
NEW DIRECTIONS FOR
FORECASTING AIR TRAVEL
PASSENGER DEMAND

Donald S. Garvett
Nawal K. Taneja

July 1974R74-3



FLIGHT TRANSPORTATION LABORATORY
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FTL R-74-3

July 1974

NEW DIRECTIONS FOR FORECASTING

AIR TRAVEL PASSENGER DEMAND

Donald S. Garvett
Nawal K. Taneja

Part of this work was performed under a Grant Number GI-39695

from the National Science Foundation, Washington, D.C.



Table of Contents

Page

Table of Symbols and Notation ii

List of Figures 6

List of Tables 8

I. Introduction 1

II. Technological Forecasting 5

III. Time-Series Analysis 19

An Adaptive Forecasting Technique 20

Box-Jenkins Time-Series Analysis 29

Spectral Analysis 35

IV. Control Theory Models 39

V. Econometric Models 65

VI. Simulation Models 115

VII. Model Evaluation 144

References 160

Appendices

A. Time-Series Analysis Model A-1

B. Spectral Analysis B-1

C. Florida and Orlando Air Travel Models C-1

D. Description of TUBSIM D-1



Table of Symbols and Notation

OLS

GLS

COV(XY)

VAR (X)

- (Bar)

(Prime)

bold faced

bold faced

^(hat)

Ordinary Least Squares

Generalized Least Squares

Covariance of X and Y

Variance of X

Average or mean, e.g. Average Value of X = X

Extrapolated or updated value of a quantity,

e.g. updated value of X = X'

capitals represent matrices, e.g. E, o

lower case symbols represent calumn vectors, e.g. x, y

partial derivative, e.g. the partial derivative of

x with respect to y =
By

Estimated value of a quantity, e.g. estimated value

of X = X

Symbol for a rate in feedback model flow diagram,
e.g. the rate at which passenger increase can be

represented as:

Passenger
Increase4I

Transpose operator:

vector transpose:

matrix transpose:

x,

2'

xN

X = [x, x2 ' ' '. N

JE E E12 T E 1 E21
E 21 E 22 E 12 E 22



iii

matrix-vector operation: e.g.

E 11 E12 b 1E 11b1 + E12 b 2
Eh = E E b Eb+ E b21 E22 2 [21  +E22b2

vector-vector operations:

a Tb= [a1  a2] 1

b2

Tab =
al b b2

L2 J

Summation, -e.g.

N

X..xi
i=1

S[a b + a 2b 2]

= a b 1 a 1b 2

L2 b1 2 2j

=x + X + ... X
* 1 2 N

Product, e.g. fiX.
i=l

= X 1X 2 X3

Approximately equals

Gross National Product

BY X
Point Elasticity of Y with respect to X =

NX Y

Natural logarithm

Base of natural logaritm . 2.7182818

GNP

Y
E

ln



Level of Service

Element of

Kronecker delta:

1
6ij

0

i=j

i .
this results in a
matrix of the
following form:

1

0
.0

0 ... 0~
'.0

0 ... l _

All elements of

Probability of event X occurring

conditional probability of event X occuring given

that event Y has occurred

Joint probability of events X and Y occurring

Auto-Regressive Integrated Moving Average

Circumference of a circle divided by its diameter

3.14159

Lagged quantity - the quantity Y lagged 4 time

periods = Y(-4)

Standard Error of Regression

Corrected R-Squared Statistic

LOS

6 ij

P(X)

P(XIY)

P (XY)

ARIMA

(±X)

SER

CRSQ



Standard deviation

Variance

Durbin-Watson Statistic

Student's t statistic

Mean or average value

Random number generator in Fortran (yields uniform-
ly distributed variable between 0 and 1)

Random number generator in Fortran (yields Gaussian
distributed variable)

Trasportation user behavioral simulation model

th
The d difference of the raw time series, Z

e.g. VZ t = Zt - Zt-1

2V Zt zt - zt-

etc.

DW

Randu

Gauss

TUBSIM

d
V t



vi

List of Figures

Page

2.1 Comparative Speed Trends of Combat and Transport

Aircraft 11

2.2 Speed Trends of U.S. Aircraft 13

2.3 Envelope Curve Extrapolation 15

3.1 Stationary and Non-stationary Series 22

3.2 North Atlantic Air Passenger Traffic 27

3.3 Correlogram of a Stationary Series 31

4.1 Basic Feedback Loop 44

4.2 oscillatory Response of Seasonally Adjusted Load

Factor to an Increase in Level of Service 45

4.3 A Simple Model of Air Passenger Demand 47

4.4 Simplified System Dynamics Model of Decision to

Change Frequency 49

5.1 Under, Exactly and Over-Identified Equation 72

5.2 P.D.F. of Values of the Discriminant Function 83

5.3 Linear Regression on Observations of Binary Choice

Versus Utility 86

5.4 Functional Distribution of Disaggregate Choice Models 87

6.1 Example of a Continuous Probability Density Function 118

6.2 Example of a Discrete Probability Density Function 118

6.3(a) Description of TUBSIM Runs 129

(b.) Results of TUBSIM Runs 130

6.4 Structured Versus Conventional Flowcharts 134

6.5 TUBSIM Outer Program Level 135

6.6 Generate Passengers 136

6.7 Values 136



vii

List of Figures (Continued)

Page

6.8 Level of Service 137

7.1 Scatter Plot 148



Vill

List of Tables

Page

2.1 Results of a Survey on Air Transportation Developments 8 & 9

5.1 Components of Cost of Travel 102

5.2 Regression Coefficients 113



Chapter 1

Introduction

While few wil'l disagree that sound forecasts are an essential

prerequisite to rational transportation planning and analysis, the

making of these forecasts has become a complex problem with the

broadening of the scope and variety of transportation decisions.

Until recently, the forecasting methods available addressed the issues

which were important a couple of decades ago. These methods attempted

to predict the amount and in some cases character of travel to be used

in designing major highways, transit facilities, seaport facilities,

and airports. However, today's issues to be addressed in transporta-

tion are much broader and more complex. For example, in the modern

process of transportation planning, the decision-maker is concerned

with the broad range of social, economic and environmental effects,

equity issues, wider range of options including not building major

facilities, resource constraints such as energy, and increased pub-

lic participation in the planning process in general.

The complexity of the problem has necessitated the planner's

developing improved methods of forecasting the demand for transpor-

tation at all levels and by all modes. While significant contribu-

tions have been made recently to the development of improved methods

in forecasting, we are still a long way from possessing tools which

provide our decision-makers with more effective, that is, more useful,

accurate and timely information.

The purpose of this report is to present a very brief overview

of the current and emerging air transporation forecasting methods

with the aim of identifying areas which need further research.

Throughout the report, the object is to indicate future directions for

research into transportation forecasting methods which are more



responsive to today's issues. For example, it is clear from reviewing

the literature that tremendous improvements in travel forecasting

methods can be achieved through deeper understanding of the traveller's

behavior, under a range of conditions, development of models which

are more policy-responsive and development of improved data bases.

Peculiarities of the airline industry and aviation in general

cause many standard techniques of economic and managerial analyses

to break down. Air travel demand is unique in that even the sophis-

ticated techniques developed by urban transportation analysts are

often not directly applicable to modelling the demand for air trans-

portation. Econometricians usually do not have specific training

in air transportation. Airline managers, on the other hand, quite

often do not have the technical beckground necessary to fully under-

stand many highly detailed and complex models. In order to develop

sophisticated yet user-oriented models, an analyst must have back-

ground in several areas. It is hoped that the material presented in

this report will help bridge the gap between managerial and technical

personnel and provide some new directions for air travel demand

modelling.

Generally speaking, there are two broad categories of forecasting

methods. The quantitative group is composed of techniques which

rely on the existence of historical data, and which assume that the

historical trend will be expected to continue in the future. This

group is further divided into two classes, time-series methods and

causal methods. The quantitative techniques are by far the most

widely used and contain such popular methodologies as moving averages,

classical decomposition analysis, spectral analysis, adaptive fil-

tering and Box-Jenkins methods under the category of time-series

analysis. The causal methods contain such favorites as modelling

classical consumer behavior through regression models and more recent

applications in transportation demand analysis of bayesian analysis,

markov chains, input-output analysis, simulation methods and control

Nola.



theory models.

The second group of forecasting methods is qualitative in

nature. The techniques in this group are used when none or very

little historical data exists, or when the underlying trend of the

historical data is expected to change. Qualitative techniques have

in general been applied to project future technological developments

and their impacts are described in literature as "technological fore-

casting methods." The group is further divided into two classes,

exploratory and normative methods. The exploratory methods start

with today's knowledge and its orientation and trends and seek to

predict what will happen in the future and when. On the other hand,

normative methods seek first to assess the organization's goals and

objectives and then work backwards to identify new developments which

will most likely lead to the achievement of these goals. Familiar

examples of exploratory methods are the envelope, logistic or S-curve,

the Delphi technique and morphological analysis. Examples of methods

used to perform normative forecasting are relevance trees and cross-

impact analysis.

Although this classification scheme is consistent with the way

that many forecasters might differentiate models, it is by no means

unique. Other and perhaps better classification schemes exist. For

the purposes of this report we will not attempt to define a particu-

lar classification but present five broad areas which show the greatest

potential for improving our capabilities of modelling the demand for

air transportation. These areas are: technological forecasting,

time-series models, control theory models, econometric models and simu-

lation models. Each of the general techniques are reviewed, and spe-

cific examples are presented where relevant. Excessive mathematical

detail was avoided in order to make this work easily understandable

by managers and others who might not have a rigorous analytical
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background. Since a number of models discussed in the report require

extensive computer modelling, we have included a few computer pro-

grams in the appendices to make the report more user-oriented.
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Chapter II

Technological Forecasting

As defined in the introduction the quantitative techniques

rely on the existence of appropriate and sufficient historical

data upon which to derive a forecast and assume that some

underlying trend or trends in the data will be continued into

the future. The qualitative techniques, on the other hand,

are used when no historical data exists or when the underlying

trend of the historical data is expected to change. Qualitative

forecasting is most often concerned with what events are likely

to occur in the future rather than the specific time of the event.

Because qualitative techniques have so far been most widely used

to project future technological configurations and their impact,

they are generally described in the literature as "technological

forecasting methods." There are at least two dozen principle

technological forecasting methods and perhaps as many as one

hundred variations around the basic methods. In this chapter

we will attempt to describe the more well known of these

techniques.

In technological forecasting, one is generally interested

in the prediction or determination of the feasible or desirable

characteristics of performance parameters in future technologies.

The fundamental questions posed in technological forecasting are:

What is possible? What is expected? What is desired or intended?

In general, technological forecasting techniques can be

divided into two broad categories: exploratory and normative.

Exploratory techniques attempt to generate new information about

future systems and performance or to simulate the outcomes of



anticipated events. They are used to broaden the analyst's

knowledge of what can be expected or what might possibly happen.

Exploratory techniques which attempt to generate new information

can further be divided into two types: extrapolative and specula-

tive. An example of an extrapolative technique is the envelope,

logistic or S-curve. Speculative techniques are more often used

to address the question, "what is possible?" and rely to a greater

extent on intuition. The Delphi Techniaue and Morphological

Analysis can be included in this category.

Within the scope of exploratory methods, the analyst can

simulate outcomes assuming different combinations of events.

Examples of appropriate simulation models are: input-output

analysis, scenario writing, and cross-impact analysis.

With the normative models, the purpose is the same as with

exploratory models; the generation of new information or the

simulation of outcomes. However, these activities take place

within the context of achieving certain desires or structural

relationships. The aim is to identify those critical linkages

or steps which must be made or taken in order to reach the

desired end state. In addition to the methods already mentioned

under exploratory techniques, other methods such as relevance

trees, decision theory and dynamic modeling can be used to perform

normative forecasting.

The simplest method of obtaining a technological forecast

is to get the opinion of an recognized expert. However, because

of the inevitable complexities of technological problems, the

opinion of a single expert is of limited value. The next step

is to obtain the advice and concensus if possible of a panel of

experts. In the case of transportation such a panel should be

interdisciplinary. The group consisting of engineers, economists,

demographers, transportation experts, city planners and political



scientists would bring their respective areas of expertise to

bear on the transportation problem at hand. For example, what

impact would the development of domestic air transportation have

on population dispersion?

A weakness of the panel approach is that it can be biased

by the persuasiveness of individual members who may or may not

have a valid argument. To overcome such psychological inter-

ferences which tend to reduce the value of forecasts reached

by the group, Olaf Helmer at the RAND Corporation developed the

Delphi Technique. The aim of the Delphi Technique is to develop

a carefully designed program of sequential individual interro-

gations, usually conducted by questionnaries, interspersed with

information and judgment feedback derived from the consensus

of the earlier parts. The idea is that, through successive

trials, the spread of forecasts is reduced.

In a survey on air transportation developments reported

by McDonnell Douglas (1970) a questionnaire was sent to 304

experts representing the decision-making levels of management

from four major segments in the air transportation industry.1

Using the Delphi Technique each participant was asked to make

an anonymous forecast of future air transportation developments

and the date each event in question would happen. The partici-

pants were given a composite feedback based on the analysis of

the tabulated forecast. Based on this feedback, the same experts

were then asked to make a second and final forecast. They could

either take a firm stand on their original opinion or they could

revise them. More than half of the participants revised their

forecasts based on the feedback. The areas covered in the survey

were advances in air transportation technology, development of

air cargo, passenger preference for air transportation, seat

capacities of future aircraft, and new markets for air trans-

portation usage. Table 2.1 shows the summary of the results.



Table 2.1

RESULTS OF A SURVEY ON AIR TRANSPORTATION DEVELOPMENTS

ONE FOURTH OF THE

1. A commercial a
propulsion sys

THREE FOURTHS THOUGHT BY THIS DATE

ONE HALF THOUGHT BY THIS DATE

RESPONDENTS THOUGHT BY THIS DATE

ircraft powered by a nuclear
tem will be operational. (1990) (1995) (2000)

2. Revenue from commercial air cargo on
certified airlines will equal passenger
revenue. (1985)

3. A large, separate cargo airport for a

major population center will be operational.(1980)

(1990) (2000)

(1982) (1990)

4a. Free world certified and chartered revenue

passenger miles will reach one trillion.

4b. Free world certified and chartered revenue
passenger miles will reach two trillion.

5. A 1000 passenger aircraft will be intro-
duced into commercial service.

6a. A cargo aircraft having a 500 ton cargo
payload capability will be introduced
into service.

6b. A cargo aircraft having a 1500 ton
cargo payload capability will be
introduced into service.

7. Twenty-five percent of the commuters
who travel one-way distances greater

than 15 miles will use air transportation.

(1990) (1990) (2000)

(2000) (2000+) (2000+)

(1985) (1990) (1995)

(1985) (1990) (1995)

(2000) (2000+) (2000+)

(2000) (2000+)

8. Twenty-five percent or more of the passengers
departing from a major air terminal will
arrive at the terminal by a feeder airline. (1980)

9. You and your associates will normally use
air transportation to travel to conferences
with your business associates located in
different parts of the same megalopolis. (1990)

(1985) (1990)

(2000+)



Table 2.1 (Continued)

10. New exotic materials such as boron filament
and beryllium will be commercially com-
petitive and in general usage to partially
replace the conventional aluminum,
titanium, and steel aircraft structure. (1980) (1985) (1990)

Source: McDonnell Douglas, "McDonnell Douglas Asked the Experts Their
Opinion of Important Future Air Transportation Developments,"
September 1970.



Another intuitive approach called forecasting by analogy,

is to compare some developing technology with some similar

technology in the past. Joseph Martino suggests that analogous

situations be analyzed for comparability along the following

lines: technological, economic, managerial, political, social,

cultural, intellectual, religious/ethical and ecological. 2

As an example of a formal historical analogy, Martino discusses

technology transfer comparing the railroad industry and the more

recent space industry along the nine dimensions given above.

His forecast is as follows:

During the construction and development of the railroads
in America, between 1830 and 1870, considerable new tech-
nology was developed. With the termination of the railroad
building era in 1870 or shortly thereafter, many of the
engineers who had carried out the work...were no longer
needed for this task. They found other employment solving
non-railroad problems. In the solution of non-railroad
problems, they tended to use the railroad technology
they were familiar with.... During the course of the
American space program also, much new technology was
developed. By 1970 it was evident that the space program
would proceed at a slower pace.... The engineers displaced
from the space program and finding employment in other
fields byanalogywith the experience of railroads, will
transfer a significant amount of space technology to
these other fields.3

A useful variant of the forecasting by analogy approach

discussed above is known as the precursive method. This method

relies on the assumption that technical progress in one area lags

another by a given length of time. The leading indicator is

usually called the precursive indicator. For example, this

method has been used in the past to forecast the maximum speed

of commercial aircraft from its relationship with the maximum

speed of military aircraft. In 1961 Lenz found that the speed

of commerical aircraft followed the speed of military aircraft

by 6 years in the 1920's and eleven years in the 1950's. See

Figure 2.1. The major difficulty in using this approach lies
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in defining the time lag. The credibility of this approach de-

pends very highly on the establishment of a logical connection

between the two trends. In the case of forecasting the maximum

speed of transport aircraft from military aircraft this connection

is at least plausible.

Another example of forecasting by analogy is the application

of Pearl's Law on biological growth applied to technological

development. According to pearl, the increase of population in

a given area follows a pattern similar to the increase of bio-

logical cells. This may be expressed mathematically as:5

L

1+ae-bx

where y = accumulated information (state of knowledge) at time;

yO initial value; y1=value after one time unit

L = upper limit of information (due to constraints)

x = time; at y0 x=0

a = constant (dimensionless); a= - 1
0

b = constant (per time unit); b = -log LyO-yoyj
Lyl-yoyi

e = basis of the natural logarithmic system (2.71828).

Lanford gives an example of this type of formulation applied

to speed trends of U.S. aircraft shown in Figure 2.2. This pro-

vides a comparison of the exponential trend method with the

biological analogy. Here Pearl's formula is applied with the

extrapolation being asymptotic to the speed representing orbital

velocity at 100 miles altitude.

Yet another widely used growth curve analogy is Gompertz's

Law, often used to describe growth phenomena in such areas as

income growth. The mathematical expression for Gompertz's Law

. 6
IS:
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-kx
y = Lebe

where y = growth phenomena

L = limit (in the same units as the parameter y)

b,k = constants

x = time

e = 2.71828

This formula produces the familiar S-shaped growth curve in which

the growth of increments of the logarithms decline at a constant

rate.

There are numerous other growth curve techniques. The well

known envelope curve technique, also called the S-curve or logistic

curve calls for fitting an overall trend curve to a series of

technological developments. The logistic curve can be fitted

to a given product, technology or even some broader parameter.

Robert Ayres shows an example of the application of this tech-

nique by fitting an envelope curve to the speed of transporta-

tion.7 After plotting the curve of each individual technology,

an envelope curve can be derived by connecting the tangents of

of each as shown in Figure 2.3. A common problem with this

technique is that one expert's judgment on the behavior of the

curve at the extremal point is as good as another. This problem

can be somewhat mitigated by the limiting affect of practical

or theoretical maximums such as speed of light and theoretical

efficiency.

In addition to the intuitive technological forecasting tech-

niques such as the Delphi and analytical techniques such as trend

analysis and curve fitting, there is yet another set of techniques

which relies on an orderly and systematic investigation of all

opportunities at various levels for potential interactions

among items in a forecasted set of occurences. This group

consists of techniques such as scenario-writing, cross-impact
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analysis, morphological analysis, and relevance trees. This

set of techniques has not yet been applied directly in the area

of transportation forecasting. However, this is an area where

further research would do much good.

Scenario-writing, a technique normally associated with the

work of Anthony Wiener and Herman Kahn of the Hudson Institute

is basically an attempt to view and combine various trends in

some systematic manner. For small single steps the changes

implied for the scenario are laid out and potential actions which

have to be taken due to these changes are then systematically

explored. The goal of scenario-writing is not necessarily to

predict the future, but instead the purpose is to explore

systematically the branching points dependent upon critical

choices. Scenarios can be generated through the use of

the Delphi technique and are useful in calling attention to a

large number of possibilities which must be considered in the

analysis of transportation systems involving the interaction

of such forces as social, economic, and political.

An extension of the scenario approach which often uses

the results of the Delphi technique is the Cross-Impact Analysis

Method. This technique allows an orderly investigation of po-

tential interactions among items in a forecasted set of occurrences.

This method recognizes the causal links or chains between in-

dividual forecasts and allows the modification of scenarios to

make them more internally consistent. Two versions have been

developed. In one case, events are forecast together with

estimates of timing and probability that the event will take

place. Interactions are then considered. In the second version

"point" forecasts (events) are divided into three broad cate-

gories: environment, applications and basic technologies.

Further subdivision is possible. For each case causal networks



are built of the events with new events being filled in where

necessary. Additional networks, branching off from the original

set can be added. Networks within the three categories are

harmonized with respect to timing, estimates of probability,

feasibility and desirability and brought into logical order.

Another orderly way of looking at things is the technique

known as morphological analysis. Fritz Zwicky pioneered this

technique in his exploratory studies in the field of jet engines.

In essence, the technique attempts to break up the problem into

its basic parameters, and then conceive of as many variations

of each parameter as possible. Morphological analysis does not

so much yield a forecast as it does open up possibilities.

The first step is to state the problem to be solved with

the greatest possible precision. Next, all impinging parameters

are identified. Third, the parameters are subdivided into

distinguishable states. Lastly, rules for analyzing the com-

binations are formulated. One then proceeds through all possible

combinations, eliminating those which are contradictions and

seeking combinations which offer an opportunity for technological

breakthrough. In a way similar to this, Fritz Zwicky was

able to decompose a chemical jet characterized by 11 parameters,

into 36864 possible combinations of these eleven parameters.

In the next step he reduced this number to 25344 after the

systematic removal of internal inconsistencies. By selecting

specific combinations, Zwicky was able to suggest a number of new

conceptual inventions such as the "aeroduct," a ramjet utilizing

the chemical energy of free radicals and excited molecules in

the earth's upper atmosphere, and the "aeropulse" or "rocket

pulse," which carries part of its own oxidizer and obtains the

rest from the outside air during the negative pressure phase of

its cyclic operation.9



Another taxonomical approach to identifying key linkages

in the solution of technological problems or in forecasting where

problems may be is that of the relevance tree. The method

uses the ideas of decision theory to assess the desireability

of future goals and to select those areas of technology whose

development is necessary to the achievement of those goals.

Objectives are broken down into successively small components

each with its own branching possibilities. The outcome is

that one is able to identify all objectives at any level and

derive a quantitative value which would benefit from achievement

for any particular branching route. A problem with relevance

trees is that they require fairly precise ideas at all levels

of activity. As a consequence they are generally used only for

forecasting 10-15 years into the future.

The technological methods outlined in this chapter represent

good potentials for new areas for the development of demand for

air transportation. While some of these have been used, further

research is needed before any of these can be implemented at

the practical level. Finally, the reader is cautioned that the

list of methods discussed in this chapter is by no means complete.

Other methods such as the application of systems dynamics, game

theory and decision analysis should also be considered.
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Chapter III

Time-Series Analysis

The oldest and in some cases still the most widely used methods

for forecasting the demand for transportation is time-series analysis,

more simply known as trend-extrapolation. The method often used where

time and data are limited, produces the forecast of a single variable,

passengers carried or transported through the use of historical data

for the particular variable. The historical data can be manipulated

through the use of sophisticated smoothing techniques. Since time is

used to reflect the impact of many variables, the method is only

useful as long as there is no change in this basic trend.

Trend extrapolation is often thought of as a simple and a rough

method of producing a forecast. Hawever, before an analyst discards

the use of trend analysis, he must keep two things in mind. First,

while other methods may appear more appealing based on theoretical

grounds, data may not be available to justify their use. For instance,

how does one quantify social status as an explanatory parameter for

overseas pleasure travel, or privacy as a factor in the choice of

car as a mode of travel. Second, a model's simplicity is in the

mind of its user. For example, recent applications of adaptive fil-

tering methods, Box-Jenkins methods and spectral analysis can hardly

be classified as "simple and rough" and their use has considerably

increased the validity of trend-extrapolation.

Time-series analysis is especially useful in producing short-

term forecasts. In particular, forecasts of monthly, weekly, daily and

hourly variations can most easily be produced by using time-series

nodels. These variations are required, for instance, to measure the

impact and magnitude of peak loads. While in the past, the most

common means for handling fluctuating patterns have been simple and
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exponential smoothing techniques, significant improvements have

been achieved through the development of such techniques as adaptive

filtering, Box-Jenkins methods and spectral analysis.

An Adaptive Forecasting Technique

Forecasting models are just representations of the world as

viewed at a given period in time. As the world is constantly chang-

ing, it is only reasonable that models should also change. Models

that change through time are denoted as adaptive techniques. They

have the potential for yielding better forecasts; but associated

with this improvement is a higher cost of estimation and development

as well as usually increasing complexity.

In one type of adaptive forecasting method, the structure of

a model can change through time. One might decide that a new

variable has become important, wage-price controls should be

accounted for explicitly, or that numerous functional changes

should be made. In a model of automobile demand, dummy

variables for Nixon's fiscal policies, automobile strikes (two

different ones), and stell contract renegotiation were included.

Other models have included even more out-of-place dummy variables.

The addition of these very special purpose dummy variables

(as opposed to more appropriate dummy variables such as season-

ality) to a model indicates a fundamental weakness in it. It

is rare that the addition of new variables will correct mis-

specification errors in a weak model.

The record has not been good for models that constantly change

their structural form in adapting to new conditions. They generally

do not do better than alternative models that have an unchanging

structure. As a result, not very much work has been done on models

with changing structures.

The second type of adaptive forecasting model is one in which

the structure remains unchanging, but the values of the coefficients

Mik



vary. Kalman filtering (which is presented in Chapter 4) is an

adaptive technique. The gains (smoothing constants) are time-

varying based on the variances and covariances (i.e. degree of un-

certainty) associated with the state.

One often wishes to perform exponential smoothing on a series

due to its simplicity. Better results can be achieved by using

time-varying (adaptive) smoothing constants. Following are some

examples of adaptive techniques as applied to exponential smoothing.

These examples assume that the series to be evaluated is stationary.

A stationary series is one whose mean and variance have no trend

over time. Therefore a stationary series cannot have a time trend

or other changes in average value. The constant variance assumption

is necessary to insure responsiveness and stability. Most processes

with unchanging means also have unchanging variances. Examples of

stationary and non-stationary processes are shown in Figure 3.1.

One can often make a non-stationary series stationary by creating

a series of the differences (e.g. create w(I) = X(I+l) - X(I) for all

I) to remove trend in the mean; or to create a series of the differen-

ces of the logs (e.g. w(I) = log(X(I+1)) - log(X(I)) for all I) to

remove trend in the mean and the variance. Alternatively, one could

run a straight-line equation on the moving average of the series to

eliminate the trend. If the series is not stationary, one can trans-

form it until it becomes stationary or can estimate trend and seasonal

terms with methods that are similar to those following:

Assume the following simple model:

Xt+l atXt + (1-at)Xt (3.1)

Xt = observed value of series X at time t
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Figure 3.1. Stationary and non-stationary series
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X = estimated value of Xt

at = time-varying smoothing constant

Given this model, one can recursively simulate the series if he has

an initial value of X . A suitable value of Xt is the mean

of the entire series of Xt'
One can simulate this series with different values of the

smoothing constant (a). For the available data, let at be a constant

(i.e. a, = a2 = ... = aN). Choose the a that results in the minimum

mean squared error. In a periodic, unconstrained adaptive technique,

one will choose an initial a and repeat this process each time that

a new observation is recorded. The smoothing constant is then re-

evaluated each time that new information becomes available.

A periodic, constrained adaptive technique will choose an

initial value of a in the same way as a periodic, unconstrained model

will. However, a new value of a will not be calculated when new ob-

servations are made unless certain conditions are met. A typical

condition might be to adjust a if the error of the forecast of the

latest observation exceeds three times the standard deviation of the

series. The adjustment might take many forms. A suitable adjustment

could be to adjust 0( five percent in the direction that reduces the

error. This technique will not give as good results as the uncon-

strained method, but it requires considerably less computer time to

perform.

The final and most sophisticated adaptive smoothing technique

that will be presented is a continuous, unconstrained method. It has

the greatest computational requirements of the three methods that

are discussed in this section, but it is also potentially the most

accurate. It updates the smoothing constant (a) by using the forecast
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error (E ) to determine how well the series tracks itself.

E = X - x (3.2)
t t t

Et = smoothed forecast error

Et = (l-y)Et-l + yEt (3.3)

= smoothing constant to be determined by grid search

Let E = 0

ABS(Et) = absolute value of the smoothed error

ABS(E ) = smoothed value of the absolute value of the smoothed
error

ABS( t) = (l--)ABS(EKtl) + y(ABS(Etl)) (3.4)

Let ABS(R0 ) = 0

a = E /ABS(E ) (3.5)
t t t

at the smoothing constant used in equation 3.1.

In this technique a is continuously varying as each new data
t

point is received. y is chosen by a grid search which finds the value

of y that results in the minimum mean squared error for the series

X . Generally, y should be less than .5. As this technique is usu-

ally not very sensitive with respect to y, only a few values need

to be tried. One should note that this technique ensures that the

magnitude of at is always less than or equal to one.
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These three adaptive forecasting techniques work by applying

time-varying values to the smoothing constant in a simple exponen-

tial smoothing model. These methods are more powerful than simple

exponential smoothing with fixed coefficient values, but also are

more costly. As not much work has been done in the area of adaptive

forecasting methods, this field contains many areas that are ripe

for investigation.

Non-adaptive exponential smoothing techniques are usually

simpler to implement and to understand than adaptive techniques.

They are capable of excellent predictions when the underlying pro-

cesses are well-defined and stable.

Following is a non-adaptive technique that makes use of expo-

nentially weighted moving averages (i.e. exponential smoothing).

It operates by separately estimating for each time t the smoothed

p rocess average, StI the process trend, Rt., and the seasonal factor,

F t and combines them to compute a forecast, Yt+T' T time units

into the future. These values are recursive in nature and thus, each

forecast value is based on all of the data from all of the times pre-

ceding and including t.

Xt
S = (a) + (l-a) (S + R ) 0<al (3.6)
t F tLt-1 t-l1

Rt = (0)(S t-St-l) + (1-O)Rt- 0 $<l (3.7)

F = () + ) Oyl (3.8)
t S + y)Ft-L

Yt+T = (S t+(T)R )F t-L+T (3.9)



whereoc, P and ( are smoothing constants which help to dampen sharp

peaks and troughs, L is the seasonal period and xt is the true pro-

cess value at time t. If the process is on a month to month basis,

then L = 12 and T = 1 and the forecast value is

Y t+ (S t+Rt)Ft-11  (3.10)

In the discussion that follows, we will assume this to be the case.

Exogenous variables for the model are the values of S and R
0 0

and twelve initial values for F, denoted Fi, (j = 1, ... , 12), and
J

are computed as follows:

(1) So, the initial value of the process average, is equal to

xV, the first process value.

(2) R0, an approximation of the initial trend, is found by

plotting the first twenty-four data points and estimating the trend

by a straight line as shown for North Atlantic travel data in Figure

3.2. R is the slope of that line.

(3) Fi. (j = 1, ... , 12), the first cycle seasonal factors, are
J

computed by taking the ratio of the true process value to the trend

approximation value, both of which are available from the graph in

Figure 3.2 as given in the equation:

Fi actual value month i .
j trend approximation month j

In order to properly forecast the first several values, it is

necessary to build up a backlog of values of S, R and F. This pro-

cess also helps subdue the random factors inherent in the data. In

practice, two cycles of S, R and F values have been found sufficient

for these purposes. Thus, the first forecast value, Y25, would be

based, in an exponentially decreasing manner, on all the S, R and F

values from t = 1 to t = 24. Then, S25' R25 and Y26 are calculated,
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and so on. As the process continues, each forecast value is based

on history in the same way.

Program Description

The program to execute this model for five years of data - two

years to build up the backlog of values and three years for actual

forecasting - is shown in Appendix A. As often as possible, varia-

ble names are either consistent with those in the formulae or self-

explanatory. The program includes a routine that locates the com-

bination of a, 3, and y to the nearer .01 that produces the least

total squared error in the forecast v&lues. It does this by first

finding the a, # and ' to the nearer .05 and then searching around

these values to see if the total squared error can be lowered further.

The program requires three sets of input data:

(1) A title card describing the forecast to be run. If no title

is desired, a blank card must be inserted.

(2) The data, formatted according to statement 101 (Appendix A).

(3) One card formatted as follows:

FIRSTPOINT xxxxx FINALPOINT xxxxx YEAR xxxxxUNIT x

The first point is the point of the graph (Figure 3.2) where the trend

approximation line intersects t = 1. The final point is the point on

the graph where the trend approximation intersects t = 24. The year

is the first calendar year for which data is give; if this is un-

known or inappropriate, the number 0001 whould be entered. The unit

figure is a scaling factor and indicates the power of 10 by which

the volumes must be multiplied.

Upon execution, one table and two graphs are printed, the former

a listing of the known values, forecast values and error calculations

for each time t and the latter, plots of actual and forecast volume

vs. time and the error probability distribution to give an idea of

the overall effectiveness of the model.
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This model is applicable chiefly for short term forecasting.

It is an extrapolation of history into the future. Effects of

dramatic changes in technology, such as inauguration of SST service

in the example above, cannot be predicted. Similarly, alterations

in traffic patterns due to uncontrollable circumstances, such as

strikes, cannot be predicted. Both of these instances greatly in-

crease the random factor in the data and render the model ineffec-

tive. The model is, however, helpful over the short term and

should be used with this in mind.

Box-Jenkins Time-Series Analysis

The following material is based primarily on the work of Box

and Jenkins. Their technique requires a large amount of data and

computational effort relative to exponential smoothing, but some-

what less than regression methods. This technique adjusts the fore-

casts In fit new data, and is therefore an adaptive method.

Box-Jenkins analysis assumes that one is working with a sta-

tionary series or at least a homogenous, non-stationary series. A

stationary series is one in which the mean and variance remain

roughly unchanging over time. A homogenous, non-stationary series

is one that can be differenced one or more times, in order to arrive

at a stationary series. Unfortunately, not all series are stationary

or homogenous, non-stationary. It is a common mistake to apply Box-

Jenkins analysis to series that are non-stationary and non-homogenous.

rThere is not a clear dividing line between statistically suitable

series and unsuitable ones. It is often a matter of judgment or

necessity when one decides to apply Box-Jenkins.

In order to determine stationarity, one needs to calculate the

autocorrelation functions of the series. The autocorrelation function

is the covariance of the values of a series with their lagged
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(or lead) values. The formula for computing the autocorrelation

function of a series for a lag of k periods is presented in equation

3.11.

T-k
S (Y - Y)(Y - Y)

A t=1 t t+k (.1
T -2 (3.11)Ck T -2

2 (Y -Y)t=l t

= sample autocorrelation function for lag k

T = number of observations in the series

Y = series on which the sample autocorrelation function
is computed

Y = mean of the series, Yt

The correlogram is a plot of k versus k for k=l to the desired

number of lags). For a stationary series (as in Figure 3.3), the

correlogram will quickly fall to zero.

In order to apply this method, one usually needs to transform

the series, Yt, by differencing to form a new series, wt, which is

stationary:

e.g. first differencing: wt t VY t Y t-l

2
second differencing: w = V Y = VY -VY

t t t t-l

If one has a forecast for wt (=VY ), then in order to fore-

cast Yt, he has to integrate (undifference) the series, i.e.

Y = Y t1+ VYt'

The Box-Jenkins technique makes use of ARIMA (auto-regressive

integrated moving average) models: the integration (or undifferencing)
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procedure has just been described, and following are descriptions

of moving average, autoregressive, and complete ARIMA models. As

the defining equations are straight-forward, additional discussion

will be limited.

A moving average process cf order q on the series, Yt is de-

fined as:

MA(q): Y =y + e -o6e -O6e -..- 6e (.2
t t l t-l 2 t-2 q t-q (3.12)

= mean value of Y

0. = parameters associated with the moving average
procedure

e = prediction error of the moving average process
at time, t

G. is expected to become smaller as i increases because past values

are not expected to affect the present value very much for a sta-

tionary series (ignoring seasonality considerations).

An auto-regressive process of order p on the series, Yt, is

defined as:

AR(p): yt = +t-l 2 t- 2 +p t-p + + t (3.13)

. = parameters associated with the auto-regressive process
1

e = error associated with the auto-regressive process

6 = constant parameter needed to define the mean of Yt

y = (3.14)

As is the case with 6., o. is expected to become smaller as i
1 1

increases.
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The combination of integration, moving averages, and auto-

regression results in the ARIMA model.

ARIMA (p,d,q) w = (Pw + w + ... + p w + e
t 1t- 2 -2p t-p 1 t-l

+O6e + ... O6e + e2 t-2 q t-q t (3.15)'

where w V Y
t t

When applying an ARIMA model, one first has to determine the

proper value of d to use in the model. This can be determined by

plotting the correlogram for the series with several candidate values

of d. The correlogram, practically speaking, will never die down to

zero, so some threshold needs to be specified. If the magnitude of the

correlogram dies down to .05 or less and stays there, then it is

usually suitable. If the correlogram does not diminish to a low

value rapidly (not more than approximately twenty-five lags for

monthly data) then that order of d is not suitable. If several

values of d seem suitable after examining their correlograms, then

one might wish to try all of them in ARIMA models. All other things

being equal, one should pick the smallest value of d for which the

correlogram is well-behaved. As the value of d increases, one is

more likely to be fitting noise and statistical fluctuations than

to be fitting the true process.* Experience with numerous economic

series has shown that most processes that one is likely to encounter

tend to be ill-defined with only marginally acceptable correlograms.

It is unlikely that one has strong a priori reasons to pick par-

ticular values of p and q. One should try several values of p and q

starting with the lowest orders. The following statistics are

*Each differencing process also destroys a degree of freedom.
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2 2
available to help evaluate the models: R , t, and x (probability

that the residuals are not white noise). One should then simulate

the potentially acceptable models and observe how well they track

themselves and how robust (responsive) they are.

One estimates the 'p. and 0. by choosing the combination that
1 1

results in the minimum mean squared error. As the process for es-

timating the parameters is highly non-linear, it is necessary to

employ an iterative solution technique. These iterative solution

techniques are not guaranteed to converge, although practical experi-

ence has shown that they usually do. The non-linear techniques of

estimation can, and often do, result in local rather than global

optima. That makes them highly dependent on initial conditions.

Unless care is taken, and several different initial conditions are

tried, erroneous estimates are likely to result.

Our experiences have shown that one is unlikely to be able

to obtain optimal estimates for the parameters if p and q (particu-

larly q) are greater than two. In some cases when p and q were

greater than two, intuitive guesses of the parameter values gave

better results than the computer estimation routine. 10The unaccep-

tibility of Box-Jenkins for high order techniques has been demon-

strated. However, many processes need to be specified as higher order

processes, e.g. to account for seasonality, monthly traffic data needs

to be modelled with at least a twelfth order lag. Many time series

also have a two to four year business cycle underlying them. Such

cycles are virtually impossible to predict using Box-Jenkins.

Box-Jenkins works admirably for some time series, but is insuf-

ficient for others. Fortunately, another technique is available

that greatly increases the power of the basic Box-Jenkins method.

This method is to use economic variables (which can take out seasonal,

business cycle, and other long term effects) in addition to the

usual Box-Jenkins variables. Routines have been developed that allow



this. This technique is roughly equivalent to performing an

ordinary least squares regression with the economic variables and

then performing Box-Jenkins on the residuals (errors).

Box-Jenkins analysis was attempted on the Federal Reserve

Board Index of Industrial Production of Machinery (in constant

dollars). It was difficult to achieve a stationary series, even

with multiple differencing. When a marginally acceptable series was

arrived at, the Box-Jenkins method still gave poor results. When the

machinery index was regressed against the anticipations of business

expenditures for new plant and equipment (in constant dollars), ap-

proximately ninety-four percent of the variation in the series was

explained (including business cycle and seasonal effects). A cor-

relogram of the residuals (errors) showed well-behaved, stationary

series for several values of d. When Box-Jenkins analysis was ap-

plied to the resulting series, excellent results were obtained.

There are many other cases where simple economic indicators

coupled with Box-Jenkins have yielded good results when the basic

Box-Jenkins method was unsuitable. Box-Jenkins analysis is limited

to low-order processes. Despite this limitation, Box-Jenkins with

economic indicators is a useful tool for short term analysis.

Spectral Analysis

Spectral Analysis is a technique of evaluating a time series

with time as the only predictor. Any stationary series (i.e. one

with unchanging mean and variance, see Figure 3.1) can be decomposed

into a series of sine waves of various frequencies (i.e. periodici-

ties) and phase. Given enough sine waves, any series can be accu-

rately fit. However, this may then result in the problem of fitting

n points with an nth degree polynomical. In spectral analysis, one

should attempt to detect cycles that really exist rather than ones that

just happen to fit the series; typical series which commonly appear
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are the long run business cycle, seasonal peaks, and day of week

cycles.

When performing spectral analysis, one should ensure a :stationary

series by generalized differencing or logarithmic transformations.

A Fourier series can be used to break the series into a set of sine

and cosine waves of varying amplitude or alternatively a set of sine

waves with appropriate phase lags. With enough decomposition, any

series can be fit, but a good fit does not guarantee a good predic-

tion.

The longest period that can be observed is equal to the number

of points in the sample. The shortest period that can be observed

is twice the measured increment. If the mean of a stationary series

is removed so that it fluctuates about zero, one can write:

N
(3.16)Y = i (a.cos w.t + f.sin w.t)t il i I i I

Yt = stationary series to be analyzed after the mean
is removed

t = time

N = number of frequencies considered

ai, . = parameters to be estimated

= frequency values (radians/sec)*

This formulation assumes that power is concentrated at discrete fre-

quencies and that the individual cycles are independent.

The correlogram (which was described in detail in the section on

Box-Jenkins models) is used in Spectral Analysis. The auto-covariances

*Frequency in radians per second can be converted to cycles per
second by dividing by 2W.
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from the correlogram are used to calculate the power density spec-

trum (of the lagged variables). The power density spectrum is a

list of component frequencies of a series with the magnitude (or

power density) associated with them. For example, a series of air

passenger demand might have dominant magnitudes at frequencies cor-

responding to zero months (mean of the series) and twelve months

(the yearly cycle). All other frequencies will probably have much

smaller magnitudes (power) than those spread across some frequency

range, and hence the name power density spectrum. Rather than going

into details, a computer routine is presented in Appendix B which

will calculate the desired quantities.

Although discrete frequencies are assumed, statistical pertur-

bations are usually such that the exact frequency lies between two

of the specified frequencies. A histogram which groups a range of

frequencies together will quantize the frequencies for practical

usages. The histogram is implemented through "Parzen windows" in

the spectral estimation program of Appendix B. A "Parzen window"

is just one of a number of complicated mathematical forms that have

historically been denoted as windows. One needs to work with fre-

quency bands rather than frequencies, e.g. the frequencies .43200001

and .4320 are essentially the same frequency and one would not want

to include both in the model. There is some interval such that

two frequencies are not considered as being the same. This interval

is referred to as a window. The Parzen windows act as smoothers

of the estimates which enable the user to observe "true" process

values with statistical perturbations and random noise removed.

The spectral estimation program calculates consistent estimates

of the power density spectrum* which converge to the correct value

*The power density spectrum consists of the root mean square values
of amplitude at each frequency.
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for large populations. There is a problem with determining the best

number of lags to use. A large number of lags results in small

variances; a small number of lags results in small biases. As the

mean squared error is equal to the variance plus the bias squared,

it is not clear what is the best number of lags to use for a given

problem. Several values should be tried in order to pick the op-

timum number of periodicities, e.g. if one were dealing with monthly

travel data on the North Atlantic, he would have to include at

least twelve lags in order to account for seasonality. As the number

of lags increases, there is the increasing danger of picking up

noise rather than underlying patterns.

- One needs to ensure that the frequency spacing is close enough

that good results can be obtained. The frequency spacing interval

generally should be at least twice as small as the interval between

observations. Although some confidence measures can be created,

there are not many statistical validity tests that can be applied to

spectral analysis. One can test for removal of trend by observing

the size of the zero frequency term (which should be small).
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Chapter IV

Control Theory Models

This section will cover models that rely strongly on feedback

mechanisms in their structure. Feedback mechanisms refer to the

relationship of the output or response of a system (or a model of a

system) to the system itself. For instance, a profitable year for

an airline might result in the ability to increase the level of

service and to purchase additional plant and equipment. This out-

put of the "airline system" affects the system in the next time

period by possibly causing a further increase in profitability.

This process of system outputs affecting system inputs is known as

a feedback mechanism.

The process of feedback often results in models of transporta-

tion demand being self-fulfilling. If a model predicts an increase

in demand, supply often will be increased which improves the level

of service, thereby causing the predicted increase. On the other

hand, if large increases in demand are not predicted, new supply

facilities will not be introduced and demand will, as predicted,

not increase beyond the constraints of the existing supply. It

is almost a truism that a shift in supply will cause a shift in

demand. If the demand shift oczurs slowly and smoothly over time,

it is not necessary to model feedback effects. If this is not true,

there might be much to be gained by modelling the interactions of

various parts of a transporation system with feedback relationships.

Information filtering will also be discussed here as these

techniques developed from the same branch of engineering as the tech-

niques of analyzing and designing feedback control systems. Infor-

mation filtering is the process of extracting useful information from
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a set of observations. Most observations will consist of the true

process value plus noise, plus possibly a bias. An information

filter might attempt to estimate the bias and to cancel out the

effects of noise. A very simple means of filtering might be used

to compare the passenger appeal of two different aircraft types.

Each passenger can be asked to rank the aircraft on a numerical

scale. Averaging their answers will presumably cause the random

factors to cancel out and result in an unbiased estimate of the

true value. An analogy can be made to understanding a conversation

in a noisy room. The listener's mind will tend to reject the noise

and hear only the voice (true signal) thereby acting as an informa-

tion filter. The theory behind the analysis of feedback models and

information filtering is a highly detailed and mathematical subject.

A very brief and by no means complete overview of the techniques

will be presented; to go into more detail would require a very lengthy

digression which is out of the context of this report and is not

necessary for the application of these methods. It is advised

that the reader who is interested in a more rigorous discussion

consult Forrester, Principles of Systems; Savant, Basic Feedback

Control System Design; Battin, Astronautical Guidance; or any

other book that deals with feedback systems and information filtering.

A system may be modelled as an open or closed loop. An open

loop system is one in which there is no interaction of the outputs

with the inputs. An open loop system is not aware of its own be-

havior. A firm in which a fixed amount of funds is allocated to ad-

vertising and promotional activities regardless of what results occur

is acting as an open loop system. If the results are predictable and

stable, this procedure might be acceptable. A closed loop (or feed-

back) system is influenced by its past behavior. Outputs at a given
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point in time affect future inputs. If in the case of an advertising

budget, management reviewed its budget based on previous results and

present goals, the system would be closed loop.

Over the short term, a fixed schedule airline might be thought

of as an open loop system in that a flight will depart whether only

one passenger is aboard or the flight is over-booked. The Eastern

Airlines Shuttle is a closed loop system. Departures are demand re-

sponsive as the number of arriving passengers feeds back to the sche-

duler, and the appropriate number of flights are dispatched. Most

air transportation models are open loop and pay little attention to

dynamics. The dynamic or time-varying behavior of a system can be

important for some purposes. One must be aware that changes in

fare or level of service will affect passenger demand over a period

of time, not instantaneously. For most purposes, dynamics and feed-

back can be safely ignored. However, over the long term, everything

is ultimately a closed loop system. For long term analysis and

forecasting, consideration of these feedback effects must be included

either explicitly in a control theory or simulation model, or impli-

citly through the modeller's intuitive mental model.

Some feedback relationships are positive. In positive feedback

loops, a given response results in actions that cause further response

of the same nature. Such behavior often manifests itself as expo-

nential growth or decay. As more aircraft are built, more are

bought and flown. This hopefully causes an increase in safety, com-

fort, convenience, and frequency; thereby causing an increase in

passengers. This increase in passengers further triggers more re-

search and development which results in newer and better aircraft;

thus completing the loop.

Feedback relationships can also be negative. Negative feed-

back loops can be thought of as "goal seeking." Their response



tends to direct them toward a goal that is either recognized or

implicit. A goal might be to achieve ninety percent of departures

within five minutes of schedule, to achieve a specified load factor

(usually constrained by the system rather than by management), or

some other undefined achievement. As the number of passengers in-

creases, load factors tend to increase, which causes availability and

comfort to decrease while processing time increases. This decrease

in level of service tends to decrease the number or passengers and

results in a self-regulating system.

These examples are overly simplistic. For instance, in the last

example, an increase in passengers might cause an increase in frequen-

cy which would result in an increase (not a decrease) in the level of

service. Systems usually contain several feedback loops which operate

simultaneously. At various times, different loops can potentially

dominate the system's response. Loops can operate at various levels

of detail. In the previously described negative feedback loop,

level of service decrease can be linearly related to load factor, or

by simulation involving a complex generation technique for reserva-

tion requests and a mathematical model of processing delay, each with

its own feedback loops.

An individual flight, a city-pair, an airline, a complete multi-

modal transportation system, cash flows in a company, or the entire

economy can be modelled. As more loops become present, analysis

and intuitive u'derstanding dramatically increase in difficulty.

As in other types of analysis, it is desirable to eliminate all

unnecessary detail.

A system can be defined as a function of the state (or condi-

tion) of some quantity by simultaneous differential equations. Such

precise and mathematical relationships tend to be of marginal value

relative to less exact techniques because even if all specification



errors were eliminated and the model were perfect, measurement

errors and/or inability to make use of the increased accuracy negate

any benefits derived from such complicated methods. Only the sim-

plest of systems can yield a closed-form solution* that can be solved

as a function of time and exogenous variables. More complicated

systems require simulation or other advanced techniques for solution*.

An example of a simple feedback loop is shown in Figure 4.1.

Although this loop appears to be quite simple, any part of it might

require a complex econometric regression to define it. Negative

loops can be characterized as self-regulating or "goal-seeking."

Positive loops can be characterized by growth or shrinkage. Most

systems are difficult to define as either one or the other although

over certain ranges of values, it might be possible to describe the

actions of a system by one or two predominate loops.

Systems that are non-linear or which are higher order (second

derivatives or higher) can demonstrate oscillatory behavior, as in

Figure 4.2. This could be a simple response such as a product life

cycle, or it could be a more complicated response such as might

occur when a new, highly attractive, limited availability fare is

introduced; demand for the new fare could develop very quickly,

and potential demand could overshoot supply, thus causing a decrease

in demand; this process could continue until the oscillations dam-

pen out.

Techniques for solving linear and certain non-linear con-

trol problems can be used for some closed-loop transportation

systems. These techniques require familiarity with differential

equations, LaPlace transforms, and other engineering tools. One

*A closed-form solution is one with a unique and exact answer that
can be arrived at through simple algebraic operations without the
need of applying iterative or other approximate procedures.
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need not concern himself with these methods as they are unlikely to

ever be explicitly needed by transporation planners. It is also

possible to simulate simple systems on an analog computer. More

complicated systems can sometimes be modelled on a hybrid computer.*

The first step for analyzing a feedback system is to break the

system into various blocks or black boxes each of which has a spe-

cific function that can be characterized by a transfer function

(mathematical expression) that relates inputs to outputs. The

model can be best understood if the blocks are transparent so that

the inner workings can be observed if desired. There exist many

modern and classical techniques for analysis of feedback systems.

Feedback models can be initialized at a given state and then be

left to run freely, thus giving a time series picture of the system.

It is far more valuable to allow the system to respond to exogenous

inputs through appropriate behavioral assumptions. A model of passen-

ger demand could have the capability of responding to factors such

as personal income, characteristics of other modes, fare, and level

of service changes. A very simple model of such a process is shown

in Figure 4.3.

Even state-of-the-art techniques of control theory are limited

to linear or special non-linear systems. Most problems in transpor-

tation demand forecasting tend to be more complicatea. System

dynamics, which is a less technical, user-oriented technique derived

from control theory, gets around this problem by recursively simu-

lating the system for small time steps.

In system dynamics, a system is broken into levels and rates.

Levels are analogous to states (or condition of a system), and rates

*An analog computer consists of a set of electrical components that
can replicate the actions of a system. A hybrid computer is a com-
bination of an analog computer and a regular digital computer.

000
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correspond to changes in states. Levels represent integration

(accumulation) over time of the rates. The emphasis of system

dynamics on integrations does not represent a real mathematical

difference between the differential equation approach of control

theory. It is probably more convenient for most people to think

in terms of integrations, e.g. passenger loads are integrations over

time of reservation requests rates. Figure 4.4 illustrates the

structure of a model that can be used for evaluating frequency

changes on a route. This should illustrate the basic technique of

setting up a model using levels and rates.

System dynamics or control theory models often require inputs

from econometric models to create transfer functions or to relate

levels and rates. To the uncertainty of the usually short run eco-

nometric parameters is added the much greater uncertainty of the long

and short run feedback relationships. There is both the danger of

ignoring variables and relationships that might become important

at some later date and the problem of misspecification errors

growing and possibly becoming explosive as the feedback process

is simulated through time. One should be very wary of unstable

systems; real world transportation :ystems do not usually exhibit

unstable response.

For previously mentioned reasons, control theory and system

dynamics models are likely to be poorly suited for making accurate

predictions. For short or medium term forecasting, econometric

or simulation models are more useful and more accurate for many

problems. The greatest value of feedback models is in their reveal--

ing of general system response. Much greater confidence can be

placed in a curve derived from a feedback model than in one simply

hypothesized as an S-shaped curve. Quite often, feedback models

applied to other areas in the social and physical sciences have
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yielded counter-intuitive results. There is no reason to think

that this would not be true for problems in air transportation.

Even a person with a good intuitive understanding of a situation

might have difficulty predicting traffic when the dominant structure

changes. A good feedback model and analysis of the general shape

of the response can do much to help improve one's knowledge of the

macroscopic nature of a system.

Information filtering serves an important function in aircraft

navigation and other physical problems. This technique can be modi-

fied to improve forecasting methods. Information filtering schemes

extract useful information from processes that have inexact or noisy

outputs. The discussion and example following should make the con-

cept of an information filter clearer. The Kalman filter is a rela-

tively simple and effective information filter that has been used

successfully for aeronautical problems. Following will be a non-

technical overview of Kalman filtering and suggestions for its appli-

cation to air transporation problems.

Any system can be characterized by equations that relate the

dependent quantities from one period to the next. Measurements are

available from which the dependent quantities can be calculated.

There will always be errors that are associated with the measure-

ments and the model itself.

The Kalman filter is a set of mathematical relationships that

processes the available measurements optimally (i.e. with the minimum

mean squared error) in order to achieve the best possible estimate

of the dependent quantities. The filter is simply a sophisticated

method of exponential smoothing that can estimate bias errors and

can cancel out much of the random errors. The basic filtering

algorithm consists of forecasting future values of the dependent

quantities, and then processing measurements with the filter in



order to update the estimates of the dependent quantities to reflect

the new information contained in the measurements.

As this subject tends to be highly mathematical, the reader

might wish to skip the computational details that follow. The tech-

nique can be applied to almost any forecasting method without re-

quiring an understanding of why the filter works. Simple user-

oriented computer routines can be developed to solve this problem

in much the same way that user-oriented regression routines allow

one to perform least square analysis without knowing the details

of the calculations.

In the general case, one needs to define a state and an error

dovariance matrix that goes with it. The state should consist of

all dependent quantities that one might wish to estimate (such as

passenger volume, market share, profits, etc.), measurement and

model misspecification bias (note: measurement bias arises primarily

from errors in frrecasts of the exogenous variables), and any other

quantities that are needed to extrapolate the state to future time

periods. Each of the elements of the state has some error distri-

bution associated with it, i.e. its value is not known exactly.

The errors can usually be assumed to be independently distributed,

and can be characterized by variances (VAR(x)) and covariances

(COV(xy)).

N
2; (X.-_X) (Y -Y)

11

COV(XY) = COV(YX) =N- (4.1)

N -2
2 (X.-X)

VAR(X) = (4.2)
N-1
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X,Y = any variables

X,Y = mean values of X and Y respectively

N = number of observations of X and Y

The covariance of X and Y represents the relationship of

the errors of X and Y. A covariance of zero implies that no

relationship exists between the errors of X and Y. A negative

covariance implies that positive errors in X are most likely to

be associated with negative errors of Y. Positive covariances

imply that the errors tend to move together. For instance, if one

were modelling passenger demand, positive errors in the forecast of

income would tend to accompany positive errors in forecasting demand.

The covariance matrix is a convenient form for relating the

errors of the state to each other. The diagonal elements of the ma-

trix are variances rather than covariances. The variances are sim-

ple to estimate because they are just the square of the standard

deviation which one usually has a good estimate of. The covariance

matrix contains the estimates of uncertainty in the state. To ini-

tialize the process, an initial covariance matrix, such as one where

all off-diagonal terms are set equal to zero, needs to be specified.

Elements in the off-diagonal terms should quickly reach reasonable

values.

The state error covariance matrix (E) and the state (g) are

extrapolated through time as forecasts are made. For some problems,

the extrapolation process is well defined by physical relationships.

In air transportation problems, one needs to rely on the less exact

extrapolation that results from an econometric regression, a feed-

back model, or a simulation model. The process is not exactly de-

fined, and one can only hypothesize reasonable simplifications.

However, one should note that Kalman filtering has been successfully



applied to processes that are even less exactly defined than the fore-
11

casting of the demand for air transportation.

The state extrapolation is an easier process to understand

than the covariance matrix extrapolation. The state extrapolation

is just defined by the single equation or multi-equation system which

has been hypothesized and then calibrated by regression analysis or

other techniques. The expression for this is shown in equation 4.3.

x= Ox (4.3)

x = the state

= the transition matrix that relates x to xt'

Throughout the rest of this chapter, the prime notation (e.g. x')

represents the extrapolated or updated value of the quantity being

considered.

The transition matrix (o') specifies the relationship between

the state at time (t) and time (t+l). If the relationships are

known, the elements of 0 can be solved by inspection after the

expression in equation 4.3 is expanded into scalar notation. For

constant terms, the transition matrix has a one in the appropriate

diagonal elements and zeroes in the rest of the row. The following

example should clarify the procedure for computing the elements of

the transition matrix.

Assume the following state:

X = (YZ)

Y = number of employees in the marketing department of a firm

Z = number of hires for the entire firm in the present
time period.
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Assume that the number of hires in each period is constant.

Zt+1 = Zt (4.4)

Also assume that Y has been defined by the following regression

equation:

Yt+1 = .95 Y t .2 Zt (4.5)

From equation 4.3, one can write

Yt+1 4)11 4)12 YtI ](4.6)
Z t+1 (D21 (D22 Z t

expanding 4.6 into scalar notation results in equations 4.7 and 4.8.

Y =11 Y + 1 Z (4.7)

Zt+l 21 t 22 Zt

From equations 4.5 and 4.7, it is clear that ,<l1 equals .95 and

4 12 equals .2. From equations 4.4 and 4.8, it is obvious that

S21 equals zero and D22 equals one. Therefore

95 .2-4)= (4.9)
0 1

The covariance matrix is extrapolated by pre-multiplying it by

the transition matrix (4) and then post-multiplying it by the trans-

pose of the transition matrix. Process noise (Q) is usually added
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to improve performance and to help insure stability. The process

noise accounts for the fact that as a process is extrapolated in

time uncertainty in the process increases. This uncertainty is

caused by both mathematical and practical reasons. The mathematical

reason is that as a value is extrapolated beyond the sample mean,

the prediction interval (which indicates the degree of uncertainty

in the prediction) at a given confidence level increases. The prac-

tical reason is that assumptions of linearity or simple specifications

are likely to diverge from the real world or even to break down as

the model is applied to increasingly unfamiliar situations. With

process noise added, the prime cause of instability is computer round-

off. Equation 4.10 defines the covariance matrix extrapolation

procedure. Computation of the transition matrix depends on the par-

ticular model formulation being used.

T
e = TE' + (4,10)

Error in the raw model comes from specification error and

measurement error. In transportation systems, as opposed to physical

systems, specification error tends to be large relative to measure-

ment errors. To review, the state should include the dependent vari-

ables and all endogenous variables. It should also include a model

specification bias as well as biases for each of the coefficients

(or parameters depending on view point). Other qualities can be

included in the state if necessary. It is probably best to model the

biases as constants which do not change through extrapolation. The

biases can be either percent or absolute biases; more complicated

forms are not usually necessary. The biases do not necessarily rep-

resent a unique physical quantity in transportation problems. They

might be some combination of measurement and specification errors.

Their value therefore lies primarily in forecasting, not in the

determination of structural coefficients.



In most filtering applications frequent measurements are taken

that result in updating of the state and of the covariance matrix.

Many air transportation systems do not have this frequent data

available, e.g. North Atlantic travel is not reported at very fre-

quent rates, therefore, it might take months and possibly years

before performance transients die down and the filter becomes well-

behaved. However, Kalman filtering is well suited to problems

where frequent observations are possible, such as the prediction

of the volume of traffic a particular airport will handle, or the

demand for an individual flight or city-pair.

The observations (measurements) are used to update the state

and the covariance matrix. The filter might use pseudo measurements

that are manipulations of the actual measurements to update the

state and the error covariance matrix (see the example following for

an example of pseudo-measurements). The relevant equations are pre-

sented in 4.12, 4.13, and 4.14. To perform and update, it is nec-

essary to form AQ (the difference between the predicted and actual

measurement), the measurement vector (b), and the weighting vector (w).

The measurement vectors specify how changes in the measurements

are related to changes in the state. For linear systems or small

changes, the partial derivatives of the measurement with respect to

the state (i.e. the slopes) indicate this relationship:

k q (4.11)
q 5x

where q is the measurement type.

Note that the derivative of a scalar (q) with respect to a

vector (x) is a vector (b ) whose elements are the derivative of the

scalar with respect to each of the elements of the vector (x).



The weighting vector specifies how the state will be updated for

a unit error in the measurement. The expression for the weighting

vector is found in equation 4.12. To repeat, the measurement vector

relates the state variables or model coefficients to the measurement.

For many measurement types, many elements of the measurement vector

are either zero or one because a measurement error might have no

effect on an element of the state or would directly affect it if the

quantity being measured were also part of the state. The form of

the measurement vector depends on the problem being studied. Once

again, the inexactness of the relationship results in transportation

problems being less well defined than physical problems. It is

emphasized that an understanding of the derivations of the filter

equations are not necessary in order to be able to use it.

Following are the filter equations that allow the state and

covariance matrix to be updated when new measurements are taken.

T -2
weighting vector: = Eb/(b Zb + a ) (4.12)

-2
where a is an estimated value of the variance which is picked to

insure good performance

state update: j' = X + WAQ (4.13)

covariance matrix update:

E' = E - wb T (4.14)

Other modifications such as square root formulations, measure-

ment underweighting, or non-linear compensation via second partial

derivatives can be used to improve performance and to help insure

stability. These techniques can be found in the current literature

of Kalman filtering. As long as sufficient precision is maintained



(>20 bits per mantissa for most problems*), these more advanced

techniques are not necessary. This technique is particularly useful

when serial correlation or multicollinearity is present. The

biased coefficient estimates are corrected for by estimating the

biases.

The derivations of the filter equations are beyond the scope of

this report. It is not necessary to be familiar with the mathema-

tical details in order to be able to apply Kalman filtering to

transportation-related problems.

The following example will illustrate the method of Kalman

filtering as applied to a simple problem. Although this particular

model is so simplistic that it is unlikely to ever be used for

serious forecasting, the application of Kalman filtering to more

sophisticated models follows directly.

Assume the following model:

V = a + b*Fare + c*Income (4.15)

V = passenger volume

a,b,c = coefficients estimated by ordinary least squares or
some other regression technique

Fare and Income are in constant dollars

The volume can be extrapolated to future periods by the following

equations:

exact form: V' = V + AV (4.16)

approximate form: V' = V + AV (4.17)

note: the prime notation (V') refers to the extra-

polated value7 the hat notation (AV) refers

*Single precision on most IBM computers is 24 bits per mantissa.
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to the estimated value.

AV = volume change from previous time period

AV = V' - V = b(Fare'-Fare) + c(Income'-Income) (4.18)

The volume for future time periods can be estimated by equation 4.19..

V' = V + B + b(AFare+B ) + c(AIncome+B ) (4.19)spec Fare Inc

A
V' = predicted value of passenger volume at a future time

period

V = previously measured value of passenger volume

AFare = estimated value of Fare change (constant dollars)

AIncome = estimated value of Income change (constant dollars)

Bspec = bias associated with specification errors

BFare = bias associated with the prediction of Fare

BInc = bias associated with the prediction of Income change

The predicted fare change and the predicted income change (both

in constant dollars) will probably have random errors and biases

associated with them. If one can estimate these biases by comparing

past predictions to actual values, then the bias can be corrected

by adding it back in as done in equation 4.19.

Even if one had perfect predictions of fare change and income

change, the model would not give the correct answer due to specifi-

cation errors. The specification error is modelled as a bias term

and a random term. As with the income and fare biases, the specifi-

cation bias is estimated and then corrected for in equation 4.19.

The state (x) consists of AV, B spec AFare, AIncome, B Fare

and B . The biases will be modelled as constants that do not
Inc

change during extrapolation. As previously mentioned, one can write:
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(4.20)x' =Ox

from which it follows that*:

AV

Bspec

AFare

AIncome

BFare

B
Inc

A

0 1 bZ cY b c

0 1 0 0 0 0

0 0 z 0 0 0

0 0 0 Y 0 0

0 0 0 0 1 0

0 0 0 0 0 1

AV

Bspec

AFare

AIncome

BFare

BInc

Z AFare'

AFare

AIncome'
= A o
A Income

(4.21)

(4.22)

(4.23)

Y and Z are exogenously generated expressions for which many inde-

pendent forecasts are available.

One can measure Fare, Income, and V. From these three measure-

ments, one can create three pseudo-measurements after the fact that

relate the predicted measurements from the previous period to the

actual measurements. Pseudo measurements:

= AFare - AFareFare
(4-24)
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B = AIncome - AIncome (4.25)
Inc

B = AV - AV (4.26)
spec

The measurement vectors (b) for each pseudo-measurement can be cal-

culated from equations 4.11 and 4.19. The results of this differen-

tiation are presented in equations 4.27, 4.28, and 4.29.

b

0

0
b = (4.27)
BF 0

1

LO

c

0

0
b = (4.28)

Inc
0

0

0 (4.29)
spec

0

0



As previously mentioned, process noise is added each time that the

covariance matrix is extrapolated in order to reflect additional

uncertainty that occurs from the extrapolation process. The fol-

lowing process noise matrix (Q) will give acceptable results.

0 0 0 0 0 0

0 g 0 0 0 0

0 0 q2  0 0 0 (4.30)

0 0 0 q3 0 0

0 0 0 0 q4  0

0 0 0 0 0 q5

q. = conservative values experimentally picked to ensure

good performance.

No process noise is added to Q because q picks up all of the

effect of additional uncertainty for Q and Q 2,2. The off-diagonal

values are set to zero because it is not clear until after the fact

how the process interacts. An initial covariance matrix needs to be

specified. A suitable one consists of zeros on the off-diagonals

and conservative values of variance on the diagonals.

All of the quantities necessary to operate the filter have been

defined. Equations 4.3 and 4.10 are applied each time that the state

is extrapolated to a new time. Equations 4.32, 4.13 and 4.14 are

applied three times each time step, once for each of the pseudo-

measurements. After a few updates, the filter performance transients

should die down, and the estimates should be significantly better

than the raw econometric prediction.

Despite this mathematical discussion, in order to use Kalman

filtering, one just needs to be able to apply five equations,
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4.3 4.10, 4.12 4.13, 4.14. This can be done mechanically wii-hout

the need of understanding the mathematical rigor.

One might ask why go to the additional effort of applying

Kalman filtering. It is true that Kalman filtering will not be

better able to explain a model's structure than a raw econometric model.

Its value, in this context is to improve forecasting accuracy. It

is recognized that any model, no matter how well specified, will have

errors in it. Although it is desirable, it is not likely that these

errors will manifest themselves as random, independent values.

In such cases. the errors can be better approximated by a bias error

and a random error. If one can estimate the bias error in a model,

he can correct for it after the initial prediction is made. The

Kalman filter is a sophisticated smoothing scheme that can estimate

these errors with the minimum variance in the estimates. It is an

adaptive smoothing technique that picks the smoothing constants

based on the expected amount of error (as predicted by the covariance

matrix) that is associated with the process. If the process contains

no bias errors, the filter will not estimate them and one can then

revert to simply using the raw econometric model without bias esti-

mates. As the errors vary with time. time-varying smoothing constants

can be picked; very few techniques allow for time-varying changes

in the model.

Skeptics might argue that although Kalman filtering can be

applied to well-defined physical processes, it cannot be applied to

the less well-defined problems of transportation forecasting. Re-

search by Fagan11 has demonstrated that Kalman filtering can be

applied to processes that are even less well-defined than transpor-

tation problems. Fagan applied Kalman filtering to the prediction

of stock market prices. When compared against the best state-of-the-

art techniques, Fagan's simple filter reduced the standard error of

the forecast significantly (approximately ten percent). A more
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sophisticated version of a Kalman filter would probably result in

even better forecasting accuracy.

This area is just beginning to be investigated for use in

transportation forecasting. Further work will be necessary before

this technique can be widely and generally applied.

The techniques of control theory have not yet been exploited

for air transportation passenger forecasting. Once econometric

techniques have squeezed the most possible out of the data, further

improvement in forecasting can come from improved data, better know-

ledge of the process, and techniques developed along non-econometric

lines, including simulation models and control theory models. Although

they 'present an avenue for future research and advancement, control

theory models are not yet well enough developed to significantly

aid most forecasters.
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Chapter V

Econometric Models

Econometric methods include numerous modelling techniques

which are based on many different statistical formulations. This

topic alone could be the basis for an entire report on forecasting

rather than just one chapter. Econometric models are the most

widely used of the analytical formulations discussed. They have

long been established as forecasting tools for the airline and

aircraft industries as well as other areas of the economy. In

order to be compatible with the bulk of current models, and in

order to be able to develop more advanced models in any area, it

is necessary to have a firm grounding in econometric modelling.

A brief review of econometric theory and techniques will be

presented. For a more complete picture, one should consult any

of the numerous books on econometrics. In most cases, an equation

or set of equations that are believed to in some way describe

the level of an independent quantity are formulated as functions

of exogenous variables and unknown coefficients. Regression

analysis, which is essentially a curve fitting procedure, is

performed in order to estimate the value of unknown coefficients.

The object of econometric analysis is to determine not just

correlation, but also causation or at least explanation. Although

this distinction might seem to be only semantic on the surface,

in actuality, it is quite important, and can often be very critical.

Correlation was discovered between lung cancer and heart attacks

and cigarette smoking. The causal link was later established.

When correlation was discovered between heart attacks and coffee

drinking, many suspected that a causal link would be established.

Further research showed that the correlation existed because

heavy coffee drinkers were often heavy cigarette smokers.
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Following is an example more closely related to air trans-

portation. In a discussion with an advertising executive of a

trunk carrier concerning his past advertising campaigns, a

very successful advertising campaign was credited with signifi-

cantly increasing the carrier's revenue in the early 1960's.

It seems far more reasonable to expect that this increase resulted

from a large decrease in fares in constant dollars and from a tre-

mendous increase in level of service that was brought about by

the introduction of jet aircraft. Although these examples might

seem to be obvious after the fact, there are many subtle cases

that could give trouble to even experienced forecasters.

. .For simplicity, most regressions are done on functions that

are linear or can easily be linearized by a logarithmic or other

simple transformation. Single equation systems include independent

(exogenous) variables and depandent variables. Multi-equation

systems include these as well as endogenous variables. For

multi-equation systems, it is more convenient to think of the

exogenous variables as predetermined variables. Systems

dynamics which is discussed in another chapter, is a special

case of multi-equation simulation.

One of the simplest and most common methods for estimation

of the coefficients of a model is ordinary least squares (OLS).

This procedure minimizes the sum of squared deviations of the

prediction from the observed quantity. It is a minimum variance

estimator, and under appropriate assumptions, also the maximum

likelihood estimator.

The general form of a system is:

= P +0 (5.1)

vector of the observations of the dependent variable

t= matrix of observations of the exogenous variables
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/3 = a vector of coefficients which are to be estimated

* = vector of errors from the model

To show that OIS is the best linear unbiased estimator, it

is necessary to use the Gauss-Markov theorem and to assume that

the are independent, the error variance is constant, and the

errors are independent with mean zero and are uncorrelated with

or)L. Normality assumptions are often added.

It is desirable that an estimator be unbiased, efficient,

and consistent. The expected value of an unbiased estimator is

equal to the "true" value of the coefficient. An efficient

estimator is one with a small variance, and hence a tight con-

fidence interval. The estimated value of a consistent estimator

will approach the true value of the coefficient as the sample

size increases i.e. the bias and the variance both shrink to

zero.

Error in the models comes from the stochastic nature of the

real world, measurement error, misspecification of the model

form, and/or non-inclusion of important variables. It is often

assumed that relative to the ji's, the X's are non-stochastic.

However, one should justify this assumption before making use

of it.

Many statistical problems arise from or cause biased or

inefficient estimates of coefficients. If the error variance is

not constant, heteroscedasticity exists. It is not an unusual

situation, especially when dealing with cross-sectional data for

larger errors to be associated with larger measurements e.g. a

percent error rather than an absolute error. In dealing with

time series data, it is a distinct possibility that measurements

will become more accurate as time progresses. Bartlett's test

and the Quandt-Goldfeld test can indicate when heteroscedasticity

exists. Under conditions of heteroscedasticity, the estimated

coefficients are not efficient.
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When the error terms are correlated, serial correlation

exists. The existence of serial correlation not only can bias

estimates, but it can also bias statistical tests. Serial

correlation is quite common when dealing with time series data.

Cochrane-Orcutt, Hildreth-Lu, and Durbin-Watson procedures can

help detect and correct these problems. The Durbin-Watson

statistic (DW) is commonly used to test for serial correlation.

N AA )2
F.(et -1

DW= t 2(1 - ) (5.2)
N 2

et
t=1

the first order correlation coefficient

A process that has no autocorrelation present might appear

to be serially correlated due to measurement errors. Many real

world measurement instruments experience drift, cyclical errors,

or bias due to aging. If data is generated from such instruments,

a false indication of serial correlation might be forthcoming.

When two or more variables are highly correlated, multi-

collinearity exists. GNP and personal income are highly correlated,

and therfore it is difficult to include both of them in the same

model. As income in current dollars equal the price index times

income in constant dollars, models that incorporate prices and

income in current dollars tend to have collinearity problems.

Multi-collinearity causes unstable and unreliable estimates. The

estimated values of coefficients become very sensitive to sampling

errors. Often computer accuracy and overflow/underflow problems

cause routines to break down in the face of a high degree of

collinearity. In extreme cases, the problem becomes one of

estimating a system of n dimensions with knowledge of (n - 1)

or less of the dimensions.

It is necessary to test the hypotheses implicit in models
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both for reasonableness and statistical validity. To test in-

dividual coefficients, the student's t-statistic should .be used.

A

t = P(5.3)

2
s = sample variance

x = variation from the sample mean of the individual variable to

be tested

= coefficient of variable to be tested

The most common test is to determine whether is significantly

.different from zero. In such cases, is set to zero, and t is

compared against tabulated critical values of t(t c) for the

desired confidence levels and the appropriate number of degrees of

freedom. One sided tests can also be done i.e. is greater than

zero. The confidence interval at the desired confidence level is

defined as:

= + t c s (r) (5.4)

R-squared is a goodness of fit statistic.
A2

2 ei
R = explained variation / total variation = 1- - (5.5)

(Y -Y)2

R-squared is not a totally satisfactory variable for explaining

goodness of fit. As the number of variables in a regression in-

creases, the goodness of fit also has to increase if there is any

correlation at all between the dependent variable and the new

variables that is orthogonal to other variables. Even a nonsense

variable could increase goodness of fit. The corrected R-squared
-2
(R ) is similar to R-squared, but takes account of the number

of observations and the degrees of freedom.
^%2

- 1 e. /(n-k)
-2 2R =2 (5.6)

(Y .-Y) /(n-1)
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n = number of observations

k = number of coefficients estimated

Even with the number of degrees of freedom objections removed,

it is incorrect and very naive to compare two models based solely

on corrected R-squared. It is better to accept a behaviorally
-2

valid model with a low R than to accept a less logical model with

a higher R

The F-statistic is used to make tests similar to t tests, but

on several rather than just one variable. As with the t-statistic,

the F-statistic is a measure of statistical confidence.

A 2  2

For one variable, F = 2 = t (5.7)

As with t, critical values of F are tabulated. Most regression

packages print out values of F for the entire regression. This

is almost useless as one would probably never create a model that

did not have a high F-statistic for the entire set of variables.

If there were two variables for which one had a priori reasons to

believe belonged in a model, but neither of these variables had a

significant t-statistic due to multi-collinearity, an F test

could identify their influence. One variable could be dropped,

or a new variable that is a combination of the two could be

created.

It is sometimes useful to make use of dummy variables. These

can help explain the effects of wars, strikes, seasonal variations,

or other signficant departures from the norm. One should be wary

of dummy variables that are added after the fact such as a regression

of automobile sales that includes a dummy variable for the year

that consumers got "tail-fin fever." A dummy variable for the

effect of the opening of Disney World on air traffic to Florida was

used in a model presented later in this chapter.
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Quite often, statistical problems make ordinary least squares

biased or inefficient. Other aggregate techniques exist which

enable econometric models to be correctly estimated. Without

going into details, these include the usage of regression of

differences, addition of auto-correlated terms, indirect least

squares (more of a pedagogic tool than a practical tool), con-

strained regression, two-stage least squares, three-stage least

squares, weighted least squares, generalized differencing, and

generalized least squares.

Identification problems occur in both complex and simple

systems. As with any algebraic problem, in order to estimate n

unknowns, one needs to have n independent equations. For instance,

if one attempts to estimate a supply curve with a single equation,

he will not be able to uniquely identify it because all that can

be observed if a scatter of points that is some combination of

the supply and demand curves. However, if demand varies con-

siderably more than supply does, the curve that is estimated may

appear to be the supply curve. In order to identify the system,

one needs not only the supply equation, but also the demand

equation. In general, the condition for identification of an

equation is that the number of predetermined variables excluded

from the equation, but in the system must equal the number of

endogenous variables included on the right-hand side of the

equation. Fewer excluded predetermined variables results in

an under-identified equation. More excluded, predetermined

variables than necessary results in an over-identified equation.

Examples of over, under, and exactly identified equations are

shown in Figure 5.1.

There are many linear and non-linear equation forms that

could be used for aggregate demand models. Following are some of

the more frequently used forms that are linear or easily con-

vertible to linear. These functional forms will be examined
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Figure 5.1 Equations



with particular emphasis on the implied elasticities of demand.

Y =T.(.X (5.8)1 1

E = o(X./Y. (5.9)Xi il i

This model form might be acceptable if it is hypothesized

that the exogenous variables have independent rather than inter-

active effects. For positive coefficients, if X. doubles, Y.

less than doubles, and E increases. There is no logical reasonXi
why this should be true for all Xi. Fare elasticity is expected

to increase with increases in fare level; income elasticity

increases and then levels off; other quantities might actually

decrease. This model form is acceptable only for certain variables

and over certain data ranges.

Y =ffXi (5.10)

E =C. (5.11)X. 1
1

This model is useful when certain interactive effects exist

among the independent variables. The logarithmic transformation

that is made in this and other models prior to solving could increase

the problems of multi-collinearity or reduced accuracy on limited

word length computers. The elasticities of this model are based

on averages over the aggregate quantities involved, and these elas-

ticities can change if the makeup of the market changes. There

are usually not good reasons to assume constant elasticities

over all ranges.

Y = (IiXi (5.12)

Ex =e.X. (5.13)
X.



For positive s, E increases proportionally as X. in-

creases. As in the previous forms, this model and its elasticities

are reasonable only for certain cases.

Y =IIX..e iX ) (5.14)

E = (.+ (5.15)
X. i / 1

Y = (.X. + /3.ln(X.)) (5.16)

E = (C. + X./Y (5.17)
X. 1 3X)/

The above two models are combinations of previous forms.

Although the forms of neither of these models makes sense for

all variables over all ranges of data, their greater flexibility

makes them potentially more suitable for many problems. However,

the added complexity involved with these models can result in

a greater likelihood of statistical or computer problems.

These represent some of the more frequently used linear

(or transformable to linear) forms used for aggregate demand

forecasting models. Other linearizable or non-linear forms might

yield more reasonable elasticities and functional relationships.

For many short and medium term forecasting models, these forms

appear to perform well. It is probably better for many purposes

to use disaggregate models or those with other functional forms

that yield more reasonable elasticities or even impose no

constraints on the elasticity of demand.

The gravity is a direct modal generation model that distributes

traffic volume in a simultaneous structure as some function of

impedance to travel (usually distance or time). It can be modified

so as to be just a generation and distribution model.
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K P. p. P
Classical form: V. . = 2 (5.18)

d. .2
LJ

General form: V. = ' (5.19)
ijj I. .

1J

K = constant

P. = population of market region i

O(, ,l = parameters to be estimated

A.. = distance between regions i & j
M = mass variables that might consist of socio-economic and

population variables

LOS = level of service variables not included in I..
n 1i

I.. = impedance between i & j
IJ

The classical form is similar in appearance to the Newtonian

law of gravitation. Contrary to the beliefs of many, there is no

valid reason (other than similar functional forms and variables)

to believe that the gravity model is derived from Newton's law of

gravitation (even ignoring relativistic considerations). Newton's

law obeys the laws of physics in three dimensional conservative

force fields for point masses. Population and travel volume are

quantities in two dimensions (surface of the earth). There is

absolutely no reason to believe that there is a conservative force

field present. For city pairs such as New York - Washington, the

radius of the market regions is large relative to the distance

between them, and so they cannot be considered point masses.

The gravity model can be solved by simple regression techniques.

it is widely used, and often gives good results.



Logistics, Gompertz, or other S-shaped curves are often used

to make long range forecasts. They require non-linear estimation

techniques.

t
Gompertz: V = Vba (5.20)

Logistic: V = V /(l + e(a + b t) (5.21)

V = passenger volume

V = average passenger volume

V = saturation passenger volume

t = time

a,b = coefficients to be estimated

Although the above examples are for passenger volume versus

time, other variables can be substituted.

The logistics curve is one of the easiest S-shaped curves to

visualize and to estimate. It might be easier to estimate Vmax
than V. although this is not necessarily true. The most common

usage of these curves is for making long term forecasts for

quantities such as total domestic demand as discussed in Chapter II

under qualitative or technological forecasting.

S-shaped curves could be used for studying the relationship

between market share and frequency share. It is necessary to

develop a variable that defines the value of a departure (Vd)'

For example, Vd could equal (1 / (1 + n)), or Vd could equal

(1 / 2n); where n equals the number of intermediate stops. One

might also wish to include competitive factors such as time of day

or slots where no competitors exist. A more appropriate, but also

more difficult measure to implement, is the ratio of non-stop to

multi-stop times. The city pair observations can be segmented

into categories based on the number of carriers in the market and
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the distance between the origin and destination. Enough categories

should be formed that the market regions in each class can be con-

sidered homogeneous with respect to number of carriers and distance.

Alternatively, the S-shaped curve can be modified by multiplication

by or addition of other terms. However, one must then constrain

the system so that the estimated sum of market shares for any

hypotehtical market adds up to unity. In general, this is diffi-

cult to do, so one is better off with a functional form that can

easily assure this. There exist many other uses for S-shaped curves.

In many cases, these curves model our non-linear world better than

linear or log-linear approximations do.

In recent years, disaggregate, stochastic models have come

into much greater use. Multinomial logit is a disaggregate, stochas-

tic model that is popular due to the underlying assumptions of

its functional form and its relatively small data and computational

requirements. It has been derived from a variety of different

theoretical considerations including a choice axiom on a constant

utility model and a specific distribution, random utility model.

It should be pointed out that in this model, utility can only be

defined up to an additive constant.

Following is the functional form of the logit model.

vit
e

P(i:At V
t e VKt (5.22)

KEAt

t = a behavioral unit e.g. individual, family, etc.

At = the set of relevant alternatives for t (for air transporta-

tion problems, these can usually be defined by frequency,

mode, destination, route (non-stop, connections) and

time of day, day of week, etc.)



P(i:At) = probability that behavioral unit t will choose

alternative i out of At

Vit Vi (3,St)

X. = characteristics of alternative i
I
% = socio-economic characteristics of behavioral unit t

Many estimation packages require a linear utility function.

However, log-linear functions can be used if they are transformed

outside of the routine.

V = (Xtk ek ) (5.23)
ik

.it= a vector of characteristics that are functions of
it

W. and 8

9 = a vector of utility (or disutility) functions

elasticity: EP(i: At) = (E -P(j:A )) X
Xjtk k jtk

where .. is the Kronecker delta (5.24)

i =j

t0 i j

The problem can be formulated with any general form of utility

function (including non-linear forms). However, it is very diffi-

cult to compute the derivative of the likelihood function for non-

linear forms, and therefore these forms are not well-suited for

inexpensive and quick estimation techniques. A routine was

developed to find the parameters that maximize the likelihood

function by using enumeration. This routine was designed with a

special case in mind. Although the problem was extremely small,
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(two modes, three parameters, and twenty-four observations), this

routine took considerably more computer time for estimating

this tiny problem than the Cambridge Systematics routine which

uses derivatives of the likelihood function took for estimating

a problem with four modes, four parameters, and over four hundred

observations.12 The message from this is clear. The computational.

requirements of non-linear utility functions probably far outweigh

the advantages of these structural forms.

Wilson derives the logit model by treating consumers as gas

molecules and applying entropy maximization.13 He states that the

probability of a specific distribution of consumers occurring is

proportional to the number of distinct states of the system that

give rise to that distribution. The number of distinct states for

various configurations is subject to appropriate constraints.

Although this derivation is subject to several severe criticisms,

it'does result in the same functional form as the logit model.

Peat, Marwick, Mitchell and Co. derives the logit model from

another point of view. This discussion will use their notation

which is slightly different than that which was previously intro-

duced. Their model is based on the following assumptions. "...

(a) the modal split of each mode is between 0 and 1, and the sum

of all modal shares equals unity; (b) modal splits are monotonic

functions of the independent variables; and (c) if the transportation

variables are expressed in units such that the disutility of

travelling by a given mode is an increasing (decreasing) function

of its transportation variables, then the shares of that mode

decreases (increases) when any of its transportation variables

increase (decrease)."14 Item (c) is just a simple assumption on

the elasticity of demand.

The assumptions lead to a set of partial differential equations

of mode M(W ) with respect to the i'th attribute of mode j(X..).m 1
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-Cf. .W W . my/j

__m = (5.25)

0(. W (1-W ) m=j
im m m

The solution of this set of partial differential equations

for all modes and all attributes leads to:

(K. X. +aim im m
e

W =
m W X +a) (5.26)

Ve.
J

a. = mode specific constant
J

The explicit addition of mode specific constants can be

eliminated by setting the appropriate elements of o to unity.

For practical purposes, at least one of the a.'s needs to be equal
J

to zero or else identification problems will occur during estima-

tion.

For reasons unknown to the authors,this model does not

explicitly contain socio-economic variables although they might

be implicitly included. They can easily be added, and without

otherwise altering the derivation, the final form will be identi-

cal to the form that was first presented in the discussion of the

logit model. Peat, Marwick, Mitchell and Co. claim that this model

can be estimated by either simultaneous least squares or maximum

likelihood techniques. The latter is probably less subject to

statistical problems andis also likely to be less time consuming.

They further claim that for typical problems, approximately five

hundred observations are necessary for good calibration. This
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number appears to be reasonable as the small models used to pro-

vide parameter values for the simulation program in the next

chapter would not perform well with fewer than two hundred

observations.

With a little bit of hand-waving, other models can be made

to resemble logit. The following simple mode split model is used

for pedagogical purposes in several courses taught by the M.I.T.

Flight Transportation Laboratory.

I T 9k 
0<k

MS.. = ijk ijk (5.27)
ijk 2: / m . m

13k ,I T.. mC..
m 13m ijm

m

MS = market share for city pair ij for mode k

Im = image factor for mode m (a mode specific variable)

T., = time between regions i and j on mode m
ijm

C.. = cost between regions i an j on mode in
im

A' ,N m = time and cost elasticities respectively for mode 
m

This model is of the form:

ITB.. X

ijk ZB.. XQ (5.28)

m

If different behavioral units are accounted for, the ij

subscripts are dropped, and aggregate market share is replaced

by disaggregate probabilities, then this model becomes:

1TB t

P(M:A ) = (5.29)
t Xt

mt,m
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"RB = exp(ln (BXt ))=exp 1:(X1 ln(B ))
mtl ( mtl 1 mtl.30

Substituting (5.30) into (5.29) yields:

(X tin (B AtI
e

P(M:At) = (X ln(B mtt)) (5.31)

MZe
Vm

This model has now become the logit model with the charac-

teristics of alternative i for behavioral unit t replaced by its

natural log. As the primary reason for using a linear utility

function is based on computational requirements, this is not a

significant departure from the multinomial logit model in its usual

form.

Discriminate analysis provides another means of deriving the

logit model. Consider several alternatives (Ai, i=l,...,n) and

a set of explanatory variables (X). People choosing alternative

A. are distributed as in Figure 5.2. Assuming independence of

alternatives:

P(A 4X) = (A.,X) / P(X) (5.32)

P(YjZ) = conditional probability of Y given Z

P(Y,Z) = joint probability of Y and Z

P(AiX) = P(A ) P(XIA ) (5.33)

P (X) = 2: (P (A i) P(XJA i)) (5.34)

substituting equations 5.33 and 5.34 into equation 5.32:

P(A i) P(XA )

P Ai IX P(A.)P(XIA ) (5.35)
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If normal distributions and a binary choice are assumed:

P(A jX) = 1 / (l+ev+q ) = e v (eV+e ) (5.36)

This is the same form as the binary logit model. V and q

can be determined by estimating the means and the covariance

matrices for the relevant modes and parameters.

Perhaps the simplest way of explaining the multinomial logit

model is to examine the theoretical considerations of a binary choice

model, and to then extend it to the n-dimensional case. One must

first make the assumptions made in the PM&M derivation described

previously. These assumptions are general and do not significantly

restrict the model. For the time being, the subscript that defines

the behavioral unit will be dropped.

T
P O (5.37)

P2 1- P1  (5.38)

P. (i=l,2) = the probability of choosing mode i

or = a vector of utility functions for each attribute

t= a vector of the difference between modes for each attribute

Observations of individuals will yield choice decisions

rather than probabilities. One could run a linear regression

using OLS or GES on P versus X, making sure not to include a

constant term. (This simplifies the explanation; however, a

constant term could be interpreted as a mode specific constant.)

Non-zero error variance, as well as changes in X as time passes

could cause P. to be greater than one or less than zero. As

probabilities only have meaning between zero and one, P. must

be restricted to those values. A rational individual will-choose

mode 1 if the difference in the utilities of mode 1 minus mode 2

II
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(V - o( X) is greater than the random and unmeasureable effects

of mode 2 minus mode 1.

Even if the estimated regression has the same slope as the

unconstrained "true" regression, there would be heteroscedasticity

problems caused by points outside of the zero/one range. This

can easily be seen by examination of Figure 5.3.

To summarize this simple model:

1 V > V

V - V
P, =0 V 04 V < V (5.39)

V -VV1 V 0

0 V-.vl

One notices that there are discontinuities and singularities

in the derivatives of P1 . To get around these problems, one needs

to create a functional form similar to the one in Figure 5.4

(S-shaped curve bounded between zero and one). Probit models use

an S-shaped curve that is created from a cumulative normal dis-

tribution that is shown in euqation 5.40.

2
1 c-t /2

P1 = - e dt (5.40)

Logit models use the functional form shown in equation 5.41.

P1  1/ (1 + e ) (5.41)

Logit derives its name from the similarity of its functional

form in the binary case to the logistics curve. (If (V1-V2) is

substituted for V, the following form results:
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e
p1  V1  V2  (5.42)

e + e

From here, it is easy to see how the form of the multinomial

case is arrived at.

vit
e

P(i:At) =t (5.43)

e kt

kCAt

V = X i (5.44)
it Xit,0L

However, for the normality assumptions to hold, rather than

using the S-shaped form of the logistics function, it is necessary
-ne~

to use the following distribution: e .

Cross classification or category analysis is a simple technique

that can prove useful for many classes of problems. A notable

feature of this disaggregate technique is that it makes no assump-

tions on the functional form of the model or its elasticities.

After deciding what variables influence air travel demand, one can

then construct an n-dimensional matrix of these characteristics

(e.g. income, family structure, occupation, location, etc.).

N-dimensional volumes are formed by the intersection of specific

ranges of these variables.

Through the use of a household survey, one can compute the

number of trips per unit time that an average behavioral unit in

each category makes. Each category has to be small enough that

it can be considered relatively homogeneous. This is to insure

that inter-category variances are large relative to inter-category

variances. However, having too many categories results in extra

work and less reliable estimates of the aggregate quantities.
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One needs to adjust the volume of each category until a good

compromise has been reached between homogeneity and extra work

and unreliable estimates.

For making forecasts, one must predict the number of con-

sumers in each category, multiply by the appropriate trip generating

value, and sum the results. This procedure is in general not

sensitive to changes in level of service. Rather than having a

constant trip generation value in each block, one can derive

relationships that are based on level of service. This can involve

a lot of extra work for even small problems. Rather than doing

this, one is probably better off using another disaggregate tech-

nique such as logit.

Many categories might be poorly represented or even non-

existent in the base year, but can be expected to be densely

populated in the forecast years or in another market region. In

such cases, this technique results in poor estimates.

Many of the usual statistical tests from econometrics cannot

be applied to cross classification techniques, thereby causing

them to be difficult to evaluate with respect to confidence and

significance of estimates and of forecast quality. It could

very well be necessary to collect more data for calibration of

category analysis models than for other disaggregate models.

Further hindering this type of model is the necessity for complete

respecification and recalibration of the model should a new variable

be added, or the structure otherwise changes. This technique,

although relatively simple, has several important criticisms.

For most purposes, a more advanced technique such as logit or probit

is to be preferred.

In order to demonstrate the use of econometric models, aggre-

gate models were created for the New York - Florida, New York -

Orlando and total transatlantic travel markets. The first two
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direct demand models implicitly include trip generation, trip

distribution, and modal split considerations. As they might be

used for several purposes, it is desirable to create both long

and short term models. These markets include some of the most

densely travelled long haul domestic routes. Properly serving these

routes is critical for several airlines.

The choice of variables is relatively simple for this case

because many other models have been built for similar markets.

GNP or average per capita disposable income, both in constant

dollars, are candidates for inclusion. As the two are highly

correlated, and since these are personal rather than business

markets, it is most appropriate to include only income. Popula-

tion obviously affects travel demand. One should attempt to define

a population variable that accounts for the bulk of travellers in

a properly weighted manner; in lieu of this, total domestic popu-

lation was used. Most models include a price variable. It would

be best to use total trip cost (including ground costs). For

reasons of data availability, a measure of fare will be used. As

air fare makes up a large percentage of total trip cost, this should

be approximately correct. For simplicity, coach fare in constant

dollars will be used. Other alternative price measures might

include minimum fare or average yield. Seasonality will be

accounted for in the long term models by a dummy variable called

winter which is equal to one in the first quarter, and zero in

all other periods. As the other periods do not depart much from

each other, it is not really worthwhile to lose a degree of freedom

to add other seasonal dummies. For multiplicative models, this

dummy took on the values of e and one. The short term models took

account of seasonality by using volume lagged one year. This

variable also implicitly takes into account frequency and load

factor, which are also believed to influence demand. It was also
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desirable to examine the effects of the opening of Disney World

and of the weather on demand. The Disney variable equalled one when

Disney World was open, and zero when it was closed. (Note: It

is clear that Disney World affects travel to Orlando, but it is

not clear whether it diverts traffic from other Florida destinations

or if it generates entirely new traffic.) The weather variable

was constructed by taking twice the number of sample standard

deviations of the departure from normal of Miami temperature minus

New York temperature plus the number of standard deviations of

departure from the mean of New York precipitation minus Miami

precipitation. Weather was assumed to have no effect in other

periods and was therefore set to zero. It is by no means clear

that this is the best form for the weather variable, but it does

capture most of the effects. It later became necessary to set

upper and lower bounds on the weather variable. As weather

cannot be predicted more than one period ahead, it was necessary

to limit the use of this variable to short term forecasts. For the

multiplicative models, appropriate exponential transformations were

performed on weather and Disney. Volume was computed from a ten

percent sample of tickets taken by the Civil Aeronautics Board.

The expected measurement error is 1 - 1.5% for the later Florida

volumes and slightly greater for the Orlando volumes and the early

Florida volumes. Florida volume was represented by summing the

traffic at Orlando, Tampa, Miami, and Ft. Lauderdale. This by far

makes up the bulk of Florida traffic.

The quarterly data was regressed from the first quarter of

of 1962 to the present (second quarter of 1973). The starting date

was picked to insure that the regression would be done entirely ,

in the jet age (as opposed to the era of propeller-driven aircraft).

Scatter plots were not made as their primary value is to graphically

indicate correlation. As there is already strong a priori reasons
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it is not necessary to examine the scatter plots.

Following are comments based on the time series plots of

the data. The Florida traffic volume is highly cyclical and has

a distinct upward trend with a noticeable increase when Disney

World opened. The Orlando traffic volume does not have the dis-

tinct winter peak of the Florida traffic. It has an upward trend

and a tremendous increase when Disney World opened. The Miami

coach fare was used in regressions on Florida traffic; and the

Orlando coach fare was used in regressions on Orlando traffic. As

the C.A.B. at various times used slightly different fare formulas,

the. fares move together, but are not exactly collinear. The fares

in constant dollars increase several times, but for the most part,

tend to decrease. Per capita income in constant dollars and

population increase at roughly constant slopes that are identical

within an additive and multiplicative constant to take account of

the units. This high degree of collinearity forces population out

of the models. One might argue that to take care of this problem,

total disposable income (which is population multiplied by per

capita income) can be used. This constrains the coefficient of

population to be equal to the coefficient of per capita disposable

income. Prior knowledge causes this hypothesis to be rejected.

To accept it would bias the coefficient values. The weather

variable appeared to be random and with no trend.

It was decided that four models would be necessary: long

and short term models for both Florida and Orlando. The short

term models need not include the seasonal variable. The long

term models did not include the lagged demand or the weather variable.

As a priori knowledge indicated that all of the variables tried

should influence the traffic volume, it was decided to accept any

variable that had a t-statistic significant at ninety-five per-

cent and also had the "correct" sign.



The models were constrained to be either linear or multiplica-

tive in form. Neither type is truly appropriate based on examina-

tion of the elasticities, but either should be suitable over the

range of values in question. The multiplicative form was tried

first as the variables were expected to have interactive effects

rather than independent effects. Unfortunately, no multiplicative

form gave satisfactory results, so it was necessary to try additive

models. The models that were tried are presented in Appendix C.

As the models are self-explanatory, only the final models will

be discussed.

The algorithm used to find the best model for each purpose

consisted of initially including all variables, and then systemati-

cally eliminating one variable at a time until an acceptable model

was found. The variable with the lowest t-statistic was dropped

unless strong a priori knowledge required its inclusion over

another variable. This process is similar to step-wise regression,

but works from all variables downward rather than one variable

upward. The process continued until all coefficients were sig-

nificant and all reasonable models were examined.

Short Term Florida Model

Volfla = b*Volfla(-4) + d*Disney + e*Farefla + f*Income (5.45)

SER CRSQ b d e f DW

1962 1- 5.22E3 .9385 .6169 10476 -41390 1878 1.69 value
1973 2 .1077 3129 11421 450 Cr

5.73 3.35 -3.62 4.18 t

1966 1- .5255 10776 -64479 2593 1.68 value
1973 2 3.41 2.83 -2.12 2.74 t



The lagged dependent variable biases the Durbin-Watson

statistic towards two, but it is still probably acceptable.

As with all of the models presented, changing the regression

period significantlychanged the values of the coefficients.

Breaking the model into several subperiods to test the stability

of the coefficients, or performing other tests or making further

changes is not worthwhile because this and all other models

presented herein will give unstable results for reasons discussed

later. As in the other models, there were no surprises as to the

values of the included coefficients. It should be noted that

weather could not be included at a significant level.

Long Term Florida Model

Volfla = d*Disney + e*Farefla + f*Income + h*winter (5.46)

SER CRSQ d e f h DW

1962 1- 4.98E3 .9441 19144 -94569 4172 10616 1.33 value
1973 2 2529 7050 191 1673

7.57 -13.4 21.8 6.34 t

1966 1- 15445 -1.44E5 5352 10679 1.80 value
1973 2 5.2 -7.53 11.6 4.88 t

In the long term Florida model, the seasonal effect and

the Disney World effect have the greatest impact on the forecast,

and the fare term the least. The Durbin-Watson statistic and the

corrected R-squared are satisfactory, although the Durbin-Watson

statistic is borderline. Once again, the coefficients are not

stable.



Short and Long Term Orlando Model

Volorl = d*Disney + e*Fareorl + f*Income + h*winter (5.47)

SER CRSQ d e f h DW

1962 1- 400 .9518 4172 -4498 182 -336 2.24 value
1973 2 192 727 16.9 134

21.7 -6.18 10.8 -2.51 t

1966 1- 4139 -6284 220 -527 2.45 value
1973 2 17.9 -2.85 4.75 -2.71 t

This model is of exactly the same form as the long term

Florida model. As lagged volume and weather are not significant,

the long and short term models became one and the same. The sea-

sonal variable turned out to be negative, but it is insignificant

when compared to measurement error. As the time series plots

suggested, Orlando traffic is not distinctly seasonal. The

Durbin-Watson statistic and the corrected R-squared are satisfactory.

The coefficients are not stable.

For all of these models, the F-statistic was highly significant.

The standard error of the regression is small relative to the one

sigma value of the error of the traffic volume measurement. Examina-

tion of time series and histogram plots of the errors reveal some

bias, but not an unreasonable or unexpected amount.

The short term models are probably suitable for making one

or two period forecasts. As fare and income will only change

slightly over the short term, and since the structure is expected

to remain roughly constant from one time period to the next, this

model really does not reveal much new information. The Flight

Transportation Laboratory time series model presented in Chapter

III would probably give just as good results as these models

except for a transient when Disney World first opened. Forecasts



were made with 'these models, and the results are pretty much the

trend growth with seasonal fluctuation that could have been eye-

balled from a time series plot. These short term models would

probably be of little use to airline planners. Their intuitive

mental models could probably do just as well.

one cannot place a high degree of confidence in the long term

models (except in a stable world), both with respect to the values

of the structural coefficients and with respect to the models'

abilities to make intermediate and long term forecasts. Although

the models include the most important variables at highly signifi-

cant levels, and the other statistical measures appear to be

satisfactory, these models are clearly unsuitable for policy

analysis. Their value is probably only slightly more than time

series models.

The coefficients are not stable, and the additive form of the

model does not seem totally reasonable. These models are policy

sensitive at only the grossest levels. It seems reasonable to

expect that population will affect traffic volumes. The existence

of Disney World probably has a percent effect on volume rather

than an absolute effect. It is generally accepted among airline,

hotel, restaurant, and chamber of commerce officials that

weather has a significant effect on tourism, and hence, on air

travel in vacation markets. Multi-collinearity causes several

important variables to be excluded from the models.

Numerous factors must be excluded from these and other

aggregate econometric models. Frequency and load factor are known

to affect volume. In some periods, seats were being rationed and

availability and convenience of departure were low. in other

periods, there has been an abundance of seats and departures.

Strikes and other drastic events do not affect these aggregate

models. Crashes and other disasters in at least the short term

cause some consumers to shy away from a particular airline,



aircraft, or even air travel. These models give no clue as to what

would happen if a new Disney World type attraction opened, or

what effect a package that includes Miami and Nassau would have

on traffic. New aircraft have been continually introduced. These

represent increases in comfort and slight increases in speed.

During the first half of the 1960's, flying in jets had a status

value. More recently, flying in wide-bodied aircraft had a status

value.

It would be very useful to have a model that could predict

the effects of flying a new aircraft (in particular, an SST),

attracting major conventions to Florida, improving meals, adding

carry-on luggage compartments, increasing advertising, moving a

flight time, or numerous other marketing efforts. Aggregate

econometric techniques have a great deal of difficulty in pre-

dicting unfamiliar situations.

Over the past twenty years, the structure of the market has

changed considerably. Kennedy airport has become more important.

Miami International has been modernized, but has also become more

crowded. Ft. Lauderdale has been serving a great deal of the

Miami traffic. Fewer non-stop flights have been scheduled from

Boston in recent years; and these passengers have been routed

through New York or other cities such as Atlanta or Washington.

The characteristics of alternative destinations and modes have

changed. Perhaps the most drastic is that some European fares

have been reduced from very high levels to levels that are highly

competitive with the Miami - New York coach fare. Not the least

significant change in structure is the recent energy crisis.

Patriotic feelings of conservation and the reduction of frequency

will tend to decrease air traffic. However, the uncertainty of

gasoline supplies will probably cause a significant number of

automobile travellers to switch to air.



Evidence indicates that income elasticity is a non-linear

function of income level. The same is true for fare. It is

clearly incorrect to use a constant coefficient for these terms.

Even if there existed only one fare level, as previously discussed,

fare would not be an appropriate price variable. An average total

trip cost would be inappropriate because of the wide variation

in trip lengths and the many different trip purposes and itineraries.

The problem is further compounded by the many different fare

classes and quite often their various restrictions.

For these and many other reasons, an aggregate demand model

is lacking in many areas. There is no claim being made that the

models developed herein are the best aggregate models that could

be created. However, it is difficult to imagine that even the best

possible aggregate demand model can be very policy sensitive or

even have unbiased structural coefficients (in the real world, not

statistical sense) relative to disaggregate models. The aggre-

gate models that were created for this exercise have their value,

but at the same time, are severely crippled by aggregation problems.

During unstable times, they can best be used as supplements to

judgemental models.

Perhaps the criticism of these models has been too harsh.

They appear to be satisfactory for predictive purposes as long

as the user is aware of the limitations forced by the aggregate

form of the models. It would be far better to create a disaggre-

gate model to predict Florida travel. Not only are the behavioral

assumptions more reasonable, but the disaggregate form will elimi-

nate many of the problems of multi-collinearity. On the negative

side, much of the data that is necessary to calibrate a disaggregate

model is proprietary or does not exist. However, for models of

this size, the data collection costs will be small relative to the

potential advantages.

As a further example of the use of econometric model to fore-
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cast the volume of passengers on a given route, we will use the

case of the total North Atlantic market. The simplest and the most

practical predictor variables to include in the aggregate model for

the North Atlantic are GNP and average income per capita 15 to

represent the socio-economic factors and average fare and trip time

for the transport variables. In addition, it is normal to include

a time-trend term to account for all the forces which should be

explicitly included in the behavioral demand model but are un-

quantifiable for subjective.

Air travel demand is strongly determined by income--personal

income in the case of pleasure travel and GNP in the case of busi-

ness travel. The higher the income level of an individual, the

greater is the likelihood of that individual traveling abroad for

non-business reasons.16 In 1963, 42 percent of the traveling U.S.

citizens and 25 percent of the traveling Europeans had incomes

above $15,000. By 1966, these percentages of the traveling popu-

lation had increased to 60 percent for the U.S. and 31 percent for

Europe. Various studies17 have shown that a factor which is even

more important than the level of personal income is the distribution

of family income. The Port Authority of New York and New Jersey18

survey data show that, whereas in 1956 seventeen percent of the

American traveling population had income less than $5,000 per

annum, in 1966 only 7 percent of this population segment were

earning below that amount. The story is equally impressive for

the European travelers: the percentage of the population with

less than $5,000 income per annum fell from 33 percent to 19

percent in the period from 1963 to 1966. Furthermore, while the

money at the disposal of Europeans, even in the most prosperous

countries, is still considerably below that of U.S. residents,

the gap is tending to narrow, implying that the ratio of

European air passengers to American air passengers on the North

Atlantic may change in the future.
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Some analysts prefer to use the distribution of family income

above a certain base level. Such a distribution, although logical,

is difficult to justify for three reasons. First, the base level

is a subjective measure and analysts differ in their views of its

numberical value. Moreover, in the case of North Atlantic travel,

the level would vary by country. Second, the data are very frag-

mentary on the distribution of income, especially for some of the

European countries. Third, the variation in income distribution

is fairly difficult to forecast accurately. Nevertheless, some

analysts have performed extensive research in this area. The

National Planning Association study considered such measures of

inequality for comparison among income size distribution of dif-

ferent groups and different time period as Pareto's coefficient of

inequality and Gini's concentration ratio based on the Lorenz
19

curve.

Business travel appears to depend, among other things, on

GNP and particularly on exports, imports, the level of investment

abroad and the balance of payments. It stands to reason that

during recessions the amount of business travel diminishes.

Conversely, during an expansion of the economy business travel

increases. It can be seen from this that a relationship

exists between the fluctuations in the economy on both sides of

the Atlantic and the traffic trend. The National Planning Asso-

ciation study considers the ratio of pre-tax corporate profits to

full-employment gross private product as an index of annual

fluctuations in the economy. However, in simple analysis,

although traffic is influenced by many factors simultaneously,

it is common to indicate the relationship between traffic and the

economy through the use of GNP as the predictor variable. The

advantages of using GNP are as follows:

1. The economic conditions of two countries can be compared
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on a consistent basis.

2. Fairly accurate historical data are available..

3. Many learned individuals and institutions have produced

long-range forecasts of GNP to a high degree of accuracy using the

most sophisticate methods available. Furthermore, these long-

range forecasts are continuously reviewed and updated.

It is a common procedure to incorporate a time lag to allow

for the elapsed time between the movement in the economy and its

influence on traffic. For simplicity, this time lag is fixed.

However, sophistication can be introduced through the use of a

distributed lag technique whereby the influence of a change in

the predictor variable may be felt over a longer period and in

different amounts during each successive period.

Both personal and business demand for air travel are dependent

upon the total trip cost and vary inversely with trip cost. Apart

from slight fluctuations, the transportation cost for a North

Atlantic trip has been reduced from about $600 in 1951 to about

$450 in 1968. This cost represents the average fare for sea and

air travel.20 The total cost of a transatlantic trip has been

decreasing due to the reduction in fares and the decline in average

expenditures while traveling in Europe. The downward trend in

expenditures abroad is explained partially by the growing number

of U.S. citizens with limited funds who are now traveling and

partially by the fact that air travelers have been staying shorter

periods in Europe and spending less. The average stay has declined

from about 66 days in 1950 to 45 days in 1963 and was estimated

at 28 days in 1969.21 Table 5.1 compares the major components

of the cost of a ten-day trip in Europe and in a large city in the

United States for the years 1958 and 1970. in both cases, the

air fare represents a smaller part of the total cost in 1970.

Although it is simpler to use the fare as a cost term in the model,
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Table 5.1

Components of Cost of Travel

Distribution of Expenses for a 10-Day Trip

In Europe In a Large U.S. City
Component 1958 1970 1958 1970

Air Fare 75.8% 48.7% 31.6% 18.7%

Meals 12.0 25.3 26.2 32.2

Hotels 12.2 26.0 42.2 49.1

Total 100.0% 100.0% 100.0% 100.0%

Source: Air Transport 1971. Air Transport Association of America,
Washington, D.C.
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it is more accurate to use the total cost which includes ground

expenses in addition to the fare. When interpreting the price

elasticity of demand, the analyst should differentiate between the

two cases.

With the multitude of fares available on the North Atlantic at

any given time, the selection of a particular fare becomes a com-

plex problem. A typical fare structure would consist of a breakdown

by season, shoulder, peak and basic in addition to the many excur-

sion fares available. The excursion fares presuppose a given

length of stay and are limited to certain times of the year. In

theory, the model should consider the trend in the lowest fare,

since this is the fare which affects the total size of the market,

while changes in other fares affect the traffic mix. However, since

there are a number of restrictions placed on the lowest fares, it

is not feasible to use them. The analyst is, therefore, forced to

use an average fare, even though very few passengers actually pay

the average fare. The use of an average fare based on an average

passenger yield (revenue per revenue passenger-mile) and a specified

stage length presents some problems. For one, yield figures are

only available for the scheduled carriers. Moreover, care must

be used in interpreting the results of studies based on such fare

data.22 Strictly speaking, the regression coefficient obtained by

using the average fare will not be the true price elasticity of

demand and, as such, may not be appropriate for use in determining

pricing policy or in planning market strategy.

The average fare as a representation of the price index is

simplified even further by analyzing the trend of the average fare

on a specific route such as New York to London. The assumption

that the New York - London fare trend is a reasonable representa-

tion for the whole North Atlantic can be justified on the basis

that almost all fares are "pegged" to this route, as has been

historically true in the case of IATA members operating on the
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North Atlantic. When a new fare is introduced on a particular

route, such as New York - Rome, then the New York - London fare

and almost all other fares are changed accordingly. Finally, modal

competition from sea transport is normally not incorporated in the

calculation of average fare. The justification offered for using

only the average air fare is that air fare and sea fare are somewhat

interrelated.23 Also, sea travel is no longer considered a sub-

stitute for air travel. The passengers who now travel by sea do

so for reasons other than cost. It may be for the sheer pleasure

and relaxation of spending five days at sea or it may be from

fear of flying. In either case, the modal choice is not dependent

on the cost of the trip.

The downward trend in air fares has been important in attract-

ing new travelers and in causing experienced travelers to take air

trips more frequently. In addition, charter travel has played a

very important role in the development of air travel, especially

in the international market. Charter sales have increased with

the corresponding increase in the price spread between charter

service and scheduled service. The market share of the charter

carriers on the North Atlantic increased from 16 percent in 1963

to 30 percent in 1971.24

The total demand for air travel (pleasure and business) varies

inversely with the time required to complete a given trip. Reduc-

tion in trip time, basically due to the higher speeds of aircraft,

has affected both the business traveler and the pleasure traveler.

Higher speeds have meant that the businessman can reach his destina-

tion in less time. Higher speeds also mean that the pleasure

traveler can visit more distant places in a given time. The para-

meter "travel time" typically consists of line-haul travel time plus

some combination of access, egress, terminal processing and schedule

delay time. The simplest way to incorporate the trip time in the

model is to consider the average aircraft speed on the North
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Atlantic at any given time. Since the average aircraft speed

varies by market at any given time, it is necessary to weight each

flight by the corresponding aircraft speed.

The choice of the general form of the demand model will depend

primarily on such factors as the historical traffic trends, data

considerations, the time period of the forecast and certain desired

properties of the demand function, such as a constant or a variable

price elasticity of demand.

The aggregate model assumes that the service--air travel--is

an homogeneous unit measured in passengers, revenue passenger-miles

or revenue ton-miles and that the volume of passenger traffic is

related to the same variables in all markets. This implies that

the travel demand in the New York - Lisbon market can be charac-

terized by the same variables as in the New York - London market.

The aggregate demand model does not stratify traffic by mode, class

of service or purpose of trip. Additionally, the aggregate demand

model generally does not contain a supply parameter. This is

justified on the grounds that the airlines usually operate with

considerably less than full capacity and it is therefore unnecessary

to include a supply variable. Furthermore, monopolistic routes on

the North Atlantic are almost nonexistent, and insufficient capacity

is unlikely, due to the market forces. The standard criticisms

evoked by excluding the supply factor are, first, that there may

be some routes with very high load factors and, second, that an

increase in supply may increase demand.

As an illustration, we will present the results of an aggre-

gate demand model, calibrated using multiple regression analysis.

Before evaluating the empirical results, it is necessary to be

aware of three fundamental assumptions underlying this approach.

First, it is assumed that most of the variation in the dependent

variable can be explained by using a few selected independent

variables. This assumption is necessary due to the fact that
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we have limited data. Besides, in many cases it is difficult, if

not impossible, to quantify all the variables--even though we know

that these variables have influenced the travel demand in the past

and will continue to do so in the future. The second assumption

is that it is easier and/or more accurate to forecast the inde-

pendent variables. This is a very critical assumption, since the

forecast of traffic cannot be superior to the forecast of the inde-

pendent variables. The third assumption is that the functional

relationship will remain valid throughout the forecast period.

The volume of air travel varies a great deal among the different

city-pair markets on the North Atlantic. On-line traffic estimates

in.1969 ranged from about 80,000 passengers a month in the New York -

London market to about 600 in the Philadelphia - Frankfurt market.2 5

It is clear that the population size of the origin and destination

cities,the level of family income, the community of interest and

the level of fare are the major determinants of the volume of

traffic in a given city-pair market. A forecast of the individual

city-pair or airport origin and destination traffic can generally

be obtained through the use of a gravity-type model with a slightly

different input as compared to the aggregate demand model described

earlier. In the basic gravity model, the passenger demand between

the two cities is hypothesized to be directly proportional to the

product of the populations and inversely proportional to the distance

between them. The constant of proportionality represents the

community of interest between the two cities. Since the distance

term represents impedance to travel, it is a common procedure

to substitute trip time and/or fare in place of the distance factor.

In this case, the ideal input would be to include total trip time,

which consists of airport-to-airport trip time plus access and

egress time plus schedule delay time, the latter being a function

of the frequency of service. Again, the limitations of statistical

data force the analyst to use airport-to-airport time only.
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The indirect impact of frequency of service has already been

mentioned in referring to schedule delay time. However, the demand

for air travel on a specific city-pair is a direct function of the

level of service offered. The level of service can be estimated

by determining the weighted sum of frequencies for the city-pair.

This procedure would be suitable for a new route. For an established

route, since frequency is a function of demand, the simplest way

to incorporate frequency is to include an auto-regressive component,

namely, the demand in the previous time period, as one of the inde-

pendent variables.

A significant parameter, which has been overlooked in many of

the past forecasts, is the influence of the airline route pattern

on the flow of air passengers on a segment. Since major airports

serve large metropolitan regions rather than just the surrounding

cities, individual city-pair demand and total city volumes are a

function of the total airline service offered at a given time.

For example, a high percentage of the on-line traffic between New

York and London is connecting traffic. This traffic flow is,

therefore, a function of the availability of direct service from

other cities. For individual city-pair models, an attempt should

be made to incorporate the level of service, not only on the route

under investigation, but also on alternative routes. In this

respect, it is also necessary to take account of the attractiveness

of alternative destinations.

Although our example does not include it, the specification

of the model should be dynamic in that it should reflect fully the

time difference between a change in the independent variable and

the accompanying response in the dependent variable. The applica-

tion of this property is desired in differentiating between the

short-term and long-term effects on demand response when changes

are made in the fare. This can be achieved by using a technique

developed by Marc Nerlove26 for estimating long-term elasticities
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from time-series data, based on assumptions with regard to the

"elasticity of adjustment" of quantity demanded to changes in price.

The application of this technique is illustrated in the study per-

formed by Watkins and Kaylor27 on scheduled international air

traffic of U.S. Flag carriers. Their results show that the

application of Nerlove's technique produces long-run price and

income elasticities of -1.5 and +1.9 respectively, compared to

their short-run values of -1.044 and +1.293.

The format selection of independent variables is largely de-

pendent upon the availability of historical and projected values

for the data. For example, there are at least three forms of income

that can be entered into the demand equation: national income,

disposable income and discretionary income. Although the latter

would be a more logical predictor variable of air travel, its use

is constrained due to its subjective value, the difficulty of its

quantification and the unavailability of consistent data, especially

for many of the European countries. On the other hand, the United

Nations annually publishes data on national income in consistent

form for the European countries as well as for the United States.

The question of format also entails a decision as to whether incomes

should be expressed in current or constant dollars.

In the case of North Atlantic travel, it is desirable to

weight the values of income and GNP to show the relative traffic-

generating capabilities of origin and destination cities. One

such system would be to weight each European country's income by

the percentage of total transatlantic passengers generated by that

country in a given year. The following formulation is an example

of an aggregate demand model to forecast the long-term traffic on

the North Atlantic route. Although some sort of weighting system

appears to be a superior formulation over a straight measure of

income and GNP, the analyst should be aware of the need to forecast
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a similar weighting system for predictive purposes.

T.. (t) = A . G (t) D (t) . (t). V (t) (1 + g) (5.48)13 13 c

where:

T. . (t) = total passenger traffic between i (U.S.) and j (Europe)
13

during period t.

G(t) = composite GNP in period t. This is determined by using

the same weighting system as for composite income per capita

described below.

D(t) = composite national income per capita in period t.

F.. (t) = average air fare for traveling between i and j.
J

Vc (t) = average cruise speed of aircraft in operation on the

North Atlantic at time t.

(1+g)t = function of time trend.....a natural growth term. This

implies that if GNP, income, fares and speed of aircraft

were constant, the traffic would grow at g percent due to

all other factors such as population, improvement in service

and effect of variation in tastes.

t =1, 2, 3 .....

(t) u.s.(t) u.s. (t) e(t) e(t)
Where i and i are the percentages of total trans-u.s. e
atlantic traffic (European and U.S. residents) accounted

for by U.S. residents and Europeans respectively in the

year t.

DuOs. = income per capita of United States.

D (t) = income per capita of Europe

=D (t) . i (t) + ....... + D n(t) i (t)

Where in (t) is the percentage of round trip transatlantic

European traffic accounted for by the nationals of country

n in the year t.
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The major sources of statistical data on traffic volumes are

the international trade agencies, government agencies and civil air

transport agencies. A valuable source for aggregate traffic data

on the North Atlantic is the International Air Transport Associa-

tion's "World Air Transport Statistics." On-line traffic data for

international city-pairs can be obtained from the "Traffic Flow

Statistics" published by the International Civil Aviation Organization.

Other data sources include agencies such as the U.S. Immigration

and Naturalization Service, the U.S. Civil Aeronautics Board,

the U.K. Civil Aviation Authority and the European Civil Aviation

Conference.

Major sources of socio-economic data for the European countries

are the reports published by the Organization for Economic Coopera-

tion and Development and the reports published by the Bureau for

Program and Policy Coordination of the Agency for International

Development. The report, "Gross National Product Growth

Rates and Trend Data by Region and Country," is of particular

interest here. In addition, various issues of the United Nations

Demographic Books can be very useful. Finally, the United States

Department of Commerce is an excellent source of relevant U.S.

data.

The calibration stage involves the empirical manipulation

of various functional relationships for a base period. The objective

is to find the relationship which gives least variance between the

derived demand and the actual demand. The calibration of the

model, that is, the estimation of the demand coefficients, is

normally performed by employing multiple regression analysis.

The coefficients in a standard single-equation, such as the one

discussed above, can be estimated using ordinary least-squares.

Multi-equation or simultaneous-equation models, on the other hand,

require a more sophisticated calibration process. In this case,

the coefficients can be estimated using techniques such as the
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reduced form, two-stage least-squares and maximum likelihood.29

Sometimes calibration is performed through conditional

regression analysis. This refers to the calibration process

wherein one of the independent variables in the equation is given

a fixed value while the remaining coefficients are derived through

the normal process. Conditional regression is normally used when

multi-collinearity is a serious problem or when prior knowledge

indicates a particular value of a given parameter. The existence

of intercorrelation between price and income produces biased

results for both of their respective elasticities. Watkins and

Kaylor applied the conditional regression technique to the U.S.

international market with an income elasticity fixed at +1.292.30 -

This produced a statistically significant value for price elasticity

of -1.257.

The model shown in Equation 5.48 was calibrated using historical

data from 1951 through 1969. The results of the regression analysis

were found to be unreliable and statistically insifnificant. The

standard errors of the regression coefficients were relatively

high. The coefficient of the GNP term carried a negative sign.

The most significant term in the equation appeared to be the time

trend. This is quite common, and many analysts rely on this dominance

and forecast using time trend only.

The basic problem with the model was found to be the existence

of high correlation between GNP, income, fare and time. The problem

was partially eliminated by determining the statistical insignificance

of the GNP term through the use of the Chow Test.31 It is quite
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reasonable to discard the GNP term and let income explain a

significant part of the variation. This can be justified on the

grounds that almost 75 percent of the North Atlantic travel is

for pleasure and personal reasons for which income appears to be

a more reasonable explanatory variable. The time trend was also

eliminated, since it biased both the income and price elasticity

of demand. Finally, although the impact of aircraft speed was

very strong with the introduction of jets, its influence stabilized

towards the second half of the decade; therefore, the term was

left out of the model.

The model shown in Equation 5.48 was reformulated in accordance

with the preceding discussion. Table 5.2 shows the empirical results.

Both the income and the fare terms are statistically significant

and logically acceptable. Judging from an application of the usual

statistical tests, the model appears to be valid as a forecasting

tool. However, price and income elasticities (although statistically

significant) are not necessarily unbiased due to the intercorrelation

between these two parameters. This is suspected because of the

high R-squared value and the relatively high standard error of the

coefficients. While it may be invalid to compare the regression

coefficients from different models, it is worthwhile to note that

the National Planning Association study32 surveyed the literature

extensively and estimated the income elasticity to be +1.4 for U.S.

residents and +1.2 for European residents, while the price elasticity

was estimated at -1.2.

As mentioned previously, these elasticities represent average

values over the range of data from 1951 through 1969. They are

very sensitive to the specification of the model and the time period
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Table 5.2

Regression Coefficients

Independent
Variable

Estimated
Coefficient

Standard
Error

t-
Statistic

Ln K (constant)

P (Ln Income)
(Ln Fare)

R-Squared

F-Statistic

Durbin-Watson Statistic

Number of Observations

Sum of Squared Residuals

= 0.988

= 671.032

= 1.811

= 19

= 0.074

3.529

1.555

-1.182

4.786

0.416

0.280

0.737

3.740

-4.222
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covered. In order to judge the.stability of these coefficients,

the same model was calibrated twice, using data from 1951 through

1959 and from 1960 through 1969. For the former years, the price

elasticity was observed at -2.670; for the latter time period,

its value was -0.388. The income elasticity took on the reverse

trend. It was insignificant in the former case at +0.357 and

highly significant in the latter case at +2.507. In the former

time period, the price variable tended to explain a significant

part of the influence of the income factor. The reverse was true

for the latter period. This illustrates the limitation of the

average values of the elasticities and the lack of confidence

which can be placed on the validity of the demand model as a

tool for market strategy planning or determining the impact of

alternative pricing policies.
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Chapter VI

Simulation Models

For the most part, the use of simulation models for air travel

forecasting has been minimal. However, the use of simulation models

in other related and unrelated fields is rapidly expanding; and un-

doubtedly, this trend will soon be affecting air travel demand models.

A simulation model is one that makes use of known or hypothesized

relationships to reproduce the actions of a system through time or

some other dimension. Simulation models can make use of virtually

any analytical or dynamic relationships. One of their primary ad-

vantages is that closed form solutions (i.e. exact mathematical

solutions) are not always necessary for their use. Closed form

solutions can be approximated by stepwise calculations.

Models can be either discrete or analog, although discrete

formulations are usually preferred for computational reasons. Dis-

crete formulations deal with distinct and quantized (digital) quan-

tities. The fineness of division should be such that for all prac-

tical purposes, limitations forced by discreteness can be ignored.

Analog formulations deal with continuous quantities. The capability

to do so usually is not required with the availability of high-speed,

digital computers. Analog simulations tend to suffer much more than

discrete simulations from noise in the system.

The increase in the use of simulation models is due directly

to the availability of quick and inexpensive computer facilities.

An eight-day space mission complete with guidance, navigation and

control systems can be simulated overnight. Prior to the age of

computers, such a simulation would have taken many man-years.
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In designing a simulation model, one should identify all po-

tentially important variables and relationships. The model should

be structured into various subprograms. Each subprogram should

serve just one purpose. It will be easiest to understand the system

if logic sections and equation sections are not mixed in the same

module. The program will fit together much better if each module

has only one entrance and one exit. It is not necessary to understand

the actions of the entire system if one can understand the relation-

ships among all inter-connected modules. Presumably the model it-

self will enable the user to gain a greater understanding of the

system.

With a properly structured program, additional variables and

relationships usually can be added without requiring major revisions.

This feature makes the testing of alternative plans or alternative

scenarios much easier. It also permits a high degree of flexibility

with respect to accuracy, detail, and aggregation.

The problem is then solved in a step-by-step manner. The simu--

lation can proceed as a function of time or can be designed to per-

form other non-dynamic activities. Simulations can be programmed in

specially designed languages such as GPSS, SIMSCRIPT, or DYNAMO.

These languages have built-in features that make programming simula-

tion models easier. This and other features enable a person who has

only a bare minimum of computer experience to create simulation models.

It is not necessary to limit oneself to special purpose.languages.

In fact, it is often better for reasons of flexibility and program

efficiency to program a simulation model in a general purpose lang-

uage such as Fortran or PL-l.

One usually needs to define discrete or continuous probability

density functions in order to account for the stochastic properties of

many relationships. Probability density functions (PDF) specify the

likelihood of an event occurring. Probably the best way to explain
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them is by an example. Figure 6.1 shows a continuous probability

density function. The probability that a random variable will have

a value between a and b is simple the area under the curve between

a and b in mathematical terms:

P(a5Xib) = j f(x)dX (6.1)

A discrete probability density function is shown in Figure 6.2.

The total area under under a continuous probability density function

or contained in the bars of a discrete probability density function

is always equal to unity. When the stochastic parameters are genera-

ted through independent, probabilistic methods, this technique is

called Monte Carlo simulation because of the chance nature of the

process.

The following example of Monte Carlo generation of character-

istics should nelp clarify the technique. This example can be part

of a model of an air transportation network. The network can be

broken into links. Several stochastic events determine the time for

the aircraft to traverse the link. The probabilistic events can be

modelled in several ways but usually they are characterized as a

random variable with some specified mean and standard deviation.

The time that the door is closed and the blocks are removed is a

function of when the aircraft and crew arrived, passenger proces-

sing time from gate to aircraft, and time to perform maintenance

such as refueling, cleaning up, and stocking the galley. Once these

times are generated, one can generate the time between block removal

and start of take-off, This is a function of time of control tower

approval, distance to the taxiways and then the runway, number of

aircraft ahead in line, and ATC rules (e.g. landing aircraft are

given precedence over departing aircraft in dual purpose runway con-

figurations if conflicts exist). Each element of this time can be
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Figure 6.1. Example of a Continuous Probability

Density Function
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Figure 6.2. Example of a DiscreLe Probability

Density Function
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modelled by a complicated process which contains random effects.

The time from take-off to landing approach is a function of meteo-

rological conditions, aircraft type, air traffic control factors

(e.g. altitude, separation, etc.), and other random factors. The

time from landing approach to arrival at the gate can be modelled

as air traffic control delays, ground speed and glide slope, and time

from runway to gate. As can be seen from this example, even rela-

tively simple processes can contain many stochastic events, of which

some are permissible to be modelled as deterministic events, and

some of which need to be modelled as random processes. The actual

details of the modelling of the process can range over all degrees

of complexity. It is the generation of these random events that

makes a simulation model a Monte Carlo program. This method is the

building block for a vast numberof models. Events of all types can

be generated by Monte Carlo techniques. In doing any simulation,

one must be certain that enough samples (or runs) are made that

stable (or at least stochastically defined) results exist.

Queuing models have been developed for vaious sections of air

traffic control.* Under certain circumstances, such as transient

behavior or near capacity operations, the assumptions of most queuing

models can be violated. An alternative approach is to generate

events in real time through a Monte Carlo simulation. A model of

this type can easily generate a time history of the system under

many different scenarios and under the face of uncertainty. A

similar type of model can be used for determination of the necessary

capacity and frequency for a given route or system. Such a model

potentially has many advantages over present fleet assignment

*Queuing models describe the waiting time that a user is subjected to
before being served by some process (e.g. circling an airport before
being allowed to land) in a precise mathematical closed form solution.
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models that are based on math proqramming, but might be limited by

execution time. These techniques could be used, with considerably

more effort, for fleet planning or dispatching models. They have

the capability of modelling the effects of aircraft breakdowns, wea-

ther delays, and other interruptions of service that math program-

ming models cannot explicitly handle. It is not clear that the ef-

fort necessary to create these models would be worthwhile given all

of the other conditions of uncertainty existing in an airline sys-

tem. Surely models of this type will have their place in the future.

Simulation models can be very powerful tools for forecasting

passenger demand. Large and highly complex simulation models can

be created in a block by block process under a structured environ-

ment. As they cannot be divorced from econometric techniques, a

modeller needs to have a firm grounding in econometrics. Although

it would be difficult to prove so rigorously, simulation models

theoretically have a greater potential for accuracy than purely

econometric techniques. Even disaggregate techniques can suffer

from problems such as multi-collinearity, heteroscedasticity, and

identification. The limitations of simulation models are data

requirements and their required interfaces with econometric methods.

Air transportation planning is rapidly moving from solely the

realm of economics to a more integrated approach of management

science and engineering. No longer can a modeller work in a totally

econometric environment. It is only natural that the simulation

techniques of science and engineering be incorporated into the air

transportation modelling framework.

Reference 33 referred to this new class of models as transpor-

tation userbehavioral simulation models (TUBSIM). These are dis-

aggregate techniques that are based on the behavior of individuals

rather than on statistical relationships that may or may not be
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able to explain market behavior over some limited time period.

The hypothesis upon which this particular behavioral simulation

model is built is that a consumer makes his choice of alternative

in a two-step process; 1) reject any alternatives not meeting all

of the minimum utility (or maximum disutility) requirements;

2) of the remaining acceptable alternatives, choose the one with

the greatest utility (or lowest disutility). In this particular

formulation, step two is deterministic. It could easily be defined

in a manner similar to logit for non-rejected alternatives:

U.
1eP. - (6.2)

1 U.

2; e 3

P. = Probability of choosing alternative j

U. = Utility of alternative i

Using the probability defined in equation 6.2, a given passen-

ger could choose a mode in a stochastic (probabilistic) manner. In

addition to the generation of additional random number required for

a stochastic step two, more samples will be necessary in order to

have a stable_ prediction. A small computer budget required

using a deterministic approach for step two. clearly a stochastic

approach more closely resembles the true process, and is therefore

superior.

Examples of this two-step selection process are present through-

out all walks of life. When a person buys a tube of tooth paste, he

might place a high value on cavity prevention, and will therefore

choose toothpaste on the basis of cavity prevention provided that

the best cavity fighter meets his minimum requirements for taste
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and whitening. A person flying from A to B might not give any

substantial value to schedule delay because he can plan his day

around it. However, he might require sufficient frequency so that

he can be guaranteed of a morning or afternoon flight.

This two-step process can be used for trip generation, distri-

bution, and modal split. For some purposes, it is necessary to define

an alternative as "no trip." For this exercise, an intercity modal

split model was developed. Considerably more work would have been

necessary to include generation and distribution in a simultaneous

structure along with modal split. Dzata and cost requirements dic-

tated that only a modal split model be developed. The discussion

following will be based solely on a point-to-point modal split model.

Trip generation and distribution are just logical extensions of this

model.

It is necessary to define all relevant alternatives for the mar-

ket regions in question. Any level of detail and differentiation can

be used, e.g. air can be considered an undifferentiated and homo-

genous service, or it can be broken down by class of service, carrier,

non-stop versus multi-stop versus connections, time of day, or

type of aircraft. The possibilities are limited only by the model's

purpose and available funding and data.

For modal split models, the relevant trip characteristics

consist of the factors that define level of service: total time,

total cost, frequency, comfort, convenience, safety. etc. For

direct generation models, other quantities such as alternative des-

tinations. route time of day. and the "no trip" option need to be

included.

The rejection criteria need to be defined. They may be simple

requirements such as the maximum amount of money that a consumer

would be willing to spend on a trip. They also can be joint condi-

tions such as the minimum frequency required given some range of
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trip time. These can vary tremendously from consumer to consumer

based on socio-economic factors, trip purpose, and other unexplai-

nable reasons. The simple rejection criteria employed in the proto-

type model obviously do not conform to actual decision-making. How-

ever, since they are looser constraints than the actual ones, their

inclusion can only help, not hurt the model. It is best to test all

reasonable rejection criteria. If they are not significant, the mode

choice will not be constrained by them.

The form of the utility (or disutility) function needs to be

decided on. A linear or log-linear function is the easiest to

implement and to estimate the parameters of. Non-linear utility

functions can be used but require significantly more effort and

time to formulate as well as being more difficult to estimate.

Theoretically. discontinuous and non-linear utility functions can

be developed that completely and accurately describe consumer be-

havior. Such utility functions could eliminate the need for the

first step of the simulation process. As a practical matter, the

present state of the art only allows for the estimation and calibra-

tion of simple forms for the utility function, thereby requiring

the first step.

Much evidence indicates that there is a high degree of correla-

tion among mode rejection criteria, characteristics of relevant

alternatives and components of the utility function. In inter-city

markets. bus and train users tend to be from the lower income classes

and also tend to live in the central city which results in their

having low access/egress costs. A consumer who values travel time

highly, probably also tends to value waiting time and schedule

delay time highly. The number of inter-relationships is large,

but in most cases. only a small number of interrelationships is

important. These correlations can be incorporated into a simulation
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model by segmentation of the market by trip purpose and socio-

economic characteristics, by factor analysis, or by combinations

of the two. Factor analysis is a technique for determining the

underlying factors behind a process. For instance, one might include

GNP and personal income in a model which could cause problems associ-

ated with multi-collinearity. Factor analysis might enable one to

identify a single measure of prosperity as the underlying factor be-

hind GNP and income. As disaggregate data is available, it is the-

oretically possible, although impractical, to directly generate be-

havioral units with all of the desired characteristics. Whatever

scheme is used, it is necessary to generate passengers (behavioral

units) that are identifiable such that trip characteristics, utility

functions, and rejection criteria can be generated in some Monte

Carlo method.

These techniques were applied to a model of modal split in the

New York-Boston market. As the necessary disaggregate data was un-

available, it was necessary for the authors to make a small survey

which will be described later. It is recognized that the data base

that was generated from this survey has several statistical flaws.

As the purpose of this exercise is to demonstrate the technique

rather than to actually make forecasts, this problem can be over-

looked.

The market was segmented into six categories based on trip

purpose and socio-economic characteristics. The categories are:

1) single-day business trip, 2) multi-day business trip, 3) single-

day personal trip (income > $10,000/year), 4) single-day personal

trip (income < $10,000/year), 5) multi-day personal trip (income

>$l0,000/year) and 6) multi-day personal trip (income < $10,000/year).

It would have been very desirable to segment the market into at

least twice as many subdivisions, but lack of data disallowed this.

It is expected that finer segments would have resulted in a model
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with better predictive powers and greater responsiveness to changes

from the conditions of the calibration year. The large segments

that were used in the prototype model result in losses of informa-

tion due to aggregation. It is suggested that one not undertake

any serious studies with market segments as gross as these. Finer

segmentation could not have resulted in a poorer model (assuming

sufficient data was available), only more work. If after estimation

it was found that two or more segments had essentially the dame char-

acteristies, they could be combined into one segment if this rela-

tionship was expected to continue.

For this model, the alternative modes were air, bus, auto and

rail. It would have been desirable to have finer differentiation of

modes: several air fare classes, turbo and standard train, single

occupant auto, car pools, regular bus, express bus, etc. An airline

planner might wish to divide air into standard coach, first class,

and each of the discount fares available, but to leave each of the

other modes undifferentiated. As this is an abstract mode model,

any new mode can be defined by its characteristics and added without

restructuring or re-estimating the model. An abstract mode model is one

in which the utility of a mode is calculated from the characteris-

tics of the mode, not the mode itself. This precludes the use of

mode specific variables. The theory behind this is that the consu-

mer buys a bundle of attributes such as time, cost, frequency and

safety without regard to what the mode looks like. He does not care

whether he flies, travels on rubber wheels, metal wheels, or travels

by an air cushion vehicle, so long as he travels on the mode with

the highest utility. An outgrowth of this concept is that brand

loyalty factors among various airlines is small. Although flaws

exist with the abstract mode concept, it should be better than allowing

large amounts of variation to be explained by the name of the mode

rather than by its quantifiable characteristics. This model can
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handle the blue bus/red bus problem that is described in reference 34

which is similar to the situation where several essentially undif-

ferentiated air carriers operate in the same market. In the red bus/

blue bus problem, it is seen that for some models, if bus and auto

each receive half of a market, if half of the buses were later pain-

ted blue and half were painted red, thereby resulting in three modes

rather than two, blue bus and red bus would each get one-third of

the market.

The level of service characteristics that were included in this

model include door-to-door time, door-to-door cost, schedule delay,

(which is defined as a function of frequency), and CC (a variable

that describes consumers' subjective estimations of comfort, conven-

ience, reliability, fear of flying, availability, mode or carrier

loyalty, and other intangibles that was forced onto a one to five

scale). Schedule delay time was considered separately from trip

time because it was hypothesized, and later shown, that consumers

value the two time differently. It would have been desirable to in-

clude many other characteristics such as breaking trip time and cost

into their components, disaggregating CC, and including factors such

as non-travel-related costs. For some trips, travel cost is a sig-

nificant part of total cost; for other trips, it is a much smaller

percentage of total cost, and is therefore of less concern. Although

people's concepts of the meaning of CC differed, they were internally

consistent.

The values of the level of service characteristics for each

segment and each mode were characterized by a mean and a standard

deviation that were computed from admittedly non-uniform and non-

random samples. These values were generated by considering each

behavioral unit to be characterized by a Gaussian distribution.*

*A Gaussian distribution has a single peak, is symmetric about this
peak, and rapidly decreases in size as values depart from the peak.



127

In a real world, the actual distributions might be skewed, multi-

modal,* or thick-tailed. Segmenting the market in some way accounts

for these problems, but does not completely solve the problem of

generating characteristics with a Gaussian distribution. Limiting

these and other values to a plus or minus three standard deviation

range did not significantly affect the results.

Single rather than joint rejection criteria were used. These

were generated from a Gaussian distribution with means and standard

deviations computed from the survey. Conservative estimates of

psychological bias were added to these numbers in order to correct

the problem of using conjectures rather than actual actions in fil-

ling out the surveys. Adding in the bias appeared to improve the

results.

The segmentation proved to be worthwhile. There were signifi-

cantly different level-of-service values, disutilities associated

with these level-of-service values, and significantly different

rejection criteria among groups. There were no surprises in these

values. For example, business and upper income personal travellers

valued time more highly than did low income personal travellers;

those making single day trips valued time and frequency of departure

more than those making multi-day trips. In case and case again,

it was observed that market segmentation revealed many of the inter-

group differences. As previously mentioned, segmentation resulted

in tighter distributions with better correlations among the model's

parameters and input values.

As this model is disaggregated, it makes no sense to estimate

the values of parameters of the utility functions with an aggregate

technique. As the logit model (which was described in the previous

chapter) has a linear utility function, is compatible with TUBSIM in

other ways, and is also relatively inexpensive, it was used to esti-

estimate the model's parameters. The output of the logit model

* Without a single, distinct peak.
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consisted of the estimated parameter values, their standard errors,

and their t-statistics as well as additional data that was not in-

corporated into the TUBSIM model. Socio-economic and mode specific

variables were not used in the logit models. Instead, separate

models were estimated for each segment. This assumes that each segment

consists of behavioral units that are homogeneous except with respect

to the available alternatives. This assumption is questionable for

this particular implementation, but is probably acceptable for finer

subdivisions of the market. If this objection is still not overcome

even with very fine market subdivisions, it will be necessary to

modify the simulation process to include some socio-economic variables.

Data problems were ever-present. It was necessary to estimate by

educated guesses the percentage of the total market that each segment

made up. Normally, the user would have another model available to

predict this for forecast years. Enough data was collected so that the

model would perform well. However, the quality and quantity of the

data were poor relative to that required for most predictive purposes.

For this reason, detailed reporting of the calibration and check-out

runs will not be done. However, Figure 6.3 describes results from a

previous TUBSIM model that did not segment the market. Et was found

that at least two hundred observations were necessary to obtain good

results from each of the logit models. In several cases, not enough

data could be collected. Attempts to collect additional data were

not completely successful. Therefore it was necessary to eliminate

some of the parameters for some segments since they could not be

reliably estimated. For the most part, this problem did not affect

the model development.

The following questions were asked on the surveys. They applied

to each trip taken in the recent past and they applied to perceived

values not true values.
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Figure 6.3(a)

Description of TUBSIM Runs

Following is a des:cription of the various runs attempted.

1) Base case to compare against results of the survey from
Reference 39.

2) Base case with a change in the random number generator.

3) Base case doubling the number of iterations.

4) Base case quadrupling the number of iterations.

5) Base case quadrupling the number of iterations and changing the
random number generator.

6) Base case increasing by a factor of eight the number of iterations.

7) Base case increasing by a factor of eight the number of iterations
and changing the random number generator.

8) Eliminate the air discount fare.

9) Increase air fare by eleven percent.

10) Increase air fare by fifteen percent.

11) Decrease air fare by twelve percent.

12) Decrease air fare by fifteen percent.

13) Build a STOLport: psycar = min(0, psycar - .5), tbair - tbair - .1,
the mean and standard deviation of access/egress time and cost
decrease.

14) Congestion in the future: tbrail remains the same, tbauto and
tbbus increase by .5 hour, tbair increases by .35 hour.

15) Rail fare increases by $2.50 which would eliminate part of the
explicity and implicit government subsidy to rail.

16) Advertise air more heavily: psycar = min(O, psycar - .5).

17) Double air frequency.

18) Halve air frequency.

19) Increase road tolls and gas price: fareaut = fareaut + $2.00,
assume that bus operators absorb the increase and keep fare
levels constant.

20) Speed limit is reduced from 70 mph to 50 mph and gasoline prices
remain constant: tbaut = tbaut + .5, tbbus = tbbus + .8, (assumes
that buses observe limit closely, and automobiles do not).
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Figure 6.3(b) Results of TUBSIM Runs

The following are the aggregated results of these runs.

MARKET SHARE IN PERCENT*

CASE AIR BUS RAIL AUTO

Survey 33.0 7.0 13.0 47.0
Data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

37.1

37.3

36.9

36.8

37.9

37.3

37.9

31.5

14.6

11.9

54.4

56.5

38.6

44.9

38.7

37.7

37.3

36.6

38.2

46.8

5.2

4.4

5.5

5.5

5.1

5.3

5.0

5.8

6.8

7.0

5.1

5.1

5.2

4.3

8.3

5.2

5.2

5.2

5.4

5.1

14.5

15.5

14.3

14.7

14.5

14.7

14.7

16.1

21.0

21.9

10.3

9.9

14.0

20.5

7.5

14.8

14.5

14.7

16.0

21.9

43.2

42.8

43.3

43.1

42.5

42.7

42.4

46.5

57.5

59.1

30.2

28.5

42.1

30.3

45.4

42.2

43.0

43.4

40.3

27.1

*Numbers might not add up to 100% due to roundoff.
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1) For the chosen mode and all alternative modes, list your
perceived values for door-to-door time, door-to-door cost,
frequency of departure, and CC (note: CC, which is the
comfort/convenience variable, was explained in detail to
each respondent).

2) Under normal conditions, what are your minimum requirements
for time, cost, frequency and CC?

3) Identify what market segment you're in.

Most people were able to give multiple responses as they have

fallen into several categories at various times. Respondents were

asked to answer not only for themselves, but for anyone else whom

they could confidently answer for e.g. friends, relatives. In order

to obtain enough data for the logit models to converge to reliable

values, respondents were asked to list their responses for trips

in their recent memory rather than for just their last trip.

Questions were asked about individual's rejection criteria and

about the perceived characteristics of the chosen and all alterna-

tive modes. For all segments except the lower income groups, complete

availability of all modes was assumed. For the lower income groups,

automobile was the only mode that was potentially unavailable. There

were difficulties in defining auto availability. Many people could

have ridden in car pools such as those arranged by university ride

boards and local radio stations. This resulted in difficulties in

defining schedule delay, comfort/convenience, and availability.

There was tremendous variance in this part of the data. Theoretically

such car pools were always available with uncertain schedule delay

and costs and with poor comfort and convenience. As a practical

matter, these car pools could often be considered unavailable.

These statistical problems undoubtably bias the estimates. It

was decided to accept any parameter that had the correct sign and a

t-statistic that was significant at the ninety-five percent level.
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Despite the data problems, the parameter estimates appeared to be

"in the ballpark." For business trips and single-day personal

trips for the upper income class, a large majority of the sample

took air. As air was the most expensive mode, this made cost

appear to be a utility rather than a disutility. Even collecting

additional non-air data did not result in significant t-statistics

for cost for single day business travellers.

Almost all disaggregate data bases will contain some incon-

sistent observations. If the survey was obviously misunderstood

or answered ridiculously or incompletely, those observations

should be discarded. However, there will still be inconsistent

observations that result from an incomplete or misspecified model or

a minor misunderstanding of the survey. An example of an inconsis-

tent observation would be an individual who chooses a mode that is

poorer than one or more of the other modes in all categories. For

a sufficiently large sample, the effect of a few inconsistent

observations should be small. For the small number of samples

used in this exercise, inconsistent observations biased the coef-

ficient estimates and greatly increased uncertainty.

If one were creating a TUBSIM model whose purpose was predic-

tive rather than illustrative, it would be necessary to collect a

suitable data base. If it is assumed that two hundred observations

per segment are necessary, that each household survey results in

five observations (several different people and several different

trip categories), and that twenty market segments are defined, at

a cost of twenty to fifty dollars per household per interview, this

would result in a cost of sixteen thousand to forty thousand dollars.

This cost is within the reach of many airlines and government agen-

cies. In addition, this data can be used for several different

studies, and once a model is calibrated, it can easily be trans-

ferred to another market region. Once disaggregate forecasting
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techniques become more popular, it is likely that many disaggregate

data bases will become public or semi-public domain.

In order to collect aggregate data bases, one must sample

individuals. Future transportation surveys or government census's

should retain the disaggregate data in its original form as well

as aggregating it. It would be useful if even a small fraction of

the original data were preserved in its disaggregate form. For

such disaggregate data bases, the collection costs would not exceed

those of aggregate data bases. The only additional costs would be

storage and clerical charges which would be small relative to the

collection costs. It is wasteful not to retain the data in its

disaggregate form as long as one originally has it available.

The parameters of the utility function are estimated from

observations of individuals, and therefore do not contain psycholo-

gLcal bias and do not necessarily require a uniform data sample.

The level of service characteristics and the rejection criteria

are generated from individuals' conjectures, and therefore contain

psychologoical bias and require a uniform data base. Conservative

estimates of bias were added in to partially eliminate this problem.

It was assumed that people underestimate the worst condition that

they will accept. It was further necessary to constrain the modal

characteristics to be non-negative and within normally encountered

ranges.

The simulation program was structured into subroutines that can

be altered with only a minimum of effect on the rest of the program.

This structure makes it easy to make changes in specific modules that

reflect differences in degrees of accuracty, detail, and level of

aggregation. The flow chart (in structured notation) of the particu-

lar version that was coded is presented in Figures 6.5, 6.6, 6.7 and

6.8. A description of some of the differences between structured

and conventional flowcharts is presented in Figure 6.4. A program
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Do until (condition) Statements

if (condition) Statements

Do for (alternatives) Statements

Figure 6.4.

Structured versus
Conventional Flowcharts

CONVENTIONAL
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Read

IInput

Number of passengers = 0
for all modes and segments

Do until all passengers Reject flag =
generated off V modes

Call generate passenger
Output: Type N

Reject unavailable
modes for Type N

Call values
Output: disutility coefficients

Call LOS
Output: characteristics

Mode = no mode, Best = 00

Do for all modes
characteristics

and If not Reject
acceptable mode

Do for all modes Form
not rejected disutility

If disutility Mode = mode

< Best being tested

Best =
disutility

Figure 6.5. TUBSIM Outer Program Level

Output
Results

Leave _



X = uniformly
distributed
random number

Choose segment based
on X and the % each
segment makes up of
the market

Leave

Figure 6.6. Generate Passengers

Do for all
characteristics

Le
(Leave:)

Value = Max (O,X)

Figure 6.7. Values
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X = Gaussian distributed random
number with y and a corresponding
to proper market segment and
characteristic



Do for all modes Do for all
characteristics

ICC = min (5, cc) LOS = Max (0, X)

Figure 6.8. Level of Service
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X = Gaussian distributed
random number with and

corresponding to proper
mode, market segment and
characteristics

I

I
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listing appears in Appendix D. This version of TUBSIM is very simple

and straight-forward in order to make it easy for others to under-

stand and also to be able to meet computer budget constraints. This

basic framework can be built upon to any degree of sophistication

that is desired.

Following is a description of the outer level of program flow.

1) read inputs

2) initialize the number of passengers choosing each mode to zero;

3) do for as many passengers as desired;

4) initialize mode rejection switches to off;

5) describe passenger, i.e. generate market segment

6) reject all unavailable modes;

7) generate rejection criteria;

8) generate values of coefficients for the utility function;

9) generate trip characteristics;

10) initialize: best mode = no mode, best disutility = infinity;

11) reject any mode that does not meet all rejection criteria;

12) compute the disutility for all relevant (available and not
rejected) modes

13) choose the mode with the lowest disutility (alternatively choose
mode in a stochastic manner based on disutility values);

14) accumulate and output data.

The outer structure is relatively simple and complete. This

structure with minor modifications is probably suitable for most

problems that would be encountered. A high degree of personaliza-

tion and flexibility is allowed for in the design of the inner

modules. The version that was coded used matrix notation which

resulted in greater efficiency at the price of some loss of visi-

bility. From working with this model and a similar one from Refer-

ence 33 . it was generally found that as the number of random factors

increases, the number of runs required to obtain stable results
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increases. For this model, stability is defined as the point

where increasing the number of passengers generated or changing

the sequence of random numbers does not result in significant

changes in the modal split. For this particular problem, at least

three thousand iterations are required for stability to occur.

Increasing the number of iterations was found to have decreasing

returns to scale with respect to the model's stability.

The model described in Reference 33 used discrete rather than

continuous values for reject criteria, coefficients of the utility

function, and level of service characteristics. If used properly,

discrete generation can result in a more powerful tool than contin-

uous generation under certain circumstances. When working with a

discrete formulation, one needs to ensure that quantization effects

do not degrade the results. Highly non-linear situations such as

almost no sensitivity to change occurring over some dead band, and

then almost instantaneous change elsewhere can occur in discrete

formulations.

For this model, approximately five percent of the sample rejec-

ted all modes. This figure was approximately half of the number

o f rejections that were experienced in a non-segmented model. Some

rejections occur because the generation process does not limit the

values to some reasonable range of values such as plus or minus a

two or three standard deviation range. Finer market segmentation

would have eliminated many of those consumers who rejected all modes

by resulting in better correlation among the model's parameters and

coefficients. In actuality, a person who places a high value on

time is usually willing to pay for it. A person who cannot afford

to pay very much realizes that he has to take a slower mode that

is probably less convenient and less comfortable. The version of

this simulation model did not take account of this except for the

effects of segmentation. Increasing the correlations will signifi-

cantly increase execution time, but will also eliminate much of the
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problem of a consumer not being able to choose any mode.

The final forecast of a model should be the predicted shares

rather than just the predicted individual probabilities. One can

estimate the modal shares directly from the data used to calibrate

the logit models.

T
E(i) = .1 P(i:At) (6.2)

i=1 t

E(i) = expected number of consumers choosing alternative i
out of a market containing T consumers

This procedure is not always strictly valid because the data

base might not be appropriate due to its usually small size or lack

of sufficient care in collecting it. It was seen that an over-abun-

dance of air travellers for certain segments required the collection

of observations of non-air travellers in order to estimate the dis-

utility of cost. As no mode-specific or socio-economic variables

were included, the coefficient values probably were not signifi-

cantly biased. However, the estimated modal shares will be. Even

without this problem, it is unlikely that one will have available

the statistics of alternative trip characteristics and socio-economic

characteristics for a different market region or for a forecast year.

Aggregation can occur at this level. In some instances, aggre-

gation can seriously bias the modal share estimates. If possible,

some disaggregation, even if it is just business travellers versus

personal travellers, should be used in the hope of improving modal

share estimates. Even with aggregation at this stage, one can ex-

pect potentially better results than from a model estimated entirely

with aggregate data.

E(i)aggregate =TP(i:Aav) (6.3)

A = alternatives available to the average behavioral unit
av
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The simulation technique that is presented represents a feasible

method of taking disaggregate probabilities and estimating market

shares. The model was stable and behaved as expected. A large

amount of sensitivity analysis and predictions for various scenarios

such as gasoline price increases with lower speed limits, and the

building of STOLports was done. Numerical results are meaningless

due to the questionable data base used for calibration and due to

the lack of generation and distribution models to "feed" the modal

split model.

Aggregate elasticities for small perturbations of air travel

time and air cost were computed by varying the values of the parameters

and observing the results. These numbers were in the same range as

elasticities computed from aggregate models. Market segmentation and

estimation of coefficients using logit appeared to improve the model

relative to the more elementary model described in Reference 33, but

once again, data limitations made it difficult to evaluate the re-

sults. Perturbing the inputs demonstrated that no particular quan-

tities were especially critical except for perhaps the percentage

of the market that each segment makes up. This was an illustrative

rather than a numerical exercise; and as such, served its purpose.

The TUBSIM model with disaggregate estimation of coefficients

allows for inclusion of many minor effects that would cause statis-

tical problems in aggregate models. A linear utility function was

used only because of computational simplicity and compatibility with

the logit model. There are no other reasons not to use a non-linear

utility function if a priori reasons dictate it.

This model does not require demand elasticities as inputs, but

can generate them for use in policy analysis. There appear to be no

fundamental limitations on uses of this model. Most of the statis-

tical problems that are encountered in econometric models are elimi-

nated in a TUBSIM model. It can be used for evaluation of presently
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uncertain processes such as what percentage of refused reservation

requests are recaptured on another flight, and what percentage di-

vert to other carriers or other modes; modelling of inter-carrier

competition; the introduction of a new type of fare or a new mode;

and the effect of switching a flight time, ad infinitum. Little

or no recalibration is required for many problems. As this is an

abstract mode model, it can model many situations that other

techniques cannot handle.

This technique is straight-forward, simple, and is based on

behavioral assumptions. Its structured form allows for it to easily

be moved to different regions and to be modified in a modular

simple manner. These qualities make it very adaptive. Computer

time requirements can become large, for very sophisticated implemen-

tations, but still are not excessive. The modules can be developed

independently by experts who might be familiar with only one or two

modules. The program is designed so that the outer structure can be

created by management without the requirement for detailed analytical

knowledge, and the inner structure can be designed by technical

personnel.

Almost any level of aggregation can be built in. Supply effects,

dynamics and other feedback relationships can be added with little

effort. The data requirements are low relative to those of aggregate

econometric models. However, data is not yet available for most air

transportation problems of interest.

The human behavioral relationships that are modelled in a

TUBSIM model are more likely to remain constant or at least predic-

table over time than aggregate statistical relationships; i.e. the

aggregate structure can change without the individual behavioral

structure changing. This can result in a longer predictive horizon.

This technique can be used for generation, distribution, and modal

split in either a recursive or a simultaneous formulation. It has
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many advantages over aggregate econometric techniques with very

few disadvantages.

The class of model just presented is only one of the many

simulation structures that is possible. Although infrequently used

at the present time, simulation techniques are useful and will pro-

bably grow in importance for transportation demand forecasting.
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Chapter VII

Model Evaluation

The importance of selecting the appropriate technique for

forecasting a particular aviation activity can not be underesti-

mated. An inappropriate technique no matter how sophisticated

can result in an inferior forecast. There are a number of criteria

which the analyst can use to evaluate various forecasting methods.

However, there is still a certain amount of judgment required in

selecting a method which is best suited for a particular aviation

activity. One thing is clear, it is not always true that the over-

riding criterion should be accuracy. It is generally a trade-off

between a number of criteria. The analyst has available to him

a set of general guidelines to select a technique to suit his

specific situation. In this chapter, we discuss some of the more

important issues which are relevant in evaluating forecasting

models.

A model should attempt to capture the fundamental relationships

of the process being studied. This does not necessarily mean that

the true explanation of the process needs to be quantified. A

chartist claims to be able to capture the fundamental relationships

by observing past patterns; a marketing manager captures the

relationship by observing consumer sentiment either from surveys

or by talking with salesmen; and a sophisticated analyst might

actually attempt to write down a set of mathematical equations

that he believes describe the process. Models that have a greater

relationship with the real world quite often are more easily under-

stood than others due to the closeness of them with the user's

intuitive subjective models. This quality makes them easier to

work with.
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Any model that is used should be policy sensitive. A travel

demand model of North Atlantic travel calibrated over the past ten

years could perform excellently without aircraft speed as a factor.

However, if one were attempting to estimate the effects of the intro-

duction of a supersonic aircraft, this model would obviously be

insufficient. Factors that seem unimportant now might become domi-

nant in the future. The model's design should be consistent with

its intended usage and fit the task at hand. Many models used for

forecasting were designed to explain the structure of the problem.

There is no reason to expect that complex, explanatory models will

necessarily be suitable for forecasting, and vice-versa. No one

model is best or even suitable for all purposes. A model should

be sufficiently good that one is able to use it to make realistic

and firm recommendations (both structural analysis and prediction).

Data requirements are of utmost importance. The best model

in the world is of no value if the data necessary to calibrate and

run it is not available. In such cases, it is far better to con-

struct a model that is less accurate, but for which sufficient data

is available. In evaluating data requirements, one might wish to

consider availability, quantity, consistency, accuracy, format,

and the cost in time, manpower, and dollars necessary to collect

and maintain the data base. It is quite often possible to calibrate

a model with historical data, but to be unable to use it for

forecasting due to lack of projections for the independent

variables. one might be able to obtain an excellent historical

fit of air travel versus telephone calls or some measure of con-

sumer confidence. It is doubtful that this model would be useful

for forecasting as projections of telephone calls or consumer

confidence would probably be unavailable or unreliable. This

type of problem is particularly apparent in econometric models

whose independent variables include the lagged value of the

dependent variable. In such a case, one might wish to eliminate
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the unavailable variable or to take care of the auto-regressive

term by setting up a multi-equation simulation model. An example

of this is discussed in the econometric section.

Calibration is necessary before a model can be used. The

ease of calibration depends on data requirements and model struc-

ture. Convergence and uniqueness of solution are also important

issues. Calibration is usually achieved through slight manipu-

lations of the data and the model structure, and perhaps through

an iterative process. The data and structure used for calibration

need to be valid for the entire forecast and calibration period.

In general, for well-behaved data with no large perturbations off

the trend and seasonal patterns, better calibration is achieved

with larger data bases. In econometric models calibrated with

consistent estimators, the mean square error of the estimator

approaches zero as the number of data points increases to infinity.

In other words, both the bias and the variance of the estimator

become very small for large data bases. However, extending the

size of the data base will not increase confidence in the es-

timates of the model's parameters if the estimators are not

consistent or if the structure and/or data change during that

period. As an example, consider the case of transatlantic

travel. In recent years, the structure of the process has changed

as charter activity and all-inclusive tours have increased. The

data base has also changed as a different group of people are now

travelling (more people from lower income classes). The elas-

ticities estimated are now computed from aggregate statistics

of different groups. There is no reason to expect that the

demand elasticities of a 1962 group will be the same as the

elasticities of a 1974 group.

The level of accuracy required in a model is highly dependent

upon model purpose and the accuracy and costs of alternative models.



147

Every model used for decision making should be responsive to

possible decisions of the user or of the human environment.

However, this must be consistent with the real-world conditions.

A model might show a linear relationship between frequency and

volume; however, it is highly doubtful that volume will con-

tinually increase without limit as frequency increases. Sensi-

tivity analysis should be used to point out the critical areas

of the model and to impart some information on the amount of

confidence that should be placed in a given model. Although

highly accurate models are desired, any increases in accuracy

must not be offset by an even larger increase in costs or other

factors. Better and more accurate results are of no value if

they do not contain additional information that can potentially

change recommendations or actions.

Designing a new model for each new task is time and money

consuming and represents duplication of effort. It is far better

if possible to modify existing models to suit the particular

problem being studied. Unfortunately this cannot always be

reasonably accomplished. Unless it can be guaranteed that the

model will be used only for the task at hand, it is desirable

to have a flexible model. By this, it is meant that the model

can be easily applied in different locations, by different air-

lines or agencies, and at different points in time. A model that

is designed to predict New York to Boston air travel for a

specific airline in 1974 should be able to be modified to predict

traffic for a different airline on a similar route in 1975.

An overly specific model without a good theoretical foundation

should be examined closely for misspecification. The scatter

plot in figure 7.1 might be reasonably forecast by predicting

total passengers as a function of disposable income. The out-

liers can be handled by the inclusion of dummy variables; thereby
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insuring a better fit. Although this model might be well suited

for the particular data, it probably could not successfully be

applied to other areas. Rather than achieving a good fit with

meaningless dummy variables, it is better to accept the poorer

fit or to try to explain the data by inclusion of other variables

such as fare, travel time, or changes in other modes.

The cost of operation is of great concern to many organiza-

tions. This cost appears in maintenance of the data bank and

model, actual running of the model, and evaluation. The costs

stem from manpower requirements, computer costs, and other money

requirements. A model should always be evaluated in terms of

costs versus benefits.

Some models are capable of standing alone. Quite often,

there is the need for several models to interact with each other

or with other data bases or projects. This sometimes occurs in

a formal structure such as there might be when land use, trip

generation, trip distribution, and modal split models form a

system. Interaction can occur in a less structured manner when

a consultant builds a model for a client who already has a

library of models. Problems can occur on the highest level or

in such a seeming triviality as two models requiring the same

data, but in different formats.

The issues discussed so far are very general and apply to

all types of models in all categories described in this report.

However, within the categories of intuitive subjective models,

control theory (systems dynamics) models, statistical (econometric)

models, and simulation models, finer subdivisions exist. Models

can be disaggregate or aggregate, simultaneous or recursive,

stochastic or deterministic, dynamic or steady-state (equili-

brium), long, medium, or short term, and structural or predictive

in nature. Distinction can also be made between direct and in-

direct models. However, this category is just a special case of
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level of aggregation. The distinctions among categories are

not always clear, and various combinations can exist. Thus,

model evaluation must now be undertaken at the finer level.

Following are some of the examples of model evaluation at this

level.

The end result of a forecast is usually a prediction of

some aggregate measure such as total trips. An aggregate fore-

cast can be made directly from an aggregate model or can be made

by summing the actions of behavioral groups in a disaggregate

model. Aggregation can occur on any level from an individual

consumer to the total market. Oftentimes, the behavioral.unit

is assumed to be larger than the individual such as the family

or all business travellers making single-day trips originating

in a particular zip code area.

"If detailed observations are available, aggregation for

forecasting could be performed either before or after the model

estimation. Aggregation during the model construction phase

of the analysis will cloud the underlying behavioral relationships

and will result in a loss of information. It is always desirable

to estimate a model at the disaggregate level." 36

For some simple cases, aggregate models will yield estimates

that are averages over the values in a disaggregate model. For

more complicated and non-linear cases, this is not strictly true.

The aggregate model would not account for non-linearities in

behavior and would not account for skewness or width of a dis-

tribution (e.g. access/egress cost). Disaggregate models make

use of variations within aggregation groups and among aggregation

groups. Aggregate models only make use of variations among

groups. This greater variation in disaggregate models often

causes multicollinearity problems tc disappear. For practical

purposes, disaggregate models always have more information

available to them than do similar aggregate models using the same
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data base unless the data is fully aggregated initially. Dis-

aggregate models tend to be more flexible and can serve different

purposes more easily than an aggregate model because a disaggre-

gate model can be aggregated on any level desired.

Aggregate models require data sampled from uniform cross-

sections of a market region. Disaggregate models need only

sample a large enough group such that many different behavioral

units are included (300 interviews are often sufficient). There-

fore, a much smaller data base is required for disaggregate

models than for aggregate models. Furthermore, if it is assumed

that the behavior of people in city A is similar to the behavior

of people in city B, a model calibrated in A can also be used in

B. The savings in data collection time and cost can be very

significant. Also cited as advantages of disaggregate models

are: 1) they tend to be more policy sensitive than aggregate

models, and 2) they are suitable for sub-regional and project

planning as well as regional planning.

Recursive models sequentially estimate various elements of

a consumer's set of travel choices (frequency, destination, time

of day, mode). Simultaneous models, as the name implies, estimate

all elements of a specific trip or trip category at one time.

In a recursive framework, one might decide that he needs to make

a trip to city X, then he decides to make this trip twice this

quarter, he then chooses air, and then decides what time of day

to travel. His route choice depends on whether he takes a

non-stop or multi-stop flight. This decision is made when he

makes his time of day decision. A simultaneous model would con-

sider all factors simultaneously. Clearly, the simultaneous

structure best approximates a real-world decision. If a re-

cursive structure is proper, a simultaneous model would just

degenerate into a recursive structure. Recursive models assume

a given priority in choice. Does a vacation traveller decide
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what mode to take and then decides where to go given that mode,

or does he decide where he wants to go and then chooses the best

mode? The answer is not obvious; and the assumed hierarchy of

choice affects the forecast results. Unless computational, cost,

or data requirements dictate the use of a recursive model struc-

ture, a simultaneous structure should be preferred.

The distinction between probabilistic or stochastic and de-

terministic models is clear from the names. Stochastic models

assume some probability of making a given choice rather than

complete certainty. Logit, probit, and tobit are examples of

stochastic models. The expected value of a stochastic forecast

is often just the deterministic forecast from another type of

model. At the present time, deterministic models make up the

bulk of the research in air transportation forecasting.

Consumer choice is usually defined as some function of socio-

economic, level of service, and other relevant variables. There

are two primary examples where it is observed that deterministic

models have difficulty explaining consumer choice. Identical

consumers under seemingly identical situations have been observed

making different choices. The same consumer in the same situation

has been observed making different choices. This probably occurs

because the models do not include all of the elements that

define a possible situation. It would be impractical to do so.

One would have to include the consumer's mood, what time he

woke up, and anything else that could possibly affect his travel

decision. In most cases that the authors are familiar with, the

use of deterministic models did not seem to noticeably bias

studies so as to make them unacceptable.

In many situations, the dynamic response of a system is

significantly different than the steady-state response. For

reasons of simplicity, most models deal with what is usually called
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an equilibrium solution (either short run or long run). From a

thermodynamic point of view, the term steady-state is more appro-

priate than equilibrium. It is difficult to model the dynamics

of a situation except with subjective models and control theory

models. A partial modelling of dynamic effects can be done in

simulation and econometric models by using variables that are

functions of time such as lagged variables, compound growth, and

exponential decay. There is little problem in doing this for

simulation models. In econometric models, these techniques

usually at least require more computer time for most regression

packages, and in cases of serial correlation, they can result in

biased estimates of the coefficients. For many purposes, the

dynamic effects are long term and can be ignored in short term

analyses. In predicting the expected demand at a proposed

new airport, many short term effects can be modelled. There is

a longer term effect in that a new airport will probably attract

new businesses and hence new residents to the market region which

would in turn increase airport traffic. For some analyses, it is

appropriate to ignore this demand shift. If a hierarchy of

choices and model types is assumed (e.g. generation, distribution,

modal split), various levels of dynamic response can be modelled

by "freezing" different levels of choices and considering dynamic

response only at the remaining levels.

In air travel, most perturbations are small e.g. six percent

fare increase, two percent growth in population, five percent

increase in daily frequency, ten minute increase in access time,

etc. Occasionally, there are large perturbations where dynamic

response is probably important e.g. introduction of jets, intro-

duction of the SST, non-stop service introduced for the first

time, etc. One needs to be careful to include all important

dynamic effects.

Models can be primarily predictive or structural in nature.
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A structural model attempts to explain the actions of a system

by showing cause and effect relationships. A predictive model

is solely concerned with forecasting a dependent quantity.

There is no reason for concern in a structural model if hetero-

scedasticity, serial correlation, poor fit, or other statistical

problems exist so long as unbiased estimates of parameters are

made. For the purpose of fare regulation, one might not be

concerned with prediction of travel volume, but would want a

reliable estimate of demand elasticity with respect to fare

level. On the other hand, if one is only concerned with fore-

casting next year's traffic, it does not really matter what the

value of fare elasticity is as long as the model has good pre-

dictive abilities. "The record to date does not reveal

any significant advantage of the much more complex structured

model over the 'seat-of-the-pants' judgemental-type model used

by many business forecasters and business firms. But the fact

is that judgemental-type models offer no hope for improvement,

while structured econometric models offer the only real prospect

for being able to do better in the future."37 This quote from

Juster refers to business forecasting. Already, the field of

transportation forecasting is to the point that structural and

behavioral models often yield better results than naive (although

often complicated) predictive models. Presumably, these advances

have been made possible by having the new point of view brought

in by engineers added to the work already done by econometricians.

It is difficult to estimate structural coefficients for

air transportation models because so many changes happen at

once. A large problem exists due to the many fare levels and

packaged tours that exist. A price variable is not uniquely

defined. Coach fare or yield is not completely satisfactory as

few people actually travel at exactly those levels, and signifi-

cant aggregation problems exist. The minimum fare level should



155

give some indication of total market size, but is unacceptable

for the aforementioned reasons and because not everyone is eligible

for the minimum fare. If the data were available, it would be

possible to create a partially disaggregated econometric model

which would have common information for many of the variables,

but would take account of the differences in passengers travelling

at different fare levels. If a detailed disaggregate data base

were available, many of these objections could be overcome by

using a logit or probit model. The cost of collecting and main-

taining the required data base would by exorbinant with the

present system and technology. For the time being, this improved

method of forecasting is infeasible due to data requirements.

Also complicating analysis is the diversion that can occur

in a complicated transportation system. Charging an individual

fare will affect not only the volume of travel at the particular

fare level, but will affect the entire market as well. If a

lower fare class is instituted, not only will new passengers be

attracted to the system at that fare level, but also the entire

distribution of passengers will be affected as individuals down-

grade their service and therebyaffect the yield. It is important

to consider the entire system. If fares to one vacation market

are increased, some travel will divert to other vacation markets.

As previously mentioned, it is also necessary to consider the

dynamic nature of the situation. The impacts of fare changes,

new competition, and other changes in the system do not happen

immediately or all at one time. Further compounding the situation

is the impossibility of running a controlled experiment. Many

changes, some controllable and some not, are happening throughout

the time period being studied.

It is often easier to predict specific (e.g. single city pair,

individual carrier, etc.) data rather than aggregated system wide

data. As the expected prediction becomes smaller, noise in the
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data and model misspecification becomes more noticeable. There

is some critical level below which quantization and noise hurt

predictions, and above which accuracy decreases. An analogy can

be made to forecasting the GNP. It is more accurate to forecast

individual components of the GNP and then add them together than

to try to directly forecast the GNP. However, it is unreasonable

to attempt to forecast every minute component of the GNP. This

"critical size" is usually difficult to determine and fortunately

is not often important as intuition usually correctly guides the

forecaster.

There is always the lack of information to include everything

of consequence in a model. At finer and finer levels of detail,

the question of whether anything is forecastable becomes both

psychological and philosophical. One is never certain of what

is best to measure or how to measure it. For instance, is the

relevant supply variable for a city-pair seats or frequency or

both? Due to multi-collinearity, both should not be included.

Using only one of these variables results in loss of information;

the specification of a variable that includes both of these

effects is not a simple thing to construct. The best that one

can hope to do is to isolate the most important statistics and

interactions.

In air travel passenger forecasting, one is basically

concerned about three different types of models: air trip genera-

tion and/or attraction, air trip distribution, and modal split.

Trip generation and attraction models can answer questions such

as how many passengers will airport X handle five years from now.

Trip distribution models, in particular special one-city-pair

types, are probably the most commonly encountered model type.

An example of a special case trip distribution model is the one

in the econometric section in which New York/Florida air traffic

is forecast. It is in actuality a direct demand model because
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it implicitly includes land use, trip generation, and modal

split as well as distribution. Model split models predict what

percentage of a specific travel market will choose a given mode

or carrier.

This chapter began with a discussion of the very general

issues regarding model evaluation for all categories. Important

issues were then discussed for finer subdivision of the more

important category econometric models. We now discuss an even

finer set of issues namely those involving statistical evaluation.

A number of econometric models are not statistically valid

due to the existence of three fairly common problems: multi-

collinearity, autocorrelation and hetqroscedasticity. Multi-

collinearity occurs when the explanatory variables are correlated.

Its existence tends to produce unreliable coefficients, In

addition, they may also be highly volatile. Thus we cannot rely

completely on the t-tests. Analysis of simple and partial corre-

lation coefficients can usually give an indication as to the

extent and location of intercorrelation among the so called

"independent variables."

The major impact of autocorrelation on regression analysis

is to cause the calculated error measures to be unreliably

estimated. Goodness of fit statistics such as R (coefficient

of multiple determination) may have more signficant values than

may be warranted. Thus we cannot rely on significant findings

obtained from such values to support conclusions about the

importance of our relationship. Simple variances of individual

regression coefficients may unreliably estimate the true values,

causing t-tests to produce possibly spurious conclusions.

Finally, the existence of autocorrelation may adversely effect

the property of least-squares technique to produce the best

estimates. The standard test for this is the Durbin-Watson

test. However, if the model is lagged, this test may cause the

wrong conclusion to be reached.
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Heteroscedasticity occurs when the variance of the error

term associated with the fit of an equation is not constant

in size across observations. Its existence distorts the measure

of unexplained variation, thereby similarly distorting conclusions

from R and t-tests based on them. These are a number of tests

available to test for heteroscedasticity. They are, however,

fairly complicated and require a sound understanding of statis-

tics.

In addition to these three fairly common statistical problems,

the following statistical analysis should be performed. First,

one should calculate not only the standard error of the forecast

but also the standard error of the regression line. The band

describing the standard error of the forecast fans out as the

regression line is followed futther from the range of actual

observations. This implies that the confidence which can be

placed in a forecast based on trend or regression analysis

diminishes very rapidly as the forecast is carried further and

further into the future. Second, in testing for the significance

of obtained sample R values, an adjustment is necessary to account

for statistical bias arising from using sample estimates to

measure underlying population characteristics. Third, an

evaluation should be made for the impact of omitting signifi-

cant variables. Fourth, an evaluation should be made by investi-

gating the ANOVA table.

One needs to beware of stability problems in control theory

and simulation models. Incorrect specification can result in

explosive and unstable models as predictions are made past one's

experiences and familiarities. It is difficult to insure a

properly behaved model in a range beyond what one can imagine. Computer

round-off error can cause problems that one might not expect from

just theoretical considerations. Econometric problems can occur

from matrices that are nearly non-invertible. Perhaps the most
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dangerous type of problem is one where large instabilities suddenly

occur without warning in otherwise well behaved situations.

This problem can occur, for example, when dealing with Kalman

filtering (see control theory section). The filtering algo-

rithm makes use of the state covariance matrix (E matrix).

Theoretically, the E matrix is symmetric and positive semi-

definite. Computer round-off can force the E matrix non-symmetric

and nonpositive semi-definite. When this happens, instability

can occur, and the forecast can very quickly diverge from reality.

This problem could be rectified by using a square root of the

state covariance matrix, adding non-linear compensation,

rectifying the E matrix at each update, or by increasing com-

puter precision. This is just one example of stability problems.

Although rare, forecasters always need to keep the possibility of

instability in the back of their minds.

"The first and perhaps most obvious requirement of a model

for forecapting the consequences of transportation system changes

is that the model should be structural; the model should describe

the interrelationships among variables which may change in the

future, which are predictable (at least within certain limits),

and which influence the demand for or performance of a system....

Only by explaining the causal relationships can the model be used
38

to forecast the effects of future changes."3 This perhaps

summarizes the future trend of air travel demand models.



160

References

1. McDonnell Douglas. "McDonnell Douglas Asked the Experts
Their Opinion of Important Future Air Transportation
Developments." September 1970.

2. Martino, Joseph P., "Technological Forecasting for Decision

Making." New York, American Elsevier Publishing Co. 1972.

3. Martino. Ibid, page 97.

4. Lanford, H.W., "Technological Forecasting Methodologies--
A Synthesis." American Management Association. 1972.

5. Lanford, Ibid, page 79.

6.' Lanford, Ibid, page 81.

7. Ayres, Robert U., "Technological Forecasting and Long Range
Planning." McGraw-Hill Book Company. 1969.

8. Jantsch, Erich, "Technological Planning and Social Futures."
John Wiley & Sons. New York. 1972.

9. Ayres, Ibid, page 72.

10. Steigmann, A. John, "A Partial Recursive Model of Automobile
Demand," Business Economics, September 1973, pp. 28-30.

11. Fagan, J., "Stock Price Prediction--A Survey of Current
Research and a Comparative Analysis of Two Predictive
Techniques." September 1969 (unpublished).

12. Manski, C., Albright, R., & Ben-Akiva, M., "Multinomial
Logit Estimation Program." Cambridge Systematics, Inc.
October 1973.

13. Wilson, A. (Quandt, R. ed.), "A Statistical Theory of
Spatial Distribution Models." The Demand for Travel:
Theory and Measurement, 1970.

14. Peat, Marwick, Mitchell & Co., "A Review of Operational
Urban Transportation Models." DOT-TSC-496. April 1973.



161

15. The influence of population growth can be introduced by
expressing socio-economic variables in per capita form.
For further reference on the influence of population, see
G. Besse and G. Deman, "Air Transport, Its 'Conjecture'
and the General 'Conjecture' - Past Experience and Lessons
for the Future," paper presented at the Second ITA
Symposium, November 24-25, 1966, Paris.

16. This is not strictly true since income elasticity starts
off being low ,for the low income levels, rises to its
high value for the middle income group and declines again
for the high income groups. The basic reasons for a
decline in the elasticity for the top income stratum
appears to be that people in this group have generally
travelled as much as they desire and that further incre-
ments of income do not induce proportional changes in
travel habits.

17. Alexander P. Triandafyllides, "Forecast of the Demand for
North Atlantic Travel," Ph.D. Thesis, University of
Washington, 1964; and N.J. Asher et al., Demand Analysis
for Air Travel by Supersonic Transport, Institute for
Defense Analyses, Washington, D.C., Economic and
Political Studies Division; prepared for the Federal
Aviation Administration, Contract No. FA-SS-66-14,
Arlington, Virginia: 1966.

18. Port of New York Authority, Aviation Economics Division,
New York's Overseas Air Passenger Market: April 1963
through March 1964, June 1965; New York's Transatlantic
Air Passenger Market; May 1966 through April 1967,
July 1969; and New York's Transatlantic Air Passenger
Market: May 1968 through April 1969, September 1970.

19. National Planning Association, International Travel on
Potential SST Routes, a report on a study performed under
U.S. Department of Transportation Contract DOT-FA-SS-71-3,
August 1971.

20. Triandafyllides, op.cit.; and U.S. Deparmen of Commerce,
Bureau of Economic Analysis, "International Travel,
Passenger Fares and Other Transportation in the U.S.
Balance of Payments: 1971," reprinted from Survey of
Current Business, July 1972.

21. Boeing Company, North Atlantic Macro Air Passenger and
Cargo Forecast: An Econometric Approach to Measure
Future Demand Levels, November 971.



162

22. Philip Verleger presents a good discussion of this point in

his article, "Models of the Demand for Air Transportation"

in The Bell Journal of Economics and Management Service,
autumn 1972, Vol. 3, No. 2.

23. Those interested in weighting the two fares should refer to

a good discussion presented in Economics and Tourism:

A Study of Factors Affecting Pleasure Travel to the

U.S.A. report prepared by Arthur D. Little, Inc. for the

United States Travel Service, July 1967.

24. International Air Transport Association, World Air Trans-

port Statistics 1971, Montreal, Quebec: 1972.

25. International Civil Aviation organization, Digest of Statistics:

Traffic Flow - March 1969, June 1969, September 1969,
and December 1969, Nos. 148, 149, 150 and 152; Series

Nos. 45-48, Montreal, Quebec. Data averaged from the

four months.

26. Marc Nerlove, "Distributed Lags and Estimation of Long-Run
Supply and Demand Elasticities: Theoretical Expectations,"
Journal of Farm Economics, Vol XL, No. 2, May 1958.

27. Wayne Watkins and Donna Kaylor, Forecast of Scheduled
International Air Traffic of U.S. Flag Carriers 1971-1980,
U.S. Civil Aeronautics Board, September 1971.

28. Taneja, N.K. (Howard, G. ed.), "Forecasting Air Passenger
Traffic on the North Atlantic," Airport Economic Planning,
M.I.T. Press, 1974.

29. It is not feasible to discuss the details of simultaneous
equation models or their statistical problems due to the
introductory nature of the material presented in this
report. The interested reader is referred to the many
excellent texts available on the subject, including:

Henri Thiel, Principles of Econometrics, John Wiley and
Sons, Inc., New York: 1971; and Porituri M. Rao and
Roger L. Miller, Applied Econometrics, Wadsworth Publish-
ing Company, Inc., Belmont, California: 1971.

30. Watkins and Kaylor, op.cit.



163

31. For details of the Chow test see F.M. Fisher, "Test of Equality
Between Sets of Coefficients in Two Linear Regressions:
An Expository Note," Econometrics, Vol. 38,'No. 2,
March 1970.

32. National Planning Association, op.cit.

33. Garvett, D., "A Behavioral Approach to Modal Split and
Related Problems," December 1973 (unpublished).

34. Ben-Akiva, M., "Structure of Passenger Travel Demand Models,"
Ph.D. Thesis, M.I.T., Department of Civil Engineering,
June 1973.

35. Kraft, G. & Wohl, M., "New Directions for Passenger Demand
Analysis and Forecasting," Transportation Research, Vol. 1,
No. 3, pp. 205-230, November 1967.

36. Ben-Akiva, M., Ibid.

37. Juster, F., "An Evaluation of the Recent Record in Short-Term
Forecasting," Business Economics, May 1972.

38. Kraft, G. & Wohl, M., Ibid.

39. Department of Transportation, "Statistical Analysis of
the New York - Washington, D.C. Rail Passenger Service,
1970," October 1971.



Appendix A

Exponentially Weighted Moving Average Program
Non-Adaptive Technique

SECTION 1

Section 1 initializes the program and monitors the search rou-

tine as values of a, # and y are tested to see which combination

produces the lowest total squared error in the forecast values.

Section 1.1:

Section 1.2:

Section 1.3:

initializes variables, reads in data, does prelimi-
nary calculations

monitors the search for the best combination of a.,
and y to the nearer .05.

monitors the local search around these values to see
~if a better combination of a, / and y may be located.

SECTION 2

Section 2 is a subroutine which calculates the S, R and F values

for each combination of a, / and y tested. In addition, it stores the

value of the lowest squared error and all the y-values associated

with it. If, after a test, a new low total squared error has been

found, this value and its associated y-values are stored and the pre-

vious low and y-values associated with it are discarded. Then con-

trol returns

Section 2.1:

Section 2.2:

Section 2.3:

Section 2.4:

Section 2.5:

SECTION 3

Section

Section 3.1:

to the main program.

finds values for S, R1 and F1.
carries the iterations through the first cycle.

carries the iterations through the second cycle.

continues the iterations and initiates forecasting.

effects a change of stored y-values and the low total
squared error value, if necessary.

3 prints the table.

initializes several variables and prints the header
lines for the table.
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Section 3.2:

Section 3.3:

SECTION 4

Section

Section 4.1:

Section 4.2:

Section 4.3:

prints the first four cycles: the two used for back-
log values which involve no forecasting as well as
the first two forecast periods.

prints the one remaining cycle.

4 prints the graphs.

initializes several variables, prints several header
lines and calculates and prints the scale to be used
along the y-axis (trip volume) in the first plot.

prints the volume vs. time graph: a "+" for the true
value, a "-" for the forecast value, and a "*" if the
two coincide.

prints the errar probability distribution graph.

EXAMPLE

Monthly data showing the total number of trips made by air on

scheduled carriers across the North Atlantic for the five years

1967-:1971 inclusive is shown in Figure A.l. This can be used to

illustrate how the forecasting model operates. Figure A.2 contains

a summary of the necessary input data as described above. The out-

put is shown in Figure A.3.
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Program Listing of Exponential Smoothing Model

$JOB
SUBROUTINE SECTWO
COMMON F(59), X(60),

COMMON ALPHA, BETA,
COMMON PINIT, SLOPE,

SOLD
ROLD

F(1)

Y(60),
GAMMA,

IPER,

(ALPHA * X(l)/F(l))

BETA * (SOLD - X(l)

GAMMA * X(1)/SOLD +

SAVEY(63),

SOLD, SNEW,
ITOT, L, M,

SECTION 2.1

+ ((l.-ALPHA)

) + (l.-BETA)
(1.-GAMMA) *

SECTION 2.2

TOTAL, SAVTO

ROLD, RNEW

MA, LA

* (XcI)
SLOPE

(1)

+ SLOPE))

DO 4

SNEW
RNEW
F(I)
ROLD

4 SOLD

= 2, IPER

(ALPHA * X(I)/F(I))+ ((1.-ALPHA)

BETA * (SNEW - SOLD) + (l.-BETA)

GAMMA * X(I)/SNEW + (l.-GAMMA) *

RNEW

SNEW

(SOLD + ROLD))

ROLD

(I)

SECTION 2.3

DO 5
SNEW
RNEW
F(I)
ROLD

5 SOLD

= L, M

ALPHA * X(I)/F(I-IPER)

BETA * (SNEW - SOLD) +

GAMMA * X(I)/SNEW + (1.

RNEW
SNEW

+ (1.-ALPHA) * (SOLD + ROLD)

(l.-BETA) * ROLD
-GAMMA) * F(I-IPER)

SECTION 2.4

DO 6 I = LA, MA

Y(I) = (SOLD + ROLD) * F(I-IPER)

SNEW = ALPHA * X(I)/F(I-IPER) + (l.-ALPHA) * (SOLD + ROLD)

RNEW = BETA * (SNEW - SOLD) + (l.-BETA) * ROLD

F(I) = GAMMA * X(I)/SNEW + (1.-GAMMA) * F(I-IPER)

ROLD = RNEW

SOLD = SNEW
6 TOTAL = TOTAL + ((X(I) - Y(I))**2)

Y(I) = (SOLD + ROLD) * F(I-IPER)

TOTAL = TOTAL + ((X(ITOT) - Y(ITOT))**2)
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C
C SECTION 2.5
C

IF (SAVTO) 30, 25, 30
30 IF (TOTAL - SAVTO) 25, 27, 27

25 DO 26 I = 1, ITOT
26 SAVEY(I) = Y(I)

SAVEY(61) = ALPHA
SAVEY(62) = BETA
SAVEY(63) = GAMMA
SAVTO = TOTAL

27 RETURN
END

C
COMMON F(59), X(60), Y(60), SAVEY(63), TOTAL, SAVTO
COMMON ALPHA, BETA, GAMMA, SOLD, SNEW, ROLD, RNEW

COMMON PINIT, SLOPE, IPER, ITOT, L, M, MA, LA
DIMENSION IER(21)
CHARACTER*80 NAME
CHARACTER*l C(36)
CHARACTER*l A(130)
CHARACTER*l BLANK /' '/

CHARACTER*l DASH /-'/

CHARACTER*l PLUS /'+'/
CHARACTER*l STAR /'*'/

C
C SECTION 1.1
C

ITOT = 60

IPER = 12

READ (5, 103) NAME
READ (5, 101) X
SAVTO = 0.

VALAR = 0.

DO 17 I = 1, 60

IF (X(I) - VALAR) 17, 17, 18

18 VALAR = X(I)
17 CONTINUE

READ (5, 102) PINIT, PINFI, IYEAR, IUNIT

PT1 = PINIT

SLOPE = (PINFI - PINIT)/23.

DO 59 I = 1, IPER
59 F(I) = X(I)/(PINIT + ((I - 1) * SLOPE))

L = IPER + 1
M = 2 * IPER

LA = M + 1
MA = ITOT - 1
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LB =LA + M
DO 1 I = 1, M

1 Y(I) = x(I)
C
C SECTION 1.2
C

DO 24 IA = 1, 19
ALPHA = IA * .05

DO 29 IB = 1, 19

BETA = IB * .05

DO 28 IC = 1, 19

GAMMA = IC * .05

PINIT = PT1
TOTAL = 0.
CALL SECTOW

28 CONTINUE
29 CONTINUE
24 CONTINUE

C
C SECTION 1.3
C

IA = SAVEY(61)/.05
IB = SAVEY(62)/.05
IC = SAVEY(63)/.05
DO 34 ID = 1, 5

IF (ID - 3) 31, 34, 31

31 ALPHA = (IA * .05) + (ID * .01) - .03

DO 35 IE = 1, 5

IF (IE - 3) 32, 35, 32
32 BETA = (IB * .05) + (IE * .01) - .03

DO 36 IH = 1, 5

IF (IH - 3) 33, 36, 33
33 GAMMA = (IC * .05) + (IH * .01) - .03

PINIT = PT1

TOTAL = 0.

CALL SECTWO
36 CONTINUE
35 CONTINUE
34 CONTINUE

C
C SECTION 3.1
C

DO 49 I = 1, 21

49 IER(I) = 0.

ALPHA = SAVEY(61)

BETA = SAVEY(62)
GAMMA = SAVEY (63)
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WRITE (6, 201)
WRITE (6, 214) NAME
WRITE (6, 205) ALPHA, BETA, GAMMA, IPER
WRITE (6, 215)
WRITE (6, 208)
TOTAL = 0.
N=

C
C SECTION 3.2
C

JYEAR = IYEAR + 2

DO 22 I = 1, M

E = X(I+M) - Y(I+M)

PE = E * 100./X(I+M)
J = (PE + 2.5)/5
K = 11 + J

IER(K) = IER(K) + 1
EE = E**2

TOTAL = TOTAL + EE
WRITE (6, 204) N, IYEAR, X(I), N, JYEAR, X(I+M), SAVEY(I+M), E,

- PE, EE

IF (N - 12) 22, 2, 22

2 IYEAR =IYEAR + 1
JYEAR = JYEAR + 1
N 0

22 N N + 1
C
C SECTION 3.3
C

DO 23 I = LB, ITOT
E = X(I) - Y(I)

PE = E * 100./X(I)
J = (PE + 2.5)/5

K 11 + J
IER(K) = IER(K) + 1
EE = E**2

TOTAL = TOTAL + EE

WRITE (6, 206) N, JYEAR, X(I), SAVEY(I), E, PE, EE
IF (N - 12) 23, 3, 23

3 JYEAR = JYEAR + 1
N 0

23 N= N + 1
WRITE (6, 207) TOTAL

C

C SECTION 4.1
C

DO 9 I = 1, 130
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9 A(I) = BLANK
B = 10.

37 IF (B - .01) 42 55, 42

42 CONTINUE
DO 19 I = 1, 10

IF ((VALAR/(I * B)) - 130) 21, 19, 19

19 CONTINUE
55 WRITE (6, 216)

GO TO 39
21 IF (I - 1) 20, 38, 20

38 B = B/10.
GO TO 37

20 K = I * 20 * B

KTWO =2 *K
KTHR 3 *K
KFOR =4 *K
KFIV = 5 * K
KSIX = 6 * K
WRITE (6, 209)
WRITE (6, 201)
WRITE (6, 214) NAME
WRITE (6, 205) ALPHA, BETA, GAMMA, IP
WRITE (6, 202)
WRITE (6, 213) K, KTWO, KTHR, KFOR, K
WRITE (6, 210)

ER

FIV, KSIX, IUNIT

SECTION 4.2

N = 1
DO 8 J = l, ITOT

IORD = X(J)/(I * B)

JORD = Y(J)/(I * B)

IF (IORD-JORD) 13, 14, 13
13 A(IORD) = PLUS

A(JORD) = DASH
GO TO 15

14 A(IORD) = STAR

15 IF (J/N - 12) 11, 12, 11
12 WRITE (6, 212) N, A

N = N +
GO TO 16

11 WRITE (6, 211) A
16 A(JORD) = BLANK
8 A(IORD) = BLANK

WRITE (6, 203)
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C
C SECTION 4.3
C

39 WRITE (6, 217)
K 0
N 5
DO 41 I = 1, 36

41 C(I) = BLANK
DO 48 I = 1, 21
IORD = IER(l)
IF (I - 11) 46, 47, 46

47 IF (IORD) 57, 56, 57
57 C(IORD) = PLUS
58 WRITE (6, 219) C

WRITE (6,218)
N=l
K=-l
GO TO 56

46 IF (IORD) 40, 44, 40
40 C(IORD) = PLUS
44 IF (N - 5) 50, 51, 50
51 IF (K**2) 54, 52, 54
52 J =50

K K + 1
GO TO 53

54 J = 25

K K + 1
53 WRITE (6, 220) J, C

N = 1
GO TO 56

50 WRITE (6, 219) C
N = N + 1

56 IF (IORD) 43, 48, 43
43 C(IORD) = BLANK
48 CONTINUE

WRITE (6, 209)
GO TO 10

C
C FORMAT STATEMENTS
C

101 FORMAT (12(F5.1, 1x))
102 FORMAT (12X, F5.0, 13X, F5.0, 2(6X, 14))
103 FORMAT (A80)
201 FORMAT(' FLIGHT TRANSPORTATION LAB DEMAND FORECASTING MODEL')
202 FORMAT ('0', 126X, 'VOLUME')
203 FORMAT (2X, 'YEARS')
204 FORMAT (3X, 13, '/', 14, 1OX, F8.2, 20X, 13, '/', 14, 1OX, F8.2,

- 3(3X, F9.2), lX, F10.2)
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205 FORMAT(' ALPHA = ', F4.2, ', BETA = ', F4.2, ', GAMMA = ', F4.2,

- ', PERIOD = ', 12)

206 FORMAT (49X, 13, '/', 14, 1OX, F8.2, 3(3X, F9.2), lX, F10.2)

207 FORMAT (llOX, F12.2, '***')
208 FORMAT (23X, 'VOLUME', 40X, 'VOLUME', 7X, 'VOLUME', 17X, 'ERROR',

- 7X, 'ERROR')

209 FORMAT ('l')
210 FORMAT (' + ------------------- ------------------- ------------

- '- ---- I -)I -------- -------- 'I )
FORMAT (2X, ' ', 130(Al))
FORMAT (lX, Il, '-', 130(Al))
FORMAT ' 0', 6(16X, 14), 4X, 'X ', 14)

FORMAT (lX, A80)
FORMAT ('OMONTH/YEAR', 12X, 'ACTUAL', 18X, 'MONTH/YEAR', 12X,

- 'ACTUAL', 6X, 'FORECAST', 5X, 'ERROR', 5X, 'PERCENT', 5X

- 'SQUARED')
FORMAT ('lVOLUMES TOO LARGE TO PERMIT GRAPHICAL DISPLAY')
FORMAT ('OERROR PROBABILITY DISTRIBUTION')
FORMAT ('+ 0%-----------------------------------l')
FORMAT (4X, 't 36(Al))
FORMAT (lX, 12, '%-', 36(Al))

CONTINUE
STOP
END
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NORTH ATLANTIC TRAFFIC

1967

January
February
March
April
May
June
July
August
September
October
November
December

107,597
84,978

120,782
161,809
236,844
313,714
368,250
296,425
257,260
189,551
105,746
138,517

MONTHLY TOTALS
1967-1971

1968 1969

119,795
102,252
130,890
177,333
222,034
330,950
434,008
292,871
252,369
186,147
121,262
159,581

131,609
109,753
157,181
192,413
255,032
386,550
507,720
343,100
290,552
206,580
140,428
200,349

Figure A.1.
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1970

154,349
140,412
207,079
232,054
341,836
457,655
590,425
464,504
348,486
225,548
153,020
212,854

1971

163,945
142,927
209,614
247,774
364,161
445,223
588,906
403,102
438,999
270,639
179,118
238,663



NORTH
107.5
119.8
131.6
154.3
163.9
FIRST

A-ll

ATLANTIC TRAFFIC FORECAST 1967-1971
085.0 120.8 161.8 236.8 313.7 368.3 296.4 257.3 189.6 105.7 133.5

102.3 130.9 177.3 222.0 331.0 434.0 292.9 252.3 185.1 121.3 159.6
109.8 157.2 192.4 255.0 386.6 507.7 343.1 290.6 206.5 140.4 205.3
140.4 207.1 232.1 341.8 457.7 590.4 464.5 348.5 225.5 153.0 212.9

142.9 209.6 247.8 364.2 445.2 588.9 403.1 439.0 270.6 179.1 238.7
POINT 179 FINAL POINT 240 YEAR 1967 UNIT 3

Figure A. 2 .
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Appendix B

Spectral Analysis

This program calculates the mean, variance, and auto-correlation

function of a time series. It also prints out each frequency consi-

dered and the power (spectral density) associated with it. At the

beginning of the output, the input data is reproduced for future

reference. One then has available the underlying frequencies of the

series and their amplitudes and can then evaluate the series.

The program is written in Fortran and uses namelist input.*

The user has to supply the number of observations in the series, the

number of lags he wants to include in the analysis, and the series it-

self. The program can process up to five hundred observations and one

hundred lags. Changing the dimension statements can increase these

limits. The series is assumed to be stationary. Proper logarithmic

transformations or generalized differencing should be done if needed

to insure stationarity.

C ************************************************

C SPECTRAL ANALYSIS PROGRAM

C ***********************************************

C THIS PROGRAM ASSUMES THAT THE SERIES THAT IS SUPPLIED IS STATIONARY

REAL MEAN

DIMENSION VALUE(500),AUTOCO(100),PDS(200),TEMP(100)

C PDS IS THE POWER DENSITY SPECTRUM

NAMELIST/INPUT/NOBS,LAGS,VALUE

DATA PI/3.14159265/

*If the user is unfamiliar with the required job control language or
namelist input, he should consult an IBM Fortran manual.
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C

1 FORMAT ('l MEAN=',E15.7,' VARIANCE=',E15.7/)

2 FORMAT (' LAG',6X,' AUTO-',5X,' FREQUENCY',2X,' SPECTRAL'/,7X,

1 ' CORRELATION',13X,' DENSITY')

3 FORMAT (14,F11.4,F12.4,F10.4)

4 FORMAT (15X,F12.4,FlO.4)

C

READ (5,INPUT)

WRITE (6,INPUT)

LAGS = LAGS + 1

MEAN = 0.

DO 10 I=1,NOBS

10 MEAN = MEAN + VALUE (I)

MEAN = MEAN / FLOAT (NOBS)

LL = 1 + LAGS / 2

LL1 = LL + 1

Ll = LAGS - 1

FLl = L.

L2 = LAGS * 2

ANGLE = PI / (FLl * 2.)

DO 25 I=1,NOBS

25 VALUE(I) = VALUE(I) - MEAN

DO 20 J=1,LAGS

AUTOCO(J) = 0.

NJ = NOBS - J + 1

DO 20 I=1,NJ

IJ = I + J - 1

20 AUTOCO(J) = AUTOCO(J) + VALUE(I) * VALUE(IJ)

DO 30 J=2,LAGS

30 AUTOCO(J) = AUTOCO(J) / AUTOCO(1)

VAR = AUTOCO(1) / FLOAT(NOBS)
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AUTOCO(l) = 1.

DO 4- J=2,LL

TAU = J - 1

40 TEMP(J) = 1. - (6. * TAU**2 / (FL1**2)) + (6. * TAU**3/(FL1**3))

DO 50 J=LL1,Ll

TAU = J - 1

50 TEMP(J) = 2. * (1. - TAU / FL1)**3

DO 60 I=1,L2

PDS(I) = 0.

Fll = I-1

DO 60 J=2,Ll

FJ1 = J - 1

60 PDS(I) = PDS(I) + AUTOCO(J)*TEMP(J)*COS(ANGLE*FJ1*FIl)

WRITE (6,1) MEAN,VAR

WRITE (6,2)

DO 70 I=1,LAGS

Il = I - 1

FIl = Il

PDS(I) = (1. + 2. * PDS(I)) * 2

FREQ = FIl / (4. * FLl)

70 WRITE (6,3) Il,AUTOCO(I), FREQ PDS(I)

Ll = LAGS + 1

L2 = L2 - 1

DO 80 I=Ll,L2

PDS(I) = (1. + 2. * PDS(I)) * 2.

FIl = I - 1

FREQ = FIl / (4. * FL1)

80 WRITE (6,4) FREQ,PDS(I)

STOP

END
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Appendix c

Florida and Orlando Air Travel Models

Florida

1. Volfla = a*Volfla(-4)b*popqc*Edisneyd*Fareflae*Incomef*Eweatherg

2. Volfla = a*Volfla(-4)b*Edisneyd*Fareflae*Incomef*Eweatherg

3. Volfla = a*Volfla(-4)b*Edisneyd*Fareflae*Incomef

4. Volfla = Volfla(-4)b*Edisneyd*Fareflae*Incomef

5. Volfla = Volfla(-4)b*Fareflae*Incomef

6. Volfla = a*Volfla(-4)b*Edisneyd*Incomef*Eweatherg

7. Volfla = a*Volfla(-4)b*Edisneyd*Incomef

8. Volfla = Volfla(-4)b*Edisneyd*Incomef

9. Volfla = a*Edisneyd*Fareflae*Eweatherg

10. Volfla = a + d*Disney + e*Farefla + f*Income + g*Weather

11. Volfla = a + b*Volfla(-4) + d*Disney + e*Farefla + f*Income + g*Weathel

12. Volfla = a + d*Disney + e*Farefla + f*Income + h*Winter

13. Volfla = d*Disney + e*Farefla + f*Income + h*Winter

14. Volfla = a + b*Bolfla(-4) + d*Disney + e*Farefla + f*Income

15. Volfla = b*Volfla(-4) + d*Disney + e*Farfla + f*Income

Orlando

1. Volorl = a + b*Volorl(-4) + d*Disney + e*Fareorl + f*Income + g*Weather

2. Volorl = a + d*Disney + e*Fareorl + f*Income + g*Weather

3. Volorl = a + b*Volorl(-4) + d*Disney + e*Fareorl + f*Income

4. Volorl = a + b*Volorl(-4) + d*Disney + f*Income

5. Volorl = a + d*Disney + f*Fareorl

6. Volorl = a + d*Disney + e*Fareorl + f*Income + h*Winter

7. Volorl = d*Disney + e*Fareorl + f*Income + h*Winter

8. Volorl = a + d*Disney + f*Income
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Appendix D

Description of TUBSIM

The input for this TUBSIM model is in the form of a namelist*.

Required input consists of the reject criteria (mean and standard

deviation for each market segment and each level of service charac-

teristics), the level of service values (mean and standard deviation

for each market segment, each level of service characteristic, and

each mode), the values of the parameters of the utility function

(mean and standard deviation for each market segment and each level

of service characteristic), the number of passengers to consider in

the simulation, the auto availability of the lower income groups

(upper income groups assumed to have complete auto availability),

and the fraction of the total market that each segment makes up.

The reject criteria, level of service characteristics, and auto

availability are determined from market surveys. The fraction of the

market for each segment is determined from an exogenous model or

other source. The parameters of the utility function are determined

by logit models. The logit models' output includes the estimated

value of the parameters, the standard errors of the estimates, the

t-statistics, and a pseudo-R-squared. The number of passengers

is increased until stable results are obtained. One should start

with approximately one thousand passengers.

The output consists of the absolute number and the percentage

of each market segment that each mode captures. An aggregate modal

split is also calculated. The 'no mode' alternative shows how many

passengers rejected all modes. The high rejection rate (5-6%) in

these tests are due to the small number of market segments and

minor statistical problems which can easily be corrected when the

*If unfamiliar with the namelist input, one should consult an
IBM Fortran manual.
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technique is applied to serious forecasting.

TUBSIM Program Listing

SUBROUTINE SEG(NIX)

COMMON/TRAVEL/SHARE

DIMENSION SHARE (6)

C SHARE SPECIFIES WHAT FRACTION OF THE TOTAL MARKET

C EACH MARKET SHARE MAKES UP

C ***********************************************

C 1 SINGLE-DAY BUSINESS TRIP

C 2 MULTI-DAY BUSINESS TRIP

C 3 SINGLE-DAY PERSONAL TRIP (>$10,000)

C 4 SINGLE-DAY PERSONAL TRIP (4$10,000)

C 5 MULTI-DAY PERSONAL TRIP (>$10, 000)

C 6 MULTI-DAY PERSONAL TRIP (($10,000)

C ***********************************************

CALL RANDU(IXIYRAND)

IX=IY

SUM = SHARE(l)

IF (RAND.GT.SUM) GO TO 10

N=1

RETURN

10 SUM = SUM + SHARE(2)

IF (RAND.GT.SUM) GO TO 20

N=2

RETURN

20 SUM = SUM + SHARE(3)

IF (RAND.GT.SUM) GO TO 30

N=3

RETURN
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30 SUM = SUM + SHARE(4)

IF (RAND.GT.SUM) GO TO 40

N=4

RETURN

40 SUM = SUM + SHARE(5)

IF (RAND.GT.SUM) GO TO 50

N=5

RETURN

50 N=6

RETURN

END

SUBROUTINE GENLOS(NVALUE,IX,STATS)

DIMENSION VALUE(4,4),STATS(6,4,4,2)

C VALUE CONTAINS THE VALUES FOR PAX N FOR TIMECOST

C SKED DELAY, AND CC IN THAT ORDER FOR LOS

C

C STATS PARAMETERS=SEGMENT,MODE,LOS MEAN OR SIGMA

DO 10 i=1,4

DO 10 J=1,4

CALL GAUSS(IX,STATS(N,I,J,2),STATS(N,I,J,1),RANDOM)

10 VALUE(I,J) = AMAX1(RANDOM,0.)

RETURN

END

SUBROUTINE VALUES(N,VALUE,IX,STATS)

DIMENSION VALUE(4),STATS(6,4,2)

C STATS INCLUDES (1) MEANS and (2) SIGMA

C FOR EACH GROUP AND REJECT CRITERIA OR DISUT

DO 10 I=1,4

CALL GAUSS(IX, STATS(N,1,2), STATS(N, I,l),RANDOM)

10 VALUE(I) = AMAX1(RANDOM,0.)

RETURN

END
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.lil'--

C TUBSIM

REAL IMPEDE, LOS, LOSN

INTEGER PAX

COMMON/TRAVEL/SHARE

C CODE FOR IREJEK & PAX l=AIR,2=BUS,3=AUTO,4=RAIL,5=NONE

DIMENSION REJECT(6,4,2),LOS(6,4,4,2),DISUT(6.4.2),IREJEK(4),

1LOSN(4,4),DISUT(4),REJEKN(4),PAX(7,5),SHARE(6)

NAMELIST/TUBSIM/REJECT,LOS,DISUT,NPAX,AUTO,SHARE

C AUTO IS THE FRACTION OF AUTO AVAIL FOR SEG 4 & 6; FOR

C OTHER GROUPS, 100% AUTO AVAILABILITY IS ASSUMED

READ (5, TUBSIM)

WRITE (6, TUBSIM)

IX = 1

DO 10 I=l,7

DO 10 J=1,5

PAX(I,J) = 0

10 CONTINUE

110 FORMAT(2X,I4,2X,I4,2X,I4,2X,I4,2X,I4)

120 FORMAT(//'MODAL SPLIT (ABSOLUTE) FOR SEGMENT',13)

130 FORMAT('MODAL SPLIT (PERCENT) FOR SEGMENT',13)

131 FORMAT('l AIR BUS AUTO RAIL NO MODE')

DO 999 II=1,NPAX

DO 20 I=1,4

20 IREJEK(I) = 0

CALL SEG(N,IX)

IF (N .NE. 4 .AND. N .NE. 6) GO TO 30

CALL RANDU (IX, IY, RAND)

IX = IY

IF (AUTO .LT. RAND) IREJECK(3) = 1
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30 CONTINUE

CALL GENLOS(NLOSN,IX,LOS,BAND)

CALL VALUES(N,DISUTN, IX,DISUT,BAND)

CALL VALUES(N,REJEKN,IX,REJECT,BAND)

DO 160 L=1,4

160 LOSN(L,4) = AMIN1(LOSN(L,4),5.)

DO 40 I=1,4

C ABOVE CHOOSES MODE

DO 50 J=1,4

C ABOVE CHOOSES PARAMETER

IF (LOSN(I,J) .LT. REJEKN(J))GO TO 50

IREJEK(I) = 1

GO TO 40

50 CONTINUE

40 CONTINUE

MODE = 5

BEST = 1.E60

DO 60 I=1,4

C ABOVE CHOOSES MODE

IF (IREJEK(I) .EQ. 1) GO TO 60

IMPEDE = 0.

DO 70 J=1,4

70 IMPEDE = IMPEDF + DISUTN(J) * LOSN(I,J)

IF (IMPEDE .GT. BEST) GO TO 60

BEST = IMPEDE

MODE = I

60 CONTINUE

PAX(N,MODE) + 1

999 CONTINUE

DO 90 1=1,5

DO 90 J=1,6
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90 PAX(7,1) = PAX(7,1) + PAX(J,I)

WRITE(6, 131)

DO 80 I=1,7'

WRITE (6,120)1

WRITE (6, 110) (PAX (I, J) , J=1, 5)

IDUM = PAX(I,l)

DO 140 J=2,5

140 IDUM = IDUM + PAX (I, J)

DO 150 J=l,15

150 PAX(I,J) = (100. * FLOAT(PAX(I, J))/FLOAT(IDUM) + .5)

WRITE (6, 130)I

WRITE (6, 110) (PAX (I, J) , J=l, 5)

80 CONTINUE

STOP

END
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