A LINEAR PROGRAMMING SOLUTION TO THE GATE ASSIGNMENT PROBLEM AT AIRPORT TERMINALS

Rami Sabet Mangoubi

June 1980

Flight Transportation Laboratory
Massachusetts Institute of Technology Cambridge, Massachusetts 02139

ABSTRACT

This research solves the flight-to-gate assignment problem at airports in such a way as to minimize, or at least reduce, walking distances for passengers inside terminals. Two solution methods are suggested. The first is a heuristic algorithm which assigns the "most crowded" aircraft (i.e., most on-board passengers) to the best gate, while the second consists of formulating the problem as a linear program.

A flight schedule of one day at Terminal No. 2 of Toronto International Airport is used to test and compare the two methods. The algorithm offers an assignment solution with a 27% reduction in the expected walking distance when compared to the original assignment at the airport. The linear program's assignment gives a 32\% reduction. The heuristic algorithm is, therefore, only 5\% suboptimal for the sample problem. In addition, its associated computational expenses, less than $\$ 10$ per run, are by far cheaper than those of the linear program with expenses as high as $\$ 400$ per run. Such excellent, or even acceptable, performance by the algorithm cannot be guaranteed for all problems. A strategy which helps decide when to use which approach is therefore suggested.

CONTENTS

Page
Abstract 2
Acknowledgements 3
List of Figures 6
List of Tables 7

1. INTRODUCTION 10
1.1 The Problem 10
1.2 A Brief Review of Past Research 11
1.3 Outline of Research and Contributions 15
2. THE "CROWDEST-COME-BEST-SERVE" ALGORITHM. 17
2.1 Description of the Heuristic Algorithms 17
2.2 Proof of the Algorithm's Suboptimality 21
2.3 Data Used to Solve the Problem. 24
2.3.1 Flight and Passenger Information 25
2.3.2 Walking Distance 27
3. SOLVING THE PROBLEM AS A LINEAR PROGRAM 30
3.1 Formulation of the Linear Program. 34
3.2 Solving an Example Problem for a Small Airport 45
3.3 Implementation of the Model on the Computer 52
4. RESULTS 54
4.1 Comparison of the Two Methods of Solution 54
4.2 Computational Costs 66
5. CONCLUSION 70

Page

6. APPENDIX A: COMPUTER PROGRAM IMPLEMENTING THE "CROWDEST-COME-BEST-SERVE" ALGORITHM 72
7. APPENDIX B: RESULTS OF THE "CROWDEST-COME- BEST-SERVE" ALGORITHM 81
8. APPENDIX C: PREPROCESSOR OR MODEL GENERATING PROGRAM. 88
9. APPENDIX D: THE POSTPROCESSOR PROGRAM. 93
10. APPENDIX E: OUTPUT OF THE POSTPROCESSORPROGRAM. 101

LIST OF FIGURES

Figure	Name Page
2.1	Flow Chart for the "Crowdest-
	Come-Best-Serve" Algorithm.............. 19
2.2	Plan of Terminal 2 at Toronto
	International Airport................... 29
3.1	Diagram Showing Conflict Sets
	$\mathrm{L}(\mathrm{i})$, $i=1$ to 5 for Example
	Problem......................... 47
4.1	Cumulative Distributions of the
	Overall Mean Walking Distance
	for All Passengers under each
	of the Three Different Assign-
	ment Policies................................ 57
4.2	Cumulative Distributions of the
	Expected Walking Distance for
	Arriving Passengers under Each
	of the Three Assignment Policies........ 59
4.3	Cumulative Distribution of the
	Expected Walking Distance for
	Departing Passengers under Each
	of the Three Assignment Policies........61
4.4	Cumulative Distributions of the
	Expected Walking Distance for
	Transfer Passengers under Each
	of the Three Assignment Policies........ 64

LIST OF TABLES

Table Name Page1.1 Various Statistics on Passengers'Walking Distance at Toronto TerminalNo. 2.. 14
2.1 Scheduled Flights Information for Example Given in Section 2.2 22
2.22.3 Gates and Walking Distances for Boththe "Crowdest-Come-Best-Serve" andthe Optimal Assignment Policies forthe Example Problem$23 a$
2.4 Average Walking Distances for all Passengers for the Two Assignment Policies. $23 a$
2.5 Summary of Aircraft Data for Toronto Terminal No. 2.. 26
2.6 Walking Distances for Non-Transfer Passengers. 30
2.7 Matrix of Inter-gate Distances. 32
3.1 Average Gate Walking Distance perPassenger (in feet) for HypotheticalAirport46
3.2 Flight Information for Example Problem 46
3.3 Optimal Gate Assignment and Walking Distances for Each Flight 504.1a Mean and Mean Saving in tne ExpectedDistance for All Passengers (in ft.)under the Three Assignment Policies...... 58
$4.1 b$ Percentiles of Expected Walking Distances for All Passengers under the Three Assignment Policies 58

Table	Name Page
4.2 a	Mean and Mean Saving in Expected
	Distance for Arriving Passengers
	(in feet) under the Three
	Assignment Policies....................... 60
4.2 b	Percentiles of Expected Walking
	Distances for Arriving Passengers
	under the Three Different Policies........ 60
4.3 a	Mean and Mean Saving in Expected
	Walking Distance for Departing
	Passengers under Each of the Three
	Assignment Policies....................... 63
4.3 b	Percentile of Expected Walking
	Distance for Departing Passengers
	under Each of the Three Policies..........63
4.4 a	Mean and Mean Difference in Walking
	Distance for Transfer Passengers
	under Each of the Three Assignment
	Policies........... 65
$4.4 b$	Percentiles of Expected Walking
	Distances for Transfer Passengers
	under the Three Assignment Policies....... 65
4.5 a	Resource Utilization and Their
	Costs for the "Crowdest-Come-
	Best-Serve" Algorithm....................... 67
4.5 b	Very Approximate Costs for Running
	the Linear Program........................... 67
E. 1	A Partial List of the Flights, Their
	Gate Assignment and the Per Passenger
	Walking Distance under Each of the
	Three Assignment Policies 102
E. 2	A Partial LIst of the Flights, Their
	Gate Assignment and the Expected
	Walking Distance for Arriving
	Passengers under Each of the Three
	Assignment Policies........................l03
E. 3	A Partial List of the Flights, Their
	Gate Assignment and the Expected Walk-
	ing Distance for Departing Passengers
	Under Each of the Three Assignment......... 104
	Policies

Table	Name	Page
E. 4	A Partial List of the Flights,	
	Their Gate Assignment and the	
	Expected Walking Distance for	
	Transferring Passengers under	
	Each of the Three Assignment	
	Policies.	105
E. 5	Statistical Distribution of the	
	Overall Mean Walking Distance	. 106
E. 6	Statistical Distribution of the	
	Mean Walking Distance for an	
	Arriving Passenger......	107
E. 7	Statistical Distribution of the	
	Expected Walking Distance for a	
	Departing Passenger..	. 108
E. 8	Statistical Distribution of the	
	Expected Walking Distance for a	
	Transfer Passenger..	. 109

1. INTRODUCTION

1.1 The Problem

The airport terminal is the area where passenger servicing and processing take place. In planning for that area, one of the major considerations in the airport planner's mind should be the quality of service offered to passengers. The enormous growth in air transportation, which occurred during the last two decades, necessitated the enlargement of existing airport terminals as well as the founding of new ones, in order to satisfy growing demands. Careful terminal planning, as well as efficient management, are, therefore, of crucial importance if the passenger is to receive a quality service.

Though hard to measure, an important criterion for the quality of service is the distance the passenger is required to walk inside the terminal before reaching either his aircraft or the baggage claim area. In planning new installations, therefore, designers make considerable efforts to minimize the traveller's walking distances. Trying to address the problem, planners introduced new concepts in terminal building architecture, each one of them offering its own special advantage. For instance, in the satellite pier concept, gates are grouped together in satellites, thus facilitating the movement for transfer passengers if the connecting flights are assigned to gates in the same satellite
group. The satellite concept is a modified version of the finger pier concept and offers the advantage of more space for the easy assembly of passengers.

Both satellite and finger pier designs are centralized processing concepts. Centralized processing permits a large passenger processing capacity without excessive land-area usage. In the gate arrival concept, however, each gate has its own processing facility, thus shortening the waiting time for passengers and reducing the level of congestion in any one area. In the gate arrival concept, there are gates in a central position and thus, more accessible from public transportation than other gates which are located further. The central gates can be used for scheduled flights, or any flights with higher priority (such as those normally boarded by elderly or frequently travelling businessmen), while the more distant gates can be used for charters, V.I.P.'s and other flights.

While the choice of the proper terminal design is important in easing the burden of long walking distances on air passengers, efficient operational procedures are also essential to improving the situation. Such procedures become even more crucial when present installations are either undergoing expansion in order to meet the anticipated growth in air travel, or are to serve as permanent buildings with no anticipated plans for modern replacements. One such procedure,
and the one with which this research is concerned, is the assignment of scheduled flights to airport gates, with the objective of a reduced walking distance for the passenger in mind.

Traditionally, aircraft are assigned to gate positions to satisfy various operating requirements such as available servicing equipment, ramp crew scheduling, etc. Rarely is any consideration given to the number of passengers on the plane and how far they have to walk, whether to the baggage claim area from the aircraft, from the check-in counter to the gate, or from one gate to the other. The purpose of this research, therefore, is to suggest solutions to the gate assignment problem from the point of view of the passenger's walking distance.
1.2 A Brief Review of Past Research

Passenger terminal servicing and processing have been the subject of much research, and numerous terminal designs as well as handling approaches have been reported in the literature. The amount of research concerned with flight assignment to gates and to passenger walking distances is, however, limited.
J. P. Braaksma [1977] demonstrates that significant savings in walking distances can be had through appropriate gate allocations. He shows that the walking distance for users of Toronto Terminal No. 2 at Toronto International

Airport was reduced from 923 feet per passenger in 1973 to 744 feet in 1974 and 800 feet in 1975. This improvement is a direct result of a change in gate assignment policy by Air Canada, the terminal's sole user. Table l.l contains a small statistical summary of Braaksma's results. It is shown, for instance, that the median walking distance in 1973 was 890 feet per passenger while, in 1974 and 1975, the median was 744 feet and 800 feet respectively. Other percentiles are also contained in the table.

In another effort to address the same problem, J. Bustinduy [1977] suggests several gate assignment algorithms for implementation at major airports. Mangoubi [1978] tested these algorithms and found that one particular algorithm, that which assigns the best gate to the "crowdest" (i.e. most passengers on-board) aircraft performs better than the other algorithms suggested, when tested at Toronto Terminal No. 2. This algorithm, which Bustinduy calls "Crowdest-Come-Best-Serve", performed even better than another algorithm which the same author calls "optimal"! Nevertheless, the "Crowdest-Come-Best-Serve" algorithm still does not give an optimal solution to the problem, i.e., it does not give a minimum average walking distance per passenger.

	1973	1974	1975
85th Percentile	1,300	1,100	1,165
Mean Distance	923	744	800
50th Percentile	890	660	765
15th Percentile	480	380	430
$\text { Table 1.1 } \begin{aligned} & \text { Vari } \\ & \text { Dist } \\ & \text { Sou } \end{aligned}$	Various Statistics on Passengers' Walking Distance at Toronto Terminal No. 2 (Source: Braaksma [1977])		

1.3 Outline of Research and Contributions

The present work aims at finding an optimal solution to the flight-to-gate assignment problem at airport terminals. The objective is a minimum average walking distance per passenger. Passengers connecting to other flights, as well as passengers originating or terminating their itinerary, are considered. Since, as mentioned in the last section, the "Crowdest-Come-Best-Serve" heuristic algorithm does not suggest an assignment with an optimal walking distance, a mathematical programming approach is introduced to solve the problem. The results from the mathematical program are compared against those of this algorithm. Finally, the computational costs for both the algorithm and the mathematical program are also compared. Chapter 2 of this research discusses the "Crowdest-Come-Best-Serve" algorithm. Section 2.1 states and describes the algorithm and also briefly discusses the other algorithms which Bustinduy [1977] suggests. Section 2.2 contains a proof showing that the "Crowdest-Come-Best-Serve" algorithm does not necessarily offer an optimal assignment; and section 2.3 describes the input data necessary for the computer implementation of the algorithm, as well as the various assumptions taken.

Chapter 3 introduces the linear programming formulation of the problem. The model is described in

Section 3.1. In Section 3.2, a hypothetical problem is solved which, because of its small size, helps the reader visualize the shape of the linear program's constraint matrix. Section 3.3 discusses the computer implementation of the linear program. The section briefly introduces SESAME, the software optimization procedure used as well as the model generating program which builds, out of the necessary data input, the objective function and the constraint matrix. For purposes of comparison, the data assumptions used in the LP are exactly the same as those for the heuristic algorithm.

Chapter 4 presents and compares results of the two solution methods for Terminal No. 2 at Toronto International Airport*. In Section 4.1, some statistical analysis and comparisons are shown. Section 4.1 also briefly discusses the postprocessor program written to present the output information. A comparison of the costs of the two solutions is given in Section 4.2. Advice on the use of the $L P$ versus the heuristic methods is also presented. Finally, conclusions and suggestions for further research appear in Chapter 5.

* rihe Data for this airport was made available to the M.I.T. F'ight Transportation Laboratory by J. P. Braaksma, Assistant Professor in the Department of Civil Engineering at Carleton University, Ontario, Canada.

2. THE CROWDEST-COME-BEST-SERVE ALGORITHM

Bustinduy [1977] suggested several heuristic algorithms which assign flights to gates in such a way as to reduce passenger walking distances. One of these algorithms, the "Crowdest-Come-Best-Serve", performed better than any of the others when tested by Mangoubi [1978] on one day of scheduled flights at Toronto Terminal No. 2. 2.1 Description of the Heuristic Algorithms

The "Crowdest-Come-Best-Serve" algorithm assigns the best available gate, i.e., the gate with the shortest average walking distance per passenger, to the aircraft with the largest number of on-board passengers. For each scheduled flight, free gates are stored in a set G. Set S, a subset of set G, contains only those gates in G which can serve the flight category and its aircraft type. In the test case used, however, no distinction is made between the two sets, S and G. In other words, at Toronto Terminal No. 2, any free gate can serve any flight. The steps of this algorithm are as follows:

Step 1. Number the gates in a serial order and state them in a set G.

Step 2. Consider the "crowdest" arriving aircraft.
Step 3. Create a set S in order to store all gates which can serve that flight's aircraft.

Step 4. Try the first gate in set G.
Step 5. If set G is exhausted (there are no gates left), go to Step 8, else continue.

Step 6. If the gate can serve the flight's type of aircraft, store it in S and go to Step 7 else try the next gate and go to Step 5.

Step 7. Next to the gate number, store the average passenger's walking distance for the flight.
Check next gate and go to Step 5.
Step 8. In set S, choose the gate with the minimum associated average walking distance. Assign it to the flight.

Step 9. Clear sets S and G.
Step 10. consider the next arriving flight. If all flights are exhausted, go to Step 13, else continue to Step 11.

Step ll. Check to see which gates are free at the flight's arrival time. Store these gates in set G afuer numbering them (in any order).

Step 12. Go to Step 4.
Step 13. Stop.
Figure 2.1 shows a flow chart description of this algorithm.
Another algorithm suggested by Bustinduy is the "First-Come-First-Serve" algorithm. Here, the first scheduled flight, instead of the "crowdest", is assigned to the best available gate. One can conclude a priori, that since the only priority consideration for the "First-Come-Best-Serve" algorithm is the scheduled time of arrival of a flight, that it can never suggest an assignment with a smaller walking distance than that of the "Crowdest-Come-Best-Serve".

Bustinduy suggests a third algorithm which looks ahead at all future scheduled flights before giving a final assignement to the next arriving flight. Briefly, the algorithm works as follows. It assigns the first scheduled

Figure 2.1 Flow Chart for the "Crowdest-Come-Best-Serve" Algorithm

flight to a gate. Given this assignment, the algorithm looks ahead and assigns the remaining flights to the best available gates on a first-come-first-serve basis. The total distance walked by all passengers is tallied. The first scheduled flight is then assigned to another gate and the walking distance of all passengers is once again tallied. All available gates which can serve that flight are in turn assigned to it in that manner. When all gates are exhausted, the gate assignment yielding the lowest average walking distance is given permanently to that flight. With the next scheduled flight, the whole process repeats itself. The algorithm stops when all scheduled flights are permanently assigned to a gate.

Mangoubi [1978] tested the three algorithms. In the test, all scheduled flights from one representative day of Terminal No. 2 at Toronto International Airport were used. The results of the test indicated that, of all the three algorithms, the assignment given by the "Crowdest-Come-Best Serve" algorithm yields the highest savings in average walking distance per passenger. This saving amounts, on the average, to about 27% of the walking distance resulting from the original assignment given to the flights by Air Canada. Nevertheless, the "Crowdest-Come-Best-Serve" algorithm is not optimal, as will be shown in the following section. The results of the "Crowdest-Come-Best-Serve"
algorithm, however, will be compared in Chapter 5 with those of the linear program introduced in Chapter 4.

2.2 Proof of the Algorithm's Suboptimality

This section contains a proof by counter example that the "Crowdest-Come-Best-Serve" algorithm does not necessarily provide an optimal gate assignment policy with respect to the average walking distance per passenger; hence, the motivation for the linear programming model introduced in the next chapter.

Consider, for instance, an airport schedule as
follows: A Boeing 747 landing at 10:00 o clock with 200 passengers on board and planning to take off three hours later at 13:00 o'clock, with the same number of passengers. Within these three hours, three Boeing 727 aircraft are also scheduled to be on the ground, but in such a way as not to conflict with each other. (For instance, the first B727 would arrive at 10:00 A.M. and depart at 10:40, the second would arrive at 10:45 A.M. and depart at 11:30 A.M., and the third would arrive at 12:00 and leave anytime.) Assume also that each of these B727's lands and takes off with 120 passengers on board.

The short time table for this hypothetical airport is shown in Table 2.1, along with the total number of passengers each plane serves. Assume that two gates exist at the airport, Gate A and Gate B, with walking distances shown in Table 2.2.

Flight	AC	Arrival	Departure	Pax
1	B727	$10: 00$	$10: 40$	240
2	B747	$10: 00$	$13: 00$	400
3	B727	$10: 45$	$11: 30$	240
4	B727	$12: 00$	$13: 20$	240

Table 2.1 Scheduled Flights Information for Example Given in Section 2.2

Gates	Walking Distance (ft)
A	650
B	800

Table 2.2 $\begin{aligned} & \text { Average Walking Distances for } \\ & \text { Gates A and B }\end{aligned}$

If a "Crowdest-Come-Best-Serve" policy is adopted, the Boeing 747 would be assigned to Gate A, since the Jumbo is the single largest scheduled aircraft and Gate A offers the shortest average walking distance in the airport. All of the Boeing 727's are thus assigned to Gate B because each of them, separately, conflicts with the Jumbo. One can see that such an assignment policy leads to a smaller number of B747 travellers (400) walking a shorter distance than the larger total of 720 passengers from the three Boeing 727's. Table 2.3 lists both the optimal assignment and the "Crowdest-Come-Best-Serve" assignment, along with the corresponding walking distances. Table 2.4 indicates that the shortest average walking distance per passenger (597 feet) does not result in the "Crowdest-Come-Best-Serve" algorithm, which gives 633 feet per passenger as an average walking distance.

Two conclusions can be drawn from this example. First, that a drawback of the algorithm lies in the fact that though the crowdest aircraft is offered the best gate, the policy takes no account of the length of time the aircraft is occupying the gate, and thus preventing other aircraft from utilizing it. Second, the degree of the algorithm's suboptimality , needs not be of any significance (In this example, a difference of only 36 feet per passenger). How far from optimal the algorithm is, depends, of course, on

Flight	AC	PAX	$\frac{\text { Algorithm's }}{\text { Gate }}$	$\frac{\text { Assignment }}{\text { Walking Distance }}$	$\frac{\text { Optimal }}{\text { Gate }}$	Assignment Walking Distance 1
B727	240	B	800	A	650	
3	B747	400	A	650	B	800
4	B727	240	B	800	A	650
	B727	240	B	800	A	650

Table 2.3 Gates and Walking Distances for Both the "Crowdest-Come-Best-Serve"

Assignment Policy Crowdest-Come-Best-Serve	Average Walking Distance per Passenger
Optimal	633 feet
	597 feet

(Total Number of passengers: 1,320)

Table 2.4 Average Walking Distances for all Passengers for the Two Assignment Policies
the structure of the airport and the nature of its flights' schedule. For these reasons, the results of the algorithm will be compared in Chapter 5 against those of the linear program for Toronto Terminal No. 2.

The purpose of the above example is simply to demonstrate a drawback of the algorithm. In the actual test case, passengers can be of three types: arriving, departing or connecting. In addition, flights can be domestic, transborder, (U.S.) or international. A description of all the information necessary for the implementation of the algorithm on the computer is found in the report by Mangoubi [1978]. It is repeated in the next section for the sake of completion. The data are exactly identical to those used to test the linear programming formulation of the problem, though the input format is different.
2.3 Data Used to Solve the Problem

In order to test the "Crowdest-Come-Best-Serve" algorithm on the computer, a program which simulates the operational conditions of the algorithm was written. Each flight's characteristics and the terminal's layout constitute the information required to implement the algorithm (as well as the mathematical program to be described in the next chapter).

2.3.1 Flight and Passenger Information

As mentioned earlier, Toronto Terminal No. 2 at Toronto International Airport was selected for testing the algorithm and the mathematical program. A weekday from the summer of 1975 was selected and the flight:s number, aircraft type, arrival and departure times, as well as the flight category and the gate actually assigned were tabulated. The flight's category consists of a number indicating whether the flight is domestic, 0 , transborder (U.S.), l, or international, 2, . The information described in this subsection. and the next one appears at the end of Appendix A (following the computer program which implements the heurestic algorithm).

A constant load factor of 65 percent was assumed for all aircraft using Terminal No. 2. Table 2.5 lists the various aircraft using the terminal, their capacity and their assumed seat occupation.

A constant load factor implies an equal number of arriving and departing passengers. The number of connecting or transfer passengers, given in Braaksma[1977], was estimated at about 30% of arriving passengers at Toronto. For example, flight number 136136, with a Boeing 747, lands with 248 passengers on board and takes off with an equal number of departing passengers (in addition to those transferring to it from other flights).

AIRCRAFT	CAPACITY	OCCUPATION
B747	382	248
L10	262	170
D8S	210	137
DC8	140	91
$72 S$	135	88
727	135	88
D9S	110	72
DC9	90	59

Table 2.5
Summary of Aircraft Data for Toronto Terminal No. 2

Of the arriving passengers, it is assumed that 30% or 74 intend to board another flight at Toronto Terminal No. 2. These conncecting passengers, therefore, do not need to check in and go directly to their new departure gate.

One can thus conclude that 50% of all passengers are departing, 35% are arriving and 15% are connecting. Finally, no restriction is assumed on the use of gates by any particular type of flight or aircraft (In any case, any computer implementation can be easily modified to accomodate such a constraint).

2.3.2 Walking Distance

Several approaches exist for measuring the walking distance travelled by airport passengers. Braaksma [1976] developed an elaborate method for collecting pedestrian traffic flow data in airport terminals. Turning away from traditional interview surveys which, in any case, yield fragmented bits of information, Braaksma's method consists of handing a card to each passenger as he enters the terminal; either at the gate for the unloading passenger (arriving or transfer) or at the door for the departing passenger. During his stay, the passenger keeps the card, which is time-stamped at various check points. As he leaves the terminal, the passenger delivers the card.

When tested for two days at Winnipeg International Airport, this technique proved successful as only 2% of the
cards delivered were unaccounted for. It also produced data so comprehensive that they can yield volumes, flow rates, occupancies, queueing lengths, service times,... etc. Statistical distributions describing these various quantities can then be built and passengers' patterns can thus be better understood, enabling the airport to improve upon the service level offered to the passengers.

Though comprehensive in its nature,this method, called time-stamping, measures the actual distance traversed by the passenger, as opposed to the distance he has to walk, which this research is trying to minimize. A more direct approach was thus used and distances were measured with the help of the diagram in Figure 2.2 of Toronto Terminal No. 2, as well as accompanying explanation found in the other report by Braaksma [1977].

Table 2.6 lists the walking distance for nontransfer on non-connecting passengers in each flight category. The six columns in the table contain each gate's walking distance, for arriving and departing passengers, for each of the three categories of flights, domestic, transborder and international. In the case of departures, the distance represents the rectilinear walking distance between the check-in point and the gate, while in the case of arrivals, the distance is between the gate and the baggage claim point.

Figure 2.2

Plan of Terminal 2 at Toronto International Airport (Departures Shown Above, Árrivals Shown Below) (reproduced from [Braaksma, 1977])

䛼	$\begin{aligned} & \text { U } \\ & \text { 曷 } \\ & \text { N } \\ & \text { B } \end{aligned}$					
7	$1287{ }^{\text {A }}$	$\begin{aligned} & \text { RIVALS } \\ & 2367 \end{aligned}$	172		$\begin{aligned} & \text { PARTURE! } \\ & 2261 \end{aligned}$	
72	1269	2350	1710	1285	2244	1720
73	1285	2365	1725	1301	2259	1735
74	1106	2193	1553	1112	2087	1543
75	1102	2182	1542	1118	2076	1552
76	926	2013	1373	932	1907	1363
77	919	1929	1289	935	1823	1299
78	746	1833	1193	752	1727	1183
79	739	1749	1109	755	1643	1119
80	566	1670	1030	582	1564	1020
81	556	1566	926	572	1460	936
83	509	1343	703	349	1237	713
85	594	1068	428	434	962	438
87	855	807	347	695	701	177
89	1109	553	601	949	447	329
91	1363	299	355	1203	193	583
93	1662	598	1.154	1502	492	882
95	1845	781	1337	1685	675	1065
97	510	418	828	350	312	668
99	957	418	828	797	312	568

Table 2.6
Walking Distances for Non-Transfer Fassangers [in feet]

The matrix in Table 2.7 displays the intergate distances. Again, connecting or transfer passengers are assumed to walk in a rectilinear manner. In addition to these distances, two probabilities are essential to compute the average walking distance for this third category of passengers. First, the transfer probability,as first mentioned in Section 2.3.1, is estimated at about 30% of arriving passengers at Toronto International Airport. Second, also essential is a distribution indicating the probability $p_{k j}$ that a transfer passenger arriving at Gate k will depart from Gate j. Several approaches can be used to obtain this probability. The first is the "timestamping" approach described earlier and suggested by Braaksma. The second approach consists of derived distributions based on prior knowledge of the passenger's trip origin and destination, the potential flight for the particular O.D. traffic, as well as rather questionable a priori assumptions on gate assignments for these future flights. The third approach, and the easiest, assumes a random gate assignment. In other words, if the probability of disembarking from Gate k and transferring to Gate j is the same for all gates, then,

$$
\begin{equation*}
p_{k j}=p=\frac{1}{N} \quad \forall k, j=1, \ldots, N \tag{Eq.2.1}
\end{equation*}
$$

N being the number of gates at the airport.

Table 2.7
Matrix of Inter-gate distances
[in feet]

Because of its simplicity, the third approach will be employed. This approach is most valid in this case since no knowledge exists concerning flight connection patterns at Toronto Terminal No. 2.

The expected walking distance d_{k}^{T} for a transfer passenger unboarding at Gate k then becomes

$$
\begin{equation*}
d_{k}^{T}=\sum_{j=1}^{N} P_{k j} W_{k j}=\frac{I}{N} \sum_{j=1}^{N} W_{k j} \forall k=1, \ldots, N \tag{2.2}
\end{equation*}
$$

where $W_{k j}$ is the $k j$ th element of the intergate distance matrix shown in Table 2.7.

Cases where patterns of connecting flights are usually known can also be accounted for. For instance, if flight A serves a large number of passengers transferring to flight B, then the computer program simulating the algorithm can be easily modified to incorporate a constraint insuring that flights A and B are assigned to nearly gates. In addition, Braaksma's time stamping method can be used to find which flight pairs usually serve the same large number of passengers.

A listing of the computer program used to implement the "Crowdest-Come-Best-Serve" algorithm appears in Appendix A. This listing includes the input data bases containing information on Toronto Terminal No. 2.

3. SOLVING THE PROBLEM AS A LINEAR PROGRAM

The previous chapter describes a heuristic algorithm solution to the walking distance problem at airport terminals. Furthermore, it is shown in Section 2.2 that the algorithm may not necessarily offer an optimal solution. In order to obtain an optimal solution, therefore, a linear programming approach is introduced in this chapter.
3.1 Formulation of the Linear Program
(A) The Objective Function

The objective is to minimize the average walking distance per passenger, or the total of all distances walked by passengers,

$$
\begin{equation*}
\operatorname{Min} Z=\sum_{j=1}^{N} \sum_{i=1}^{M}\left\{P_{i} d_{j} \quad x_{i j}\right\} \tag{3.1}
\end{equation*}
$$

where M is the total number of flights,
N is the total number of gates,
P_{i} is the total number of passengers boarding to or unboarding from flight i,
d_{j} is the expectation of the measured airport terminal walking distance per passenger.
and the decision variable

$$
X_{i j}=\left\{\begin{array}{l}
1 \text { if flight } i \text { is assigned to gate } j \\
0 \text { otherwise }
\end{array}\right.
$$

Here, $X_{i j}$ is a binary variable. If, for instance, flight 1 is not assigned to gate $3, x_{13}=0$ and the product term $P_{1} d_{3}$ vanishes.

The number of passengers on any flight, P_{i}, depends as in the case of the "Crowdest-Come-Best-Serve" algorithm, on the type of carrier used by that flight. If flight i is a Boeing 747, for instance, then under the assumed 65% load factor, $P_{i}=248$ (See Table 2.5 in Section 2.1.1). The mean distance d_{j} a passenger using gate j has to walk is a weighted sum of the walking distance for the three types of passengers: arriving, departing, and transferring. Thus,

$$
\begin{equation*}
d_{j}=.35 d_{j}^{a}+.5 d_{j}^{a}+.15 d_{j}^{T} \tag{3.2}
\end{equation*}
$$

where the superscripts a, d, and t denote, respectively, arriving, departing and transferring distances. The weighting factors $.35, .5$, and .15 represent the probabilities that the random passenger is respectively, arriving, departing or connecting. These probabilities are derived and explained in Section 2.3.1. Finally, each distance in Equation 3.2 can be obtained from one of the entries of either Table 2.5 or 2.6 in Section 2.3.2.

Equation 3.1 gives more importance to one flight over the other only if that flight carries more passengers. Other factors of importance can be introduced in the objective function. If, for instance, the terminal's
management feels that flights normally carrying buisnessmen are more important than other flights,then a scaling factor can be added to the product $p_{i} d_{j}$. More succintly, the objective function would become

$$
\begin{equation*}
\operatorname{Min} z=\sum_{i=1}^{N} \sum_{j=1}^{N} \gamma_{i} P_{i} d_{j} x_{i j} \tag{3.3}
\end{equation*}
$$

where $\dot{\gamma}_{i}$ is the importance factor for flight i. The linear program will then reduce more the average walking distance of flights with higher importance factors. Since no knowledge exists concerning how the management at Toronto International views the various flights, the objective function of equation 3.1 will be used.
(B) The Constraints

Two classes of constraints exist for the gate assignment problem at airports: those which are physical and inherent to the problem and those which depend on the airport management or the airline using the terminal. The first class of constraints are necessary for the flight-togate assignment to meet the following two conditions:

1. Every flight must be assigned to exactly one gate, and
2. No two airplanes can occupy the same gate concurrently.

The second class of constraints deals with problems which vary from one airport to the other. For instance, certain gates can only serve one flight category, such as
international flights, or some aircraft types are too big for certain gates.

Constraints inherent to the assignment problem:

1. Every flight must be assigned to exactly one gate:

$$
\begin{equation*}
\sum_{j=1}^{N} x_{i j}=1 \quad \forall i=1, \ldots, M \tag{3.4}
\end{equation*}
$$

For each flight i, the sum of all gates j assigned to that flight must equal 1 . There are as many of those constraints as there are flights, M.
2. No two flights may occupy the same gate concurrently:

To formulate this constraint, a set covering method is used. Assume that flights are indexed in order of their arrival time. For each flight i, define the set $L(i)$, whose elements are themselves flights, as follows:

$$
\begin{align*}
L(i) & =\left\{\ell \mid t_{\ell}^{a}+t_{l}^{\mathrm{g}} \geq t_{i}^{a}, \ell=1, \ldots i-1\right\} \\
& =\left\{\ell \mid t_{\ell}^{a}+t_{\ell}^{g} \geq t_{i}^{a}, \ell \varepsilon L(i-1)\right\} \tag{3.5}
\end{align*}
$$

where $t_{\ell}^{a}=$ Arrival time for flight ℓ
and
$t_{l}^{g}=$ ground stay time of flight 2.
Note that $t_{l}^{a}+t_{\ell}^{p}$ is actually the departing time for flight ℓ. Since flights are indexed in their order of arrival, the set $L(i)$ thus consists of all flights
landing before flight i and still on the ground when that flight arrives. This set is defined recursively. That is, of all flights preceeding flight i, one needs only consider those belonging to $L(i-1)$, together with flight i-l itself, in order to construct the set $L(i)$. Note also that $L(0)$ is the empty set.

The conflict constraints are thus described as follows:

$$
\sum_{\ell L(i)}^{\Sigma}{ }^{X_{\ell j}+X} \underset{i j}{ } \leq 1 \quad \begin{align*}
\forall i=1, \ldots, M \tag{3.6}\\
j=1, \ldots, N
\end{align*}
$$

Equation 3.6 says that if any flight $?$ conflicts in time with flight i, it cannot be assigned to the same gate j. These constraints come in inequality form in order to express the fact that some gates do not necessarily have to be used at all times.

The conflict sets generate at most a total of ([M-l]xN) constraints where, as before, M is the total number of flights and N is the total number of gates. Thus, in addition to the first M constraints, there are ([M-1]xN) total constraints. For the case of Toronto Terminal No. 2, the total number of constraints is

$$
([M-1] \times N)+M=(138 \times 20)+138=2,878
$$

A simple example, however, will demonstrate that many of these constraints can be redundant and should, therefore, be dropped.

Assume that the pth arriving flight conflicts only with the three previous flights. Then $L(p)=\{p-3, p-2, p-1\}$ and the corresponding conflict constraint for any gate j, is

$$
\begin{equation*}
\underset{\ell \in L(p)}{\Sigma} x_{\ell j}^{+} x_{p j}=x_{p-3, j}+x_{p-2, j}+x_{p-1, j}+x_{p, j} \leq 1 \tag{3.7a}
\end{equation*}
$$

Assume further that the pllst flight arrives and none of the four flights already on the ground leaves. That is $L(p+1)=\{p-3, \ldots, p\}$. For each gate, then $\ell_{\ell} \sum_{L(p+1)} X_{\ell j}+X_{p+l, j}=$

$$
\begin{equation*}
=x_{p-3, j}+x_{p-2, j}+x_{p-1, j}+x_{p, j}+x_{p+1, j} \leq 1 \tag{3.7b}
\end{equation*}
$$

Here, $L(p) \subset L(p+1)$ and it is clear that any solution satisfying equation 3.8 b will automatically satisfy equation 3.8a. The constraints generated by the pth flight can therefore be dropped. For an airport with 20 gates, this means 20 less constraints. The above type of redundancy in constraints occurs when one or more flights land before any flight on the ground takes off. The following theorem shows that if a series of flights land consecutively without any departures occurring between them, then the corresponding conflict sets are nested:

Theorem: If $L(i) \subset L(i+k)$, for any $k=2, \ldots, M-i+1$,
then $\quad L(i) \subset L(i+1) \subset \ldots \subset L(i+k)$
Proof: Assume that $L(i+r) \subset L(i+r+1)$ for some $r=0, \ldots, k-1$. Then $\exists l=f$ such that $f \varepsilon L(i+r)$ but $f \notin L(i+r+1)$. From the definition of the sets $L(i)$, this means that

$$
t_{f}^{a}+t_{f}^{g}<t_{i+r+1}^{a}
$$

and since the flights are indexed in their arrival order, $t_{i+k}^{a} \geq t_{i+r+1}^{a}$ and

$$
t_{f}^{a}+t_{f}^{g}<t_{i+k}^{a}
$$

or $f \notin L(i+k)$. This contradicts the
hypothesis that $L(i)$ is a subset of $\mathrm{L}(i+k)$ and thus completes the proof.
Q.E.D.

This simple theorem actually helps recognize redundant constraints. If, for instance, $L(3) \subset L(7)$, then the constraints generated by the third through sixth flight are redundant and their omission will not alter the set of feasible solutions to the linear program. The example in the next section will illustrate by how much does the elimination of such redundant constraints reduce the computational burden associated with the problem.

Additional Constraints

In addition to the two types of constraints inherent to the assignment problem, other additional constraints, which depend on the individual airport, are now introduced.
3.Flights are to be assigned to nearby gates

The desire to have such a constraint arises when it is known that two or more flights serve the same large number of connecting passengers. Because of the assumption of random gate assignment explained in Section 2.3.2, the LP does not necessarily position connecting flights in nearby positions. Namely, it is assumed that a transfer passenger landing in gate k is equally likely to find his connecting flight at any other gate. This assumption, however, is not always valid. In the case where two or more flights serve the same transfers, passenger movements occur in group, that is, from the landing flight's gate to one or more specific gates. The expected walking distance d_{k}^{t} of equation 2.2 (Section 2.3.2), whose derivation assumes random assignment, is therefore not valid when such situations occur.

Braaksma's time-stamping approach, explained in Section 2.3.2, can be used to discover if any two or more flights actually serve the same transferring passengers. If it is found, for instance, that flights r and ℓ are serving a large number of the same passengers, then the
program as originally formulated should first be solved. If these flights are assigned to gates too distant, then the folloiwng can be done. Fix one of the flights, say flight ℓ, to the gate assigned to it by the linear program, say gate z. Thus, fix $X_{\ell z}=I$ and add the following constraint:

$$
\begin{equation*}
\sum_{j=1}^{N} x_{l j} W_{z j} \leq D \tag{3.8}
\end{equation*}
$$

where D is the maximum distance permitted between the two flight's gates and $W_{z j}$ is the intergate distance between gates z and j. Since this constraint was introduced when the problem was already optimal, the additional number of iterations required to satisfy this constraint and return to an optimal basis would be negligible.

The method described above would bring flight r to a gate within a distance D of flight ℓ^{\prime} 's, or gate z. If, as a result of introducing this constraint, the value of the optimal solution is greatly increased (which also mean a very high shadow price for the right hand-side D), then the described procedure should be tried by reversing the two flights' roles. In other words, after returning to the original optimal basis, one should fix fight r to its gate and attempt to bring flight ℓ nearby.

Looking at the shadow price information given by the program may also be helpful. This information normally
accompanies the output to the linear program. If the right-hand-side for which the high shadow price is valid has an upper bound rather close to D, and if the shadow price drops significantly beyond that range, then relaxing the constraint equation 3.9 by increasing the value of D to a value slightly above the upper bound of the right-hand-side range, would improve the optimal solution. The disadvantage, of course, would be that the two flights are placed further apart than originally desired, i.e., at a distance greater than D.

If several pairs of flights like flights r and ${ }^{8}$ exist, then for each pair, a constraint equation like that of 3.8 should be introduced along with the fixing of one of its flights to its gate.

Finally, it is possible to set a constraint fixing the two aircraft to close-by gates prior to solving the problem. This constraint, written in equation 3.10, however, is not linear and cannot be easily implemented on the computer.

$$
\begin{equation*}
\sum_{j=1}^{N} \sum_{i=1}^{N} X_{\ell z} W_{z S} X_{r s} \leq D \tag{3.10}
\end{equation*}
$$

4. Subdivision of the airport into separate airline areas:

Most U.S. airports are divided into several areas where each area is reserved for the exclusive use of a particular airline. If S airlines are using the terminal, then the set j of all gates and the set I of all flights can be partitioned as follows:

$$
\begin{equation*}
I=\left\{I_{i}, \ldots, I_{S}, \ldots I,_{S}\right\} \tag{3.11a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{J=J_{1}, \ldots, J_{S}, \ldots, J,_{S}\right\} \tag{3.11b}
\end{equation*}
$$

Each pair of subsets I_{s} of I and J_{s} of J can then be treated treated as separate airports, i.e., since the I's and the J's are both mutually exclusive, the problem can be subdivided into S linear programs.

However, proponents of shared airport terminal
facilities argue, justifiably, that if walking distances are to be significantly reduced, the practice of dividing the airport into airline areas must be abandoned.
5. Restricting the use of some aircraft at specified gates.

This type of consideration can be taken into account by simply setting the appropriate decision variable to zero. For instance, if gate 73 does not have the facilities for jumbo jets, then, set $X_{\ell 73}=0$, for all flights l with a B747.

Other considerations also exist and can, in most cases, be easily incorporated as constraints into the linear program.
3.2 Solving an Example Program for a Small Airport

In order to best visualize the shape of the constraint matrix A, a small problem is solved in this section. The hypothetical airport consists of three gates. Five flights are to be served within one hour. Table 3.1 lists the average walking distance assumed for each gate d_{j} while the necessary flight information appears in Table 3.2 . Furthermore, all flights are eligible to be assigned to any gate.

The diagram of Figure 3.1 helps recognize the conflicts sets $L(i), i=1, \ldots 5$. In this diagram, the time table for the airport is shown. The third flight arrives before any of the first two flights already on the ground leave. The conflict set for the third flight $L(3)$, is therefore a superset of $L(2)$, the conflict set for the second flight. More succintly

$$
L(3)=\{1,2\} \Rightarrow L(2)=\{1\}
$$

The elements of each conflict set are, of course, flights. Following the reasoning of the last section, any solution which satisfies the conflict constraints generated by the third flight should thus satisfy those generated by the second flight.

GATE	AVERAGE WALKING DISTANCE PER PASSENGER d_{j} (in feet)
1	1000
2	2400
3	3000

Table 3.1 $\begin{aligned} & \text { Average Gate Walking Distance per } \\ & \\ & \\ & \text { Passenger (in feet) for Hypothetical } \\ & \text { Airport }\end{aligned}$

FLIGHT	ARRIVAL TIME	DEPARTURE TIME	
1 $00: 00$	$00: 25$	PASSENGERS	
2	$00: 10$	$00: 40$	400
3	$00: 20$	$00: 50$	200
4	$00: 30$	$00: 44$	100
5	$00: 45$	$00: 100$	100

Table 3.2 Flight Information for Example Problem

Figure 3.1 Diagram showing conflict sets L(i), $i=1$ to 5 for example problem

Now, the first flight leaves before the fourth flight arrives. Hence, $\{1\} \notin L(4)$ and $L(3) \not \subset L(4)$. The constraints generated by the third flight are not, therefore, redundant. Similarly, the fourth flight leaves before the fifth flight arrives and $L(4) \not \subset L(5)$. A look at the formulation presented now verifies the assertions of the last two paragraphs.

$$
\operatorname{Min} z=\sum_{i=1}^{5} \sum_{j=1}^{3} d_{j} p_{i} X_{i j}
$$

S.T.

Ist Type of Constraints: $\quad \sum_{j} X_{i j}=1 \quad{ }_{i}$

$$
\begin{aligned}
\mathrm{X}_{11}+\mathrm{X}_{12}+\mathrm{X}_{13} & =1 \\
\mathrm{X}_{21}+\mathrm{X}_{22}+\mathrm{X}_{23} & =1 \\
\mathrm{X}_{31}+\mathrm{X}_{32}+\mathrm{X}_{33} & =1 \\
\mathrm{X}_{41}+\mathrm{X}_{42}+\mathrm{X}_{43} & =1 \\
\mathrm{X}_{51}+\mathrm{X}_{52}+\mathrm{X}_{53} & =1
\end{aligned}
$$

One can obtain a solution to this problem by inspection. The optimal solution appears in Table 3.3. The average walking distance per passenger is also shown for each flight. The optimal value of the objective function, i.e., the minimum total of all walking distances is 15,300 feet, or an average of 1,450 feet per passenger. This problem was also solved on SESAME. Two remarks are noteworthy. The first one concerris the redundant constraints. The problem was solved twice on SESAME. Once with the redundant constraints and once without them. It was found that dropping the redundant constraints reduced the number of simplex iterations from fourteen to seven. Originally, the constraints numbered $([M-1] X N)+M=(4 \times 3)+5=17$. If the three redundant conflict constraints generated by the second flight (see Figure 3.1) are dropped, 14 constraints would be left. Thus, a reduction of 3 constraints gave a 50% reduction in the number of iterations. Such improvement

[^0]| | | AVERAGE | OBJECTIVE FUNCTION |
| :---: | :---: | :---: | :---: |
| FLIGHT | GATE | WALKING DISTANCE | TERM
 1 |
| | 1 | 1,000 | 400,000 |
| 2 | 2 | 2,400 | 480,000 |
| 3 | 3 | 3,000 | 300,000 |
| 4 | 1 | 1,000 | 100,000 |
| 5 | 1 | 1,000 | 250,000 |

Table 3.3 Optimal Gate Assignment and Walking Distances for Each Flight For Example Problem
in the computational efficiency of a solution is common especially when degeneracies, and therefore cycling, are eliminated. A decrease in the execution time and cost should be expected since these two factors grow exponentially with the number of constraints.

The second remark regards the integrality of the decision variable $x_{i j}$. The simplex procedure gives an integral optimal solution $\quad\left(x_{i j}=0\right.$ or l,for $i=1$ to M, $j=1$ to N). A sufficient condition for obtaining an integral optimal solution is the total unimodularity of the constraints matrix A. A matrix is totally unimodular when the determinant of everyone of its submatrices equals 0, -l, or l. Hoffman and Kruskal [1956] proved that every extreme point of the convex polyhedra $\{x \mid A x \leq b\}$ is integral if and only if the matrix A is totally unimodular. Unimodularity exists, for instance, in the constraint matrices of transportation problems.

Because the optimal solution is integral, no need exists to utilize any integer programming technique such as the Branch and Bound Algorithm or the Subgradient Optimization Algorithm. Unimodularity is also of interest because the solution to the linear program for Toronto Terminal No. 2 is integral. It remains to be determined, however, whether a formulation similar to the one described in Section 3.1 always leads to a unimodular matrix A.

3.3 Implementation of the Model on the Computer

The linear program defined in Section 3.1 was solved for the schedule of Toronto Terminal No. 2 using the interactive software package SESAME. Within SESAME itself, several procedures exist. One of these procedures, called DATAMAT, is actually a computer language used in conjunction with SESAME. DATAMAT is used for model generation, problem revision, parametric studies and report generation. To develop the linear programming model for the gate assignment problem, a program was written in the DATAMAT language. The flight and passenger information for Toronto Terminal No. 2, as well as the gate distances, are contained in two tables which serve as input to the model generator (also called the preprocessor). The preprocessor program appears in Appendix C.

For the present study, the preprocessor generated constraints of the first two types derived in equation 3.4 and 3.5 in Section 3.1. These constraints, which are inherent to the assignment problem, are: 1) Every flight must be assigned to exactly one gate and (2) No two aircraft may occupy the same gate concurrently. Constraints which depend on the individual airport can be programmed into the same model. The input data bases for the model are cited in Section 2.3.

The flight schedule used to test this model generated 1,318 constraints and 4,078 variables. The number of
constraints indicates that there are 59 non-nested conflict sets. Each one of these sets generates 20 constraints, one for each gate. There are thus $59 \times 20=1,180$ conflict constraints. The remaining 138 constraints correspond to those of the first type. Of the 4078 variables, 2760 are decision variables ($X_{i j}$'s), corresponding to every possible combination from 138 flights and 20 gates. The remaining 1318 variable are slack and artificial variables, one for each constraint in the model.
4. RESULTS

The flight-to-gate allocations vary in accordance with the particular method of solution used to solve the problem. The two solution methods give different results and accrue different costs. This chapter first discusses and compares the results of the two methods against the actual flight-to-gate assignments. Next, a discussion on the cost associated with each method follows. Due to the high computational cost of implementing the linear program and to the shortage of available data, only one test was made. As mentioned in Section 2.3, the data for this test consisted of one day in the summer of 1976 at Terminal No. 2 of Toronto International Airport. The chapter ends with a discussion surrounding the use of the algorithm vs. the LP.
4.1 Comparison of the Two Methods of Solution

In order to compare, analyze and tabulate the results of each of the two solution methods, the algorithm and the linear program, a computer program was written in the Datamat Language. This postprocessor lists for each flight the gate and the corresponding walking distance for each of the three assignment policies: Air Canada's actual assignment, the heuristic algorithm and the linear program. The postprocessor program produces a separate flight-by-flight listing of walking distances for each of the three
categories of passengers: arriving, departing and transferring. A fourth listing gives the weighted mean walking distance for all three categories.

In addition, the program supplies statistical distributions for the mean walking distance of each of the three categories of passengers, as well as for the weighted average walking distance. A listing of the postprocessor program appears in Appendix D.

Solutions to the flight-to-gate assignment problem appear in Appendix E. Table E.l gives the overall mean walking distance and gate position for each flight under each of the three assignment policies, while Tables E. 2 - E. 4 give the same information for each individual category of passengers separately. In addition Tables E.5- E. 8 list the statistical distributions of the walking distances. These tables were used to build the four graphs of figures 4.1 through 4.4.

Figure 4.1 shows the cumulative distribution of the weighted average walking distances for all passengers resulting from each of the three assignment policies. The cumulative percentage of passengers is plotted against the average walking distance. Since the objective is the minimization of the walking distance, the distribution located to the extreme left will give the best results. This distribution is, as expected, the results of the linear
program. The LP offers a mean walking distance of 608 ft . while the original (Air Canada's) airport assignment gives a mean of 803 feet, a difference of 195 feet, or a savings of 32%. The "Crowdest-Come-Best--Serve" algorithm offers an assignment with a mean of 632 feet per passenger; that is, a saving of 27% over the original assignment. In the case of Toronto Terminal No. 2, therefore, the algorithm is only 5 percent suboptimal. This information is summarized in Table 4.la.

The graph also indicates that under the original assignment, 99 percent of the passengers walked an expected distance of 1,300 feet or less. If the algorithm's assignment is implemented, the same percentage of passengers would have walked l,l00 feet or less. The same distance for the linear program measures 1,083 feet. Table 4.lb shows various percentiles for each policy. Cumulative distributions for each of the three categories of passengers are shown in Figures 4.2, 4.3, and 4.4. The greatest savings in walking distance goes to the departing passenger, or 34% under the linear program's assignment and 31% under the algorithm's. This is due to the fact that departing passengers comprise the largest single category of passengers or 50% of a total number of 28,378 air travellers. Their walking distance, therefore, carries the heaviest single weight on the objective

Fig. 4.1 Cumulative Distributions of the Overall Mean Walking Distance for All Passengers under each of the Three Different Assignment Policies

		$\begin{gathered} \text { MEAN } \\ \text { SAVINGS } \\ \hline \end{gathered}$	$\begin{gathered} \text { PERCENTAGE } \\ \text { SAVINGS } \\ \hline \end{gathered}$
		(Compare	Original)
Original	803	-	
Algorithm	632	171	27\%
Linear Program	608	195	32\%
	nd M f the	Saving i 11 Passe e Assign	Expected (in feet) Policies

Percentile

	$\underline{25 t h}$	$\underline{50 t h}$	$\underline{75 t h}$	$\underline{99 t h}$
Original	617	750	1,000	1,300
Algorithm	460	617	735	1,100
Linear Program	450	600	700	1,083

Table 4.lb Percentiles of Expected Walking Distances for All Passengers Under the Three Assignment Policies

Fig. 4.2 Cumulative Distributions of the Expected Walking Distance for Arriving Passengers under Each of the Three Assignment Policies

	Mean	Mean Savings	Percentage Saving
		(Compare	Original)
Original	784	-	
Algorithm	608	176	22\%
Linear Program	582	202	26\%
Table 4.2a Mea Dis (in Ass		Saving in rriving P r the Th icies	pected engers

Percentile

	$\frac{25 t h}{50 t h}$	$\underline{50 t h}$	$\underline{75 t h}$	$\underline{99 t h}$
Original	540	765	1,000	1,300
Algorithm	517	567	743	1,200
Linear Program	507	540	700	1,200

Table 4.2b Percentiles of Expected Walking Distances for Arriving Passengers Under the Three Different Assignment Policies

function. Figures 4.2 and 4.3 show the cumulative distributions for arriving and departing passengers while Tables 4.2 and 4.3 summarize the statistics for these graphs.

Figure 4.4 shows the distribution in walking distances for transfer passengers under each policy. The three graphs have similar distributions and therefore, transfer passengers do not necessarily gain any savings as a result of a change in assignment policy. In fact, the linear program gives a 1% increase over the original assignment in the expected walking distance of a transfer passenger and the algorithm gives a 4% increase. Tables 4.4 a and 4.4 b summarize these results. Two potential explanations can be given. First, connecting passengers comprise only 15% of the total number of passengers. This low ratio is reflected in the average walking distance for any passenger derived in equation 3.2 (rewritten below)

$$
\begin{equation*}
\mathrm{a}_{j}=.35 \mathrm{a}_{j}^{a}+.5 \mathrm{~d}_{j}+.15 \mathrm{~d}_{j}^{\mathrm{t}} \tag{3.2}
\end{equation*}
$$

Second, even if connecting passengers are given a heavier weight in the objective function, the improved numerical results, if any occur, would not necessarily reflect the actual situation. It was mentioned in Section 3.1 that the random gate assumption is valid only in the absence of any information concerning connecting flights. These are flights which serve the same large number of transfer

Mean	Mean	Percentage
	Saving	Saving
	(Compar	Original)

Original	744	-	-
Algorithm	512	\bullet	232

Table 4.3a Mean and Mean Saving in Expected Walking Distance for Departing Passengers under Each of the Three Assignment Policies

Percentile

	$\frac{25 t h}{}$	$\underline{50 t h}$	$\frac{75 t h}{}$	$\frac{99 t h}{}$
Original	483	720	1,000	1,400
Algorithm	335	467	636	1,173
Linear Program	220	433	583	1,167

Table 4.3b Percentiles of Expected Walking Distance for Departing Passengers Under Each of the Three Policies

Fig. 4.4 Cumulative Distributions of the Expected Walking Distance for Transfer Passengers Under Each of the Three Assignment Policies

	Mean	Mean Difference (Compared	$\begin{aligned} & \text { e } \\ & \text { d to } \end{aligned} \frac{\mathrm{Per}}{\mathrm{Di}}$	entage erence ginal)
Original	1045	-		
Algorithm	1091	-46		-4\%
Linear Program	1062	-17		-1\%
Table 4.4a Mean and Mean Difference in Walking Distance for Transfer Passengers Under each of the Three Assignment Policies	Mean and Mean Difference in Walking Distance for Transfer Passengers Under each of the Three Assignment Policies			
	25th	50th	75 th	99th
Original	900	9301	1,120	1,900
Algorithm	900	9201	1,150	2,100
Linear Program	900	9201	1,100	2,100

$$
\begin{aligned}
& \text { Table } 4.4 \mathrm{~b} \text { Percentiles of Expected Walking } \\
& \text { Distances for Transfer Passengers } \\
& \text { under the Three Assignment Policies }
\end{aligned}
$$

passengers. Such passengers leave their landing gate to a specific other gate or gates in order to board their next plane. Contrary to the implications of the random gate assignment assumption, any transfer passenger in this situation does not have his next flight assigned to any of the twenty gates at the terminal with equal probability.

Braaksma's "time-stamping" approach can be used to recognize if any two or more flights serve the same transfer passengers. Once such information is known, it is essential to insure that these flights are positioned in nearby gates. This can be done by adding one or more constraints as explained in Section 3.1.

4.2 Computational Costs

Though both the algorithm and the LP have similar results, the difference in the cost of computation is substantial. The computer program which simulates the heuristic algorithm was written in Fortran IV on an IBM/370 VSl batch facility. The linear program was implemented on SESAME, a subenvironment of the CMS operating system, which also operates on the $I B M / 370$. The reader should note that though the computer used to implement both the algorithm and the LP is the same, the operating systems. are different. The LP was implemented twice, once with no initial basic feasible solution and the second time, using the algorithm's assignment solution as an initial basis. In
the first case, the simplex method took l,296 iterations to arrive at optimality and in the second, the number of iterations was reduced to 605. The reason for the disparity is that in the first case, a very large number of iterations is necessary to eliminate the primal infeasibilities (or the artificial variables added to the equality constraints) while in the second case, a primal feasible basis already exists.

The simplex method is but the last of three steps essential to obtaining an optimal solution. The first step is the model construction. As mentioned in Section 3.3, the constraint matrix size is 1,318 rows and 4,078 columns. The second step consists of copying the model from the active file into a permanent model file.

Implementation of the algorithm costs approximately \$3.15. The total CPU time is 3.40 seconds and the total storage space-time used is 4,231 knet sec. In addition, other costs such as printing exist. Table 4.5 a contains an item-by-item cost list for running the computer program used.

For running the linear program, the resources used and the costs vary with the time of day and number of users in the system. Table 4.5 b shows cost estimates for each of SESAME's steps. The numbers in this table are round on purpose. Different costs can be obtained during different computer runs. The only certain conclusion that the reader

$$
\begin{aligned}
& \text { CPU Time } 3.40 \text { seconds @ \$1.667/sec. } 57 \\
& \text { Virtual Core } 4.231 \text { knet sec. @ \$.00014/KNS . } 59 \\
& \text { Subtotal } 1.16 \\
& 802 \text { printer lines @ } \$ 1.55 \text { per 1,000 lines } 1.24 \\
& \text { Subtotal } 2.40 \\
& \text { Adjustment for day shift and standard priority . } 75 \\
& 3.15 \\
& \text { Table 4.5a Resource Utilization and Their Costs } \\
& \text { for the "Crowdest-Come-Best-Serve" } \\
& \text { Algorithm (1979-1980) }
\end{aligned}
$$

Cost	Cost
(No initial	(Algorithm's
feasible basis)	basis Used)

Model Development	$\$ 150$	$\$ 150$
Model Permanent File Rewriting	$\$ 120$	$\$ 120$
Simplex Method	$\$ 210$	$\$ 40$
TOTAL	$\$ 480$	$\$ 310$

Table 4.5b Very Approximate Costs for Running the Linear Program
can draw from Table $4.5 b$ is the following: while the heuristic algorithm's costs amount to less than $\$ 10$, the Iinear program's costs are between $\$ 300$ and $\$ 500$.

Though the expenses associated with the heuristic algorithm are negligible, its solution is suboptimal. There is no guarantee that the excellent performance of the algorithm in the case of Toronto Terminal No. 2 is reproducible. In fact, the only way to determine the algorithm's degree of suboptimality (5% in Toronto's case) is to solve the linear program and compare the answers. A priori, these results, however, may not justify the added costs. A reasonable approach, therefore, could be the following:

1. First, solve the "Crowdest-Come-Best-Serve" algorithm and obtain a solution.
2. If the savings from the algorithm's assignment proves to be satisfactory, then no need exists to solve the linear program.
3. If the heuristic algorithm's assignments do not offer sufficient savings in passengers' walking distances, and if by inspecting the solution many improvements can be detected, then the linear program should be solved. Of course, the algorithm's assignment should be used as an initial basic feasible solution in the linear program.

Once the model is developed and stored in a peranent file using DATAMAT, then the Simplex procedure of any
software package can be used. It is possible, for example, to utilize the IBM MPSX/370 package, which may be more efficient, and therefore, less expensive. Finally, since DATAMAT performs a large number of disk input-output (I/O) operations, a very large storage (I M bytes or more) and the largest permissible block size must be used in order to keep the associated costs as low as possible.

5. CONCLUSION

The present work aimed at solving the flight-to gate assignment problem at airport terminals in such a way as to minimize, or at least reduce, the expected walking distance per passenger. Two solution methods were used. The first is the "Crowdest-Come-Best-Serve" algorithm which simply allocates the best gate to the aircraft with the largest number of on-board passengers. The second method consists of formulating the problem as a linear program. Both methods were tested on a flight schedule from one day during the summer of 1976 at Terminal No. 2 of Toronto International Airport.

The algorithm's assignment gave an expected walking distance of 632 feet per passenger for a random passenger, as opposed to 784 feet under the original airport assignment, a saving of 27%. The linear program's assignment offered an optimal walking distance of 582 feet per passenger, or a saving of 32%. Results were also obtained for each of the three categories separately. Though the walking distance for the connecting passengers did not significantly change when either of the two solution methods were used (mainly because of the low ratio of connecting passengers to total passengers), means to improve the situation were suggested.

Though the algorithm, which is the cheaper of the two solution methods, performed at a 95% optimal level at Toronto, such excellent results cannot be guaranteed for every case. For this reason, a strategy which helps the analyst decide between the algorithm and the linear program was presented.

Both the algorithm and the linear program can be useful for other applications. For instance, other objective functions such as minimizing congestion in any one area of the airport can be formulated and used with the linear programming model. Also, the same model could possibly be used for optimizing core memory allocation in a computer, or for bus stations in some large metropolitans such as Tel Aviv and Rome.

Finally, deviations from schedule can be incorporated into either the algorithm or the linear program.

APPENDIX A

COMPUTER PROGRAM IMPLEMENTING

THE "CROWDEST-COME-BEST-SERVE"
ALGORITHM
(Written in Fortran IV)

```
FILE: ALGO VS1JOB A
//LODA JOB LOD,
// PROPILE='DEFER'. MEMORY=150K.
// TIME=?0.10)
//*PASSWORD DJEBEL
// EXIC FTGICLG,PRINT='PRINT''
//FORT.SYSIN DD *
C DECLARATIONS
c
    Data blank/' 1/
    DIMENSION AC(10),ISEAT(10),IFLTMO(150),IAC(150),ILF(150).
                        IARRT(150), IDEPT(150),ITRANS (150), ICAT (150), IGATE(25).
                    IGTIME{25,150).IWALK(25,6),ITHALK(25,25).IGT(25).
                    IFA (25),IFD(25),IFT(25),IPWA(25).
                    IAGATE(150),ISGATE(150),IFLTA:150), ICGATE{150).
                    IFAA (25),IFDA(25),IFTA (25),IFWAA(25)
            DO 10 I=1.25
            IFA (I)=0
            IFD(I)=0
            IFT(I)=0
            IFWA(I)=0
        10 CONTINUE
C
    INPUT AIRCRAPT DATA
    NAC=1
    100 READ(5.110) AC (NAC).ISEAT (NAC)
    110 FONMat:A4.I4)
        IP(ISEAT(NAC).NE.777) GO TO 120
        NAC=NAC-1
        GO TO 200
    120 NAC=NAC+1
    GO TO 100
C
C INPUT FLIGHT DATA
    200 NPLT=1
C format & REAd rep
    205 READ(5,210) ISEQN.IFLTA (NPLT).IFLTNO (NPLT),ACTYPE.
    1 IARET (NPLT).IDEPT (NFLT).ICAT (HPLT).IAGATE(APLT)
    210 FORMAT!I4,I4,I3,A4,I5,I5,I2,I3)
C FOL CRD ADD
    ICAT (NFLT)=ICAT(NFLT) +1
    IF(IFLTNO(NFLT).NE.O) GO TO 215
    NFIT=NPLT-1
    GO TO 300
C CHECK AIRCRAFT TYPE
    215 IAC (NPLT)=0
    DO 220 J=1,NAC
    IF(AC(J).EQ.ACTYPE) IAC(NPLT) =J
    220 CONTINUE
    IF:IAC(NFLT).NE.0) GO TO 24O
    WRITE(6,230) IFLTA(NFLT).IPLTNO(NPLT)
    230 FOMMAT:' INCOKKECT AIRCRAFT TYPE CM FLIGHT NUGBER'.I4.I3.
        1 'FLIGHT IGNORED')
            GO TO 205
        240 ILF(NFLT)=65
            ITRANS(NFLT)=30 .
```

```
FILE: ALGO VSIJOB A
```

 IPD=ISEAT(IAC(I))*F
    ```
```

 MPIT=MFLT+1
    ```
        MPIT=MFLT+1
        GO TO 205
        GO TO 205
c
c
    C INPUT GATE dATA
    C INPUT GATE dATA
    300 NGATE=1
    300 NGATE=1
C ARRIVING AND DEPARTIMG DISTAHCES
C ARRIVING AND DEPARTIMG DISTAHCES
    310 READ(5,320) IGATE!NGATE) (IMALK(NGATE.J) & J=1,6)
    310 READ(5,320) IGATE!NGATE) (IMALK(NGATE.J) & J=1,6)
    320 FORMAT(I3,6I5)
    320 FORMAT(I3,6I5)
        IF!IGATE!NGATE).NE.0) GO TO 330
        IF!IGATE!NGATE).NE.0) GO TO 330
        NGATE=NGATE-1
        NGATE=NGATE-1
        GO TO 340
        GO TO 340
    330 NGATE=NGATE+1
    330 NGATE=NGATE+1
        GO TO 310
        GO TO 310
C DISTANCES beTREEN GATES - TRANSFER WALXING DISTANCE
C DISTANCES beTREEN GATES - TRANSFER WALXING DISTANCE
    340 DO 370 I=1,NGATE
    340 DO 370 I=1,NGATE
    READ(5.350) (ITWALK(I,J),J=1,NGATE)
    READ(5.350) (ITWALK(I,J),J=1,NGATE)
    350 PORMAT(20I4)
    350 PORMAT(20I4)
    370 CONTINUE
    370 CONTINUE
        DO 390 I=1, NGATE
        DO 390 I=1, NGATE
        DO 360 J=1.NGATE
        DO 360 J=1.NGATE
        ITWALK(J,I) =ITWALK(I,J)
        ITWALK(J,I) =ITWALK(I,J)
    360 CONTINUE
    360 CONTINUE
    URITE:(6,351) (ITHALK(I,J),J=1,NGATE)
    URITE:(6,351) (ITHALK(I,J),J=1,NGATE)
    351 PORMAT(1X.2016)
    351 PORMAT(1X.2016)
    390 CONTINUE
    390 CONTINUE
C
C
    HRITE (6.394)
    HRITE (6.394)
    394 FORMAT(/////.20X,'lARGEST CCME BEST SERVR')
    394 FORMAT(/////.20X,'lARGEST CCME BEST SERVR')
        #RITE(6,457)
        #RITE(6,457)
    457 FORMAT:////.
```

 457 FORMAT:////.
    ```


```

 3DIF RAT')
    ```
        3DIF RAT')
c
c
C INItIAlIzE GATE availability
C INItIAlIzE GATE availability
    400 DO 410 I=1.NGATE
    400 DO 410 I=1.NGATE
            IGTIME(1,I)=0
            IGTIME(1,I)=0
    410 IGTIME (2,I) =-1
    410 IGTIME (2,I) =-1
C
C
C
C
            DO 500 I=1.NFLT
            DO 500 I=1.NFLT
            JG=0
            JG=0
            DO 213 K=1,NGATE
            DO 213 K=1,NGATE
    213 IF{IAGATE{I).EQ.IGATE(K)) JG=K
    213 IF{IAGATE{I).EQ.IGATE(K)) JG=K
    IF(JG.EU.0) WKITE (6,272) I
    IF(JG.EU.0) WKITE (6,272) I
    272 FOKMAT!1X, " INCORRECT GATE NUMBER FOR FLT IDX4.I4)
    272 FOKMAT!1X, " INCORRECT GATE NUMBER FOR FLT IDX4.I4)
    IF(JG.EQ.0) STOP
    IF(JG.EQ.0) STOP
C Calcolate passengek loadS
C Calcolate passengek loadS
    TRANS=ITRANS(I)/100.
    TRANS=ITRANS(I)/100.
    F=ILF (I)/100.
    F=ILF (I)/100.
    IPA=ISEAT(IAC (I))*P*(1.0-TRANS)
```

 IPA=ISEAT(IAC (I))*P*(1.0-TRANS)
    ```
```

PILE: ALGO VSIJOB A
IPT=ISEAT (IAC (I)) *P*TRANS
INITIALIZE GATE ASSIGNMENT
MINDIS=1000000
NEARBY=1
C gaTe assignment
DO 420 J=1,NGATE
C CHECK Gate avallabIlity
IF (I.EO.1) GO TO 416
IP=I-1
DO 411 L=1,IP
IF (IGATE(J).NE.ISGATE(L)) GO TO 411
IF (IARET(I).GE.IARRT (L).AHD.IAFET(I).LE.IDEPT(L)) GO TO 420
IF (IDEPT(I).GE.IARRT(L).AND.IDEPT(I).LE.IDEPT(L)) GO TO 420
IF (IAKRT(I).LE.IARRT (L).AND.IDEPT(I).GE.IDEPT(I)) GO TO 420
411 CONTINUE
C COMPUTE AVERAGE WALKING DISTANCE FOR GATE J
416 IDA=IWALK!J.ICAT(I))
IDD=IWALK(J.(ICAT(I) +3))
IDT=0
DO 412 K=1, NGATE
412 IDT=IDT+ITHALK(J,K)/NGATE
IPDA=IDA*IPA
IPDD=IDD*IPD
IPDT=IDT*IPT
IDIST=(IPDA+IPDD+IPDT)/(IPA+IPD+IPT)
C SlllCT MiNimum Walking distance
IF(IDIST.GT.MINDIS) GO TO 420
NEAEBY=J
ISGATz(I)=IGATE(J)
MINDIS=IDIST
420 CONTINUE
C Cliblk to See that a gate has been assigned to the flight
IF(MINDIS.NE.1000000) GO TO 450
MELTE:6.430) IFITNO(I)
430 FOKMAT!' FLIGHT ',I4,'COULD NOT BE,ASSIGNED,TO ANY AVAILABLE '.
1
'gATE. AhRIVAL DELAYED UNTII FIRST AVAILABLE GATE.')
NEAREY=1
IWAIT=IGTIME (2.1)
DO 440 J=2,NGA'TE'
IP(IGTIME(2.J).GT.IWAIT) GO TO 440
NEARBY=J
IWAIT=IGTIME(2.J)
440 CONTINUE
450 IGITME(1, NEARBY)=IARRT(I)
IGTIME!2,NEARBY)=IDERT(I)
ICGATE(I)=NEAPBY
IDA=IWALK!NEAEBY,ICAT (I))
IUAA=IWALK!JG.ILAT(I))
IDD=INALK(NEAFBY,(ICAT (I) +3))
IDDA=IWALK!JG.ICAT(I) +3)
IDT=0
IDTA=0
DO 455 K=1.NGATE
IDTA=IDTA+ITWAIK (JG,K)/NGATE
455 IDT=IDT +ITHALK(NEARBY /K)/NGATE

```
```

FILE: ALGO VS1JOB A

```
    JDEPT=IDEPT (I)
    IF:IDEPT(I).GT.2400) JDEPT=IDEPT (I)-2400
    IDIPA=IDAA-IDA
    IDIFD=IDDA-IDD
    IDIFT=IDTA-IDT
    RATA= PLOAT (IDA)/PLOAT (IDAA)
    RATD=FLOAT(IDD)/FLOAT (IDDA)
    RATT = PLOAT(IDT)/FLOAT (IDTA)
    WRITE (6.460) IFLTNO:I),AC(IAC(I)), IARRT(I), JDEPT,
    1 IAGATE(I).IGATE(NEAEGY).
                        IPA,IPD.IPT.
                        IDAA, IDA, IDIFA, RATA,
                                IDDA, IDD, IDIPD,RATD,
    IUTA, IUT,IDIFT, RATT
    460 PORMAT \(/ / .1 \mathrm{X}, \mathrm{I} 4,1 \mathrm{X}, \mathrm{A} 4,2 \mathrm{X}, \mathrm{I} 4,1 \mathrm{X}, \mathrm{I} 4,2 \mathrm{X}, 2 \mathrm{I} 4,3 \mathrm{X}, 3 \mathrm{I} 5,4 \mathrm{X}, 2 \mathrm{I} 5, I 6\),
    11F8.3.3X.2I5,16.1F8.3.3X,2I5.I6.1F8.3)
    K \(1=I D A / 100\)
    \(K 2=I D D / 100\)
    \(K 3=I D T / 100\)
    NA=IDAA/100
    \(N D=I D D A / 100\)
    \(\mathrm{NT}=\mathrm{IDTA} / 100\)
    IFA \((K 1)=I F A(K 1)+I P A\)
    \(\operatorname{IPD}(K 2)=I F D(K 2)+I P D\)
    \(\operatorname{IFT}(K 3)=I F T(K 3)+I P T\)
    IFAA (NA) \(=I F A A(N A)+I P A\)
    IFUA (ND) \(=\) IFDA : ND \()+\) IPD
    IFTA (NT) \(=\) IPTA \((N T)+I P T\)
    \(I W A=\{I D A * I P A+I D D * I P D+I D T * I P T) /(I P A+I P D+I P T)\)
    I \(W A A=(I D A A * I P A+I D D A * I P D+I D T A * I P T) /(I P A+I P D+I P T)\)
    K \(4=\) I HA/ \(^{\text {/ }} 100\)
    NHK=IWAA/100
    IFWAA (NWK) = IFWAA (NWK) +IPA+IPD+IPT
        \(I F W A(K 4)=I F W A\{K 4\}+I P A+I P D+I P T\)
    500 CCNTINUE
    WRITE (6.510)
    510 POKMAT (/. © HISTOGKAM')
    DO \(900 \quad \mathrm{I}=1.25\)

    1 IFWAA(I)
    910 FORMAT:1X.8I10)
        STOP
        END
/*
//GO. SY SIN DD *
    DC9 90
    D9S 110
    DC8 140
    D8S 210
    727135
    725135
    210262
    747382
    777777
    6785785774715451645287

\section*{FILE: ALGO VSIJOB A}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 76 & 36 & 747 & 1625 & 1730 & 081 \\
\hline 92 & 870870 & 747 & 1650 & 1750 & 283 \\
\hline 109 & 149149 & 747 & 1800 & 1930 & 3 \\
\hline 97 & 871871 & 747 & 1815 & 1910 & 5 \\
\hline 123 & 856856 & 747 & 1945 & 2100 & 87 \\
\hline 7 & 000608 & L10 & 0000 & 0725 & 77 \\
\hline 25 & 000243 & L10 & 0000 & 0830 & 75 \\
\hline 31 & 000105 & L10 & 0000 & 0915 & 81 \\
\hline 6 & 164164 & L10 & 0710 & 0815 & 79 \\
\hline 22 & 791791 & L10 & 0825 & 0910 & 91 \\
\hline 24 & 117117 & L10 & 0830 & 0920 & 77 \\
\hline 35 & 123123 & L10 & 0940 & 1030 & 77 \\
\hline 60 & 110624 & L10 & 1410 & 1630 & 73 \\
\hline 63 & 106247 & L10 & 1445 & 1715 & 75 \\
\hline 64 & 250141 & L10 & 1445 & 1750 & 77 \\
\hline 94 & 137137 & L10 & 1810 & 1900 & 81 \\
\hline 106 & 437165 & L10 & 1910 & 2100 & 77 \\
\hline 116 & 148148 & L10 & 2010 & 2100 & 83 \\
\hline 121 & 792792 & 110 & 2025 & 2100 & 91 \\
\hline 125 & 154154 & L 10 & 2110 & 2200 & 075 \\
\hline 129 & 160160 & L 10 & 2120 & 2210 & 77 \\
\hline 137 & 621621 & 110 & 2220 & 2310 & 81 \\
\hline 143 & 244248 & L10 & 2320 & 2400 & 73 \\
\hline 2 & \(00 \cup 310\) & L8S & 0 000 & 0700 & 76 \\
\hline 17 & 000920 & D85 & 0000 & 0800 & 91 \\
\hline 19 & 960960 & D8S & 0805 & 0900 & 87 \\
\hline 26 & 603492 & D8S & 0850 & 1100 & 85 \\
\hline 50 & 122249 & D8S & 1240 & 1420 & 77 \\
\hline 67 & 813813 & D8S & 1520 & 1625 & 283 \\
\hline 77 & 790790 & D8S & 1625 & 1725 & 191 \\
\hline 85 & 921872 & D8S & 1700 & 1900 & 187 \\
\hline 90 & 891891 & D8S & 1745 & 1840 & 299 \\
\hline 89 & 873161 & D8s & 1745 & 1945 & 279 \\
\hline 110 & 878878 & D8S & 1820 & 1930 & 289 \\
\hline 102 & 793793 & DyS & 1840 & 1930 & 091 \\
\hline 111 & 881831 & D8S & 1940 & 2120 & 85 \\
\hline 113 & 807807 & D8S & 1955 & 2100 & 99 \\
\hline 118 & 244244 & D8S & 2015 & 2100 & ४ 1 \\
\hline 126 & 993993 & D8S & 2110 & 2215 & 291 \\
\hline 1 & \(00 \cup 440\) & טCb & 0000 & 0655 & 079 \\
\hline 43 & 902902 & DCB & 0930 & 1030 & 191 \\
\hline 75 & 147147 & DC8 & 1620 & 1700 & 74 \\
\hline 74 & 961961 & DC8 & 1615 & 1715 & 285 \\
\hline 82 & 903903 & DC8 & 1655 & 1800 & 189 \\
\hline 141 & 156156 & DC8 & 2310 & 2400 & 77 \\
\hline 4 & 000400 & 727 & 0000 & 0700 & 80 \\
\hline 16 & 000402 & 727 & 0000 & 0800 & 78 \\
\hline 12 & 441796 & 72 S & 0755 & 0905 & 95 \\
\hline 18 & 4014.04 & 727 & 0805 & 0900 & 80 \\
\hline 23 & 103103 & 72 s & 0830 & 0915 & 71 \\
\hline 30 & 403406 & 727 & 0905 & 1000 & 78 \\
\hline 38 & 246246 & 72 S & 1005 & 1045 & 81 \\
\hline 39 & 405408 & 727 & 1005 & 1100 & 080 \\
\hline 44 & 407410 & 727 & 1105 & 1200 & 78 \\
\hline 47 & 409412 & 727 & 1205 & 1300 & 080 \\
\hline
\end{tabular}

FILE: ALGO VSIJOB A
\begin{tabular}{|c|c|c|c|c|c|}
\hline 51 & 724725 & 725 & 1300 & 1410 & \\
\hline 53 & 411414 & 727 & 1305 & 1400 & 078 \\
\hline 55 & 465454 & 725 & 1310 & 1420 & 81 \\
\hline 59 & 413416 & 727 & 1405 & 1500 & 080 \\
\hline 66 & 415418 & 727 & 1505 & 1600 & 078 \\
\hline 73 & 417420 & 727 & 1605 & 1700 & 080 \\
\hline 79 & 455460 & 72 S & 1645 & 1745 & 076 \\
\hline - 86 & 419422 & 727 & 1705 & 1800 & 78 \\
\hline 91 & 726729 & 725 & 1750 & 1855 & 93 \\
\hline 95 & 421424 & 727 & 1810 & 1900 & 080 \\
\hline 100 & 797797 & 72S & 1835 & 1925 & 297 \\
\hline 105 & 423426 & 727 & 1910 & 2000 & 078 \\
\hline 115 & 425428 & 727 & 2005 & 2100 & 080 \\
\hline 117 & 461464 & 72S & 2010 & 2110 & 079 \\
\hline 124 & 427427 & 727 & 2105 & 2155 & 078 \\
\hline 127 & 162162 & 72 S & 2115 & 2155 & 081 \\
\hline 138 & 241241 & 725 & 2130 & 2240 & 079 \\
\hline 136 & 429429 & 727 & 2205 & 2300 & 080 \\
\hline 5 & 000701 & DYS & 0000 & 0700 & 87 \\
\hline 9 & 000721 & D9 \({ }^{\text {d }}\) & 0000 & 0730 & 193 \\
\hline 13 & 000341 & D9S & 0000 & 0755 & 073 \\
\hline 29 & 000982 & D9S & 0000 & 0900 & 289 \\
\hline 36 & 720705 & DS 5 & 0445 & 1050 & 189 \\
\hline - & 612612 & D9S & 0730 & 0800 & 076 \\
\hline 10 & 238107 & D9S & 0740 & 0930 & 072 \\
\hline 14 & 700774 & ט9S & 0800 & 0855 & 193 \\
\hline 20 & 308308 & D9 5 & 0815 & 0845 & 073 \\
\hline 21 & 362444 & D9 5 & 0815 & 0900 & 076 \\
\hline 27 & 346365 & D95 & 0855 & 0945 & 075 \\
\hline 32 & 342642 & D9S & 0930 & 1035 & 074 \\
\hline 33 & 605600 & D95 & 0930 & 1050 & 076 \\
\hline 41 & 625654 & D9S & 1025 & 1115 & 083 \\
\hline 42 & 773778 & D9S & 1030 & 1230 & 93 \\
\hline 45 & 704385 & D9S & 1140 & 1545 & 76 \\
\hline 48 & 368315 & D9S & 1230 & 1320 & 79 \\
\hline 49 & 102102 & D9S & 1240 & 1310 & 83 \\
\hline 52 & 344349 & D9S & 1305 & 1405 & 74 \\
\hline 54 & 777780 & D9S & 1305 & 1500 & 93 \\
\hline 56 & 706709 & DYS & 1320 & 1410 & 89 \\
\hline 65 & 647650 & D9S & 1450 & 1550 & 071 \\
\hline 68 & 646646 & D9S & 1530 & 1605 & 74 \\
\hline 70 & 351351 & D9S & 1555 & 1625 & 076 \\
\hline 71 & 601658 & D9S & 1555 & 1650 & 079 \\
\hline 72 & 779713 & D9 5 & 1600 & 1725 & 93 \\
\hline 78 & 609446 & D9 5 & 1640 & 1750 & 72 \\
\hline 80 & 710727 & D9S & 1645 & 1745 & 195 \\
\hline 83 & 983794 & D9S & 1655 & 1805 & 297 \\
\hline 81 & 649387 & D9S & 1655 & 1815 & 071 \\
\hline 88 & 655655 & 29S & 1730 & 1800 & 75 \\
\hline 96 & 604604 & D9S & 1810 & 1855 & 77 \\
\hline 98 & 489233 & ע9S & 1820 & 1925 & 72 \\
\hline 99 & 382389 & D9S & 1830 & 1920 & 73 \\
\hline 101 & 353353 & DYS & 1840 & 1915 & 74 \\
\hline 103 & 163163 & D9S & 1845 & 1920 & 071 \\
\hline 104 & 781786 & D9S & 1905 & 1955 & 195 \\
\hline
\end{tabular}

PILE: algo vSiJob A
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline 114 & 716719 & D9S & & & \\
\hline 119 & 330357 & D9 5 & & & 071 \\
\hline 120 & 354331 & 19 & & & 073 \\
\hline 122 & & D9 & & & \\
\hline 12 & & & & & \\
\hline & & & & & \\
\hline & 咗 & & & & \\
\hline & 783 & & & & \\
\hline 13 & 39639 & DYS & 220 & & \\
\hline 140 & 334334 & D9 & 230 & & \\
\hline 142 & 332332 & DYS & 231 & & \\
\hline 14 & 46746 & D9 & 23 & & \\
\hline & 78 & & & & \\
\hline & 00 & & & & \\
\hline & 0 & & & & \\
\hline & 0 & & & & \\
\hline & 45 & & 08 & & \\
\hline & 360 & & 0 & 0950 & \\
\hline & 54137 & & & & \\
\hline 4 & 31237 & & 101 & 115 & \\
\hline 46 & 36634 & DC & 120 & & \\
\hline 57 & 370317 & DC & 1330 & 153 & \\
\hline 58 & 481522 & DC & 1340 & & \\
\hline & 374393 & DC9 & 143 & & 79 \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & 1805 & 1940 & \\
\hline 07 & 324324 & DC & 1920 & 950 & \\
\hline 108 & 463331 & dC9 & 1930 & 2100 & 74 \\
\hline 30 & 535535 & DC 9 & 2120 & 2215 & \\
\hline 134 & & & 2200 & & \\
\hline 139 & 398 & & & & 07 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrr}
71 & 1287 & 2367 & 1727 & 1303 & 2261 & 1737 \\
72 & 1269 & 2350 & 1710 & 1285 & 2244 & 1720 \\
73 & 1285 & 2365 & 1725 & 1301 & 2259 & 1735 \\
74 & 1106 & 2193 & 1553 & 1112 & 2087 & 1543 \\
75 & 1102 & 2182 & 1542 & 1118 & 2076 & 1552 \\
76 & 926 & 2013 & 1373 & 932 & 1907 & 1363 \\
77 & 919 & 1929 & 1289 & 935 & 1823 & 1299 \\
78 & 746 & 1833 & 1193 & 752 & 1727 & 1183 \\
79 & 739 & 1749 & 1109 & 755 & 1643 & 1119 \\
80 & 566 & 1670 & 1030 & 582 & 1564 & 1020 \\
81 & 556 & 1566 & 926 & 572 & 1460 & 936 \\
83 & 509 & 1343 & 703 & 349 & 1237 & 713 \\
85 & 594 & 1068 & 428 & 434 & 962 & 438 \\
87 & 855 & 807 & 347 & 695 & 701 & 177 \\
89 & 1109 & 553 & 601 & 949 & 447 & 329 \\
91 & 1363 & 299 & 855 & 1203 & 193 & 583 \\
93 & 1662 & 598 & 1154 & 1502 & 492 & 882 \\
95 & 1845 & 781 & 1337 & 1685 & 675 & 1065 \\
97 & 510 & 418 & 828 & 350 & 312 & 668 \\
99 & 957 & 418 & 828 & 797 & 312 & 568
\end{tabular}

PILE: ALGO VSIJOB A


\footnotetext{
/*
/*EOJ ********
}

APPENDIX B
RESULTS OF THE "CROWDEST-COME-BEST-SERVE " ALGORITHM

This appendix contains the output to the computer program of Appendix A. The content of each column in the output is as follows:


Eleventh through
fourteenth columns

Fifteenth through nineteenth column

Same as 7th through loth columns, but for departing passengers

Same as 7th through loth columns, but for transfer passengers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline :5" & ac & Apt & Der & StE & KTr. & A 9 p & DEP & .tpa & act & cal & DIf & pat & ACT & こAL & dr \({ }^{\text {P }}\) & pat & art & cal & OIP & ant \\
\hline 857 & 747 & 1545 & \(1 \times 75\) & 87 & B7 & 173 & 248 & 74 & 347 & 347 & 0 & 1.000 & 177 & 17 & 0 & 1.000 & 994 & 944 & 0 & 1.090 \\
\hline 13 F & 747 & 1625 & 1130 & \(\rho 1\) & A3 & 113 & 240 & 74 & 555 & 509 & \({ }^{7}\) & 0.915 & 572 & 349 & 223 & 0.610 & 838 & \(8 \mathrm{~s} ?\) & -24 & 1.029 \\
\hline P3, & 147 & 1650 & 1750 & 83 & \(\mathrm{R}^{7}\) & 173 & 248 & 74 & 703 & 347 & 356 & 0.494 & 713 & 111 & 536 & 0.258 & \(3 \times 2\) & 909 & -132 & 1. 153 \\
\hline 140 & 747 & 1870 & 1410 & \({ }^{1}\) & 81 & 113 & 247 & 74 & 509 & 509 & 0 & 1.000 & 369 & 380. & 0 & 1.n00 & A 62 & ats? & 0 & 1.000 \\
\hline 471 & 147 & 1815 & 1910 & as & \({ }^{\text {P }}\) & 173 & 248 & 74 & 428 & 347 & 81 & 0.811 & 43 A & 171 & 261 & 0.404 & 910 & 994 & -84 & 1.092 \\
\hline 0.58 & 74 & 1945 & 2100 & 07 & 97 & 113 & 249 & 74 & 347 & 347 & 0 & 1.000 & 177 & 177 & 0 & 1.700 & 904 & 974 & 0 & 1.000 \\
\hline \% \({ }^{4}\) & 1.10 & 3 & 125 & 77 & A & 119 & 170 & 51 & 919 & 509 & 410 & 0.554 & 935 & 369 & 585 & 0.373 & 335 & R6 2 & 43 & 0.952 \\
\hline 2+3 & L10 & 0 & 830 & 75 & H5 & 119 & 170 & 51 & 1102 & 594 & 509 & 0.539 & 1118 & 434 & 684 & 0. 788 & 1006 & 910 & 96 & 0.905 \\
\hline \(15=\) & :10 & \(\bigcirc\) & 215 & 81 & A 1 & 119 & 170 & 51 & 556 & 556 & 0 & 1.000 & 572 & 572 & 0 & 1.000 & 3 3R & A 38 & 0 & 1.000 \\
\hline 154 & \& 10 & 110 & 815 & 79 & AO & 119 & 170 & 51 & 799 & 556 & 173 & 0.766 & 755 & 582 & 173 & 0.771 & A55 & AR 1 & -26 & 1.030 \\
\hline 771 & 1.1) & 835 & 910 & 91 & 91 & 119 & 170 & 51 & 299 & 299 & 0 & 1.000 & 193 & 193 & 0 & 1.003 & 1237 & 1237 & 0 & 1.000 \\
\hline 117 & 10 & P10 & 720 & 77 & ค & 119 & 170 & 51 & 919 & 500 & 010 & 0.554 & 935 & 340 & 586 & 0.373 & 905 & A62 & 43 & 0.952 \\
\hline 121 & 1.17 & 915 & 1130 & 77 & ヵ & 119 & 170 & 41 & 919 & 909 & 410 & 0.95.4 & 935 & 349 & SAs & 0.373 & 935 & A6. 2 & 43 & 0.752 \\
\hline 624 & L10 & 1410 & 1570 & 13 & ns & 119 & 170 & 51 & 12 AS & 508 & 691 & 0.462 & 1301 & 43 & 667 & 0.334 & 1221 & 910 & 311 & 0.745 \\
\hline 247 & 110 & 14.5 & 1715 & 75 & \({ }^{+}\) & 119 & 170 & 51 & 1102 & 556 & 546 & 0.505 & 1118 & 572 & 546 & 0.512 & 1396 & 838 & 159 & 0.973 \\
\hline 141 & L. 9 & 1445 & 17510 & 77 & คo & 119 & 170 & 51 & 919 & 886 6 & 353 & 0.616 & 935 & SR2 & 353 & 0.622 & 905 & 881 & 24 & 0.973 \\
\hline 137 & 219 & 1810 & \(19 n 0\) & 61 & 85 & 119 & 170 & 31 & 556 & 99: & -38 & 1. OFB & 572 & 434 & 13 A & 0.159 & 039 & 010 & -12 & 1.096 \\
\hline 16.5 & 113 & 1910 & 2100 & 77 & \({ }^{2} 5\) & 119 & 170 & 51 & 919 & 594 & 325 & 0.646 & 935 & 434 & 501 & 3.464 & 905 & 910 & -5 & 1.006 \\
\hline 14.3 & 110 & 2011 & 2100 & 83 & R 3 & 119 & 170 & 51 & 509 & 509 & 0 & 1.000 & 349 & 349 & 0 & 1.000 & - 62 & 962 & 0 & 1.000 \\
\hline 79. & 410 & 2025 & 21 mm & 91 & 91 & 119 & 170 & 31 & 299 & 209 & 0 & 1.000 & 193 & 173 & 3 & 1.000 & 1237 & 1237 & 0 & 1.000 \\
\hline 10, & 40 & 2110 & 2200 & 75 & \({ }^{\text {a }}\) & 119 & 170 & 51 & 1102 & 509 & 593 & 0.862 & 1118 & 349 & 769 & 0.312 & 1006 & 962 & 16. & 0.957 \\
\hline 169 & L 10 & 2120 & 2?10 & 77 & \(\mathrm{AS}_{5}\) & 119 & 170 & 51 & 919 & 594 & 325 & 0.606 & 935 & 430 & 501 & 0.464 & 905 & 910 & -5 & 1.006 \\
\hline 621 & 110 & 2220 & 2310 & 81 & A3 & 19 & 170 & 51 & 556 & 509 & 47 & 0.915 & 572 & 349 & 223 & 0.610 & 939 & \({ }^{6} 62\) & -24 & 1.029 \\
\hline 248 & L 10 & 2320 & 2400 & 73 & A3 & 119 & 170 & 51 & 1289 & 509 & 776 & 0.396 & 1301 & 349 & - 52 & 2. 280 & 1221 & 862 & 359 & 0.706 \\
\hline 310 & D6S & 9 & 100 & 76 & \({ }^{\text {RO}}\) & 95 & 136 & 40 & 926 & 566 & 360 & 0.611 & 432 & 502 & 350 & 0.624 & 960 & e8 1 & 70 & 0.919 \\
\hline 920 & DAS & 0 & A00 & 91 & 91 & 95 & 136 & 40 & 299 & 299 & 0 & 1.000 & 193 & 193 & - & 1.000 & 1237 & 1237 & 0 & 1.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & 940 & dos & 805 & 900 & 87. & A & 99 & 136 & . 0 & 347 & 347 & 0 & 1.000 & 17 & 111 & 0 & 1.000 & 994 & -94 & 0 & 1.050 \\
\hline & 932 & Des & 850 & 1100 & AS & \({ }^{4}\) & 95 & 136 & 40 & 428 & \(4{ }^{4}\) & 0 & 1.000 & 438 & 138 & 0 & 1.000 & 910 & 910 & 0 & 1.000 \\
\hline & 299 & drs & 1240 & 1420 & 7 & n & 95 & 136 & 40 & 919 & 509 & 410 & 0.554 & 935 & \(3 \times 9\) & 506 & 0.373 & 905 & A 2 & 43 & 0.952 \\
\hline & 813 & pas & 1520 & 1625 & \({ }^{2}\) & 89 & 05 & 136 & 40 & 703 & 401 & 102 & 0. 155 & 13 & 329 & 380 & 0.461 & 962 & 1190 & -239 & 1.276 \\
\hline & 701 & nos & 1675 & 1125 & 01 & 91 & as & 136 & 40 & 290 & 299 & 0 & 9.000 & 193 & 193 & 0 & 1.000 & 1237 & 1237 & 0 & 1.000 \\
\hline & 812 & Des & 1700 & 1900 & 17 & 97 & 05 & 136 & 0 & 807 & -19 & 389 & 0.518 & 101 & 312 & 389 & 0.445 & 904 & 1925 & -331 & 1.836 \\
\hline & P7 & Dps & 1920 & 1930 & 99 & ค9 & 05 & 136 & \(\cdots\) & 601 & 601 & 0 & 1.000 & 329 & 329 & 0 & 1.000 & 1100 & 1100 & 0 & 1. 000 \\
\hline & 7.3 & 2RS & 18.0 & 1030 & 91 & 81 & 95 & 136 & 40 & 1363 & 556 & e07 & 0.408 & 1203 & 512 & 631 & 0.475 & 1231 & a3e & 330 & 0.671 \\
\hline & Pat & D9s & 1940 & 2120 & 85 & -9 & 05 & 136 & 40 & 178 & 401 & -173 & 1.400 & 43 A & 329 & 109 & 0.181 & 910 & 1100 & -190 & 1.209 \\
\hline & 007 & dhs & 1955 & 2100 & 99 & ง9 & 95 & 136 & 0 & \({ }^{\text {828 }}\) & \({ }^{2} 8\) & 0 & 1.000 & 568 & 568 & 0 & 1.000 & 2060 & 2059 & 0 & 1.000 \\
\hline & 249 & des & 2015 & 2100 & \({ }^{9} 1\) & A1 & 05 & 136 & 40 & 596 & 556 & 0 & 1.000 & 512 & 512 & J & 1. 300 & A 38 & 838 & 0 & 1.000 \\
\hline & 923 & das & 2110 & 2215 & 91 & A7 & 05 & 136 & 40 & A55 & 147 & 500 & 0.006 & 583 & 117 & 406 & 0.304 & 1237 & -94 & 233 & 0.908 \\
\hline & -19 & res & 0 & 655 & 19 & -7 & 6.3 & 0 & 27 & 739 & 510 & 229 & 0.600 & 755 & 39 & 405 & 0.464 & 825 & 1825 & -970 & 2. 135 \\
\hline & 9.92 & DCa & 330 & 1070 & 9 & Q1 & 63 & 90 & \({ }^{27}\) & 209 & 270 & 0 & 1.000 & 193 & 103 & 0 & 1.000 & 1231 & 1237 & 0 & 1.000 \\
\hline & 361 & nca & 1515 & 1115 & \({ }^{\text {a }}\) & -9 & 63 & 90 & 27 & -2A & 128 & -400 & 1.935 & 07 A & 563 & -130 & 1. 297 & 910 & 2069 & -1159 & 2.274 \\
\hline & W 1 & ica & 140 & 170 & 74 & 70 & n 3 & 90 & 27 & 1108 & 1.39 & 367 & 0.66 A & 1112 & 755 & 357 & 0.670 & 1075 & P5s & 220 & 0.795 \\
\hline \multirow[t]{17}{*}{\[
\begin{aligned}
& 1 \\
& \infty \\
& \frac{F}{1}
\end{aligned}
\]} & 903 & DCA & 1655 & 1390 & \({ }^{\circ} 9\) & A9 & a \({ }^{\text {a }}\) & 90 & 27 & 59 & 953 & 0 & 1.000 & 617 &  & , & 1.003 & 1100 & 1100 & 0 & 1.000 \\
\hline & 'f & rat & 2710 & 20 ก & 77 & 95 & a & 90 & 27 & 019 & 594 & 325 & 0.606 & 935 & 434 & 501 & 0.464 & 905 & 010 & -5 & 1.006 \\
\hline & 403 & 127 & 0 & 7 n & ¢0 & 10 & 61 & 87 & 26 & 566 & 339 & \(-173\) & 1.306 & \(5 \mathrm{Sa}_{2}\) & 159 & -173 & 1.297 & afi & 855 & 26 & 0.970 \\
\hline & 402 & 777 & \(\bigcirc\) & ถกก & 78 & 7 & 61 & P & 25 & 746 & pur & 0 & 1.000 & 752 & 752 & 0 & 1.000 & 905 & 905 & 0 & 1.000 \\
\hline & 746 & 12s & 735 & 405 & \({ }^{5} 5\) & ค9 & \({ }_{6} 1\) & 87 & 26 & 1337 & 801 & 736 & 0.450 & 1065 & 329 & 136 & 0.109 & 1510 & 1130 & 510 & 0.6.83 \\
\hline & 404 & 127 & H05 & 9n0 & P0 & 97 & 61 & P7 & 26 & 566 & 510 & 56 & 0.901 & 592 & 350 & 232 & 0.601 & \({ }^{\text {A } 1}\) & 1 A 2 S & -934 & 2.072 \\
\hline & 13 & 729 & 930 & 915 & 71 & \({ }^{80}\) & 61 & 87 & 25 & \(12 \mathrm{n7}\) & 565 & 721 & 0.440 & 1303 & 59.2 & 121 & 0.647 & [17 & คA 1 & 290 & 0.752 \\
\hline & 476 & 727 & 905 & 1 nan & 79 & \({ }^{\circ}\) & 6 & \({ }^{81}\) & 26 & 746 & 510 & 236 & 0.6 Am & 192 & 350 & 402 & 0.465 & 905 & 1875 & -920 & 2.017 \\
\hline & 246 & 125 & 1005 & 1345 & 81 & \({ }^{1}\) & 61 & 87 & 26 & 556 & 556 & 0 & 1.000 & 572 & 572 & \(\bigcirc\) & 1.003 & 839 & 838 & 0 & 1.000 \\
\hline & 478 & 1'1 & 1705 & 1100 & \(\bigcirc\) & я0 & 6 & \({ }^{27}\) & 26 & 566 & 566 & 0 & 1.000 & 5 P 2 & 582 & 0 & 1.000 & \({ }^{\text {A81 }}\) & \({ }^{\text {ant }}\) & 0 & 1.000 \\
\hline & 010 & 127 & 1105 & 1200 & 70 & \({ }^{83}\) & 4 & \({ }^{87}\) & 25 & 746 & 509 & 237 & 0.682 & 752 & 349 & 103 & 0.464 & 935 & 8K2 & 43 & 0.952 \\
\hline & 4.12 & 127 & 1205 & 1300 & P0 & as & 6 & A1 & 26 & 566 & 594 & -2A & 1.049 & 5 ¢2 & 134 & 148 & 0.766 & 881 & 910 & -29 & 1.033 \\
\hline & 125 & 125 & 1303 & 1410 & 91 & 91 & \({ }^{61}\) & 87 & 26 & 299 & 299 & 0 & 1.000 & 193 & 193 & 0 & 1.203 & 1231 & 1237 & 0 & 1.000 \\
\hline & 414 & 127 & 1305 & 1400 & 79 & as & 61 & \({ }^{87}\) & 26 & 746 & 594 & 152 & 0.796 & 752 & -36 & 31 n & 0.577 & 905 & 910 & -5 & 1.006 \\
\hline & 454 & 125 & 1310 & 1420 & \({ }^{19}\) & 81 & 61 & 87 & 26 & 556 & 556 & 0 & 1.000 & 572 & 372 & 0 & 1.000 & 838 & 83n & 0 & 1.000 \\
\hline & 416 & 727 & 1405 & 1500 & \({ }^{\circ} \mathrm{O}\) & 97 & 61 & 87 & 26 & 566 & 510 & 56 & 0.901 & 582 & 350 & 232 & 0.601 & AA 1 & 1825 & -904 & 2.072 \\
\hline & 418 & 127 & 1505 & 1700 & 78 & 月. 3 & 61 & n7 & 26 & 746 & 509 & 237 & \(0.6 n 2\) & 758 & 309 & - 01 & 0.164 & 935 & a62 & 13 & 0.952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 420 & 127 & 16051700 & no. & 78 & 61 & A7 & 26 & 566 & 746 & -180 & 1.31^ & 542 & 152 & - 170 & 1. 292 & 881 905 & -24 & 1.027 \\
\hline & 060 & 125 & 16451745 & 76 & А5 & 61 & \({ }^{\text {a }}\) & 26 & 926 & 594 & 332 & 0.641 & 932 & 43 & 198 & 0.065 & 060 -10 & 50 & 0.949 \\
\hline & 422 & 121 & 1705 1800 & 78 & 9 & 61 & \({ }^{87}\) & 26 & 746 & 139 & 1 & 0.991 & 792 & 159 & -3 & 1.008 & 905855 & 50 & 0.945 \\
\hline & 729 & 170 & 17501855 & \({ }^{9} 3\) & a & 61 & 87 & 26 & 598 & 299 & 299 & 0.500 & 492 & 193 & 299 & 0.392 & 14171231 & 130 & 0.973 \\
\hline & 4.4 & 127 & : 415 mon & \({ }^{\circ} \mathrm{O}\) & in & 41 & \({ }^{\text {a7 }}\) & 26 & 565 & 566 & 0 & 1.000 & 582 & 5 Cz & 0 & 1.000 & 891 *ค, & 0 & 1.000 \\
\hline & 797 & \(\cdots\) & 1435 1925 & 97 & un & 61 & A7 & 26 & A28 & 828 & 0 & 1.000 & 668 & 960 & 100 & 0.950 & 10252059 & -234 & 1.134 \\
\hline & \(4 \%\) & 727 & \(1 \times 102070\) & 78 & 20 & 61 & A7 & 26 & 746 & 566 & 180 & 0.759 & 752 & 592 & 13 & 3.774 & gos art & 24 & 0.973 \\
\hline & 428 & 127 & 2035 2100 & 90 & an & \({ }^{6}\) & \({ }^{\text {a }}\) & 26 & 565 & 566 & 0 & 1.000 & SA2 & \(5{ }_{5}\) & 0 & 1.000 & Pet 901 & 0 & 1.330 \\
\hline & 404 & 72. & 2010210 & 79 & 97 & . \({ }^{4}\) & \({ }^{\text {a }}\) & 26 & 739 & 510 & 220 & 0.690 & 755 & 350 & 405 & 3.460 & 8551825 & -970 & 2.135 \\
\hline & \(4: 7\) & 127 & 21052155 & 7 A & \({ }^{1}\) & \({ }^{6} 1\) & \({ }^{\text {a }}\) & 26 & 746 & 556 & 190 & 0.745 & 752 & 572 & 180 & 0.761 & 905 a3a & 67 & 0.926 \\
\hline & 16.7 & 9 & 21152155 & \({ }^{\text {a }}\) & H0 & 51 & \({ }^{87}\) & 26 & 556 & 566 & -10 & 1.019 & 572 & 582 & -1) & 1.317 & A 3 B Pb, & -43 & 1.051 \\
\hline & 241 & 10s & 21302240 & 79 & \({ }^{17}\) & .1 & A7 & 26 & 137 & 910 & 229 & 0.690 & 755 & 350 & 405 & 0.464 & 955 1079 & -970 & 2.175 \\
\hline & 49 & יי & 22052300 & คо & 月1 & 61 & 87 & 26 & 566 & 546 & 10 & 0.982 & 482 & 572 & 10 & 0.083 & 881 838 & 43 & 0.951 \\
\hline & 7 & 9n5 & 0701 & \({ }^{17}\) & \({ }^{8}\) & 50 & 71 & 21 & ค07 & 553 & 254 & 0.605 & 101 & 447 & 254 & 0.6.8 & 0a4 1108 & -106 & 1.101 \\
\hline & 721 & dos & 0730 & 93 & no & © 0 & 11 & 21 & 598 & \({ }^{18}\) & 180 & 0.699 & 492 & 312 & 190 & 0.6.34 & 14172080 & -652 & 1. 060 \\
\hline 1 & 301 & 205 & \(\bigcirc 755\) & 13 & 87 & in & 11 & 21 & 12R5 & 95s & 430 & 0.665 & 1301 & 695 & 606 & 0.534 & 1221 904 & 227 & 0.911 \\
\hline \(\cdots\) & 292 & nns & J 900 & \({ }^{\text {a }}\) & 9 & 40 & 11 & 21 & 601 & 115 & -563 & 1.920 & 329 & 092 & -553 & 2.681 & 11301417 & -317 & 1. 288 \\
\hline 1 & 735 & dos & 4451050 & \({ }^{\text {a }}\) 9 & \(\cdots\) & 50 & 11 & 21 & 553 & 7 Al & -224 & 1. 412 & 447 & 675 & -22a & 1.510 & 1100160 & -510 & 1.964 \\
\hline & 612 & D9 & 710 800 & 74 & ค? & 50 & 11 & 21 & 926 & 509 & 417 & 0.550 & 932 & 340 & 583 & 0.374 & 960962 & 39 & 0.979 \\
\hline & 171 & nos & 740870 & 72 & 70 & 50 & 7 & 21 & 1269 & 739 & 430 & 0.582 & 1285 & 154 & 533 & 0.988 & 117585 & 320 & 0.729 \\
\hline & 779 & Dns & Ros ass & 93 & an & 50 & 71 & 21 & 598 & 418 & 1 p & 0.609 & 492 & 312 & \(1 \times 0\) & 0.634 & 12172050 & -552 & 1.060 \\
\hline & \({ }^{\text {O }}\) O & nos & A15 845 & 13 & 71 & 50 & 71 & 21 & 12as & 766 & 539 & 0.581 & 1309 & 152 & 509 & 3.578 & 1221905 & 316 & 0.701 \\
\hline & 444 & Dis & 815900 & 76 & 11 & -0 & 11 & 21 & 926 & \(\bigcirc 19\) & 7 & 0.002 & -32 & \({ }^{135}\) & -3 & 1.003 & 060 909 & 55 & 0.003 \\
\hline & 365 & Dns & Pess 945 & 25 & 78 & 40 & 71 & 21 & 1102 & 746 & 356 & 0.671 & 119 & 752 & 366 & 0.673 & 1506905 & 101 & 0.900 \\
\hline & 642 & j* & 9301035 & 74 & н7 & 50 & 71 & 21 & 1105 & 955 & 251 & 0.773 & 1112 & 695 & 017 & 0.625 & 1075004 & 91 & 0.725 \\
\hline & 60 & nes & 9301050 & 76 & 77 & 50 & 11 & 21 & 926 & 919 & 1 & 0.992 & 932 & 335 & -3 & 1.003 & 960905 & 55 & 0.943 \\
\hline & 1.54 & 003 & 10251115 & \({ }^{\text {A }}\) & 97 & 50 & 71 & 21 & 507 & 510 & -1 & 1.002 & 309 & 350 & -1 & 1.003 & 9621.25 & -953 & 2.117 \\
\hline & 718 & nas & 13311230 & 03 & P0 & 40 & 71 & 21 & 59a & 553 & 45 & 0.925 & 492 & Q17 & 45 & 0.909 & W171130 & 317 & 0.776 \\
\hline & 3 ms & ons & 11401545 & 16 & ワ & 50 & 11 & 21 & 2013 & 418 & 1595 & 0.20n & 1907 & 312 & 1593 & 0.164 & 9602069 & -1109 & 2.155 \\
\hline & 315 & D7s & 12301320 & 79 & 90 & 90 & 11 & 21 & 739 & 566 & 173 & 0.766 & 753 & \(5 \mathrm{~S}_{2}\) & 173 & 0.171 & 355 8R1 & -26 & 1.030 \\
\hline & 102 & n95 & 12001310 & \({ }^{1} 3\) & \({ }^{07}\) & 50 & 7 & 21 & 509 & 510 & -1 & 1.002 & 309 & 350 & \({ }^{-1}\) & 1.003 & n62 1825 & -963 & 2.117 \\
\hline & 349 & dos & 13051405 & 74 & 19 & 50 & 71 & 21 & 1106 & 739 & 367 & 0.668 & 1112 & 755 & 351 & 0.579 & 1375 855 & 220 & 0.795 \\
\hline & 780 & dos & 13051500 & \({ }^{93}\) & A9 & 90 & 71 & 21 & \(59 n\) & 333 & 45 & 0.923 & 492 & 447 & 45 & 0.909 & 14171100 & 317 & 0.776 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 703 & D9S & 1325 & 1510 & 89. & 93 & 50 & 71 & . 21 & 453 & 598 & -45 & 1.089 & 4.7 & 492 & -45 & 1.101 & 1190 & 1417 & -317 & 1. 288 \\
\hline 650 & D9S & 1450 & 1550 & 71 & 79 & 50 & 71 & 21 & 1287 & 739 & 540 & 0.574 & 1303 & 755 & 548 & 0.579 & 1171 & 855 & 316 & 0.730 \\
\hline 446 & D9S & 1530 & 1605 & 74 & 97 & 50 & 71 & 21 & 1106 & 510 & 596 & n. 461 & 1112 & 390 & 762 & 0.315 & 1379 & 1825 & -750 & 1.679 \\
\hline 351 & 045 & 1555 & 1625 & 16 & 77 & - 0 & 71 & 21 & 926 & 919 & 7 & 0.992 & 932 & 935 & -3 & 1.003 & 060 & 905 & 55 & 0.943 \\
\hline feg & ans & 1555 & 1650 & 79 & 7. & 50 & 71 & 21 & 739 & 926 & -1a7 & 1.293 & 755 & 932 & -171 & 1.234 & 955 & aso & -135 & 1.123 \\
\hline 717 & D9S & 1600 & 1725 & 93 & 97 & 50 & 71 & 21 & 59A & 598 & 0 & 1.000 & 492 & 402 & 0 & 1.000 & 1417 & 1417 & 0 & 1.000 \\
\hline 446 & p9S & 1540 & 1750 & 72 & 17 & 50 & 71 & 21 & 1269 & 919 & 350 & 0.724 & 12 BS & 935 & 350 & 0.128 & 1175 & 905 & 210 & 0.170 \\
\hline 227 & Dos & 1645 & 1745 & 05 & 95 & 90 & 71 & 21 & 781 & 781 & 0 & 1.009 & 675 & 675 & 0 & 1.000 & 1610 & 1610 & 0 & 1.000 \\
\hline 784 & 095 & 1055 & 1 Ans & 97 & 7k & 50 & 71 & 21 & A2A & 1373 & - 545 & 1.658 & \(6 \mathrm{6a}\) & 136 & -695 & 2.040 & 1325 & 060 & 755 & 0.526 \\
\hline '07 & Dus & 1055 & 1415 & 11 & 75 & 50 & 71 & 21 & 12A7 & 1102 & trs & 0.856 & 1301 & 111A & 185 & 0.898 & 1171 & 1006 & 165 & 0.859 \\
\hline 6.55 & \(00^{5}\) & 17? & 1800 & 75 & A 1 & : 0 & 71 & 21 & 1102 & 556 & 546 & 0.505 & 119 & 572 & 545 & 0.512 & 1006 & 139 & 16 A & 0.933 \\
\hline \(\mathrm{COH}_{4}\) & 195 & 1911 & 1555 & 17 & 79 & 50 & 71 & 21 & 919 & 739 & 180 & 0.804 & 935 & 755 & 193 & 0.931 & 935 & 859 & 50 & 0.945 \\
\hline 233 & 09.5 & 1820 & 1025 & 12 & 7 A & 50 & 71 & 21 & 1267 & 146 & 523 & C. 5Pb & 12AS & 752 & 533 & 0.585 & 1175 & 905 & 270 & 0.770 \\
\hline \(3{ }^{3} 3\) & 0.5 & 13 J & 1020 & 13 & 71 & 50 & 71 & 21 & 1285 & 919 & 3 kn & 0.715 & 1301 & 935 & 3rs & 0.717 & 1221 & 935 & 316 & 0.741 \\
\hline 353 & 095 & 1240 & 1915 & 74 & 76 & 50 & 71 & 21 & 1106 & 926 & 1 AO & 0.837 & 1112 & 932 & 180 & 0.874 & 1075 & 960 & 115 & 0.893 \\
\hline 1,3 & \({ }^{04} 5\) & 1945 & 19.30 & 71 & 75 & 50 & 71 & 21 & 1281 & 1102 & 185 & 0.856 & 1.303 & 1119 & 18 s & 0.asp & 1171 & 1036 & 165 & 0.859 \\
\hline 2 AC & 205 & 10.15 & 1455 & 05 & 91 & 50 & 11 & 21 & 781 & 299 & 4 P 2 & 0.383 & 675 & 197 & 482 & 0.286 & 1610 & 1237 & 373 & 0.768 \\
\hline 329 & 095 & 1755 & 2059 & 72 & 79 & 90 & 71 & 21 & 1269 & 739 & 530 & 0.582 & \(12 \mathrm{R5}\) & 755 & 530 & 0.589 & 1175 & A5 5 & 320 & 0.724 \\
\hline 719 & 195 & 2000 & 2120 & 93 & 01 & 50 & 71 & 21 & 59A & 578 & 0 & 1.005 & 492 & 492 & 0 & 1.000 & 1417 & 1417 & 0 & 1.000 \\
\hline 351 & D93 & 2015 & 2120 & 71 & 78 & 50 & 71 & 21 & \(12 \mathrm{A7}\) & 746 & 541 & 0.580 & 1303 & 752 & 551 & 0.571 & 1171 & 935 & 266 & 0.773 \\
\hline 331 & D9S & 2015 & 2120 & 73 & 77 & 50 & 71 & 21 & 12 5 & 919 & 766 & 0.715 & 1301 & 935 & 366 & n. 710 & 1221 & 905 & 316 & 0.741 \\
\hline 355 & D9S & 2035 & 2130 & 76 & 76 & 50 & 71 & 21 & 926 & 926 & 0 & 1.000 & 932 & 932 & 0 & 1.009 & 760 & 960 & 0 & 1. 000 \\
\hline 133 & Dis & 2120 & 2225 & 74 & 79 & 90 & 71 & 21 & 1106 & 799 & 367 & 0.168 & 1112 & 755 & 357 & 0.679 & 1075 & 955 & 220 & 0.795 \\
\hline 309 & Das & 2139 & 2315 & A5 & 91 & 50 & 71 & 21 & 1068 & 299 & 769 & 0.280 & 962 & 193 & 769 & 0.201 & 910 & 1237 & -321 & 1. 359 \\
\hline 356 & Das & 2153 & 2240 & 76 & 78 & 50 & 71 & 21 & 926 & 746 & 180 & 0.806 & 932 & 752 & 1 aO & 0.807 & 960 & 905 & 55 & 0.943 \\
\hline 788 & D9S & 2155 & 2255 & 93 & 99 & 50 & 11 & 21 & 598 & 553 & 45 & 0.929 & 492 & 441 & 45 & 0.909 & 1317 & 1130 & 311 & 0.715 \\
\hline 327 & D9S & 2205 & 2255 & 73 & 80 & 50 & 71 & 21 & 1285 & 566 & 719 & 0.480 & 1301 & 582 & 719 & 0.447 & 1221 & A日 1 & 300 & 0.722 \\
\hline 334 & D9S & 2305 & 2350 & 79 & 81 & 50 & 71 & 21 & 739 & 556 & 143 & 0.752 & 755 & 372 & 183 & 0.758 & 955 & A3A & 11 & 0.990 \\
\hline 332 & D45 & 2310 & 2400 & 74 & Ro & 50 & 71 & 21 & 1106 & 566 & 580 & 0.512 & 1112 & 582 & 530 & 0.523 & 1375 & Ant & 194 & 0.120 \\
\hline 467 & D\% & 2120 & 2400 & 75 & 97 & 50 & 71 & 21 & 1102 & 510 & 592 & 0.863 & 1118 & 350 & 760 & 0.313 & 1006 & 1025 & - P 19 & 1.914 \\
\hline 289 & D95 & 2345 & 2400 & n9 & 91 & 50 & 71 & 21 & 553 & 299 & 254 & 0.541 & 447 & 103 & 250 & 0.432 & 1100 & 1237 & -137 & 1. 125 \\
\hline 361 & DC9 & 0 & 700 & 74 & 71 & 50 & 58 & 17 & 1106 & 919 & 187 & 0.131 & 1112 & 935 & 171 & 0.841 & 1075 & 905 & 110 & 0.942 \\
\hline 442 & DC9 & 0 & 740 & R 5 & 76 & 40 & 58 & 17 & 59\% & 926 & -332 & 1.559 & 434 & 932 & -499 & 2.147 & 910 & 960 & -50 & 1.055 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{,} & 303 & DC9 & 0 & 808 & 11 & 19 & 40 & 58 & . 17 & :297 & 1102 & mas & 0.856 & 1303 & 1118 & 185 & 0.058 & 11111006 & 165 & 0.859 & \\
\hline & 450 & DC9 & P 30 & 925 & 79 & 7 & 40 & \({ }_{5} 8\) & 17 & 739 & 926 & -187 & 1.253 & 755 & 932 & -171 & 1.234 & A5S 960 & -105 & 1.123 & \\
\hline & 363 & DCO & 900 & 950 & \(\cdots\) & no & \(\checkmark 0\) & 58 & 17 & 1295 & 957 & 329 & 0.745 & 1301 & 797 & 504 & 0.613 & 12212069 & -848 & 1.695 & \\
\hline & 33 & Dra & 953 & 1215 & 1 & 70 & 40 & 58 & 17 & 1287 & 139 & 548 & 0.574 & 1303 & 155 & 543 & 0.579 & 111185 & 316 & 0.730 & \\
\hline & \(\cdots\) & biv & 1010 & 1115 & 22 & " & 40 & 50 & 17 & 1269 & 746 & 523 & 0.50 A & 12 P & 752 & 533 & 0.585 & 1175905 & 270 & 0.770 & \\
\hline & 17 & DCP & 1239 & 135 & 19 & 7 H & 90 & 58 & 17 & 1102 & 746 & 356 & 0.677 & 1118 & \% & 365 & 0.F73 & 1136895 & 13 & 0.090 & \\
\hline & \({ }^{31}\) & dron & 1330 & 1530 & 7 & \% & 40 & \(s\) & 17 & 1260 & 796 & 527 & 0.58A & 1285 & 152 & 533 & 0.585 & 1175905 & 270 & 0.710 & \\
\hline & [22 & pce & 134 & 149 & \({ }^{2} 3\) & \({ }^{87}\) & 40 & 58 & 17 & 509 & 355 & - 346 & 1.680 & 340 & 695 & -335 & 1.991 & Re2 290 & -132 & 1. 153 & \\
\hline & 303 & nces & 1470 & 1570 & \(\cdots\) & \(\because\) & 40 & 5 A & 17 & 139 & 919 & - 180 & 1.204 & 155 & 935 & - 1 ¢о & 1.238 & R5s ans & -50 & 1.058 & , \\
\hline & \%n & aco & (10) & 1.09 & \({ }^{\text {a }}\) & 15 & 40 & 5 A & 17 & 596 & 1102 & -546 & 1.982 & 572 & 1118 & -545 & 1.959 & R 3 s mana & -168 & 1. 200 & \\
\hline & 327 & nes & 1700 & 1745 & \(\because\) & \({ }^{14}\) & 40 & 98 & 17 & 12 ns & 1106 & 179 & 0.861 & 1301 & 1112 & 189 & 0.855 & 12211075 & 146 & 0.nso & \\
\hline & 542 & DCG & 115 & 1800 & 74 & 70 & 40 & 58 & 17 & 1106 & 746 & 360 & 0.675 & 1112 & 152 & 369 & 0.576 & 1175 & 170 & 0.842 & \\
\hline & ""5, & nc9 & 1905 & 1740 & 76 & 74 & 40 & 58 & \(י\) & 026 & 1108 & -190 & 1.194 & 932 & 1112 & -180 & 1. 193 & 9609075 & -115 & 1.120 & \\
\hline & 134 & nc9 & 172 & 1050 & 19 & 97 & 40 & 5 B & 17 & 1102 & 510 & 597 & 0.463 & 1118 & 390 & 169 & 0.313 & 1336 1925 & -819 & 1.814 & \\
\hline 1 & 391 & nea & 1930 & 2100 & 74 & 19 & 40 & 50 & 17 & 1106 & 1102 & - & 0.996 & 1112 & 119 & -6 & 1.005 & 1075 1000 & 69. & 0.936 & \\
\hline \multirow[t]{3}{*}{\(\stackrel{\infty}{1}\)} & -1s & DC9 & 2120 & 2215 & 12 & 97 & \({ }^{10}\) & 98 & 17 & 1269 & 957 & 312 & 0.754 & 1285 & 797 & 489 & 0.620 & 11152059 & \(-934\) & 1.161 & \\
\hline & a, \({ }^{\circ}\) & DC9 & 7209 & 2245 & \({ }^{13}\) & 17 & 40 & 58 & 17 & 509 & 919 & -410 & 1,006 & 349 & 9.35 & -5a6 & 2.679 & 862905 & -43 & 1.050 & \\
\hline & \({ }^{398}\) & vc9 & 2300 & 2400 & 76 & 79 & 40 & 58 & 17 & 926 & 739 & 187 & 0.798 & 932 & 755 & 171 & 0.9 & 960 ass & 105 & 0.991 & \\
\hline
\end{tabular}

\section*{APPENDIX C}

PREPROCESSOR OR MODEL
GENERATING PROGRAM
(Written in DATAMAT)
```

NAME PLANES

* tableS:
*
* G:Planes
* name of flight as 'aAaA:b', 'b' a code for type
(ONE COLUMN IN TABle FOE EACH flight)
ARRIVAL TIME AS HH.aM
DEPARTUR TIME AS HH.MM
CAPACITY NUMBER ON PIANE
* M:TyPENAME
* CODE for tyPE - 'b' prom flight Name
* (ONE COLUMN FOR EACh GATE TYPE)
tablNAME 'TABLE_NAME' POR (ONE OF) FOLLOWING TABLE (S)
dISTNAME 'dISTANCE_NAMc' FOR a RCW IN NAMED GATs table
G:'TABLE_NAME'
NAML FOK GATE AS 'ZZ'
(ONE COLUMN FOK EACH GATE IN THE TYPE)
ROW(S) WALKING DISTANCE TO GATE
'DISTANCE_NAME'
M:GATETABL
(STUB TABLE)
'TABLE_NAME' FOR GATE TABLE(S)
tadle(S) MUST PartitiION GATES
TABLE'S TO KEEP MAXIMAL CONPLICT SETS
FORM M:MINDE'PRT = 'HEAD'.M:GATETABL (STUB)
TABLE M:SETSTUB
ORDEF
MAXORDER
FORM G:SETCOUNT = M:SETSTUB(STUB).M:GATETABL (STUB)
FORM M:MINCHAIN = 'NEXT'.G:PLANES (HEAD)
M:MIND\&FRTT (HLAD,!1) = 'VOID'
G: SETCOUNT(12,!1) = 0
M:MINCHAIN(NEXT,:1) = 'NOTCHAIN'
*
* Process flightS in order of arrival
* NEWMODEL
//NXTLUP
N:NEXT = DUMMY
E:NEXT = 1E20
LOOP M:MINCHAIN (0,!1) <NE> DUMMY
IF M:MINCHAIN {NEXT,!1) <EQ> 'NOTCHAIN'.1
GOTO ENDNXT
GOTO ENDNXT
E:NEXT=G:PLANES(ARRIVAL,!1)
//ENDNXT

```
```

 CONTINUE
 IF N:NEXT <NE> DUMMY,1
 GOTO ENDLUP
*

* MAME OF FIIG\&T, GATE TYPE CODE, TABLE OF GATES POZ TXPE
N:PLANE= MASK (G:PLANES(O,N:NEXT),'******O0')
N:TYPE = SHIFT (MASK (N:PLAN\&.OOOOO*00%),5)
N:GATETABL = M:TYPENAME (TABLNAME,N:TYPE)
N:DISTNAME = M:TYPENAME (DISTNAME,N:TYPE')
*
* SELECTION CONSTRAINT FOR FLIGHT. WALKING DISTANCES
RON N:PLANE <EQTYPE>,N:PLANE E G:N:GATETABL:0,!1)=1.
RHS UNITY, N:PLANE = 1
ROH WALKDIST, N:PLANE G G:N:GATETABL(0,:1)=
G: PLANES (CAPACITY,N:NEXT) * G:N:GATETABL (N:DISTNAME.!1)
*
* DETERMINE MEMBEESHIP OF NEXT FLIGHT IN CURRENT CONFLICT SET
N:MIN = M:MINDEPRT (HEAD,N:GATETABL)
IF N:MIN <NE> 'VOID'. }
GOTO ADDNXT
IF G:PLANES(AREIVAL,N:NEXT) <GT> G:PLANES(DEPARTUR,N:MIN), 1
GOTO ADDNXT
IF G:SETCOUNT (ORDER,N:GATETABL) <GT> 1.1
GOTO DELETE
*
* HUST WRITE CONSTRAINT POR CURRENT SET
* TH\&N DELETE FLIGHTS NOT CONFLICTING NITH NEXT
N:CONFLICT = MASK (G:PLANES(O.N:MIN).'****0000') \& %::'
ROH N:CONFLICI \& G:N:GATETABL (0,!1) <LETYPE>
RHS UNITY. N:CONFLICT E G:N:GATETABL!0,11)=1.
N:INDEX = N:MIN
//DOCNST
IF N:INDEX <NE> 'VOID'. 1
GOTO NDCNST
COL MASK (G:PLANES:O,N:INDEX),0******00') E G:N:GATETABL(0,11),
N:CONFIICT \& G:N:GATETABL (0,!1) = 1.
N:INDEX = M:MINCHAIN:NEXT,N:INDEX)
GOTO DOCNST
//NDCNST
*
* DELETE NON-CONFLICTI\&G FLIGHTS FROM CHAIN
*

//DELETE
N:INDEX = N:MIN
//DOD\&L
IF G:PLANBS(DEPARTUR,N:INDEX) <LT> G:PLANES(ARRIVAL,N:NEXT).1
GOTO ENDEL
N:INDEX = M:MINCHAIN (NEXT,N:INDEX)
G: SETCOUNT (ORDER, A:GATETABL) = G:SETCOUNT (ORDER,N:GATETABL) - 1
IF M:INDEX <EQ> VOID'.1
GOTO DODEL

```
```

gILE: PlIGHT DATARUN F
N:MIN = 'VOID'
GOTO ADDNXT
//ENDEL
N:MIN = N:INDEX
M:MINDEPRT(HEAD,N:GATETABL) = N:MIN
*

* add NEXT to Chain for ITS TYPE. DEPARTURE-ORDERED
*

//ADDNXT
N:INDEX = N:MIN
//DOCHAN
IF N:INDEX <NE> 'VOID'.1
GOTO RCHAN
IF G:PLANES (DEPARTUR,N:INDEX) <LT> G:PLANES(DEPARTUR,N:NEXT).1
GOTO RCHAN
N:LAST = N:INDEX
N:INDEX = M:MINCHAIN(NEXT,N:INDEX)
goto nochan
//RCHAN
IF N:INDEX <NE> N:MIN,2
M:MINDEPRT(HEAD,N:GATETABL) = N:NEXT
GOTO RCHAND
M:MINCIIAIN(NEXT,N:LAST) = N:NEXT
//KChand
M:MINCHAIN(NEXT,N:NEXT) = N:INDEX
G:SETCOUNT (ORDER,N:GATETADL) = G:SETCOUNT(OLDER,N:GATETABL) + 1
IF G:SETCOUNT(MAXORDER,N:GATETABL) <GT> G:SETCOUNT (ORDER,N:GATETABL).1
G: SETCOUNT (MAYORDLE.N:GATETABL) = G:SETCOUNT (ORDER,N:GATETABL)
GOTO NXTLUP
//ENDLUP
*

* WRItE CONSTRAINTS FOR FINAL CONFIICT SETS
* LOOP M:MINDEPET(0.!1) <NE> DUMMY
N:GATETABL = M:MINDEPRT !0,!1)
I:MAXORDEA = G:SETCOUNI:MAXOLDER,!1)
DISPLAY N:GATETABL,I:MAXOKDER
N:MIN = M:MINDEPET(HEAD.!1)
IF G:SETCOUNT (ORDER,N:GATETABL) <GT> 1.1
GOTO ENDCLE
N:CONELICT = MASK (G:PIANES(O,N:MIN),'****0000') \& 1::'
ROW N:CONPLICT E G:N:GATETABL (0,!2) <LETYPE>
RHS UNITY, N:CONFLICT E G:N:GATLTABL(O,:2) = 1.
N:INDEX = N:MIN
//DCONST
IF N:INDEX <NE> 'VOID'.1
GOTO NDCON
COL MASK (G:PLANES(O,N:INDEX), (\#\#****00^) \& G:N:GATETABL(0,12),
N:CONFLICT \& G:N:GATETABL(0,!2) = 1.
N:INDEX = M:MINCHAIN (NEXT,N:INDEX)
GOTO DCCNST
//NDCON
//ENDCLR
CORTINUB
QUIT

```
gndata

APPENDIX D
THE POSTPROCESSOR PROGRAM
(Written in DATAMAT)

Listing of functions in the Postprocessor:

Name
FINAL

MEAN

ARRIVALS

DEPARTUR

TRANSFER

HISTO

\section*{Purpose}

Constructs a condensed table containing all flights and their LP assigned gate Constructs a table containing, for each flight, the gate assignment and corresponding passenger mean walking distance under each of the three policies: 1) the original airport assingment 2) the heuristic algorithm and 3) the LP Same as MEAN, but instead of listing the overall mean walking distance, it lists the expected walking distance for the arriving passengers.

Same as ARRIVALS, but for the departing passengers. Same as ARRIVALS, but for the transfer passengers.

Produces a statistical distribution for the distances listed in the table produced by MEAN. In other words, it lists a histogram of the overall mean walking distance.

Name

ARRHISTO

DEPHISTO

TRFHISTO

\section*{Purpose}

Same as HISTO, but the histogram is for distances of arriving passengers only. Same as HISTO, but for the departing passenger.

Same as HISTO, but for the transfer passenger .
```

FILE: RESULTS DATAMAC A
CONN ERSATIOMAL HOMITOR SX8TETE
*ABLES NEEDED FOR MACROS IN THIS FILE:
*G:PLANES, A IIST OF FLIGHTS, THEIR AERIVAL AND DEPARTURE TIME.\&...ETC.
*G:ALGOTES.HHICH CONTAINS RESULTS OF THE ALGORITHM AS MELL AS DATA

* CONCERNLD WITH THE ORIGINAL ASSIGNMENT GIVEN BY THE AIRPORT.
*G:GATEDIST,HHICH CONTAINS THE MEAN WALKING DISTANCZ FBOM EACH GATE AND FOR
* LACI TYPL OF FLIGHT:DOMESTIC.TEANSBJGDER.INTEPNATIONAL,
*G:TRANSDIS,THE THANSPCSE OF G:GATEDIST
*G:GATES.HHICH CONTAINS THE WALKING DISTANCE EPOM EACH GATEG POR EACE TYPE
* OF FLIGHT (DOM,TRAB,INT'L)AND FOR EAこH TYPE OF PASSENGER(ARRIVING.
* UEPARTING.ThANSF\&RJ
*AND M:TYPENAME'.
*FINALLY M:GATEASSGN,WHICH IS CONSThUCTED IN THE FIEST MACRO IH
*THIS FILE. IS NEEDED FOR THE REMAINING MACROS.
NAME FINAL
*THIS MACRO CONSTEUCTS A TABLE CONTAINING A LIST OF FLIGHTS AND THEIR GATE
*ASSIGNMENT ACCONDING TO THE LINEAF PROGRAM.
*
* PEINT REPORTS EOK SOLUTION EROM 'PLANES' MODEI
*
* \$MODEL, SDDMODEL SET FOR GENERATED MODEL
* SDDFESLT. N:CASENAME SET FOR OPTIMAL SOLUTION
*

REFOEM M:PAIRINGS = COLS

* FOKM LIST OF ACTIVE PAIRINGS
I:ASSIGNED = 0
LOOP M: PAIEINGS !!1,0) <NE> DUMMY
IF X:(M:PAIRINGS(!1,0),N:CASENAME) <EQ> O., 2
I:ASSIGNED = I:ASSIGNED + 1
STUB M:ASSIGNED(I:ASSIGNED) = M:PAIRINGS(!1,0)
CONTINUE
*

SIUB M:FLIGHTS = MASK(M:ASSIGNED(!1,0) ********00')
FOKM M:GATEASGN = M:FLIGUTS:S'UB),GATE
M:GATEASGN(!1,GATB) = MASK(M:ASSIGNED(!1,0).'000000***)
DLSPLAY M:GATLASGN
ENDATA
NAME MEAN
TABLE M:SPEK=ORGATL,OFKD,ALGOGATE,ALGOWD,IPGATE,LPWD,PAX
STUB. M:LO=MASK (M:GATEASGN:!1,0).*****0000')
FORM G: COMPARE=M: LO (STUB) ,M:SPEK (HLAD)
G:COMPARE(!1.LPWD)=G:TIMANDIS(II:GATEASGN(!1.GATE) .
M:TYPENAME{(DISTNAME,MASK(M:GATEASGN\&!1,0).000000*00')|)
G:COMPARE ("1,OEGATE)=G:ALGOTES:"1,GTE)
G:COMPARE ("1,ALGOGATE)=G:ALGOTLS("1,KTE)
FORM M: ALGOTLS=G:ALGOTES (STUB).G:ALGOTES (HEAD)
M:ALGOTES(!1,!2)=G:ALGCTES(!1,!2)
FCRM M:COAPAZ九上=(:COMPAF\& STUB),G:COMPARE'(HEAD)
M:COMPAEE (!1,!2)=G:COMPAEE(!1,!2)
G: COMPAKL!"\,PAX)=G:ALGOTES !" 1,ARR) +G:ALGOTES(*1, DEP) +G:ALGOTES (N1,TRA)
M: COMYAKL:!!1,PAX)=G:COMPARE:!1,PAX)
M:COMPARE (!1,PAX)=MASK(M:CCMPAKE (!1,PAX).00000***0!
M:COMPARE (!1,LPGAT't)=M:GATLASGN!!1,GATE)
M:COMPARE:!1,ALGOGATE)=MASK(M:COMPAEE!!1,ALGOGATE), 000000***)
M: COMPARE (!1,OEGATE)= MASK!M:COMPAFE!!1,ORGATE).(000000**')

```
```

M:COMPARE (!1.LPWD)=MASK(M:COMPARE!!1,IPWD), O000****')
G:COMPARE (!1.ALGOWD)=G:TKANSDIS!M:COMPAFE(!1,ALGJGATE) .
M:TYPENAME (DISTNAM\&,MASK!M:GATLASGN(!1,0).000000*00')))
G:COMPARE:(1,OKWD)=G:TEANSDIS!M:COMPARE(!1,ORGATE),
M:TYPENAME (DISTNAME,MASK!M:GATLASON!!1.0) ,00000*00')|)
H:COMPAEE{!1,UूWD)=G:CCMPARE!!1,OKWD)

```

```

H: COMPARE {!1,ALGOWD)=G:COMPARE {!1,ALGOKD)
H:COMPARE (11,ALGOWD)=MASK (M:COMPARE (!1,ALGOND), '0000*****)
DISPLAY M:COMPARE
ENDATA
NABE AREIVALS
TABLE H:A=DOM.TRAB.INT
**
TOEM G:AREI=G:GATES (STUB). M:A (HEAD)
G:AERI(!1,TRAB)=G:GATES (!1, ARR1)
G:AREI(!1.INT)=G:GATLS (!1,AKR2)
G:ARRI:!1.DOM)=G:GATES(!1,AREO)
TABLE M:SPEK=ORGATL,CEWD,ALGOGATE,ALGOMD,LPGATE,LPHD,PAX
STUB M:LO=MASK (M:GATEASGN!!1.0),'****0000')
FOKM M:ARRIVALS=M:LO(SIUB),M:SPEK (HEAD)
M:ARRIVALS (!1.LPMD)=G:AEEI (M:GATEASGN!! 1,GATE) .
M: TYPLNAME {DISTNAME,MASK!M:GATEASGN!!1,0),00000*00')))
\#:\&RRIVALS(!1.LPHD)=MASK(M:AREIVALS(!1,LPWD), 0000****')
A:AREIVALS!"1,ORGATL)=G:ALGOT \&S!"1,GTE)
A:AERIVALS ("1,ALGOGATE)=G:ALGOTES (" 1,KTE)
M:ARRIVALS!"1,PAX)=G:ALGOT\&S (" 1,ABE)
M:AERIVALS!!1,PAK)=MASK(M:ARRIVALS!!1,PAX), 'UC000****')
M:ARRIVALS (!1.LPGATb)=M:GATEASGN(!1,GATE)
M:ARRIVALS!:1,ALGOGATE)=MASK(M:ARFIVALS!!1,ALGOGATE), 000000***)
A:ARRIVALS ! !1.OEGATL)=MASK(M:AREIVALS (! 1,OKGATE).'000000***')
M:ARRIVALS!!1.ALGOWD)=G:AREI (M:AFRIVALS:!1,ALGOGATE).
M: TYPENAME (DISTNAME,MASK!M:GATEASGN (1 1.0) [00000*00')))
G:ARRIVALS!!1, ALGOWD)=MASK(M:AREIVAIS:!1,ALGOWD), 0000****!)
M:ARRIVALS (!1.ORWD)=G:ARRI (M:ARRIVALS (!1,OKGATE).
M:TYPLNAML (DISTNAME,MASK (M:GATEASGN:!1,0), 00000*00*)))

```

```

DISPLAY M:ARRIVALS
EMDATA
MAME DEPARTUR
TABLE M:SPEK=OEGATE,OKWD,ALGOGATE,ALGOWD,LPGATE,LPWD,PAX
\bullet••
STUB M: LO=MASK (M:GATEASGN(!1,0), \#\#\#\#*0000%)
PORM G: DEPARTUR=M:LO (STUB),M:SPEK {HLAD)
TABLE M:D=DOM,TRAB.INT
\bullet.-
PORM G:DERI=G:GATES (STUB),M:D:HEAD)
G:DEPI (!1,DOM)=G:GAIES!!1,DEPO)
G:DEPI (11.TE.AB) =G:GATES (!1.DEP1)
G:DEPI(11,INT)=G:GATES (11,DEP2)
G:DEPARTUR (11.LPMD)=G:DEPI (M:GATEASGN (! 1,GATE)
M:TYPLNAME {UISTNAME,MASK:M:GATEASG\&{!1,0), (00000*00')))
G:DEPARTUR ("Y,ORGATE)=G:ALGOTES {* 1,GTE)
G:DERARTUR(N1.ALGOGATE)=G:ALGOTES (W1.KTE)

```
```

FORM E:ALGOTES=G:ALGOTES {STUB),G:ALGOTES!BEAD\
M:ALGOTES(!1,!2)=G:ALGCTES(!1,!2)
FORM M:DLPARTUK=G:DEPAKTUR(STUB).G:LEPARTUR(HEAD)
n:DEPARTUE (!1,!2)=G:DEPAETUR (!1,!2)
G:DEPaRTUR!"1,Pax}=G:ALGOTcS!"1,DEP)
M:DEPARTUK (!1,PAX)=G:DEPARTUR:!1,PAX)
M:DEPAKTUR!!1,PAX)=MASK(M:D_PARTUR!!1,PAX),'00000***')
M:DEPAKTUẼ:!1, IPGATL)= H:GAT\&ASGN(!1,GATE)
M:DEPaKTUZ!!1,ALGOGATL)=MaSk!M:jEPARTUE (!1,ALGOGNTE),'000000**')
M:DEPARTUR!!1.OLGATE)=MASK (M:UEPAETUF(!1,ORGATE), '000000**')
M:DEPARTUK(!1, LPWD)=MASK!M:DLPARTUR!!1,LPWD).'0000****')
G:DEPARTUK:!1,ALGUWD)=G:L\&PI(M:DEPAFTUE!!1,ALGOGATE),
M:TYPENAYL (DISTNAME,MASK!M:GATEASGN:! 1,0) .'00000*00')|)
M:DEPARTUK(!1,ALGOWD)=G:DEPARTUR (!1,AIGOKD)
M:DEPARTUK:!1,ALGOWL)=MASK!M:NEPARTUK(!1,ALGOWD) ('0000****')
G:DEPAETUR!!1,ChWU)=G:DEPI (M:DEPARTUE(!1,ORGATE),
M:TYP\&NAME (LISTNAML,MASK(M:GATEASGN (! 1,0), '00000*00')))
M:DEPARTUR!!1,ORWD)=G:DEPAETUK(!1,OFND)
M:DEPARTUR!!1.(EWD)=MASK (M:DEPARTUR(! 1,ORWD) ,'0000****')
display m:Departur.
ENDATA
Name teansfek
TABLE M:SPEK=ORGATE,OFWD,ALGOGATE,ALGOWD,LPGATE,LPGD,PAX
•••
STUB M:LO=MASK (M:GATEASGN (1, 0) , '****0000')
FORM M:TRANSFER=M:LO (STUE),M:SPEK (HEAD)
M:1LANSPEIN(!1,LPWD)=G:GATES(M:GATEASGN(11,GATE) ,TRANS)
M:TfansFeh("1,ALGGGate)=G:algotes!"1,KTE)
M:TFANSF\&R("1,ORGATL)=G:ALGOTLS!" 1,GTL)
M:TRANSF\&R ("1,PAX)=G:ALGOTES!" 1,Tha)
M:IRANSFER(!1,PAX)=MASK!M:TAANSF\&R!!1,PAX), '00000***')
M:TRANSFLE(!1,LPGATE)=M:GATLASGN(!1,GATE)

```

```

M:TEANSFER!!1,CR(ATE)=MASK:M:TRANSFLF!!1,ORGATE).'000000**')
M:TFANSFLE:!!1,ALGOWL)=G:GATES(M:TEANSFER!!1,ALGOGATE').TEANS)
M:TEANSELR(!1,URWD)=G:GATLS(M:TRANSFEF:!1,OKGATE) ,TRANS)
A:TKANSF:K!!1,ALGOND)=MASK(M:TAANSELR!!1,ALGOND);(0000****')
M:THANSFiR(!1,ORWD)=MASK(Y:TRANSFER(!1,OLWD), (0000****')
M:TAANSPLR!!1,LPWD)=MASK (M:TEANSFER(! 1,LPWD), (0000****')
DISPLAY M:THANSFEE
ENDATA
MAME HISTO
TABLE M:SO=OE.ALGO,LP
FOEM G:HISTO=G:PR (UEAD), H:SO (HEAD)
LCOP G:PR(0.!1) <NE> RU
E:IL=G:PE, (NUM,!1)
LOOP G:COMPARL:!2,ORND) <LT> (100* (E:LL+1))
IF (:COMPARL(!2,ORWD)<LT> (100*E:LL).2
G:UISTO:!1,0K)=G:HISTO:!1,OR) +G:COMPARE(12,PAX)
E:OETOT=E:CKTOT+{G:COMPARE (!2,OKWD) *G:COMPARE(!2,PAX))
continue
LOOP G:COAPARE:!2,ALGOWD) <LT> (100*(E:LL+1))
IF G:COMPARE (!2.ALGOHD) <LT> (100*E:LL).2
G:HISTO !!1,AL(O) =G:HISTO (!1,ALGO) +G :COMPARE(!2,PAX)

```
```

 E:ALGOTOT=E:ALGOTOT+(G:COMPARE!!2,ALGOWD)*G:COMPARE(!2,PAX))
 CONTINUE
 LOOP G:COMPARE (!2.LPND) <LT> (100* (E:LL+ 1))
 IF G:COMPAKEE (!2,LPUD) <LT> :100*E゙:LL). }
 G:HISTO(!1,LP)=G:HISTO(!1,LP) +G:COMPARE(12,PAX)
 E:LPTOT=E:LPTOT+ (G:COMPARE {I 2,LPWD) *G:COMPARE(12,PAX))
 CONTINUE
 E:SUM=E:SUM+G:HISTO(19,OR)
CONTINUE
DISPLAY G:HISTO
DISPLAY E:SUM
E:ORAVG=E:ORTOT/E:SUM
E:ALGOAVG=E:ALGOTOT/E:SUM
E:LPAVG=E:LPTOT/E:SUM
DISPLAY E:ORA\G
dISPLAY E:ALGOAVG
DISPLAY E:LPAVG
PORM G:PERCENT=G:HISTO (STUB),G:HISTO(HEAD)
G:PERCENT(!1,!2)=G:HISTO!!1,!2)/E:SUM
G:PEKCENT(!1,!2)=G:PERCENT (! 1,12)*100
DISPLAY G:PERCENT
TABLE G:SUMRY=ORAVG,ALGOAVG,IPAVG
MMBRS=E:ORAVG.E:ALGOAVG,E: LPAYG
\bullet..
ENDATA
MAME DEPHISTO
FORM G:DEPARTUR=M:DEPARTUR (STUB),M:DEPARTUR (HEAD)
G:DEPARTUE (11.ORWD)=G:DEPI (M:DEPARTUR (1 1,OFGATE).
M:TYPENAML {DI STNAME,MASK (M:'GATEASGN (11,0), 0J000*00') I)
G:DEPARTUR:!1,ALGOWD)=G:DEPI(M:DEPAKTUR(!1,ALG OGATE).
M:TYPENAME (LISTNAME,MASK(M:S ATEASGN(11,0) 0'00000*00')))
G:DEPARTUR(!1.LPHD)=G:DEPI (I:DEPARTUR (!1.IPGATE).
M:TYPENAME (DI STNAME,MASK(M:SATEASGN!(1,0),00000%00')))
G:DEPARTUR("1.PAX)=G:ALGOTES ("1.DEP)
TABLE M:SO=OR,ALGO,LP
FÖM G:DEPHISTO=G:PR (HEAD) ,H:SO (HEAD)
LOOP G:PR!0.11) <NE> FU
E:LE=G:PE (NUM,!1)
LOOP G:DEPAETUE (!2,ORHD) <LT> (100* (E:LL+1))
IF G:DLPAFTUR (12,ORWD) <LT> (100*E:LL),2
G:DEPHISTO(!1,OR)=G:DEPHISTO:!1,OR) +G:DEPARTUR(!2,PAX)
E:ORTOTD=E:ORTOTV +(G:DLPARTUR(!2,ORWD)*G:UEPARTUR(!2,PAX))
CONTINUE
LOOP G:DEPARTUR:!2,ALGUND) <LT> (100* (E:LL+1))
IF G:UEPARMUR:!2,ALGOWD) <LT> (100*E:LL). 2
G:DEPHISTO (!1,ALGO)=G:DE'PHISTO (! 1,ALGO) +G:DEPARTUR (12,PAX)
E:ALGOTOTD=E:ALGOTOTD+{G:DEPARTUR:!2,ALGOW\nu) *G:DEPAETUR:(2,PAX))
CONTINUE
LOOP G:DEPARTUF(!2,LPWD) <LT> (100*(E:LL+1))
IF G:DEPARTUR (!2,LPND) <LT> (100*E:LL) .2
G:DEPHISTO (1 1,LP) =G:DEPHISTO (11,LP) +G:UEPARTOR:12,PAX)
E:LPTOTD=E:IPTOTD+ (G:DEPARTUR{12,LPUD)*G:DEPARTUR{12,PAX))
COMTIMUE
B:SUMD=E:SUMD+G:DEPHISTO(11,OR)

```
```

CONTINUE
DISPLAY G:DEPHISTO
DISPLAY E:SUMD
E:ORAVGD=E:ORTOTD/E:SUMD
E:ALGOAVGD=E:ALGOTOTD/E:SUMD
E:IPAVGD=t:LPTOTD/E:SUMD
DISPLAY E:ORAVGD
dISPLAY E:ALguavgd
DISPLAY E:LPAVGD
FORM G:PEFCENT=G: UEPGISTO (STUB) OG:DEPHISTO(HEAD)
G:PERCENT(!1,!2)=G:DEPHISTO(11,!2)/E:SUMD
G:PERCENT(!1,!2)=G:PERĊNT (!1,!2)*100
DISPlay G:PERCENT
TABLE G:SOMRYD=ORAVGD,ALGOAVGD,LPAVGD
NMBRS=E:ORAVGD,C':ALGOAVGD,E:LPAVGD
...
ENDATA
NAME ARRHISTO
FOKM G:ARRIVALS=M:ARRIVALS (STUB) M:ARRIVALS (HEAD)
G:ARRIVALS (!1,ORWD)=G:ARRI (M:AERIVALS (1 1,OKGATE).
M:TYPENAME (DI STNAME,MASK (H:G ATEASGE (11,0) (00000*00')))
G:ARRIVALS:!1,ALGOWD)=G:ARPI (M:AERIVAIS (!1,ALGOGATE) .
M:TYPLNAME (LI STNAME,MASK(M:G ATEASGN (11,0).'00000*00'))]
G:ARRIVALS(!1.IPWD)=G:AKRI (M:ARRIVALS (!1,IPGATE),
M:TYPENAME (DI STNAME,MASK (M:S ATEASGN (11,0), 00000*00')))
G:ARRIVALS!"1.PAX)=G:ALGOTES("1,ARF)
TABLE M:SO=OR.ALGO,LP
FORM G:AERHISTO=G:PR (HEAD),M:SO (HEAD)
LOOP G:PR!0.!1) <NE> FU
E:LL=G:PR(NUM,!1)
LOOP G:ARRIVALS:!2,ORWD)<LT> {100*(E:LL+1))
IF G:ARAIVALS (!2,ORUD) <LT> (100*E:LL),2
G:ARFIIISTO (!1,OK)=G:AERHISTO (!1,0R) +G:AFRIVALS (!2,PAX)
E:OKTOTA=E:ORTOTA+(G:ARRIVALS (!2,OKWD)*G:ARRIVALS(!2,PAX))
CONTINOE
LOOP G:ARRIVALS(!2,ALGOWD) <LT> (100*!E:IL+1))
IF i:AKRIVALS(!2,ALGOND)<LT> (100*E:LL), 2
G:ARKHISTC (!1,ALG O) =G:A \&EHISTO(! 1,ALGO) +G:ARRI VALS (!2,PAX)
E:\triangleLGOTOTA=L:ALGOTOTA+ (G:AERIVALS(!2,ALGOND)*G:ARRIVALS!!2,PAX))
CONTINUE
LOOP G:ARRIVALS:!2,IPND) <LT> (100*{E:LL+1))
IF G:AHEIVALS:!2,LPND) <lT> !100*\&:LL), 2
G:AREHISTO (! 1,LP) =G:ARRHISTO (! 1, L,P) +G:ARRIVALS (!2,PAX)
E:LPTOTA=E:LPTOTA+(G:ARRIVALS(!2,IPWD)*G:ARRIVALS(!2,PAX))
CONTINUE
B:SOMA=E:SUMA+G:ARRHISTO(! 1,OR)
CONTINUE
DISPLAY G:ARRHISTO
dISPLAY E: SUMA
E:ORAVGA=E:OFIOTA/E:SUMA
E: ALGOAVGA=E: ALGOTOTA/E:SUMA
E:LPAVGA=E:LPTOTA/E:SUMA
DISPLAY E:ORAYGA
DISPLAY E:ALGOAVGA

```
```

DISPLAY E:LPAVGA
FORM G:PERCENT=G: ARRHISTO(STUB) G:ARRHISTO (HEAD)
G:PERCENT (!1,:2)=G:AREHISTO (11,12)/E:SUMA
G:PERCENT (!1.!2)=G;PERCENT :!1,!2)*100
DISPLAY G:PEKCENT
TABLE G:SUMRYA=ORAVGA, ALGOAVGA,LPAVGA
MMBRS=E:OEAVGA,E:ALGOAVGA,E:LPAVGA
*..
ENDATA
MAME TRFHISTO
POKM G:TRANSFER=M:TFANSFER (STUB) M:TRANSPER (HEAD)
G:TRANSPER:!1,LPKD)=G:GATCS (M:GATEASGN (!1,GATE).TRANS)
G:TRANSEER ("1.PAX)=G:ALGOTES ("1.TRA)
G:TRANSFLR (!1,ALGOWD)=G:GATES(M:TRANSFER:!1,ALGOGATE),TRANS)
G:TKANSF\&E (!1.ORWU)=G:GATES (M:TRANSFEK !!1,ORGATE) .TRANS)
TABLE M:SO=OE.ALGO,IP
FORM G:TEFHISTO=G:PK(HEAD) ,M:SO (HEAD)
LOOP G:PE (0.:1) <NE> RU
E:LL=G:PK (NUM,!1)
LOOP G:TAANSFLR (!2,ORWD)<LT> (100* (E:LL+1))
IF G:TRANSF\&G(|2,ORHD) <LT> (100*E:LL), 2
G:TKFUISTO(!1,OE)=G:TRPHISTO (11,OR) +G:TEANSPEE(:2,PAX)
E:OK FOTT=E:OKTOTT+:G:TRANSFLh(12,ORWD) *G:TRANSFLR:!2,PAX))
CONTINUE
LOOP G:TRANSF\&R!!2,ALGOWD) <LT> (100*!2:LL+1))
IF G:TRANSFEF (!2,ALGOWD)<LT> (100*G:LI), 2
G:THFHISTO:!1,ALGO)=G:TRF|ISTO:!1,ALGO) +G:TRANSFER(12,PAX)
E:ALGOTOTT=E:ALGOTOTT+(G:TKANSFER!!2,ALGOWU) \#G:TFANSFER:!2,PAX))
CONTINUE
LOOP G:TRANSFER!!2,LPWD) <LT> {100* (E:LL+1))
IF G:TRANSFEK(!2,LPWD)<LT> (100*E:LL).2
G:TRFUISTO !! 1,LP)=G:TFFHISTO (!1,IP) \&G:TKANSFER (!2,PAX)
E:IPTOTI=E:LPTOTT+!G:TKANSFEE:!2,LPWD)*G:TRANSFER:!2,PAX))
CONTINUE
E:SU日T=E:SUMT+G:TEFFHISTO:!1,OR)
COMTINUE
DISPLAY G:TRPHISTO
DISPLAY E':SUMT
E:ORAVGT=E:ORTOTT/E:SUMT
E: ALGOAVGT=E:ALGOTOTT/E:SUMT
E:LPAVGT=E:LPTOTT/E:SUMT
DISPLAY`E:OEAVGT
DISPLAY E:ALGOAVGT
DISPLAY E:LPAVGT
FORM G:PERCENT=G:TRFHISTO (STUB) G:TRPHISTO (HEAD)
G:PERCENT:!1,:2)=G:TRFHISTO:!1,12)/E:SOMT
G:PERCLNT (!1,!2)=G:PEECENT (11,!2)*100
DISPLAY G:PLRCENT
TABLE G:SUMRYT=ORAVGT,ALGOAVGT,LPAVGT
NMBES=E:OLAVGT,E:ALGOAVGT,E:LPAVGT
\bullet.-
INDATA

```
```

APPENDIX E
OUTPUT OF THE POSTPROCESSOR PROGRAM

```

Note: In Table 2.1 - 2.4, the following column headings refer to:
\begin{tabular}{ll} 
ORGATE & Gate originally assigned to \\
ORWD & the flight by Air Canada. \\
& Expected walking distance for \\
a passenger in the flight accord- \\
to the original assignment. \\
ALGOGATE & Gate assigned to the flight by \\
& the heuristic algorithm. \\
& Expected walking distance for a \\
& passenger in the flight according \\
& to the heuristic algorithm's \\
& assignment. \\
& Gate assigned to the flight by \\
& the linear program \\
& Expected walking distance for a
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SM:COMFARE & = OKGATE & , OFWD & , AL & ATE,ALGOWD & , lfgate & , LFWE & - F.AX \\
\hline F608 & \(=77\) & , 0924 & , 83 & . 0481 & , 8S & , 0561 & , 340 \\
\hline F243 & \(=75\) & , 1095 & , 85 & . 0561 & , 81 & , 0.0806 & , 340 \\
\hline F105 & =81 & , 0606 & , 81 & . 0606 & , 78 & , 0772 & , 3440 \\
\hline F310 & \(=76\) & . 0934 & , 80 & . 0621 & , 83 & . 0481 & ,271 \\
\hline F920 & \(=91\) & . 0386 & , 91 & , 0386 & , 91 & . .0481 & , 271 \\
\hline F440 & \(=79\) & , 0764 & ,97 & ,0627 & , 80 & ,0621 & , 271 \\
\hline F400 & \(=80\) & . 0621 & . 79 & , 0764 & , 79 & ,, 0764 & \begin{tabular}{l}
180 \\
\hline 174
\end{tabular} \\
\hline F402 & = 78 & . 0772 & , 78 & , 0772 & ,97 & , 06827 & \begin{tabular}{l}
174 \\
\hline 174
\end{tabular} \\
\hline F701 & = 87 & , 0782 & , 89 & , 0582 & ,93 & ,0627 & ,174 \\
\hline F721 & \(=93\) & . 0667 & , 99 & , 0612 & , 89 & , 0582 & , 142 \\
\hline F341 & \(=73\) & - 1283 & , 87 & , 0795 & , 87 & , 0.0785 & ,142 \\
\hline F982 & =89 & , 0539 & . 93 & , 1057 & ,95 & ,, 12795 & 142
, 142 \\
\hline F361 & \(=74\) & , 1104 & , 77 & , 0924 & ,77 & , 0724 & , 142 \\
\hline F442 & =85 & , 0561 & . 76 & , 0934 & ,75 & , O , 1095 & , 115 \\
\hline F303 & \(=71\) & , 1277 & , 75 & , 1095 & ,76 & ,1095 & .115 \\
\hline F727 & \(=00\) & , 0000 & , 00 & , 0000 & , 96 & , 09312 & , 115 \\
\hline F70s & \(=89\) & , 0582 & ,95 & , 0852 & , 99 & , 06612 & , 000 \\
\hline F164 & \(=79\) & , 0764 & , 80 & , 0621 & , 89 & ,.0612 & , 142 \\
\hline F612. & \(=76\) & , 0934 & , 83 & , 0481 & ,85 & , 0.0481 & 1340
, 142 \\
\hline F107 & \(=72\) & , 1262 & , 79 & , 0764 & ,77 & ,, 09214 & .142 \\
\hline F796 & =95 & , 1241 & , 89 & , 0539 & .89 & , 09.054 & .142 \\
\hline F774 & \(=93\) & , 0667 & , 99 & , 0612 & . 93 & , 0 , 06678 & -174 \\
\hline F960 & \(=87\) & . 0359 & , 87 & , 0359 & , 185 & ,, 0805 & , 142 \\
\hline F404 & = 80 & , 0621 & . 97 & ,0627 & . 97 & , 0627 & , 171 \\
\hline F308 & \(=73\) & . 1283 & , 78 & , 0772 & , 80 & , 0621 & ,142 \\
\hline F444 & \(=76\) & . 0934 & , 77 & . 0924 & , 76 & ,, 0934 & .142 \\
\hline F791 & \(=91\) & , 0386 & . 91 & , 0386 & ,91 & ,0934 & .142 \\
\hline F117 & \(=77\) & , 0824 & , 83 & , 0481 & ,83 & ,, 0481 & . 3440 \\
\hline F103 & \(=71\) & , 1277 & , 80 & , 0621 & , 79 & ,, 0784 & , 340 \\
\hline F450 & \(=79\) & , 0764 & , 76 & , 0934 & ,79 & , P , 10964 & , 174 \\
\hline F992 & =85 & , 0505 & , 85 & , 0505 & , 87 & , 0359 & , 271 \\
\hline F365 & =75 & , 1095 & , 78 & , 0772 & , 81 & ., 0806 & , 1142 \\
\hline F363 & =73 & . 1283 & . 99 & , 1043 & , 80 & ,0621 & ,142 \\
\hline \(F 406\) & =78 & , 0772 & . 97 & , 0627 & , 85 & , 0561 & , 174 \\
\hline P902 & =91 & . 0386 & , 91 & , 0386 & ,91 & ,0386 & 1174
.180 \\
\hline F642 & =74 & . 1104 & ,87 & , 0795 & ,91 & ,0386 & , 180 \\
\hline F600 & = 76 & . 0934 & , 77 & , 0924 & ,79 & ., 0764 & ,142 \\
\hline F123 & \(=77\) & , 0924 & , 83 & , 0481 & , 83 & ., 0481 & . 142 \\
\hline F373 & \(=71\) & , 1277 & \(\cdot, 79\) & , 0764 & , 77 & ,0481 & , 340 \\
\hline F246 & =81 & . 0606 & , 81 & , 0606 & ,85 & ,0954 & -115 \\
\hline F408 & =80 & . 0621 & , 80 & , 0621 & ,81 & ,, 0861 & ,174 \\
\hline F371 & \(=72\) & , 1262 & , 78 & ,,0772 & , 818 & ,0806 & , 174
, 115 \\
\hline F654 = & =83 & . 0491 & , 97 & , 0627 & , 80 & ,0621 & ,115 \\
\hline F778 & =93 & . 0667 & , 89 & , 0582 & , 89 & ,0582 & ,142 \\
\hline F410 = & \(=78\) & , 0772 & , 83 & , 0481 & , 83 & ,0482 & .142
, 174 \\
\hline F385 = & \(=76\) & , 1802 & . 99 & , 0612 & , 99 & ,0481 & -174 \\
\hline F412 = & \(=80\) & , 0621 & , 85 & . 0561 & , 83 & & , 174 \\
\hline F347 = & \(=75\) & . 1095 & . 78 & , 0772 & , 78 & ,, 0772 & , 1174 \\
\hline F315 = & \(=79\) & , 0764 & , 80 & , 0621 & , 85 & , 0551 & ,142 \\
\hline F249 = & \(=77\) & , 0924 & , 83 & , 0481 & , 80 & , 06821 & ,, 271 \\
\hline F102 = & =83 & , 0481 & ,97 & , 0627 & , 97 & , 0627 & , ,142 \\
\hline F725 = & \(=91\) & , 0386 & .91 & , 0386 & ,91 & , 0386 & , 142 \\
\hline F414 F 49 = & \(=78\)
\(=74\) & , 0772 & , 85 & , 0561 & , 83 & , 0481 & ,174 \\
\hline F349 = & \(=74\)... & , 1104 & , 79 & , 0764 & , 81 & . 0806 & , 1142 \\
\hline
\end{tabular}

\footnotetext{
Table E.l A Partial List of the Flights, Their Gate Assignment and the Per Passenger Walking Distance under Each of the Three Assignment Policies.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \$M: AFFIU & \(S=O R G A T E\) & , ORWI & , AI. & OGATE, AL_GOWI & - LPGATE & - LPWD & \\
\hline F608 & \(=77\) & , 0919 & , 83 & ,0509 & , 85 & , 0594 & \[
\text { . } 119
\] \\
\hline F243 & \(=75\) & , 1102 & , 85 & , 0594 & , 81 & , 0556 & . 119 \\
\hline F105 & \(=81\) & , 0556 & , 81 & , 0556 & . 78 & , 0746 & . 119 \\
\hline F310 & \(=76\) & , 0926 & . 80 & , 0566 & . 83 & , 0509 & , 095 \\
\hline F920 & \(=91\) & , 0299 & . 91 & , 0299 & . 91 & . 0299 & . 095 \\
\hline F440 & \(=79\) & , 0739 & .97 & , 0510 & , 80 & , 0566 & .063 \\
\hline F400 & \(=80\) & , 0566 & . 79 & . 0739 & , 79 & . 0739 & . 0661 \\
\hline F40? & \(=78\) & , 0746 & , 78 & , 0746 & .97 & , 0510 & , 061 \\
\hline F701 & \(=87\) & , 0807 & , 89 & , 0553 & , 93 & , 0598 & , 050 \\
\hline F721 & \(=93\) & , 0598 & . 99 & , 0418 & , 89 & , 0553 & . 050 \\
\hline F341 & \(=73\) & , 1285 & , 87 & , 0855 & , 87 & ,0855 & , 050 \\
\hline F982 & \(=89\) & . 0601 & . 93 & , 1154 & . 95 & , 1337 & , 050 \\
\hline F361 & \(=74\) & , 1106 & , 77 & , 0919 & . 77 & , 0919 & . 040 \\
\hline F442 & \(=85\) & , 0594 & , 76 & , 0926 & . 75 & . 1102 & . 040 \\
\hline F303 & \(=71\) & , 1287 & , 75 & , 1102 & . 76 & , 0926 & . 040 \\
\hline F727 & \(=00\) & , 0000 & , 00 & , 0000 & . 99 & . 0418 & . 000 \\
\hline F705 & =89 & , 0553 & . 95 & . 0781 & . 99 & , 0418 & . 050 \\
\hline F164 & \(=79\). & , 0739 & , 80 & , 0566 & , 83 & , 0509 & . 119 \\
\hline F612 & \(=76\) & , 0926 & , 83 & , 0509 & , 85 & , 0594 & . 050 \\
\hline F107 & \(=72\) & , 1269 & . 79 & , 0739 & , 77 & , 0919 & . 050 \\
\hline F796 & =95 & . 1337 & , 89 & , 0601 & . 89 & . 0601 & . 061 \\
\hline F774 & =93 & , 0598 & . 99 & . 0418 & . 93 & , 0598 & . 050 \\
\hline F960 & =87 & . 0347 & . 87 & , 0347 & , 85 & , 0428 & . 095 \\
\hline F404 & \(=80\) & , 0566 & , 97 & , 0510 & . 97 & , 0510 & , 061 \\
\hline F308 & \(=73\) & - 1285 & , 78 & , 0746 & . 80 & . 0566 & . 050 \\
\hline F444 & \(=76\) & , 0926 & , 77 & , 0919 & . 76 & , 0926 & . 050 \\
\hline F791 & =91 & , 0299 & . 91 & , 0299 & . 91 & . 0299 & . 119 \\
\hline F117 & \(=77\) & . 0919 & , 83 & , 0509 & , 83 & . 0509 & . 119 \\
\hline F103 & \(=71\) & , 1287 & , 80 & , 0566 & , 79 & , 0739 & , 061 \\
\hline F450 & \(=79\) & , 0739 & , 76 & . 0926 & . 75 & . 1102 & . 040 \\
\hline F992 & =85 & , 0428 & , 85 & . 0428 & . 87 & , 0347 & . 095 \\
\hline F365 & \(=75\) & , 1102 & , 78 & , 0746 & , 81 & , 0556 & . 050 \\
\hline F363 & =73 & , 1285 & - 98 & , 0957 & . 80 & , 0566 & . 040 \\
\hline F406 & \(=78\)
\(=91\) & . 0746 & . 97 & , 0510 & . 85 & . 0594 & . 061 \\
\hline & \(=91\)
\(=74\) & , 0298 & 91
.87 & , 02989 & . 91 & , 0299 & . 063 \\
\hline & \(=74\)
\(=76\) & , 1106 & .87
.77 & , 0855 & . 97 & , 0510 & . 050 \\
\hline F123 & \(=76\)
\(=77\) & , 0926 & .77
.83 & , 0919 & . 79 & , 0739 & - 050 \\
\hline F373 & \(=71\) & . 1287 & . 79 & , 0739 & .83 & .0509
.0919 & -119 \\
\hline F246 & =81 & , 0556 & , 81 & . 0556 & , 85 & . 0594 & . 061 \\
\hline F408 & \(=80\) & , 0566 & . 80 & . 0566 & , 81 & , 0556 & . 061 \\
\hline F371 & \(=72\) & , 1269 & . 78 & . 0746 & , 78 & . 0746 & . 040 \\
\hline F654 & \(=83\) & , 0509 & .97 & . 0510 & . 80 & , 0566 & , 050 \\
\hline F778 & \(=93\) & . 0598 & , 89 & , 0553 & , 89 & , 0553 & . 050 \\
\hline F410 & \(=78\) & , 0746 & , 83 & , 0509 & . 83 & , 0509 & . 061 \\
\hline F385 & \(=76\) & . 2013 & . 99 & , 0418 & . 99 & , 0418 & , 050 \\
\hline F412 & =80 & . 0566 & , 85 & , 0594 & , 83 & . 0509 & . 061 \\
\hline F347 & \(=75\) & , 1102 & , 78 & . 0746 & , 78 & . 0746 & . 040 \\
\hline F315 & \(=79\) & , 0739 & , 80 & , 0566 & , 85 & , 0594 & . 050 \\
\hline F249 & \(=77\) & . 0919 & , 83 & , 0509 & , 80 & , 0566 & . 095 \\
\hline F102 & \(=83\) & , 0509 & . 97 & , 0510 & . 97 & , 0510 & , 050 \\
\hline F725 & \(=91\) & . 0299 & , 91 & , 0299 & . 91 & . 0299 & . 061 \\
\hline F414 & \(=78\) & . 0746 & . 85 & . 0594 & , 83 & , 0509 & , 061 \\
\hline F349 & \(=74\) & , 1106 & , 79 & . 0739 & , 81 & .0556 & , 050 \\
\hline
\end{tabular}

Table E. 2 A Partial List of the Flights, Their Gate Assignment and the Expected Walking Distance for Arriving
Passengers under Each of the Three Assignment Policies.

\(\begin{aligned} \text { Table 'E. } 3 & \text { A Partial List of the Flights, Their } \\ & \text { Gate Assignment and the Expected } \\ & \text { Walking Distance for Departing } \\ & \text { Passengers Under Each of the Three } \\ & \text { Assignment Policies. }\end{aligned}\)


\footnotetext{
Table E. 4 A Partial List of the Flights, Their Gate Assignment and the Expected Walking Distance for Transferring Passengers Under Each of the Three Assignment Policies.
}
\begin{tabular}{|c|c|c|c|c|}
\hline : PERMEAN & \(=\) & OR & ALGO & Lr \\
\hline 100 & \(=\) & - , & - , & - \\
\hline 200 & \(=\) & - , & - , & \\
\hline 300 & \(=\) & 10.288305, & 15.376247, & 16.522212 \\
\hline 400 & \(=\) & 4.8921124, & 13.747960, & 15.194923 \\
\hline 500 & \(=\) & 8.0108794, & 16.177697, & 17.106074 \\
\hline 600 & \(=\) & 18.701723, & 24.315503, & 26.480508 \\
\hline 700 & \(=\) & 15.318223, & 13.773345, & 11.963735 \\
\hline 800 & \(=\) & 3.6264733, & 4.2792384, & 1.9655485 \\
\hline 900 & \(=\) & 14.531278, & 6.7198549 , & 7.0208522 \\
\hline 1000 & \(=\) & 6.5457842, & 4.2611061 , & 2.8141432 \\
\hline 1100 & \(=\) & 4.4786945, & .83408885, & . 41704442 \\
\hline 1200 & \(=\) & 13.091568, & & . 51495920 \\
\hline 1300 & \(=\) & . , & . 51495920 , & . \\
\hline 1400 & \(=\) & - , & . , & - \\
\hline 1500 & \(=\) & - , & - , & - \\
\hline 1600 & \(=\) & - , & - , & - \\
\hline 1700 & \(=\) & , & - , & - \\
\hline 1800 & \(=\) & .51495920, & - , & - \\
\hline 1900 & \(=\) & , & - , & - \\
\hline 2000 & \(=\) & - , & - , & - \\
\hline 2100 & \(=\) & - , & - , & - \\
\hline 2200 & = & - , & - , & - \\
\hline 2300 & \(=\) & - , & - , & - \\
\hline 2400 & \(=\) & - , & - , & - \\
\hline
\end{tabular}

Table E. 5 Statistical Distribution of the Overall Mean Walking Distance (used to draw Fig. 4.1)
\begin{tabular}{|c|c|c|c|c|}
\hline : PPERARR & & OR & ALGO & , LP \\
\hline 100 & \(=\) & & & \\
\hline 200 & \(=\) & 5.7119205, & 6.2293046 , & 7.3778974 \\
\hline 300 & \(=\) & 4.5633278, & 9.1266556, & 9.1266556 \\
\hline 400 & \(=\) & 4.4081126, & 4.0355960 , & 6.1879139 \\
\hline 500 & \(=\) & 25.693295, & 46.637003 , & 48.520281 \\
\hline 600 & \(=\) & 1.5004139, & 3.5802980 , & 4.0976821 \\
\hline 700 & \(=\) & 13.348510, & 13.017384, & 12.013659 \\
\hline 800 & \(=\) & 5.5980960, & 5.0496689, & 1.9143212 \\
\hline 900 & \(=\) & 14.021109, & 7.5538079, & 7.0260762 \\
\hline 1000 & \(=\) & . 51738411 , & & \\
\hline 1100 & \(=\) & 11.020281, & 4.2528974, & 3.2181291 \\
\hline 1200 & \(=\) & 11.485927, & & \\
\hline 1300 & \(=\) & 1.6142384, & . 51738411 , & . 51738411 \\
\hline 1400 & \(=\) & . , & . , & . \\
\hline 1500 & \(=\) & - , & - , & - \\
\hline 1600 & \(=\) & - , & - , & - \\
\hline 1700 & \(=\) & . \(\quad\), & . \(\quad\), & - \\
\hline 1800 & \(=\) & , & , & - \\
\hline 1900 & \(=\) & , & - , & - \\
\hline 2000 & \(=\) & . 51738411 , & - , & - \\
\hline 2100 & \(=\) & , & , & - \\
\hline 2200 & \(=\) & , & , & - \\
\hline 2300 & \(=\) & , & , & - \\
\hline 2400 & \(=\) & - , & - , & - \\
\hline
\end{tabular}

Table E. 6 Statistical Distribution of the Mean Walking Distance for an Arriving Passenger (used to draw Fig. 4.2)
\begin{tabular}{|c|c|c|c|c|}
\hline G: PER & & OR & ALGO & LP \\
\hline 100 & \(=\) & - , & . , & \\
\hline 200 & \(=\) & - , & . , & \\
\hline 300 & \(=\) & . , & . , & \\
\hline 400 & = & - , & - , & \\
\hline 500 & \(=\) & - , & - , & \\
\hline 600 & = & - , & - , & \\
\hline 700 & \(=\) & & & \\
\hline 800 & = & 28.198879, & 35.413112, & 37.728491 \\
\hline 900
1000 & & 31.026078,
10.041433, & 32.366561,
2.5834755

a & 32.561540
2.5834755 \\
\hline 1100 & = & 9.9683159, & 6.1174750, & 6.1174750 \\
\hline 1200 & = & 12.308067, & 7.2142335, & 7.3848404 \\
\hline 1300 & = & & & -3153790 \\
\hline 1400 & = & 4.2164270, & 2.8271996, & 2.3153790 \\
\hline 1500
1600 & \(=\) & 1.1455033,', & 1.6573239, & 1.4867170 \\
\hline 1700 & \(=\) & & & \\
\hline 1800 & \(=\) & 1.1455033, & 6.8486473, & 6.7999025 \\
\hline 1900 & & & & \\
\hline 2000 & = & 1.9497928, & 4.9719717 , & 3.0221789 \\
\hline 2100 & = & . , & . , & . \\
\hline 2200 & & - , & - , & \\
\hline 2300
2400 & = & - , & - , & \\
\hline 2400 & = & , & - , & - \\
\hline
\end{tabular}

\footnotetext{
Fig. E. 7 Statistical Distribution of the Expected Walking Distance for a Departing Passenger (used to draw Fig. 4.3)
}
\begin{tabular}{|c|c|c|c|c|}
\hline G : PERDEP & & OR & ALGO & , LP \\
\hline 100 & \(\because\) & 10.291136, & 15.382387, & 16.526651 \\
\hline 200 & \(=\) & & & \\
\hline 300 & = & 6.3948436, & 25.709733 , & 28.128621 \\
\hline 400 & \(=\) & 10.747393, & 12.767961, & 14.172943 \\
\hline 500 & \(=\) & 17.410197, & 19.329374, & 17.431924 \\
\hline 600 & \(=\) & 1.6584589, & 3.1068946 , & 1.9191773 \\
\hline 700 & \(=\) & 14.332271, & 12.188586, & 11.037080 \\
\hline 800 & \(=\) & & 1.1442642, & . 63006952 \\
\hline 900 & \(=\) & 14.520568, & 7.2421784, & 7.0249131 \\
\hline 1000 & \(=\) & .63006952, & & . 51419467 \\
\hline 1100 & \(=\) & 11.029838, & 2.6144264, & 2.6144264 \\
\hline 1200 & \(=\) & 4.3018540, & & - \\
\hline 1300 & \(=\) & 8.1691773, & . 51419467 , & - \\
\hline 1400 & \(=\) & - , & - , & - \\
\hline 1500 & \(=\) & - , & - , & - \\
\hline 1600 & \(=\) & - , & - , & - \\
\hline 1700 & \(=\) & - , & - , & - \\
\hline 1800 & \(=\) & . , & - , & - \\
\hline 1900 & \(=\) & .51419467, & - , & - \\
\hline 2000 & = & , & - , & - \\
\hline 2100 & \(=\) & - , & - , & - \\
\hline 2200 & \(=\) & - , & - , & - \\
\hline 2300 & \(=\) & - , & - , & - \\
\hline 2400 & \(=\) & - , & - , & - \\
\hline
\end{tabular}

\footnotetext{
Table E. 8 Statistical Distribution of the Expected Walking Distance for a Transfer Passenger (used to draw Fig. 4.4)
}
1. Braaksma, John, P., [1976],"Time Stamping: A New Way to Survey Pedestrian Traffic in Airport Terminals", Transportation Research Record 588, pp. 27-34.
2. Braaksma, John, P. [1977], "Reducing Walking Distances at Existing Airports", Airport Forum, No.4, August 1977, pp. 135-142.
3. Bustinduy, Javier, [1977], "Gate Assignment Algorithms at Airport Terminals", unpublished M.S. Thesis, Department of Civil Engineering, Massachusetts Institute of Technology
4. Hoffman, A. T. and Kruskal, J. B., Integral Boundary Points of Convex Polyhedra, Linear Inequalities and Related Systems, Princeton University Press, Princeton, N.J., 1956, pp. 223-246.
5. Mangoubi, Rami [1978], "Testing Gate Assignment Algorithms at Airport Terminals", unpublished B.S. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology.
6. National Bureau of Economic Research [1975], SESAME Reference Manual, Cambridge, Massachusetts.
7. Ibid. [1975], DATAMAT Reference Manual, Cambridge, Mass.```


[^0]:    SESAME is an interactive computer software package used to solve this problem for Toronto Terminal No. 2. This system has been designed at the Computer Research Center of the National Bureau of Economic Research (NBER) and and is used in conjunction with the VM/CMS Operating System of the IBM 370 computer.

