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ABSTRACT

The airline industry in recent years has suffered from the adverse
effects of top level planning decisions based upon inaccurate demand
forecasts. The air carriers have recognized the immediate need to
develop their forecasting abilities and have applied considerable talent-
to this area. However, their forecasting methodologies still are far
below the level of sophistication of their other planning tools. The
purpose of this thesis is to develop a set of demand models which are
sufficiently sensitive to measure the effects upon demand of policy
decisions with respect to such variables as fare and technological and
quality of service factors.

A brief overview of transportation demand theory and a survey of
recently published research in air passenger demand modeling are presented.
Following these is a discussion of the economic nature of domestic air
transportation passenger service indicating the demand and service
attributes and how they interact in equilibrium. Based upon this
background information a multi-equation econometric model is developed.
The model is calibrated over subsets of a base of historical data from
180 markets over a six year time frame. The subsets are cross
classifications of markets with respect to length of haul and market size.
Recently developed techniques in model sensitivity analysis are applied
to ensure statistical robustness, and principal components regression is
employed to combat the problem of multicollinearity. Numerical examples
of applications of the model are provided.

The results indicate that the model performs very well in the
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analysis of long and medium haul markets. It is particularly effective
in the higher density markets. The model is not equipped to account for
the impacts upon air transportation passenger demand of competing modes,
and therefore does not perform well in the analysis of short haul
(less than 400 miles) markets.

Thesis Supervisor: Nawal K. Taneja

Title: Associate Professor of Aeronautics and Astronautics
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I. Introduction

The process of forecasting the demand for air transportation services

has in recent years become an extremely complex operation. Since the late

sixties, when the United States domestic air carriers suffered through a

grave financial crisis, industry analysts have recognized the sensitivity

of the fiscal strength of the airlines and aircraft manufacturers to their

planning process, which is based upon travel demand forecasts. Furthermore,

the analysts have realized that traditional forecasting methods such as

trend extrapolation are inadequate due to the impact upon travel demand of

recent changes within the economic and operating environment such as high

inflation rates, escalating fuel and labor costs, and uncertainties with

regard to future technology and regulatory conditions.

The past performance record of air traffic demand forecasters has been

unimpressive. Forecasting models based upon methodologies with a low level

of sophistication have not, as mentioned above, captured the impacts of

important demand and/or supply determinants. Models based upon more

sophisticated methodologies, such as advanced econometric techniques, have

generally been limited by either insufficient understanding of the total

air transportation system or by lack of relevant data.

In his introductory remarks in a talk entitled, "Air Transportation --

Directions for Future Research" presented at a workshop on air

transportation demand and systems analysis in June 1975, George Avram of

Pratt and Whitney Aircraft cited the findings of a survey recently conducted

by Brushkin Associates. The findings indicated that people gave a very



favorable rating to the forecasting accuracy of sportswriters, sports

announcers, and weathermen. At the opposite end of the spectrum, those

forecasters who received the least favorable ratings included stock

brokers, astrologers, and economists. Mr. Avram's reaction to this was

that "since economics is the cornerstone of our understanding of the

present and the future...we (sic) got a lot of work to do!"'

Although this dubious honor was directed at economists in general,

Mr. Avram was singling out forecasters of the levels of future activity in

the air transportation industry. His remarks are indicative of a general

dissatisfaction of airline companies, aircraft manufacturers, airport

authorities, and regulatory agencies with the accuracy of the forecasters'

predictions.

1.1 The Role of Demand Forecasting in the Air Transportation Industry

Two fundamental questions arise when considering the role of demand

forecasting in the air transportation industry:

(1) Is it necessary to forecast air traffic demand, and

(2) What is the importance and role of the forecasting process?

This section will address these questions from the perspective of three

different components of the commercial aviation system: the airlines,

the airport authorities, and the equipment manufacturers.

1 "Proceedings of the Workshop: Air Transportation Demand and Systems
Analysis" (Cambridge: M.I.T. Flight Transportation Laboratory Report R75-8,
August, 1975), pp. 452-456.



1.1.1 Demand Forecasting and the Airlines

The basic function of demand forecasts to the management of the

airline companies is to provide input to the planning processes. The

adverse effects of planning decisions made by airline companies based on

inaccurate forecasts can be clearly illustrated by examining the plight of

the industry during the late 1960's and the early part of the 1970's.

Throughout the early and middle sixties, aggregate domestic traffic had

been growing exponentially, at a fairly constant rate of between ten and

fifteen percent per year. As the sixties progressed, it became necessary

for the airlines to continually increase frequency of service to satisfy

the growing demand and to maintain reasonable load factors. This expansion

of service began to cause serious delays at major airports, resulting in

considerable inconvenience to the passengers and expense to the carriers.

Assuming that the levels of passenger demand would continue to grow at

the 1960's rate, the airlines decided to introduce wide-body aircraft with

two to three times the seating capacity of the narrow-body aircraft in use

at that time. The carriers could then greatly reduce frequency while

maintaining reasonable load factors, thereby satisfying consumer demand,

relieving congestion, and reducing per-passenger cost.2

These planning decisions would have provided fruitful results, had the

demand forecasts been accurate. What in fact did occur was a sharp

decline in passenger growth in the late sixties and beyond, and the

airlines were producing a lower level of service (to be formally defined

A more detailed discussion of supply factors can be found in Chapter III.



in Chapter IV), load factors declined, and costs soared. This alarming

situation caused the carriers to recognize the importance of accurate

forecasting and the need for improved forecasting methodologies. This

condition is aptly characterized by Harry G. Lehr, Director of Regulatory

Affairs of United Airlines:

"We know from hard experience the difficulty airlines- have
had with [forecasting] and considerable talent has been applied
to this problem. Yet, I would characterize the development
of our forecasting ability as having reached a level that can
only be referred to as Organized Soothsaying. The current
economic conditions of the industry and the perishability
of our product.. .dictate a need for a forecasting methodology
that is substantially closer to the level of development of
our other planning tools." 3

1.1.2 Demand Forecasting and the Airport Authorities

The need for improved forecasting of air transportation is equally as

great for airport authorities as for the carriers. In recent years

sophisticated models, based upon operations research and simulation

techniques, have been developed to measure airport runway capacity and

hence the airport's ability to control delays and delay costs4 and to

measure passenger flow'through terminals.5  However, the ability of

"Proceedings of the Workshop", p. 160.

For example, see Gerd Hengsbach and Amedeo R. Odoni, "Time Dependent
Estimates of Delays and Delay Costs at Major Airports (Cambridge:M.I.T.
Flight Transportation Laboratory Report R75-4, January, 1975).

For example, see Terry P. Blumer, Robert W. Simpson, and John Wiley, "A
Computer Simulation of Tampa International Airport's Landside Terminal
Shuttles" (Cambridge:M.I.T. FTL Report R-76-5, April, 1976).



these models to evaluate future airport design is only as good as the input

data, such as expected number of aircraft movements and passenger

enplanements, provided by forecasting models.

George P. Howard, Chief of Aviation Economics of the Port Authority of

New York and New Jersey, emphasizes this need for good input data:

"If one considers that Port Authority investment in the three
metropolitan airports to date is some one billion dollars and
that airlinesand other tenants have invested very significant
amounts of their own money in these facilities, there is no
need to question the desirability, indeed the necessity, of
market forecasts which project, as accurately as possible,
future trends in the air transportation market in the New York/
New Jersey area." 6

1.1.3 Demand Forecasting and the Equipment Manufacturers

Forecasts of future air traffic is also essential to the manufacturers

of aircraft and aircraft engines. The need is particular great in this

case not only for forecasts of aggregate traffic (in system revenue

passenger miles, for instance), but for forecasts by density and length of

haul of the various markets, since design parameters of an individual

aircraft type (and its engines) are based upon its desired range and

seating capacity. John D. Karraker of General Electric elaborates:

6 George P. Howard and Johannes G. Augustinus, "Market Research and
Forecasting for the Airport Market", in Airport Economic Planning, ed,
George P. Howard(Cambridge:M.I.T. Press, 1974), p. 109.



"The nature of our product, the jet engine, demands long
range planning. It costs in the neighborhood of half a
billion dollars and takes from 5 to 10 years to develop a
new jet engine from the concept stage to commercial service.
As you can well appreciate, an error in determining the
potential market for a given engine can have very grave
consequences in our business. Obviously, the minimizing
or avoidance of such costly errors is a necessity. For
this reason, forecasting is recognized in General Electric
as one of the major elements of.our business." 7

1.2 The Need for Policy Sensitive Forecasting Models

The above arguments all indicate a strong need for models that

forecast levels of traffic, whether it be over the entire system or subsets

of the system, as in the case of the airlines; or into, out of, and through,

particular cities, as in the case of the airport authorities; or over sets

of market types, as in the case of the manufacturers. Some of the more

recently developed models are quite capable of predicting reasonable

estimates of traffic.8 However, as will be argued in Chapter II, none of

the current models is sufficiently policy-sensitive to determine within a

given market the impact of such economic alterations as route awards, fare

changes, modifications in quality of service, and acquisition of new

equipment. So, while traffic can be forecasted based upon exogenous

factors assuming that the variables under the control of the carriers and

regulators remain basically stable, no conditions have been introduced into

existing models to demonstrate how the carriers and regulators can them-

selves influence traffic levels within the individual markets.

"Proceedings of the Workshop", p. 445.
8 For example, see "Aviation Forecasts, Fiscal Years 1976-1987" by the
Federal Aviation Administration, summarized in Chapter II.



An example of where a policy-sensitive market demand model would be

useful is in conjunction with fleet assignment optimization models.

Several such models have been developed by equipment manufacturers and by

academic institutions. One example is FA-4, a model developed in the

Flight Transportation Laboratory at M.I.T.9  FA-4 is a very sophisticated

linear programming model which allocates a mixed fleet of aircraft over a

route network so as to maximize the difference between total revenue and

the sum of direct and indirect operating costs. The optimization is

constrained by a number of economic factors including, among others,

prescribed load factor conditions, fleet availability, minimum number of

departures in the various markets, and maximum number of departures from

the various stations.

While FA-4 is very realistic in its modeling of the attributes of an

airline's fleet allocation problem, it is limited by the fact that it

requires a set of rather ad hoc piecewise linear demand vs. frequency

curves as input. If a demand model existed which adequately estimated the

response in passenger traffic as a function of level of service ( as well

as other factors such as fare and regional demographics), more confidence

could be placed in the output of this otherwise-acceptable fleet

assignment model.

9 Swan, William, "The Complete FA-4 Memo" (Cambridge: M.I.T. FTL Technical
Memorandum 72-10, August, 1972).



1.3 Purpose and Outline of This Thesis

The purpose of this thesis is to develop a set of demand models whose

parameters are a function of length of haul and demographic size of the

markets. These models will be sufficiently policy sensitive so as to

forecast the impacts upon market demand of changes in such factors as quality

of service, competition, fares, equipment, and regional demography.

There are basically four reasons why these models will constitute an

improvement over existing models. They are as follows:

(1) The models will be multi-equation in structure. This advanced

specification was chosen to eliminate the coefficient bias present in

single-equation models, caused by simultaneity between supply and demand

variables.

(2) The variables will be more complete by definition. Many of the

proxies used to calibrate existing models have been too simplistic in

definition and do not fully measure the levels of important demand and

service-related attributes.

(3) The experimental design will be more complete. This will assure

not only a larger sample size, but also a more representative subset of

U.S. domestic markets with respect to length of haul and to socio-economic

factors.

(4) Advanced techniques will be employed to assure statistical

robustness and high precision of coefficient estimates.

The various problems with existing models that were mentioned in this



introductory chapter will be elaborated upon in Chapter II, which reviews

some published studies in air transportation demand analysis. Preceding

this review will be an overview of general transportation demand theory.

The discussion in Chapter II will focus on how the air transportation

models have been developed as various aggregations of the general theory

and how the models which will be developed later in this thesis fit into

the aggregation process.

Based upon the general economic theory of transportation demand, and

upon the issues raised in the development of the models surveyed in

Chapter II, an economic theory of domestic air transportation service will

be presented in Chapter III. This discussion is essential for providing

a detailed explanation of errors of omission, for the models surveyed in

Chapter II, of important supply and demand related attributes. Further-

more, the contents of Chapter III provide the necessary coverage of issues

that will, and will not, be important in the development of the resulting

models in this research. The end product of Chapter III is a general

specification of the models to be calibrated.

Chapter IV takes the general model developed in Chapter III and more

precisely identifies the specification. The complete definitions of the

variables are presented in Chapter IV, and numerical examples of the

computation of the more complex proxies are provided. The sampling

procedure is also detailed in Chapter IV.

Chapter V contains the results of the empirical calibration of the

models specified in Chapter IV. Special attention is given to the

assurance of proper pooling and to statistical robustness. The end
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product of Chapter V is a structural demand analysis equation for each

stratification of markets, separate demand equations are produced for

forecasting and analytical (policy sensitivity) purposes.

Chapter VI applies the models calibrated in Chapter V to measure the

impact upon demand within given markets due to changes in future

technologies and fare structures. Chapter VI also outlines how the models

may be applied for aqcregate demand forecastin. Chapter VII contains the

conclusions of this research and recommendations for future research.



II. Overview of Transportation Demand Theory

and Domestic Air Transportation Economic Models

The introductory chapter described the motivation for economic models

that forecast the imDact upon air passenger demand within domestic markets

of policy changes within the industry. Furthermore, it was mentioned

therein that the performance of existing models, particularly in the sense

of policy analysis, has generally been quite disappointing. In this

chapter, an overview of the economic theory of travel demand, particularly

with respect to the air mode, will be presented. The development of five

existing models based upon this theory will be studied, and their strengths

and weaknesses with respect to their reliability for forecasting and

analysis will be identified.

The main variant in the structure of transportation demand models is

their level of aggregation. A totally disaggregate model would specify

the consumption optimization problem for each consumer (or group of

equivalent consumers) in the population. The decision of how many air

trips from each consumer's origin to a specific destination in a given

time period would be a function of not only the characteristics and prices

of these trips, but also of the characteristics and prices of all other

transportation services available to this consumer. These other services

include trips to all other destinations and to the same destination by

alternative modes. Summing over all consumers would yield estimates of

total demand in all markets and by all modes,

Since the volume of data required to calibrate such a model renders



total disaggregation intractable, researchers are forced to combine

some or all factors. Some models of air transportation demand do not

consider the effect of competing modes and/or destinations. Other models

do not recognize distinct groups of consumers, such as by income levels,

and instead focus on aggregate regional or national economic variables.

Another level of aggregation is by markets whereby a model would not

measure demand from point to point, but over a large mass of origin-

destination pairs such as the Northeast Corridor. Total aqgregation

combines all of these factors and qenerally forecasts a sinqle variable

such as revenue passenger miles for the entire domestic system.

2.1 Total Disaggregation

Lancaster, in his recent theory of consumer demand,1 asserts that

individual consumers select goods and services based upon the

"characteristics" of these products, where the characteristics are "those

objective properties of things that are relevant to choice by people."2

For example, the scheduled flight time of an aircraft departure is

certainly a characteristic of this product, whereas the color of the

aircraft is a property that is not likely to be a characteristic.

The primary difference between Lancaster's demand theory and

traditional consumer demand theory is that Lancaster's theory states that

1 Kelvin Lancaster, Consumer Demand: A New Approach (New York: Columbia
University Press, 1971).

2lbid., p. 6.



a consumer will maximize a utility function which is dependent upon

characteristics, rather than upon the goods themselves. Assuming that

the characteristics of various products are indeed objective and

quantifiable and that their levels are linearly related to the levels of

the product, the following relationship holds:

z = Bx (2.1)

where

z = an m by 1 vector of characteristics

x = an n by 1 vector of products

and B = an m by n matrix of coefficients relating the products to the

characteristics called the "consumption technology matrix".

An important point is that the consumption technology matrix, B, is

invariant among consumers. A given product is viewed by each consumer as

bearing the same levels of characteristics; however, consumers will react

differently to these characteristics. Two reasonable people would

assumedly not argue over size, ride quality, handling, performance, etc.,

of different types of automobiles. However, they may purchase different

autos because of their relative desires and preferences for these various

characteristics.

Given that each consumer is constrained in consumption by his budget,

the following mathematical program is formulated:

Max U = U(z)

subject to z = Bx (2.2)



Tx >k

where

p = an n by 1 vector of prices of products

and k = the consumer's income.

Since the consumption technology matrix, B, and the price vector,

p, are assumed identical for all consumers, and the utility function, U(z),

and the budget, k, will vary among consumers, levels of demand for various

products can change due to two distinct classes of effects. The

"efficiency effect" is the result of a change in product technology, b

(the column of B referring to project j), or price, pj, and is perceived

by all consumers. The "demand effect" is the result of changes in an

individual's needs and preferences for various characteristics, manifested

in U(z), or changes in an individual's income, k. The demand effect is

obviously an individual consumer phenomenon.

Quandt points out that "...travel is viewed as the result of

individuals' rational decision making in an economic context." 3  Since

this point is very difficult to argue, it appears as though the analysis

of travel demand by the consideration of the maximization of individuals'

utility functions is a sensible approach. However, if one were to exploit

the full power of the above theory, the researcher is forced to develop a

set of demand models that are stratified by many factors. The parameters

of the model would vary by income group, as it has been shown that the

3 Richard E. Quandt, The Demand for Travel: Theory and Measurement
(Lexington, Mass.: Heath Lexington Books, 1970), p. 1.



amount of travel and the modal split are related to personal income.4

Furthermore, the utility functions will vary by demographic groups. For

example, an individual's occupation may affect his utility for travel

related characteristics, distinct from the income effect.5

Lancaster develops the notion of "natural" or "intrinsic" groups of

products, based upon the structure of the consumption technology matrix.6

An intrinsic group is a subset of the available products that relate to

a subset of characteristics, such that no products outside of this subset

possess positive levels of any of the related characteristics. Further-

more, no product in the subset possesses positive levels of any

characteristics not in the related characteristic subset. If indeed an

intrinsic group does exist, the consumption technology matrix can be

written as follows:

B = [ (2.3)

where B1 is the subtechnology of the intrinsic group and B2 is the

subtechnology of the remainder of the products in the market.

All of the transportation demand models that were surveyed prior to

this research assume that transportation services comprise an intrinsic

4 Philip K. Verleger, Jr., "A Point-to-Point Model of the Demand for Air
Transportation" (Ph.D. dissertation, M.IT., 1971), p. 79.

Quandt, op. cit., p. 12.

6 Lancaster, op. cit., pp. 126-128.



group. Since efficienty substitution effects are the attainment of a new

characteristics vector due to a change in the mix of products purchased

caused by a shift in the consumption technology matrix or price vector,

this assumption implies that efficiency substitutions cannot occur between

transportation services and other products. Consequently, prices and

characteristics of non-transportation products are generally not included

in transportation demand models.

The individual's optimization problem for transportation services can

now be formulated as a subprogram of (2.2) as follows:

Max Ut = Ut(zt

subject to zt = Bt xt (2.4)

T <~
p tx t- kt

xt 0
where

Ut= the utility function of characteristics related to

transportation service characteristics

z = the set of transportation service characteristics

Bt = the transportation technology matrix

xt the set of available transportation services

Pt= the price vector of transportation services

kt = the amount of the individual's income that can be afforded for

transportation services



A totally disaggregated demand model must then consider the following

elements:

(1) sensitivity to different consumer groups, particularly with

respect to income levels;

(2) sensitivity to price and characteristics of competing modes;

(3) sensitivity to price and characteristics of competing

destinations.

Since the inclusion of all of the above elements is obviously

intractable, researchers are forced to aggregate some or all of them.

The remainder of this chapter will provide a survey of models indicating

how these aggregations have been performed.

2.2 Aggregation by Destinations

Reuben Gronau, in his Ph.D. dissertation at Columbia University which

was later published as a book, developed a model sensitive to income

groups and modal split, but did not explicitly account for consumer choice

of alternate destinations. Because of data restrictions, this model was

calibrated for trips in and out of New York City over the 38 most heavily

traveled New York markets. Since this is a cluster sample, there would

likely be considerable bias if one were to attempt to apply these results

to the entire U.S. domestic system.

Reuben Gronau, The Value of Time in Passenger Transportation: The
Demand for Air Travel, National Bureau of Economic Research Occasional
Paper 109 (New York: Columbia University Press, 19701.



Gronau altered Lancaster's theoretical 'model (2.4) by defininq the

utility function over an "activity" space, rather than over characteristic

space. The activities, z., are packaged combinations of market products, xi,

and time, T.
1.

z = fi(xi, Ti) (2.5)

One type of activity, he states as an example, is a "visit" which is a combi-

nation of transportation, hotel and restaurant services, travel time, and

time at the destination.8

A second modification to Lancaster's theory is that Gronau considers

time as a constraint analogous to the income constraint in (2.4). One of the

objectives of this research was to evaluate a monetary value of time for

various income groups, and, as will be shown, the inclusion of the set of

time constraints facilitates this in theory.

The consumer's optimization problem for travel activities is then as

follows:

Max U = U(z., zn2 ... , zn)
n

subject to E P. x. = Y (2.6)
i=l1

n
Z T. = T0
i=1

where pi = price of market product x i
Y = the consumer's monetary travel budget

T, = time investment for product x.

8 Ibid., p. 7.



T 0  the consumer's travel time limit 9

The Lagrangian of (2.6) can be written as follows:

L = U(z1, Z2, ... , Zn) + X(Y - EP x ) + i(T0  - ET ) (2.7)

The first order conditions for optimization of (2.7) are:

3x. 3T.
a - XP -31y (2.8)

1 3z 1  1 zi a

Gronau then defines K = y/X as the shadow price of time.

Assuming that there are four modes of travel, A, B, C, and D, between

two cities, that the only two attributes of modal choice for a consumer

deciding to travel between the cities are price and travel time, and that

none of these modes is dominated by another in terms of these attributes,

the consumer will choose the appropriate mode based upon his value of K.

This is depicted in Figure 2.1, where points A, B, C, and D are the

location of the modal attributes in price/travel time space. The line

ABCD is the convex envelope of these four points. A generic consumer will

select that mode represented by the extreme point of the convex envelope

9 Since, as previously noted, transportation services are generally
considered as constituting an "intrinsic group", all products,
characteristics, and activities will hereafter be assumed as being related
only to transportation services. For simplicity the "t" subscripts
included in (2.4) will be suppressed.
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Figure 2.1 Gronau's Moda Choice Representation for a Given City Pair

10 Ibid., p. 17.
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which is tangential to a line with- slope -K. In the example shown in

Figure 2.1, this would be mode A.

More formally, if one assumes that the traveling process has no

utility in itself, and hence the various modes may be considered as

different combinations of the price and time attributes, then the "marginal

rate of substitution", K* ., between modes i and j can be defined as the

absolute value of the slope of the line segment between i and j.

P. - P.
K*.. = T (2.9)

13T - T.

Mode i will be preferred to mode j if K* > K.

Since prices and travel times between cities for any given mode are

generally linear functions of intercity distance, Gronau concludes that

the general modal choice decision is a function of K and of distance.

For example, based upon numerical estimates of trip times and fares, he

concludes that for a 150 mile trip, "a passenger prefers to use air rather

than rail transportation....only if his price of time exceeds $11.80 per

hour, he prefers air to bus if his price of time exceeds $7.10 per hour,

and he prefers rail to bus if his price of time exceeds $5.30 per hour.

Bus transportation is, therefore, used for 150 mile trips only for

individuals whose price of time is less than $5.30 per hour."1

The specifications of Gronau's demand model are as follows:

Ibid., p. 36.



x = r 1jU Y 2j eu (.2.10)

where

x = number of trips to destination j per family of income group i
Tr.. = generalized trip cost = P. + K.T.

Y = average income for income group i

ui = disturbance term

Bj2 ,lj, and a2j are regression coefficients.

Assuming that the price of time is proportional to hourly wages, K = kW.,

and taking logs (2.10) becomes:

log x = log B. + 81. log (P. + kW1Tj) + a23 log i + u.

(2.11)
-Finally, the assumption is made that alj and a2j are independent of

the destinations and adding an "attractiveness" factor for each

destination j, G., the model (2.11) becomes

log xg = ao + Ig log(Pg + kW) T + S2log Yi + elog G

+ uij (2.12)

The income and traffic data used to calibrate equation (2.12) was

extracted from onboard passenger surveys conducted by the New York Port

Authority. These surveys provide demographic and travel frequency data

on a sample of local New York passengers (connecting passengers were

excluded) conducted from April 1963 through May 1964. Travel time was

taken to be the fastest scheduled flight on each route plus average

driving time from the center of New York to the airports. The trip price



was standard coach fare plus limousine fare from downtown to the airport.

The level of attractiveness variable, G, is a function of the

population of the destination city's SMSA and the number of phone calls

made between the two cities. The latter factor presumably was selected as

a result of previous research by Brown and Watkins.12 While the number of

phone calls may be an adequate attractiveness variable for the purpose of

Gronau's research, to measure monetary value of time, it is doubtful that

this variable would be useful in a forecasting model. The number of phone

calls are probably no easier to forecast than the response variable, air

passenger trips.

The estimation procedure that Gronau used was a nonlinear search

technique in which the variable k was varied from zero to two -- by

increments of 0.25. While the coefficients of all the variables had the

correct sign and were highly significant, and the R2 values were

reasonable (all generally between 0.8 and 0.9), the effect upon the fit

of varying k was nearly negligible, usually only changing the third

decimal place of R2.

A major flaw in Gronau's specification is the definition of travel

time (fastest scheduled flight plus driving time from center city to

airport). One limiting assumption is that a person desiring to fly will

be able to board the "fastest" flight at his convenience; this completely

12 Samuel L. Brown and Wayne S. Watkins, "The Demand for Air Travel: A
Regression Study of Time Series and Cross Sectional Data in the US. Domestic
Market, " in Airport Economic Planning, ed. George P. Howard (Cambridge:
M.I.T. Press, 1974), p. 99.



ignores the existence of schedule delays. Secondly, the inclusion of

driving time from the center city to the airport is appropriate only if

all travelers originate in the center city. Finally, the travel time is

likely to be a function of route density. This creates a simultaneity

problem which requires a multiple equation system to assure unbiasedness

in the estimates.

2.3 Aggregation by Incomes

Terry Blumer created a city pair air transportation demand model for

short haul (less than 400 miles) markets in his master's thesis from
13M.I.T. His "base model", a common gravity model which aggregates by

income groups and does not consider the effect of competing modes and/or

destinations, is shown below:

M.M. bI b2
T.. j I.. J (2.13)b0  Dii ija

where

T.. = air traffic between cities i and j
13

Mi = effective buying income of city i

Iija = disutility of air travel, "air impedance", between i and j
D.. = distance from city i to city j

The term "gravity model" stems from the comparability between quantity of

travel between two cities and gravitational attraction between two

13
1 Terry P. Blumer, "A Short Haul Passenger Demand Model for Air

Transportation" (S.M. Thesis, M.I.T., 1976).



physical bodies. Both are positively related to the mass of units and

negatively related to the distance between them.

A major improvement of this model over conventional gravity models

is the explicit inclusion of a level of service variable, Iija. This

variable is a prototype of LOS, the level of service variable developed

by Eriksen for the research of this dissertation, and explained in detail

in Section 4.2. The impedance variable is a generalized trip time which

considers not only the number of daily available flights, but also time

of day of departure, number of intermediate stops and/or connections,

and speed of aircraft.

Blumer then expanded his base model by developing a "mode sensitive"

model consistent with the concept developed in Section 2.1 that air travel

will be sensitive to the characteristics of competing modes. He defines

Ti, the "total transportation impedance", in a given city pair, as

follows:

-2 2 + 2 j + 2 1 (2.14)
2 i j 1 i j a ij u ij r

where I and I.. are impedances for auto and rail, respectively,

The mode sensitive model is then defined as:

T.. = b i ) . . f . (2,15)
13 0 D 13 ) fij

where f = share of travelers using the air mode.



The f variable was described several different ways each of which was

some function of the relative impedances of air and surface modes.

The next step was the development of a "destination sensitive" model

based upon the assertion that "...[the presence of alternate destinations

in close proximity to market i to j] has the effect of decreasing the
number of trips made to j and may possibly increase the total number of

trips generated by city i due to (the alternate destination's] own unique

attractions."14  This again is consistent with the theory developed in

Section 2.1, which implies that air travel will be sensitive to

characteristics of trips to competing destinations.

The destination sensitive model is defined as follows:

T. = b0H (M, M , S , S ) bI b 2 F 3  (2.16)

where

H. = air travelers generated by the cities i and j (to all

destinations)

S = total attraction of alternate destinations for travelers from

city i

and F = fraction of total travelers generated by regions i and j that

move from i to j or from j to i.

Finally, Blumer combined the models shown in (2.13), (2.15), and

(2.16) to obtain a set of six "mode and destination sensitive" models,

14 Ibid., P. 47.



After calibrating these using various data sets he concluded, on the basis

of highest R2, that the best model was as follows:

61 62 b1  b2  b3  b4
T. = b (M. i + M. 2) I D. 0. F.. (2.17)

13 0i 1 j1a 13 13

where 61 and 62 are constants determined by nonlinear search.

The data used in the calibration of the "best" model, (2.17), was a

pooling of two years of cross sectional data. All coefficients were

highly significant and had correct signs. The R2 value was 0.90, and

an extensive set of statistical tests indicated no violation of the normal

least squares regression assumptions (consistent pooling, homoscedasticity,

normality of residuals, etc.).

Blumer addresses the fact that aggregating over income distribution

may be a somewhat limiting assumption.

"It might be said that neither population nor income truly
measures the ability of a city to generate travelers.
Population is poor because a large city would still not
produce many travelers if all residents were poor. Income
also has shortcomings in that, if used alone, it assumes
every dollar has the same propensity to generate a trip --
a [person] who is twice as rich will take twice as many
flights. Surveys taken indicate the flight generation
is not linear with income, but increases at an increasing
rate (for the income levels sampled). 15

He suggests, as a future research topic, the development of a more general

15 Ibid., p. 78.



mass variable which assumes that the function relating household income

levels to number of trips varies by mode:

R K
M. = Z N. (r) Z H. (r) (2.18)

r=1 m=l

where

r = index of income levels

R - number of predefined income levels

N (r) number of households in city i in income level r

m = index of modes

K number of modes

H. (r) average number of trips by mode m per household of income

level r

An obvious shortcoming in what otherwise is an exceptionally good

model is the simultaneity of the response variable, T , and the impedance

term, Iija' Blumer realizes and addresses this weakness again within

the rubric of future research.

"Another area to explore is a second [equation in the ] model
representing service. Obviously the number of flights depends
upon the demand and the demand depends upon the number of
flights. This two way causality suggests building a second
[equation] representing air service to be solved simultaneously
with the first [equation]. This would also eliminate the
requirement to forecast air service, since it would become
an endogenous variable." 16

16 Ibid., p. 112.



2.4 Aggregation by Modes and Destinations

in his doctoral dissertation at M.I.T., Philip Verleger constructed

a "point-to-point" model of air transportation demand.17 The purpose of

this research was not to construct a forecasting model, but rather a model

to test if demand relations vary across markets. This, in turn, would

thereby test the validity of cross-sectional and aggregate models. The

models proposed and tested by Verleger were similar in the respect that,

while they were city pair oriented, they did not consider the effects upon

air traffic demand due to the existence of competing modes and destinations,

The structure of the model that was calibrated over all routes in his

sample follows:

T = P.. X(M.M.)y (SEA 1)"' (SEA 2)a2 (SEA 3)t E (2,19)
ij1 1 j

where

T.. = air travel between cities i and j

P.. air fare between cities i and j
13

Mi = mass of city i

and SEA 1, SEA 2, SEA 3 = seasonal dummy variables.

The price variable? Pi, is an index formed by weighting the major

airline fares; first class, coach, family, And discounts, For routes in

which the fare usage data were not available, they were estimated by

taking those values for "similar" routes. "Thus the weights for Cleveland

17 Philip K, Verleger, "A Point-to-Point Model of the Demand for Air
Transportation" (Ph,D. dissertation, M.I.T., 1971).



to New York were used for Cincinnati to New York."18

A major contribution of this research was Verleger's handling of the

income distribution effects. He argues that population alone as a mass

variable (a common occurrence in gravity models) assumes that either

income distributions are constant among cities or that the proclivity of

people to travel is independent of their income. Since the former point

is known to be false and the latter has been refuted by many surveys,

Verleger chose to disaggregate the traveling populations by income.

The definition of his mass variable is as follows:

N Z YXM = Z xA e (2.20)

where

2. e index of income groups in city i

N = number of predetermined income groups

x~ weighting of group

S = regression coefficient

Y X average income of group

The estimation of the parameters of the model (2.19) required a

nonlinear regression technique, and a special algorithm was written. An

iterative procedure was devised by searching for the value of a (a. and a,

were assumed equal in a given city pair ij) that minimized the variance.

In nearly all markets (108 of 115) a positive estimate for resulted,

and in most of these markets it was statistically significant (79 of the

18 Ibid., p. 112.



108 were significant at the 95% level), In addition to this, the overall

income coefficient y was positive in all but one market (Boston-New York)

and significant in 105 markets,

The general conclusion atrived at by the author is that air travel

is "very income elastic"19 and only weakly responsive to price changes, as

the price elasticity showed no regular pattern and was negative and

significant in only 20% of the markets. The mean price elasticity was

-0.12 with a variance of 0.45. The author concluded that it is inadvisable

to interpret aggregate measures of price elasticity with any confidence.20

The author proceeds to analyze the fare effect by density. The

results show that in the more heavily travelled markets, the fare

elasticities have a tendency to be more uniformly significant, While in

the low density markets few are significant. The author suggests that the

variance of the price coefficient decreases as traffic increases, and that

in aggregate analyses a weighted least squares estimation procedure should

be used to eliminate this bias. However, it is possible that the implied

weak impact of fares is due to the omission of a level of service variable.

In dense markets the service will be greater than in the sparse markets,

and inclusion of a level of service variable may therefore strengthen the

significance of the price variable by reducing the variance of its

coefficient. In other words, the level of service variable would provide

19 Ibid., p, 186,
20 Ibid., p. 189,



an economically justifiable set of weights and then ordinary or preferably

two-stage least squares could be used to estimate the coefficients.

2.5 Aggregation by Incomes, Destinations, and Modes

A two-equation city pair economic model of air transportation service

was developed by Pat Marfisi in his Ph.D. dissertation at Brown Univer-

sity.21 The purpose of this research was to model the capacity decision

process of an airline firm within a given market when faced with

uncertainty of future demand. This study was an innovative contribution

to the research in air transportation economics, in that an attempt was

made to build a comprehensive model of the supply side that would be

compatible with the demand so that both could be solved simultaneously.

Aside from the statistical problems inherent with the simultaneity

situation with single equation models, Marfisi states the following:

"Economists argue on the basis of theory that an increase
in fare levels will increase market equilibrium capacity.
It is argued here that this is not an unambiguous
implication of economic theory but rather an empirical
question regarding the relative magnitude of certain demand
elasticities; a judgement which has never been tested by
a statistically consistent procedure. Concurrent with
the discussion suggesting a theoretical link between fare
levels and capacity, other economists are estimating
demand functions for scheduled air transportation based
on econometric models that implicity assume the absence
of any linkage between the demand and supply side of the

21 E, Pat Marfisi, "Theory and Evidence on the Behavior of Airline Firms
Facing Uncertain Demand" (Ph.D. dissertation, Brown University, 1976).



market (i.e., demand does not constrain or alter supply
behavior and vice versa." 22

Marfisi's discussion is segmented into two somewhat disjoint sections.

The first section is a quite comprehensive economic theory of the supply

side of the industry. The- second half is an empirical study of his two-

equation model. The major conclusion of the theory is that the use of a

single-equation model to estimate price elasticity implicitly assumes that

dP= 3P , where Q is demand and P is price. Marfisi's theory arrives at

the relationship where, if demand is differentiated with respect to

price, the result is ;= + . d, where C is capacity. Since it

is unclear as to what is the sign of the derivative of capacity with respect

to price, then r may well be positive. The result is that positive price

coefficients in reduced form equations are indeed consistent with economic

theory and explain the somewhat embarrassing results of some economists

(e.g., Verleger 23), who misspecify a reduced form as a structural form
system and obtain positive price elasticity estimates.

The structural form of the model used for Marfisi's empirical study

is as follows:

B1 y'l Y2 3hQ =C P Y'I p
C2,20)

B2  4 5 6 7
C =Q P W E N

22 Ibid., p, 2-17.

23 Verleger, op cit., p, 188,



where

Q = origin to destination passenger demand

C = flight frequency

P fare

Y per capita income

p population

W a average cost per flight

N number of competing firms

= measure of demand dispersion

The capacity variable is more formally defined as the number of nonstop

and one-stop scheduled flights. While the inclusion of a level of

service variable is praiseworthy, this definition is restricting. Such

important aspects as the relative number of nonstops to one-stops, whether

the one-stops are direct or connecting, the speed of the aircraft, and the

time of day scheduling, are not reflected in this measure.

The competition variable, number of competing firms (airlines), is

also a very important addition in this model, but its definition is also

somewhat crude. The variable was assumed to be the number of airlines in

a market that provide at least five percent of the capacity. By this

specification, a highly competitive market such as Chicago/Los Angeles,

which is served by four strong carriers, would be considered the equivalent

in competitive structure of a market in which one major carrier provides

eighty percent of the capacity while three other minor competitors evenly

provide the remainder.

Some very important results regarding pooling of data have emanated



from this study. Marfisi stratified the markets by purpose of trip and

length of haul and conducted a series of Chow tests to investigate the

appropriateness of aggregating markets across these strata. The

conclusions indicate that the underlying structural relationships between

market variables are substantially different. This is to be expected,

as it is generally believed that business travel is considerably less

price elastic than non-business travel. Furthermore, the structural

relationship for markets of less than 200 miles are significantly different

than that of markets greater than 200 miles. This effect is due

presumably to the presence of competing modes in the short haul markets.

The analysis showed, however, that no significant differences in the

structural relationships exist between medium and long haul markets.

2.6 Total Systemwide Aggregation

The most common approach to econometric modeling of air transportation

demand is the total systemwide aggregate model. These macroeconomic

models predict a single figure for the industry, revenue passenger miles

(RPM). While these models are generally very accurate in terms of

forecasting, they are restricting in two respects. The first limitation

is that they are inappropriate for measuring the impacts of policy

decisions (e.g., changes in fare or other regulatory factors,

implementation of new technology). The second limitation is that

knowledge of the aggregate variable RPM is of little value for the industry

planner.



Revenue passenger miles is a term used to measure overall growth of

the industry. An individual carrier in its planning process is more con-

cerned with expected growth of its own route structure which is a function

of, among other things, the cities it serves, the types of markets it

serves (business, vacation, etc.) and length of haul. Aircraft manufactur-

ers are concerned with industry growth, but primarily as a function of

length of haul. and of market density. The selections of range and seating

capacity for aircraft design are based upon this information. Airport

operators are concerned with the growth of traffic through their facilities,

which are functions of cities' abilities to generate traffic, attractive-

ness to lure traffic, and their positions within the total route structure.

Verleger creates an analogy between RPM and aggregate commodity

output.

"[RPM] has been useful for accounting purposes. It is not,
however, comparable to aggregate measures of a commodity
such as tons of wheat. In fact, an aggregate measure of
travel demand is more like a measure of gross output of a
group of commodities, such as the gross output of all
agricultural production measured in tons. Such an aggregate
would, of course, be rejected by most agricultural economists
as a meaningless measure." 24

While there are far too many of these models to exhaustively summarize

them in this chapter, the reader is referred to several listed in the

bibliography and a summary paper coauthored by this writer.25 One example
24Ibid., p. 49.
25Steven E. Eriksen and Nawal K. Taneja, "Directions for Improving Air
Transportation Demand Models", (paper presented at the Joint National
Meeting of the Operations Research Society of America and the Institute of
Management Sciences, Miami, November 1976).



is, however, summarized below.

Jonathan C. Tom developed a macroeconomic forecasting model for the

Federal Aviation Authority (FAA)26 which consists of three equations, two

of which are separately calibrated using ordinary least squares, and the

third of which is an identity. The structural form of the model is as

follows:

RPM = f (SRVC, APSU, PAT, REL, STR)

ENP = g (CMP, APSU, PAT, REL, STR) (2.21)

OPS h (RPM, LOAD, SEATS, STAGE)

where

RPM = revenue passenger miles

ENP = revenue passenger enplanements

OPS = air carrier itinerant operations (aircraft departures)

SRVC = consumer expenditures on services

CMP = number of civilians employed in the labor force

APSU = purchases of automobiles

PAT = plant, equipment, and other investment in the air

transport industry

REL = relative price of air transportation to other modes

1 if a major airline strike is in progress
STR = ot0 otherwise

26 Federal Aviation Administration, "Aviation Forecasts, Fiscal Years
1976-1987" (Washington: FAA Technical Report FAA-AVP-75-7, September 1975).



LOAD = average load factor

SEAT = average number of seats per aircraft

STAGE = average stage length

The service consumption variable was selected since air transportation

is in itself a service, and therefore it is hypothesized that this will

represent the income effect upon demand. Although in theory this is a

sound hypothesis, it is possible (since this is a totally aggregate system

and therefore not sensitive to income distribution variation between

markets, such as Blumer's and Verleger's models) that income alone would

have been sufficient. Total income is a direct causal factor related to

consumer expenditures on services which correlates with air travel demand.

Thus, little if any explanatory power would have been lost. The advantage

of having used income is that it is probably easier to predict than

service consumption, and the small loss in the explanatory power is more

than offset by the increased forecasting accuracy.

The number of civilians employed supposedly reflects that portion

of the population which would use air services. The rationale behind

this variable is that the number of air passengers is a function of the

employment figure, while the distance flown, as measured by RPM in the

first equation, is a function of total income (as measured by SVRC).

The purchase of automobiles was included to capture the impact of

competition by other modes. However, since the decision to purchase

an automobile is probably unrelated to air transportation, but more

likely to serve purposes that are not competitive with air transportation

(i.e., journey to work, shopping for necessities, visiting nearby friends



and relatives), the usefulness of this proxy is somewhat questionable.

The investment variable ostensibly is a measure of level of service.

The theory behind its inclusion is that new plant and equipment are

purchased to ultimately improve the quality of the operation. If this

is indeed the case, then it should probably be lagged.

The relative price of air transportation with respect to other modes

is defined as the ratio between a price index for standard coach air fare

and the cost of private transportation. This measures a combination of

air fare elasticity and auto price cross-elasticity, but does not separate

the two impacts. One limitation of this observation is that, if all modes

of transportation increased their prices by a fixed percentage (due, for

instance, to an overall fuel increase), the demand for travel on each mode,

including air, would decline. This impact, however, would not be

captured by the price variable in this model.

The strike variable accounts for the decrease in travel due to the

service impedance due to a major airline strike. The load factor,

available seats, and stage length variables are scaling factors to

convert revenue passenger miles into number of operations.

The first two equations are specified in linear form and calibrated

using quarterly data, starting with the first quarter of 1964 and

continuing through the third quarter of 1974. The results are as follows:

RPM = 12.32 + 0.32 SRVC - 0.06 APSU + 0.56 PAT - 0.17 REL - 4.18 STR

(17.35) (-3.94) (1.17) (-2.18) (-2.63)

R2 = 0.955 D - W = 1.791
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ENP = -75.01 + 1.64 CMP - 0.04 APSU + 1.98 PAT - 0.17 REL - 5.79 STR

(15.75) (-1.76) (3.04) (-1.62) (-2.52)

R2 = 0.944 D - W = 1.487

(figures in parentheses are "t" statistics)

In spite of the somewhat questionable theoretical merit of the

definition of some of the explanatory variables, the statistics indicate

a reasonably good fit. While the estimates of the coefficients are

perhaps difficult to interpret, the model appears to be an adequate

forecasting tool, assuming that the functional relationships are invariant

over time.

The addition of the strike variable improves the fit of the model,

but its coefficient is not particularly useful for forecasting purposes.

The only observation during the time period over which this model was

calibrated that included a major strike was the third quarter of 1966.

The coefficients estimated in this calibration indicate that the 1966

strike resulted in 4.18 billion fewer revenue passenger miles and 5.79

million enplanements than would have been expected otherwise. This is

not necessarily representative of the impact upon travel of any future

strikes which may be longer or shorter in duration and/or occur at

other times of year, when general demand patterns are quite different.

In fact, it can be shown that the definition of a dummy variable which

assumes a positive value at only one data point is statistically

equivalent to eliminating that particular data point. A dummy variable

may, however, have been useful to account for the redefinition in 1969



of systemwide RMP's to include trips between the continental United States

and Alaska or Hawaii.

2.7 Summary

Figure 2.2 is a schematic representation of the development of the

models surveyed in this chapter. A totally disaggregated model of the

demand for transportation service is depicted at the top of the figure.

Such a model would, for each market, consider the response of each income

level group of consumers, to not only changes in characteristics and price

of air service in that market, but also to changes in characteristics

and price of services in competing markets and by competing modes. Since

this analysis is obviously intractable, the researcher is forced to

aggregate some or all of these factors.

The extreme case of aggregation is the macroeconomic model at the

bottom of Figure 2.2, which is detailed in Section 2.6. In this setting

a single figure, revenue passenger miles (RPM), is generated for the

entire industry. Since this figure is of little value as a planning tool,

it is clear that forecasting models must necessarily be geared to a more

microeconomic level.

In the following chapters a theory and set of models that focus on

individual markets will be developed. Due to data limitations,

aggregation by modes, destinations, and income groups will be necessary;

therefore, this set of models fits next to Marfisi's model in Figure 2.2.

The models developed herein will be more complete than that of Marfisi,
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due to a more realistically defined set of variables and a more

representative sampling procedure. Furthermore, due to detailed

utilization of available data and a substantial sample size, the level of

sophistication will be adequate to meet the requirements set forth in

Chapter I.
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III. The Economic Nature of Domestic Air Transportation Passenger Service

Chapter II contained a summary description of a general theory of

demand and how it relates to transportation services. Also included in

Chapter II was an overview of how this theory has spawned several models

of air transportation demand. In this current chapter, a brief summary of

major economic issues pertaining to the nature of air passenger activity

within a given market is presented. A more specific theory of demand than

that discussed in the previous chapter is developed, the result of which is

a two-equation model of demand and service within an air transportation

market.

The chapter is divided into three sections, the first of which is a

general description of the product, its market place, and its consumption.

The second section is an investigation of a hypothetical "isolated market".

The third section views the market as an interacting subset of a large and

complex network structure. In progressing from the second to the third

section, the discussion will indicate why, due to peculiarities of the U.S.

domestic air passenger system, the theories drawn from classical economic

theories are inappropriate for analysis of this system.



3.1 Fundamental Economic Aspects of Air Passenger Service

3.1.1 The Air Transportation Market

The basic market for air transportation is a "region pair" and the

level of consumption in a region pair market in a given time period is

the number of "origin to destination passengers" that purchase this service.

The term "region pair" is in essence identical to the term "city pair"

commonly used in transportation systems analysis. However, the former

term is used in this study because it emphasizes the fact that a major

airport serves a surrounding area which is generally larger than the city

itself. Therefore, in the consideration of the potential density of a

market, the analyst must consider regional demographics rather than merely

those of the central urban area. An inherent difficulty confronting the

analyst is the definition of region boundaries. These boundaries may

vary for any given airport as a function of the length of haul of the

market. For example, the catchment area around the Boston airport

certainly includes Providence, Rhode Island when one considers the Boston

to Los Angeles market. However, it is less clear that the air service

from Boston to New York attracts a significant number of travelers from

Providence.

To be consistent with the above definition, the "New York-Miami

market" refers to those potential passengers originating from a point in

an area surrounding New York who would desire to travel to a destination

point in an area surrounding Miami, and vice versa. This is schematically

represented, including depiction of the access from the origin to the New



York airport, the line haul portion, and the egress from the Miami airport

to the destination, in Figure 3.1. Such references as "the Northeast to

Florida market" or the "North Atlantic market" are inconsistent with the

definition of a market, since they are actually aggregates of many

markets. 1

The origin to destination passengers in a region pair market are

defined as those travelers that originate in one of the regions and

terminate in the other region. There are a number of other travelers as

well who are not consumers of services in this market, but who appear on

board flights that do service the market. Consider the flight whose

itinerary, New York to Chicago to San Francisco, is shown in Figure 3.2,

and particularly that segment of the flight from Chicago to San Francisco.

If one were to survey the passengers on board during that particular

segment, the following eight types of passengers may be observed:

a. those who originated in Chicago (region) and are terminating in

San Francisco (region), i.e. local market consumers

b. those who originated in New York and are terminating in San

Francisco

c. those who connected through Chicago and are terminating in San

Francisco

d. those who connected through New York and are terminating in San

Francisco

e. those who originated in Chicago and are connecting through San

Francisco

Robert W. Simpson, "A Theory for Domestic Airline Economics", unpublished
lecture notes for the M.I.T. course 16.74 -- Air Transportation Economics,
Fall 1974, p. 5.
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f. those who originated in New York and are connecting through San

Francisco

g. those who connected through Chicago and are connecting through

San Francisco

h. those who connected through New York and are connecting through

San Francisco

All of the above classes of passengers are considered as "segment flow"

traffic, since they are on board during this segment. However, only those

passengers that are in the type (a) class are consumers in the local market

(origin to destination passengers).2

3.1.2 The Airline Product -- Not a Good but a Service

The service provided by the air passenger transportation industry is

a perishable product similar, in this respect, to a newspaper, a Christmas

tree, and a unit of capacity at a performance of an opera. If service

2 The number of these classifications of passengers on a particular seg-
ment grows quite rapidly with the number of segments included in a
particular itinerary. For example, on the middle leg of a three-segment
flight, one could enumerate sixteen such types. In general, it can be
shown that the number of such classes on the mth segment of an n segment
flight is 4m(n-m+l). This is a major complication that arises when one
attempts to analyze the supply of, and demand for, service in a given
market. The level of service offered in a segment may reflect not only
the origin to destination demand, but also the location of the market with
respect to the complex network of the U.S. domestic and international
route structures. This issue will be elaborated upon in Section 3.3
and in Chapter IV.



is produced and not sold by a particular point in time (in this case, the

scheduled departure time), the cost of producing this service is

essentially the same as if it had been purchased, but its salvage value to

the would-be seller (in this case, the airline) is zero. While this fact

is universally accepted, the definition of the product and whether it is a

good or a service are widely debated.

The fact that perishable products such as those mentioned above are

generally referred to as "perishable goods" and the fact that the airlines

as well as other suppliers of transportation services are frequently

considered to be in the business of selling seats (seats being physical

objects) may erroneously lead one to believe that the airlines' product is

a good. The airlines are not, however, selling the consumers any physical

object which becomes the property of the passengers (aside from incidental

amenities). The primary product of an airline is the service of the

transportation of a passenger from some point A to another point B with a

series of attributes to be discussed in Section 3.1.3. This service will

hereafter be referred to as a "trip".

Even though a passenger purchasing a trip is provided a seat on the

aircraft for his comfort, and the capacity of an aircraft departure equals

the number of such seats, this does not imply that the airlines are selling

these goods. An analogy can be made with public surface transportation.

The reason that a passenger purchases the right to board a bus, subway,

or comuter train at some location is to satisfy his desire to be

transported to another location. Whether a seat is available or he is

forced to stand, he will still be provided the same product -- the service

of being transported. While there exists a perceived product
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differentiation between a passenger fortunate enough to find an available

seat and one who was forced to stand, the basic service purchased, the

transportation from A to B, is identical.

The demand for air transportation services is a "derived demand".

A consumer generally does not purchase an airline ticket because he or she

has an absolute need to sit on an airplane as it travels to its

destination. This need is derived from the fact that the passenger has

an absolute need to be at his or her destination for business, pleasure,

and/or personal reasons, or is returning home after fulfilling such a need.

Another example of a product with a derived demand is steel, which is

purchased by automobile manufacturers in response to consumer demand for

motor vehicles. The marketability of any product with a derived demand

is obviously responsive to the absolute demand of the products to which it

is an input. In fact, this relationship can be extremely sensitive due

to the "acceleration principle" of economics.3 Just how much the

acceleration principle applies to the airline industry is uncertain, but it

will suffice to say that the industry is clearly sensitive to business

cycles and to fluctuations in the tourism industry.

Most analysts agree that the air transportation product is highly

differentiated. However, there is some debate as to the factors by which

the product is differentiated. The major differentiation in terms of

consumer response (generating origin to destination passengers) is trip

time. A trip on a piston aircraft, a trip on a subsonic jet, and a trip

Eugene F. Brigham and James L. Pappas, Managerial Economics (Hinsdale,
Illinois: The Dryden Press, 1976), pp. 118-121.



on a supersonic transport over the same route, are three clearly different

deliveries of the same service. Another trip time consideration is the

number of enroute stops and/or connections. Other differentiations which

have a negligible effect upon passenger generation but a significant effect

upon market shares in competitive markets are distribution channels (making

reservations), ground services (ticketing and baggage handling), and cabin

services (food and liquor service, entertainment, and attitude and

appearance of the cabin crew).

"Those persons who believe that the carriers scarcely dwell
on such differences [in terms of marketing cabin services]
are reminded of Delta's slogan of professionalism, PSA's
stewardesses' sex appeal, TWA's "lasagne over Los Angeles",
Western's free champagne, and American's piano bars." 4

One debatable issue is whether differences in time of day of departure

constitute product differentiation. Some analysts would argue that

ceteris paribus a trip at 5:00 p.m. and one at 2:30 a.m. are differentiated

services. Since these two trips offer the same aircraft type, trip time,

onboard amenities, etc., they are actually identical services offered at

different times. The number of passengers on the two flights may be

quite different, due to the time of day dependence of the utility functions

of potential purchasers of air transportation services, which will be

elaborated upon in Section 3.2.

Nawal K. Taneja, The Commercial Airline Industry (Lexington, MA:
Lexington Books, 1976), p. 131.
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3.1.3 ' Attributes of the Quality of Air Passenger Service

When a consumer purchases an airline ticket, he is buying the right

to be delivered the service of a "trip" from an airport in one region to
.5an airport in another region. The quality of this service is comprised

of many different attributes, some of which are major factors in generating

passenger demand, and others of which have a very small effect. These

attributes are herein categorized into five classes: trip time, comfort

and onboard amenities, safety, reliability, and convenience. While the

set of attributes contained in these classes may not be exhaustive, they

include the majority of items considered by the individual in determining

whether and when to fly.

3.1.3.1 Trip Time

The distinct service advantage that air transportation offers over

other modes, particularly in medium and long haul markets, is faster line

haul travel time. For this reason, air is the only sensible mode for any

traveler who has a high utility of time and desires to make a trip of

any appreciable distance. However, in the process of deciding if, when,

and by which mode, a prospective traveler has several trip time components

to consider. These are access and egress times, preflight and postflight

5 For the purposes of this analysis, only interregional air transportation
will be considered. Very short haul transportation between an airport in
one city to an airport in another city within the same region and, in the
extreme situation, the ultra short haul traffic between two airports within
the same city are separate cases not considered in this research.
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processing times, and displacement time, as well as the line haul or

flight time.

Access time is the time required to travel by some other mode from the

passenger's origin to the curb of the airport from which he or she will

depart. Egress time is the amount of time required to travel by another

mode from the curb of the arrival airport to the passenger's destination.

These time components will obviously have a greater adverse effect upon

those passengers whose origins and/or destinations are near the periphery

of the regions than those whose origins and/or destinations are near the

airport. Access and egress times clearly constitute a greater portion

of the total trip time for shorter lengths of haul. These factors

account in part for the statement in Section 3.1.1 that the catchment area

around an airport is smaller for shorter length markets, hence general

region boundaries are very difficult to define.

The preflight processing time is the elapsed time from passenger

arrival at the curb to aircraft departure from the gate. Activities

included in this component typically consist of walking to the check-in

counter, ticketing, checking baggage, walking to the gate, receiving a

boarding pass, waiting for boarding, boarding, and waiting for departure.

Postflight processing includes waiting to deplane once the aircraft arrives

at the destination airport, deplanement, walking to the baggage claim,

waiting for and claiming baggage, and walking to the curb.6

6 As was discussed in Chapter I, a substantial amount of research is
being performed to analyze and improve the flow of passengers through
airport terminals.



Displacement time is the difference between actual and desired

departure times. This is a function of the time dependence in the

individual's processes. This component of total trip time is of

substantial analytical importance and will be studied in detail in

Section 3.2 and in Chapter IV.

The line haul or flight time is the component of trip time inferred

from consulting the airline schedule. It is the elapsed time between

aircraft departure from the gate of the origin airport and arrival at the

gate of the destination airport. The flight time includes the time spent

making intermediate stops and/or connections and is a function of the

cruise speed of the aircraft, proximity of the gates to the runways,

length of haul, atmospheric conditions, air traffic delays and the output

of the airlines' scheduling processes.

3.1.3.2 Comfort and Onboard Amenities

This class of service attributes includes all efforts to make the

passenger's experience aboard the aircraft enjoyable. These efforts are

designed to promote the image of the industry and the carrier in general,

and are necessary for competitive reasons within the given market. These

attributes include among others the interior layout and decoration of the

cabin, the comfort of the seat (including amount of available space), the

appearance and attitude of the flight crew, food and beverage service, and

entertainment.

Since, as will be discussed in Section 3.1.4, the carriers cannot



compete by varying fares, onboard amenities have been a variable that the

airlines use in advertising to boost their shares of profitable markets.

One rarely finds a steak or free champagne in the coach cabin of a flight

in a monopolistic market. The exploitation of onboard amenities will be

discussed in more detail in Section 3.1.5.

The quality of these attributes is substantially improved if the

consumer pays a considerable fare premium to sit in the first class rather

than the coach section. However, the first class passengers are generally

people who are not paying the fare themselves, or the extremely affluent,

and the marginal utility of increased quality of comfort and onboard

services is probably not substantially great to the vast majority of

consumers. Therefore, it is doubtful that fluctuations in the level of

this type of service will significantly affect total market demand.

Differences between carriers will have an effect upon market shares when

similar prices prevail.

3.1.3.3 Safety

The safety attributes refer to the probability of death or injury.

It is questionable if prospective consumers possess an accurate perception

of this attribute. Minor fluctuations in the safety performance of the

airlines relative to the other modes are likely to go unnoticed by the

traveling public and therefore have no effect upon demand.

An unfortunate fact is that an airline crash is a very dramatic event

and tends to be highly publicized in the media. While a fatal accident



may cause a short-term effect in the demand for the carrier involved, it

is doubtful that a significant aggregate decrease would result. A

reduction in total demand due to safety reasons would probably occur only

in the event of a series of fatal accidents in a fairly short time span,

scarring the safety image of the total industry, and even then it is

doubtful that this effect would endure for long.

3.1.3.4 Reliability

Measures of reliability include the probabilities of space being

available, cancellation, and on-time performance. Space availability is

a function of average load factor.7  As the load factors increase, the

probability of a flight being fully booked will obviously increase.

Simpson states:

"Generally, this [probability] measure of space available
is kept very high by all airlines in a market, especially
since load factors are generally below 60%...Normally then,
it does not become an important variable for quality of
service." 8

Since cancellations of scheduled flights occur very infrequently, and

then only in the event of mechanical problems or inclement weather,9 their

The load factor of a flight segment is the ratio of passengers on board
to the aircraft capacity and will be further discussed in Section 3.2.
8 Simpson, op. cit., p. 10.

A scheduled departure cannot be cancelled due to a low level of demand.
This point is frequently overlooked when comparing the economics of
scheduled and charter air services.



72

effect upon demand is negligible. Even if a single flight in a given

market is cancelled, the passenger can usually secure an alternative. This

factor becomes a deterrent to demand in the event of extremely inclement

weather and in the event of an airline labor strike. Since such

occurrences are basically unpredictable, the forecaster generally constructs

his estimates assuming (whether he knows it or not) the absence of such

conditions. However, in the analysis of historic data, the analyst must

be aware of and make adjustments for these events.

The carriers must periodically report to the Civil Aeronautics Board

statistics on the percentage of flights which arrive more than fifteen

minutes late. Since these data are publicly available and since the

airlines are promoting (or damaging) their image by on-time performance,

"these measures are generally kept quite high by all airlines."10

In the process of selecting a particular flight, the passenger may

assess a prior expected delay and allow for this by choosing a flight that

is scheduled to leave earlier than is necessary for him. However, the

decision of whether or not to purchase an air trip is generally made

sufficiently far in advance of the departure to preclude any specific

knowledge of whether or not the flight will be delayed. Furthermore, if

a passenger arrives at the gate and discovers the departure has been

delayed, the likelihood of his cancelling the trip is probably quite small.

Therefore, it is doubtful that this attribute has a significant impact upon

total market demand. However, one large trunk carrier seems to believe

that this attribute will affect market share and is promoting itself as

10 Ibid., p. 11.



the "on time airline".

3.1.3.5 Convenience

The convenience attributes consist of ease of receiving flight

information, making reservations, and securing tickets. In addition, the

ease of access and egress, preflight and postflight processing, and the

number of enroute stops and connections fall under the rubric of

convenience.

The evolution of online computer systems has facilitated the processes

of information retrieval, booking, and ticketing to the point where one

could hardly be dissuaded from making a trip because of problems related

to these functions, except in the rare event of a total computer system

breakdown.

The ease of access, egress, and processing and the number of enroute

stops are accounted for in the total trip time. However, the consequence

of a connection is only partially accounted for by the increment in flight

time. The additional burden of an online (connecting to a different

flight on the same airline) connection over a through stop includes the

probability that the connections will be broken by either the first leg

aircraft arriving late or the second leg aircraft being delayed or
11cancelled, the inconvenience of locating another gate and boarding a

different aircraft, and the probability of a mistransfer of baggage. An

11 Anyone who has had an experience similar to that of the author, of
sitting in the Denver airport for six hours with a cranky one-year-old and
a frustrated wife, will appreciate this peril.
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interline (connecting to a different flight on a different airline)

connection bears all the drawbacks of an online connection, and in addition,

the transfer includes a possible journey to another section of the terminal

or even a different terminal building, and a greater likelihood of lost

baggage. These considerations will be further addressed in Chapter IV.

3.1.3.6 Summary of the Service Attributes and Their Impact Upon Demand

The service attributes have been categorized into five classes: trip

time, comfort and onboard amenities, safety, reliability, and convenience.

The impact of the perceived levels of the quality of the various attributes

upon demand varies substantially depending upon the attribute. Some

attributes have an effect both upon the generation of origin to destination

traffic and on market share, some affect only market share, and others have

no significant impact except in extreme or unusual circumstances upon

either.

The major class of attributes in terms of passenger generation is

trip time. Since the relative attractiveness of air over over modes,

particularly in the long haul markets, is speed, a decrease in trip time

(e.g., faster aircraft, fewer intermediate stops) will increase its share

of the modal split. Furthermore, this increase in speed will, by the

gravity principle discussed in Chapter II, generate new travelers by

effectively bringing the regions closer together. Trip time also has an

impact upon market shares; the carrier who offers faster service will

ceteris paribus experience the greater demand.



While comfort and onboard amenities have little effect in generating

traffic, they do (at least temporarily) affect market share. Safety and

reliability will have virtually no effect on demand, given that the

industry's steady performance in these attributes is not radically altered.

Convenience attributes affect demand patterns only insofar as they affect

travel time and in the case of connecting service.

3.1.4 The Price of Air Transportation Services

The economics of domestic air transportation services in a given mar-

ket is somewhat unique, in that the producers (airlines) currently have

little power, at least in the short run, to vary prices. The fares are set

by the Civil Aeronautics Board (hereafter referred to as the CAB or the

Board), which prescribes a piecewise linear concave function of intercity

distance for the standard coach fare.12 First class and discount fares are

computed solely on the basis of percentages of the standard fare.13 Thus

air fares at any given point in time are a function solely of market

distance and are independent of absolute consumer demand in the market and

of fluctuations in this demand. Present regulatory policy prohibits

personal, temporal, or locational price discrimination.14 The intercity

12 For example, the fare structure resulting from Phase 9 of the Domestic
Passenger Fare Investigation (1974) was:

$12.56 + 7.07 cents per mile for the first 500 miles
+ 5.39 cents per mile for miles 501 to 1500
+ 5.13 cents per mile for miles 1501 and beyond

(from CAB Domestic Passenger Fare Investigation, p. 763)
13 For example, first class fare is roughly 150% of standard coach and
night coach fare is 80% of standard coach.



distance between New York and Chicago is 721 miles and the intercity

distance between Bangor, Maine and Akron/Canton, Ohio is 694 miles. The

former market experiences a demand of roughly 1.5 million passengers per

year, while the latter market attracts fewer than 100 passengers per year.

However, the fares in these two markets are virtually identical.

Furthermore, the airlines have no power to seasonally adjust fares in

markets that experience seasonal demand patterns. The standard coach fare

from New York to Miami, a highly seasonal vacation market, in February is

identical to the standard coach fare in August (barring any interim overall

fare changes approved by the CAB). This situation is quite unlike the

other components of the travel industry, such as hotels and restaurants,

who freely exercise the option of seasonally adjusting prices.

Therefore, in the economic analysis of air transportation, the price

variable is an exogenous variable. It is set outside of markets and is

not affected, at least in the short run, by fluctuations in any variables

that are specific to a given market (such as demand, regional economics,

etc.).

Based upon findings during the Domestic Passenger Fare Investigation

(DPFI), which was initiated by the Board in 1970 and lasted four years,

it was concluded that the fare formula should be constructed on an average

systemwide cost basis, so that the average rate of return on investment

14 An exception is that the interstate and commuter carriers may, subject
to CAB approval, charge up to 130% of standard coach fare.



for the trunk airlines will be 12.00 percent and for the local service

carriers 12.35 percent. Since these guidelines are based upon system

averages, there appear to be inherent inequities. Since individual

carriers are constrained to operate only in those markets for which they

are certified by the Board, those airlines with an abundance of profitable

routes have a definite financial advantage over those that are required to

serve less fruitful markets. This factor has been a common bone of

contention in past route award cases, but it is generally very difficult to

ascertain if a carrier's current financial status is a result of its route

structure or the quality of its managerial functions.

Another topic for debate related to the passenger fare structure is

the issue of differentiated fares and services, since there may be several

different fares paid among the various passengers with the same origins and

destinations. The different prices charged first class and coach class

passengers obviously constitutes fare and service differentiation, but

also included are the various discount plans such as military, youth,

Discover America, and family fares. Airlines benefit by these discounts,

because they generate additional passengers who would otherwise not fly.

The penalty incurred by the carriers is that reduced fares divert some

existing passengers who would normally pay the greater fare. To combat

this problem, the carriers usually establish certain service conditions

for discount fares. For example, the Bicentennial discount requires a

round trip in no less than seven and no more than thirty days. This is

an attempt to prevent, for example, the businessman who makes a one to

five day trip or students who are returning home for the entire summer,

to avail themselves of the price break.
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A frequently-cited fare variable that is sensitive to the responses

of fare differentiation is "yield". The yield (in the total system or a

market) is the ratio of the total ticket revenues to the number of revenue

passenger miles. A typical quoted yield, for example, may be "7.3 cents

per mile". If consumer response to the introduction of a discount fare

plan is insignificant, the carriers will notice a decline in the yield.

Or if there is a shift in the ratio of first class to standard coach

passengers, either due to a shift in aggregate consumer tastes or

reconfiguration of aircraft (as was the trend during the sixties when a

greater number of coach and a fewer number of first class seats were

appearing), the yield will react accordingly. Note that the yield may

vary, although the basic fare structure is held fixed.

A major summary point in the discussion of the price for airline

services in a given market is that it is basically fixed. There is no

allowable adjustment for marginal costs of various qualities of service.

A nonstop flight is priced the same as a multistop or a connection. If

an airline decides for competitive reasons to offer steak dinners in the

coach section, there is no reflection in the fare (which is why you rarely

find a steak in the coach class in a monopolistic market). Simpson

summarizes this point:

".when one carrier institutes an improved level of service...
the lack of quality distinction in fares makes it difficult
for other carriers to sell the lower level of services, and
encourages a competition in quality of service." 15

15 Simpson, op. cit., p. 24.
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3.1.5 Some Aspects of Marketing, Advertising and Competition

Many aspects of marketing air transportation services are quite

unusual. Included in these peculiarities are the following:

(1) As was discussed in the previous section, the price is fixed and

therefore the carriers must compete by altering the marketing mix of the

other attributes.

(2) The product can only be delivered in batches (flights).

(3) A seat departure in a given batch is generally available to

consumers from many different markets, as shown in thd example of Figure

3.2.

(4) The set of markets which a given airline serves may contain a

wide range of competitive structures, varying from strictly monopolistic

to oligopolistic markets. -

(5) The demand for air transportation services is a derived demand.

Individual marketing and advertising strategies generally can be

placed on a continuum. At one end of the continuum is primary marketing

and advertising, and at the other is competitive marketing and advertising.

Primary strategies refer to actions that are intended to increase the

overall demand in a market by generating new passengers or convincing

existing passengers to fly more frequently. Competitive marketing or

advertising refers to a carrier's attempts to increase its share of a

given market.

An example of an advertisement that is mostly primary in nature is

a television commercial in which Eastern shows vacationers enjoying a
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variety of frolics in Florida and the Caribbean. While the effect of

this advertisement may increase Eastern's north-to-south traffic, it may

also draw passengers to the other carriers operating in these markets. Its

major purpose is to increase demand in north-to-south markets. An example

of purely competitive advertising is North Central's campaign to attract

passengers in the Boston to Detroit market, for which they have recently

received certification to serve. Without ever extolling the virtues of

visiting Detroit, they promote their schedule of four nonstops a day,

their steak and eggs breakfast, and other advantages of North Central's

service.

Since a carrier may only produce its services in batches, it is in

the best interest of the airline to schedule the departures at times that

will attract the maximum number of passengers. This can be a difficult

problem in that the network structure in which a carrier operates may be

very complex. Since the airline is constrained by the fleet size,

scheduling decisions in one market interrelate with those of many markets.

Furthermore, for competitive reasons, one carrier's optimal scheduling

decisions are a function of the outcome of those of the other carriers in

the market.

An example of highly competitive or "head to head" scheduling occurred

in the late sixties in the New York-Chicago market. American, TWA, and

United were locked into a fierce scheduling war in which each carrier felt

the need to match every competitive flight with one of their own at the

same departure time. At one point there were nearly ninety nonstop

flights offered in each direction every day.



In other markets, "collusive" scheduling occurs, where the competitors

schedule in different time slots over the day. An example of this is the

Boston-San Francisco market, in which TWA and United each offer one nonstop

flight per day. United operates the morning westbound flight, while TWA

operates the early afternoon flight. On the eastbound link, TWA departs

San Francisco in the morning and United in the afternoon.

A substantial amount of past competitive advertising has focused upon

comfort and onboard amenities (United's "Friendly Skies", TWA's "Lasagne

Over Los Angeles", Delta's "Champagne Coach", etc.). However, the recent

trends are toward informing the consumers of scheduling superiority.

Many current newspaper and magazine ads actually publish full schedules for

given airlines and competitive markets, reaffirming the conviction that

the most important determinant of market share is frequency and speed of

service. However, in certain markets, airlines still play to consumers'

tastes for onboard amenities. An example of this is the New York to

Florida markets in which Delta, National and Eastern are supplying their

wintertime vacationers with free movies, drinks, and relatively elegant

meals. This practice has reached such an extreme that marketing experts

are referring to it as a "frills fracas", "revival of free side-shows",

and a "big bingo game". 16

16 "CAB Frill Investigation Expected", Aviation Week and Space Technology,
November 15, 1976, p. 26.



3.1.6 Summary

Section 3.1 contained a description of five aspects of the domestic

air transportation system: the market, the product, the attributes of

service quality, the price, and competitive marketing. The concepts

presented in this section will be referred to throughout the remainder of

Chapter 3 and in Chapter 4 as the economic model is developed. In the

remaining sections of Chapter 3, the concepts of the market, price, and

quality of service attributes will be particularly important. Section 3.2

contains an analysis of how demand would be related to price and service in

a hypothetical market which is isolated from a network. Section 3.3

considers the more realistic case, in which the market is a subset of

large network structure, as described in Section 3.1.1. It will become

quite evident that the interrelationships of the economic aspects that

have been discussed in this current section become very complex when the

market is embedded in the superstructure of the domestic passenger system.

3.2 A Hypothetical Isolated Market

Consider a simple network structure which consists of two regions, A

and B. The transportation link between these two regions is comprised of

air service offered by a single carrier who by regulation must charge a

fixed fare, but is allowed to vary the level of service by adjusting the

number of flights offered per day. Since these regions are not linked to

any others, all operations out of A fly nonstop to B, and vice versa, and

all passengers on board any flight on this segment are origin to

destination passengers in the A-B market.



3.2.1 Analysis of Demand

As discussed in Section 3.1.3 and 3.2.4, the major factors that

influence the level of origin to destination demand in a given market are

trip time and fare. Certainly the greatest volume of traffic that could

currently be generated in a given market would be experienced if the fare

level were set to zero and if nonstop jets were continually departing

during the traveling day. This hypothetical volume of traffic will be

noted as Q
D0

If such an ideal (from the consumer's point of view) level of service

existed in market A-B, the number of passengers in a given day that would

fly from A to B17 is the number of people in region A (whether residents

of A or visiting in region A) whose expected cardinal utility of a visit to

region B is greater than the sum of the expected utility of not visiting B

and the utility of the trip time from A to B. Therefore, those passengers

who travel from A to B feel that what they will gain by being in region B

for the duration of their stay outweighs the value of remaining in A plus

the time investment of the trip.

The term "visit" refers to the purpose of being in region B, whether

it is business,.personal, pleasure, a combination of these, or it is

returning home to B from a visit in region A (the term visit is hence used

rather loosely in this last respect). The term "trip" refers to the

service that is purchased from the airline.

17 Without loss of generality, the focus of this analysis will be upon
those passengers flying from A to B.



Defining:

U vk

Ut

Tk

= N IkK|U vk(tj ) > Utk(t0 + T k(t )) for some t ieT I (3.1)

Since U tk(t) is assumed to be a linear function, equation (3.1) can be

written as follows:

K = the set of people in region A (residents and non-residents)

in a given day

k = a generic person in region A, kcK

to = the nonstop jet line haul trip time between A and B

T = the set of time points in the traveling day (this may be a

continuous scale or a discrete approximation, T =

{t Ij=l,2,...,n}, and may include the entire 24-hour day

or that part of it during which departures are feasible

(t.) = the expected cardinal utility of a visit to region B

(relative to not making the visit) given that a flight

is boarded in region A at time t ET for a generic person

keK

k(t) = the cardinal utility function of time for individual k

(assumed to be linear)

(t.) = the expected ground time (access, egress, preflight and

postflight processing times) required for person k boarding

a flight at time t.
N(S} = the number of elements in any generic set S, then
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QDO= NI kEKIU k(t ) > U k(to) + U k(Tgk(tj )) for some t ET (3.2)

In the case where flights are departing at every instant of the day and

the line haul trip time, to, is constant, the rational passenger will

elect to depart at that time t eT at which the difference between his

expected utility of the visit, UV k(tj), and the utility of ground time,

Utk(Tgk(t )) is maximized.

Defining:

Uk(t) = Uv k(t) - Utk(T k(tJ)) and

UVk(*) = max Uv k(t) - Utk(T k(ti)j

tj eT

equation (3.2) simplifies to

QD = N I kEKIUvk(*) > U tk(to) (3.3)

Before proceeding further into this analysis, it is appropriate to

elaborate upon two characteristics of the above derivations. The first of

these is that the above approach considered the merits of transportation to

region B only in terms of the utility of being in the destination region at

a particular time. The utility of the "trip" (the transportation service

per se) was not considered. This is consistent with the discussion in

Section 3.1.2, in which the demand for air transportation services was

described as a "derived demand", not purchased as an end to itself, but

rather, as a means for achieving a separate end.
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A second and very important point is that the utility function

U k(tj ) is time dependent. If this hypothetical market existed in

reality and was, due to the economic nature of the regions, highly business

oriented, it would be expected that the demand would be intensified in

the early morning and late afternoon. This effect is due to a strong

desire for business travelers to arrive at their destination in the early

and mid-morning hours and to depart for home as soon as possible at the

end of the business day. A late departure in the morning or an early

return flight in the afternoon implies a sacrifice of time during the

business hours in the destination region, hence a lower relative utility

of the visit. Likewise, an inconveniently early departure in the morning

or late return flight at the end of the day will result in a loss of

personal time in the home region. By similar reasoning, demand will also

vary by day of the week and month of the year.

Empirical data on the impact of the time of day utility variation upon

demand is for most markets difficult to encounter, since actual passenger

flow is decided by imperfect scheduling. However, some markets

with very frequent and regular service (such as the Boston-New York shuttle)

have provided data which reflect the bimodal time of day demand pattern

mentioned above. Time of day demand variations will be analyzed in much

greater detail in Chapter IV.

The level of demand for air transportation service in a given market

will be lower than QD if a positive fare is charged, or if the level of

service provided is something less than the "perfect" service described

above.



Defining,

F = fare for service from A to B

QD F =passenger demand given fare F and perfect level of service

Umk = cardinal utility of money for individual keK, and

Wk = current wealth of individual k,

then

QDF = N keKIUV k(*) > Utk(to) + Umk (Wk) - Umk(Wk - F)} (3.4)

Since F is positive and Umk is clearly a strictly monotonically increasing

function, then QDF <QD'

Now suppose that instead of a nonstop jet departing at every instant

of the day, a less than perfect level of service, a finite set of departures

were offered. Defining

I = the set of flights

i = a generic flight, iEI, and

D = local departure time of flight i

then the displacement time, the amount of time which a person must sacrifice

if he desires to depart at time t , is It - Di|. A generic person k will

then choose to purchase a trip if there exists some time t. during the

traveling day in which the utility Ukv(t ) exceeds the sum of the utility

loss of the fare and the utility of the displacement time and the block

flight time for some flight i. The passenger demand, QD, is then

defined as follows:



QD= N kKII k(Di) > Umk(W) - Umk (Wk-F) + Utk(t ) for some ieI

(3.5)

If the regulator were to set the fare level, F, to zero, the two Umk

terms would cancel, yielding a finite level of demand that is no greater,

and depending on the schedule, may be substantially less than QD0. As the

fare is increased, the difference Umk(Wk) - Umk(Wk-F) will increasingly

become positive, ultimately reaching a finite point F0, where the inequality

condition of equation (3.5) will be satisfied by no member of K and the

demand will vanish. Consequently, the demand vs. fare curve for a given

market and a given schedule will meet the axes at finite values. However,

it is uncertain what the characteristics of this curve are between the

extreme points. A reasonable approximation to the shape of the demand vs.

fare curve is the common convex function usually assumed in classical

microeconomic analyses, shown in Figure 3.3.

It is quite widely accepted that the parameters of the demand vs. fare

curves vary significantly between markets. A common theory is that the

elasticity of demand with respect to fare18 is substantially greater in

markets that are primarily pleasure oriented (e.g. Los Angeles-Las Vegas)

than those that are basically business markets (e.g., Chicago-New York).

If no service were offered between A and B, the variable Di in equation

18 The elasticity of demand with respect to fare, E, is defined as the
ration of the percentage response of demand to the percentage change in
fare.

AQD/QD D F
AF/F 3 lF
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(3.5) would not exist, and obviously the demand would be zero. Since it

is assumed for each member of the population K that the function U k(tj)

has a maximum value at some t eT, then

maxU k(Di)< Uvk(*) * ksEK (3.6)

Equality in expression (3.6) will in general exist for all members of K

only when the service offered includes flights at every time point t eK.

This corresponds to the condition yielding equation (3.4) in which the

demand is QD. Therefore, as the number of flights, N(I}, increases, the
F*

demand asymptotically approaches QDF for some fixed fare F. This yields a

demand vs. number of flights, or demand vs. "frequency", curve, as shown

in Figure 3.4.

It can be observed from Figure 3.4 that as N(I} increases, a diminishing

return of demand is experienced. This illustrates the fact that eventually

as more flights are added, a "saturation frequency" will be reached. This

saturation frequency, depicted in Figure 3.4 as N I}sat, is defined by
Simpson as the number of flights at which the demand reaches 95% of QDF 19

3.2.2 Analysis of Supply

As discussed in Section 3.1.6, the units of output in air transportation

can be produced only in batches. In classical economic analysis of the

19 Simpson, op. cit., p. 17.
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production of goods, a manufacturer can increase the production by a

desired amount and is afforded substantial flexibility in selecting this '

amount. Airline trips are produced in batches called "flights" and the

number of trips produced in a flight is constrained to the capacity of

the aircraft. So the unit decision to increase production is whether to

offer an additional flight or to replace an existing departure with a

larger aircraft (if one is available in the fleet). In either case, the

additional quantity of supply is a discrete and quite inflexible increment.

As mentioned in Section 3.2.1, the airline operating in market A-B

will maximize the number of passengers being carried if it offers a nonstop

jet departure at every instant of the day. Obviously, since the fleet

availability is constrained, the airline must offer something less than

perfect service. However, offering the maximum level of service that the

fleet size will allow is not necessarily an optimal decision, since there

exist diminishing revenue returns, as shown in Figure 3.4, whereas variable

costs related to each flight will not diminish. So for a given demand

function, cost structure, fare level, and fleet availability, there appear

to be an optimal number of flights that the airline can offer in a given

day (or other time period) so as to maximize its return. This optimal

level of service may or may not be bound by the fleet availability

constraint.

Simpson has categorized airline costs into three classes: flight

operating costs, ground operating costs, and system operating costs. 20

20 Ibid., pp. 35-42. Also, by the same author, "An Analysis of Airline
Costs", paper given at the M.I.T./NASA Workshop on Airline Systems Analysis,
Waterville Valley, July 1972.



Flight operating costs include the costs of flying the aircraft (crew,

fuel, maintenance, landing fees, depreciation, etc.). Ground operating

costs are the costs per aircraft departure of refueling, dispatching,

and aircraft servicing; and the passenger-related ground costs, such as

ticketing, reservations, baggage handling, etc. The flight operating

costs and the ground operating costs are related to the flight, and are

therefore herein considered as variable (by flight) costs. System

operating costs are the remaining costs related to the system-wide

overhead (executive salaries, ground equipment ownership, etc.). These

are considered fixed costs and will not be included in this analysis.

There appears to be an internal economy of scale related to the costs

of operating aircraft with different seating capacities. For example, if

the flight plus ground operating costs of flying a Boeing 707-320 with 180

seats in a given medium haul market is $4,000 per flight, the corresponding

costs of operating a Boeing 747 with 360 seats is something less than

$8,000 per flight. Thus, if an airline is operating two 707-320s in a

given market, it can reduce the cost while providing the same quantity of

supply by replacing these flights with a single 747 departure. However,

as will be shown, the reduction in revenue caused by one fewer departure

may more than offset the cost reduction, causing a net marginal loss to the

airline due to this decision. So, for a given market, there are both an

optimal number of flights and an optimal seating capacity of the aircraft.

An additional constraint placed upon the airline's scheduling decision

problem is that they must maintain an average load factor, the ratio of

trips purchased to trips supplied, that is less than some maximum average



load factor (60%, for example). Because of the day-to-day variability of

demand, a high average load factor will result in many prospective

passengers being unable to purchase service, due to flights being fully

booked. For example, if in a given period the demand for a given flight

with a capacity of 100 seats were Gaussian distributed with a mean of 85

passengers and a standard deviation of 30 passengers, the flight would be

fully booked nearly 20% of the time. If the capacity of the flight were

increased to 145 seats, the average load factor would decrease, and the

probability of the flight being fully booked would drop to less than 5%.

A similar constraint which in low density markets may affect the

airline's scheduling function is a minimum level of service. An example

of this would be a requirement that at least two daily flights be offered

from A to B, and two from B to A. In this case, a person is afforded the

ability to travel from A to B and back (or vice versa) in any given day.

The scheduling problem for the airline operating in an isolated market

is to determine the number of flights and capacity of each flight, so as

to maximize the difference berween revenue and the sum of the flight and

ground operating costs. This objective is constrained by the available

fleet size, the prescribed average load factor, and the minimum number of

daily departures.

Defining:

A = the set of aircraft types available

a = a generic aircraft type, asA

C = the sum of the flight and ground operating costs of a flight

from region A to region B of aircraft type a



Sa = the seating capacity of aircraft type a

N = the number of aircraft of type a available for dispatch

na = the number of flights offered daily from region A to region

B of airline type a (the decision variable)

Q = the total number of trips offered daily from region A to

region B

LF = average load factor

LFmax = prescribed maximum average load factor

N( min prescribed minimum number of daily flights from region A

to region B

the scheduling decision problem (or, in economic terms, the airline

production function) can be represented by the following integer program:

maxfl= QD-F - E
na a

na' a (3.7)

subject to:

LF s LF

N(I} N(I} min

na Na

(3.8)

(3.9)

(3.10)4 aeA

na L 0, integer * acA (3.11)



Since QD is nonlinear with respect to the decision variables (as shown in

Figure 3.4), the above integer program is an integer nonlinear program

(INLP).

3.2.3 The Analysis of Equilibrium -- Some Numerical Examples

In this section, the interactions between the demand variables

discussed in Section 3.2.1 and the supply variables discussed in Section

3.2.2 will be illustrated, using some numerical examples. The following

demand function is hypothesized:

Q Fa(l 1N( 1 ) (3.12)

where a and a are negative constants.

The demand vs. fare relationship for fixed level of service does not

meet the boundary conditions of Figure 3.3, in that equation (3.12)

asymptotically approaches the axes as F approaches zero and infinity

(rectangular hyperbola), whereas the curve represented by Figure 3.3 is

bounded in both variables. However, since it is reasonable to assume that

the equilibrium operating characteristics of the market are not near the

extremes of the demand function, this is of no consequence. The

advantages of this specification are that in the neighborhood of the

equilibrium point the function is convex (since a is assumed to be

negative) as is the function in Figure 3.3, and that a is the elasticity



fae21
of demand with respect to fare. Therefore, if a reasonable intuitive

estimate of the elasticity is available, this function can be quite

accurately specified.

The level of service factor, 1-exp (SN( I}) was selected since it meets

the boundary conditions of the relationship shown in Figure 3.4 and has

similar shape. When the number of flights, N(I}, is zero, the demand,

QD, will likewise be zero, and the demand will saturate as N[ I} gets

large.

The following two relationships:

QS - E na'Sa (3.13)
a

and QD Q QS-LF (by definition of load factor) (3.14)

constitute the equilibrium conditions. Notice that, unlike the classical

economic interpretation of the production and consumption of goods, the

quantitities of supply and demand are unequal in the airline industry.

The entire system is then as follows:

Demand equation: QD = O Fa(_-e

21 It can be shown that in equation (3.12),

F



Supply INLP: maxI QD - Fac+ I-exp[( na -j na C Ca
na o a a

subject to: LF S LFmax

na N I mn

na < N a 4 asA

na > 0, integer * aeA

Equilibrium equations: Q = - na * Sa

QD ~ QS - LF

Suppose that t = -1.3 and a = -0.5, and that the current average

traffic is 400 passengers per day with the airline operating five flights

from A to B at a fare level of $50. Then

(3.15)__________ = 400 = 70,457

Fa _( .I}) 50-1.3 -e- )

Suppose that the airline has two types of aircraft, a1 and a2, in

their fleet. The capacities of these aircraft, their per flight costs of

operation from A to B, and the number of each in the fleet, are shown in

Table 3.1.



Table 3.1 Characteristics of Fleet

Per Flight

Aircraft

Type

A

a1

Passenger

Capacity

Sa

120

Cost of

Operation

Ca

$3,000

$22.22 4

Cost Per

Seat

Ca/Sa

Number

in Fleet

$25.00

$4,000a 2 180
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Furthermore, suppose that the airline is required to operate at least

two flights per day from A to B, and the average load factor may not exceed

60%.

3.2.3.1 Equilibrium Conditions at Optimal Level of Output

Given the numerical values of the parameters as defined above, the

supply INLP may be solved to indicate that, for the fleet described in

Table 3.1, the current level of frequency of five flights per day is not

the optimal level of output. A special purpose algorithm to solve this

INLP is described in the flowchart in Figure 3.5. A computer program

entitled ISOMRKT has been written in PL/I coding this algorithm. This is

a naive algorithm, and while it works very quickly in the solution of a

problem this size, it would be very inefficient for a much larger-scale

problem. The ISOMRKT program is currently written to handle fleets with

up to five aircraft types.

The algorithm looks at each vectorna which is a set of values of the

na variables that is feasible according to constraint sets (3.10) and

(3.11), checks for feasibility in constraint (3.9), and if still feasible,

evaluated QD' QS, and LF using equations (3.12), (3.13), and (3.14).

It then checks the load factor constraint, (3.8), and if still feasible

evaluates the objective function.

Figure 3.6 is the output of ISOMRKT using the numerical values of this

example. Note that the optimal level of output is four flights per day,

three of the 180 seat aircraft and one of the 120 seat aircraft. The
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ISOMRKT Supply INLP AlgorithmFi gure 3.5
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REGION A TO REGION B

Ni N2 N3 N4 N5 ns 0C LF REV COST PPOFIT

3 0 0 0 0 MIN'rMUM SEVICE CONDITION VIOLATED

0 1 0 0 0 dINIMUM SFRVICE CONDITION VIOLATED

0 2 0 0 0 360 275 76.5 LOAD FACTOR CONDITION VIO

O 3 0 0 0 540 338 62.7 LOAD FACTOR CONDITION VIO

0 a 0 0 0 720 377 52.3 18800.00 16000.00 2800.00

1 0 0 0 0 MINIMUM SERVICE ZONDITION VIOLATED

1 1 0 0 0 300 275 91.8 LOAD FACTOR CONDITION VIO

1 2 0 0 0 480 338 70.5 LOAD FACTOR CONDITION VIO

1 3 0 0 0 660 377 57.1 18800.00 15000.00 3800.00

1 4 0 0 0 840 400 47.6 20000.00 19000.00 1000.00

2 0 0 0 0 210 275 100.0 LOAD FACTOR CONDITION VIO

2 1 0 0 0 420 338 80.6 LOAD FACTOR CONDITION VIO

2 2 0 0 0 60C 376 62.8 LOAD FACTOR CONDITION VIO

2 3 0 0 0 780 400 51.3 20000.00 18000.00 2000.00

2 4 0 0 0- 960 414 43.1 20700.00 22000.00 -1300.00

3 0 0 0. 0 360 338 94.0 LOAD FACTOR CONDITION VIO

3 1 0 0 0 540 376 69.8 LO-AD FACTOR CONDITION VIO

3 2 0 0 0 720 400 55.6 20000.00 17000.00 3000.00

3 3 0 0 0 900 414 46.0 20700.00 21000.00 -300.00

3 4 0. 0 0 1080 423 39.1 21100.00 25000.00 -3900.00

Figure 3.6 Output of ISOMRKT Program

(continued on next page)
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4 80

6 6

840

1020

1200

N(1) = 1

OPTIMAL SOLUTION

N(2) = 3 N(3) = 0 N(4) 0

OPTI1MAL PROFIT = 3800.00

Figure 3.6 Output of ISOMRKT Program (continued from previous page)

376 78.5 LOAD FACTOR CONDITTON VIO

400 60.6 LOAD FACTOR CONDITION VIO

414 49.3 20700.00 20000.00 700.00

4s23 41.4 21100.00 24010.00 -2900.00

429 35.6 21350.00 28000.00 -6650.00

REGION A TO REGION B

N(5) = 0
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total supply of seats is 660 and the expected demand is 377 passengers per

day for a load factor of 57.1%. The profit 22 to the airline is $3,850.

3.2.3.2 Effect of an Increase in Total Demand

Suppose that the utility functions of the people in region A for visits

to region B, v (*), were to shift, causing a 20% increase in total demand

(increasing QD to 84,538). Such a shift could be caused by increased

income or population in region A, a new attraction (amusement, recreation,

or cultural facility perhaps) in region B, a change in season affecting

vacation traffic, a promotional or advertising campaign by the airline, or

some other factor.

Under the previous solution of four flights per day, the sudden increase

in demand will elevate the average load factor to 68.5%, which is in

violation of the maximum load factor constraint. Therefore, additional

service must be offered to accommodate the 20% increase in demand.

Reoptimizing using the supply INLP algorithm results in a level of output

of five flights per day, one 120 seat aircraft and four 180 seat aircraft,

or an increase of one 180 seat flight. This constitutes an increase in

supply to 840 seats per day. The level of demand will increase to 480

passengers per day, which represents a response of 20% (or 75 passengers)

22 Technically, this figure is not the true profit, since system operating
costs are not included in the cost base. More appropriately, this is the
contribution to system overhead, but will loosely be called profit in this
analysis.
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due to the utility curve shift, plus an additional 28 passengers due to

the increase in frequency. The load factor coincidentally remains at 57.1%,.

and the airline's profit increases to $5,000.

3.2.3.3 Effect of an Increase in Fare

Consider the case in which the regulatory body has granted the

carrier a fare increase of $10 per trip, raising the price to $60. Since

this market is price elastic (a = -1.3), the effect will obviously be a

marked decrease in demand. If the airline retains the same schedule as

was offered at the last equilibrium point, one small and four large

aircraft departures, the demand would drop to 379 passengers per day, load

factor would decrease to 45.1%, and profit would fall to $3,740. This

result is consistent with classical microeconomic theory that states that

if prices are increased in a price elastic market, then revenue (and hence

profit in this case, since cost is held constant) will decline.

However, if the airline reoptimizes its schedule, it will offer four

flights per day, two each of the 120 and 180 seat aircraft, resulting in

supply and demand levels of 600 and 357 trips per day, a load factor of

59.5%, and a profit of $7,420. Therefore, the interesting case exists of

a fare increase in a price elastic market, resulting, due to a corresponding

shift in the production function, in a profit increase. This unusual

phenomenon is due primarily to the rigid maximum load factor constraint

and the fact that the carrier's product mix options are finite and

discrete. Any change in the demand pattern (in this example, it was due
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to a fare increase) may allow the airline to offer a different mix that

will increase its load factor while not violating the maximum load factor

constraint.

3.2.3.4 The Decision of Whether or Not to Offer Wide Bodied Service

Since there appears to be an economy of scale, as was mentioned in

Section 3.2.2, of cost per available seat, it may be profitable for the

airline, which at the current equilibrium point is offering four narrow

body aircraft departures per day, to consolidate some of this service into

fewer departures with wide bodied equipment. The advantage of this would

be that a similar level of supply (number of trips) would be offered at a

lower cost. The disadvantage would be a loss in revenue due to a lower

level of demand caused by the reduction in frequency.

Suppose that the airline has an option to introduce into service one

or two aircraft of type a3, which have a seating capacity of 360 and a per

flight cost of $6,000. The per seat cost is $16.67, compared to $25.00 and

$22.22 in the cases of a1 and a2. The question that they face is if the

reduced revenue would be offset by the reduction in cost of offering the

wide bodied service. The answer to this question, given the market

parameters for this example, is no. The current equilibrium level of

output, two small and two large narrow body aircraft departures yielding

a profit of $7,420, is still optimal. This is another interesting case

in which a low cost technology should not be introduced to the market.
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The best solution using some wide bodied service would be to replace

the two large narrow body aircraft departures with one flight of the wide

body. This would reduce average load factor from 59.5% to 53.4%, resulting

in a profit of $7,260. The extreme case of replacing all four current

departures with two wide bodied aircraft departures would reduce load

factor to 36.2%, resulting in a profit of $3,660. Table 3.2 lists the

eight best options available to the airline for this example.

3.3 The Market as a Subset of an Integrated Network

In Section 3.2, the basic air passenger market was considered to be

an isolated entity. All service offered between regions A and B was

there to accommodate only the origin to destination traffic in that market,

and the carrier's only concern was to maximize its "profit" by optimizing

its output in that particular segment. In reality, the domestic air

passenger markets are linked by a network of segments known as the airlines'

route structure. Any given link serves a plurality of markets, as was

indicated in Figure 3.2, and markets are served by a number of different

links.

The generalization of a market as being a subset of a complex network,

rather than as a single isolation, requires certain minor adjustments to

the demand equation developed in the previous section and major restructuring

of the supply conditions. Simpson explains:
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Eight Best Schedule Options

na, na2 a3

Option (120 seats) (180 seats) (360 seats),

1

2 (tie)

2 (ti e)

4

5

6 (tie)

6 (tie)

8

QS Qo

600

540

600

660

480

660

720

660

357

321

321

379

261

357

357

321

LF Profit

59.5%

59.4%

53.4%

57.4%

54.3%

54.1%

49.5%

48.6%

$7,420

$7,260

$7,260

$6,740

$6,660

$6,420

$6,420

$6,260

Table 3.2



109

"Unlike the demand function which is defined for a [region
pair] market, the supply function describes the behavior of
suppliers who are operating a scheduled transportation
system over a network which simultaneously serves a large
set of markets. Thus the various suppliers in a given...
market may be serving it jointly with quite different sets
of other markets, and so their behavior and other competitive
positions may be quite different. Each supplier is
optimizing over his network of services, and may not be
optimizing in a given market." 23

The purpose of this section is to indicate the additional complexities of

the economic nature of air passenger service in the general case of a market

within a complex network structure.

3.3.1 Analysis of Demand

In the analysis of the isolated market in Section 3.2, the demand

for air transportation services in a given region pair market in a given

day, QD, was defined by equation (3.5) as follows:

QD = NkEK IIk (Di) > Umk(Wk) - Umk(Wk-F) + Utk(t) for some isI

(3.5)

This relationship states that the number of people who fly from A to B on

a given day is the number of people in region A for whom the utility of a

visit to region B via any scheduled departure i is greater than the marginal

utility loss of the fare plus the utility of the flight time.

The only adjustment to be made in the general case of a market within

23 Simpson, op. cit., p. 25.
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a network is to account for the fact that the schedule of services offered

may no longer ideally consist of a set of N I} nonstop jet departures.

The flights offered in a general market may consist of nonstop, multistop

direct, and connecting departures. Furthermore, these departures are

not necessarily distributed at convenient times over the traveling day,

so displacement time may in general become a major deterrent to demand

generation. The trip time component may be further generalized to include

the possibility of slower cruise speed aircraft and/or expected delays in

line haul travel time due to congestion, so that even in the event of

nonstop departures, the block flight time may be something greater than to*
Each of the above considerations will in Chapter IV be lumped into a

single proxy called "level of service", LOS. Whereas in the case of the

isolated market where the demand relationship is as follows:

QD fD F, N( I}) (3.16)
0

the general market demand relationship becomes

QD D , F, LOS) (3.17)

Between markets, the total demand, QD0 , will depend upon certain

socio-economic characteristics of the regions. Certainly the ability to

generate passenger trips from a region will be a function of the population

and perhaps of the income distribution of a given region. The ability to

attract visits will be a function of a region's industrial, recreational,

and cultural activities, among other factors. Combining each of the
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above considerations into a socio-economic proxy, SE, as a determinant of

total demand, the general functional relationship for the demand for air

passenger services in a given market may be expressed as follows:

QD f 1 (SE, F, LOS) (3.18)

3.3.2 Analysis of Supply and Equilibrium

As was previously mentioned, the generalization of the supply side is

considerably more complex than.that of demand in the analysis of a market

embedded in a network, rather than isolated. The fundamental reason for

this is, as was explained, that each carrier is attempting to optimize its

product mix over that subset of the total route structure to which it is

certified to provide service, and not necessarily over a single given

market.

One result of this complexity is that service offered in a given

segment may be provided for the benefit of a multitude of markets. An

extreme example of this is the Birmingham-Atlanta segment, in which there

are currently sixteen nonstop daily departures in each direction. 24

Certainly the quantity of origin to destination demand in this market would

be adequately accommodated by a substantially lower frequency. This high

level of service is provided to feed into the complex at Atlanta, whereby

a passenger desiring to travel from Birmingham to virtually anywhere else

in the world would fly to Atlanta and connect outward. Therefore, if one were

24 Official Airline Guide, February 15, 1977, p. 87.
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to survey the people aboard a flight in that segment, it would probably be

discovered that a small proportion of the passengers were Birmingham-

Atlanta origin to destination traffic. In fact, during the third quarter

of 1975, there were 4082 seats per day flown between Birmingham and

Atlanta,25 while local traffic averaged only 251 passengers per day,26

roughly 6.2% of the available seats.

A second and quite different result is that, in a given market, a wide

variety of service quality may exist. An extreme example of this is that

the Official Airline Guide (OAG) currently lists 84 daily departure

alternatives from Los Angeles to New York.27 Thirty of these are direct

flights, including thirteen nonstops, five one-stops, six two-stops,

five three-stops, and one four-stop. Of the fifty-four connecting flights,

forty are online and fourteen are interline. The connection cities number

thirteen, including Chicago, Dallas, St. Louis, Minneapolis, Houston,

Phoenix, Kansas City, Cleveland, Cincinnati, Pittsburgh, Denver, New

Orleans, and Atlanta. Most of these scheduled departures, particularly

those of the poorer level of service, are not offered to explicitly serve

the Los Angeles to New York demand, but are for intermediate markets.

They are listed in the QAG merely because they happen to exist and under

unusual circumstances could be selected by passengers in the transcontinental

market. This is a major factor that makes Q, (available seats) and LF

25 Official Airline Guide, September 1, 1977, p. 91 and p. 148.
26 Civil Aeronautics Board, Origin-Destination Survey of Airline Passenger
Traffic, Table 8, Third Quarter, 1975, p. 77.
27 Official Airline Guide, February 15, 1977, p. 748.
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(load factor) quite meaningless when considering markets in a network,

as will be elaborated upon later in this section.

An additional situation that arises due to the network structure is

the appearance of wide bodied service in very short haul markets. For

example, American Airlines operates a DC-10 daily from Los Angeles to San

Diego, a distance of 109 miles.28 The purpose for this seemingly

inefficient utilization of resources is that this flight (flight 11)

originates in Boston and the "tag end" link to San Diego is not provided

to capture the Los Angeles to San Diego passengers, but rather to attract

the high fare paying Boston to San Diego passengers.

The following supply and demand equations, developed in Section 3.2,

are not appropriate in the analysis of a market embedded in a network:

QS = Z na * Sa (3.13)
aa

and QD = QS - LF (3.14)

The supply quantity, Q , the number of seat departures offered in a given

market, is not an adequate measure of supply. The 84 flight alternatives

from Los Angeles to New York comprise something on the order of fifteen

to twenty thousand seat departures. However, it is very unclear how many

of these are provided for this particular market. Furthermore, if twenty

of the connecting flights were deleted from the schedule (a reduction of,

28 Ibid., p. 982.
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say, 4,000 seats), the incremental decline in total service in this market

would be negligible. However, if ten of the nonstop flights were deleted

(a loss of about 2,000 seats), the service reduction would be substantial.

The load factor term, LF, is likewise of no particular value in market

analysis, since it is primarily either a segment or a system related figure.

For example, in the Birmingham to Atlanta segment the load factors may be

quite high. However, the ratio of the Birmingham to Atlanta market

demand (number of origin to destination passengers) to the number of

available seat departures may be quite small. (As previously mentioned,

tne latter was 6.2% for the third quarter of 1975.)

Since the production function of an airline is actually a scheduling

process over a large network, the INLP developed for the isolated market

is far too simplistic to be generally useful. Furthermore, since the

purpose of this thesis is to construct a demand model, the suppliers'

optimization problem will not be developed herein. This problem has been

researched, resulting in a set of "fleet planning" and "fleet assignment"

models. An example cited in Chapter I of a fairly comprehensive fleet

assignment model is FA-4, developed by the Flight Transportation Laboratory

at M.I.T. 29

One of the generalizations that may be drawn from the analysis of an

isolated market is that the amount of service offered is dictated by the

29 Swan, op. cit.
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total potential demand. This results in the expectation of a greater

level of service in a high density segment (e.g., Chicago-New York) than

in a low density segment of equivalent distance (e.g., Bangor-Akron/

Canton). This effect is present in time series analysis as well as in

cross sectional. The example of Section 3.2.3.2 indicated how an increase

in total demand within a market can lead to an increase in level of

service. Due to the fact that an increase in total demand may not

immediately be perceived as such, and that airline schedules are generally

fixed for a period of time, the response in service may tend to lag

behind changes in total demand.

A second important generalization from the analysis of an isolated

market is that service is responsive to fare changes. The example in

Section 3.2.3.3 indicated how a fare increase may affect a single market

in time series, due to its impact upon demand and the reoptimization of

the carrier's fleet assignment problem. In the network setting, this

effect may be very pronounced, due to the variability between markets of

the price elasticity. Since the profitability of the more price elastic

markets may substantially increase, the reshuffling of the airline's fleet

assignment to the new equilibrium point conceivably may result in

significant alterations of level of service in many markets.

The effect of lack of competition in airline markets has historically

been that the monopolistic or nearly monopolistic carrier has not had to

overly concern itself with providing outstanding service to its already

captive market. At the other end of this continuum, in potentially

profitable competitive segments, the carriers have engaged themselves in
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fierce scheduling wars which result in extraordinarily high levels of

service to the consumers.

The example of the Birmingham to Atlanta segment containing sixteen

nonstop departures per day exemplifies the fact that high levels of service

may exist in certain markets for reasons other than to serve the origin

to destination passenger demand. Segments such as these usually feed

into a large connecting complex (in this case Atlanta). Therefore, the

location of a given market with respect to the total U.S. domestic and

international route structures will further affect the level of service

offered.

By combining the above factors, a quasi-supply function can be stated

as follows:

LOS = f2 (QD*, F, COMP, RS) (3.19)

where

LOS = proxy for level of service

QD* = lagged origin to destination demand

F = fare

COMP = some measure of the competitive nature of the market

RS = some measure of the market's location with respect to the

total U.S. domestic and international route structures

This relationship will hereafter be referred to as the "service function"

for a given market. The primary motivation for a service function is

the simultaneity between QD and LOS. As will be explained in greater

detail in Section IV, this two-way causality renders a single equation
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model inappropriate.

Combining equations (3.18) and (3.19) yields the following two

equation system which will be specified in more detail in Chapter IV and

calibrated for different categories of markets in Chapter V:

Demand function:

Service function:

QD f1 (SE, F, LOS)

LOS = f2 (QD*, F, COMP, RS)



118

IV. Description of the Functional Forms, Market Variables,

and Experimental Design

Chapter III contained an overview of the economic issues that have

an impact upon the levels of demand and service in an air transportation

market. The end product of Chapter III was the following two-equation

model of air transportation activity within a given market:

Demand equation QD fl(LOS, F, SE) (4.1)

Service equation LOS = f 2 (QD*, F, COMP, RS) (4.2)

where

QD= origin to destination passenger demand

LOS = level of service

F = fare

SE = socio-economic activity

COMP = level of competition

RS = location within route structure

In this chapter the functional forms of equations (4.1) and (4.2) will

be specified. A discussion and a resulting flow diagram will elaborate

upon how the individual variables interact within the U.S. domestic air

* The demand variable is lagged in the service equation
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transportation system. Each of the variables will then be defined in

detail and, where necessary, examples of their calculations will be

provided. Finally, a description of the experimental design and sampling

procedure is presented.

4.1 Functional Forms of the Demand and Service Equations

The specification of the demand equation is as follows:

QDt = LOSt Ft 12 SEta13 E1 (4.3)

where

QD = origin to destination passenger demand

LOS = level of service

F = fare

SE = socio-economic activity

The rationale behind this specification is, as described in Chapter III,

that in any time period t there exists a total potential local demand, QD0'
in a region pair market which is determined by socio-economic factors

(populations, incomes, amount of recreational facilities, etc.). The

flow of this total potential demand is impeded by positive fare levels and

less than perfect level of service.

A multiplicative (instead of, say, an additive) form was selected for

two reasons. With respect to level of service, this specification satisfies
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the necessary boundary conditions in that, if no service were offered

(LOS=O) there would be no traffic,,and if perfect service were offered

(LOS=l) the local demand would be finite (QD=DF, as defined in Section

3.2.1). With respect to fare, the multiplicative, more specifically the

log-linear, form was selected to allow for the estimation of the various

price elasticities (see footnote 21 in Section 3.2.3). Since it is

assumed that 12 is negative, if fare values go to zero this specification

implies that demand will go to infinity, which is in violation of a

boundary condition set forth in Section 3.2.1. However, since the model

considers only positive fare values, both in calibration and prediction,

this violation is of no consequence.

Since a mutual causality exists between demand and level of service,

the demand model as shown cannot appropriately be calibrated using ordinary

least squares estimation. In an effort to rectify this problem, a second

equation, the "service equation", is developed. The specification of the

service equation is as follows:

LOSt 20 (QDt- + RSt-1 ) 21 Fta22 COMPt 23 , 2  (4.4)

The level of service on a given route segment is determined not only

by the level of local demand, but also by the level of non-local passenger

flow over the segment. The Birmingham to Atlanta route segment example

cited in Section 3.3.2 is a classic example of a market in which the amount

of service offered is far in excess of what the local demand requires.

Therefore, LOS is specified in the service equation as being a function of

the total traffic over a route segment.
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The total segment traffic (QD + RS) is lagged in the service equation

for two reasons. It is not unreasonable to assume that if traffic

(whether local or otherwise) were to increase or decrease in a given route

segment, the airlines' response (improving or reducing service) would not

be immediate. There would probably be a lag due to the time lapse before

the carriers perceive the change in traffic as being significant, and since

schedules are normally altered only twice per year, there would certainly be

a lag before they could operationalize the schedule change. The second

reason for the lag is statistical. The lagged variables are

"predetermined", and therefore the simultaneity condition present in the

demand equation does not exist in the service equation, and ordinary least

squares estimation is appropriate.

The fare variable is included in the service equation to account for

the fact that if fares were to increase, it would economically be in the

best interests of the suppliers to increase service. This follows from

Simpson'sl and Marfisi's2theories and from the theoretical development of

Chapter III (specifically, the example in Section 3.2.3.3).

The competition variable has been included in the service equation

to account for the commonly held belief that more competition stimulates

improved service. This phenomenon was discussed in some detail in

1 Robert W. Simpson, "A Theory for Domestic Airline Economics", unpublished
lecture notes for the M.I.T. course 16.74 -- Air Transportation Economics,
Fall 1974, p. 68.

2 E. Pat Marfisi, "Theory and Evidence on the Behavior of Airline Firms
Facing Uncertain Demand (Ph.D. dissertation, Brown University, 1976),
p. 3-2.
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Section 3.3.2.

Assuming that the specification of the service equation is valid, the

predicted values of level of service, LOS, will be highly correlated with

the observed values of LOS. Furthermore, since LOS is a (log) linear

combination of predetermined variables, it should be uncorrelated with

E' 1in the demand equation. Therefore, LOS should serve as valid

instrumental variable in the demand equation. Substituting LOS for LOS

in the demand equation renders ordinary least squares estimation appropriate.

Figure 4.1 is a schematic representation of the interaction of the

variables in the demand and service equations.

4.2 Description of the Market Variables

4.2.1 Demand (QDI
The selected variable for the measure of air passenger traffic activity

in a given region pair market is the number of passengers in a given time

period that originate in one region and fly to the other region for

purposes other than to make a connection to a third region. This variable

is declared the true origin to destination passenger traffic, using the

passenger intent criterion. The best source for these data is Table 8 of

the Civil Aeronautics Board's Origin to Destination Survey.

An unfortunate limitation of employing Table 8 data is that the

decision rules selected by the Board for tabulation do not in all cases

accurately reflect passenger intent. The net result is that Table 8 data



Figure 4.1 Flow Diagram of Interaction of the Variables
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have a tendency to be biased by understating true origin to destination

traffic flows in long haul markets and overstating them in short haul

markets.3 However, since the bias is slight and unmeasurable, it is

assumed to be negligible for the purpose of calibrating this model.

4.2.2 Level of Service (LOS)

An important performance measure to be included in the economic

modeling of air transportation services within a given region pair

passenger market is the availability of scheduled flights at times when

the prospective customers wish to fly. As discussed in Chapter II, many

existing models consider only the number of flights offered per day as

an indication of availability (e.g., Marfisi 4). What these models do

not consider is the time of day when these departures occur. Time of day

not only relates to the needs of the passengers (the consumer value of

a departure at 2:30 a.m. may be quite different from that of a departure

at 5:30 p.m.), but also to the relationship between number of flights and

capacity per flight. (Are three 120-seat aircraft departures at the same

time really, in practical terms, three separate consumer alternatives, or

the equivalent of one departure of a 360-seat aircraft?)

An additional performance measure frequently overlooked in demand

modeling is the type of service offered in a region pair. This quality of

service measure, if it is considered at all, is found to be difficult to

O'Brien, Frederick J., "C.A.B. Origin-Destination Statistics" (unpub-
lished note, Lockheed-California Company, 1976).

Marfisi, op. cit.
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quantify. A Civil Aeronautics Board staff study attempted to address

this problem by assigning weights to the different types of service.5

The study concluded that a two-stop flight is equivalent in consumer value

to 0.40 nonstop flights, a one-stop flight is equivalent to 0.55 nonstop

flights, etc. This proportionality approach is, however, unrealistic

because the weightings are assumed to be independent of stage length.

One intermediate stop may be nearly double the block time of a short-haul

flight, whereas one stop may increase the block time of a transcontinental

flight by merely fifteen to twenty percent. Thus, the proportionality of

the penalty paid by intermediate stops decreases as the stage length

increases.

The level of service index created herein is developed to

systematically account for the above mentioned issues. Basically, the

measure is a dimensionless number scaled from zero to one which represents

the ratio of the nonstop jet flight time to the average total passenger trip

time. The total trip time is the sum of the actual flight time (including

stops and connections) and the amount of time the passenger is displaced

from when he wishes to fly due to schedule inconveniences.

If "perfect" service were offered in a given region pair (a nonstop jet

departing at every instant of the day), there would be no such displacement.

The total trip time would be merely the nonstop jet flight time, and the

ratio (level of service measure) would be unity. If poor service were

5 C.A.B. Bureau of Operating Rights, "Effect on Total Market Traffic of
Changes in Quality of Service (QSI): Explanatory Statement" (Washington:
Civil Aeronautics Board Docket 21136).
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offered (few flights, multistops, connections, slower aircraft, etc.), not

only would block flight time be substantially greater than non-stop jet

flight time, but many passengers would be forced to fly at inconvenient

times. This inconvenience would be accounted for by the inclusion of

significant "displacement" times, and the resulting level of service ratio

would be small.

4.2.2.1 Behavioral Assumptions

The basic assumed behavioral pattern in the development of the level of

service index is that a generic passenger in accordance with the purpose of

his trip will predetermine an optimal or preferred time of departure from

the origin airport. Given that he is aware of his preferred departure time

and is presented a schedule of available flights, he will then select that

flight which minimizes the sum of the "displacement time" and the "adjusted

flight time". The displacement time is the absolute value of the difference

between the scheduled departure time and the preferred time of departure.

The adjusted flight time is defined to be the scheduled flight time

(including intermediate stops) for direct flights, the scheduled flight

time plus one-half hour for online connections, and the scheduled flight

time plus one hour for interline connections.

The motivation for inclusion of the additional time assessment for

connecting flights is that the consumer disutility of a connecting flight

is greater than merely the increase in flight time. For an online

connection, the passenger faces the chance of a broken connection due to a
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late arrival of the first leg or cancellation of the second. Also, the

passenger is burdened with the inconvenience of having to physically change

aircraft. For an interline connection, the passenger faces not only

the possibility of a broken connection, but also a greater chance of having

his baggage miss the connection. In addition, he faces the burden of not

only having to change aircraft but also is frequently forced to walk to a

different terminal.

Table 4.1 stratifies four hierarchal levels of types of service, based

upon airline scheduling and marketing experience.6  The table indicates

that an online nonstop/nonstop connection, which actually requires only

one stop, is equivalent in consumer value to a two-stop direct flight.

Hence, the presence of a connection within the same airline is the consumer

equivalent of adding an additional intermediate stop. By the same argument

it can be inferred that an interline connection bears the equivalent

disutility of two additional stops. Assessing an additional one-half hour

of effective flight time for each equivalent stop yields the above-mentioned

adjustments of one-half hour and one hour for online and interline

connections, respectively.

A basic assumption is that the loss function for arrival time

displacement is linear and symmetric. In other words, the disutility

incurred by being displaced by p hours is p times the loss incurred by being

displaced one hour. Furthermore, the symmetry of the loss function assumes

that the cost of departing late by p hours is equivalent to the cost of

departing early by p hours.

6 Interview with Frederick J. O'Brien, Lockheed-California Company, Burbank,
California, 5 March 1976.
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Four Levels of Equivalent Air Service

Direct

Nonstop

One-stop

Two-stop

Three-stop

Connecting

Online Nonstop/Nonstop

Interline Nonstop/Nonstop

Table 4.1

Level

1

2

3

4
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Total trip time, as defined in this analysis, is quite different than

what it is commonly referred to in transportation analysis. In addition

to merely waiting (or displacement) and line haul travel time, total trip

time usually includes access and egress times to and from the line haul

terminals. This inclusion is particularly significant in air

transportation, in which an airport commonly serves a large geographical

region. However, since the purpose of this analysis is to measure the

effect of airline scheduling independent of access and egress time, these

aspects are not considered.

A further assumption in these models is that of infinite capacity.

A passenger who elects (by the governing behavioral assumptions) to board

a particular flight may do so without a change of its being overbooked;

therefore, load factor is not a consideration in this analysis. This

assumption can be justified in light of the fact that generally, if a

particular flight is consistently overbooked, the airline(s) serving that

market will add capacity or additional service near that particular time of

day. Therefore, in most instances, overbooking problems are corrected

within a reasonable length of time.

4.2.2.2 Development of the Index

Given the behavioral assumptions described in the preceding section

and a published flight schedule for one direction of a particular region

pair, the total trip time, defined as the sum of the displacement time plus

the adjusted flight time, for a passenger desiring to depart at any
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particular time of day can be determined. Then, given a distribution of

passenger departure demand over the entire day, the average total trip

time, weighted by this distribution, can be generated.

In order to compute the average total trip time, clock time has been

divided into a finite number of discrete time points which are separated

by equal intervals throughout the traveling day. The time length of these

intervals (and hence the number of time points) may be arbitrarily set

(perhaps 15, 30, or 60 minutes). The analysis is performed by

considering passengers desiring to depart at only these time points rather

than continuously. Therefore, the smaller these intervals (greater

number of time points) are, the less restricting this approximation will

be. However, as the number of time points increases, so does the

computation time. Throughout this analysis, the traveling day will usually

be separated into 41 time points separated by thirty minutes starting at

4:00 a.m. and ending at midnight. However, for certain markets bearing

unusual demand characteristics, this convention may be altered.

The following notation is defined:

n = number of time points (equally separated) in the traveling

day

j = index of time points j = 1 (start of traveling day),

2. , n (end of traveling day)

t = time of day at time point j

7r = proportion of daily passengers preferring to depart at

time point j

m = number of daily flights

i = index of flights i = i,2., m
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D = local departure time of flight i

A. = local arrival time of flight i

Z = number of time zones crossed (positive if west to east,

negative if east to west)

0.0 for direct flights

= connection adjustment = 0.5 for online flights

for flight i 1.0 for interline connections

The adjusted flight time for any flight i, AFTV, is the difference

between the arrival and departure times, A1 - D,, minus the time zone

change, Z, plus the connection adjustment yi.

AFT1  = A1 - D - Z + yi (4.5)

The displacement time for any passenger preferring to depart at time

point j and selecting flight i, DT , is the absolute value of the difference

between the departure time of flight i, Di, and the time of day at time

point j, t .

DTi = ID - tjI (4.6)

By the governing behavioral assumptions described in the preceding

section, a passenger preferring to depart at time point j will select that

flight which will minimize the sum of displacement time plus adjusted flight

time. This minimized sum is his total trip time TT.
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TT. = min (DT.. + AFT.) = min (ID1 - tj|+ A. - D - Z + y) (4.7)

The average total trip time, t, is the weighted (by the i factors)

average of the total trip times of the passengers who prefer to depart at

each of the n time points over the traveling day.

n n
~ Z1 ri rTT. = 7 j min (ID+ - + - Z + yi) (4.8)

j~~l ~ ~ in(D tj+A. D)

The level of service index, LOS, is defined as the ratio of the nonstop

jet time, t0, to the average total trip time, t.

t n
LOS = 0 t min (IDto - t + A. - Di - Z + yi) (4.9)

T I =1 1

4.2.2.3 Determination of Nonstop Jet Time

A necessary component for the computation of the level of service

index, LOS, for a given region pair is the nonstop jet time, to. Nonstop

jet service is offered in many of the markets selected in the sample for

this analysis, and so for these markets this value can be readily determined

by examination of the flight schedules. However, for those markets in

which nonstop jet service is not offered, a procedure for estimating this

value is required.

The following relationship has been hypothesized and calibrated:

to = a0 + a 1d + 62 (LOA - LOD) + E (4.10)
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where

t = nonstop jet flight time (hours) -between two regions

d = nonstop distance (miles) between the major airports of the two

regions

LOA = decimal equivalent of the longitude of the major airport in

the region of arrival

LOD = decimal equivalent of the longitude of the major airport in the

region of departure

The result of the parameter estimation is as follows:

t = 0.3370 + 0.001976d + 0.009369 (LOA - LOD) (4.11)

The constant term represents the startup time involved in a flight

(taxiing, accelerating to cruise speed, etc.). The second term was

included to account for the obvious fact that the trip time is a linear

function of distance. The third term measures the effect of the prevailing

west to east air flow, resulting in the fact that it requires roughly one

additional hour to fly a commercial jet across the country east to west than

it takes flying west to east.

The estimation procedure used was least squares multiple regression

analysis. The observations consisted of all region pairs selected in the

sample for this analysis (see Section 4.3) that offered nonstop jet service

in December, 1975. Since in markets where nonstop jet service is offered

in one direction it usually is offered in both directions, the correlation

between the independent variables was virtually zero. The total sample
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size was 213 observations. Some key regression analysis statistics are

indicated below:

to = 0.3370 + 0.001976d + 0.009369 (LOA - LOD) (4.12)

(111.60) (13.03)

R2 = 0.984

n = 213

(The figures in parentheses are the corresponding t ratios)

4.2.2.4 Determination of Time of Day Demand Functions

An additional input variable necessary for the computation of the level

of service index, LOS, for a given directed region pair is the relative

demand for air transportation service as a function of time of day. A

uniform time of day distribution is of course rarely, if ever, observed.

For example, the daily demand for air transportation in short and medium

haul business markets is typically bimodal. There is a peak period between

8:00 and 10:00 a.m. and another between 5:00 and 7:00 p.m. Other markets

may observe quite different time of day variations. In transcontinental

west to east markets, there actually is a lull in what one would normally

expect to be a peak period in the late afternoon. This is caused by the

fact that few passengers would choose to arrive at the destination (east

coast) at two or three o'clock in the morning. The demand, however, picks

up considerably in the late evening for the night flights which arrive on

the east coast between eight and ten o'clock the next morning.
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The time of day demand distribution unfortunately is for nearly all

markets, virtually impossible to determine. When passengers do fly is,

in most cases, a function of the air transportation schedule by which they

are constrained. However, data has been provided by Eastern Airlines from

their New York/Boston shuttle, a demand-responsive service, which reflects

as would be expected the bimodal time of day distribution described above.

This distribution is plotted in Figure 4.2 and is used as a basis for

deriving theoretical time of day demand distributions for all -of the

directed region pairs in the sample.

The initial step in this analysis is to discretize time of day into

forty-one time points (j = 1, 2, ... , 41) at half hour intervals starting at

4:00 a.m. and ending at 12:00 midnight [t(l) = 4.0, t(2) = 4.5, ... , t(41) =

24.0]. At each time point, j, a proportion p(j) of the total number of

daily passengers desire to depart from Boston to New York or vice versa,

as indicated by the empirical data provided by Eastern and tabulated in

Table 4.2.

A basic assumption in these derivations is that the proportion p(j)

of the total daily passengers desire to depart at time t(j) for one of two

reasons:

(1) The time of day t(j) is a preferred time to depart

or (2) The time of day t(j + 2) is an attractive time to arrive.

The arrival time t(j + 2) is employed because the time points, j, are

separated by half hour intervals, and one hour is the approximate flight

time between Boston and New York.
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Table 4.2 Empirical Time of Day Demand Distribution for Eastern Airlines

- Boston/New York Air Shuttle

~i I I

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.5

10.5

0.001

0.002

0.005

0.008

0.016

0.023

0.033

0.044

0.038

0.033

0.030

0.028

0.026

0.025

I {j1.-J

15

16

17

18

19

20

21

22

23

24

25

26

27

28

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

0.023

0.020

0.022

0.023

0.025

0.026

0.026

0.027

0.035

0.043

0.045

0.047

0.045

0.043

i ta~pU

29

30

31

32

33

34

35

36

37

38

39

40

41

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5

24.0

0.036

0.029

0.025

0.021

0.023

0.023

0.022

0.020

0.015

0.010

0.008

0.005

0.003

41

Note: Z p(j) = 1.00

j=1
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In order to project this distribution over all markets, the following

two assumptions were made:

(1) The distribution of preferred departure times from any region

is PD(j) = p(j) for j = 1, 2, ... , 41

and (2) The distribution of attractive arrival times at any region is:

SPA (2 ) = 0.0, PA = p(j - 2) for j = 3, 4, ... , 43,

where t(42) = 12:30 a.m. and t(43) = 1:00 a.m.

A final assumption in this derivation is that the proportion of daily

passengers wishing to depart a given origin for a given destination at

time t(j) is a multiplicative function of the preferability of departure

at t(j), PD(j), and the attractiveness., PA jarr), of arriving at the

destination at the arrival time, t(j ar). A multiplicative form was chosen

over an additive form after consideration of a typical west to east

transcontinental market. Seven o'clock in the evening, t(j) = 19.0, is,

referring to the basic t(j) distribution, a reasonably preferable time of

day for departure. However, a departure from a west coast region for an

east coast region at 7:00 p.m. on a nonstop jet would result in an arrival

on the east coast at 3:00 a.m. (five hours flying time plus three time

zones), which is hardly desirable to anyone. If an additive form were

employed, the preferability of departing at 7:00 p.m. would make this

flight look desirable, whereas in using the multiplicative form the null

attraction of a 3:00 a.m. arrival, PA(jarr) = 0.0, will completely

eliminate the desirability of this time of departure.
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The functional form of 7r(j) for any given market is as follows:

7. = p(j) . p(j + a) (4.13)
41
E!p(j) - p(j + a)

j=1
where

a = 2 (tb+ Z) - 2 (rounded to nearest integer)

t0 = nonstop jet time (hours)

Z = number of time zones crossed (positive if west to east, negative

if east to west)

The first term in the definition of 3, 2(to + z), is the local clock

time difference, in half hours, between the departure and arrival times of

a nonstop jet. The second term, -2, accounts for the shift in time axis

between PD(j) and PA(j) as mentioned above. The motivation for the radical

is that the use of the straight multiplicative form, p(j) - p(j + a),

would not result in the original distribution, p(j), for one hour markets

such as New York to Boston, where the radical form does. The summation

term in the denominator normalizes so that the sum of the n(j) terms over

the entire day will equal unity.

Some examples:

Boston to New York: to = 1.0- Z = 0

a = 2(t + z) - 2(1.0 + 0) - 2 = 0

a = p(j) j = 1, 2, ..., 41
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This results in the original p(j) distribution, as shown in Figure 4.2.

Chicago to Los Angeles: to = 4.0

a = 2(t0+ Z) - 2(4.0 - 2) - 2 = 2

The n distribution for Chicago to Los Angeles is shown in Figure 4.3.

The ni

The r

Los Angeles to Chicago:

distribution for Los

Boston to San Francisco:

distribution for Bost

to = 3.5 Z = 2

3 = 2(to+ Z) - 2 = 2(3.5 + 2) - 2 = 9

Angeles to Chicago is shown in Figure 4.4.

to = 6.0 Z = -3

a = 2(t0+ Z) - 2 = 2(6.0 - 3) - 2 = 4

on to San Francisco is shown in Figure 4.5.

San Francisco to Boston: t. = 5.0 Z = 3

a = 2(t6+ Z) - 2 + 2(5.0 + 3) - 2 = 14

This 7 distribution is shown in Figure 4.6 .

4.2.2.5 Examples of Level of Service Calculators

A computer program entitled LOSCOMP has been written to compute for

any given market the values of LOS and the competition variable, COMP. The

program is written in PL/I. LOSCOMP accepts as its input a card containing

the region codes, the number of scheduled flights (m), the nonstop jet time

-- I



CHI /LRX

22'CD

z
crc

LU

a- a
C)

C)

4. 6.5 9.0 11.5 14.0 16.5 19.0 1 24.0

TIME OF DAY

Theoretical Time of Day Demand Distribution for Chicago to Los AngelesFi gure 4. 3



ED

C

zcu

c a U--A

C)'

CLc

cn

C)j

-4.0 6.5 9.0 11.5 14.0 16.5 19.0 0LO
TIME OF DAY

Theoretical Time of Day Demand Distribution for Los Angeles to ChicagoFigure 4.4



C3
In

C)
BCS/SF3

C)

X
CL

C11

4 ( 6,59.0 11,6 14,0 16. 13 U 21,
T IME IF DA y

Theoretical Time of Day Demand Distribution for Boston to San FranciscoFigure 4.5



SF0/BUS

Lu

cc o

C

C _ M

C r

-4.0 6.5 9.0 11.5 1. 651. 152 .
_ TIME OF URY

Theoretical Time of Day Demand Distribution for San Francisco to BostonFi gure 4.6



145

(t,)., and the time zone difference (Z). The cover card is followed by one

card for each of the m scheduled flights which contains the pertinent

flight data including local departure and arrival times and the code of

the carrier(s).

The program internally determines the time of day demand distribution

Trf for j = 1, 2, ... , 41 and then computes the LOS value using the

procedures described in the preceding sections. The output includes a

reproduction of the flight schedule and a table of intermediate steps

leading to the determination of LOS. The program also prints a table of

information on the competitive nature of the market, but discussion of this

aspect of LOSCOMP is deferred to Section 4.2.5.

Example 1. Boston to Washington

Boston to Washington is an example of a highly competitive medium haul

(406 miles) market, involving two large urban centers which generate a

substantial quantity of air passenger demand. Therefore, a high level of

service is expected, and referring to Figure 4.7a, the first page of output

of the LOSCOMP program listing the flight schedule,, this is indeed the

case. Thirty-six flights are offered daily from Boston to Washington; all

of these are direct flights, and most are nonstops.

The departure and arrival times are listed in the decimal equivalent of

military time. For example, the departure time of the twenty-sixth flight,

shown as 16.25, is 4:15 p.m., and the arrival time of the thirty-sixth

The flight schedules for each of these examples are extracted from the
August 15, 1976 edition of the Official Airline Guide.
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Figure 4.7a Flight Schedule for Boston to Washington

FLIGHT SCHEDULE BOS WAS

ADJUSTED
FLIGHT DEPART ARRIVE FLIGHT TIME

1
2
3
4
5
6.
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

7.00
7.00
7.17
7.42
8.00
8.00
8.25
8.75
9.17
9.50
9.92

10.00
10.67
11.58
12.17
12.27
12.30
12.33
13.33
14.17
14.58
15.00
15.62
16.00
16.17
16.25
16.92
17.58
18.17
18.50
19.33
20.00
20.25
20.30
21.00
22.75

8.17
8.28
8.35
8.73
9.15
9.20
9.58

1 C.03
1C.80
10.70
11.03
12.67
11.95
12.78
13.45
13.47
13.45
13.62
1E.08
15.45
15.78
16.18
16.92
17.28
17.30
18.63
18.27
18.78
1C.45
19.70
21.98
21.18
21.48
21.50
22.67
25.50

1.17
1.28
1.18
1.32
1.15
1.2C
1.*33
1.28
1.63
1.20
1.12
2.67
1.28
1.2C
1.28
1.2C
1. 15
1.28
2.75
1.28
1.2C
1. 18
1.30
1.28
1.13
2.38
1 . 35
1.20
1.28
1.20
2.65
1. 18
1.23
1. 2C
1.67
2.75

STATUS CARRIER(S)

DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIFECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT

AA
AA
DL
EA
DL
DL
EA
AA
AA
DL
AL
AI
AA
AL
EA
DL
DL
AA
AL
AA
DL
AL
EA
AA
DL
NA
EA
DL
AA
AL
AL
AL
AA
DI
AA
NQ
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flight, shown as 25.50, is 1:30 a.m. of the following day. The adjusted

flight time is merely the scheduled block time; since none of the flights

are connections, no adjustments are involved in this particular schedule.

The status of a flight refers to its connection characteristics.

Since each of the flights in this schedule is direct, the status is shown as

such. Online connections are labeled "ONLINE" and interline connections

are labeled "INTLIN".

Figure 4.7b is the second page of output of the LOSCOMP program, the

computation of the level of service related variables. The time of day

demand distribution is computed internally and listed in the PI(J) column.

For each of the forty-one time po-ints, the computer assigns the passengers

preferring to depart at that time to one of the available flights in a manner

dictated by the behavioral assumptions discussed in Section 4.2.2.1. For

example, those passengers wishing to depart Boston for Washington at 7:00

p.m. (time point 31) are assigned to flight 30 which (referring back to

Figure 4.7a) departs at 6:30. Flight 30 is that flight that minimizes

the sum of the displacement time (one-half hour) and the flight time. This

sum is 1.70 hours as indicated in the TRIP TIME column.

The CONTRIBUTION TO TOTAL TRIP TIME is the product of the PI(J) and

TRIP TIME figures, and the sum of this column is the average trip time

weighted by the time of day demand distribution. This average, TBAR, is

equivalent to the t defined in equation (4.8), and for this example is

1.532 hours.

The level of service index is the ratio of the nonstop jet time, to

(listed as "TNJ" in the output), 1.20 hours, to the average total trip



Level of Service Computations for Boston to Washington

COMPUTATION OF AVERAGE TCIAL IRIP TIME

FLIGHT DISPLACE-
J T(J) PI(J) BOARDED MENT TIME

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

4.00
4.50
5.00
5.50
6.00
6.50
7. 00
7.50
8.00
8.50
9.00
9.50

10.00
10.50
11.00
11.50
12.00
12.50
13.00
13.50

0.001
0.002
0.005
0.008
0.016
0.023
0.033
0.044
0.038
0.033
0.030
0.028
0.026
0.025
0.023
0.020
0.022
0.023
0.025
0.026

3.00
2.50
2.00
1 .50
1.00
0.50
0.0C
0.08
0.00
0.25
0.25
0.00
0.0e
0.17
0. 33
0.08
0.17
0.20
0.70
0.67

ADJUSIED
FLIGHT [IM1E

1.17
1.17
1.17
1.17
1.17
1.17
1.17
1.32
1.15
1.28
1.28
1.20
1.12
1.28
1.28
1.20
1.28
1.15
1.15
1.28

CONTRIBUTION TO
TRIP TIME ICTAL TRIP TIME

4.17
3.67
3.17
2.67
2.17
1.67
1.17
1.40
1.15
1.53
1.53
1.20
1.20
1.45
1.62
1.28
1.45
1.35
1.85
1.95

0.005
0.008
0.016
0.021
0.034
0.039
0.039
0.061
0.044
0.050
0.046
0.034
0.032
0.036
0.036
0.026
0.032
0.031
0.045
0.050

Pt

Figure 4.7b



Figure 4.7b (continued)

J T(J) PI(J)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

14.00
14. 50
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00
20.50
21.00
21.50
22.00
22.50
23.00
23.50
24.00

0.026
0.027
0.035
0.043
0.045
0.047
0.045
0.043
0.036
0.029
0.025
0.021
0.023
0.023
0.022
0.020
0.015
0.010
0.008
0.005
0.003

FLIGHT DISPLACE-
BOARDED MENT TIME

20
21
22
23
24
25
27
28
29

.30
30
32
32
34
35
35
35
36
36
36
36

0.17
0.08
0.00
0.12
0.00
0.33
0.08
0.08
0.17
0.00
0.50
0.50
0.00
0.20
0.00
0.50
1.00
0.25
0.25
0.75
1.25

ADJUSTED
FLIGHT TIME

1.28
1.20
1.18
1.30
1.28
1.13
1.35
1.20
1.28
1.20
1.20
1.18
1.18
1.20
1.67
1.67
1.67
2.75
2.75
2.75
2.75

TRIP TIME

1.45
1.28
1.18
1.42
1.28
1.47
1.43
1.28
1.45
1.20
1.70
1.68
1.18
1.40
1.67
2.17
2.67
3.00
3.00
3.50
4.00

CONTRIBUTION TO
TOTAL TRIP TIME

0.038
0.035
0.041
0.060
0.057
0.068
0.064
0.055
0.052
0,034
0.042
0.035
0.027
0.033
0.036
0.044
0.041
0.030
0.023
0.019
0.011

TBAIR 1.532

LOS = TNJ/TBAR = 1.20/1.53 = 0.783
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time, 1.532 hours, which equals 0.783. The interpretation of this figure

is that if "perfect" service, a nonstop jet departing at every instant of

the day, were offered, the average total trip time would be 78.3% of its

current value.

Example 2. Chicago to Philadelphia

Chicago to Philadelphia is similar in certain respects to the Boston

to Washington market. It is a medium haul (675 miles) market, involving

two major metropolitan regions that generate substantial air passenger

traffic. Two major differences between these markets can, however, be

noted. The competitive structure of the Boston to Washington markets is

comprised of four large carriers (American, Allegheny, Delta, and Eastern),

each of which carries a significant passenger load. The Chicago to

Philadelphia market is served primarily by two carriers (TWA and United),

who schedule head to head, giving each a virtually equal share of the

market. The second difference is that the major airport of the origin

region in the Chicago to Philadelphia market is notorious for its delays,

which are reflected in the schedule by adjustments to block times to

compensate for the expected delays.

Figure 4.8a shows the published flight schedule for Chicago to

Philadelphia. Of the twenty-three scheduled flights, fifteen are direct

and eleven of these are nonstops. These eleven nonstops have scheduled

block times of about one hour and fifty minutes (1.83 hours) which, when

compared to the block time of about one hour and thirty-five minutes

(1.55 hours) from equation (4.11), shows a padding of about fifteen minutes
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Figure 4.8a Flight Schedule for Chicago 'to Philadelphia

FLIGHT SCHEDULE CHI PHL

ADJUSTED
FLIGHT DEPART ABRIVE FLIGHT TIME

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

7.00
7.00
7.25
8.75
9.75

10.50
10.75
11.67
12.00
13.58
13.75
14.00
14.92
15.17
15.58
17.08
17.75
17.75
17.83
19.50
20.00
20.08
22.07

9.83
1C.92
10.08
12.87
13.83
13.37
15.32
14.50
16.93
17.33
18.33
16.83
17.78
19.92
18.47
20.03
21.57
21.78
20.77
22.35
23.98
22.95
25.43

1.83
3.42
1.83
3.12
3.58
1.87
4.C7
1.83
4.43
2.75
4.08
1.83
1.87
4.25
1.88
1.95
3.32
3. C 3
1.93
1.E5
3.48
1.87
2.37

STATES CARRIER(S)

DIPECI
ONLINIE
DIRECT
DIRECT
ONLINE
DIRECT
ONLINE
DIRECT
ONLINE
DIRECT
ONLINE
DIRECT
DIRECT
ONlINE
DIRECT
DIFECT
ONLINE
DIRECT
DIRECTI
DIREC7
ONLINE
DIRECT
DIRECT

TW
AI/ AL
UtA
UA
A L/AL
TV
AL/AL
UA
AL/AL
NW
AL/AL
TW
TW
AL/AL
UA
U A
A L/ AL
NW
TW
TW
AL/AL
UA
UA
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for expected delays out of Chicago.

The level of service measure, LOS, for Chicago to Philadelphia is

0.648 as shown in Figure 4.8b. Note that this figure is about 20% lower

than that of Boston to Washington due to fewer flights, a generally

inferior scheduling in terms of intermediate stops and connections, and

scheduled delays.

Example 3: San Francisco to Omaha

San Francisco to Omaha is a monopolistic (United) long haul (1432

miles) market with few scheduled flights, but a nevertheless reasonably

high level of service. Figure 4.9a lists the flight schedule. Eight

daily flights are offered, and only three of these are direct. However,

the fifth flight listed is United 564 which is a mid-day nonstop 727.

Referring to Figure 4.9b, it can be seen that the passengers wishing to

depart San Francisco for Omaha between 8:30 a.m. and 1:00 p.m. are assigned

to this flight, about 33% of the total daily traffic. The resulting

level of service index, LOS, is 0.507.

Example 4: San Antonio to Tucson

The fourth and final example of the computation of level of service

is for the San Antonio to Tucson market. This is a low density medium

haul (762 miles) market, with a rather low level of service. The only

direct flight is the fourth flight listed in Figure 4.10a, Continental 63,

a noon departure of a 727-200 which makes one intermediate stop in El Paso.

This flight receives the assignment of about 22% of the passengers, as



Level of Service Computations for Chicago to Philadelphia

COMPUTATION Of AVERAGE TCIAL TRIP TIME

FLIGHT
J T(J) PI(J) BOARDED

DISPLACE-
MENT TIME

ADJUSTEE CONTRIBUTION TO
FLIGHI SIME TRIP TIME TOTAL TRIP TIME

1 4.00
2 4.50
3 5.00
4 5.50
5 6.00
6 6.50
7 7.00
8 7.50
9 8.00

10 8.50
11 9.00
12 9.50
13 10.00
14 10.50
15 11.00
16 11.50
17 12.00
18 12.50
19 13.00
20 13.50

0.003
0.006
0.011
0.017
0.027
0.031
0.034
0.038
0.034
0.031
0.029
0.026
0.024
0.024
0.024
0.023
0.025
0.026
0.027
0.031

3
3

1

1
1
1

3
3
3
4
6
6
6
6
8
8
8
12
12

3.00
2.50
2.00
1.50
1.00
0.50
0.00
0.25
0.75
1.25
0.25
1.00
0.50
0.00
0.50
0.17
0.33
0.83
1.00
0.50

1.83
1.83
1.83
1.83
1.83
1.83
1.83
1.83
1.83
1.83
3.12
1.87
1.87
1.87
1.87
1.83
1.83
1.83
1.83
1.83

4.83
4.33
3.83
3.33
2.83
2.33
1.83
2.08
2.58
3.08
3.37
2.87
2.37
1.87
2.37
2.00
2.17
2.67
2.83
2.33

0.015
0.027
0.044
0.056
0.077
0.073
0.063
0.079
0.088
0.094
0.097
0.075
0.057
0.045
0.057
0.046
0.053
0.069
0.076
0.073

Figure 4.8b



Figure 4.8b (continued)

J T(J) PI(J)

21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41

14.00
14.50
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00
20.50
21.00
21.50
22.00
22.50
23.00
23.50
24.00

0.035
0.036
0.042
0.046
0.046
0.043
0.037
0.034
0.029
0.027
0.025
0.022
0.022
0.020
0.015
0.013
0.009
0.005
0.000
0.000
0.000

FLIGHT DISPLACE-
BOARDED MENT TIME

12
13
13
15
15
16
16
19
19
19
20
20
22
22
22
23
23
23
23
23
23

0.00
0.42
0.08
0.08
0.42
0.58
0.08
0.33
0.17
0.67
0.50
0.0c
0.08
0.42
0.92
0.57
0.07
0.43
0.93
1.43
1.93

ADJUSTED
FLIGHT TIME

1.83
1.87
1.87
1.88
1.88
1.95
1.95
1.93
1.93
1.93
1.85
1.85
1.87
1.87
1.87
2.37
2.37
2.37
2.37
2.37
2.37

CONTRIBUTION TO
TRIP TIME TOTAL TRIP TIME

1.83
2.28
1.95
1.97
2.30
2.53
2.03
2.27
2.10
2.60
2.35
1.85
1.95
2.28
2.78
2.93
2.43
2.80
3.30
3.80
4.30

0.064
0.083
0.082
0.090
0.105
0.108
0.076
0.077
0.060
0.070
0.059
0.041
0.044
0.045
0.043
0.038
0.023
0.015
0.000
0.000
0.000

TEAR 2.390

LOS = TNJ/TBAR = 1.55/2.39 = 0.648
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Figure 4.9a Flight Schedule for San Francisco to Omaha

FLIGHT SCHEDULE SFC CMA

FLIGHT DEPART

8.00
8.00
8.75

10.17
10.83
14.00
14.25
19.58

ADJUSTEL
ABRIVE FLIGHT TIME

14.60
14.92
16.33
16.97
15.75
20.58
2C. 58
29.10

5 .10
5.42
5.50
5.80
2.92
5.08

8.52

STATCS CARRIER(S)

ONLI1NE
0NLIN
DIRECT
INTLIN
DIRECT
ONLINE
DIRECI
INTLIN

UA/UA
UA/UA
UA
WA/AA
UA
U A/ UA
UA
CC/EA



Figure 4.9b Level of Service Computations for San Francisco to Omaha

COMPUTATION OF AVERAGE TOTAL TRIP TIME

FLIGHT
J T(J) PI(J) BOARDED

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.00
10.50
11.00
11.50
12.00
12.50
13.00
13.50

0.009
0.011
0.015
0.018
0.025
0.029
0.034
0.037
0.033
0.032
0.032
0.031
0.031
0.030
0.029
0.032
0.036
0.038
0.040
0.040

DISPLACE-
MENT TIEE

4.00
3.5C
3.00
2.50
2.00
1.50
1.0c
0.50
0.00
2.33
1.83
1.33
0.83
0.33
0.17
0.67
1.17
1.67
2.17
0.75

ADJUSTED CONTRIBUTION TO
FLIGHT 7IME TRIP TIME IOIAL TRIP TIME

5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
2.92
2.92
2.92
2.92
2.92
2.92
2.92
2.92
2.92
2.92
4.33

9.10
8.60
8.10
7.60
7.10
6.60
6.10
5.60
5.10
5.25
4.75
4.25
3.75
3.25
3.08
3.58
4.08
4.58
5.08
5.08

0.078
0.096
0.124
0.139
0.176
0.194
0.209
0.208
0.168
0.166
0.150
0.132
0.116
0.099
0.091
0.113
0. 148
0.176
0.204
0.204



Figure 4.9b (continued)

FLIGHT DISPLACE-
J T(J) PI(J) BOARDED MENT TIME

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4 C
41

14.00
14.50
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00
20.50
21.00
21.50
22.00
22.50
23.00
23.50
24.00

0.040
0.037
0.038
0.039
0.036
0.039
0.038
0.036
0.032
0.025
0.019
0.015
0.013
0.009
0.000
0.000
0.000
0.000
0.000
c.000
0.000

7
7
7
7
7
7
7
7
7
7
7
8
8
A
8
8
8
8
8
*8
8

0.25
0.25
0.75
1.25
1.75
2.25
2.75
3.25
3.75
4.25
4.75'
0.08
0.42
0.92
1.42
1.92
2.42
2.92
3.42
3.92
4.42

ADJUSTED
FLIGHT TIME

4.33
4.33
4.33
4.33
4.33
4.33
4.33
4.33
4.33
4.33
4.33
8.52
8.52
8.52
8.52
8.52
8.52
8.52
8.52
8.52
8.52

CONTRIBUTION TO
TRIP TIME TOTAL TRIP TIME

4.58
4.58
5.08
5.58
6.08
6.58
7.08
7.58
8.08
8.58
9.08
8.60
8.93
9.43
9.93

10.43
10.93
11.43
11.93
12.43
12.93

0.183
0.170
0.191
0.216
0.221
0.256
0.272
0.275
0.258
0.213
0.171
0.131
0.118
0.089
0.000
0.000
0.000
0.000
0.000
0.000
0.000

TEAR = 5.755

LOS = TNJ/IBAR = 2.92/5.75 = 0.507
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Figure 4.10a Flight Schedule for San Antonio to Tucson

FLIGHT SCHEDULE SAT TUS

FLIGHT DEPART

8.83
11.00
11.33
12.00
16.17
18.00
22.33

ADJUSTED
ARRIVE FLIGHT TIME

9.27
14.85
14.90
12.47
17.38
21.17
23.78

2.93
6.85
6.C7
2.47
4.22
6. 12
3.95

STATUS CARRIER(S)

ONLINE
INTLI N
ONLINE
DIRECT
INTLIN
INILIN
ONIINE

CC/CO
BN/AA
AA/AA
cc
AA/CO
BN/AA
CC/CO
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can be determined from Figure 4.10b. The remaining 78% must use connecting

service. The resulting average total trip time, TBAR, is 4.672 hours,

which, when compared to a nonstop jet time of 1.96 hours, yields a level of

service index of 0.420.

4.2.2.6 Combination of Directional Levels of Service

The values of the level of service variables for a given region pair

ij are computed for the schedules of both directions, i to j and j to i.

For the purposes of model calibration in Chapter V, the two values are

combined by taking the geometric mean.

LOS i LOS 4 x LOS. . (4.14)

This multiplicative form was selected over an additive form to guard

against overestimation in markets that may have substantially asymmetric

service patterns. If a very high level of service were offered in one

direction but little or none in the other direction, it is likely that there

would be a very low volume of demand. The multiplicative formulation is

sensitive to this, whereas an additive form would not be.



Figure 4.10b Level of Service Computations for San Antonio to Tucson

COMPUTATION OF AVERAGE TOIAL TRIP TIME

J T(J) PI(J)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.00
10.50
11.00
11.50
12.00
12.50
13.00
13.50

FLIGHT
BOARDED

0.000
0.000
0.003
0.004
0.009
0.014
0.023
0.033
0.036
0.038
0.035
0.031
0.029
0.027
0.025
0.023
0.023
0.022
0.024
0.025

DISPLACE-
MENT TIME

4.83
4.33
3.83
3.33
2.83
2.33
1.83
1.33
0.83
0.33
0.17
0.67
1.17
1.50
1.00
0.50
0.00
0.5C
1.00
1.50

ADJUSTED CONTRIBUTION TO
FLIGHT TIME TRIP TIME 7CTAL TRIP TIME

2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.93
2.47
2.47
2.47
2.47
2.47
2.47
2.47

7.77
7.27
6.77
6.27
5.77
5.27
4.77
4.27
3.77
3.27
3.10
3.60
4.10
3.97
3.47
2.97
2.47
2.97
3.47
3.97

0.000
0.000
0.017
0.027
0.052
0.073
0.111
0.139
0.137
0.126
0.108
0.111
0.119
0.107
0.086
0.068
0.056
0.066
0.082
0.099
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Figure 4.10b (continued)

J T(J) PI(J)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

14.00
14.50
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00
20.50
21.00
21.50
22.00
22.50
23.00
23.50
24.00

FLIGHT DISPLACE-
BOARDED MENT TIME

0.026
0.027
0.031
0.035
0.040
0.046
0.046
0.046
0.041
0.036
0.030
0.025
0.024
0.023
0.023
0.022
0.019
0.015
0.011
0.008
0.005

2.00
2.50
1.17
0.67
0.17
0.33
0.83
1.33
1.83
2.33
2.83
2.83
2.33
1.83
1.33
0.83
0.33
0.17
0.62
1.17
1.67

ADJUSTED
FLIGHT TIME

2.47
2.47
4.22
4.22
4.22
4.22
4.22
4.22
4.22
4.22
4.22
3.95
3.95
3.95
3.95
3.95
3.95
3.95
3.95
3.95
3.95

TRIP TIME

4.47
4.97
5.38
4.88
4.38
4.55
5.05
5.55
6.05
6.55
7.05
6.78
6.28
5.78
5.28
4.78
4.28
4.12
4.62
5.12
5.62

CONTRIBUTION TO
TOTAL TRIP TIME

0.116
0.134
0.167
0.170
0.177
0.207
0.231
0.253
0.247
0.234
0.215
.0.170
0.153
0.131
0.121
0.106
0.080
0.060
0.051
0.039
0.026

TBA IR = 4.672

LOS =-TNJ/TBAR = 1.96/4.67 = 0.420
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4.2.3 Fare (F)

The standard coach (Y) fare has been selected as the price variable.

The source of these data is the Official Airline Guide. It can be argued

that standard coach fare, while being a common measure of price in air

transportation demand modeling, is perhaps improper since it neglects the

impact upon demand of discount fare plans. However, the results of a

prototype study8 imply that further sophistication of definition of fare

variable produces virtually identical results.

Three cross sectional models, each containing a different fare variable,

were calibrated in the prototype study. The models were log-linear

specifications with demand as the response variable and level of service,

Buying Power Index (a measure of economic activity), and fare as the

carriers. The fare proxies in the three models were standard coach fare,

an estimated average fare, and the actual average fare (determined by

computing an average of the available fares, weighted by the number of

passengers who paid each of the fares). The results of the calibration

of these models were nearly identical with negligible fluctuations observed

in the coefficient estimates, their standard errors, and the standard error

of estimate.

In order to ensure against the possible effect of the fare variable

measuring a time trend and to capture the true impact of fare levels as

perceived by the consumer, it was decided that F should be deflated. Since

8 Steven E. Eriksen, John C. Scalea, and Nawal K. Taneja, "A Methodology
for Determining the Relationship between Air Transportation Demand and the
Level of Service" (Cambridge: M.I.T. Flight Transportation Laboratory
Report R76-3, January 1976), pp. 34-36.
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the air transportation product is a service, the selected price deflator

is the "implicit price deflator for personal consumption expenditures on

services."9 The deflated fare variable is expressed in terms of constant

dollars with 1972 as the base year.

4.2.4 Socio-Economic Activity (SE)

As discussed in Section 3.3.1, it is postulated that the total potential

demand for air passenger services in a region pair market is the level of

socio-economic activity in the two regions. Two aspects of socio-economic

levels are considered in this research. The first of these is the ability

of a region to generate air traffic, and is measured by the total personal

income of the region.

The second aspect of socio-economic activity is the region's ability

to attract air traffic. Quandt points out that

"cities with high concentrations of financial intermediaries,
educational and governmental institutions and other service
industries give rise to more travel per capita than cities
with predominantly manufacturing industries." 10

Regions such as New York, Las Vegas, and Miami with large, service-oriented

economies, tend to draw more traffic relative to aggregate industry than

the highly manufacturing regions such as Detroit and Pittsburgh. Therefore,

9 Economic Report of the President (Washington: U.S. Government Printing
Office, 1976), p. 174.
10 Richard E. Quandt, The Demand for Travel: Theory and Measurement
(Lexington, Mass.: Heath Lexington Books, 1970), p. 1.
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a service industry measure, "total labor and proprietors' income by place

of work by industry, service" was selected. These data are published

annually by the Bureau of Economic Analysis (BEA) of the Department of

Commerce. The data are tabulated by BEA areas which, as will be discussed

in Section 4.2, are the defined regions for this study.

The socio-economic attraction from region i to region j is then defined

as the product of the personal income of region i and the service income

of region j. The average of the socio-economic attraction in both

directions of a given region pair is computed, and the square root of this

is taken to convert the units from dollars squared to dollars. The socio-

economic variable, SE, for a generic region pair ij is then defined as:

SE = 1/2(INC1 - SRVC. + SRVC. - INC.) (4.15)

where

INC = personal income, and

SRVC = total labor and proprietors' income by place of work, by

industry, service

The socio-economic variable is deflated by the implicit price deflator

for personal consumption expenditures on services with a base year of 1972.

This is compatible with the fare variable deflation described in the

preceding section.

11 Bureau of Economic Analysis, "Local Area Personal Income 1969-1974,
Vol. 1" (Washington: Department of Commerce, 1976).
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4.2.5 Competition (COMP)

4.2.5.1 Development of the Competition Variable

A proxy for competition has been developed which assumes the value

of 1.0 in strictly monopolistic markets and greater values as the amount of

competition increases. The improvement in this variable over what has

been used in other studies (e.g., Marfisil2), namely "number of carriers

in a market", is that it discounts the presence of minor competitors.

If a market is served by two equally strong competitors, the COMP

variable will have the value of 2.0. If a market is served by one major

and one minor competitor, COMP will have a -value somewhere between 1.0

and 2.0, depending upon the relative strength of the minor competitor.

The competition variable, COMP, is defined as follows:

COMP = 1 (4.16)
m 2E MS.

i=l1

where

i = index of the carriers serving the market, and

MS = market share of carrier i.

This variable is the reciprocal of the common Herfindahl index. 13

12 Marfisi, op. cit.
13 Frederic M. Scherer, Industrial Market Structure and Economic
Performance (Chicago: Rand, McNally, 1971), pp. 51-52.
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4.2.5.2 Examples of the Computation of the COMP Variable

The COMP variable is computed in the LOSCOMP program. As indicated

in Section 4.2.2.5, the proportion, Ili, of the total daily passengers that

wish to depart at any time point j are assigned to a particular flight in

accordance with the behavioral assumptions outlined in Section 4.2.2.1.

From these assignments the market shares of the various carriers can be

estimated, and the value COMP is then calculated from equation (4.16)

above.

Consider the flight schedule for Boston to Washington (Figure 4.7a).

There are a number of carriers competing for the traffic and providing a

high level of service. From the assignments of passengers to flights in

Figure 4.7b, the market shares are predicted and printed in the third page

of output which is reproduced.in Figure 4.1 . The major carrier is

American, with 38.9% of the market. Delta, Allegheny, and Eastern follow,

and a commuter carrier, Cumberland Airlines, picks up a very small

percentage. Substituting these market shares into equation (4.16) yields

the value for COMP:

COMP = 1
5 2
E MS.i

i=l 1

1

(0.389)2 + (0.153)2 + (0.254)2 + (0.179)2 + (0.026)2

1 = 3.685
0.2719
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Figure 4.11 Estimates of Market Shares for Boston to Washington

NUMBER OF CCETITORS = 5

CARRIER

AA
EA

MARKET
SHARE

0. 3E9
0.153

DL 0.254
AL
NQ

C. 179
0.026

COMP = 3.685

Figure 4.12 Estimates of Market Shares for Chicago to Philadelphia

NUMBER OF CCMPETITORS = 2

CARRIER

TW
UA

MAEKET
SEARE

0.538
C.462

CCMP = 1.989
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Chicago to Philadelphia has only two carriers that are competing for

market share. In Figure 4.8a, Northwest and Allegheny have a number of

flights scheduled, but both of Northwest's departures involve intermediate

stops, and Allegheny's flights are all connecting. TWA and United, however,

offer nonstop service on nearly all of their flights and, as indicated in

Figure 4.12, are assigned all the traffic. Since their shares of the

market are nearly equal, COMP is very close in value to two.

San Francisco to Omaha, as can be inferred from Figure 4.9a, is

virtually a monopolistic market. However, the Continental/Eastern

connecting flight at the end of the day is assigned a few passengers in

Figure 4.9b, so the COMP variable is expected to be slightly above one.

Indeed, in Figure 4.13, United receives 96.2% of the market, and COMP is

calculated to be 1.079.

Finally, for San Antonio to Tucson, it appears from Figure 4.10 that

Continental should capture a large portion of the market. In Figure 4.14,

Continental receives 82.5%, and the COMP value is 1.406.

4.2.6 Location within Route Structure (RS)

The route structure variable accounts for the fact that many low density

markets have a very high level of service offered to them, because they

feed into a complex. An example of this which was mentioned in Section

3.3.2 is Birmingham to Atlanta with sixteen nonstops daily.

The four major connecting hubs in the U.S. domestic system are

Atlanta, Chicago, Dallas-Fort Worth, and Denver. Airlines attempt to



169

Figure 4.13 Estimates of Market Share for San Francisco to Omaha

NUMBER OF CCMPETITORS 3

MAFKET
CARRIER SHARE

UA
CO
EA

C.962
C.019
0.019

COMP = 1.079

Figure 4.14 Estimates of Market Shares for San Antonio to Tucson

NUMBER OF CCM;ETITORS = 2

CARRIZE

CO
AA

3ASKET
S HABE

0.825
0. 175

COME = 1.4C6
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maximize the efficiency of the complexes which they operate at these hubs

by scheduling arrivals close together, filling as many of their gates as

possible (Delta concurrently operates 33 gates in peak hours at Atlanta),

and then closely scheduling departures. The advantage of this mode of

operation is that combinatorically there is a very large number of origin-

destination pairs that may be served via close connections. The obvious

disadvantages are the high variability of demands upon terminal employees

and confusion and congestion in the terminals during the peak periods of

the day.

A few of the natural characteristics of airports in which complexes

are operated are:

a. A large number of connecting and through passengers are handled.

b. A large number of aircraft operations are made in a given time

period.

c. A large number of regions are served on a nonstop basis from the

airport.

d. A large percentage of passengers aboard aircraft arriving at or

departing from the airport are not local passengers on that

particular segment.

In addition to the domestic hubs in which complexes are operated,

certain "gateway" airports experience characteristics similar to those

listed above, due to a substantial volume of domestic/international

connection activity. Most notable of these are New York (Kennedy) and

Washington (Dulles) on the east coast and Los Angeles International and

San Francisco International on the west coast.
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The most meaningful measure of route structure for a given segment

is the number of non-local (either continuing or connecting) passengers

traveling on that segment in a given time period. However, these data are

not readily available. They can only be extracted from the Civil

Aeronautics Board's service segment flow data. The acquisition and

processing of these data are very expensive, both in terms of cost and

time requirements. As a surrogate to the number of non-local passengers,

the selected measure of the network effects is the number of connecting

passengers. These data are extracted from Table 10 of the CAB Origin to

Destination Survey.

4.3 Sample Design and Market Selection

4.3.1 The Concept of Region Pairs

As was briefly discussed in Section 3.1.1, an airport generally attracts

passengers from a larger area than its respective city or SMSA. Several

characteristics of passenger behavior related to this fact are as follows:

(1) Airline passengers may be drawn from cities with air carrier

service to more distant airports depending upon the relative levels of

service available. For example, consider a passenger desiring to travel

from Providence to Cleveland sometime after the only direct flight which

leaves at 8:50 a.m. While several connections are available during the

rest of the day, a number of nonstops depart from Boston, 60 miles away,

and may be as convenient in terms of total trip time. Thus, some of
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the Providence-Cleveland demand can be expected to spill over into the

Boston-Cleveland statistics solely because of the schedule offered.

(2) Commuter airlines, while becoming a more integral part of the

air transportation system since their beginning in the late 1960's, do not

report traffic statistics to the C.A.B. in the same detail as do the trunk

and local service carriers. While recent C.A.B. actions have attempted to

bring the commuters closer to the mainstream of air transportation activity

by the introduction of joint fares and airline ticketing, the unregulated

commuters began operations in an environment virtually disjoint from the

rest of the airline system. Under these conditions, a ticket written from

New York to Los Angeles with a connection to Palm Springs on Golden West

Airlines would statistically have represented an origin to destination trip

in the New York-Los Angeles city pair, while in fact it would be more

accurate to consider this the New York-Los Angeles region pair with Palm

Springs included within the Los Angeles region.

(3) Due to economic pressures brought before the Board by the

airlines, the C.A.B. approved suspensions and deletions of service to a

large number of small communities, forcing those passengers formerly served

by the suspended flights to use airports further away. If the replacement

airport is within the same region as the abandoned one, working with

city pairs will show a decline to almost nothing at the abandoned airport

and an increase at the replacement airport.

These points support use of regions rather than cities to insure more

accurate modeling and analysis of the level of passenger movements.

However, this reasoning is highly dependent upon the quality and accuracy
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of the delineation of the regions themselves. In 1972, the Bureau of

Economic Analysis (BEA) of the Department of Commerce investigated the use

of geographical regions delineated by criteria based upon transportation

data. By using the journey-to-work data from the 1960 Census of

Population, the Bureau divided the country into the 173 self-sufficient

regions by minimizing the routine commuting across region boundaries so

that labor supply and demand were located in the same region. Region

boundaries were restricted to county boundaries and, for the purposes of

this work, there is at least one air carrier airport serving each region.

Since other geographical delineations considered were not based upon

transportation criteria, the BEA regions were adopted for this

investigation.

Each region pair is comprised of a set of airport pairs found by

enumerating the airports in one region with those in the other. Even if

there is more than one airport within a metropolitan area, all airports

must be counted and matched with all airports in the other region. The

Official Airline Guide aggregates airports within the same city, but for

purposes of this research, each airport must be considered separately.

The demand in a region pair will be the sum of the demands of the component

airport pairs; the supply of service in a region pair will be the aggregate

of flights offered in each of the component airport pairs.
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4.3.2 Sampling Design and Procedure

The criteria used in the process of selecting a representative sample

of region pair markets for this analysis are as follows:

(1) The sample size should be larger than that of most other

econometric analyses in this area, preferably on the order of 200 markets.

(2) The stage lengths should be evenly distributed over short (less

than 400 miles), medium (400 to 999 miles), and long (1000 miles and

longer) haul markets.

(3) To facilitate data collection the total number of distinct regions

should be held to a reasonably manageable number (on the order of 50).

(4) A mix of economic levels of the region pairs should be selected

within each of the length of haul strata. There should be selections of

two large regions, a large and a medium size region, a large and a small

region, two medium sized regions, etc.

(5) The markets should be distributed as evenly as possible with

respect to geographical location and market type.

The initial step in the sampling procedure was to select fifty distinct

regions which were quite evenly distributed across the country. It was

hoped that the entire selection of region pairs could be taken using

these regions. It turned out to be necessary to add two additional

regions, bringing the total number to fifty-two. The regions are listed

in alphabetical order in Figure 4.15. For data manipulation reasons, it

was necessary to assign each region a two digit code number. These and

the standard three letter city codes are included in Figure 4.15.
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Region

Codes

Number Letters

Albany

Atlanta
Bismarck

Boston

Chicago

Cincinnati
Cleveland
Dall as
Dayton

Denver

Detroit

Eri e

Fargo
Houston

Jackson

Jacksonvi 11 e
Kansas City

Knoxville

Las Vegas

Lexington

Lincoln

Los Angeles

Lubbock

Memphis

Miami

Milwaukee

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

ALB
ATL
BIS

BOS
CHI

CVG
CLE
DAL
DAY
DEN
DTT
ERI
FAR

HOU
JAN
JAX
MKC
TYS

LAS
LEX
LNK
LAX
LBB

MEM
MIA
MKE

Minneapolis

Minot

Nashville
New Orleans

New York

Norfolk

Oklahoma City

Omaha

Philadelphia
Pittsburgh

Portland, Maine

Portland, Oregon

Raleigh

Reno

Richmond

Rochester

Sacramento

St. Louis

Salt Lake City

San Antonio

San Diego

San Francisco

Seattle

Tucson

Washington

Wichita

Figure 4.15 List of Regions

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

-42
43

44

45

46

47

48

49

50

51

52

MSP
MOT
BNA
MSY
NYC
ORF
OKC

OMA
PHL
PIT

PWM
PDX
RDU
RNO

RIC

ROC
SAC
STL
SLC
SAT
SAN
SFO

SEA
TUS
WAS
ICT
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The second stage of the sampling procedure was to design a two way

stratification using length of haul and economic activity as the

stratified variables. The economic variable used was the 1974 Buying

Power Index (BPI) for each region. The Buying Power Index is a function

of a region's retail sales, population, and total income, and is

published annually in the "Survey of Buying Power" edition of Sales

Management magazine. The regions were divided into five economic strata,

with number 1 being the low BPI regions (e.g., Erie, Reno), and number 5

being the h-igh BPI regions (e.g., New York, San Francisco). This resulted

in fifteen economic strata for region pairs:

1-1 2-2 3-4

1-2 2-3 3-5

1-3 2-4 4-4

1-4 2-5 4-5

1-5 3-3 5-5

The lowest economic markets are in the "1-1" category (e.g., Erie-Reno)

and highest are the "5-5" markets (e.g., New York-San Francisco).

This two dimensional stratification yields a 3 x 15 matrix with the

three rows representing length of haul and the fifteen columns representing

economic level. Four regions were selected for each of the forty-five

blocks, yielding a total sample of 180 region pairs. The markets were

carefully hand-picked in an effort to geographically vary the markets within

each block as much as possible.

The markets in the sample are listed by stratification in Appendix A.
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V. Empirical Analysis of U.S. Domestic Air Passenger Markets

The exact specification of the general model developed in Chapter III

and defined in detail in Chapter IV is as follows:

(Demand equation) QD =

(Service equation) LOS

'10 LOS F612 SE 13 e 1

= '20 TRAFLS21 F 22 COMP$23 E,2

where

QD
LOS

F

SE

TRAFL

COMP

= origin to destination passenger demand

= level of service

= fare

= socio-economic activity

= traffic (origin to destination plus connecting passengers)

lagged one year

= competition

Taking the logarithms of equations (5.1) and (5.2) yields:

(Demand equation) log QD a 810 + $ 11 log LOS + a12 log F

+ $13 log SE + e1
(5.3)

(5.1)

(5.2)
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(Service equation) log LOS = 820 + 821 log TRAFL + a22 log F

+ 823 log COMP + 2
(5.4)

where

Slog a 10

= log s1

= log a'20

Slog E 2

Both of these equations are of the general linear form:

y = X + C (5.5)

Y is the n x 1 vector of "response" variable observations

X is the n x p matrix of the n observations of the p "carrier"

variables

8 is the p x 1 vector of coefficients

and e is the n x 1 vector of error terms

The least squares estimators of the p x 1 vector of a coefficients

are as follows:

X= ( X)T Y (5

810

a20

S2

where

(5.6)
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The error terms are random variables assumed to be independent and

identically distributed according to a Gaussian distribution with mean of

zero and variance a2.

e ". G (0, a2) (5.7)

Therefore the expected values, Y, of the elements of Y given a set of

observations X are as follows:

Y =X (5.8)

The term "residual", r1, refers to the difference between the actual

value of the i th observation of the response variable, y,, and its expected

or "predicted" value, y,,

r = yi -yi = y- (5.9)

where x. is the ith row of the carrier matrix, X.

The purpose of this chapter is to present the process and results of

the statistical calibration of the general model over various subsets of

the data set. Some of the general conclusions and implications regarding

applications based upon the statistical analysis of this chapter will

briefly be discussed herein. However, the bulk of the applications and

conclusions will be deferred until the two final chapters of this thesis.

The total data set consists of observations from each of the 180
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markets in the experimental design for the six years between 1969 and 1974

inclusive. The fare and level of service related data were extracted from.

the Official Airline Guide (OAG) of September 1 of each of these years.1

Since many of the markets in the sample are very small, quite often no

service was published in the QAG for certain markets in September of one

or more of these years. These observations were deleted, and the size of

the total sample was consequently reduced to 820 observations.

A series of statistical tests are conducted to determine proper

aggregation of subsets of the data. As was expected, the tests affirm that

the characteristics of long, medium, and short lengths of haul markets

differ sufficiently to warrant separate analyses. Furthermore, it will

be shown that within length of haul strata, market characteristics across

market size (as defined by demographics) vary significantly. Initially

it is unclear why this market size effect is true, but as the analysis

proceeds, the reasons become evident. Consequently, nine subsets of the

total sample, categorized three ways by length of haul and three ways by

market size, are separately analyzed.

Within each of the nine cross-classifications of the data a

standard process of parameter estimation will be used throughout this

chapter. The first step is to calibrate (estimate the 2 parameters)

1 September was selected because this month least reflects seasonality.
Since the demand data is annual, a winter month would overstate nominal
level of service for north-south markets, and a summer month would over-
state nominal service in east-west markets. September, generally a
shoulder period month, seemed to be most representative of nominal level
of service scheduling.
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the service equation using the ordinary least squares estimation procedure

of equation (5.6). The estimated values for the logarithms of the level

of service observations are then computed using equation (5.8) and used as

a proxy (instrumental variable) for log LOS in the demand equation (5.3)

which is then estimated using ordinary least squares. This initial

process is referred to as the "preliminary analysis". .

Two serious problems in the results of the preliminary analysis of the

demand equation will occur throughout. The first of these is a

clustering by markets of the residuals. Within each length of haul/size

of market stratum it will not be uncommon to observe a number of markets

for which the six observations are consistently overestimated and several

markets which are consistently underestimated. The second recurrent

problem in the preliminary analyses of the demand equations calibrated

over the nine subsets is a substantial disparity between the coefficient

estimates and judgmental assessments of what are the actual values of

these parameters.

The problem of clustering of residuals is hypothesized to be a

result of the inclusion of discrepant data points within the various

subsamples. Discrepant data points in this pooling of cross-sectional

and time series data are of two different varieties. An entire market

(six data points) may be improperly inserted into a cross-classification

(e.g., a market in the medium haul/large size sample is in reality a

member of the medium haul/medium size population), or a single

observation within an otherwise properly pooled market may be awry

(due to an airline strike, other temporary suspension of service, data

error, etc). These two classes of discrepancies are handled separately
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(although their ill effects are similar) in Phase I (examination of

seemingly discrepant markets) and Phase II (examination of seemingly

discrepant single year's observations among otherwise compatible

markets) of sensitivity analysis.'

A useful instrument for identifying the existence of discrepant data

points is the "4x" or "hat" matrix.2 Recalling that the estimated

response variables in the general linear model are

Y = (5.8)

and that

= (XTX)~lXTY (5.6)

then

Y = HY (5.10)

where

H = X(XTX)~XT (5.11)

The n by n matrix H is the so-called "hat" matrix. It is a function

only of the carrier variables and defines the linear combination of the

carriers by which the actual values of the response variable Y are

translated into the estimated values of the response variable Y.

A generic element of the hat matrix, hij, when compared to the

2 David C. Hoaglin and Roy E. Welsch, "The Hat Matrix in Regression and
ANOVA" (National Bureau of Economic Research Working Paper WP 901-77,
January, 1977).
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other values in row i of the hat matrix, measures the relative amount of

influence or leverage that the observed value (of the response variable)

of data point j will have upon the estimated value of data point i (regard-

less of the value of y, since H is a function only of X). Of particular

interest to the data analyst are the diagonal elements of the hat matrix,

h i, which for simplicity will hereafter be noted as h. The concept

of the hat matrix and its usefulness in sensitivity analysis is

elaborated upon in Appendix B.

The situation of data point i being identified as a high leverage

point (large value of h ) is neither a necessary nor a sufficient condition

for a point to be labeled as being discrepant. In the sensitivity

analysis of the coefficient estimation procedure of a general linear

model, it is necessary to evaluate the impact of a high value of h. in

conjunction with other output statistics.

One such output statistic is the residual, r = yi - y , which may

be conveniently expressed by dividing by its standard deviation to obtain

the standardized residual, r .

r. = (5.12)

a 1 - hi

where a 2 is the mean square residual.

However, residual analysis must be used with extreme caution. In

many circumstances a discrepant data point may have a very small residual,

while a data point that is truly representative of the population to

which the model is to be fitted may have a very large residual! This
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occurs when the discrepant data point has such high leverage that the

estimated regression function is forced away from the representative

points and through or near the discrepant point. A simple numerical

example in Appendix B clearly illustrates this phenomenon.

A more powerful diagnostic tool is the studentized residual, r* ,

which is the number of standard errors that the observed value y would

lie from the estimated value y(i) if the model were fitted with data

point i deleted from the sample.

A

r* = Y 1  ) (5.13)

(i) 1 + X (X (i) XXT xT

where i are the estimated coefficients with data point i deleted

^2
a is the residual mean square with data point i deleted

and X M is the carrier matrix with data point i deleted

For an example of the usefulness of studentized and standardized

residuals, the reader is again referred to the simple numerical example

of Appendix B.

Another set of useful diagnostic statistics, if the analyst is

concerned with coefficient stability, are the changes in coefficients

by removing data point i, - (i). If the analyst is concerned with the

fit of the equation, he or she may wish to examine the scaled change in fit
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due to elimination of data point i, DFFITS, defined as follows:3

h. 1/2
DFFITS = ( p h i2) (5.14)

p 1- h~ 1

Deletion of data points from a sample in order to improve the

summary statistics is an extremely risky proposition with regard to

maintaining the integrity of the research. A naive analyst may feel smug

about removing an observation that has a large residual so as to improve

the fit. However, although the summary statistics (standard error of

estimate, R2, etc.) will imply an improvement, the resulting equation may

be further removed from the goal of the research -- an equation or set of

equations that is representative of the population over which the model

is assumedly being calibrated.

A major objective of this research is to develop a series of

statistically robust models. The estimation process should not be

sensitive to one or more discrepant data point(s) which will significantly

alter the output resulting in a set of equations which is misrepresentative

of the underlying population. Equivalently, the sample used in the

final calibration of any of the models should not contain a data point

which, if removed, would substantially affect the estimates. This is

sometimes referred to as the "little a lot" criterion; if a little bit of

3 "TROLL Experimental Programs: Model Sensitivity Analysis" (Cambridge:
Computer Research Center, National Bureau of Economic Research, 1976),
p. 27. Many other diagnostic statistics are described in this document.
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the data is perturbed a lot (or deleted) the estimates should not exhibit

substantial variation. Furthermore, the models should satisfy the "lot

a little" criterion; if a lot of the data is perturbed a little, the

estimates should show similar stability.

With the sometimes-conflicting objectives of research integrity and

statistical robustness in mind, the following ground rules for data

deletion are laid. A data point, regardless of its apparent ugliness in

the sample, must not be deleted unless it satisfies one of the following

criteria:

1. The market has obviously been incorrectly grouped (e.g., a

market which is more representative of long haul/medium

size is in the long haul/large size sample), violating the

assumption of homogeneous aggregation.

2. The data point is anomalous, due to an obvious cause not

accounted for in the model (e.g., an airline strike).

3. The data point is anomalous for unobvious reasons and its

inclusion is causing a major fit problem with many of

the other observations (e.g., clustering of residuals).

A data point will not be jettisoned purely because it "improves the fit".

As previously mentioned, the sensitivity analyses were generally

conducted in two phases. Phase I searches for, and, if deemed

appropriate by the first criterion above, deletes entire markets from

the sample. Phase II then involves an investigation of the output

statistics from the estimation of the reduced (by Phase I) sample, and

searches for individual data points that appear discrepant by criteria 2
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and 3 above. The effects of deleting these suspect points are then

investigated and a judgmental decision is made as to which points should

remain and which should be jettisoned.

This lengthyprocess is, for illustrative purposes, documented in

detail in the calibration of first of the nine stratifications (large

long markets). For simplicity, the procedure is merely summarized for

the remaining calibrations.

The problem with the disparate values of the coefficient estimates

and their judgmental priors was suspected to be an ill effect of

multicollinearity. Multicollinearity, a very common problem in regression

analysis, is a situation where two or more columns of the X matrix are

nearly linearly dependent. For example, if two carrier variables are

highly correlated, their respective columns in the X matrix would

exhibit this near-dependency condition, and the collinearity problem

would exist.4

The example above of two variables being highly correlated can

easily be diagnosed by observing the off diagonal values of the variance-

covariance matrix for X or those of the correlation matrix of X.

However, more complex near-dependencies involving more than two columns

of X may not be evident by observation of the variance-covariance or

correlation matrices. For a simple example of this higher order effect,

see Appendix C, which contains a more elaborate discussion of

4 The terms multicollinearity, collinearity, near dependency, and near
singularity are used interchangeably throughout the thesis.
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mul ti coll ineari ty.

A more effective diagnostic signal for the presence of collinearity

is the p by 1 vector of eigenvalues of the matrix X TX. If near

singularities do exist in the X matrix, one or more of the eigenvalues

of the cross product matrix will be small relative to the largest

eigenvalue.5 The ith condition index of X, K.(X), is defined as follows:

K (X) = = -- (5.15)

where a = the i th largest singular value of X

and =the ith largest eigenvalue of XTX. 6

The condition number of X, K(X), is the largest condition index,

K(X) = K (X) = (5.16)p a
p

Generally speaking, the higher the condition number (and condition

indices), the greater is the severity of the multicollinearity (see

Appendix C).

A major ill effect of multicollinearity is high standard errors of

coefficient estimates causing the estimates to be unstable. If

the analyst is principally concerned with- fit and not so much with

individual parameter estimates, multicollinearity may not be too

5 If one or more exact dependencies exist, the XTX matrix will not be of
full rank (p) and one or more eigenvalue(s) will be equal to zero.
.6 For a more detailed discussion of singular values and eigenvalues, see
Appendix C.
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consequential. However, for policy analysis it is of utmost importance

to produce coefficient estimates that are both intuitively reasonable and

are precise (low standard errors). In this sense, the problem of

collinearity is indeed a grave concern.

The technique used to correct for the multicollinearity (which was,

in fact, detected as the problem) is principal components analysis, and

is described in detail in Appendix C. In principal components analysis,

the p dimensional vector space of X is rotated to the "principal

components basis". In the principal components basis, the observations

are linear combinations of the original columns of X, but by definition

of the rotation are orthogonal.

As is shown in Appendix C, if small eigenvalues of XTX exist, in

the principal components basis the components corresponding to these

small values are relatively unimportant and may be eliminated.

Calibrating the model in the principal components basis using the

remaining components and rotating back to the original basis produces a

set of estimates apc which may have significantly higher precisions

(lower standard errors).

Applying principal components analysis to the ill-conditioned

(collinear) data had, in most cases, three impacts:

1. The point estimates of the coefficientes became more

intuitively reasonable.

2. The precision of the estimates increased substantially

(standard errors of coefficient estimates reduced).

3. The fit was poorer (standard error of estimate increased, R2

decreased, etc.).
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Therefore, for each cross-classification of the data, the

estimation of the parameters consists of a two-step process. The first

step is to calibrate the demand equation using ordinary least squares and

then to reduce the sample using sensitivity analysis techniques. The

second step is to calibrate the demand equation using principal

components on the reduced sample. While the first equation generally

produces a better fit, the second provides more reasonable and much

more precise estimates of the coefficients. Since the purpose of this

research is to generate a set of structural equations for policy analysis,

the demand equations estimated using principal components are generally

preferred over those obtained by ordinary least squares.

5.1 Pooling of Entire Data Set

Throughout the preceding chapters there have been references to the

fact that pooling data containing observations over all lengths of haul

to calibrate a single equation or set of equations is inappropriate.

The inappropriateness is due to the very different market characteristics

between length of haul strata (i.e., the model coefficients are

functions of length of haul). This effect was a major conclusion of

Marfisi's empirical work and is also discussed in detail in Blumer's

thesis.8

E. Pat Marfisi, "Theory and Evidence on the Behavior of Airline
Firms Facing Uncertain Demand" (Ph.D. Dissertation, Brown University,
1976). See also the discussion in Section 2.5.
8 Terry P. Blumer, "A Short Haul Passenger Demand Model for Air
Transportation" (S.M. Thesis, M.I.T., 1976).
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This fact is verified using the data collected for the present

research. If the data could be pooled over lengths of haul, a test

of the following null hypothesis would be accepted:

H : 1 . = Sm as .l j = 0, 1, 2, 3 (5.17)

where the alj parameters are the coefficients of equation (5.3 ) and the

superscripts refer to long, medium, and short lengths of haul. This

hypothesis is testable by Chow's technique.9

Four separate regression analyses were conducted: all data, long,

medium, and short lengths of haul. The results are shown in Figure 5.1.

The test statistic, F, for the Chow test, as shown in Figure 5.2, is equal

to 35.3, which greatly exceeds the critical value, 2.53 at the one percent

level of significance.

The conclusion to this is, as expected, that indeed pooling data

over length of haul is not appropriate. The implication of this

conclusion is that at least one length of haul stratum has different

market characteristics (demand equation parameters) than the other two,

and it is possible that all three are mutually different. Pairwise Chow

tests could be conducted to verify the latter case, but it was assumed

a priori that indeed each is different, and so separate models will be

9 Gregory Chow, "Tests of Equality Between Subsets of Coefficients in
Two Linear Regressions" (Econometrika, Vol. 28, July, 1960).
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Figure 5.1. Estimates of Demand Equation Parameters for All, Long Haul,

Medium Haul, and Short Haul Markets

Carrier

Constant

Level of Service

Fare

Socio-Economics

n = 820

std. error = 0.339

Carrier

Constant

Level of Service

Fare

Socio-Economics

n = 232

std. error = 0.182

ALL MARKETS

Coefficient Sta

14.6

4.38

-1.13

0.171

R2  = 0.944

R2 adj = 0.944

LONG HAUL MARKETS

Coefficient Sta

15.2

4.15

-1.41

0.238

R 2 = 0.980

R adj = 0.980

idard Error t-rati

0.283 51.7

0.0651 67.3

0.0217 -52.0

0.0254 6.7

F(8/816) = 4610

SSR = 93.8

ndard Error t-rati

0.375 40.5

0.0900 46.2

0.0514 -27.4

0.0372 6.3

o

3

0

9

F(3/228) = 3730

SSR 7.56
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Figure 5.1 (continued)

MEDIUM HAUL MARKETS

Carri er

Constant

Level of Service

Fare

Socio-Economics

Coefficient

13.9

4.07

-1.07

0.207

Standard Error

0.429

0.0751

0.0670

0.0311

n = 283

std error = 0.217

R2  = 0.971

R2 adj = 0.971

F(3/279) = 3140

SSR = 13.2

SHORT HAUL MARKETS

Carri er

Constant

Level of Service

Fare

Socio-Economics

Coefficient

10.6

4.23

-0.182

0.265

Standard Error

0.606

0.115

0.0973

0.0416

R2 = 0.942 F(3/301) = 1601

std error = 0.402

t-ratio

32.5

54.2

-15.9

6.67

t-ratio

17.6

36.9

-1.87

6.38

n = 305

R adj = 0.041 SSR = 48.6
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Figure 5.2. Chow Test for Pooling Markets by Length of Haul

Pooled Sample: All markets

Subsamples: 1. Long haul markets

2. Medium haul markets

3. Short haul markets

Total number of observations: n = 820

Number of estimated parameters: p = 4

Number of subsamples: k = 3

SSR pooled= 93.8

SSR1  = 7.56

SSRm = 13.2

SSR = 48.6

SSRind = 69.4

SSR pooled - SSRind

F = p(k - 1)

SSRind
n - pk

Fcrit = (8, 808, 0.01) 2.53

24.4
8 35.5

69.4
808
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calibrated for each length of haul grouping. As will be indicated by

the results that follow in this chapter, the coefficient estimates do

vary dramatically by length of haul, so this assumption appears to have

been very reasonable.

5.2 Analysis of Long Haul Markets

The experimental design described in Section 4.2 stratifies markets

not only by length of haul, but also by level of socio-economic activity.

The first order of business in the analysis of long haul markets was to

determine whether pooling over levels of socio-economic activity (within

the length of haul grouping) was appropriate. The method of analysis

is identical to that of the previous section, where a Chow test was used

to ascertain that pooling over length of haul is unacceptable.

The markets were separated into three socio-economic strata --

large, medium, and small. The assignment procedure was somewhat

arbitrary. Using the socio-economic labels of Section 4.2, the

assignment is as follows:

Large socio-economic: 3-4, 3-5, 4-4, 4-5, 5-5

Medium socio-economic: 2-2, 2-3, 2-4, 2-5, 3-3

Small socio-economic: 1-1, 1-2, 1-3, 1-4, 1-5

It will be discovered later in this section that this arbitrary

assignment was, at least for long haul markets, not as representative
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as had been hoped,. and corrective measures will be applied.

Four separate regression analyses were conducted: all long haul,

long/large, long/medium, and long/small, markets.10 The results of

these estimation procedures are shown in Figure 5.3.l1 The Chow test

statistic, as shown in Figure 5.4, is: equal to 3,29, which. exceeds. the

critical value of F, 2.59, at the one percent level of significance. It

is therefore concluded that the characteristics of long haul markets vary

by size of market (as measured by socioeconomic levels). The implication

of this is that separate long haul models must be estimated for large,

medium, and small demographic region pairs.

Unlike the case of pooling markets by length of haul, the economic

justification of why market characteristics would vary by market size was

at first quite puzzling. Verleger12 has analyzed the variability of

fare elasticities by market densityl3 and concluded that the variance of

the price coefficient decreases as traffic increases. However, as was

10 "Long/large"- means "long haul/large socio-economic", etc.
11 Comparing the coefficient estimates of the equation for all long haul
markets in Figure 5.1 to those of Figure 5.3, an inconsistency is
observed. This is due to different level of service estimates. The
level of service estimates in the former case were extracted from the
service equation calibrated over the entire data set. The level of
service estimates in the latter case are from the service equation
calibrated over the long haul markets,

12 Philip K. Verleger, "A Point-to-Point Model of the Demand for Air
Transportation" (Ph.D. Dissertation, M.I.T., 1971).

13 The analysis of Chapter III verifies the strong relationship between
socioeconomic activity and (potential) market density,
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Figure 5.3 Estimates of Demand Equation Parameters for Long, Long/Large,

Long/Medium, and Long/Small Markets

ALL LONG

Carrier

Constant

Level of Service

Fare

Socio-Economics

Coefficient

24.0

7.21

-3.01

0.271

Standard Error

0.567

0.165

0.0615

0.0385

n = 232

std. error = 0.191 R2adj

= 0.978

= 0.978

F(3/228) = 3380

SSR = 8.32

LONG/LARGE

Carri er

Constant

Level of Service

Fare

Socio-Economics

Coefficient

21.7

6.78

-2.79

0.391

Standard Error

0.947

0.262

0.0979

0.0587

R = 0.970

R2adj = 0.969

FC3/1161 ; 1250

std. error = 0.182

t-ratio

42.4

43.7

48.9

7.04

t-rati o

23.0

25.9

-28.5

n = 120

6.66

SSR = 3.86



198

Fig. 5.3 (continued)

LONG/MEDIUM

Carrier

Constant

Level of Service

Fare

Socio-Economics

Coefficient

25.5

6.92

-3.22

0.190

Standard Error

1.08

0.441

0.0996

0.0847

n = 66

std. error = 0.154 R adj

0.957

0.955

F(3/62) = 462

SSR = 1.47

LONG/SMALL

Coefficient

24.6

Level of Service

Fare

Socio-Economics

7.09

-3.05

0.208

Standard Error

1.07

0.328

0.206

0.102

R2 = 0.950 F(3/:42) = 267

std. error = 0.223

t-ratio

23.6

16.8

-32.3

2.25

Carri er

Constant

t-rati o

23.1

21.6

-14.8

n = 46

2.04

R adj = 0.947 SSR = 2,10
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Figure 5.4 Chow Test for Pooling Long Haul Markets by Level of

Socio-Economic Activity

Pooled Sample: Long haul markets

Subsamples: 1. Long/large

2. Long/medium

3. Long/small

Total number of observations: n = 232

Number of estimated parameters: p 4

Number of subsamples: k = 3

SSRpooled 8.32

SSR = 3.86

SSR = 1.47

SSRis = 2.10

SSRind 7.43

SSRpooled - ESSRi 0.89
Fp(k-1) 8 3.29

ESSR. 7.43

n-pk

Fcrit (u, 220, 0,01) = 2.59
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discussed in Section 2.4, the validity of his analysts was discounted

due to specification error (omission of a service variable). The

justification of this heterogeneity across market size will, however,

become clear after the separate models have been calibrated and analyzed.

5.2.1 Large Long Haul Markets

5.2.2.1 Preliminary Analysis

The results of the parameter estimation for the service and demand

equations for the long/large markets are provided in Figure 5.5. In

the service equation, all coefficients have the expected sign and are

statistically significant,14 with the exception of the competition

coefficient which has the wrong sign and is insignificant. This falling

out of the competition variable implies that the effect discussed in

Section 3.3.2 of greater service in highly competitive routes is not

present in this particular sample.

This outcome is not totally surprising, considering that high density

long haul markets are generally very profitable. Even if there are as

14 Statistical significance in this case is measured by the coefficient
t-ratios. Throughout the remainder of this thesis any allusion to
"statistical significance" implies a one percent level of significance,
unless otherwise stated.
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Figure 5.5 Preliminary Estimates of Service and Demand Equation

Parameters for Large Long Haul Markets Before Principal

Component Deletions

SERVICE EQUATION

Carrier Coefficient

Constant

Lagged Traffic

Fare

Competition

-2.82

0.110

0.297

-0.0282

Standard Error

0.111

0.00574

0.0222

0.0171

n = 120

std. error = 0.0643

R2 = 0.844

R2adj = 0.840

F(3/116) = 209

SSR = 0.480

DEMAND EQUATION

Carrier Coefficient

Constant

Level of Service

Fare

Socio-Economics

18.8

7.14

-2.22

0.428

Standard Error

0.903

0.296

0.0886

0.0615

R2 = 0.966

R2adj = 0.965

F(3/1161 = 1110

std. error = 0.194

t-ratio

-25.5

19.1

13.4

-1.65

t-rati o

20.9

24.1

-25.0

n = 120

6.97

SSR = 4.35
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few as two competitors in any given one of these markets, providing a

high level of service will likely be in the individual carrier's best

interests. There are no monopoly markets in this subset,

The primary measure of goodness of fit of a model to be used for

forecasting purposes is the standard error of estimate (abbreviated to

"std. error" in Figure 5.5. and all other figures that present model

estimations). The standard error for the preliminary estimation of the

demand equation for large long haul markets is 0.194. Since this model

is to be used for forecasting purposes, the values of the standard error

will be closely observed during the fine tuning of the model.

Based upon perusal of the preliminary calibration, two immediate

problems with the demand equation have been encountered. The first

of these is evident by observation of the residual plot in Figure 5.6.

Note that the residuals of many of the markets tend to cluster above

(underestimation) or below (overestimation) the axis. Of the twenty

markets, five (SAN-SEA, MIA-SEA, HOU-WAS, CHI-LAX, and NYC) are

consistently underestimated and four (DAL-PDX, DAL-SEA, MKC-NYC, and

STL-SFO) are consistently overestimated.

The residual of a given observation is the difference between the

observed (actual) value of the response variable (in this case the

logarithm of demand) and the value that the model would predict. As

was mentioned in Section 5.1, the residuals are assumed to be

independent and identically distributed. The apparent clustering of

residuals within markets in Figure 5.6 implies that this assumption

has been violated and casts doubts upon the forecasting accuracy of
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the model. This serious problem will also be closely scrutinized as

the model is fine tuned. Possible causes are misspecification,

improper aggregation, and/or the presence of high leverage discrepant

observations.

The second immediate problem with the demand model concerns the

coefficient estimates themselves. Judgmental estimates of the values

of the parameters place them in the following ranges:

0.25<l < 0.60 (service effect)

-0.90 > s12 > -1.70 (price elastic)

1.00 < $13 < 2.00 (also income elastic)

None of the coefficient estimates fall within (or even near) these

intervals. This problem does not necessarily endanger the aggregate

forecasting integrity of the model (provided that the standard error

of estimate is sufficiently low). However, for the model to be used

as a policy analysis tool, it is imperative that the coefficient

estimates are reasonable and that the standard errors of the coefficient

estimates are small.

The suspected culprit behind the coefficient problem is multi-

collinearity. Multicollinearity is the condition of near-dependencies

among columns of X, the carrier matrix (in this case a column of ones,

logs of estimated levels of service, log of fares, and logs of levels
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of socio-economic activity). Multicollinearity is detected by

observing small eigenvalues or small singular values in the XTX matrix.

Principal components analysis (see Appendix C) was employed to

detect the presence of multicollinearity and to attempt to correct for

it. Summary statistics of the principal components are presented in

Table 5.1.

The condition number (ratio of highest to lowest singular value)

of 540 indicates a high likelihood that indeed multicollinearity exists

(see Appendix C). After deleting the third and fourth principal

components, estimating the regression of the log of demand upon the plane

defined by the first two principal components, and projecting the results

back into the original a basis, the results shown in Figure 5.7 are

obtained.

A comparison of the results of Figure 5.7 to those of the demand

equation estimates presented in Figure 5.5 yields three important results.

The coefficient estimates in the post-principal components model make

much greater intuitive sense (comparing them to the judgmental intervals).

The standard errors of the coefficients in the post-principal components

estimation are greatly reduced. The standard error of estimate is

increased (more than doubled), and the R2 value has decreased in the

post-principal components equation.

The decision as to which of the two estimated equations constitutes

the "better" model involves a tradeoff between fit and parameter reason-

ableness and precision. The goal of this analysis is to develop a model

which will accurately measure the impact upon demand of changes in such

factors as level of service and fare. Since little faith can be placed
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Principal Component Analysis, Long Large Markets

Condi tion

Index t-statistic

1.00 -512.

-30.134.1

62.3 -7.67

21.20.204 540.

Table 5.1

Principal

Component

Singular

Value

110.

3.23

1.77
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Figure 5.7 Preliminary Estimates of the Demand Equation Parameters

for Large Long Haul Markets After Principal Component

Deletions

Carrier

Constant

Level of Service

Fare

Socio-Economic

Coefficient

-0.124

0.467

-1.07

1.64

Standard Error

0.00708

0.0167

0.0496

0.0285

n = 120

std. error = 0.446

R = 0.818

SSR = 23.5

t-ratio

-17.5

27.9

-21.5

57.7
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upon the estimates of the coefficients of the model before principal

components deletion, the post-principal components equation is clearly

the appropriate choice for the resulting model.

The problem of clustered residuals must still be resolved. It is also

an intention to reduce the standard error of estimate in the forecasting

equation and possibly to reduce the standard errors of coefficient esti-

mates in the analysis equation. These are the objectives of the following

two sections.

5.2.2.2 Sensitivity Analysis: Phase I

Two of the possible causes of the residual clustering problem noted

in the previous section are improper aggregation of data and discrepant

high leverage single observations. These two problems and their ill

effects upon estimation are in reality one and the same, but the former

terminology will be used to refer to entire markets that are improperly

included in a sample, while the latter will refer to a discrepant

single year's observation among an otherwise satisfactory market.

As was discussed earlier in the chapter, a tool for investigating

the presence of improper pooling or single discrepant points is the hat

matrix, H. The rows of the hat matrix are the weightings by which the

individual observations of the response variable are combined to obtain

the estimated values. That is,

A

Y = HY (5.10)

where

H = X(XTX)~XT (5,11)
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A rule of thumb states that, if a diagonal element of the hat

matrix, h., is greater than 2p/n, where p is the number of estimated

parameters and n is the number of observations, then that data point

i is a suspect high leverage point. A more formal rule states that

if

h. > 2n p F(p - 1, n - p) + (5.18)

1 + P:1 F(p - 1, n - p)
n-p

where F(p - 1, n - p) is the critical F value with p - 1 degrees of

freedom in the numerator and n - p degrees of freedom in the

denominator, that point is suspect. The 2p/n rule of thumb will be

used as an approximate measure throughout this research, since in all

cases studied herein, its value is less than that of the more formal

rule (at the 5% level of significance).

Table 5.2 lists the diagonal elements for the hat matrix for X,

the carrier matrix for the demand equation calibrated over large long

markets. Two suspicious data points (h. > 2p/n = 0.0667) were

discovered in the Denver-Seattle market and one in the Miami-Seattle

market. Furthermore, the other h. values for these markets are quite

high.

Table 5.3 lists the studentized residuals of the preliminary

calibration of the demand equation over large long markets. Recall

that the studentized residual for data point i, r*i, is the
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Diagonal Elements of the Hat Matrix, Demand Equation for

Large Long Markets, Phase I of Sensitivity Analysis

DAL PDX
DAL PDX
DAL PDX
DAL PDX
DAL PDX
DAL PDX
DEN MIA
DEN MIA
DEN MIA
DEN MIA
DEN MIA
DEN MIA
DEN SEA
DEN SEA
DEN SEA
DEN SEA
DEN SEA
DEN SEA
SAN SEA
SAN SEA
SAN SEA
SAN SEA
SAN SEA
SAN SEA
CLE DEN
CLE DEN
CLE DEN
CLE DEN
CLE DEN
CLE DEN
DEN NYC
DEN NYC.
DEN NYC
DEN NYC
DEN NYC
DEN NYC
NYC SAN
NYC SAN
NYC SAN
NYC SAN
NYC SAN
NYC SAN
PDX WAS

0.0256
0.0250
0.0221
0.0189
0.0174
0.0160
0.0329
0.0244
0.0257
0.0177
0.0162
0.0159*
0.0668
0.0664
0.0681
0.0618
0.0586
0.0532
0.0460
0.0480
0.0411
0.0382
0.0397
0.0410
0.0272
0.0165
0.0230
0.0195
0.0181
0.0161
0.0168
0.0211
0.0178
0.0189
0.0213
0.0213
0.0226
0.0235
0.0234
0.0207
0.0199
0.0220
0.0437

PDX WAS
PDX WAS
PDX WAS
PDX WAS
PDX WAS
DAL SEA
DAL SEA
DAL SEA
DAL SEA
DAL SEA
DAL SEA
HOU PIT
HOU PIT
HOU PIT
HOU PIT
HOU PIT
HOU PIT
MIA MSP
MIA MSP
MIA MSP
MIA MSP
MIA MSP
MIA MSP
MIA SEA
MIA SEA
MIA SEA
MIA SEA
MIA SEA
MIA SEA
DTT HOU
DTT HOU
DTT HOU
DTT HOU
DTT HOU
DTT HOU
HOU WAS
HOU WAS
HOU WAS
HOU WAS
HOU WAS
HOU WAS
MKC NYC
MKC NYC

0.0394
0.0352
0.0322
0.0266
0.0303
0.0299
0.0333
0.0377
0.0257
0.0167
0.0190
0.0446
0.0286
0.0278
0.0334
0.0377
0.0310
0.0126
0.0115
0.0113
0.0109
0.0118
0.0144
0.0553
0.0614
0.0618
0.0660
0.0652
0. 0683*
0.0591
0.0403
0.0335
0.0447
0.0444
0.0518
0.0180
0.0192
0.0159
0.0186
0.0187
0.0169
0.0575
0.0429

MKC
MKC
MKC
MKC
STL
STL
STL
STL
STL
STL
BOS
BOS
BOS
BOS
BOS
BOS
CHI
CHI
CHI
CHI
CHI
CHI
LAX
LAX
LAX
LAX
LAX
LAX
NYC
NYC
NYC
NYC
NYC
NYC

NYC
NYC
NYC
NYC
SF0
SF0
SFO
SFO
SFO
SFO
SFO
SF0
SFO
SF0
SFO
SF0
LAX
LAX
LAX
LAX
LAX
LAX
PHL
PHL
PHL
PHL
PHL
PHL
SFO
SFO
SF0
SF0
SF0
SF0

h. > = 0.0667
1 n

Table 5.2

71
72
73
74
69
70
71
72
73
74
69
70
71
72
73
74
69
70
71
72
73
74
69
70
71
72
73
74
69
70
71
72
73
74

0.0420
0.0523
0.0624
0.0561
0.0136
0.0152
0.0143
0.0099
0.0092
0.0090
0.0297
0.0300
0.0298
0.0254
0.0247
0.0274
0.0414
0.0409
0.0398
0.0408
0.0425
0.0424
0.0297
0.0313
0.0322
0.0363
0.0590
0.0399
0.0502
0.0505
0.0511
0.0509
0.0503
0.0524
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Table 5.3 Studentized Residuals, Demand Equation for Large Long Markets,

Phase II of Sensitivity Analysis

DAL PDX 69
DAL PDX 70
DAL PDX 71
DAL PDX 72
DAL PDX 73
DAL PDX 74
DEN MIA 69
DEN MIA 70
DEN MIA 71
DEN MIA 72
DEN MIA 73
DEN MIA 74
DEN SEA 69
DEN SEA 70
DEN SEA 71
DEN SEA 72
DEN SEA 73
DEN SEA 74
SAN SEA 69
SAN SEA 70
SAN SEA 71
SAN SEA 72
SAN SEA 73
SAN SEA 74
CLE DEN 69
CLE DEN 70
CLE DEN 71
CLE DEN 72
CLE DEN 73
CLE DEN 74
DEN NYC 69
DEN NYC 70
DEN NYC 71
DEN NYC 72
DEN NYC 73
DEN NYC 74
NYC SAN 69
NYC SAN 70
NYC SAN 71
NYC SAN 72
NYC SAN 73
NYC SAN 74.
PDX WAS 69
PDX WAS 70

-1.43
-2.36*
-1.84
-1.75
-1.05
-2.01*
2.98*
1.12
0.20
0.97

-0.09
-0.12
0.09
0.21

-0.21
-0.17
-0.38
-0.34
2.26*
1.19
1.87
2.49*
1.97
1.92
0.67

-0.67
0.88
0.39

-0.86
-0.72
0.83

-0.39
0.27
0.55
0.08

-0.19
-0.15
-0.29
-0.57
0.21

-0.04
-0.19
0.79

-0.08

PDX WAS 71
PDX WAS 72
PDX WAS 73
PDX WAS 74
DAL SEA 69
DAL SEA 70
DAL SEA 71
DAL SEA 72
DAL SEA 73
DAL SEA 74
HOU PIT 69
HOU PIT 70
HOU PIT 71
HOU PIT 72
HOU PIT 73
HOU PIT 74
MIA MSP 69
MIA MPS 70
MIA MSP 71
MIA MSP 72
MIA MSP 73
MIA MSP 74
MIA SEA 69
MIA SEA 70
MIA SEA 71
MIA SEA 72
MIA SEA 73
MIA SEA 74
DTT HOU 69
DTT HOU 70
DTT HOU 71
DTT HOU 72
DTT HOU 73
DTT HOU 74
HOU WAS 69
HOU WAS 70
HOU WAS 71
HOU WAS 72
HOU WAS 73
HOU WAS 74
MKC NYC 69
MKC NYC 70
MKC NYC 71
MKC NYC 72

-1.37
0.11

-0.15
0.65

-0.50
-0.87
-2.09*
-2.58*
-1.94
-2.22*

1.01
-1.25
0.36
0.15
0.65
0.64
0.70
0.47
0.89
0.66

-0.51
1.34
0.96
0.61
0.33
0.47
0.04
0.43
0.62

-0.13
-0.57
-0.10
-1.16
-0.34
0.20
0.86
0.10
0.76
0.22
0.87

-0.16
-0.94
-1.24
-1.49

MKC
MKC
STL
STL
STL
STL
STL
STL
BOS
BOS
BOS
BOS
BOS
BOS
CHI
CHI
CHI
CH I
CHI
CHI
LAX
LAX
LAX
LAX
LAX
LAX
NYC
NYC
NYC
NYC
NYC
NYC

NYC 73
NYC 74
SFO 69
SF0 70
SFO 71
SF0 72
SF0 73
SF0 74
SF0 69
SFO 70
SFO 71
SFO 72
SF0 73
SFO 74
LAX 69
LAX 70
LAX 71
LAX 72
LAX 73
LAX 74
PHL 69
PHL 70
PHL 71
PHL 72
PHL 73
PHL 74
SFO 69
SFO 70
SFO 71
SFO 72
SFO 73
SF0 74

-1.00
-1.47
-0.78
-1.14
-1.54
-0.91
-1.32
-0.59
0.45
0.03
0.20
0.65
0.47
0.24
0.35
0.34
0.29
0.32
0.34
0.54

-0.44
-0.74
-0.69
-0.08
1.65

-0.26
0.61
0.75
0.62
0.70
0.77
1.20

r*. > 2.0*1
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(standardized) difference between the observed value of the response

variable, y,, and the estimated value of the response variable by the

equation resulting from calibration over the sample with data point i

deleted.

r* = - Xi ( (5.13)

1 + xl(XT -1

Since the numerator and denominator of (5.13) are independent, r*.

is distributed according to a t distribution with n - p degrees of

freedom. For the initial perusal of the studentized residuals, those

with an absolute value of 2.0 or more are flagged as possible trouble

points.

Upon joint investigation of the hat matrix diagonal elements and

the studentized residuals, there appears to be a number of questionable

points early in the sample. The Dallas-Portland market has high

studentized residuals, as do Denver-Miami and San Diego-Seattle. Denver-

Seattle exhibits high hi values, as previously mentioned. These four

markets are the "3-4" markets from the experimental design. These

flags imply that perhaps the "3-4" markets, at least in the long haul,

may better represent the medium rather than the large size markets.

If indeed they are grouped into the wrong size classification, one would

expect an improvement in the estimation of the large markets if they are

deleted. Furthermore, one would expect little change in the estimation

results for the medium size markets if they are added to that sample. 15

155 This indeed the result of the addition of the four markets to the
medium size sample, as will be shown in Section 5.2.2.
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The reason that the Miami-Seattle market is so influential may be

because of its high value of the fare term. Since this is the longest -

market in the sample, it is also the highest priced. However, there is

no economic reason to believe that this market should be removed from the

sample. Furthermore, since neither its standardized nor studentized

residuals were large, there were no statistical reasons for deletion of

this market.

The implications of the first phase of the analysis were to delete

the "3-4" markets from the large size classification and group them into

the medium-size sample. One additional market was questionable. The

Dallas-Seattle market has highly negative raw residuals and even more

negative studentized residuals. While there were no obvious economic

reasons for deleting this market, it was suspected that its presence may

be contributing to the residual clustering of the other markets. Two re-

qression estimations were conducted, one with only the "3-4" markets

deleted and one with the Denver-Seattle market deleted also. While the

deletion of the Denver-Seattle market had a negligible effect upon the

fit, the residual plots indicated an improvement in the clustering,

problem. It was then decided to permanently delete this market from the

sample.

The ordinary least squares estimates of the parameters of the supply

and demand models for long large markets are shown in Figure 5.8.

Comparing these results with those in Figure 5.5, it is observed that the

fit in both the service and demand equations have both improved

substantially with the standard error of estimate in the demand equation

being reduced by nearly 40% to 0.119.
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Figure 5.8 Phase I Estimates of the Parameters of the Service and

Demand Equations for Large Long Markets before Principal

Component Deletions

SERVICE EQUATION

Carrier

Constant

Lagged Traffic

Fare

Competition

n = 90

Coefficient

-2.93

0.113

0.307

-0.0107

R2 =

std. error = 0.0519

Standard Error

0.0990

0.00495

0.0203

0.0152

0.914

R2 adj = 0.911

t-ratio

-29.6

22.8

15.2

-0.708

F(3/86) = 304

SSR = 0.231

DEMAND EQUATION

Coefficient

20.1

Level of Service

Fare

Socio-Economic

7.28

-2.25

0.319

Standard Error

1.14

0.306

0.0853

0.0752

n = 90

std. error = 0.119

R2= 0.989

R2adj= 0.988

F(3/86) = 2470

SSR = 1.22

Carrier

Constant

t-ratio

17.7

23.8

-26.3

4.25



215

The residual plot of the Phase I demand equation calibration is

shown in Figure 5.9. Comparing this to Figure 5.6, it is apparent

that the clustering problem has become much less severe. Only one of

the markets, New York-San Francisco, is consistently underestimated,

and one, St. Louis-San Francisco, is overestimated. It can also be

observed that the spread of the residuals has been substantially

reduced.

The demand equation for large markets was calibrated using the

reduced data set and principal component analysis, Again the third and

fourth principal components were jettisoned, and the results of the

estimation in the original a basis are given in Figure 5.10. Comparing

these results to'the preliminary estimation of the demand equation

parameters (Figure 5.7) indicates a decrease in the standard errors of

all coefficient estimates. The standard error of estimate of the

constant decreased 47.5%, that of level of service coefficient decreased

40.7%, that of the fare elasticity decreased 28.2%, and that of the

socio-economic activity decreased 30.2%.

5.2.2.3 Sensitivity Analysis: Phase II

The diagonal elements of the hat matrix for the reduced data set

used in Phase I are listed in Table 5.4, and the corresponding studentized

residuals are listed in Table 5.5. One data point, Los Angeles-

Philadelphia 1973, is flagged in both diagnostic sets. Suspecting a

keypunch error, it was surprising to discover that the data point was
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Figure 5.10 Phase I Estimates of the Demand Equation Parameters for

Large Long Haul Markets After Principal Component Deletions

Carri er

Constant

Level of Service

Fare

Socio-Economics

Coefficient

-0.0881

0.434

-1.26

1.73

Standard Error

0.00372

0.00991

0.0356

0.0199

n = 90

std. error = 0.382

R = 0.879

SSR = 12.9

t-ratio

-23.7

43.8

-35.4

87.0
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Table 5.4

CLE DEN 69
CLE DEN 70
CLE DEN 71
CLE DEN 72
CLE DEN 73,
CLE DEN 74
DEN NYC 69
DEN NYC 70,
DEN NYC 71
DEN NYC 72
DEN NYC 73
DEN NYC 74
NYC SAN 69
NYC SAN 70
NYC SAN 71
NYC SAN 72
NYC SAN 73
NYC SAN 74
PDX WAS 69
PDX WAS 70
PDX WAS 71
PDX WAS 72
PDX WAS 73
PDX WAS 74
HOU PIT 69
HOU PIT 70
HOU PIT 71
HOU PIT 72
HOU PIT 73
HOU PIT 74
MIA MSP 69
MIA MSP 70
MIA MSP 71
MIA MSP 72
MIA MSP 73
MIA MSP 74
MIA SEA 69
MIA SEA 70
MIA SEA 71
MIA SEA 72
MIA SEA 73.
MIA SEA 74
DTT HOU 69

Diagonal Elements of the Hat Matrix. Demand Equation for

Large Long Haul Markets, Phase II of Sensitivity Analysis

0.0417
0.0439
0,0318
0.0340
0.0360
0.0308
0.0325'
0.0424
0.0313
0.0270
0.0294
0.0294
0.0277
0.0273
0.0273
0.0264
0.0234
0.0245
0.0548
0.0531
0.0596
0.0427
0.0364
0.0381
0.0441
0.0317
0.0319
0.0335
0.0375
0.0310
0,0445
0.0407
0.0357
0.0261
0.0189
0.0169
0,0669
0.0735
0.0741
0,0773
0.0883
0,0965*
0.0697

DTT
DTT
DTT
DTT
DTT
HOU
HOU
HOU
HOU
HOU
HOU
MKC
MKC
MKC
MKC
MKC
MKC
STL
STL
STL
STL
STL
STL
BOS
BOS
BOS
BOS
BOS
BOS
CH I
CHI
CHI
CHI
CHI
CH I
LAX
LAX
LAX
LAX
LAX
LAX
NYC
NYC

HOU
HOU
HOU
HOU
HOU
WAS
WAS
WAS
WAS
WAS
WAS
NYC
NYC
NYC
NYC
NYC
NYC
SFO
SFO
SF0
SFO
SFO
SFO
SFO
SFO
SFO
SFO
SFO
SFO
LAX
LAX
LAX
LAX
LAX
LAX
PHL
PHL
PHL
PHL
PHL
PHL
SFO
SFO

0.0413
0.0342
0.0460
0.0494
0.0599
0.0287
0.0247
0.0272
0.0262
0.0283
0.0248
0.0650
0.0467
0.0501
0.0667
0.0883
0.0769
0.0433
0.0430
0.0380
0.0219
0.0160
0.0133
0.0338
0.0347
0.0333
0.0272
0.0259
0.0295
0.0515
0.0518
0.0490
0.0463
0.0467
0.0467
0.0437
0.0465
0.0515
0.0683
0.1578*
0.0805
0.0525
0.0531

NYC SF0 71
NYC SFO 72
NYC SFO 73
NYC SFO 74

0.0537
0.0537
0.0523
0.0551

h. > 2P 0.08891 n
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Table 5.5 Studentized Residuals, Demand Equation for Large Long Haul

Markets, Phase II of Sensitivity Analysis

CLE DEN 69
CLE DEN 70
CLE DEN 71
CLE DEN 72
CLE DEN 73
CLE DEN 74
DEN NYC 69
DEN NYC 70
DEN NYC 71
DEN NYC 72
DEN NYC 73
DEN NYC 74
NYC SAN 69
NYC SAN 70
NYC SAN 71
NYC SAN 72
NYC SAN 73
NYC SAN 74
PDX WAS 69
PDX WAS 70
PDX WAS 71
PDX WAS 72
PDX WAS 73
PDX WAS 74
HOU PIT 69
HOU PIT 70
HOU PIT 71
HOU PIT 72
HOU PIT 73
HOU PIT 74
MIA MSP 69
MIA MSP 70
MIA MSP 71
MIA MSP 72
MIA MSP 73
MIA MSP 74-
MIA SEA 69
MIA SEA 70
MIA SEA 71
MIA SEA 72
MIA SEA 73,
MIA SEA 74
DTT HOU 69

1.31
-0.86
1.57
0.94

-1.12
-0.70
1.21

-0.62
0.29
0.81
0.03

-0.38
0.26

-0.54
-0.62
0.78
0.11
0.02
0.82

-0.78
-3.11*
0.19

-0.14
0.36
1.47

-2.33*
0,57

-0.38
0995
0.52
1.41
1.04
0.94
1.14

-0.78
2.17*
0.82

-0.05
-0.38
-0.49
-0.57
0.15
1.14

DTT HOU 70
DTT HOU 71
DTT HOU 72
DTT HOU 73
DTT HOU 74
HOU WAS 69
HOU WAS 70
HOU WAS 71
HOU WAS 72
HOU WAS 73
HOU WAS 74
MKC NYC 69
MKC NYC 70
MKC NYC 71
MKC NYC 72
MKC NYC 73
MKC NYC 74
STL SFO 69
STL SF0 70
STL SF0 71
STL SFO 72
STL SFO 73
STL SFO 74
BOS SFO 69
BOS SFO 70
BOS SF0 71
BOS SFO 72
BOS SFO 73
BOS SFO 74
CHI LAX 69
CHI LAX 70
CHI LAX 71
CHI LAX 72
CHI LAX 73
CHI LAX 74
LAX PHL 69
LAX PHL 70
LAX PHL 71
LAX PHL 72
LAX PHL 73
LAX PHL 74
NYC SF0 69
NYC SFO 70

-0.22
-0.81
-0.15
-1.42
-0.39
-0.02

1.04
-0.09
1.54
0.49
1.28
0.26
-1.26
-1.00
-1.36
-0.44
-1.27
-1.01
-1.58
-2.16*
-1.07
-1.75
-0.65
0.42

-0.45
-0.01
0.74
0.55

-0.12
0.03

-0.16
-0.16
0.13
0.04
0.28
-0.72
-1.37
-1.32
-0.50
2.93*

-0.68
0963
0.75

NYC SFO 71
NYC SF0 72
NYC SFO 73
NYC SFO 74

r* > 2 -0i '

0.58
0.72
0.99
1.52
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indeed entered correctly (assuming that the original data sources are

accurate). Suspecting that this data point was contributing to the

remaining amount of residual clustering, it was deleted and the equation

was reestimated. The resulting residual plot indicated that the

inclusion of this point was indeed detrimental to many of the remaining

market residuals, and so it was deleted. This deletion also slightly

improved the overall fit.

The only other point that was flagged in the hat matrix diagonal

was Miami-Seattle 1974. Assuming, as in Phase I, that this is due to no

other reason than the high fare value, the data point was left alone.

The other points flagged by the vector of studentized residuals were

PDX-WAS 69, HOU-PIT 70, MIA-MSP 74, and STL-SFO 71. Individual deletions

of each of these showed that with the exception of PDX-WAS 69 none of

these was contributing to the residual clustering. The deletion of PDX-

WAS 69 did, however, further reduce market residual clustering and was

therefore removed. This deletion had a negligible effect upon the fit.

Phase II of the sensitivity analysis of large long haul resulted in

the deletion of two data points, LAX-PHL 73 and PDX-WAS 69. The final

ordinary least squares estimates of the service and demand model

parameters are summarized in Figure 5.11. Note that the fit has improved

slightly over the Phase I estimates (Figure 5.8) in both equations, and

that the value of the standard error of estimate of the demand equation

has been reduced to 0.109. However the values of the estimated

parameters remain well outside of the reasonable intervals set in

Section 5.2.2.1.

The residual plot of the Phase II ordinary least squares estimation
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Figure 5.11 Phase II Estimates of Service and Demand Equation Parameters

for Large Long Haul Markets

SERVICE EQUATION

Carri er

Constant

Coefficient

-2.92

Lagged Traffic

Fare

Competition

n = 88

std. error = 0.0500

0.112

0.309

-. 0122

R adj

Standard Error

0.0958

0.00482

0.0197

0.0147

0.920

0.917

F(3/84) = 321

SSR = 0.210

DEMAND EQUATION

Carrier

Constant

Level of Service

Fare

Socio-Economics

n = 88

std. error = 0.109

Coefficient

21.9

7.76

-2.36

0.204

R = 0.990

R adj = 990

Standard Error

1.13

0.304

0.0835

0.0748

F(3/85) = 2890

SSR = 0.997

t-ratio

-30.5

23.2

15.6

-0.829

t-ratio

19.3

25.6

-28.2

2.73
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of the demand equation is shown in Figure 5.12. While New York-San

Francisco is still consistently underestimated and St. Louis-San Francisco'

is still consistently overestimated, most of the other markets' residual

sets have become better centered about the zero line. Furthermore, the

overall spread has been slightly reduced from the Phase I plot (Figure

5.9).

The results of the principal component regression analysis are

presented in Figure 5.13. Comparing these statistics with those of the

corresponding Phase I equation in Figure 5.10 indicates a further

reduction of the standard errors of the coefficient estimates. It is

interesting to notice that the fare and socio-economic elasticity

estimates did not change from Phase I to Phase II, and the level of service

parameter estimate varied by slightly over one percent. From a robustness

standpoint, it is encouraging to seethat the deletion of the two data

points that appeared to be the most influential had a negligible effect

upon the parameter estimates.

The elasticity estimates in the post-principal components demand

equation, a fare elasticity of -1.26 and a socio-economic elasticity of

1.73, appear very reasonable. The level of service parameter estimate

(0.429) appears also to be within a reasonable range. Although it is

difficult to interpret this number by itself, it will be shown in Chapter

VI that the demand vs. frequency curve generated using this figure appear

to be quite representative of what one might expect in large long haul

markets.

The estimated equation of Figure 5.13 is therefore accepted as the



0.60

= 0.109

0.40

x
x x x

2

x 2
x x

x 2
x 22

x
x x

CLE DEN NYC PDX
DEN MKC SAN PDX

x xxx
2 x

x3
-2''.k.

3
x X

2
2

x
x

HOU MIA MIA DTT HOU MKC STL BOS CHI LAX NYC

PIT MSP SEA HOU WAS NYC SFO WAS LAX PHL SFO

Figure 5.12 Plot of Residuals of
Markets

Phase II Estimation of the Demand Equation for Large Long Haul

0.20

0.00

-0.20

-0.40

-0.60



224

Figure 5.13 Phase II Estimates of the Demand Equation Parameters for

Large Long Haul Markets After Principal Component Deletions

Carrier

Constant

Level of Service

Fare

Socio-Economics

Coefficient

-0.0859

0.429

-1.26

1.73

Standard Error

0.00343

0.00917

0.0333

0.0186

n = 88

std. error = 0.386

R = 0.877

SSR = 12.8

t-ratio

-25.0

46.8

-37.9

93.1
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demand model for large long haul markets. The equation obtained using

ordinary least squares estimation (Figure 5.11) must, in spite of its

better fit, be rejected due to its questionable and relatively imprecise

coefficient estimates.

5.2.2 Medium Size Long Haul Markets

In Phase I of the sensitivity analysis of long large markets, the

smaller region pairs in that cross classification were deleted, suspecting

that they may be more representative of medium size markets. The first

step of the analysis of the medium size long haul markets was to determine

if the inclusion of these rejects from the large markets into the medium

sample affected the statistics produced by the regression analysis.

Equation (5.19) is the estimated demand equation using the original long/

medium sample, and equation (5.20) is the estimate with the new data added. 16

LQD = 27.1 + 7.02 LLOS - 4.00 LFARE .+ 0.458 LSE (5.19)

(1.81) (0.664) (0.184) (0.109)

n = 66 std. error = 0.217 R = 0.915

LQD = 22.1 + 5.39 LLOS - 3.19 LFARE + 0.465 LSE (5.20)

(1.15) (0.433) (0.112) (0.109)

n = 90 std. error = 0.233 R = 0.925

16 The figures in parentheses are the standard errors of the coefficient
estimates. For simplicity the nomenclature of the variables has been
modified; LQD is the equivalent of log QD, etc.
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The addition of the "3-4" markets into the medium size long haul

sample had a marked effect upon the parameter estimates (although it

reduced their standard errors), but only a slight effect upon the fit

(7% increase in the standard error). An examination of the residual

plot of the original case indicates a certain amount of residual clustering,

similar to that of the large long haul market sample, The addition of the

new data seemed to partially alleviate this problem. The conclusion drawn

from this analysis is that the "3-4" markets seem to be more representative

of the medium size classification than of the large, and therefore will

remain in the medium size sample (at least for the preliminary analysis).

A model specification problem regarding the service equation was

encountered in the analysis of the medium size long haul markets, which

casts a doubt on the validity of the resulting estimates, The sample

contains a number of region pairs in which the air service is primarily

directed through one or more large enroute cities. An example of this

type of market is Rochester-San Diego, where there is no nonstop service

and most flights, either direct or connecting, are scheduled through either

Chicago or Los Angeles. A large portion of the traffic on the segments

are not Rochester-San Diego origin to destination passengers and

unfortunately are not accounted for by the route structure variable.

Since a fair amount of service is offered between Rochester and Chicago

17 As a statistical aside, this is a case where, by adding data points,
the standard error increased but (due to a substantial increase in the
variance of the response variable) the value of R2 also increased. This
is an example of why, in a forecasting model, R2 is not a good comparative
measure of fft.
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and between Chicago and San Diego, many flights through Chicago are

published in the QAG. However, the route structure variable does not

account for the Rochester to Chicago or Chicago to San Diego local

passengers. Therefore, level of service and hence demand is under-

estimated for these markets.

The service equation estimation consequently produced a poor fit

(R2 = 0.487). However, the deletion of the Rochester-San Diego or

San Antonio-San Francisco type markets could not be justified, since they

are not really misrepresentative of medium size long haul markets.

Elimination of these data points would be purely for the purpose of

improving the fit which, as was discussed earlier in this chapter, should

not be considered appropriate.

The large long haul markets are not subject to this problem, since

most of the travellers on these routes fly nonstop, and the majority of

the non-local passengers will be accounted for in the route structure

variable. One possible exception is the New York-San Francisco market,

The QAG has a tendency to publish an enormous number of connecting flights

through Chicago and other cities similar to the example of Section 3.3.2,

citing the fact that 84 flights (including thirteen nonstops) are

scheduled daily from Los Angeles to New York. The service equation will

not predict such a high expected level of service, and demand in the

New York-San Francisco market was slightly underestimated (Figure 5.12).

The large and medium size medium haul markets

and most short haul markets seem to be free of this problem, but the

misfits of the service equation, for the same reason, will occur in the
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analyses of small long haul and small medium haul markets. This

misspecification problem is probably the reason why the Chow test results

imply that, within a given length of haul stratum, data may not be pooled

over levels of market size.

The only apparent remedy for this problem is to define a more

complex route structure variable that accounts for all non-local passengers

using any segment of a scheduled flight between two regions. This would

require the CAB's service segment flow data, which is very expensive in

terms of both cost and time to process. Since a major proportion of

U.S. domestic air passenger traffic is in larger markets, for which the

route structure variable defined in this research seems appropriate, it

is highly questionable whether this effort would be worthwhile.

The conclusion of Phase I of the sensitivity analysis was to delete

one market (New York-San Diego). In Phase II, five single observations

were removed. As a result, the residual clustering problem was cured

and the fit was slightly improved.

The deletion of these eleven data points, however, had a slightly

negative effect upon the results of the estimation of the demand equation

via principal components with regard to the precision of the coefficient

estimates. Therefore, equation (5.21), calibrated over the entire

sample, was selected as the demand analysis relationship for medium size

long haul markets.
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LQb = -0.0338 + 0.452 LLOS - 2.07 LFARE + 2.20 LSE (5.21)

(0.00445) (0.0185) (0.0915) (0.0556)

n = 90 std. error = 0.551 R2 = 0.568

The fare and socio-economic elasticities seem to be rather high.

This may be due to a greater percentage of vacation markets in this sample

than were found in the long haul sample. Also, the standard errors of

the coefficient estimates are two to three times as great as those of the

large market analysis model. This is consistent, at least in terms of

the fare elasticity, with Verleger's findings.18

5.2.3 Small Long Haul Markets

The route structure problem encountered in the analysis of medium

size long haul markets appears to be more severe in the analysis of the

small long haul markets. The standard error of the estimate of the

preliminary calibration of the service equation for small markets was

0.111 as opposed to 0.086 for medium and 0.064 for large markets.

The residual plot of the demand equation estimated using ordinary

least squares indicated considerable clustering, as was the case with the

preliminary estimates of the demand equations for large and medium size

long haul markets.

The principal component analysis totally destroyed the fit of the

demand equation. In an attempt to rectify this situation, the demand

18 Verleger, op. cit.
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equation was reestimated by deleting only the fourth principal component.

This unfortuantely did not appreciably improve the situation, so to be

consistent with the analyses of the other cross classifications,

equation (5.22) is the estimation result after deleting the third and

fourth principal components.

LQD = -0.105 + 0.575 LLOS - 0.45 LFARE + 1.27 LSE (5.22)

(0.0194) (0.137) (0.150) (0.0864)

n = 46 std. error = 0.834 R 2 = 0.289

Neither the deletion of the two markets nor that of the two individual

observations improved the coefficient estimates of this equation.

5.3 Analysis of Medium Haul Markets

The Chow test, performed to determine if pooling markets by size was

appropriate in the long haul, was repeated for medium haul markets. The

relevant statistics are presented in Figure 5.14. The test statistic,

F = 7.36, exceeds the critical value 2.24 at the 1% level of significance.

Therefore, the data may not be pooled by market size. It is suspected

that this result is due to the route structure definitional problem

discussed in 5.2.2. This problem seems to occur in the small medium

haul market sample, but not in the large or medium size medium haul

samples. Consequently, separate medium haul models will be developed for

the three market size classifications.
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Figure 5.14 Chow Test for Pooling Medium Haul Markets by Level of

Socio-Economic Activity

Pooled Sample: Medium haul markets

Subsamples: 1. Medium/large

2. Medium/medium

3. Medium/small

Total number of observations: n = 283

Number of estimated parameters: p = 4

Number of subsamples: k = 3

SSRpooled = 13.72

SSR 1

SSRm

SSR s

SSR pool ed - ESSR

F = k
ESSR

n-pk

ESSRind

2.45

271

Fcri t (8, 220, 0.01) = 2.24

= 4.46

= 2.09

= 4.72

= 11.27
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5.3.1 Large Medium Haul Markets

The residual plot of the preliminary ordinary least squares

calibration of the demand equation for large medium haul markets indicated

a rather severe clustering of residuals. Perusal of the hat matrix

diagonal elements and the studentized residuals showed that the smaller

"3-4" markets generally had high leverage and/or studentized residuals.

Therefore, as was the case with the long/large sample, it was decided to

delete the "3-4" markets.

This deletion improved the fit, although not as dramatically as in

the long haul market analysis (12% reduction in standard error as opposed

to 39% in the long haul). The residual clustering problem was reduced

somewhat, yet it was still very evident.

A look at the new set of diagnostic elements provided a clue to the

existing problem. One very large market, Boston-Washington, and two of

the smaller markets in the sample, Albany-Detroit and Detroit-Raleigh,

were very highly influential. The studentized residuals of the smaller

markets were not very large (only one of the twelve was greater than 2.0),

but those of the Boston-Washington market were quite large, ranging from

1.42 to 2.17. By successive deletion of these three markets, it was

apparent that each was contributing to the residual clustering problem.

With all three deleted, the clustering problem had virtually vanished and

the fit had improved.

A common belief in the airline industry is that medium haul traffic

is less sensitive to fluctuations in fare and income and more respondent

to service than long haul demand. Therefore, one would expect a greater
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coefficient estimate for level of service and lower fare and socio-

economic elasticities in the medium than in the long haul markets. The

judgmental intervals assessed for these parameters for medium haul markets

are as follows:

0.40

-0.60

0.80

< 11l

> 12

< 613

< 0.80

> -1.20

< 1.60

Using principal components regression, the estimated demand equation

for large medium haul markets is as follows:

LQD = -0.0822 + 0.534 LLOS

(0.00965) (0.0304)

n = 78 std. error

- 0.583 LFARE + 1.40 LSE (5.23)

(0.0522) (0.0265)

= 0.553 R = 0.699

The coefficient estimates all seem to be within reason, with the

possible exception of the fare elasticity, which appears to be a bit low.

5.3.2 Medium Size Medium Haul Markets

In the analysis of the large medium haul region pairs, the "3-4"

markets were deleted due to a suspicion that they are more representative

of medium than of large size. If this suspicion were indeed true, it

would be expected that the diagnostic statistics of the estimation of
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the large markets equations would improve by deletion of these observations

and that those of the medium size markets would not be significantly

altered by the addition of these markets. The former condition was

affirmed in the previous section.

The latter condition was investigated by separately obtaining ordinary

least squares estimates using the original medium size medium haul

sample and then using the same data set plus the "3-4" medium haul markets.

The standard error of estimate increased very slightly, and the standard

errors of all coefficients decreased. So while the fit of the equation

remained initially unchanged, the precision of the coefficient estimates

increased. The conclusion is that the region pairs in question are

indeed more representative of medium than large size markets.

The residual plots indicated a considerable amount of clustering.

The sensitivity analysis diagnostics implied substantial leverage among

the smaller of the medium haul markets, similar to the situations

encountered in the analyses of large long and large medium haul markets.

By deleting the first four "2-2" markets and reestimating, both the fit

and the residual clustering condition improved.

Phase II of the sensitivity analysis resulted in the identification

of two remaining data points that, because of high h1 and r*i values,

were suspected of being discrepant. Their deletion resulted in a residual

plot that appeared virtually free of clustering.

The demand equation for medium size medium haul markets calibrated

using principal components regression on the reduced data set is as

follows:
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LQD = 0.0144 + 0.991 LLOS - 0.890 LFARE + 1.56 LSE (5.24)

(0.00214) (0.0265) (0.0320) (0.0185)

n = 100 std. error = 0.499 R = 0.636

The coefficient estimates in (5.24) all appear intuitively reasonable,

except that the level of service coefficient is a little high.

5.3.3 Small Medium Haul Markets

The route structure variable problem that occurred in the analysis

of the medium and small long haul markets was expected in the analysis of

the small medium haul markets, and it indeed does appear to be present.

However, the service equation standard error was 0.139 with R2 = 0.692,

which is not quite as bad a fit as was observed in the two other cases

in which the route structure problem was present.

The residual plot of the ordinary least squares estimate of the

demand equation again produced a severe clustering. The hat matrix

diagonal elements indicated that three markets, Lincoln-Tucson which had

only one observation, Fargo-Milwaukee with two observations, and Boston-

Knoxville with two observations, were highly influential. These three

markets, a total of only five observations, were deleted.

The residual clustering problem was nearly eliminated, and when the

new hat matrix diagonals and studentized residuals indicated no harmful

high leverage points, Phase II of the sensitivity analysis was cancelled.

The principal components regression provided the following estimated
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demand equation:

LQD = -0.0277 + 0.570 LLOS - 0.597 LFARE + 1.44 LSE (5.25)

(0.0131) (0.0651) (0.0988) (0.0616)

n = 60 std. error = 0.552 R2 = 0.572

The coefficients in equation (5.25) all seem reasonable, except that the

fare elasticity again appears to be a little on the low side.

5.4 Analysis of Short Haul Markets

The first step in the analyses of long and medium haul markets was to

conduct a Chow test to determine whether the data may be pooled across

market size classifications. In both cases, the conclusion was that

they may not. In the analysis of short haul markets this process was

repeated, and again the test for homogeneity across market sizes failed.

The relevant statistics are tabulated in Figure 5.15. The test

statistic, F = 8.86, well exceeds the critical value, 2.23, at the 1%

significance level.

Verleger, Marfisi, and Blumer have each cited a problem with

calibrating a model that does not account for fare and service

characteristics of competing modes over short lengths of haul. The

primary advantage of air transportation relative to other modes in medium

and long haul trips is its short total trip time. However, as the length

of haul decreases to very short distances, the advantage subsides and
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Chow Test for Pooling Short Haul Markets by Level of

Socio-Economic Activity

Pooled Sample: Short haul markets

Subsamples: 1. Short/large

2. Short/medium

3. Short/small

Total number of observations: n = 305

Number of estimated parameters: p = 4

Number of subsamples: k = 3

SSRpooled

SSR
1

SSRm

SSRs

ISSRind

8,32

= 8.33

= 5.39

= 25.9

= 39.6

SSRpooled - SSR i

F =R

n-pk

9.2

3976= 8.86

Fcrit (8, 305, 0.01) = 2.23
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air traffic volumes decrease. In short haul markets there exists a

range of distances for which traffic and distance, hence traffic and

fares, are positively correlated. This results in fare elasticity

estimates that bear incorrect positive signs.

Since the model in this research does not include variables related

to other modes, it was believed that positive price elasticity estimates

would be obtained in the demand equation. The estimated fare

elasticity for large markets was negative but statistically insignificant.

The estimated fare elasticities for medium size and small markets were

both positive, the former significantly and the latter insignificantly.

The results of the estimation procedure for the demand equations

for large, medium size, and small short haul markets appear in Figure

5.16. Again, because of specification error, little faith can be placed

in these estimates.
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Figure 5.16. Estimated Demand Equations for Short Haul Markets

LARGE

LQD = 0.0348 + 0.0824 LLOS - 0.0505 LFARE + 1.14 LSE

(0.00983) (0.0189) (0.0537)

std. error = 0.603

(0.0225)

R2 = 0.620

MEDIUM SIZE

LQD = -0.150 + 2.81 LLOS + 1.80 LFARE + 0.605 LSE

(0.00702) (0.0792) (0.0393)

std. error = 0.381

(0.00701)

R2 = 0.877

SMALL

LQD = -0.073 + 1.63 LLOS + 0.0114 LFARE + 1.29 LSE

(0.00922) (0.0871) (0.0177)

std. error = 0.986

(0.0240)

R2 = 0.670

n = 102

n = 88

n = 100
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VI. Applications of the Models

The purpose of this research, as was stated in Chapter I, was to

develop a set of demand models which are sufficiently sensitive so as to

measure the impacts upon market demand of policy decisions. This

chapter provides examples of how the models developed in Chapters III and

IV and calibrated in Chapter V may be applied to the analysis of demand

variations due to changes in quality of service and fare. These changes

may be the effects of the introduction of new aircraft technology or of

the implementation of managerial strategies within the framework of

existing technology. Also included in this chapter is an outline of how

the models may be applied for aggregate forecasting purposes.

Chapter VI is segmented into three parts. Section 6.1 is an

application of the demand equations to the derivation of demand vs.

frequency relationships for large long and medium haul markets. These

relationships are very useful to schedule planners for fleet assignment

purposes. Section 6.2 estimates the impact upon demand in a large long

haul market of the introduction of a supersonic transport aircraft, and

the impact upon demand in a large medium haul market of the introduction

of a medium range fuel efficient aircraft. Section 6.3 discusses the

various necessary tasks that must be performed to apply the models to

produce aggregate forecasts of domestic air passenger demand.
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6.1 Derivation of Demand vs. Frequency Relationships

In Section 3.2.1 the concept of the "demand vs. frequency" relation-

ship was developed. A typical "demand vs. frequency curve" was plotted

in Figure 3.4. In Section 1.2, "The Need for Policy Sensitive

Forecasting Models", the motivation for the determination of accurate

demand vs. frequency relationships was cited in conjunction with fleet

assignment models. Many fleet assignment models have been developed in

recent years, both within academic institutions and by aircraft

manufacturers. One such model is FA-4, developed in the Flight

Transportation Laboratory at M.I.T.1

FA-4 is a linear programming model which determines the optimal

number .of daily flights scheduled over each segment of a route

structure network. The objective function to be maximized is the

difference between total revenue and the sum of direct and indirect

operating costs.2  The optimization process is constrained by a number

of economic factors including, among others, prescribed load factor

conditions, fleet availability, minimum number of departures in the

various markets, and maximum number of departures from the various stations.

Among the necessary input information is a set of demand vs. frequency

relationships for the various markets. The frequency variable, n, in the

demand vs. frequency relationship for a given market is the number of

Swan, William, "The Complete FA-4 Memo" (Cambridge: MI,T, FTL Technical
Memorandum 72-10, August, 1972),

2 Direct and indirect operating costs are defined in Section 3,2,2,
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3daily departures, assuming that each departure is nonstop, that the

demand distribution is uniform Qver time of day, and that the departure

scheduling is such that the average displacement time is minimized, It

can be shown that for n daily departures, this optimal scheduling places

the departure of each flight i, D,, at the following times:

D = 2i - 1 i = 1, 2, ... , n (6.1)1 2n

where the [0, 1] time scale is defined from the start to the end of the

travelling day.

Given the flight schedule implied by equation (6.1), it can be shown

that the average displacement time (assuming the passenger behavior

patterns cited in Section 4.1.2.1) is as follows:

II = $(6.2)

where D = length of the travelling day.

Since the level of service variable LOS is defined as the ratio of

nonstop jet block time, t , to the average of the flight and displacement

times, then level of service can be defined as a function of n as follows:

t
LOS = 0 n (6.3)

t +D n +
to 4n~ 4t 0

3 For simplicity herein, we will assume all departures are nonstop
subsontc jets.
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The standard value of the length of travelling day used by FAr4

researchers in the development of demand vs, frequency relationships for

long and medium haul markets is D = 16 hours,4 The nonstop jet time for

a flight from Boston to San Francisco is roughly to = 6,0 hours,

Substituting these values into equation (6,3) yields the relationship

between level of. service and number of flights (assuming optimal

scheduling) for the Boston to San Francisco segment.

LOS (BOS-SFO) n n (6.4)

n + 4 ) n + 0,667

Substituting the function (6.4) into the estimated demand

equation for large long haul markets (Figure 5.13) yields the demand vs.

frequency relationship for Boston to San Francisco,

QDCBOS-SFO) log' 1C,0859)(n + 00667-0,429 - F-1, 26 , SEI, 73

(6.5)

The volume of passenger demand, given a fixed fare F and level of

socio-economic activity SE, was defined as QDF in Section 3.2,1. By

employing this notation equation (6,5) can be non-dimensionalized as follows:

4 Interview with William Swan, M,I,T, Flight Transportation Laboratory,
Cambridge, May 19, 1977,
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QD n 0.429
(BOS-SFO) (n +0.6 (6.6)

The numerical results of equations (6.4) and (6.6) are presented

in Table 6.1. The demand vs. frequency relationship summarized within

this table indicates that 80% of the total potential demand will be

satisfied with only one daily departure. The 95% saturation frequency

discussed in Section 3.2.1 is five daily departures for the Boston-San

Francisco market.

Chicago-New York ts a large medium haul market with a jet block time

of roughly t o 2.5 hours, Substituting this value into equation (6.3)

and combining with the results of the estimation of the demand

equation for large medium haul markets, equation (5.23), the following

results are obtained for the Chicago-New York market;

LOS(CHI-NYC) n - n (6.7)
n + 4(5) n + 1.60

QD 0.534
(CHI-NYC) = (n +n1 .60) (6.8)

F

The resulting demand vs. frequency relationship for the Chicago-New

York market is tabulated in Table 6.2. If a single flight were scheduled,

60% of the potential demand would be satisfied. The 95% saturation

frequency for the Chicago-New York market is sixteen flights.



Demand vs, Frequency Relationship for Boston to San Francisco

Percentage of

Total Demand

QD/QDF

0,000

0,803

0,884

0,918

0,936

0,948

0,956

0,962

Table 6,1
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Number of

Fljghts

n

0

1

2

3

4

5

6

7

Level of

Service

LOS

0,000

0,750

Q,818

0,857

0,882

0,900

0,913

0,923



Demand vs. Frequency Relationship for Chicago to New York

Number of

Flights

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table 6.2
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Level of

Service

LOS

0.000

0.385

0.556

0.652

0,714

0.758

0.789

0.814

0.833

0.849

0.862

0.873

0.882

0.890

0.897

0,904

0.909

0.914

0,918

Percentage of

Total Demand

QD0D

0.000

0.600

0.731

0.796

0.836

0.862

0.881

0.896

0.907

0.916

0.924

0.930

0.935

0.940

0.944

0.947

0.950

0.953

0.956
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The results imply, as expected, that the long haul BostQn-,San

Francisco market will saturate with fewer scheduled departures than will

the medium haul Chicago-New York market. The demand vs, frequency

curves for these two markets are superimposed in Figure 6,1,

6.2 The Impact upon Demand of New Technologically Advanced Aircraft

The introduction of a new technologically advanced aircraft will

affect the consumers of air passenger transportation in one or two ways.

Either the quality of service in a given market will be altered, or the

fare structure will change, or both. For example, the introduction of a

supersonic transport in long haul markets will improve the level of service

by substantially reducing trip time. It may as well result in a price

change if a fare premium is charged for the privilege of enjoying this

high speed service. 5  If a new fuel-efficient subsonic aircraft were

introduced, the savings cost to the airlines would hopefully be passed

along to the consumer in the form of either fare reductions or less

frequent and/or smaller fare increases. These two hypothetical cases will

be investigated in this section.

5 A fare premium was originally charged for jet service when it was
first introduced. Also, a substantial surcharge currently exists for
transatlantic Concorde flights.



Figure 6,1 Demand Vs. Frequency Curves, Boston-San Francisco and Chicago-New York
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6.2.1 The Introduction of a Supersonic Transport on Long Haul Domestic

Routes

In 1974, there were two daily nonstop flights each way between Boston

and San Francisco. The value of the level of service variable LOS was

0.792, and approximately 199,000 one-way trips were purchased in this market.

In this section, the equipment used for these flights (United's 747 and

TWA's L-1011) will be "replaced" by a Boeing SST and the resulting impacts

upon demand will be estimated.

Assuming a total of one half hour for taxiway occupancy and

acceleration to and deceleration from cruise speed, a cruise speed of

1800 miles per hour, the block time of an SST flight between Boston and

San Francisco, approximately 2700 miles, is estimated as

t = 0.5 hours + 2700 miles = 2.0 hours (6.9)o 1800 mph

This figure is invariant of direction since, at the cruising altitude of

the SST, jet stream effects are negligible.

The resulting level of service figures are 1.468 from Boston to San

Francisco and 1.321 from San Francisco to Boston. The value of the market

level of service is, as defined by equation (4.14), the geometric mean of

the two directional values which equals 1.393. This represents a 75.9%

increase in LOS.

The coefficient of level of service for large long haul markets is

estimated to be 0.429 (Figure 5.13). Assuming no increase in fare, the

75.9% increase in level of service due to the introduction of supersonic
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service results in a 0.429 x 75.9% or 32.6% increase in traffic, to

264,000 passengers.

The price elasticity for fare on large long haul markets was

estimated in Figure 5.13 to be -1.26. Supposing that a 30% surcharge

were placed upon SST service, the model implies a 1.26 x 30% or 41.1%

decrease from the 264,000 passenger figure, to 155,000 passengers. This

figure assumes, however, that passengers are offered only the SST as an

alternative. If both subsonic and supersonic services were offered (at

different prices), the flight selection behavioral process described in

Section 4.1.2.1 would involve both trip time and price considerations

(as opposed to merely trip time). This is a very complex situation,

involving the time value of money, and will be suggested in Chapter VII

as a future research consideration.

6.2.2 The Introduction of a Fuel Efficient Subsonic Aircraft on Medium

Haul Routes

The next generation subsonic aircraft is likely to be a medium-range

two or three engine plane with a capacity of about 200 people. It will

bridge the gap between the shorter range and smaller capacity narrow-bodies

(DC-9, 727, 737) and the longer range and greater capacity wide-bodies

(DC-10, L-10ll, 747). It will hopefully be substantially cheaper to

operate in medium and medium to long haul markets (in terms of direct

operating cost per available seat-mile) than the existing four-engine

narrow-bodied planes (DC-8, 707).
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If the new generation aircraft were introduced, it is reasonable to

believe that the cost savings felt by the airlines would be passed on to

the consumer over time, in terms of lower fare levels than would be charged

if the technology were not introduced. Furthermore, it is possible that

level of service could be affected, but this is uncertain and a function

of many factors, such as number of planes purchased by the airlines,

expected utilization, etc.

It is beyond the scope of this thesis to evaluate the degree to which

the introduction of the new equipment will affect fares and quality of

service in a given market, particularly since the design parameters of

the new aircraft have not as yet been finalized. However, the level of

service coefficient and the fare elasticities of the demand analysis

equations can provide a clue as to how the service and fare changes caused

by the introduction of the new aircraft affect demand.

For example, suppose the new technology aircraft were introduced,

resulting in no appreciable change in level of service but, over time,

a decrease (in constant dollars) of between 5% and 30% in fares in 700

mile markets, roughTy the length of the Chicago-New York market. Since,

from equation (5.23), the estimate of price elasticity for large medium

haul markets is 0.583, the model would predict the traffic volume

increases in that market shown in Table 6.3.
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Effect Upon Demand in Chicago-New York Market of Fuel Efficient

Aircraft, Assuming a Resulting 5%-30% Decrease in Fare

(Constant Dollars)

Percentage Decrease

in Fare

5

10

15

20

25

30

Percentage Increase

in Demand

2.92

5.83

8.75

11.7

14.6

17.5

Table 6.3
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6.3 Aggregate Forecasting

The project of applying the models developed in this thesis to

aggregate demand forecasting is nearly as complex a task as the development

of the models themselves has been. Four major steps are involved in this

operation:

Step 1. Determination of Market Sample

.Step 2. Gathering of Data

Step 3. Prediction

Step 4. Sensitivity Analysis

The purpose of this section is to outline each of these four steps.

It is not necessary, nor perhaps is it even reasonable, to employ the

same sample of markets that was used to calibrate the models for the

forecasting process. For the purpose of forecasting aggregate traffic

(in, say, RPM's) by length of haul, it is suggested that the samples

contain the historically largest (in terms of density) markets in each

length of haul grouping, for the following three reasons:

(1) For a fixed sample size, this sampling procedure will provide the

maximum ratio of sample RPM's to population RPM's.

(2) The forecasting accuracy of the demand equations (in terms of

lower standard errors) appears to be greater for larger markets.

(3) Using a sample for forecasting that is different than the sample

used for calibration provides a means for verifying the performance of the

model by "forecasting" past aggregate demand and comparing this to actual

figures.

The size of the sample is a function of the amount of resources

available. The most time and cost sensitive task, with respect to sample
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size, will be data gathering.

The necessary socio-economic data are currently being processed by

the Bureau of Economic Analysis of the Department of Commerce. The data

will include projections of the socio-economic variables (total personal

income and income of service industries) through the year 2000.

Scenarios of technological variables can be provided by the aircraft

manufacturers and by NASA. Service levels and fares will have to be

estimated based upon these technical inputs, by industry predictions of

the changes in the various components of direct and indirect operating

costs, and by economic forecasts of the appropriate price deflators.

Once the sample has been selected and the data gathered and processed,

the estimates of the demand levels for each of the markets for each of the

economic and technological scenarios may be obtained by direct substitution

into the demand equations. The traffic forecasts may then be summed to

obtain aggregate demand forecasts.

Sensitivity analysis is a necessary component to determine how

responsive the demand forecasts are to perturbations in each of the factors

specified in the technological and economic scenarios. Careful attention

must be paid to ensure that the model will not produce bad results if any

of the input information is slightly in error.



255

VII. Conclusions and Recommendations for Future Research

A series of models have been developed which may be used to forecast

future passenger traffic in U.S. domestic air passenger markets. These

models are sufficiently policy-sensitive so as to measure the impacts upon

market demand due to changes in quality of service, fares, and technological

factors. On the surface, the general structure of the models is

sufficiently simple so as to be easily communicable to an audience that

is unfamiliar with economic theory and econometric modeling. However, the

underlying derivations of the components of the model are sufficiently

sophisticated so as to capture the important characteristics of this

complex industry.

The models are adaptive, in that they may be updated without

considerable difficulty as additional data becomes available, although it

is not clear that such activity will be necessary. Furthermore, the

models are statistically robust in that deletion of any single data points

from the samples over which they were calibrated would not substantially

alter the estimates. An example of this last fact is the case of the

large long haul markets, in which the two data points with the highest

apparent leverage of the remaining ninety were removed. Two of three

coefficient estimates remained unchanged, while the third changed by one

percent.

A common conclusion of other research efforts in this field is that

data may not be pooled over lengths of haul to obtain one general demand

model. The results of a Chow test in this thesis concurred with this
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proposition. Furthermore, the results of Chow tests within length of

haul classifications revealed that data may not be pooled by market size

(as measured demographically). Therefore, the data were segmented into

three lengths of haul and three market size strata. Models were then

calibrated over subsets of the data extracted from the markets in each of

the nine cross-classifications.

In most of the nine cross-classifications, the equations estimated

by ordinary least squares provided a good fit, but did not yield

intuitively reasonable estimates of the coefficients. Furthermore, the

coefficient estimates were imprecise. The suspected cause of the problem

was multicollinearity, and when this suspicion was confirmed, principal

components regression was employed.to combat the situation. The

resulting equations produced reasonable and precise coefficient estimates,

but not as good a fit. Since the purpose of this research was to produce

a set of models that may be used for policy analysis, it is imperative

that the resulting equations bear reasonable and precise coefficient

estimates. Consequently, the equations calibrated using ordinary least

squares were, in spite of their superior fit, rejected in favor of the

equations estimated using principal components deletion.

As was expected, the results of the estimation of the demand

equations for short haul markets were unsatisfactory. This is due to the

positive relationship between air traffic volume and distance in the short

haul because of the supremacy of competing modes for very short distances.

Consequently, the fare elasticity was frequently estimated to be a positive



257

number, as fare is a function only of distance. This reaffirms the

need for specialized short haul air traffic demand forecasting models

which account for the attributes of surface modes.

For medium and long haul markets, the model seems to perform better

for larger markets. This is due to a specification problem regarding the

route structure variable. In larger markets a greater percentage of the

non-local passengers are accounted for by this variable. Therefore, the

service equation estimate produced a poorer fit in the medium size and

small long haul markets and the small medium haul markets, than it did in

the large long haul and large and medium size medium haul markets. The

only apparent remedy for this situation is to define a more complex route

structure variable, which would require service segment flow data.

However, since these data are very costly to process, and since the

majority of the long haul traffic is in large markets and of medium haul

traffic is in medium and small size markets (for which the route structure

variable as defined herein seems to perform well), it is doubtful whether

the benefit of this activity would be worth the resource investment.

Comparing the estimated fare elasticities of long (-1.26

0.067) and medium (0.583 ± 0.104) haul markets, where the error

terms are ± two standard errors, it appears that air transportation demand

is more price elastic in longer haul markets. The results of the

generation of demand vs. frequency relationships in Section 6.1 leads to

the conclusion that in long haul markets demand will saturate with a fewer

number of departures than will-demand in medium haul markets. The

estimates of the coefficients of the socio-economic variable in all
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demand equations for long and medium haul markets imply that air travel

demand is very elastic with respect to personal income and the income of

service related industries.

The performance of the models in aggregate demand forecasting remains

to be seen. The application of this research to medium and long-term

forecasting is a process nearly as complex as the development of the models

themselves. The accuracy of the forecasts that this research will

produce can be only as good as the information received regarding future

technological and economic scenarios, and only as good as the methods by

which these data are processed to generate predictions of the values of the

carrier variables. These applications comprise an obviously ripe area

for future research.

The determination of accurate estimates of the relative consequences

of displacement time vs. flight time, and of the time/cost tradeoff for

air travelers, are other pressing topics of interest related to the research

of this thesis. The former can be used to validate the behavioral

assumptions adopted herein for the assignment of passengers to flights,

and perhaps improve upon the definition of the level of service variable.

The latter would provide valuable information for the analysis of markets

in which two types of service, one faster and more expensive and one slower

and cheaper, exist. This problem was encountered in the analysis of

the introduction of domestic supersonic transport service in Section 6.2.

The models developed in this thesis are, as previously mentioned,

not effective in the analysis of short haul markets. A complement to

this research would be a set of short haul air transportation demand
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models that are sensitive to the relative levels of the attributes of

competing modes. The thesis by Blumer, surveyed in Chapter II, did an

excellent job of laying the groundwork for such models. However, due to

specification errors cited in Blumer's conclusions and in Chapter II of

this thesis, his work needs modifications.

As a final recommendation, the inclusion of a third stratification,

that of market type (business vs. pleasure), would be very insightful,

since, as Marfisi indicated in his thesis, the demand equation coefficients

are sensitive to the type of traveler predominant in the market. This is

a very difficult problem to attack since, while a few markets are obviously

highly business-oriented (e.g., Boston-New York, Chicago-Detroit), and

some obviously highly pleasure-oriented (e.g., Miami-New York, Las Vegas-

Los Angeles), most markets are somewhere on a continuum between the two

extremes. Unfortunately, no current data are publicly available that

can be used to identify the business/pleasure mix of given markets. The

production and dissemination of this data, perhaps by onboard surveys

conducted by airlines, would constitute a significant breakthrough for

researchers interested in this type of analysis.
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Appendix A. List of Region Pairs by Demographic Stratifications

1-1

Short
Bismarck-Minot (106
Knoxville-Lexington
Bismarck-Fargo (187
Las Vegas-Reno (345

miles)
(157 miles)
mi 1 es)
mi 1 es)

Medium
Jackson-Jacksonville (511 miles)
Reno-Tucson (709 miles)
Las Vegas-Lubbock (775 miles)
Lincoln-Tucson (991 miles)

Fargo-Las Vegas (1205 miles)
Las Vegas-Lexington (1686 miles)
Portland, Maine-Tucson (1825 miles)
Erie-Reno (2065 miles)

1-2

Short
Lincoln-Omaha (
Reno-Sacramento
Lubbock-Oklahoma
Dayton- Knoxvi 11 e

55 miles)
(113 miles)
City (269 miles)

(282 miles)

Medium
Jacksonville-Norfolk (543 miles)
Dayton-Lincoln (665 miles)
Minot-Salt Lake City (737 miles)
San Antonio-Tucson (762 miles)

Las Vegas-Omaha (1099 miles)
Jacksonville-Salt Lake City (1834
Dayton-Reno (1883 miles)
Norfolk-Tucson (1999 miles)

miles)

For an explanation of the demographic stratifications, refer to
Section 4.3.2.
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1-3

Short
Cincinnati-Lexington (70 miles)
Jackson-New Orleans (160 miles)
Knoxville-Memphis (342 miles)
San Diego-Tucson (367 miles)

Medium
Jacksonville-New Orleans (513 miles)
Fargo-Milwaukee (516 miles)
Denver-Tucson (627 miles)
Cincinnati-Portland, Maine (810 miles).

Long
Memphis-Tucson (1224 miles)
Las Vegas-New Orleans (1500 miles)
Jacksonville-Portland, Oregon (2428 miles)
Portland, Maine-San Diego (2623 miles)

1-4

Short
Fargo-Minneapolis (223 miles)'
Lexington-Pittsburgh (289 miles)
Dallas-Lubbock (293 miles)
Dallas-Jackson (397 miles)

Medium
Minneapolis-Minot (449 miles)
Reno-Seattle (566 miles)
Dallas-Tucson (839 miles)
Atlanta-Lincoln (841 miles)

Long
Bismarck-Seattle (1014 miles)
Miami-Portland, Maine (1353 miles)
Lubbock-Miami (1400 miles)
Atlanta-Las Vegas (1747 miles)
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1-5

Short
Boston-Portland, Maine (95 miles)
Detroit-Erie (155 miles)
Las Vegas-Los Angeles (227 miles)
Cleveland-Lexington (280 miles)

Medium
Las Vegas-San Francisco (419 miles)
Chicago-Lincoln (473 miles)
Portland, Maine-Washington 487 miles
Boston-Knoxville (830 miles)

Long
Lincoln-Los Angeles (1267 miles)
Chicago-Tucson (1441 miles)
Jacksonville-San Francisco (2369 miles)
New York-Reno (2399 miles)

2-2

Short
Norfolk-Richmond (75 miles)
Oklahoma City-Wichita (156 miles)
Omaha-Wichita (265 miles)
Richmond-Rochester (388 miles)

Medium
Norfolk-Rochester (437 miles)
Sacramento-Salt Lake City (533 miles)
Dayton-Omaha (622 miles)
Oklahoma City-Salt Lake City (865 miles)

Lpgng
Dayton-San Antonio (1079 miles)
Dayton-Salt Lake City (1461 miles)
Sacramento-San Antonio (1463 miles)
Norfolk-Salt Lake City (1935 miles)
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2-3

Short
Raleigh-Richmond (138 miles)
Cincinnati-Dayton (63 miles)
Dayton-Milwaukee (285 miles)
Denver-Salt Lake City (381 miles)

Medium
Denver-Wichita (428 miles)
Albany-Dayton (576 miles)
Memphis-San Antonio (626 miles)
Salt Lake City-San Diego (626 miles)

Portland, Oregon-San Antonio (1714 miles)
New Orleans-Sacramento (1879 miles)
Albany-Salt Lake City (1960 miles)
Rochester-San Diego (2251 miles)

2-4

Short
Kansas City-Oklahoma (165 miles)
Dallas-Oklahoma City (185 miles)
Dayton-Pittsburgh (215 miles)
Dayton-St. Louis (339 miles)

Medium
Oklahoma City-St. Louis (462 miles)
Sacramento-Seattle (608 miles)
Rochester-St. Louis (729 miles)
Miami-Richmond (825 miles)

Long
Miami-Rochester (1204 miles)
Houston-Salt Lake City (1204 miles)
San Antonio-Seattle (1775 miles)
Atlanta-Sacramento (2093 miles)
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2-5

Short
Dayton-Detroit (175 miles)
Norfolk-Philadelphia (215 miles)
Boston-Rochester (343 miles)
Cleveland-Richmond (362 miles)

Medium
Chicago-Omaha 423 miles)
Chicago-Rochester (522 miles)
Los Angeles-Salt Lake City (590 miles)
Detroit-Omaha (660 miles)

Long
Omaha-San Francisco (1432 miles)
San Antonio-San Francisco (1487 miles)
Boston-Salt Lake City (2105 miles)
New York-Sacramento (2510 miles)

3-3

Short
Memphis-Nashville (200 miles)
Cincinnati-Nashville (230 miles)
Cincinnati-Milwaukee (318 miles)
Memphis-New Orleans (349 miles)

Medium
Milwaukee-Nashville (475 miles)
Albany-Cincinnati (623 miles)
Denver-San Diego (840 miles)
Denver-Milwaukee (908 miles)

Long
Denver-New Orleans (1067 miles)
Albany-Denver (1622 miles)
Cincinnati-San Diego (1865 miles)
New Orleans-Portland, Oregon (2050 miles)
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3-4

Short
Cincinnati-Pittsburgh (256 miles)
Houston-New Orleans (303 miles)
Albany-Pittsburgh (367 miles)
Atlanta-Cincinnati (373 miles)

Medium
Atlanta-New Orleans (425 miles)
Milwaukee-Pittsburgh (431 miles)
Miami-Nashville (807 miles)
Cincinnati-Miami (948 miles)

Denver-Seattle (1020 miles)
San Diego-Seattle (1052 miles)
Dallas-Portland, Oregon (1626 miles)
Denver-Miami (1716 miles)

3-5

Short
Chicago-Milwaukee (74 miles)
Raleigh-Washington (225 miles)
Albany-New York (139 miles)
Albany-Boston (145 miles)

Medium
Albany-Detroit (479 miles)
Raleigh-Detroit (503 miles)
Los Angeles-Portland, Oregon (834 miles)
Denver-San Francisco (956 miles)

Long
Cleveland-Denver (1217 miles)
Denver-New York (1624 miles)
Portland, Oregon-Washington (2339 miles)
New York-San Diego (2435 miles)
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4-4

Short
Kansas City-St. Louis (229 miles)
Memphis-St. Louis (255 miles)
Milwaukee-Minneapolis (297 miles)
Atlanta-Memphis (332 miles)

Medium
Atlanta-St. Louis (484 miles)
Houston-Kansas City (643 miles)
Atlanta-Dallas (721 miles)
Minneapolis-Pittsburgh (726 miles)

Long
Houston-Pittsburgh ((1124 miles)
Miami-Minneapolis (1501 miles)
Dallas-Seattle (1671 miles)
Miami-Seattle (2725 miles)

4-5

Short
Pittsburgh-Washington (193 miles)
Detroit-Pittsburgh (198 miles)
Chicago-St. Louis (256 miles)
New York-Pittsburgh (329 miles)

Medium
Boston-Pittsburgh (496 miles)
Atlanta-Detroit (602 miles)
San Francisco-Seattle (671 miles)
Miami-Washington (920 miles)

Long
Detroit-Houston (1095 miles)
Kansas City-New York (1098 miles)
Houston-Washington (1204 miles)
St. Louis-San Francisco (1736 miles)
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5-5

Short
Cleveland-Detroit (94 miles)
New York-Washington (215 miles)
Chicago-Detroit (238 miles)
Boston-Philadelphia (274 miles)

Medium
Boston-Washington (406 miles)
Boston-Detroit (623 miles)
Chicago-Philadelphia (675 miles)
Chicago-New York (721 miles)

Long
Chicago-Los Angeles (1740 miles)
Los Angeles-Philadelphia (2396 miles)
New York-San Francisco (2574 miles)
Boston-San Francisco (2703 miles)



268

Appendix B. The Hat Matrix.in Linear Models*

The general linear model is defined as follows:

Y = X8 + e (B.1)

where

Y = an n by 1 vector of response variable observations

X = an n by p matrix of the n observations of the p carrier variables

0 = a p by 1 vector of coefficients

e = an n by 1 vector of errors

Regression analysis is a set of techniques by which the 0 coefficients

are estimated. The most commonly used technique in regression analysis

is ordinary least squares where 0, the estimator of S, is as follows:

S = (XX) XY (8.2)

The elements of the error vector are assumed to have a mean of zero.

Therefore, the vector of the expected or "predicted" values of the response

variables are as follows:

*
A substantial amount of the material in this appendix has been extracted

from David C. Hoaglin and Roy E. Welsch, "The Hat Matrix in Regression and
ANOVA" (National Bureau of Economic Research Working Paper WP 901-77,
January, 1977).
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^ ^ T T (B.3)Y = X = X(X X) X Y

or

Y = HY (B.4)

where

H = X(XTX) - X Ty (B .5)

The matrix H defined in equation (B.5) is called the "hat" matrix since it

transforms Y into Y ("Y-hat").

It is apparent from equations (B.4) and (B.5) that the predicted values

of the response variables are linear combinations of the actual values, and

that the weights are a function only of the carrier variables.

n
y = h y (B.6)

where

yi = a generic value of Y and

h. = a generic element of H

From equation (B.6) it is observed that the value of h.. determines

the amount of influence or "leverage" that the observed value of the jth

observation, y , has upon the predicted value of the ith observation, y .

Furthermore, this amount of leverage is irrespective to the value of yj,

since the hat matrix is a function only of the carrier variables. There-

fore, the hat matrix is useful to the data analyst for the identification

of sensitive sample data points for which the value of y will have a sub-

stantial impact upon the fit. These points must be closely scrutinized
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because a discrepant observed value of y may have a very detrimental

effect upon the results of the estimation.

The amount of leverage that a particular y has upon the overall fit

can be most readily ascertained by inspection of the ith diagonal element

of the hat matrix, h11 . For simplicity this element will hereafter be

referred to as h. The analyst may therefore be concerned with only the
2n diagonal elements rather than the total number of elements n2. This

is certainly much more efficient when analyzing large data sets.

Given a data set with n observations one may ask how large must a

particular h be for it to be considered a high leverage point. Theorem

B.2 which follows provides a guideline. The proof of this requires the

use of a preliminary theorem from linear algebra.

Theorem B.l: Let A be

trace of AB is equal to

an m by n matrix

the trace of BA.

and B be an n by m matrix.

Proof: By definition,

trace (AB) =

trace (BA) =

n m
= z E

j=l i=l

n m

j=l i=l

b .T ajiT

b.. a.. = trace (AB)
31 3

The

m n

i=1 j=l

n m
E E

j=1 i=1

a.. b..

b.. a..
3 3
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Theorem B.2: The trace of the hat matrix equals p.

Proof: By definition,

trace H = trace [X(XTX) 1XT]

= trace [X TX(X TX) ] (by Theorem B.1)

= trace I = p

where

Ip = a p dimensional identity matrix

Since by Theorem B.2 the sum of the diagonal elements of the hat matrix

equals p, then the mean value of these elements equals p/n. A reasonable

rule of thumb is that an hi value is considered to be "large" if h1 > 2p/n.

Once a data point i has been identified as a high leverage point,

it is necessary to determine whether its y1 value is discrepant. An

initial clue may be obtained by observing its residual, r1, the difference

between the observed and predicted values.

r. = y. - y.

= y. - (B.7)

Removing the scale may add clarity to the residual values. The
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standardized residual is defined as follows:

r. = 1 (B..8)

where

^2
a = the residual mean square

The residual values may, however, be very misleading. A discrepant

point may have a very small residual if its leverage is so great that the

estimated regression function is forced away from the representative points

and forced through or near the bad point. In such a case, the

representative data points will have high residuals.

Consider the example of the data listed in Table .1 and plotted in

Figure B.1. It is quite obvious that data point 11 is a discrepant

observation. The least squares regression line is as follows:

y = 6.72 + 0.50x (B.9)

This line is plotted in Figure B.2, and the degree of influence of data

point 11 is obvious.

The fourth column of Table B.2 lists the diagonal elements of the hat

matrix. Since p = 2 and n = 11, the rule of thumb cutoff point is 2p/n =

0.364. Data point 11 is immediately identified as a high leverage point.

It is important to realize that this identification is in no way based upon

the discrepant y value for observation 11. The high value of h11 is due

only to its location along the x-axis which is quite removed from the

remainder of the data points.
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Hypothetical Data

Observation

Value

7.0

9.0

11.0

13.5

15.0

16.5

19.3

21.0

23.0

24.7

16.0 36.0

Table Bl

x

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0
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Diagnostic Statistics for Hypothetical Data

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

36.0

0.266

0.207

0.160

0.125

0.102

0.092

0.093

0.107

0.133

0.171

0.544

Ii

-3.68

-2.67

-1.67

-0.16

0.35

0.86

2.67

3.38

4.39

5.10

-8.56

'i

-1.02

-0.71

-0.43

-0.04

0.09

0.21

0.66

0.84

1.11

1.32

-2.99

Table B.2

7.0

9.0

11.0

13.5

15.0

16.5

19.3

21.0

23.0

24.7

16.0

' i

-1.02

-0.69

-0.41

-0.04

0.08

0.20

0.64

0.83

1.13

1.39

-44.96
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y = 6.72 + 0.50 x
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The fifth and sixth columns of Table B.2 list the residuals and

standardized residuals for this example. While data point 11 appears to

clearly be an outlier, the relative magnitude of the residuals do not

indicate the great degree of influence this observation had upon the

overall fit.

A more appropriate diagnostic statistic is the studentized

residual, r*V, which is the distance that the observed value of y would

lie from the predicted value of y(i) if the model were fitted with data

point i deleted from the sample, divided by its standard error.

yi - x 

(

r*. = (B.10)

a 1 + x1(X ()TX()yi xT

where

= the estimated coefficients with data point i deleted

2 = the residual mean square with data point i deleted
a1 (i ) :-

and X = the matrix of carrier observations with row i deleted

Since the numerator and denominator of (B.10) are independent, r*i
will follow a t distribution with n-p degrees of freedom. The

studentized residuals of the numerical example are listed in column 7 of

Table B.2. The discrepancy of data point 11 is vividly demonstrated by

investigation of the studentized residuals.
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Appendix C Multicollinearity and Related Topics I

Multicollinearity is a problem that frequently arises in practice

when the general linear model (C.1) is fitted with empirical data.

Y = XS + 6 (C.1)

where Y = an n by 1 vector of observations of the response variable

X = an n by p matrix of the n observations of the p carrier

variables

= a p by 1 vector of coefficients

c = an n by 1 vector of errors

Multicollinearity arises whin two or more of the carrier variables or

linear combinations ofi them arehighly correlated. If this problem is

present one may obtain the least squares estimates of the elements of the

1 A substantial amount of the material in this appendix has been
extracted from David A. Belsley, "Multicollinearity: Diagnosing Its
Presence and Assessing the Potential Damage it Causes Least-Squares
Estimation" (Cambridge: National Bureau of Economic Research Working
Paper No. 154; October, 1976), and Roy E. Welsch, "Principal Components
and the Singular Value Decomposition" (unpublished lecture notes for the
M.I.T. Course 15.063/18.457 -- Statistics for Model Building, 1977).
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A

a vector, a, as defined in equation (C.2), but i-nterpretation of these

= (XX) XTY (C.2)

variables is quite difficult. Suppose, for example, that two carrier

variables are highly collinear. Their individual coefficient estimates

in the S vector are intended to measure the effect upon the response

variable due to a change in the carrier variable with all other variables

held constant. But since whenever one of these correlated variables

changes in the data its related carrier usually changes correspondingly,

the data itself provide very little confidence in the intended measure.

The statistical result of multicollinearity is that the standard

errors of the coefficients are quite high. If the purpose of the model

is to measure the impact upon Y of changes in the individual x variables,

the analyst desires precise estimates of the a elements, and the presence

of multicollinearity can therefore be quite damaging.

One cononly used method for detecting the presence of

multicollinearity is observation of the off diagonal elements of the

variance-covariance or correlation matrices. However, this procedure

may not indicate the true severity of the problem.

Consider the case where the X matrix is defined as follows:

X = [x1, x2' 2i 3] 9C (C. 3)
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where xL,
= an n by 1 vector of observations of a random variable with

a uniform distribution over [-1/2, 1/2]

2 = an n by 1 vector of observations of a random variable

which is independent of x and also uniformly distributed

over [-1/2, 1/2]

3 ? l~2

Since x1 and x2 are independent, they are also uncorrelated.

The covariance of x, (or x2) and x3 is as follows:

Cov (x1, x3) = E(xlx 3) = E(x2 _ x1X2) = Var(x,) (C.4)

The correlation of x1 (or x2) and x3 is then:

p Cov(x 1, x3)
xl'x 3 4Var(x ) Var(x 3)

Var(x 1 )

4Var(x1 ) - 2 Var(xl)

_ 1 = 0.71

The resulting correlation matrix is.shown in equation (C.6)

~1.00
PX = 0.00

0.71

0.71]

-0.71

1.00

(C.6)

(C.5)

0.00

1.00

-0.71
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The simple correlations of equation (C.6) may not seem so severe as

to imply serious multicollinearity when in fact the linear dependence

is perfect. The cross product matrix of equation (C.2), XTX, will not

in this case invert.

A numerical example of this relationship is the data in Table C.l.

The -resulting estimate of the correlation matrix is given in equation

(C.7).

1.00 0.08 0.73

P = 10.08 1.00 -0.62 (C.7)

0.73 -0.62 1.00

C.1 Singular Value Decomposition

The singular value decomposition is a useful technique for

computational efficiency and conceptual analysis of least squares

estimation. It is included in this appendix primarily for illustrating

its application to the diagnosis of multicollinearity.

Any n by p matrix, X, may be decomposed as follows:

X = UEVT (C.8)

where UUT = vvT = P, a p dimensional identity matrix and Z is a

diagonal matrix with non-negative elements. Exactly k of the elements of

Z will be positive, where k is the rank of p. The elements of E may be

arranged in any order, so without loss of generality it will be assumed
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Table C.1. Perfectly Collinear Data

xl

0.070

0.331

0.055

-0.030

0.348

-0.420

-0.135

-0.443

-0.232

-0.074

0.455

0.453

0.170

-0.325

-0.463

x2

-0.285

0.072

-0.190

0.200

0.406

-0.164

-0.347

0.141

0.135

0.420

0.024

0.246

-0.458

0.360

-0.088

x3

0.355

0.259

0.245

-0.230

-0.058

-0.256

0.212

-0.584

-0.367

-0.494

0.431

0.207

0.628

-0.685

-0.375
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that they are ordered descendingly, a > a2  ..'''' p The elements

of E are called the singular values of X.

The singular value decomposition is similar in concept to an eigen-

system. Noting that

XTX = VEUTUEVT = vg2VT *(C.9)

it is clear that the elements of E2, the squares of the singular values

of X, are the eigenvalues of XTX, and that the columns of V are the

eigenvectorsof xTX (and are therefore orthogonal).

The singular value decomposition has useful numerical properties.

Rather than inverting the XTX matrix to obtain the least squares

estimates in equation (C.2), a more efficient procedure is as follows:

= T -1l

(XTX) XTy

= V T VEUTY (C.10)

= V-2EU TY

= V~A UTy

Furthermore, the hat matrix defined in equation (B.5) may be obtained as

follows:
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H = X(XTX)~I XT

= UEVTj -2VT VUT

(C.11)
= UEE-2 T

= UUT

If multicollinearity is present one or more of the eigenvalues of

XTX, hence one or more of the singular values of X, will be very small

relative to the largest values. Defining the ith condition index of X,

K (X), as follows,

K.(X) = a (C.12)

and the condition number of X, K(X), as the largest condition index,

K(X) = K (X) = (C.13)p C

results in a more useful measure of multicollinearity than the simple

correlation matrix. Generally speaking, the higher the values of the

condition number and condition indices are, the more severe is the

problem of collinearity. The decision as to how high the condition

number must be before one senses danger is somewhat arbitrary and is

discussed in' detail by Belsley. 2

2 Belsley, op. cit.
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Z.(i=1, 2, ... , p) where

Z_ = Xv (C.14)

The v. vectors are the weightings by which each column of X contributes

to the linear combination Z.. For uniform scaling purposes it will be

required that

v.Tv. = 1 (C.15)

Assuming that the columns of X have been centered, the sum of the

sample variances of the p columns of X is

P ^2I a = I trace (XT X)nj X (C.16)

In order to retain as much variance as possible in the first linear
^ 2

combination, Z., it is necessary to maximize a where

Z TZ = vT XTX vn -i -

The selection of the v_ vector is then the process of maximizing (C.17)

subject to the constraint xTx = 1 (C.15). The Lagrangian formulation

is

max L(v ) = v.TXTX v + Xl -1 T v1) (C.18)

2 (C.17)
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The first order optimization conditions are

3L(v1) - xx-x 1 ).3L ( = (X TX - XI v1 = 0

A non-trivial solution then requires that

det(XTX - X11) = 0

Therefore, 1 is an eigenvalue

eigenvector.

To determine which of the

note that from equation (C.19)

T TX A I)v

of XTX and vLl is its corresponding

p eigenvectors should be selected for

it follows that

= 0 (C.21)

Therefore,

T = T TXIv= ng 2 (C.22)

Since the objective is to maximize this variance, X 1 must be the greatest

eigenvalue of X TX. The corresponding eigenvector, v1, is called the

"first principal component."

The second principal component is determined by maximizing

2XTXv- subject to K2 T 2 = 1, and so forth. The total variance of the

columns of X is accounted for after all principal components have been

(C.19)

(C.20)
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extracted.

X + X2 + .... + Xp = trace(X TX) (C.23)

This procedure is an extension of the singular value decomposition

(Section C.1) where XTX was decomposed to VE . In principal components

analysis the cross product matrix is "factored" into XTX = LLT
T

= [VE][EV ].. This is one application of a general class of techniques

known as "factor analysis".

The regression model in the principal components basis is then

Y = Za + = XVa + E (C.24)

The estimates for a, $, may be obtained by ordinary least squares:

A =(ZTZ)~ZT

-(V T x V) 1v T xT Y

= VT(XTXV)~ VTXTY
= VT T -lyTX

V (X x)-l XT Y
= VT (C.25)

If some of the eigenvalues, ? , are small it may be decided that

the removal of the corresponding principal components will alleviate the

collinearity problem (in the original S basis) while retaining the

majority of the original variance. Ieleting these principal components
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is in effect setting their a yalues to zero.

The process of deletion of principal components described above is

based solely upon the relationships of the columns of X. The general

1Arule is that if X is small a can be set to zero. However, it is

conceivable that the linear combination Z may happen to be highly

correlated (relative to the other combinations) with Y. If this is

indeed the case, the deletion, ^ = 0, may destroy the fit. In the

principal components basis the t-statistics are as follows:

t = (C.26)

where u. is the ith row of the U matrix defined in Section C.l. If both
1A

and the corresponding t-statistic are low, then setting a i to zero is

a reasonable procedure.
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