84+8¢9

1C=NCELS (N) 2

JCELS(NJICYSJUCELS(NsTC) +]

RFTURN

EMD

SUBROUTINE HPLNAT(MNPTSITARy XA XWTITLENTITLF2)

GFNERALTZEY HTSTNGRAM PLOT

DIMENSION LINF (S5N) ¢ XLTNE(S50) ¢ TTAB(SN) o TITLEL(1S) o TITLE?(S)

DTMENSION =Tas(30)

DATA KRLANC/Y 0/ 4KAST/V80/3KX/ X/ 4 LENN/SO/M/6/

vl = 0,

nn 20 J=1.M2T7S

TEMPORARY

FTAB(J) = TTAR())

V1 = AMAX1(V]1.FTAB(J))

WPITE (Ms19) TTTLFI

FARMAT (1H]1430Xe15A44/7)

JRCAL = MAX1(1,eV1/50,) i

1F (V1.GT+TLOAT(JSCAL®#S0)) JSCAL = JSCap+l

{cCAL=?2 .



100

13n
14n

12n
212
218
200

22n

23n
24N
25n

403
19

1R

171 - )

11 = Vi

KvaY = MINA(TY. JSCAL®SO)

LINF (1) = <AST

In = 51#JS"aL

INC = 10%JSCAL

DN 200 L=1.50 . . .

In = [7=JS"AL

LAREL = KARLANK

DN 100 J=2.LEMND

LYNE(J) = <3LANK

Ir (1Q.GT.<MAY) GO TO 140

DA 130 j=1NPTS

K = J#ISCAL#?

IF (10LE.STAR( 1)) LIMF(LK) = K¥

CONT INF

COMTIMYIE

IF (MOD(INJINCY NME,0) GO TO 120

LINE(2) = <AST .

WQIYE(6|210) INGLTIMNF

FARMAT (24X TG .2XeSNAY)

6n TO 215

WRITE (Me212) L TNF

FORMAT (30X 45041)

CONTINUE

COMT INUF

In=0

DN 220 J=1.LEMN

LINE(J) = <AST

WRITE(Me21N0) INLINF

X1 INE(l) = XA

A1=4e

Ny =R

nn 230 J=2.N1

XILINE(J) = XLINF(J=1)+al®XW

WOITE (Me240) (XLIMF(J)eJ=1eN])

FORMAT (2HXe12(4XsFb4q1))

WOTITE (Me230) TITLF?

FARMAT (/40X s5A44)

RETURN

END

SHRROUTINE GASP (MSETNSET)

COMMOM ID e T TMTIToJFVMT e JMNIT oMF A QUG TUP gMX qMXCoMCLCToNHIST
INDOQ «NORPT 4 NOT « NP 2*G ¢ NPUN s NRUNS 4NSTAT s OUT o ISFEN, TNOW,
ITRFGeTFINyUXX o PPMT (NAONIINER G UNQ (6) 9 [UMeMAXNS o MAXNS

COMMON ATRTR(10) «ENQ(G) s INN(G) ¢ JCFLS(20922) «KRAMK (4) oMAXNN (4)
IMEE (4) oML (6) «MLE (6) oNCELS(20) oNR(4) 2+ PARAM (2N 44) +QTIMF (4) 4 SSUMA
2010+5) 9SUMA (10NN S) «NAMF () «NPROJyMONINDAY (MYR JCLR4 JTRIA(12)

NIMFENSION NSET(1)«ASFT(1)

CAlLL DATAX(NSFTWNSFET)

JEVNT = 10

CaLL MONTR(NSFTLNSFT)

WOTITE (MPRYTW4N3)

FARMAT (1H) 93RX s 24H#BTINTIRMEDTATE RESULTS*e//)

KeNL = MFE(])

CALL RMOVE (KCOL+1sMNSFT4QSET)

TOW =AMAX] (TNNWL,ATRIR(]))

JFYNT = JT2IR(Y)

IF (JFVNT=1N00) 1341244

1 = JFUNT

CALL EVNTS(TWNSFET0OSET)
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I1F (MSTOP) 6404Re20

MeTOP = 0

I (NCRPT) 14422447

IF (TNOW=TTIN) ReP2e2?

CaLL SUMRY

16 (NRUNS=NIUN) 1449423

NQUNENRINS Y

fn TO 1

CelL ERPOR(9Y)

CAaLL MONTR

6n YO 10

IF (JMNTT) 14490431

JUWNTT = 1

GO T2 1n

JANIT = 0

GO TO 1o

15 (JMATT) 14,10432

JTPIA(L1) = JEYNT

JFVNMT = 100

CAlLL MOMTR

60 10 1n

ReTURN

Fan

SHBROUTINE DATAX(MSFTLASEZT) .
NIMENSINN \USET (1) «NSFT(])

COMMON IDeTUeINITe JFVMT o JMNTTeMFAGMSTOP sMX eMXCoNCLCToNHEIST,
INNQ GNORPT o \OT ¢ NPDIMC G NPUNSNRUNS sNSTAT o UT e ISFEN e TNOV .
ITREGTF I g AXXeMPOHT JNFRNISNEP GUNQ (4) ¢ IMMoMAXYNQ cMAXNS

COMMON ATRTA(10) oFNO(4) s INN(G) e JCFLS(ENe22) JKRANK(4) ¢MAXNN(4) o
IMEF (&) oMLC(4) oMLF (4) oMCFLS(20) sNOQ(4) +PARAM (2N 44) sOTTMF (4) ¢ SSIMA
2(10,5) eSUMA(1NNNGS) «NAMF (6) sNPROJoUNNINDAY (NYR ¢ JCLRLJTRIR(12)
MHIST=20 .
NrLCT=1000

NeTAT=19

1n=2000

Tv=a4

TMM=2

NNQ=3

MxXC=0

ugTOoP=1

JriR=0

Nnn 1 I=1.20
MCELS(I)=2n

NN 2 I=1+4
KDAMK (1) =]

INN(T) =]

nn 3 1=].1n

ATRIB(I) =0,
JTRIZ(T) =0

T™™0W = THES

DA 142 J=1.N00
OTIME(J) = TNOwW
JUNIT = 0

IMIT = 1

CALL SET(1eNSFTWNSET)
JTRIB(1)=]
ATRTIB(1)=TVOW

CALL FILFM(]14MSFTNSET)
I (NRUNLGT 16 AMN L UCLR,FN.N)GO TO AN
IF (NSTAT) 117.1104117
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1n
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NN 360 I=]1,NSTAT

SIUMA(T41) = THOW
nn 370 J=2.3

SeUMA(I.J) = n,

SceUUMA(T.4) = 1.F20

SeUMA(I,S) = =1.F20

IF (NCLCT) 116h.6Ns116

N~ 18 I=1,NCLCT

DN 17 J=1.7

SIMA (T J) 0.

SIMA(T44) 1.5720

SUMa(1+5) = =1,E20

Do 20 I=1.20

nn 20 JU=l.22

JrELS (1,U)=0

RFETURN

EnD

SHRROYTINE FILFM(JNWNMSETSQSET)

DTMENSION NSET(1)+0SFT (1)

COMMON IDeTUSINITeJEVMT ¢ IMNITeMFA«MSTUPR qMX ¢MXCoMNCLLCT oNHIST
1NON o NORPT ¢ NOT o NPRMS ¢ NPUN o NRUNS ¢NSTAT« OULIT« ISEFEN o TNNW
2TAEGITFINe XX o NPAINT ¢ NCRDIINEP ¢UMQ (&) ¢ [UMeMAX NS ¢ MAXNS

COMMON ATRTA(10) oFNO(4) « TNN(4) ¢ ICFLS(2N¢22) «KRANK (4) s MAXNN(8) o
IMEE (4) oMLC (4) «MLF (&) «MCELS(20) «MO(6) s PARAM(2044) sOTTMUF £4) . SSIHIMA
2(10¢5) oSUMA(LNNNGS) NAUF (H) ¢NPPNJyMONNDAY ¢NYR 6 JCLRy JTRIR(12)

IF (MFA=IN) 24243

WRTTE (NPR\UTW4)

FORMAT (//24H NVFRLAP SFT GIVFN /FLOA/)

CALL ERROR(R7)

INNDX = (MFA=]1)eTum

DO 1 I=1eluv

INDX = INDY+]

QASET(INDX) = ATRTIR(T)

INDX = (MFa=1)#MxX

DN 10 I=leT™

IMNX = INDY+]

NSET(INDX) = JTRTIB(I)
CaALL SET(JINSFT.QSET)
Re TURN

END

SIRROUTINE IMOVE (KCOL « JAINSETWNSET)

DIMENSINN NSET (1) «NSFT(])

COMMON IDoTUGTMTIToJFVUNMT ¢ JMNIT oMFA MSTOP JMX ¢MXCoMCLCTyMHIST o
INNQ GNORPT ¢ UNT ¢ NPIMG g NOUN « NRUNS «MSTAT « OIT s ISFFN s TNOW
2TREGITFINsUXX o MPRNT ¢NCRNIINER ¢ UNQ (&) o IMMoMAX NS (MAXNS

COMMON ATRT3(1N) 4FMN (L) «INN(G) ¢ JCFLS(20622) «KRAMK (G4) MAXNN (&) o
IMEE (4) oMLC (&) «MLE (4) oMCELS(20) «NQ(4) + PARAM (2044) sATTUF (4) « SSIMA
2(1045) sSUMA{LINND4S) ¢ NAME (H) ¢ NPRNJeMONONDAY (NYR ¢ JCLRy JTRIR (12)

IF (KCOL) 1641642 R .

CiLL ERPROR(3IT)

M| C(JQ) = <COL

INDX = (KCAL=1)#TMM

AN 3 I=lelvv

INDX = TMDXe]

ATRIB(I) = JSFT(INDX)

IMDX = (KCOL=]) #MXX

b]4] lo l=l'T“

IMDX = INDxe+l

JTRIS(I) = NSFT(TNDX)

ont =1,
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CALL SET(JQeNSFT.OSET)

RE TURN

EnD

SHARIUTINE SET (JNNSFTLASET)

DIMENSION NSET(1)+0SFT (1)

COMMON TDeTMe TNITeJRVNT ¢ JIMNIT oMF A WMSTOR ¢MX oMX (e NCLCToNHIST,
INNOJNORPT ¢ DT s NPRIMS ¢ NPIN e NRUNS NSTAT e UUT e ISFEN « TNOW,
2TAEGITFIMe UXX eNMPRNT ¢NARNIINEP ¢ VNNQ (4) e IMMoMa XNS e MAXNS

CNAMMON ATRTB(10) ¢ENQ (L) s INN(4) ¢ JCFLS(20622) ¢KRANK (6) «MAXNN (&) o
IMFE (4) oMLE (%) «MLF (4) «MCELS(20) «MA{4) sPARAM (20 44) ¢OTTMF (4) ¢ SSIMA
201045) sSUMATLINNANGS) s NAYE (6) JNPRO JoMONINDAY (NYR, . ICLR,JTRIB(17)

1¢ (INIT=1) 27,2R.27

KNL = 7777
KNF = AQ4R
KLF = 9999
My = [Me]

MXX = [Me2

MAXNS = IDeTMm
MAXNS = Inuvxx

nn 2 J=leMaxQs
NSETLY) = n,

NN & J=19MAYNS
N3FT(J) = o

DA 1 I=1.1D

INDX = T#MYX
NSET(INDX=1) = Te1
MGET(IMHNX) = T-1
NSET (MAXNS=1) = «OF
N 3 K=1eMMD

Nn(K)Y = 0
M C(K) =
MEE(K) =
MaAXNQ(K)
MLE(K) =
ENQ(K) =
VAMO(K) = 0,
NTIME(K) = TNOW

MFA = 1

INIT = 0

ot = 0,

GO TO 99

MFEX = MFE (JQ)

KNT = 2

KS = KRANK (JQ)

KeJ = 1

IF (KS=100) 1n204100,1000
KeJ = 2

KS = KS=100

1F (OUT) 1n0eR.S

IMDX = MFABMXX=]

NYFA = NSET{INNX)

18 (INN(JQ)=1) 1N0.T,K
MLEX = MLE (JQ)

IF (MLEX) 10010411

INDX = MFABRMXYX

NRET(INDX) = KLFE

MFFE(JQ) = uFp

IMDXY = MFA&MXY=]
MSET(INDX) = xn|

MLE(JQ) = wFA

OO NS
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MFA = NXFA

IF (MFA=KDZ) ?237.,23R+238

INDX = NXFasMXX

NIET(INNX) = KLE

xnQ = NQ(J)I)

EMQ(JQ) = =NQ(.J0) +XNQ# (TNOW=QTTMFE (JO) )
VMR (JA) = vNQ(.JN) +XNQEXNI* (TNOW=QTIME (J0) )
NTIME(JA) = TNOW

MNA(JQ) = NAI(JUN) +]

MeXHG (JA) = MAXD (MAXNO(JQ) 9NO( )A))

ML C(JQ) = WFE (JA)

60 TO 99

G50 T2 (1100,1120)4 KSJ

IMOX] = (MTA=))#TMMeKe

INDX2 s (M EX=1)@[MMexS

IF (QSET(TuYdX1)=NSET(TNNX2)) 17413413
INDX] = (MFfA=)) #MAX+KS

INDX2 = (MUEX=1) #MX XS

IF (NSET(INDX1)=NSET(INDX2)) 12413,13
INDX = MLEX#MYX=-1

MSU = NSET(INNX)

NSET (INDX) = MFA

184NDX = MFA8sMXYX

NSET(INDX) = MLEX

6N TO (18417)s KNT

INDX = MFABVXXw]

NSET (INNDX) = MsU

INDX = MSU#MXX

NSET(INDX) = MFA

Gn T0 14

KNT = 1

TNDX = MLEX#MXX

MLEX = NSET(INNX)

IF (MLEX=KLE) 11+1691)

INDX = MFABMXY

MSET(INDX) = ¥| E

MEE (JQ) = wFA

IHNX = MFASMXX=]

NSET(INNX) = MFFX

INDX = MFEX#MXX

NSET(INDX) = MFA

GN TO 14

IF (MFEX) 100410419

GN TO (1200.12720)4 KS.)

INDXYI = (MTA=])2TMMeKS

INNX2 = (MFEX=1)#IMM+KS

IfF (QSET(I“DXI)-OSET(tNDla)) 2he21421
IMDX1 = (MTA=])oMXX+KS

INDX2 = (MTEX=1)oMXX+KS .

IF (NSET(INDX1)=NSFT(TNDX2)) 2ny21,2!

KNT = ]

MORE = MFFX

IMDX = MFEX®MXX=}
MEEX = NSET(IMNX)

IF (MFEX=KTL) 19424419
GO TO (22+15) ¢ KNT

KNT = 2

INDX = MFA2MXX
NSET(INNX) = MPRF

IMDX = MPRT#MXX=)
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NGET(INDX) = MFaA

6N TO (17426)4 KNT

T = 0,

INDX = (ML~ (JUQ)=1)#TMM

Dn 32 I=leTuM

INDX = INDx+]

QSET(INDX) = o,

IMDX = (ML~ (JD)=1) #MXX

DN 1300 I=1eIM

INDX = INDXe]

NGET(INNX) = 0

MDY = MLC(JQ) #Mxx

JL NSET(TNNX=])

JK = NSET(TNDX)

T (JL=-KOL) 33.34.33

IF (JK=KLE) 35,36,35

INDX = JK#uXX<1

MCET(INDX) = i

INDX = JLe#wxx

NSET(INDX) = UK

IADY = MLC(JQ) #MYX=]

NSET(INDX) = MFA

NESFT(INNX+)) = KLE

IF (MFA-KOT) 2344235.235

T4NX = MFAsMXY

NSET(IMDX) = M_C(JQ)

MEA = MLC(J2)

M_C(JQ) = VFE (JN)

xvQ = NQ(JD)

EMQ(JQ) = TNQ(J0N) +XNNE (TNOW=QTTME (IN) )

VMR (JO) = UNQ(JO) «XNO#XNI®* (TNOW=QTIMZ (JQ))

OTIME (JN) = TNOW

NN (JQ) = NQ(JN) =1

Gn TO Q9

INDX = JL#wxXx

NSET(INDX) = G E

MFE(JO) = JL

Gn TO 37

IF (JK=KLE) 3R,3943R

MDX = JK#UXX=]

NSET(INDX) = KOL

MLE(JO) = JX

60 TO 37

MFE(JQ) = n

MLF(JQ) = n

6O TO 37

CalLt. FRROR (88)

RETURN

EnD

SHBROUT INE SusQy

COMMOM D9 TMeINIToJFVUMT 9 IMNIT¢MFA ¢UGTOD (MX 4MXC o NCLET4MHIST
INNQsNORPT s UNT ¢ NPOMS yNPUN s NRUNS JNSTAT s OUT s ISFFEN, TNNW,
PTOEGITFINGUXX oNPANT o NCRNIINEP s VNQ (4 ) ¢ [MMoMAXNG yMAXNS
COMMON ATRTI(1N) oFNQ(4) ¢ INN(4) ¢ JCFLS(20422) ¢KRANK (4) «MAXNN (4) o
IMEE (4) ¢MLC (4) oMLF (4) 9*ICELS(20) 4NQ(6) +PARAM (20 ,44) sDTIME (4) ¢ SSUMA
2(1045) +SUMA(10N00.5) sNAMF (€) ¢NPROJoMONINDAY NYR, JCLRW JTRIB(12)
WRITE (NPRVT,21)

FARMAT (1H]¢39Y,234##GASY SUMMARY RF20QT#8 /)

Ie (NCLCT) SehNe&6K .

WRITE (NPRNT+109)

n



109

66
23

51

an

57
75
15

2

1
1

177

FORMAT (//736X,26HERRNR EXIT. TYPF 9% ERROR,)

STOP

WRITE (NPRAT.27) )

FORMAT (/744X ¢ 1Ru#eGFMERATED NaTA#8/2T X o4HCONF ¢4 X v 4HMF AN AX 9 RHSTN,
1DFV, 95X e 4HVIN, « TX ¢ 4HMAX . 95X 9 4HNRS , /)

DO 2 I=1eNZLCT

IF (SUMA(T<3)) Se2461

XS = SUMA(T+1)

XSS = SUMA(1+?)

XN = SUMA(Te3)

AVG = XS/X\

1F (XN=1.0n01) B0sR14R1

<STD = 0.

G TO R/?

STN =SORT (AMAX] (N, (XNMEXSS=XSEXSG) / (XN# (XN=1,))))

N = XN

WOITE (MPRNTe24) T4AVASTDeSUMA(T44) sSUMA(T5) 4N

FARMAT (27xe1344F1164417)

CONT INUE

17 (NSTAT) 54A7¢4

WEITE (NPRNT$?29)

FARMAT (//46Xe23u#8TIME SENERATFD NATA##/27Xe4HCODF ¢ 4X o 4HVFANGAY ¢
I“HGTD.OEV..SthH“IN.-7Xo“H“AX.-1X¢ln4TnTAL TIMF/)

DN & I=]1sNGTAT

16 (SSUMA(Tel)) Sehe7?

XT = SSuUMA(T.1)
X< = SSUMA(T+?)

XSS = SSUMA(I+)

AYG = XS/XT

STD =SORT (AMAX) (N, « XSS/ XT=AVG2AVG))

WOITE (MPRNTe30) TeAVAISTDeSSUMA (T &) 9SSUMA (T45) o XY

FORMAT (27%s]13.5F11,4)

COANTIMUE

CONTINUE

DN 15 I=1,\uN0

CALL PRNTQ(T)

R=TURN

END

SURROUTINE COI.CT (XeN)

COHMMON TDeTMe INTT o JEVMT o IMNTT oMFA oUSTOR ¢MX ¢MXCoNCLEToNHIST
INNN S NORPT g NIT e NPRMS o NPUN sNRUNS e NSTAT 1 OUT « ISFEN 4 TNOW,y
PTREGITF INgUXX «NDONT «NERDIINED G UND (4) o IMMeMAXNAS 4 MAXNS

cNMMON ATRTI(10) «ENN(4) s INN(4) « JCFLS(20922) «KRANK (4) ¢MAXNN(4) o
IMFE (4) oMLC (4) «MLF (4) «MCELS(20) «NQ (&) sPARAM (20 ¢4) +QTTMF (4) «SSUMA
2(10¢5) +SUMA (10NN 45) JNAME (6) ¢NPROJIMONSNDAY 4MYR 4 JCLR,JTRIB(12)
I (N) 24261

CalLL ERPROR(90)

IF (N=NCLCT) 3,342

SHYMA(Ns1) = SUMA(N.1) +X
SHUMA(Ne2) = SUMA(Ne2) +X&X
SUMA(N93) = SUMA(N3)+1.

SIMA(Ng4) =AMTINT (SHMA (Ne&) 9 X)

SIMA (N9S) =AMAX] (SIMA (Ne3) 9 X)

RFETURN

EMD

SIRROUTINE TMST (X 4TyN) .

cOMMON ID'Y“!IMITQJEV”YQJMNXTQ“FAQMQTODQMX'MXCQNCLCTQNH!STQ
TNAQ S NORPT ¢ NNT o NPIMS 9 NRUM s NRUNS «NSTAT e OUT o ISFEN o TNOW,
2TIEGeTFINUXX oNPONT ¢NCRNIAINEP YND (4) ¢ [MMeMAXNS o MAXNS

CH4MON ATRT3(10) «FMA(4) s INN(4) « JCEFLS(20922) 4KRANK (4) oMAXNN (4) o
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IMEE (&) yMLC(6) oMLF (4) JMCELS(20) dNQ(4) +PARAM(20,4) ¢ OTTMF (4) ,QSUMA

2(1045) 9SUMA(10N00+S) ¢NAMF (6) «NPAOJeMONINDAY oNYR ¢ JCLR¢JTRIR(12)
I (M) 2201

2 CaALL FRROR(S91)

1 IF (N=NSTAT) 3,342

T IT = T=SSUMA(MG])

CeUMA (No1) = SSUUA(NLY)+TT
SQUMA (N9 2) = SSUMA(Myp) + X#TT
SQUMA (Ne3) = SQUMA(Ne) ¢ X#XOTT
ScUMA (Nebs) =AuTN] (SSUMA (Ne&) 4X)

ScUMA (N+S) =AMAX) (SSUMA(N®S) 4 X)

RETURN
21h]

SHBROUTINE ZRRNR(JY)

COMMIN JDoTMeINTTo JEVMT ¢ JMNIToMFAoUSTUP ¢MX oMXC oNCLET oMHIST,
INYOWNOPRT 3 DT o PIMS 9y NOUN e NRUNS «NSTAT e OUT < ISEFFN« TNOW o
PTaFGeTFINsMXX «MPENMT JNCRNIINEP sUNQ (4) 9 IMMeMAXQS s MAXNS

COMMON ATRT3(10) oENO(4) o INN(4) o JOFLS(ENeP2) ¢KRANK (4) ¢MAXNN (4) o
IMEE (4) oMLC(G) oMLF (4) yMCELS(20) 4NN (4) sPARAM (2044) sQTTMF (4) ¢ SSIMA
2(105)9SUMA(INNNGS) JNAME (6) ¢NPRNJ4MONINDAY (NYR 4 JCLR G JTRIRB(17)
WRITE (MPRUT,10N) JeTNOW
100 FARMAT (//38X«1RHFPRNP FXITe TYPEWT3e74 ERRAR, /7214 FTLE STATIS AT
1 TIMELF10,.,4/)

CALL SUMRY
CALL NTPUT
CaLL OUITS(1)

3 PFTURN

EmD
SHRROYTINE PSFT(NSFT.NSET)

NIVENSION MSET (1) «NSFT (1)

COMMON TD e TUe TMITeJFEVNMT e IMNIToMFA ¢MSTOD ¢MX oMXCeNCLECT eNHIST
INNO «NORDT 4 JOT ¢ NPIMG 4 MBI N e NRUNS «NSTAT e OUT ¢ ISFFN ¢ TNOW,
PTAEGeTFINoUXX «MORNT oNCRDIGNEP ¢UNN (4) 9 IMMeMAXNS (MAXNS

COMMON ATRTI(1N) ¢FNQ(4) s INN(G) o JCFLS(ZN422) cKRANK (4) ¢MAXNN (&) o
IMFE (&) oMLC{4) «MLF (4) oMCELS(20) «NO(4) sPARAM (20 44) sNTIMF (&) (SSUMA
2(10+5) sSUMA(1NNNLS) JNAMF (H) ¢NPRNJ¢MONINNAY ¢NYR 9 JCLR G JTRIR(12)
WOITE(643) (MFF(T)aI=143)
3 FARMAT(1Xe3110)
00 1 I=191
Ji=(I=1)#641
NELN) R
K1=z(1=1)%¢
KP=K1l+3
WITTE(642) Vo (NSFT(J) o J=J10J2) 4 (NSFET () K=K] (K2)
FOPMAT(1Xs7154F10,5)
R=TURN
END
SHUSROUTINE 2PNTN(JN)
RFTURN
ErMD
SURROUTINE MNHTR
RFTURM
EMD
. -FIINCTION LOCAT (JSWeK4JATTGNSFT.NSFET)

NTMENSTION NSET (1) 9NSFT())

COMMON TDoTUe INTIToJFVNT ¢ JMNTToMF A ¢MSTOP 4MX ¢MXCeNMCLET oNHIST,
INNQeNORPT e YNIT e NRIMG G NRUN e NRUNS sNSTATsOUT ¢ ISFFN e TNOW,
2ToFGeTFIN e UXX 4 HPINT NCRNIINED 4VND (4) o« [IMMeMAXOS ¢ MAXNS

COMHMON ATRTR(10) dEMNQ(4) e INN(4) ¢ JCFLS(2N422) ¢KRANK (&) «MAXNN (&) 4
IMFE (&) oMLC (%) oMLE (4) oNCELS (20) «NN(4) sPARAM(P044) 9QTTIMF (4) ¢ SSIIMA

1\

ane
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2(1095) +SUMA(1NN0S) «NAME (6) s NPROJ9MONINDAY ¢NYRy JCLRJTRIB(12)

GN TO (2004300.200430Nn) ¢J5W
L=1IMM

6N TO 400

L=MXX
TF(JATT=L)S00.500,20N0N
1F(JSW=3) &4N0+RNN9ON
IF(K=ID) 7n0,700.2000
LNCAT=(K=1) %L+ JATT

RETURN

IF (K=mAXQS) 100n0.1000,2000
IF(K=MaxNS) 10n041000,2000
CAaLL EPROR(RS)
LNCAT=1+(K=-JATT) /L

RETURN

FxD

SHRRVUTINE QUITS(J)
WRITE(hel)

FORMAT (¢ QUITS?)

STOP

Fan

SIIBROUTINE DRAND (ISFFNRNIIM)
NATA IA/2429R/.1C/990Ql/9M/19an17/7
IX=ISEFEN®Ia+IC
ISFED=MOD (T X oM
RNUMSFLOAT (ISFFN) /FLNAT (M)
RMUM=ARS (RVUM)

RETURN

Fub

FOMNCTION REX(A)

D:‘X.-_l .E?O
IF(ALF N )RETIRY

CALL DRAND (TISFFDWR)
RPFX==(ALOG()) /A

RETIRN

EMD

oo
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Appendix C

SUMMARY OF FUTURE V/STOL OPERATING COSTS

In this appendix, the effects of stage length, external noise
constraints, and fuel costs on the direct operating costs of future
VTOL concepts are summarized.

In the period 1973 to 1976, NASA sponsored Conceptual
Engineering Design studies of 1985-era commercial VTOL transports. The
purpose of these studies was to assess the effects of new technology,
rising fuel costs, and external noise constraints on future VTOL air-
craft.

The design guidelines are as shown below in Table C.1.

Passengers 100 Maximum

Stage Length 200 NM

V Cruise Minimum DOC

Hover Out of Ground Effect

One Engine Inoperative

@ Sea Level 32.2°C

Initial Fabrication 1980 (Introduction to Service
in 1985)

External Noise 95 PNdB 500 ft. Sideline

Aircraft Optimization Min DOC

Cruise Altitude Min DOC

Table C.1
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The Direct Operating Costs were calculated using a 1973 NASA modification
of the AIA method for calculating operating expense (Reference 15). These

modifications appear below in Table C.2.

Year Dollars 1974
Avionics Cost 250,000 $/Acft.
Airframe Cost 90 $/16
Dynamic System Cost 80 $/16
Engine Cost 280(HP‘785) $/Rate SHP
Crew Costs 00T GH + 134 $/hr.
Fuel .02 $/1b.
011 1.24 $/1b.
Nonrevenue Factor 2%
Labor Rate 6 $/hr.
Airframe Labor AIA
Airframe Material AIA
Engine Labor .65 AIA
Engine Material .65 AIA
Engine TBO 4500 Hr.
Dynamic System Labor AIA
Dynamic System Materials AIA
Dynamic System TBO 3000 Hr.
Maintenance Burden 150% Direct Labor
Depreciation 12 Years
Spares:
Airframe 8%
Engines 40%
Dynamic System 25%
Utilization 2500 Hr.

Table C.2
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For performance and cost calculations, a standard flight profile
was issued. This is shown in Figure C.1.
Three helicopter configurations were studied. The designs

16 17 See

include tandem rotor =, conventional and compound helicopters.
Table C.3.
Two tilt rotor vehicles and short take-off derivatives were

16,18,19 see Table C.4.

evaluated,

Although the baseline designs were not well defined, three
1ift fan configurations were eva]uated.zo’?']’22 A representative
configuration is presented in Table C.5.

The direct operating cost for all configurations are plotted
vs. stage length. These operating costs are shown in terms of dollars
per hour and cents per available seat-statute mile. (Figures C.2-C.4).

The fuel cost used in this study (2¢/1b.) was typical for 1973.
By 1975, fuel cost had risen to between 4 and 5¢/1b. It is projected
that by the early 1980's fuel cost will be nearly 10¢/1b. The effects

of this increase is shown in Figures C.5-C.7.

. DOC
DOC Ratio = DOC with Fuel at 2¢/1b.

(200 nm Stage Length)

For each VTOL configuration (excluding 1ift fan), two
derivative aircraft were designed to investigate the effects of sideline
noise constraints. The sensitivity of DOC to the noise constraints is
illustrated in Figures C.8 and C.9. One aircraft 5 PndB quieter and one

5 PndB noisier. The ratio is for DOC at a 200 nm stage length.



Figure C.1 - Design Short-Haul Mission
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ADVANCED HELICOPTERS

Vehicle Type Study

Tandem Rotor Boeing

Conventional Sikorsky

Compound Sikorsky

Weight Empty (1bs)
W Max Gross
Max Pass

Veruise KTS
ALTcruise FR

PNdB

@500 ft.

Area T/0 @ 95 PNdB
Area Landing

Engines
SHP

Block Time Hrs.
Block Fuel 1bs.

DOC ¢/as-sm

Initial Cost x 10°

40181
67175
100

165
5000

92.3

.07
.535

3
14472

1.337
5093

3.53
4.17

34374
58137
100

173
5000

93.5

.075
.063

3
10605

1.331
3404

3.17
3.95

49564
75926
100

250
14000

95

.156
.088

3
21979

.958
5379

3.30
5.67

Table C.3

vel



TILT ROTORS

VEHICLE TYPE

Weight Empty
W Max T/0
Max Pass

V Cruise
ALT Cruise

PNdB

@ 500 ft.

Area T/0 @95dB
Area Landing

Engines
SHP

Block Time
Block Fuel

DOC ¢/as-sm

Initial Cost x 10

6

VTOL
BOEING

50068
74749
100

349
14000

98.2

.09
.15

4
16480

.742
3157

2.4
5.15

STOL
BOEING

45023
68493
100

310
14000

101.3

115
.14

4
11144

.82
2392

2.31
4.62

VTOL
BELL

33216
44848

296
11000
97.2
.083
.078
9072

.858
2015

4.87
3.98

VTOL
BELL

42720
64300
100

248
20000

96

.191
.098
6765

1.015
1888

2.77
4.90

Table C.4

68l
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LIFT FAN

Weight Empty
Max T/0 Weight
Max Pax

V Cruise
ALT Cruise

PNdB @ 5W Ft.
Area T/0 95 PndB
Landing

Engines
Thrust

Block Time
Fuel

DOC
Initial Cost

80,000 Lbs.
105,000 Lbs.
100

M= .75
24,000 Ft.

97 - 100
.11 Mile
R ¥

2

o

-6
120,000 Lbs.

?

~ .6 Hr.
~ 7,200 Lbs.

~ 3.34 ¢/as-sm
-12x100 ¢

(Y]

Table C.5
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600
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3 \-
\‘
3 \\
. \
b p—
- = """;:::-::-"“--.
| ~s§\
a __‘. [ ]
30 50 100 200
Stage Length (NM)
Tandem Rotor
Conventional
Compound

A A PY

30

50 100 200
Stage Length (NM)

Figure C.2 - Advanced Helicopter Direct Operating Costs



900

DOC
($/HR) 800
100 seats VTOL

/

700 1 45 seats
STOL
600 ¢
30 50 : 100 200
Stage Length (NM)
10

- DOC
(¢/AS-SM)

6

/

[,

45 seat
100 seat vroL

STOL

g —

30 50 100 200
Stage Length (NM)

Figure C.3 - Tilt Rotor Direct Operating Costs
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1800
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1400

1200
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2 N ]

100 200 400
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Figure C.4 - Lift Fan Direct Operating Costs
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1.6 & Compound

1.5

Tandem Rotor

: /
1.4 /
/ Conventional
/
/
/
1.3 Y
/
/7 Stage Length
/ — zgo NM
-—- 0 NM
1.2 ¢ |
/
/
/,
/
1.1 /
VY/
Z
1.0
2 4 ) 8 10

Fuel Cost ¢/1b

Figure C.5 - The Effect of Fuel Cost on Advanced Helicopter DOC
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1.5
100 Seat
1.4 (Boeing)
45 Seat
(Bell)
1.3
DOC
: 100 Seat
Ratio -’ (Bell)
1.2
— VTOL
- = = STOL
].]
1.0

Fuel Cost ¢/1b

Figure C.6 - The Effect of Fuel Cost on Tilt Rotor DOC
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Figure C.7 - The Effect of Fuel Cost on Lift Fan DOC
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1.1
1.0
DOC Ratio
/HR Tandem Rotar
%%/HR;
. I ! |
0.9 , —
-5 PndB Baseline +5 PndB
Sideline Noise - 90°F Hover @ 500 ft
1.1
Tandem Rotor
DOC Ratio Conventional

AS-SM 1.0
{%§R§i§ﬁﬁ

Compound
0.9 — S —
-5 PndB Baseline +5 PndB

Sideline Noise - 90°F Hover @ 500 ft

Figure C.8 - The Effect of Sideline Noise Constraints on
Advanced Helicopter DOC
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1.1
1.0
100 Seats
DOC Ratio 45 Seats
5%(HR§
/HR
0.9
-5 PndB Baseline +5 PndB
Sideline Noise - 90°F Hover @ 500 ft
1.1
1.0 100 Seats
45 Seats
DOC Ratio
AS-SM
%¢§KS-SM;
0.9
-5 PndB Baseline +5 PndB

Sideline Noise - 90°F Hover @ 500 ft

Figure C.9 - The Effect of Sideline Noise Constraint
on Tilt Rotor DOC
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