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ABSTRACT

In this report, a number of Dynamic Programming algorithms
for three versions of the Aircraft Sequencing problem are
developed. 1In these, two alternative objectives are considered:
How to land all of a prescribed set of airplanes as soon as
possible, or alternatively, how to minimize the total passenger
waiting time. All these three versions are '"static'", namely,
no intermediate aircraft arrivals are accepted until our initial
set of airplanes land. The versions examined are (a) The single
runway-unconstrained case, (b) The single runway-Constrained
Position Shifting (CPS) case and (c) The two-runway-
unconstrained case. In the unconstrained case, no priority con-
siderations exist for the airplanes of our system. By contrast,
CPS prohibits the shifting of any particular airplane by more
than a prespecified number of positions (MPS) from its initial
position in the queue. All three algorithms exploit the fact
that the airplanes in our system can be classified into a rela-
tively small number of distinct categories and thus, realize
drastic savings in computational effort, which is shown to be a
polynomially bounded function of the number of airplanes per
category. The CPS problem is formulated in (b) in a recursive
way, so that for any value of MPS, the computational effort
remains polynomially bounded as described above.

All algorithms of this work are tested by various examples
and the results are discussed. Implementation issues are
considered and suggestions on how this work can be extended are
made.
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INTRODUCTION AND OUTLINE

This report is excerpted from the author's Ph.D. dissertation
"Dynamic Programming Algorithms for Specially Structured Sequencing and
Routing Problems in Transportation" (Department of Ocean Engineering,
M.I.T., September 1978). Thus, Chapters 1 to 6 as well as Appendices A
to D of the report are essentially identical to those of the dissertation.
Chapter 7 of the report corresponds to Sections 11.0 to 11.5 of Chapter 11
of the dissertation and Appendix E of the report covers the first half of
Appendix E of the dissertation.

The main purpose of this work is to investigate the problem of
sequencing aircraft landings at an airport, or what we shall call the
Aircraft Sequencing Problem (ASP). This is a very important problem at the
present time, and is currently under investigation by a number of organiza-
tions (FAA, NASA, etc.).

Our investigation encompasses the development of analytical models
describing the above real-world problem, as well as the design, testing and
refinement of novel, specialized and efficient solution procedures tailored
to specific versions of this problem. It also includes interpretation of the
results of the above procedures and discussion of implementation issues as
well as of directions for further research.

In addition to the above, this investigation provides an opportunity
to relate this research to some currently "hot'" theoretical issues in the
areas of computational complexity and algorithmic efficiency and to illustrate
their importance in the area of combinatorial optimization.

From a methodological point of view, the thrust of this work is on

exact and rigorous optimization approaches rather than on heuristics. This
/
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is not to be interpreted as a lack of interest for this rapidly growing
area of optimization, but rather as an attempt to investigate the
potential savings that may result from exact, specialized solution
procedures which exploit the special characteristics (or, what we shall
call in this report, the special structure) of the problems at hand.
Now that this attempt has been concluded, our findings in this res-
pect are, we believe, interesting and significant.
The material in the report is organized into four parts:
a) Part I presents the necessary background for the investigation
to follow.
b) Part II is devoted to the development of Dynamic Programming
algorithms for several versions of the ASP.
c) Part III reviews the results of this work and suggests directions
for further research.
d) Finally, Part IV includes several appendices with additional
technical material on the ASP and a description of the computer
programs implementing the algorithms developed in Part II.
Specifically, the organization of the report goes as follows:

1) Part I: General Background

In Chapter 1, we introduce and review the fundamental issues concerning
the computational efficiency of algorithms. As a first step, we discuss the
generally established classification of algorithms into "efficient" (or poly-
nomial") and "inefficient" (or "exponential"). According to this classifica-
tion, an "efficient" algorithm can solve a given problem in running time
which is a polynomially bounded function of the size of the problem's input.

We argue that for problems of sufficiently large size, "inefficient'" algorithms
are not likely to be of any practical use. As a second step, we refer to the
class of notoriously difficult problems in combinatorial optimization which

/

are known as "NP-complete'.
-11-



' For these problems, no "efficient" algorithms are known to exist, but
also nobody to date has been able to prove the impossibility of such
‘algorithms. We discuss several remedies to deal with such problems,
namely heuristics and exploitation of special structure, if such a
structure exists.

Chapter 2 formulates a famous NP-complete problem, the Travelling
Salesman Problem (TSP) and presents a well-known Dynamic Programming
approach to solve it. The TSP will be seen to constitute a "prototype"
for the Aircraft Sequencing Problem we examine in subsequent chapters.

As expected, the D.P. algorithm for the TSP is an "exponential" algorithm.
Also, it is not necessarily the best way to solve this problem in its
general form. It possesses, however, certain characteristics which will
be exploited in our specially structured problem later. At this point,
we compare the D.P. approach with some other well-established approaches
for ;he solution of the TSP.

2) Part II: The Aircraft Sequencing Problem (ASP)

In Chapter 3 we formulate an important real-world problem which
derives from the TSP and exhibits a special structure that will eventual-
ly enable us to solve it in a viable way, the Aircraft Sequencing Problem
(ASP). We describe the physical environment of the problem, that is
the near terminal area around airports and we introduce the ASP as a
decision problem of the air traffic controller. This problem consists
of the determination of an appropriate landing sequence for a set of
airplanes waiting to land, so that some specific measure of performance
is optimized. The special structure of the problem is due to the fact

that while the total number of airplanes may be substantially large,
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these can be ‘'classified" into a relatively small number of "

categories"
(e.g. "wide-body jets," "medium-size jets," etc.). Another characteristic
of the problem, which in fact makes it non-trivial, is that the minimum
permissible time interval between two succéssive landings is far from
being constant for all pairs of aircraft categories. Two alternative
objectives are considered; Last Landing Time (LLT) minimization and

Total Passenger Delay (TPD) minimization. LLT minimization implies

that all existing aircraft land as soon as possible. TPD minimization

is concerned with minimizing the sum of the "waiting-to-land" times for
all passengers in our system, an objective which is identical to the mini-
mization of the average-per-passenger delay. The version of the problem

which is described in this chapter, is "static,"

namely no aircraft ar-
rivals are permitted (or taken into consideration if they occur) after
a point in time t=0.

In Chapter 4 we develop a modified version of the classical D.P.
algorithm for the TSP (that was presented in Chapter 2) to solve the un-
constrained case of the single runway ASP. Unconstrained means that
the air traffic controller is not (for the moment) bothered with priority
considerations, being free at any step to assign the next landing slot
to any of the aircraft not landed so far. The algorithm we have developed
evaluates with equal ease either one of the alternative objectives we
have suggested in Chapter 3. More importantly however, drastic savings
in computational effort are achieved. These savings result from our
taking advantage of category classifications. The algorithm exhibits a

running time which is a polynomial function of the number of aircraft per

category. It is an exponential function of the number of distinct
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categories but for the ASP this number is small (3 or 4 or, at most, 5).
The computer outputs for several cases for which the algorithm was tested,
exhibit sufficiently interesting patterns to stimulate further investiga-
tion concerning the underlying structure of the ASP. Thus, while in most
cases, all the aircraft of a given category tend to be grouped in a single
"cluster", in other seemingly unpredictable cases this pattern is upset.
There are also cases where seemingly negligible changes in the problem
input, produce global changes in the optimal sequence. An extensive in-
vestigation of these interesting phenomena is left for Appendices A
through D.

In Chapter 5, we introduce priority consideraticns into our problem.
Specifically, the Constrained Position Shifting rules are introduced.
According to these, the air traffic controller is no longer free to as-
sign the next landing slot to any of the remaining aircraft, but is
limited to shift the landing position of any aircraft up to a maximum of
a prespecified number of single steps upstream or downstream from the
initial position of the aircraft in the original first-come, first-serve
sequence of arrivals in the vicinity of the near terminal area. This
number is known as Maximum Position Shift (MPS) and it is a new input to
our problem. An additional input is the (ordered) initial sequence of
aircraft. The problem is again assumed "static'" with the same alternative
objectives as in the unconstrained case. A new D.P. algorithm is developed
incorporating our priority constraints in a way specially suited to the
recursive nature of our approach. By contrast to existing complete enu-
meration procedures which can deal with CPS problems only for small values

of MPS, our algorithm can solve the CPS problem for any value of MPS and
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still remain within polynomially bounded execution times with respect to
the number of aircraft per category. Computer runs for severa; cases of
this problem have been performed and the results are discussed.

Chapter 6 formulates the problem of sequencing aircraft landings on
two identical and parallel runways. We consider again the "static" un-
constrained case. The minimization of LLT is seen to constitute a mini-
max problem. Our alternative objective is, as before, to minimize TPD.

We see that this problem essentially involves the partitioning of the

initial set of airplanes between the two runways, as well as the subse-
quent sequencing of each of the two subsets to each of the two runways,
independently of one another. The algorithm we have developed for this
problem is a post-processing of the table of optimél values created by

a single pass of the unconstrained single runway D.P. algorithm (Chapter
4). Despite the fact that we solve the partitioning subproblem by com-
plete enumeration of all possible partitioms, the computational effort of
the algorithm remains a polynomial function of the number of aircraft per
category. Computer runs of this algorithm show some interesting parti-
tioning and sequencing patterns. Specifically, while in some cases the
composition of aircraft is more or less the same for the two runways, in

other cases the partition becomes completely asymmetric. We discuss

these and related issues at the end of the chapter.

3) Part III: Final Results

In Chapter 7, we review the main results of this work, suggest directions
for possible extensions and address issues on the implementation of the
developed algorithms. In particular, the "dynamic" version of the ASP is

seen to constitute a very important extension to this work.
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4) Part IV: Appendices

These appendices present additional technical issues related to the ASP.

are organized as follows:

a) Appendix A: Investigation of group "clustering' in the ASP.

b) Appendix B: Derivation of the elements of the time separation matrix
in the ASP.

c) Appendix C: Investigation of certain properties of the time separation
matrix in the ASP that are connected to group clustering.

d) Appendix D: Development of some equivalence transformations in group
clustering and in the case of variable numbers of passengers per air-
craft category.

e) Appendix E: Review of the computer programs used for the ASP.
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GENERAL BACKGROUND
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CHAPTER 1

ALGORITHMS AND COMPUTATIONAL EFFICIENCY

1.0 Introduction: Performance Aspects of Algorithms

An algorithm is a set of instructions for solving a given problem.
These instructions should be defined in such a way, so that the following
are satisfied:

1) The instructions should be precisely-defined and comprehensive.

Thus, nothing should be left to intuition or imagination, and there should
be no ambiguity or incompleteness.

2) The corresponding algorithm should be able to solve not just omne,
but all of the infinite variety of instances of the given kind of problem.
A very simple example of an algorithm is the procedure we use to

multiply two numbers. Although not often realized, this procedure con-

sists of a sequence of steps. each dictating in exact detail the actioms

that we should take to solve the problem. Using this procedure we can
determine the product of any given pair of numbers.

The nature of an algorithm is such, that it is convenient to represent
it in computer language. This convenience, together with the rapid growth
in the science and technology of the computer during recent years, have
resulted in an increasing effort toward the design and analysis of computer

algorithms [AHO 74]*, as well as to the development of solution procedures

*References are listed lexicographically at the end of the report
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for several kinds of problems, that are specifically tailored to computer
programming. An example of this approach to optimization and related
prohlems concerning graphs and networks is the excellent work of Christo-
fides [CHRI 75].

The interaction between the theoretical development of an algorithm
on the one hand and its computer implementation on the other has been
so strong, that it has now become almost impossible to address the first
issue without thinking about the other as well. In fact, a synonym for

"algorithm' has often been the word "program,"

which, besides its primary
meaning as a set of instructions in computer language, ended up also being
used to describe general as well as specific analytical methodologies:
Thus, ip the area of optimization we have Mathematical programming, Linear
programming, Dynamic programming, etc.

It is conceivable that more than one different algorithms can solve
the same problem*. In our multiplication pfoblem, for instance, we can
find the product of, say, 24 by 36 by adding 36 times the number 24. We
can, of course, apply also our well known multiplication procedure and

get the same answer much faster. This elementary example illustrates

the fact that certain algorithms are better than others for the solution

of a given problem.
For problems of considerable difficulty the above fact becomes very
important . For such problems, it is much less important to devise an

algorithm that just solves the problem, than to find an algorithm that

*It is also conceivable that no algorithm can be devised for certain prob-
blems. This was first demonstrated by Turing in the 1930's [TURL37].
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does this efficiently. This is true for all optimization problems and
in particular for those where the importance of being able to obtain an
optimal solution fast is very high or even crucial.

Subsequent parts of this thesis will be devoted to the examination
of such problems and the need for powerful and efficient algorithms will
be seen to be apparent. For the moment, we shall introduce some issues
regarding algorithmic performance.

Temporarily avoiding being explicit on what is an "efficient" algor-
ithm, we start by examining a hypothetical situation: Suppose we have
two different algorithms, A and B, for solving the same instance of a
given problem P. A plausible comparison between A and B would be to run
both algorithms on the same machine and choose the one exhibiting the
smallest ruﬁning time (or cost). The disadvantage of this approach is
that, conceivably, this comparison will yield different preferences for
problems of different size. For example, if the size of the input to P
is nl(e.g. the number of nodes ina graph*) it may happen that the running
time of algorithm A is equal to 10-n and that of B equal to 2". Then ac-
cording to the above selection criterion, algorithm B is better than A for
ng5, while the opposite happens for n 3 6.

One way to remove this ambiguity is to base our choice on the ex-
amination of what happens for sufficiently large values of the size of the
input (m ++®). Using this criterion in the above example, it is clear

that algorithm A is "better" than algorithm B. In fact, A will be "better"

* A graph is a collection of points, called nodes, which represent entities,
and lines, called links, joining certain pairs of the nodes and represent
relationships between them. An elementary knowledge of concepts such
as thisis assumed of the reader.
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than B even if one uses A on the slowest computer and B on the fastest,
for sufficiently large values of n.

In this respect, we may note that any algorithm whose running time
is a polynomial function of the size of the input is "better" than any
algorithm whose running time is an exponential function of the size of
the input, irrespective of what computers these algorithms are run om.

Computer scientists have more or less agreed that algorithms that
consume time which is exponential relative to the size of the input are
not practically useful [LEWI 78]. In that spirit, these algorithms have
been characterized as '"inefficient'. By contrast, an "efficient" algor-
ith is said to be one whose running time grows as a polynomial function
of the size of the input.

It would perhaps be useful to make several remarks concerning this
concept:

1) There may be algorithms whose running times are non-deterministic.

That is, one may not know beforehand exactly after how many steps the
algorithm will terminate, this depending in an unknownrfashion upon the
values of the particular inputs. If this is the case, it is important to
distinguish between worst-case performance and average performance of the
algorithm, since these two may be very different. For a given size of

the problem's input, an upper bound for the algorithm's running time may

be obtainable. The worst-case performance occurs for those instances of
the problem that make the algorithm's running time reach this upper bound
(for many non-deterministic algorithms the generation of such worst-case
instances, is an art initself). On the other hand, the algorithm will not be
used only in worst-case instances, but also in other, more easy cases. The

aspect of the algorithm's performance that emerges from this consideration
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is its average performance.

There seems to be no definite answer to the question of which of
the two aspects is more important. Although it would certainly be de-
sirable to have a strong ''guarantee" for the performance of an algorithm
(and such a guarantee can come only from a good worst-case performance),
there may be some "controversial" algoritﬁms which have bad worst-case
performances and exceptional average performances. In fact, the best
known example of such a controversial non-deterministic algorithm is none
other than the famous Simplex method introduced by George Dantzig in Linear
Programming [DANT 51, DANT 53]. The controversy lies in the fact that
while on the average the running time of this algorithm is proportional
to a low power polynomial function of the size of the input, carefully
worked out instances of Linear Programs, show that Simplex may require
an exponential amount of time [ZADE 73]. Thus, a yet unsolved enigma to
mathematical programmers is the question of why an algorithm as "bad" as
Simplex (in the sense that there is no polynomial performance guarantee)
turns out to work so exceptionally well [KLEE 70].

2) Examining the performance of an algorithm asymptotically as we

did for algorithms A and B earlier has the advantage of making the speed

of the algorithm its own intrinsic property, not depending on the type of

computer being used, or on possible technological breakthroughs in com-
puter design and speed. However, this asymptotic behavior should be

studied with caution. A hypothetical and extreme example where the poly-

nomial/exponential discrimination may be illusory is if we compare a de-
e . , . 80 .
terministic algorithm whose running time goes, say, as n  with a deter-

: . . n
ministic algorithm for the same problem whose running time goes as 1.001 .

It would clearly be a rash act to adopt the first algorithm because it is
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"efficient" (polynomial) and reject the second because it is "inef-
80

ficient" (exponential). In fact, it is true that Zim 'E———-E =0,
0 80 n»o 1.001
but the values of n for which 1.001 > n are so large, that they most

probably lie outside the range of practical interest.

This example was hypothetical and extreme. In fact, all known poly-
nomial algorithms for graph~theoretic problems grow much less rapidly
than n80 (most known algorithms of that category grow as n, nlogn, nz,
n3 and at most ns). In addition, all known exponential algorithms grow
much more rapidly than 1.001" (for example, there are algorithms growing
like Zn). Therefore, in subsequent sections we shall adhere to the de-
finition of computational "efficiency' given earlier. We shall excersise
caution however, and think twice before "accepting" an algorithm just be-

cause it is polynomial or ''rejecting" it just because it is exponential.

1.1 The Concept of NP-Completeness in Combinatorial Optimization Problems.

Among problems where the issue of computational efficiency is ex-
tremely important are those belonging to the general category of combina-

torial optimization problems. Since the Aircraft Sequencing Problem

which we will be studying throughout this report belong to that
general category, it is important to examine the issue of computational
efficiency from a slightly more specialized point of view.

The two examples which follow constitute well known combinatorial
optimization problems and will provide motivation for subsequent parts
of the thesis:

Let G be the graph of Fig. 1.1. We assume that if we use a parti-
cular link of G, we pay the corresponding cost ($1 for link AB, $2 for

link BC, etc.). Missing links have infinite cost (e.g. AC),
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Fig. 1.1.

(MSTP) (TSP)

‘ 51

A B ]
$2

$3 ) $2

Fig. 1.2 : Optimal solutions to the MSTP and TSP of the graph of figure 1.1.

—24—



We consider the following problems concerning G:

Problem 1 (Minimum Spanning Tree Problem or MSTP): Use as many

links of G as necessary, to connect* all nodes of G at minimum cost.

Problem 2 (Travelling Salesman problem or TSP): Find a tour in G

of minimum cost. (A tour is a sequence of visits to all nodes of

the graph exactly once,which returns to the initial node.)

Before proceeding with more details, we exhibit the optimal solutions
to these two problems in Fig. 1.2. We may at first glance note that

the two problems above seem very similar in structure and we might also

expect that they are very similar with respect to solution precedures
and computational effort required, as well.

Surprisingly enough however, it turns out that the MSTP is one of

the easiest problems known in the field of combinatorial optimization.

By «contrast, the TSP is one of the toughest ones.

Many "efficient" algorithms exist for the MSTP. The fastest for
érbitrary link costs and a general graph structure is the one by Prim
[PRIM 57], in which the running time goes as Ef_(n: number of nodes of
the graph). For graphs where the nodes are points in a Euclidean plane
and link costs are proportional to the Euclidean distance between the two
nodegf one can do even better than that. The algorithm of Shamos and Hoey
[SHAM 75] exhibits a computational effort that goes as nlogn.

By contrast, no "efficient" algorithm has been developed for the TSP,
despite the fact that the problem has been a very popular target for am-

bitious mathematicians and operations researchers for several decades.

* Connectivity means to he able to reach every node of the graph from
every other node of the graph, using links that have been chosen.
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All algorithms that exist today for the TSP are "inefficient." These
failures led to the subsequent classification of the TSP into a relative-
ly wide class of similarly notorious problems, the so called NP-complete

problems*. This class of problems has a unique property: If an "ef-

fient" algorithm exists for just one of them, then "efficient" algor-

ithms exist for all of them. A consequence of this property is that if

it is proven that just one of these NP-complete problems cannot have an
"efficient" algorithm, then none of these problems can [KARP 75].

As a result of the above ideas, the effort of researchers on:the
subject, has been channeled toward two opposite directions: Either to-
ward finding an "efficient" algorithm for a specific NP-complete problem,
or, toward proving that this is impossible. The efforts in this latter
direction are a natural consequence of the repeated failures in the
former.

Unfortunately, however, these new efforts have so far had the same
fate as the previous ones. In other words, no one to date has managed

to prove the impossibility of devising polynomial algorithms for NP-com-

plete problems and this leaves the status of this case open. Incidental-
ly, it has also been realized that there are some other problems which
are one step closer to 'darkness' than NP-complete problems are: These
are problems for which nobody knows if they are NP-complete or not. (The.
problem of Graph Isomorphism and the general Linear Programming problem
belong to this category.)

Returning to NP-complete problems, current opinion is divided. Some

researchers strongly suspect that no "efficient" algorithm can be

*NP for Non-deterministic Polynomial
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constructed for them. Others speculate that these problems will even-

tually yield to polynomial solutions. Finally there are those who be-

lieve that the resolution of this question will require the development

of entirely new mathematical methods. [KARP 75, LEWI 78]}.

Some other remarks are worthwhile:

1) The solution of the TSP of the previous example may have seemed tri-
vial because there were only two feasible tours in the graph of Figure
1.1. It is important though to bear in mind that the number of feas-
ible tours in a complete graph with symmetric distances grows ex-
plosively with the size of the problem, being in fact equal to

%(n—l)! As for graphs with missing links like the one we examined,

it is conceivable that not even one feasible tour exists. Moreover,
the problem of finding whether a given graph has a TSP tour is, in
itself, a NP-complete problem.

2) Referring once again to the possibility that the number of feasible
solutions to a combinatorial optimization problem may be explosively
large, this fact should not be automatically associated with the "tough-
ness'' of that problem. As a matter of fact the number of feasible so-
lutions to the MSTP for a complete graph of n nodes is even larger
than to the equivalent TSP! (This number is equal to nn—Z; a biblio~-
graphy of over 25 papers proving this result is given in [MOON 67].)

1.2 Remedies for NP-Completeness

There are several things one can do if faced with a NP-complete prob-
lem, besides quitting:
1) Accept the high computational cost of an exponential algorithm.

2) Compromise on optimality.
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3) If the problem at hand has a special structure, try to take ad-

vantage of it.

The first alternative may be viable only under limited circumstances.
Excessive storage or CPU time requirements are the most common character-
istics of an exponential algorithm even when the size of the problem ex-
amined is of moderate magnitude. Thus, large scale problems or problems
requiring real-time solutions may make the use of such algorithms not
attractive and even prohibitive.

The second alternative is very interesting. The basic philosophy
behind it is the following: "If it is so expensive to obtain the exact
optimal solution of a problem, perhaps it is not so expensive to obtain

a "reasonably good"* solution. In any event, the exact optimal solution

may not be\so terribly important because the mathematical problem itself
is an abstraction and therefore an approximation of the real-world prob-
lem."

Following this line of logic, various techniques have been developed
in order to obtain "reasonably good" solutions to a given optimization

problem, requiring only a fraction of the computational effort required

to obtain the exact optimal solution.

A major reason for adopting this approach has been the anticipation
and subsequent verification of the fact that many algorithms produce a
"reasonably good" solution quite rapidly but spend a disproportionate
amount of computational effort for closing the remaining narrow gap be-
tween the cost of this "reasonably good" solution and the cost of the

exact optimal solution. This is particularly common with algorithms

*We shall give an explicit interpretation of this term later.
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which produce one feasible solution per iteration and subsequently move to
another "improved'" feasible solution (according to some rigorous or heu-
ristic criteria), until no further improvement is possible. (It should
be noted that not all optimization algorithms are of this hill-climbing
or hill-descending nature.) In these cases, it may often be relatively
éasy to improve upon a 'bad" initial feasible solution (hence the rapid
generation of ''reasonably good" solutions at the beginning), but hard to
improve upon a "'reasonably good' solution (hence the substantially greater
amount of computation in order to make the last small improvements needed
to reach the exact optimum).

Thus, we can immediately see a way to construct an algorithm that
only produces a ''reasonably good" solution: take an algorithm of the

above form and operate it until some termination criteria are met. These

termination criteria may be one or more of the following:
First, there may be a 'resource" constraint, which is translated to
limits in the number of iteratiomns, or in CPU time, cost, etc. If this

criterion is followed, the algorithm terminates upon exhaustion of the

available resource.

Alternatively, a criterion may concern the quality of the best solu-
tion found so far. The algorithm then terminates if this solution is
"reasonably good." Different people may interpret the term "reasonably
good" in different ways. One of the interpretations usually adopted is
the following: A '"reasonably good" solution is defined as one whose cost
provably cannot exceed the (still unknown) minimum total cost of the

exact optimal solution, by more than a prescribed percentage of the latter.
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For example one might consider as a ''reasonably good" solution one whose
cost is within 10% of the optimal cost.

Branch-and-bound algorithms are one class of non-deterministic ex-

ponential algorithms which are tailored to incorporate such tolerances
from optimality, besides their ability to produce also exact optimal so-
lutions, given sufficient time. It is unfortunate that it is not possible
to drop the running times of these algorithms to polynomial by sufficient-
ly relaxing the optimality requirements.

By contrast, it may be possible to accomplish this exponential-to-

polynomial reduction in the so-called heuristic algorithms. These are
procedures using arbitrary rules in order to obtain a "reasonably good"
solution. These rules may be anything from "common sense,""intuitive"
or even "random" courses of action, to more elaborate procedures, some-
times employing separate optimization algorithms (drawn from other prob-
lems) as sub-routines. The very name of a "heuristic' algorithm suggests
thaé the algorithm is not a rigorous procedure for reaching the exact
optimum, but rather a set of empirical rules which hopefully will yield
an acceptable solution and more hopefully the optimal solution itself.
A solution produced by a heuristic algorithm will be in general sub~optimal.
A heuristic algorithm may or may not possess a performance guarantee
in the sense that the cost of its solution is guaranteed to be within
prescribed limits with respect to the exact optimum.
Concerning the TSP, Christofides [CHRI 76] has recently developed
a heuristic polynomial algorithm which guarantees solutions of cost no
more than 150% of that of the optimal solution.

In fact, this upper bound of 1507 can be asymptotically reached in
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carefully worked-out specific problem instances [FRED 77]. It is inter-
esting to note that the specific problems for which this happens have a
Euclidean cost structure, structure which could conceivably be exploited
to get better results. The fact that not even a heuristic algorithm can
guarantee TSP solutions with cost deviations from optimality of less than
507% without requiring exponential running times, is a further indication
of the inherent toughness of this problem. It should be pointed out
however that 50% is a worst-case performance. The average performance of
this algorithm has been astonishingly good (solutions average cost devia-
tions of 5-10% from optimality) and this is a further indication that
worst-case performance should not be confused with average performance,
since these two may differ substantially.

As a third remedy to NP-completeness, we come to what will be seen

to constitute a central concept in this investigation This concept can

be broadly named as "exploitation of special structure."

We have already briefly mentioned an example where the special
structure of a problem could ge used to solve the problem more efficiently:
In the MSTP, the very fact that the graph may be Euclidean, can be used
to drop the order of computational effort from‘gi to nlogn. By contrast,
no similar improvement can be realized for the TSP. In fact, the Euclidean
Travelling Salesman Problem is itself NP-complete ([PAPA 77].

Similar or more spectacular refinements of general-purpose algorithms
to fit specialized problems have constituted a major topic of research in
the area of mathematical programming. These '"streamlined" versions of
the general-purpose algorithms can perform the same job as the latter,

but much more efficiently. Examples of this can be found in the plethora
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of specialized algorithms in use for many network problems in transporta-
tion, such as maximum flow, shortest path, transshipment and transporta-
tion problems [DIJK 59, DINI 70, EDMO 72, KARZ 74]. These problems are

in essence Linear Programs and can be in principle solved by the Simplex

method which we have already mentioned earlier. But it turns out that
these specialized algorithms are so successful, that using Simplex instead
of them can be characterized as a waste of effort despite Simplex widely
recognized success. What essentially has been achieved through the ex-
ploitation of the special structure of these problems (and of many others)

is that the algorithms that have been developed for the problems are

polynomial.
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CHAPTER 2

THE DYNAMIC PROGRAMMING SOLUTION TO THE

TRAVELLING SALESMAN PROBLEM

2.0 Introduction

It will be seen that the Aircraft Sequencing Problem which will
be examined in subsequent chapters of this report is closely related
to the classical TSP. Differences do exist with respect to objective
functions, special constraints and other more subtle aspects. Neverthe-
less, one should be able to detect a TSP "flavor'" in the ASP.

It seems therefore appropriate at this point to examine how one can
solve the TSP. 1In particular, the classical Dynamic Programming Approach
to the TSP will provide the necessary background and motivation for the
more specialized and sophisticated solution algorithms which will be de-
veloped later. )

In the general formulation of the TSP we shall assume that we are

dealing with a directed, complete, and weighted graph G of N nodes.

Directed means that the lines joining pairs of nodes are themselves
directed. These will be called arcs (e.g. arc (i,j) is a line from node
i to node j) in distinction to undirected lines which are called links.
Complete means that for every ordered pair of distinct nodes (i,j)
there exists an arc from i to j. (It is also conceivable that there exist
loops, namely arcs going from a node to itself. These arcs will not be of
interest here and will be neglected. However, we will encounter them in a

subsequent part.)
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Weighted means that every arc (i,j) is assigned a number, called

interchangeably distance, separation or cost, dij' It is not necessary
that the graph is symmetric i.e. that dij = dji' Also, the cost to go

from a node i to another node j of the graph, will depend on what other

intermediate nodes will be visited. dij is the cost of going from i to

j directly, so this cost is sometimes called one-step cost between i and

j and the corresponding NxN matrix {dij] one-step cost matrix. Since in

a graph with general cost structure the going from i to j directly may not
necessarily be the cheapest way, dij is to be distinguished from dij’

which is the minimum possible cost to go from i to j, using intermediate

nodes if necessary*. A case where [dij] coincides with [dij] is when the

latter matrix satisfies the so-called triangle inequality, i.e. dijsdik+dkj
for all (i, j, k). Among other cases, this is true when the nodes of the
graph are points in a Euclidean plane and dijthe Euclidean distance be-
tween i and j.

We will also assume that if a graph is not complete, i.e. certain
arcs are missing, then the coét of these arcs is infinite. Thus, in ab-
sence of loops, we can put dii = « for every node i.

An example of a 4~node graph with its corresponding cost matrix is
given in Fig. 2.1

The Travelling Salesman Problem then calls for finding a sequence of

nodes {Ll, Lys - LN\,I LN+1} which forms a tour, so that the total cost
associated with it ( 2 dL L
j=1 e

) is minimized. Since we are dealing with

a tour, LV+l§ Ll'

*It is possible to comstruct [d;.] from [di.] in time proportional to ¥
[FLOY 62, MURC 65]. 1] ]
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Fig. 2.1 : A 4-node directed graph and its corresponding cost matrix [dij].
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Without loss of generality we can specify an arbitrary starting node

therefore put Ll = LN+l = node 1.

2.1 The Dynamic Programming Algorithm.

We now present the Classical Dynamic Programming Approach for solving
problems of this kind. This method is due to Held and Karp [HELD 62].

A stage in the TSP involves the visit of a particular node. It can
be seen that the TSP problem above has N+l stages: At stage 1 we are at
the initial node 1. At stage 2 we move to another node and so forth until
we return to node 1 at stage N+1.

The information on which we shall base our decision on what node to
visit in the next stage not+l, given that we currently are at stage n, is

described by the following state variables:

L: the node we are currently visiting.

kl,kz,...kN: a vector describing what nodes have been visited so

far. By definition:

K = 0 if node j has been visited
h
1 otherwise.

By convention, at the beginning of our tour we are at node 1 but

since we have to visit this node again at the end, we put k1=l.

We also define the optimal value function V(L, kl’ e kN) as the

minimum achievable cost to return to node 1 passing through all unvisited

nodes, given our current state is (L, kl, cees Koo
iN
It is not difficult to see that the difinition of V above implies the

following optimality recursion, also known as Bellman's principle of optim-

ality [BELL 60]:
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V(L, k kN) = Min[d + Vix,k!,...,k"1 (2.1)

1 xeX L,x N

where

{1} if k. =k_=...=k_=0 and k_=1

X = 23 N 1 (2.2)

{i: 1#1 and ki=l} otherwise

k, -1 if j=x
and k! J (2.3)

J kj otherwise

In (2.2), the set X of potential "next" nodes is described mathemat-
ically and in (2.3) the k-vector of a "next" node x'of X is derived from
10" .,kN) . Two facts are clear:

1) At the end of the tour, V is zero.

(L, k

So Vv(1,0,...,0)=0. (2.4)
2) The total cost of the optimal solution is given by the
value of V(1,1,...,1).

To compute this value we use the technique called backward recursion.

According to it, we evaluate (2.1) using (2.2) and (2.3) for all combina-
tions of (L, kl, cees kN) in the following manner: We start from

L=1, kl=...=kN=O where (2.4) applies and then we move to lexicographical-

ly greater* values of the k-vector, each time examining all values of L

*A vector (a,,...,a.) is said to be lexicographically greater than another
vector (by,-..,bN) if either:

(a) al> bl

or (b) there exists an index n between 1 and N such that a, = b, for all
1{j<n and a_3 b_. S

For example, (1,0,0) is lexicographically greater than (0,1,1) because of
(a) and (1,0,1) is lexicographically greater than (1,0,0) because of (b).
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from 1 to N. Each time we apply (2.1) we store two pieces of information:
First the value of V. Second, what has been our best choice as to what
node to visit next. We store this last item in an array NEXT (L, kl,...kN).
This array will eventually serve to identify the optimal tour. This iden-

tification takes place after the backward recursion is completed, i.e.

after state (1,1,...,1) has been reached.

We know that we are initially at node 1 and our state is (1,l1,...,1).
The best next node is given by the value of NEXT (1,1,...,1). Supposing
for the sake of arguement that this is equal to 3, this means that our
state becomes now (3,1,1,0,1,...,1). 'The best next node is given by the
corresponding value of NEXT and so forth until, after N steps, we arrive

back to node 1 and our state becomes (1,0,0,...,0).

2.2. Comparison with Other Approaches

We can see that the computational effort associated with this approach
grows quite rapidly as N increases, but still far more slowly than the
factorial function associated with a complete enumeration scheme.

In fact, (2.1) will be ;sed a number of times of the order of N.ZN.
The reason is that each of the k's can take two values (0 or 1) and L can
take N values (1 to N). Equivalent amounts of memory should be reserved
for each of the arrays V and NEXT. This quite rapid growth makes this ap-
proach not practical for the solution of TSP's in graphs of more than
about 15 nodes. By contrast, other exact approaches have been shown to
be albe to handle TSP's of about 60-65 nodes [HELD 70, HELD 711, while

several heuristic algorithms handle TSP's of up to 100-200 nodes [LIN 65

LIN 73, KROL 71].
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It becomes clear therefore that some explanation should be offered
here concerning the purpose of presenting the Dynamic Programming ap-
proach.

One perhaps evasive answer to that question is to state that the
reasons for which the Dynamic Programming approach has been introduced
will eventually become clear in subsequent chapters of this report.

In fact it will turm out that this approach, in the form of more sophis-
ticated algorithms, will prove itself useful in tackling the Aircraft
Sequencing Problem.

Nevertheless, we can also state a priori some features of the Dynamic
Programming approach that make it particularly advantageous by comparison
to other approaches.

The first feature concerns the versatility of this approach with res-
pect to the form of objective functions that can be handled. The only
requirement concerning the form of objective functions suitable for

Dynamic Programming manipulation is that of separability: As this tech-

nique is used in multi-stage broblems, one should be able to separate
the cost corresponding to a stage into the cost corresponding to a sub-
sequent stage and the "transition' cost to go from the former stage to
the latter. This separation is not restricted to be additive.

Let us state at the outset that this separability requirement may

become very restrictive and even prohibitive if certain forms of object-
ive functions are to be considered. For example, if a gquadratic object-
ive function is used, then the manipulations required to bring this func-
tion to a separable form, will eventually increase the computational effort

of the procedure much faster thanof a linear objective function.
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Despite this restriction, there still remain several forms of ob-
jective functions that can be separated, in addition to the one examined
in the 'classical' version of the TSP presented above (minimize total
cost of tour). We shall have several opportunities to examine these al-
ternative forms of objective functions later on. For the moment, for
motivation purposes we will present one of them:

Consider the following variation of the TSP: A tour is to be executed
by a bus which starts from node 1 carrying a number of passengers. Each
of these passengers wishes to be delivered to a specific node of the
graph. After completion of all deliveries, the bus has to return to node
1. During the trip, each passenger will "suffer" an amount of ''ride time"
into the bus till his delivery. What should be the sequence of bus stops
which minimizes the sum of ride times (or, equivalently, the average ride
time)?

It should be noticed that due to the different form of the objective

function, this problem is not the same as the classical TSP seen earlier

and in general the optimal solutions to these two problems will not be
identical.

In fact, the problem we have just presented belongs to the general
category of "mean finishing time" minimization scheduling problems, which
unfortunately, are also NP-complete. A more general version of the veh-
icle routing version of this problem has been studied in detail in {PSAR 78].
A generalized version of this objective function will also be studied in
Parc II.

The important remark, however, at this stage of our presentation is

that Dynamic Programming can handle this new form of objective functiom
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with the same ease as it can handle the previous one, being in addition

able to consider any linear combination of these two objective functioms.
By contrast, other approaches more successful than Dynamic Program-

ming in solving "classical" TSP's, fail completely if alternative forms

of objective functions like the one above are considered. An example is
the node penalty/subgradient optimization/branch~and-bound approach by
the same authors who introduced the Dynamic Programming approach for the
TSP. Held and Karp in [HELD 70, HELD 71] have presented an algorithm,
able to handle TSP's of 60-65 nodes. It is perhaps not fully appreciated

that a critical factor in the success of that approach is the form of

the objective function itself. Specifically, Held and Karp ingenuously

observed that the identity of the optimal solution to the TSP will not
change if an arbitrary set of "penalties" is imposed on all nodes of the
graph (so that in addition to the cost incurred in using a particular link
of the graph, we also have to pay apenalty for each node we visit). Based
on that observation the authors subsequently developed a procedure to
identify the combination of node penalties which will enable ome to obtain
the TSP solution directly from the equivalent MSTP solution.

With respect to this approach, it turns out that the above fundamental

observation of the authors simply does not hold if one is examining an

objective different from the classical one. So one is immediately forced
to reject this approach if these alternative objectives are examined.
The same observation holds for other approaches including several

heuristic algorithms. In particular, the recent ingenuous algorithm of

Christofides [CHRI 76] cannot be applied if other than classical objectives

are examined,
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The above argument does not mean that there do not exist specialized
algorithms for tackling these alternative objectives; in fact such algor-
ithms do exist [IGNA 65, VAND 75]. Rather, the purpose of the discussion
was to emphasize the flexibility of the Dynamic Programming approach re-
garding certain alternative forms of objectives.

Other features that make the DP approach attractive are the relative
ease in computer coding, the capability of examination of specialized con-
straints and an effective 're-optimization' ability.

It is however premature to get into details concerning these positive
and some inevitable negative aspects of the technique at this point. We
shall have several opportunities to do this in parallel with the examina-

tion of the specific problems which will be presented subsequently.
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PART II

THE AIRCRAFT SEQUENCING PROBLEM (ASP)
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CHAPTER 3

AIRCRAFT SEQUENCING: PROBLEM DESCRIPTION

3.0 Introduction

It was mentioned in Part I that certain combinatorial optimization
problems exhibit structures, which, if adequately exploited, may lead to
the development of '"'specialized" algorithms solving these problems much
more efficiently than a general-purpose algorithm could do.

Following this philosophy, the purpose of Part II is to introduce

and discuss a version of the Aircraft Sequencing Problem (ASP), as well

as to develop a ''specialized" algorithm for it. The above problem will

be seen to be directly related to the Travelling Salesman Problem (TSP)
already introduced in Part I, being in fact itself NP-complete. Never-
theiess, the structure of this problem is such, that, through specially
tailored algorithms, drastic .computational savings can be realized over
the effort needed to solve the problem with the classical Dynamic Program—
ming algorithm (also described in Part I). Moreover, the same structure
will be shown to allow the inclusion of a special kind of priority con-

straints, the Constrained Position Shifting rules. We shall examine these

and other issues in detail throughout this Part of the report.
Before presenting the mathematical formulation of the ASP let us
take a brief look at the real-world problem:
During peak periods of traffic, the control of arriving and departing

aircraft in an airport's near terminal area becomes a very complex task.
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The modern air traffic controller must, among other things, see to it
that every aircraft in that high density area, either waiting to land

or preparing to take off, maintains the required degree of safety. The
same person also has to decide what aircraft should use a particular run-
way, at what time this should be done and what manoeuvres should be ex-
ecuted to achieve this. The viable accomplishment of such a task becomes
more difficult in view of the fact that aircraft are continuously entering
and leaving the system and that at peak periods, the demand for runway
utilization may reach, or even exceed the capabilities of the system.

It is at such periods that excessive delays are often observed, resulting
in passenger discomfort, fuel waste and the disruption of the airlines'
schedules. Under such '"bottleneck' conditioms, an increase in collision
risk c;n logically be expected as well. The interaction between delay
and safety goes also in the opposite Airection: Because of safety con-
gsiderations, the sequencing strategy used by almost all* major airports
of the world today is the First-Come-First-Served (FCFS) discipline.

For reasons which will become apparent below, this strategy is very like-
ly to contribute to the occurrence of excessive delays.

The minimization of delay or some other measure of performance#**

related to passenger discomfort, without violation of safety comnstraints
is certainly a desirable goal. This goal is, at least theoretically,

achievable, for the following reasons:

% London's Heathrow Airport is an exception: A more sophisticated, com-
puter assisted process is used there. [BONN 75.]

**Explicit definitions of these measures of performance will be given as
soon as we formulate our version of the problem.
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First, safety regulations state that any two coaltitudinal aircraft

must maintain a minimum horizontal separation, which is a function of

the types and relative positions of these two aircraft.

Second, the landing velocity of an aircraft will not be in general
the same as the landing velocity of another aircraft.

A consequence of the variability of the above parameters (minimum

horizontal separation and landing velocities) is that the minimum permis-

sible time interval between two successive landings is a variable quantity.

Thus, it may be possible, by rearrangement of the initial positions of
the aircraft, to take advantage of the above variability and obtain a
landing sequence that results in less delay than the FCFS discipline.

In fact, an optimal sequence does exist; it is theoretically possible to
find it by~examining all sequences and select the most favorable ome.

The above argument holds only as far as the potential for improvement

over the FCFS discipline is concerned. How to find, and, equally importan-

ly, how to implement an optimal - sequencing strategy is another story.

The method suggested above for the determination of the optimal sequence

is safe, but extremely inefficient, because the computational effort as-

sociated with it is a factorial function of the number of aircraft and
it will not be possible to evaluate all the combinations in a short time
interval (as the nature of this problem demands), even on the fastest

computer¥*.

It should be pointed out that while the main factor that suggests

the existence of an optimal landing sequence is the variability of the

*With only 10 aircraft, we would have to make 3,628,800 comparisons and

with 15 aircraft 1,307,674,368,000 comparisons! Real-world problems,
may involve the sequencing of 100 or more aircraft.
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minimum permissible time interval between two successive landings, it

is the same factor that makes the determination of this optimal sequence

a nontrivial task. If that interval were constant, the Aircraft Sequenc-

ing Problem would be trivial to solve.

The real world problem involves many other considerations, especial-
ly as far as the implementation of sequencing strategies is concermned.
In fact, the relevant literature on the subject is already considerable
and growing. An excellent and thorough investigation of this problem has
been recently published by Dear [DEAR 76]. We shall address several of
these issues, as necessary, in subsequent chapters of thisreport.
For the moment the above brief look into the real world problem is be-
lieved to be sufficient in order to proceed to the formulation of the

version of the ASP we will examine.

3.1 Problem Formulation

Suppose that the air traffic controller is confronted with the fol-

lowing problem: A number of §ircraft are waiting to land at a single
runway airport. His task then is to find a landing sequence for these
aircraft, so that a certain measure of performance is optimized, while
all problem constraints are satisfied.

We now make the problem statement more specific:

1) All the aircraft to be considered are assumed to be "waiting to
land." This would mean that then are arranged in a certain holding pat-
tern, waiting for the instructions of the groundbased controller as to
when each of them will start its landing manceuvres. It is assumed that

the pilots of all aircrafts are capable and willing to execute the
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instructions of the controller given enough prior notice.

2) No intermediate arrivals of new aircraft will be assumed. 1In
other words, the sequencing task of the air traffic controller will end
as soon as all the planes of the 'reservoir" of aircraft waiting to land,
have landed. 1In view of this assumption, this version of the problem is
termed "static." The equivalent real-world situation is obviously dif-
ferent. Airplanes are continuously arriving and are added to the system
(the landing queue) in a random fashion. This version of the problem is
termed "dynamic" and will concern us in Part III of the report.

3) Concerning the measures of performance, we shall concentrate on

two of them. We call the first "Last Landing Time" (LLT). The correspond-

ing objective is to find a landing sequence such that the aircraft that

lands last, does this as quickly as possible. We call the second measure

of performance "Total Passenger Delay' (TPD). The corresponding object-

ive is to find a landing sequence such that the sum of the "waiting-to-

land" times for all the passengers in the system as low as possible. It

is not difficult to see that the second objective implies the minimiza-

tion of the average per passenger delay. The two objectives will in

general produce different optimal solutions, so that minimizing the one
does not necessarily mean that the other is also minimized.
4) Concerning the problem constraints, we shall for the moment only

require the satisfaction of the minimum interarrival time constraints.

This means that the time interval between the landing of an aircraft i,
followed by the landing of an aircraft j must not be less than a known
time interval tij' We shall examine the derivation of the quantity in

detail in Appendix B.
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5) Without loss of generality we shall assume that we will start

counting time (t=0) with the landing of the so-called zeroth airplane.

Since this plane has already landed, it is not included in the "reservoir"
of waiting-to-land airplanes, its only influence being how soon can the
next (1lst) airplane land. On the other hand, it is also conceivable
that no such zeroth airplane would be specified (dummy zeroth airplane).

6) The composition of the set of airplanes which are waiting to land
is, of course, assumed to be known. For each ordered pair (i,j) of air-
craft,\the minimum time interval, tij is also known and so is the number
of passengers in each aircraft.

7) An assumption which we shall drop later, is that at any stage of
the sequencing procedure, the air traffic controller is free to assign
the next landing slot to any of the remaining aircraft. We shall refer
to this version of the problem as the '"unconstrained" case. This means
that initially we shall not bother with priority considerations, i.e.

)we shall ignore the initial positions which these airplanes had when they
arrived at the near terminal -area.

8) It is also logical to assume that all aircraft wish to land as

soon as possible. According to this, no unnecessary gaps in the utili-

zation of the runway will be allowed. In other words, if aircraft i is
followed immediately by aircraft j, the time interval between these two
successive landings will have no reason to be strictly greater than tij’

so it will be equal to tij'

3.2 Graph Representation of the ASP

It is not difficult to see that the problem described above can be

depicted by means of the graph of Figure 3.1. The nodes of this graph
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represent the airplanes in the system. A special node (which may be a
dummy one) represents the zeroth plane. The graph is complete and weight-
ed. The cost of arc (i,j) is tij'

The ASP then simply calls for a sequence of visits to all nodes of
the graph, exactly once to each, starting from the zeroth-plane node (node
0). Note that the problem, as it stands, does not require a return to the
initial node, but one can easily reduce it to such a problem, by putting

all costs ti equal to zero for all nodes of the graph. A feasible such

,0
sequence of visits, together with the zero-cost return arc is shown in
Fig. 3.2.

One cannot avoid noticing the fact that if the objective of the

problem is to minimize the Last Landing Time, then this problem is a clas-

sical case of the Travelling Salesmen Problem examined in Part I. On the

other hand, if the objective is to minimize Total Passenger Delay, then

the problem cannot be formulated as a classical TSP, but rather as a var-
iation of it, because the penalty one pays by traversing am arc tij’ de-

pends on what nodes have been visited so far and thus is not known in ad-

vance.
The recognition that the problem we are trying to solve is likely to

be at least as tough as the classical TSP (depending on the objective) may

seem disappointing at first glance. If one were to adopt the classical
Dynamic Programming Approach to the TSP (already presented in Part I), one
could limit the number of airplanes that can be handled to about 15. In
[PARD XX], Pardee states that a 14 aircraft problem was estimated to require
approximately 180 seconds, a time which is substantially large in view of

the need for real-time solutions (the minimum interarrival time between
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aircraft may be as low as 70 seconds). Thus, one is forced to abandon
the classical D.P. Approach for solving the ASP.

Since we already have mentioned that we shall solve the ASP by ex~
ploitation of its special structure, let us now see what exactly is this
structure and how we can take advantage of it:

A first observation is that we can classify the aircraft that are
waiting to land into a relatively small number of distinct "categories."
This classification should be such, that all airplanes bglonging to the
same category, although being distinct entities in themselves have the

same or very similar characteristics, as far as minimum time intervals

and number of passengers are concerned.

It is of course true that the above quantities are subject to random

fluctuations even for two identical aircraft. The number of passengers,

for example, in two B727's will in general be different. The same holds
for their landing velocities, which not only depend on the individual load~-
ing eonditions but are also subject to the pilots' discretion and may be
influenced by weather conditions as well. Fluctuations in landing veloc-
ity tramslate into fluctuations in the minimum permissible time interval
between successive landings. However, it is reasonable to assume that

on the average, any two "similar" aircraft (like the two B727's in our

example) will exhibit approximately equal values of the above parameters.
It is in this spirit that our classification is being made.

Concerning the question of which aircraft are comnsidered "similar™
to one another, it is customary to divide the existing types of commercial
aircraft into the following categories (although other classification

schemes may exist):
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First of all we can observe that the graph associated with the ASP
can be drastically reduced in size. For example, the graph of Figure
3.3a for a 3-category problem can be reduced to the 3-node graph'of Figure
3.3b. And instead of visiting exactly once all nodes of the large graph,
we have the equivalent task of visiting each node of the condensed graph
a specified number of times.

It should be noted that this does not mean that by working in the
condensed graph we necessarily have to visit all the items of a category
first, then move to another category and visit all its items etc. It is
conceivable, for instance, that we may wish to visit two particular cate-
gories alternately and many times each.

Essentially the condensed graph contains all the information of the
large one but in a more efficient way. Thus, instead of having to deal
with a very large time separation matrix, the matrix in the condensed
graph is much smaller. Note also that the diagonal elements of this latter
matrix are not equal to infinity but to the minimum interarrival time be-
tween two successive landings of planes belonging to the same category.

This means essentially that, by contrast to the large graph, the condensed

graph does have ''loops,"

as these were introduced in Chapter 2 ( Compare
Fig. 3.3a with 3.3b)

So let us redefine the ‘ASP (unconstrained case) in é way compatible
to the above observations:

A number of airplanes belonging to N distinct categories are waiting
to land at a single runway airport. Let kg be the initial number of air-

craft of category i, and P, the (average) number of passengers (or number
i

of seats) per aircraft of category i. Finally, let tij be the minimum
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permissible time interval which must elapse between the landing of a plane
of category i, followed by a landing of a plane of category j and i, be
the category of the zeroth landed airplane (t=0).

All the above quantities are the inputs to the ASP (unconstrained
case).

Our goal is to find a landing sequence so that either one of the fol-
lowing two measures of performance is minimized:

1) Last Landing Time (We shall index this objective with Z=1).

2) Total Passenger Delay (We shall index this objective with 2Z=2)

In the next Chapter we shall describe a modified Dynamic Programming
Approach that solves the above problem in a very small fraction of the

time needed to accomplish this through the classical D.P. Approach.
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CHAPTER 4

ASP - UNCONSTRAINED CASE: DYﬁAMIC PROGRAMMING SOLUTION

4.0 Introduction: Dynamic Programming Formulation

The modified Dynamic Programming Approach which we shall develop here
has many similarities with the one we described in Chapter 2. In order
to see how we can formulate the Aircraft Sequencing Problem as a dynamic
program, the following considerations are important:

1) Stage-state description: A stage of the problem corresponds to

the landing of a particular category of aircraft. At any particular stage
the information we will need to make our decision for the next stage will
consist of the following N+1 state variables:
1) L: The category which is landing at the current stage, namely
the last of the categories landed so far. Lé{l,...,N}.

2) k .,kN : kj is the number of airplanes belonging to category j

10

which have not landed so far.

2) Decision variable: We call that x, the next category to land.

It is clear that since all not landed aircraft are eligible to land at

this next stage, x has to be chosen from the set X = {y: 1y, ky > 0}.

1
’

3) Decision-state transition: We can see that if the state (x, kl

...,kﬁ) immediately follows the state (L, kl,...,kN), then

k, -1 if j=x

k otherwise
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for all j=1,...,N.

4) Optimality recursions: We define VZ(L,kl,...,kN) as the optimal

value of all subsequent decisions that can be taken from the current

state (L,k k), till the end of the sequencing procedure (kl=...=kN=

17 %y

0). Vz measures time if Z=1 and total passenger waiting time if Z=2.
Since at any stage we have to choose the best of the elements of

the corresponding set X, it is not difficult to see that the definition

of V_, above implies that:

z
- 3 - ] L}
VZ(L,kl,...,kN) = Min [wz £ x + vz(x,k seneskg)] (4.1)
xeX
where X = {y: lgysN, ky > 0} (4.2)
1 if Z=1
W, = (6.3)
z N
P, if 2=2
3=1 4
k.-t if j=
§ if j=x
and k; = (j=1,...,N) (4.4)
kj otherwise

5) Boundary conditions: Obviously VZ(L,O,...,O)=O for 2=1,2 (4.5)

and for all L=1,...,N, since if kl=...=kN=0 we have no more aircraft to

go.

6) Identification of the best "next": We define NEXTZ(L,k ko)

1,""°°N

as the best, according to our objective Z, next category to land, given

that our current state is (L,kl,...,kN).

By definition it is clear that
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NEXIZ(L,kl,...,kN) = x, if

= . R N
VZ(L,kl,...,kN) wz t‘L,x + Vz(x,k ,...,k&) (4.6)

where WZ is given by (4.3) and k; by (4.4).
In case there are more than one x's satisfying (4.6) we break the

ties arbitrarily.

4.1 Solution Algorithm

The optimal sequence of landings will obviously depend on the ini-
tial composistion of our aircraft 'reservoir" (k?,...,kg) and on ghe
zeroth landed plane ig- Obviously, the state (io, ki,...,kg) will be
the state at the beginning of the sequencing procedure. What is im-
portant to~state at this point is that there is a way to avoid solving
the problem again and again from scratch for different combinations of
(iOT k?,...kg). In fact, the algorithm we shall suggest is suitable
for efficient repeated use, incorporating a tabulation scheme which en-
ables it to "solve" the problem essentially only once and allowing use
of the results repeatedly for any initial conditions we wish, with trivial
additional computational effort. For this we need upper bounds (k?ax,

..,k;ax) on the values of (kg,...,kg). The algorithm will consist of
two parts:

a) The "Optimization" part, the "heart" of the procedure, where
tables of V., and NEXT, are prepared using (4.1) through (4.6). Backward

Z Z

recursion is used, starting from k "=kV=O’ where we take into account
L

1

(4.5) and then moving to higher wvalues of the kj's lexicographically, up

to k?ax, for j=l1,...,N. For each combination (kl,...,kN), we apply (4.1),
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(4.2), (4.3), (4.4) and (4.6) for all values of L, from 1 to N.

By the end of this part, VZ and NEXTZ have been tabulated for all
possible combinations of the state variables up to their maximum values,
so that this part, which is the most time consuming, does not have to be
executed again for this problem.

b) The "Identification'" part, which may be repeated as many times
as we wish, for any given initial conditions (io,kg,...,kg). It will

consist of T#‘g k? iterations, each corresponding to the determination of
ghe best nextjcitegory to visit. To do this we simply look sequentially

at the already tabulated array NEXTZ. Some caution is necessary if io=0,

namely if there is no specified zeroth landed plane (dummy).

The "identification" part is formalized as follows:

Step 0: (Initialization)
=0

K,k (§=1,...,0

33

Lméio (Lm: category of the mgh landed plane)

Step 1: (Termination check)
1f kj=0 for all j=1,...,N, then set T=m and STOP;
sequence (LO’LI""’LT) is optimal; END.

Otherwise continue

Step 2: (Move to best next)

If Lm=0, then determine Lm+l from:

VZ(Lm+l,kl,...,kN) =

g

(v (x,k_,...,k )]
x=1,...,N Z 1 N
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Otherwise Lm+ = NEXTZ(Lm,kl,...,kN).

1

Step 3: (Update)

For all j=1,...,N, set:

( kj-l if =L

k. =
J

kj otherwise

Set m=mt+l and go to Step 1.

Some observations on the structure of the algorithm are important:
First, the reader may have noticed the absence of an explicit mention
of ‘the stage variable throughout the algorithm. This is due to the fact

that this variable, n, is redundant so that one can calculate its value

only from the state vector. Thus, if we start counting stages from the

end of the sequencing procedure (backwards), then we can set n = iglki’
so that at the end of the sequencing procedure, n is equal to zero.

A consequence of this is that the calculations of the "optimization"
part of the algorithm are not performed in a stage-by-stage manner. The
lexicographic manipulation of the vector (kl,...,kN) is the main reason

max_ max

for that. The following short example (N=2, kl =3, k2 =2) will il-

lustrate the order in which the recursion is performed:
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Current state (L,k,,k,) Stage ''Next'" states (x,k;,k})

Iteration (in LHS of (4.1)) b 2 n (in RHS of (4.1)) * ?

1 (1,0,0) 0 -

2 (2,0,0) 0 -

3 (1,0,1) 1 (2,0,0)

4 (2,0,1) 1 (2,0,0)

5° (1,0,2) 2 (2,0,1)

6 (2,0,2) 2 (2,0,1)

7 (1,1,0) 1 (1,0,0)

8 (2,1,0) 1 (1,0,0)

9 (1,1,1) 2 (1,0,1) , (2,1,0
10 (2,1,1) 2 (1,0,1) , (2,1,0)
11 (1,1,2) 3 (1,0,2) , (2,1,1)
12 (2,1,2) 3 (1,0,2) , (2,1,1)
13 (1,2,0) 2 (1,1,0)

| 14 (2,2,0) 2 (1,1,0)
15 (1,2,1) ’ 3 (1,1,1) , (2,2,0)
16 (2,2,1) 3 (1,1,1) , (2,2,0)
17 (1,2,2) 4 (1,1,2) , (2,2,1)
18 (2,2,2) 4 (1,1,2) , (2,2,1)
19 (1,3,0) 3 (1,2,0)
20 (2,3,0) 3 (1,2,0)
21 (1,3,1) 4 (1,2,1) , (2,3,0)
22 (2,3,1) 4 (1,2,1) , (2,3,0
23 (1,3,2) 5 (1,2,2) , (2,3,1)
24 (2,3,2) 5 (1,2,2) , (2,3,1)
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The fact that the stage variable n does not increase monotonically
with each iteration is of no serious consequence. What is of fundamental
importance in all backward recursions and is in fact present here too,
is the fact that for each state corresponding to a particular iteration
(say state (1,2,2), iteration 17) all the "next" states (here (1,1,2)

and (2,2,1)) have been evaluated at prior iterations (in this example, at

iterations 11 and 16).

Obviously, one could also have achieved this by examining the states
stage-by-stage: First evaluate all states of stage O, then do the same
for stage 1, and so on. This latter scheme has the advantage that we

can use less storage space for the array V, than by using the lexicogra-

y/
phic scheme. On the other hand, there are certain drawbacks associated
with this approach: First, the number of states per stage is not constant
and second, one also has to provide "coding" and "decoding'' algorithms in
‘order to identify them for a given stage n. We have had an opportunity
to study similar and more complicated issues in detail in the work done

in [PSAR 78] For the ASP we feel that the simplicity associated with

the lexicographic scheme makes this scheme worthwhile to keep.

4.2 Computational Effort and Storage Requirements.

The simplest (but not necessarily the most efficient) way to have

access to the arrays V, and NEXTZ is to keep them in main storage. 1In

Z
. N max A

that fashion, we have to store Zle;Il(kj +1) = 2C values and use (4.1) C

times. If k?ax=k for every j, then C=N(k+l)N. Note that C is a polynomial

function of the number of airplanes k per category. It is an exponential

function of the number of categories N, so our algorithm would become in-

adequate if N were large. However, we mentioned earlier that N is small
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in the ASP. Typical values of C are given in the following table:

Values of C=N(k+~1)N

N k= k=10 k=20 k=50
2 72 22 882 5.2x10°
3 648 4.0x103 2.8x% 10* 4.0%10°
4 5.2x103 5.9x10% 7.8X10° 2.7x107
5 3.9x10* 8.1X10° 2.0x107 1.7x10°

It is interesting now to compare the above computational effort with
the computational effort associated with applying the classical D.P. ap-

proach to the ASP. For k aircraft per category, the graph would have kN
kN

nodes, so the equivalent value to C would become C'=kN.2 . Defining as
k N
L]
o =4§—, we see that r = k[E;Il which is always > 1 (r=1 when k=1).

Typical values of r are:

Values of r

N k= k=10 =20 k=50
2 142 8.6x10" 5.0x101° 2.4x1028
3 758 8.1x10° 2.5%101° 5.4x10"1
4 4.0X10°> 7.5x10° 1.2x10%° 1.2X10°°
5 2.1x10% 7.0x10%° 6.2x102 68

2.6X10

We can therefore observe the drastic savings in computational effort

and in storage requirements arising only from the fact that we somehow
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have managed to exploit the special structure of the problem.

It should also be noted that the computational effort discussed so
far is associated only with the "optimization" part of the algorithm.
By comparison, the "identification" part is the least time-consuming,

N
requiring only T= ) kq iterations.
j=L

4.3 Computer Runs-Discussion of the Results

Let us now see how the algorithm works by presenting a few examples.
We start by examining several cases for a mix of N=3 categories of

aircraft. Category 1 consists of B707's with P_=150 passengers, category2

1
consists of B727's with P2=120 passengers and category 3 consists of
DC-9's with P3=100 passengers. A typical time separation matrix for

these three categories is the following (in seconds):

70 100 130
.} =170 8 110
70 80 90
For the next 4 cases we vary the initial composition” of the aircraft
0

reservoir (kg, k2, kg), the zeroth landed category, is as well as the

problem's objective: Z=1 stands for Last Landing Time minimization and

Z=2 for Total Passenger Delay minimization:

. , 0 .0
Case 1: (4., kl, kz,

As can be seen from Figure 4.1, the optimal sequence starts with the

kg) = (2,5,5,5), Z=1

landing of all planes of category 2, proceeds with all landings of cate-
gory 3 and finally ends with all landings of category 1. The Last Landing
Time incurred was 1,220 seconds (the minimum) while the Total Passenger

Delay was 1,299,000 passenger-seconds (not necessarily the minimum). For
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a total passenger number of 1850 (=5X150 + 5X120 + 5X100), this cor-
responds to an average per passenger delay of 702 seconds. To find now
whether we can do any better than that for the same aircraft mix, we ex-
amine the next case.

o ,0

Case 2: (10, kl, k2’

k) = (2,5,5,5), z=2.
It turns out that we can improve upon the Total Passenger Delay of
case 1, by forming a new landing sequence. Figure 4.2 shows that this
sequence is entirely different from that of Fig. 4.1: It starts with
all landings of category 1, proceeds with all landings of category 2
and ends with all landings of category 3. The Total Passenger Delay in-
curred is 1,053,500 passenger-seconds (the minimum) which corresponds to
an average per passenger delay of 569 seconds and an improvement of 19%
over the corresponding measure of performance of case 1. Note however
that the new sequence has a longer Last Landing Time (1240 seconds) than
that of the old one, a deterioration of 1.6%.

So in general one should expect that the minimization of one of the
two measures of performance woduld be accompanied by a deterioration in
the other one. Also, in general, the optimal solutions for these two ob-

jectives would be different. There are of course cases where the two ob-

jectives yield the same optimal sequence, as illustrated by cases 3 and

4;
, e ,0 .0, _ -
Case 3: (10, kl, kz, k3) = (1, 2, 4, 3) Z=1
. , o ,0 .0, _ _
Case 4: (10, kl, k2’ k3) = (1, 2, 4, 3) Z=2

Both cases yield the same optimal sequence: (Fig. 4.3) It starts with
all the landings of category 1, proceeds with all the landings of cate-

gory 2 and ends with all the landings of category 3. Last Landing Time
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l)(::) Category 1 EXPLANATION OF SYMBOLS : These symbols will

2) 629 Categorin. be used in all cases of the rest of Part II.

3) . Category 3 -, 4) % Zeroth—landed category

o-o-o-o-0-0—e—e—e—e—- - OO0

Fig. 4.1 : Case 1.

- OO0 000222220009

Fig. 4.2 : Case 2.

Fig. 4.3 : Cases 3 and 4.

Fig. 4.4 : Case 5.
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is 770 seconds (the minimum) and Total Passenger Delay is 408,300 pas-
senger-seconds (also the minimum), corresponding to an average per pas-
senger delay of 378 seconds.

An immediate and obvious observation is the following: 1In all cases
above, the landings tend to be donme in '"bunches'" by category. In other
words all aircraft of the same category tend to cluster around each other
and land as a group. This observation motivates the following question:

Could it be that this problem is so structured, that the optimal sequence

of landings always involves category-clustering? For if this is the

case, then the problem is so trivial that it can be solved immediately
by complete enumeration.

The next case provides a '"no'" answer to the question above. However,
we shall see that our example will eventually lead to more complicated
issues.

Suppose that we input a ''random" time separation matrix into our

problem, the following:

300 25 30
.. 1= 18 400 35
1]
25 20 450
- .. .0 .0 .0 _
Case 5: (10, kl, kz, k3)= 2, 3, 3, 3 Z=2

Not unexpectedly (Fig. 4.4) the optimal sequence involves no category
clustering. So the answer to the question asked earlier is "no".
But still, one cannot say that this issue is settled because the

last time separation matrix was a contrived one andin practice, for the

Aircraft Sequencing Problem, it never arises. Rephrasing therefore our
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question, we now ask the following: Could it be that for '"real-world"

input data for aircraft sequencing, this problem is so structured that

the optimal sequence of landings is always achieved through category-

clustering? This is a harder question to amswer than the previous ome.
Nevertheless, one can find counterexamples to demonstrate that again,
the answer to the question is ''mo":

Assume that category 1 consists of B747's, category 2 of B707's and
category 3 of DC-9's. Under certain well defined conditions concerning
the landing velocities, the length of the common final approach and other

information, the time separation matrix for this problem is the following'

(in seconds):

96 181 228 |
{t i ] =1 72 80 117
72 80 90

3=100.

Let us now examine two cases, identical in all inputs, except one:

The numbers of passengers are P1=300, P2=1SO and P

The number of wide-body jets, which is equal to 2 in case 6 and 1 in

case 7:
. ] 0 0
Case 6: (10, kl‘ kz, k3) = (2, 2, 5, 3) Z=2
. 0 0 ,0
Case 7: (19, kl’ kz, k3) = (2,1, 5, 5) Z=2

Case 6 (fig. 4.5) exhibits the

which we encountered earlier:

*A derivation of this specific
Appendix B.

familiar "category-clustering'' behavior

The optimal landing sequence starts with

time separation matrix is presented in
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all the landings of category 1, proceeds with all the landings of cate-
gory 2 and ends with all the landings of category 3. The Total Passenger
Delay is 936,750 passenger-seconds.

Since Case 7 is a slight variation of case 6, one might expect a
similar optimal solution as well. Surprisingly enough, however (Fig.
4.6), the optimal solution in Case 7 is entirely different:

First of all, category 1 (which now has one member), loses the "first-
to~-land" privilege it held in Case 6. But, more interestingly, the opti-

mal sequence shows the single B747 being inserted between two groups of

B707's: One group of 4 planes, which leads the queue, and a single B707
which follows the B747! The remaining sequence consists of all the
DC-9's. The total Passenger Delay is 758550 passenger-seconds.
Tﬁis is certainly a very peculiar behavior. It is not possible to
decrease the Total Passenger Delay below that value of 758550, no matter
what rearrangement is tried upon. Two intuitively "obvious,' but provably
unsuccessful strategies are:
1) to move the B747 at the head of the queue, in front of all the
B707's. This would result in a Total Passenger Delay of 766,350
(Fig. 4.7a).

2) to move the B747 even further downstream: between the B707's and
the DC-9's. This would result in a Total Passenger Delay of
761,600 (Fig. 4.7b). |

Before summarizing our observations, let us see one more instance
of peculiar behavior:

Returning to our first time separation matrix, (Cases 1 through 4),

we examine the following two cases:
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Fig. 4.5 : Case 6

- 0000 O-0-e0 000

Fig. 4.6 : Case 7.

*
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Fig. 4.7.

Fig. 4.8 : Case 8.

* |

Fig. 4.9 : Case 9.
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o0 ,0 .0

Case 8: Pl=110, P2=llO, P3=120, (io, kl, kz, k3) = (3, 5, 5, 5), 2=2
, o ,0

. = = = k = =

Case 9: Pl 110, PZ 110, P3 130, (10, kl’ 9 k3) (3, 5, 5, 5),2=2

In other words the only difference between these two cases is the number

of passengers in category 3: 120 vs.130.

It turns out that this small difference is sufficient to lead to

entirely different optimal sequences: Both solutions exhibit category-

clustering, but in Case 8 the order is 1-2-3 while in Case 9 the order
is 3-1-2. (Figures 4.8, 4.9.) The Total Passenger Delays incurred are

1087000 and L121500 respectively.

4.4 Directions for Subsequent Investigation

The primary purpose for presenting the above examples was to demon-
strate that our ASP algorithm indeed works.

Neverthelesé, we cannot avoid noticing that under some circumstances,
the pattern of the solution is itself specially structured (category-
‘clustering) while under other, as yet unpredictable, circumstances this
pattern is upset. Thus, one tan ask questions like the following:

1) When do categories cluster?

2) Why does the optimal sequence of case 7 take this particular form?

3) Why did a difference of only 10 passengers per category change

entirely the optimal sequence of Case 8 to that of Case 9?

We shall attempt to shed some light on these and related issues in
Appendices A, B, C and D of this report.

Our immediate task is different however. We shall extend the capabi-
lities of our algorithm by examining how we can solve the ASP when priority

considerations are incorporated. In this respect, the assumption of the
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current unconstrained case that at any stage of the sequencing procedure
we are free to assign the next landing "slot" to any of the remaining
aircraft, will be dropped. The next Chapter will introduce, formulate

and solve this new version of the problem.
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CHAPTER 5

ASP-CONSTRAINED POSITION SHIFTING (CPS): DYNAMIC PROGRAMMING SOLUTION

5.0 Introduction: Meaning of CPS

A basic assumption in the formulation of the ASP presented in the
previous Chapter was that we would not take into account any priority
considerations. This was like hypothesizing that all planes in the sys-

" from the instant

tem arrived simultaneously. We started '"counting time
the zeroth airplane landed at the airport and we did not bother with

the actual order in which these planes had arrived into the system. We
considered .ourselves free to form our own landing sequence in any way

we wished, namely at any stage of our procedure we could assign the next
landing slot to any of the aircraft remaining in the queue.

* In practice, of course, the situation is somewhat different: The
aircraft in our '"reservoir" qpuld not have arrived all at once, but in
some order. To neglect that order totally, would most likely result in
repeatedly biased decisions in favor of certain category types and against
other categories. For example, we could note in most of the cases pre-~
sented in the previous Chapter, that category 3 (light jets) was assigned
to land last. This assignment is certainly a biased decision against
category 3, since it is likely that some airplanes of this category may
have arrived in the terminal area much earlier than planes of other cate-

gories which are likely to be assigned a high landing priority by the

algorithm.
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The main point of our argument is not "bias" or "fairmess' per se
but rather concerns the stability characteristics of our sequencing phi-
losophy, particularly in the real-world "dymamic'" environment. If we
try to apply the algorithm of the previous chapter as it is to a dynamic
environment, the following may happen: Each time a new airplane is ad-
ded to our "'reservoir" we shall have to take this airplane into account
and run the algorithm again with this new piece of information as part
of the input. If we adopt this "updating' scheme, it is entirely con-
ceivable that some airplanes (for example those of category 3) continuous-
ly remain assigned to the end of the queue, just because there exist other
airplanes with more favorable characteristics.

It is also conceivable that the optimal aircraft sequences resulting
from two consecutive updates will bear no relationship at all with one
another. For example, an airplane of category 3 which is just about to
- land, may be shifted back at the end of the sequence if a more '"favorable"
airplane appears in the meanwhile, and in fact, may be denied permission
to land forever as long as some more favorable airplanes keep arriving.

As mentioned also by Dear [DEAR 76], any "dynamic" sequencing scheme
which is realized by continuous updates based on "global reoptimizations"
of the current system, is likely to produce "global shifts" in the land-
ing positions from one update to the next one as well.

We should still keep in mind, of course, that if "fairness", or
"stability" is the only important issue, then the easiest thing to do is
to return to our First-Come~First-Served discipline and simply assign

landing slots according to the order in which the aircraft have arrived
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at the terminal area*. (learly, this is also an undesirable prospect.

So we should try to find a scheme which is somewhere between the provably
unstable unconstrained case and the inefficient FCFS discipline. It
turns out that such a scheme has already been suggested, although bare-

ly investigated in depth. It is called Constrained Position Shifting

and consists of the following:

Suppose that our aircraft "reservoir" is ordered, namely we know
which of these aircraft has arrived first, which second, etc. Suppose
also that there is a rule which forbids any landing sequence which re-
sults in the shifting of the initial position of any particular aircraft
by more than a prescribed number of single steps, upstream or downstream

in the sequence. We shall call this number Maximum Position Shift (MPS).

, . . th - .
Thus, if MPS=3, for example, an aircraft occupying the 12 position in
the initial string of arriving aircraft, can land potentially anywhere
th th . . . .

from the 9 to the 15 position in the actual optimal landing sequence,
but cannot be assigned a position outside this interval.

Other than for these new priority constraints, our problem remains
as it was formulated earlier. It is clear that this new version has two
additional inputs:

a) The initial sequence of aircraft.

*As Dear [DEAR 76] points out, two distinct FCFS schemes can appear in

the ASP. The first sets priorities according to the order at which each
aircraft enter the Terminal Area System. This event takes place at a
certain distance from the runway, of the order of 50 n. miles. Due to

the fact that the transit time from System Entrance to the runway varies
with the aircraft (because of different velocities), a second FCFS scheme
emerges: This sets priorities according to the projected time at which
each aircraft are expected to arrive at the runway. The former discipline
is termed FCFSSE (System Entrance) and the latter FCFSRWY (Runway).
Throughout this dissertation we shall use FCFS for FCFSRWY.
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b) The value of MPS.

We make the following additional observations:

1) The version of the problem which we shall examine is again
"static", namely no intermediate arrivals will be considered. We shall
again start counting time at the instant the zeroth plane lands (t=0).
All delays that have been sustained prior to that time cannot be changed
("sunk costs") and, in view of our linear objectives, will be ignored.
Despite the fact that we shall again examine a "static" problem, the im-
portance of the MPS constraints in the equivalent "dynamic" problem is
easy to recognize. With MPS constraints, any aircraft occupying the ith
position in the initial queue is guaranteed to land occupying a position
in the landing sequence which falls between i-MPS and i+MPS. So any up-
dating scheme in the '"dynamic" version which keeps track of the above
constraints, automatically takes care of the biases likely to occur in
the equivalent unconstrained case and all airplanes are guaranteed to
land sooner or later. We shall come back to the issue of "dynamic" se-
quencing in Chapter 7. i

2) Clearly, MPS=0 corresponds to the FCFS discipline, where no "opti-
mization" is really involved.

3) On the other hand, if T is the total number of aircraft in our
"reservoir"”, then the case MPS>T-1 corresponds essentially to the uncon-
strained case, because there is no way that an aircraft among a set of
T airplanes can be shifted by more than T-1 positioms.

4) Letting u(MPS) be the optimal value of the problem according to
some objective (minimization of Last Landing Time or of Total Passenger
Delay), and for a specific value of MPS, then, everything else being equal,
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we shall have:
u(MPSl) b U(MPSZ)
if and only if

MPSl < MPS2

We can see this by the observation that we cannot possibly do better

(i.e. reduce our costs) by reducing MPS, because by doing so we will

essentially be reducing the number of feasible final sequences (tightening

of the constraints).

5) Letting also u(») be the optimal value of the problem without

any MPS constraints, then the following are true:

V(MPS) 3 y(x) for MPS < T-1

and y(MPS) = vu(=) for MPS > T-1
6) If there exists a value of MPS so that:

V(MPS) = y(=»)

then we shall also have -
U(MPS') = u(=) for all MPS’' > MPS

7) Similarly, if there exist two values of MPS, MPSl

that:
U(MPSl) = U(MPSZ)

then we shall also have:

U(MPSl)

MPS, .
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The CPS problem was tackled by Dear [DEAR 76] in conjunction with
the ""dynamic'" problem, roughly as follows:

Each time a new aircraft enters the system, a "local reoptimization"
of the tail of the existing (currently "optimal"') queue is performed.
For any given value of MPS, this "local reoptimization" concerns only the
last MPS airplanes of the queue, which, together with the newly entered
airplane are eligible for possible rearrangement. Thus, all (MPS+1)!
combinations of possible tail sequences are evaluated by exhaustive enu-
meration and the best sequence is chosen. No reoptimization of the re-
mainder of the queue is considered.

This procedure is computationally adequate only for small values
of MPS (up to 6 for example). In addition, it is clear that the solutions
produced by the procedure are suboptimal, because at each iteratiom, a
part of the queue is "frozen" and the optimization which is performed on
-the remainder is local. Thus, while it is conceivable that the appear-
ance of the new airplane might create rearrangements in the queue beyond
MPS positions upstream (in a %ind of chain-reaction), this possibility is

ruled out by the proposed procedure.

5.1 Outline of Solution Approach Using Dynamic Programming.

Our Approach to the CPS problem will be more sophisticated than the
above. We shall see that it will not be limited to small values of MPS
and that the solutions will not be suboptimal. Our algorithm will be
seen to solve the CPS problem for any value of MPS and still remain with-
in polynomially bounded execution times with respect to the number of

planes per category. We again remind the reader that we solve here the
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"static" case. The following arguments will explain the rationale of the
approach.

1) To describe the initial sequence of aircraft we shall use the
notation (i, il""’iT) where, again, ig is the zeroth -landed category
and category ij holds the jth position in the initial sequence.
ij e {1, 2,...,N} for j=0,1,...,T.

For example, (io, il’ iz, i3, 14) = (2,1,3,1,2) means that the zeroth
landed category is 2, and that the lst and 3rd positions are held by
aircraft of category 1, the 2nd position by an aircraft of category 3 and
the 4th position by an aircraft of category 2.

2) 1f we are to keep the notation 6f the D.P. approach presented
in the previous Chapter, we should try to find a way to translate the
MPS constraints into a formulation compatible with that of the D.P. ap-
proach. The next observation is an indication that this compatibility
may be achieved.

3) It is logical to assume that an "internal' FCFS discipline exists
among- airplanes belonging to ihe same category. The major consequence

of this fact is that if at any stage we know (L,k ..,kN) as they were

1’
defined in the previous Chapter, then we know not only how many, but also
specifically which airplanes per category have landed so far. This means

that the state representation (L,k ..,kN) used in the unconstrained

1°°
‘case is sufficient to describe the system in the CPS case too.

4) It should be clear that in general, the effect of the MPS con-
straints will be to reduce the feasible state space, namely there may be

state configurations which cannot be feasible. As an example of an in-

feasible configufation, we consider (L,kl,kz)a(l,l,Z) with respect to the
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initial sequence (11 2’ 3,14,1 ,1 ) = (2,1,2,2,1,1) with N=2 and MPS=1.
Marking by * the landed airplanes and by $ the last landed airplane

we will have:

We can see that the last landed airplane (§) has landed third while
its initial position was fifth. A shift of 2 is not permissible for
MPS=1, so (1,1,2) is infeasible.

Before formalizing this observation, let us introduce some new no-
tation:

(1) Let k?ax be the total number of airplanes belonging to cate-—

gory j in the initial sequnce (j=1,...,N).

(ii) Let sjsk?ax-kj. This is the number of airplanes belonging

to category j which have landed, given that kj airplanes
of this category have not landed (j=1,...,N).

(iii) Let m = 'g sj. This is the total number of airplanes landed,

therefori-the position held by the last landed airplane.

(iv) Let, finally, LAST(j,sj) be the position in the initial se-

quence (il,...,iT) of the s§h airplane of category j, if we

start counting from i This position can be uniquely de-

1
termined from the initial sequence itself. By convention
LAST (j,0)=0 for every j.

Adopting the above notation, we can state the following proposition:

A necessary condition for (L, k .. kN) to be feasible is
that |[m-LAST(L,s; )| s MPS (5.1)
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We can see this by the fact that m is the final position category L is
assigned, while LAST(L,sL) was its initial position. The absolute value
of their difference must be no more than MPS, according to the MPS con-

straint.

5) It should be clear that condition (5.1) alone is not sufficient

for feasibility. As an example consider the combination (L’kl’kz’kB)E
(1,1,0,1) in the initial i ,i.,i.,,1,,1

,1) ini sequence (11,12,13,14,15,16)§(2,1,3,l,2,l),
with N=3 and MPS=0. It will turn out that we have infeasibility des-
pite the fact that the combination does satisfy (5.1).

In fact, we will have: .

2, 1,31, 2, 1)

* % * %

$

Here sl=32=2 and 53=O, so m=sl+sz+53=4.

Also, LAST(L,SL)=LAST(1,2)=4 and since [4-4| = 0 = MPS, it follows that

(5.1) holds.

Nevertheless, if we examine what can possibly happen next, in this ex-

ample, we can see that there are only two possibilities, since k2=0:

a) We can decide ta land category 3: But this is forbidden, since
we would assign the 5th position to category 3 while its initial
position was the 3rd and MPS=0.

b) We can decide to land category 1l: But this is also forbidden,
since we would assign the 5th positian to category 1l while its
initial position was the 6th and MPS=0.

We therefore conclude that since all potential '"next" combinations
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of (1,1,0,1) are infeasible, (1,1,0,1) itself is infeasible, despite the
fact that it did satisfy (5.1).

6) A special case arises when kj=0 for every j. Then (5.1) is also
sufficient for feasibility, since we already have reached the end of the
sequence and need not worry about what will happen next.

We are now in a position to state the fallowing theorem for feasibil-
ity, the proof of which should be clear from the observations we have
made so far. We will assume that we follow the notation introduced in

paragraph. 4 ahove;

RECURSIVE FEASIBILITY THEOREM:

A combination (L,kl,...,kN) is feasible with respect to an initial

sequence and an integer MPS, if and only if both (A) and (B) are true:

(a) |m—LAST(L,sL)| < MPS
(B) Letting X = {y: 1 £7 € N, ky > 0}, either one of the
following is true: A
(Bl) X is empty. (i.e. all planes have landed.)
(B2) There exists an x in X such, that the combination
(x,k',...,k&) is feasible, where:
kj-l if j=x
k! = for j=1,...,N

kj otherwise

7) As the name of the above Theorem suggests, feasibility in the

CPS problem is of a recursive nature. This means that the feasibility
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(or infeasibility) of a certain state combination not only depends on
whether that particular state itself satisfies a certain relation (here,
inequality (5.1) only, but in general more than one relations), but on
whether there exists at least one 'mext' state combination which we know
is feasible. This special nature of feasibility will be used in order
to create for all states the information on whether they are feasible or
not. This will be described later.

8) As far as the form of the optimality recursion is concerned, it
is not difficult to see that only minor modifications are necessary. In

fact, if (L,k ..,kN) is infeasible, then we do not have to execute the

1’

recursion at all. If (L,k kN) is feasible, then the recursion is:

120

VZ(L,k‘,...kN) = Min [WZ'EL,X+VZ(X’k
xeXl

which is the same recursion as (4.1), with the only difference that now

1 \J
l,...,kN)]

we have to search among the elements of Xl’ i.e. the set of x's for which

(x,k',...,k&) is feasible. If k =...=kN=O, there are no ''mext" states

1

and VZ(L,k kN)=O (Provided of course (L,kl,...,kN) is feasible, for

1000
which only (5.1) is necessary to hold). If, on the other hand there is
at least one kj#o, then we have to examine all the feasible "next' states.

The existence of at least one of these states is guaranteed by our Re-

cursive Feasibility Theorem, if (L,kl,...,kN) is feasible.

5.2 The Dynamic Programming Algorithm,

With the above considerations in mind, we can see that the solution
algorithm will consists essentially of three parts, the following:
1) The "Screening" part, where we determine and store information

concerning whether each (L,kl,...,kN) is feasible or not. We do this by
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using backward recursion, starting from (L,0,0,...,0) where only (5.1)

max max
k

is needed and proceeding lexicographically up to (L,k1 seeesky

) for
L=1,...,N according to our Theorem.

2) The "Optimization" part, where we apply the optimality recursion
(4.1) only for feasible states, using the information created in the
"Screening' part. Whenever we apply the recursion we examine only feas-
ible potential ''mext' states.

A parenthetical note at this point is that these two recursions
need not be separate but may as well be merged together and be executed
simultaneously. This may have certain computational advantages (as we
shall see below) but has the disadvantage of coupling the two recursions
together. A decoupling of the two recursions is better for sensitivity
analysis: for example if we change objective or time matrix we don't
have to execute the ''Screening' part again but may move directly to the
"Optimization" part.

3) The "Identification'" part, which will essentially be the\same as
the one in Chapter 4. A minor differenge is in Step 2 and of Lm=0; X
now has to be chosen from the set of feasible combinations (x,kl,...,kN).
The major difference is that by contrast to the unconstrained case, this
part of the algorithm cannot be used as many times as one wishes, but
from the fact that it is the initial sequence itself, together with MPS,

which determine feasibility, and once either of them is changed omne has

to perform parts 1 and 2 of the solution procedure again.

5.3 Computational Effort and Storage Requirements

Let us examine first the case where "Screening"” and "Optimization"

are separate precedures. In this case, we must create a new array (in
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addition to the existing arrays VZ and N'EXI‘Z) to store feasibility information.
This can be a logical array which we may call FEASBL(L,kl,...,kN) with
values "true" or "false" depending on whether (L,kl,...,kN) is feasible

N
or not. The size of this array is C = N. II (k?ax+l) and the tabulation

of it will take C iterationms. =

An interesting question is now the following: How many iterations
will the subsequent "Optimization" part take?

We recall that we use the optimality recursion only for feasible
states. The number of feasible states is a function of both the compo-
sition of the initial sequengé of aircraft and MPS. For general values
of MPS the exact behavior of this function is far from obvious, being
most likely dependent on the quasi-random nature of the initial sequence,
in an unknown fashion. We shall not get involved in analyzing this
question in an exact way in this report. TInstead,we shall contend our-
selves with the following facts:

a) The function in question has the value T+l if MPS=0 and the
value C (as defined above) if MPS > T-1. We can see the former fact by
observing that if MPS=0 then only one sequence will be feasible, the
). Since at each of the

initial FCFS sequence, itself: (io, i i

1 T
T+l stages of this sequence only one state combination is feasible, the
total number of feasible states is T+l. On the other hand if MPS > T-1
then we are essentially back to the unconstrained case and all C states
will be characterized as feasible.

b) For intermediate values of MPS, the number of feasible states is

a non-decreasing function MPS.

c) In any event, this function is bounded by the worst case
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performance which corresponds to the unconstrained case. Still, in this
worst case the computational effort we have to experience is a polynomial
function of the number of planes per category. In other words, the or=-
der of magnitude of computational effort due to the introduction of MPS
constraints is the same as that of the unconstrained case.

Coming now to the case where '"Screening'" and "Optimization" are
merged, we observe that we can save the storage space reserved for the

array FEASBL. In fact we can put VZ(L,k kN) = -1 whenever the cor-

R
responding state is infeasible. The computational effort will decrease
too (by a proportionality factor only, but not in its order oﬁ magnitude)
for we shall determine feasibility on the spot, at each iteration of

the optimality recursion. The mechanics of the algorithm will, in all
other respects, remain unchanged. As we have already indicated earlier,
this "merged" version is not particularly suitable for sensitivity ana-

lysis with respect to the objective function, time matrix and number of

passengers.

5.4 Computer Runs-Discussion of the Results

Several example runs of the algorithm follow:
We shall examine various cases concerning a specific initial sequence
of T=15 aircraft, divided into N=3 categories. The sequence, including

the zeroth landed airplane iO is the following:
. ; = (9
(10,11,12,...,115) =(2,1,1, 3, 2,2, 3,2,1,2, 3, 3, 2,1, 2)

The time separation matrix is:
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96 181 228
[e..] = 72 80 117

72 80 90

and the numbers of passengers are:
(Pl,PZ,P3) = (300, 150, 100)

We again use the notation Z=1 for Last Landing Time minimization and
Z=2 for Total Passenger Delay minimizatiom.

The next cases show the behavior of the optimal solution for various
values of MPS and Z, as well as the values of the measures of performance.

Case 1 1is trivial but is presented here for comparison purposes. It
is for MPS=0 (Fig. 5.1). It is clear that the optimal sequence is iden-
tical to the initial one (FCFS) and independent of whether Z=1 or 2.
The Last Landing Time, incurred is 1729 seconds and the Total Passenger

Delay 2383800 passenger-seconds (an average of 851 seconds per passenger.)

Case 2 and 3 are for MPS=5. Case 2 (Fig. 5.2) is for Z=1. The op-
timal sequence exhibits a Last Landing Time of 1400 seconds (19% improve-
ment over Case 1) and a Total Passenger Delay of 2033800 passenger seconds,
or an average of 726 seconds per passenger (a 14% improvement over Casel,
despite the fact that Total Passenger Delay is not the objective of Case
2).

Case 3 (Fig. 5.3) is for Z=2. The optimal sequence exhibits a Last
Landing Time of 1528 seconds (an 11% improvement over Case 1, but as ex-
pected not as high as in Case 2) and a Total Passenger Delay of 1883250
passenger-seconds, or an average of 673 seconds per passenger (a 207%

improvement over Case 1).
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Fig. 5.1 : Case 1. In figures 5.1 through 5.5 the top sequence is the
initial FCFS sequence and the bottom one is the optimal sequence. Arrows

depict the position shifts of the various airplanes.
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Fig. 5.2 : Case 2.
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FIG. 5.3 : Case 3.
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Note (Figs. 5.2, 5.3) that in accordance with our CPS rule, no po-
sition shift is greater in magnitude than MPS=5. Note also the different
optimal sequences.

The final two cases 4 and 5 correspond to MPS=z1l4 which reduces the
problem to the equivalent unconstrained case. (MPS==,)

Case 4 1is for Z=1. The Last Landing Time of the optimal sequence
(Fig. 5.4) reaches its lowest achievable value of 1323 seconds (a 23%
improvement over Case 1). By contrast, the Total Passenger Delay rises
to 2241300 passenger seconds, an average of 800 seconds per passenger
(only a 5% improvement over Case 1, i.e. worse than Cases 2 and 3. This
sudden deterioration in the secondary measure of performance is a further
indication that the two alternative objectives of the problem are not al-
ways "in harmony" with each other, i.e. that successive improvements with
respect to one objective will not necessarily lead to successive improve-
ments with respect to the other).

Case 5 is for Z = 2. The Last Landing Time of the optimal sequence
(Fig. 5.5) is now 1424 seconds (a 17% improvement over Case 1) while the
Total Passenger Delay reaches its lowest achievable value of 1664900
passenger seconds, or an average of 595 seconds per passenger (a 30%
improvement over Case 1).

Note that the two last cases exhibit drastically different optimal
sequences. Note also that although MPS is equal to 14, the actual maximum
shifts achieved are lower (-10 in Case 4 and 9, -9 in Case 5). This
last observation means that it is possible that the actual value of MPS

for which the CPS problem reduces to the unconstrained problem is lower

than T-1.
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In fact, a value of MPS=10 would do for Z=1 and a value of MPS = 9
for Z=2 in this example.

In figures 5.6 and 5.7 we show for our example how the percent im-
provement over the FCFS sequence for each of the two measures of perform-
ance changes as a function of MPS. Solid lines indicate that the measure
of performance in question is the objective to be minimized. Dotted
lines show the behavior of the other measure of performance when the

former is minimized. Not unexpectedly, the solid lines are non-decreasing,

while we see that this is not generally the case for the dotted lines.
Also, as expected, the solid lines are nowhere below the dotted lines,
because the improvement of the measure of performance which is the object-
ive of the problem (solid line) is the maximum improvement achievable.

The abéve examples conclude for the moment our discussion of the
CPS problem. It has been seen that the concept of constrained Position
Shif;ing takes care of several disadvantages of thé equivalent unconstrained
case especially when "dynamic" considerations enter the problem. In this
chapter we developed an algorithm for solving the "static" version of
the Aircraft Sequencing Problem for any value of MPS, leaving the "dy-
namic" version for later discussion (Chapter 7). This algorithm exhibits
a computational effort which is of the same order of magnitude as that of
the equivalent unconstrained case,namely a polynomial function of the
number of airplanes per category.

In the next Chapter we shall return to the unconstrained case but

this time the problem of sequencing aircraft in two parallel runways

will be examined.
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Fig. 5.6 : % improvement in LLT with respect to the FCFS discipline.
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Fig. 5.7 : 7% improvement in TPD with respect to the FCFS discipline.
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CHAPTER 6

THE TWO-RUNWAY ASP

6.0 Introduction: Formulation and Complexity of the Problem

All versions of the ASP examined so far concerned the single run-
way configuration, that is, the case where all the planes have to use
the same runway to land.

In this Chapter we shall introduce and discuss certain issues con-

nected to the case where two identical, parallel and independent run-

ways are available. This configuration appears at many major airports
in the world, where it is impossible to accommodate all the traffic in
a single runway.

Let us state at the outset that this will not be a complete examina-
tion of the two-runway case, neither an attempt to find an"efficient al-
gorithm for this problem. Actually it is well known that the general
problem of sequencing a numbe; of tasks in two parallel processors, be-
longs also to the class of NP-complete problems [GARE 76]. What this
chapter will attempt to do, is to link the two runway problem to the
single runway problem and indicate an "elementary" solution procedure
based on that connection. The following observations will establish
our basic philosophy for looking at this problem:

1) We assume that we are dealing with an unconstrained situation,
i.e. once again we neglect priority considerations. Later it will be

seen that to include the latter in the two runway case would make the

problem extremely difficult.
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2) We also assume that this problem is also "static' namely no inter-
mediate aircraft arrivals will be considered and the sequencing procedure
ends as soon as all aircraft have landed.

3) The alternative objectives which will concern us here are almost
equivalent to the ones which we have examined so far, namely Last Landing
Time minimization (Z=1) and Total Passenger Delay minimization (Z=2). The
latter measure of performance is rather straightforward to envision. It
consists of the sums of the waiting times for all passengers in this
system, from t=0 (when our sequencing procedure starts) till the time
each passenger lands. Coming to the first objective however, and since
we shall actually observe two Last Landing Times, one for each runway,
the question is: "What does Z=1 mean in the two-runway case?"

1’ 52

are the last landing times for runways 1, 2 respectively, it is clear

It is not difficult to give an answer to this question. If t

that the Last Landing Time for the combined system of both runways should
be the largest of tl, t2' This will correspond to the time at which the
last (for both runways) aircraft lands. Z=1 therefore implies an attempt

to minimize the maximum of the two Last Landing Times observed at the two

runways. Because of this, our problem can also be called a minimax prob-
lem.

4) It is clear that the two-runway problem must be at least as dif-
ficult as the equivalent single runway problem. In fact, in the two
runway case an additional decision we have to make (besides the sequencing
strategy per se) concerns 'what-aircraft-goes-to-what-runway.'" In other

words, we have to partition the set of airplanes, into those which will go
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to Runway 1 and those which will go to Runway 2 and then we have to se-

quence these planes. At this moment of course, it is not clear at all
that these two distinct decisions can be separated from one another
and therefore executed sequentially. Our next observation deals with
this issue.

5) Suppose for the moment that we have somehow decided on a parti-

cular partition, not necessaril& the optimal one. 1In other words, given
that at t=0 the composition of our aircraft "reservoir" is (kg,..,,kg)
planes per category, suppose we have decided that (xl,.‘.,xN) of them
should go to Runway 1 and the remainder (kg—xl,...,kg—xN) should go to
Runway 2. We then ask ourselves the following question: Given the above
partition, how should the airplanes be sequenced on the two runways?

The answer to this question is that since we have already separated

the airplanes, we have essentially constructed two independent sets, one

for each runway. Since no interaction takes place between these two sets,

it makes sense to sequence each set individually, by applying the single

runway algorithm described in-Chapter 4. So, if i are the zeroth-

oL’ "02

landed categories on Runways 1 and 2* respectively, then the initial

state combination for Runway 1 will be (i,., x ...,xN) and for Runway 2
?

01" "1

0 0
(ioz,kl—xl,...,kN-xN).
6) The above argument settles the question of what happens if we

know the partition. But as we mentioned earlier, this is what we have

to decide upon. So now the problem reduces to finding a partition

*We assume that i.., i., have landed simultaneously at t=0. The relaxa-
tion of this assumption will not create major problems in our subse-

quent reasoning.
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% * 0 * 0 =* . , .
(xl,,..,xN)/(kl—xl,...,kN-kN) which is optimal.
- 0 0
To evaluate a particular partition (xl,...,xN)/(kl xl,...,kN-xN)
we simply look into the appropriate entries of the array VZ which we
have previously prepared by a single pass of the "optimization" part of

the single runway algorithm. So the measure of performance MZ(E) cor-

-5
responding to the vector x = (xl,...,xN) and the objective Z, is given

by:
Max[(Uz(l), UZ(Z)] ifZ=1
MZ(x) = (6.1)
Uz(l) + UZ(Z) if 2 =2
where Uz(l) = VZ(iOl,xl,...,xN) (6.2)
. 0 0
and UZ(Z) = Vz(loz,kl—xl,...,kN—xN) (6.3)

We recognize Uz(l) and UZ(Z) as the optimal (according to our objective)
values of the individual sequencing problems for each of the two runways,
after we have decided on the partition. .

- -
To find the optimal partition, we have to find a vector x=(xl,...,xN),

so that MZ(;) (given by (6.1) through (6.3) above) is minimized.
7) At this point we do not propose anything other than a complete
enumeration procedure for minimizing MZ(;). This procedure will examine

essentially all possible partitions (i.e. all combinations of (xl,...,xN)

. 0 . . e o
with each xj between 0 and kj) corresponding to the initial composition

(kg"">k8) of our aircraft reservoir. This can be done in exactly

N
jgl(k?+l) steps. If the entire tableau of V, is readily availablex,

#*This will happen if VZ is in main storage rather than in auxiliary storage.
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the computational effort associated with this exhaustive search will

be of the same order of magnitude as the one for the "optimization'" part

of the single runway algorithm, namely a polynomial function of the num-

ber of airplanes per category.

6.1 Solution algorithm

With the above arguments in mind, we see that we can construct an
algorithm for the two-runway problem which is essentially a post-processing
procedure of the information created by a single pass of the "Optimization"
part of the single rumway algorithm (Chapter 4). It will consist of

the following steps:

Step 1: Perform one pass of the "Optimization" part of the single
2-=0 = == g

runway problem. Store the values of VZ(L, k k ) and NEXT (L, k KN)

120

for all values of L (from 1 to N) and kj (from 0 to kmax

).
Step 2: For any particular composition of the aircraft reservoir

(kg,.. k ) and initial conditions (101, iOZ: zeroth-landed categories),

max

provided each kg < kj , do the following:

Examine all combinations of vectors X = (xl...,xN) with 0 g xjs k
and select the one which minimizes the quantity:
Max[V i ), V. (1 ko-x 0_ )]
o1, %17 3N V2o K TR Ry s
M, (%) = if Z=1
v, (i . ) +V, (1nn kOmx ;e e Ko=)
A s R U PAS VL S EEEEEL Nt O
if Z=2

* *
Let x* = (xl s e e Ky ) be the optimal vector.
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Step 3: Using the information available from the already tabulated

array NEXT,, perform two separate "identification" procedures (as des-
y NEXT,, p p

cribed in the single runway problem in Chapter 4): One for Runway 1

*

01°%1°
, kO * 0 *

state (102, l—xl,...,kN-xN).

*
with initial state (i ...,xN) and one for Runway 2 with initial

Whenever a new aircraft reservoir and/or new initial conditions
are given go to Step 2. For a new time separation matrix and/or new

numbers of passengers per aircraft category, go to Step 1. Otherwise

END
To understand now this algorithm, we give a small illustrative
example:
max_, max
Step 1: Suppose that N=2, Z=1, and kl =k2 =2. Suppose also

that the single pass of the "Optimization" part of the single rumway

problem creates and stores the following values:

€,k k) V) Lk k) NEXT; (L k, ,k,)
1,0,0 0 =
2,0,0 0 -
1,0,1 120 2
2,0,1 90 2
1,0,2 210 2
2,0,2 180 2
1,1,0 80 1
2,1,0 80 1
1,1,1 200 1
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(L, kl, k2) cont 'd Vl(L’kl’kZ) cont'd NEXTl(L,kl,kz)cont'd
2,1,1 170 2
1,1,2 290 2
2,1,2 290 1
1,2,0 160 1
2,2,0 160 1
1,2,1 280 2
2,2,1 | 250 2
1,2,2 370 1
2,2,2 340 2

Step 2: Suppose now that we have a composition of our reservoir
(ko,k0)=(2,l) and initial conditions (i.,,i..)=(1,2). Then we do the
1’72 01’702
following:
" We examine all vectors §5(x1,x2) with 0 ¢ X € 2, 0 ¢ Xy € 1 and

for each of them evaluate (E) as given above. Then we choose the com—
(=}

. R e >
bination which minimizes Ml(x). The vectors we examine are:

x V. (4 V.1 K K-x) M. (%)

x(x),%,)) 1 Gopo%1 %)) 1ok =%ps ky=xy 1
0,0) 0 250 250
©,1) 120 160 160
).
(1,0) 80 170 170
(1,1) 200 80 200
(2,0) 160 90 160
(2,1) 280 0 280
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So we see that each of the vectors (xl,xz) = (0,1) and (2,0) minimizes

Ml(x). (Multiple optimal solution.) Breaking this tie arbitrarily we
x %
select (xl,x2)=(0,l) as the optimal partition.

Step 3: We now perform two identification procedures.

*

*
Runway 1: Start with (1Ol,xl,x2)=(l,0,l), next state is (2,0,0).
0

O 95" = 2.2.0 '
17X k%, ,2,0) next state is

(1,1,0) and final state is (1,0,0).

Runway 2: Start with (102,k

The partition and sequencing of this example is depicted in Fig. 6.1

6.2 Computer Runs-Discussion of the results

Several example runs follow. We use a category mix we have used

before. N=3 and the time separation matrix is (in seconds):

(96 181 228
[t..] = 72 80 117

72 80 90

The numbers of passengers per category are (Pl,Pz,P3)=(300, 150, 100)

The input for each run is the vector (101,i02,k2,kg,kg) as defined earlier.

A parameter for each run is our objective Z, as also defined earlier.

The outputs for each run are:

x k%
a) The optimal partition of the initial set of aircraft: (xl,xz,x3)
ircraft go to R 1, th &9 —x k0 10y
aircraft go to Runway 1, the rest 1 ~Xp k%, k =x,) go to

Runway 2.

b) The optimal sequences for each of the two runways. These will be

depicted in accompanying figures.

c) Certain measures of performance:
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For each individual Runway i (i=1,2) we have:

L, = Last Landing Time for the set of aircraft landing there.
Ci = Total Passenger Delay for the same set.
Ei = Average per passenger delay for the same set.

Combined performance for both Runways: We shall have :

t = Last Landing Time.
C = Total Passenger Delay.
t = Average per passenger delay.

It is clear that the following relations are true:

t = Max [tl,tz]

c=2¢C

1 C

2
T, ot

and

{4+

2
The cases we examine are the following:

. . 0.0.0 .
Case 1l: (101,102,k1,k2,k3) = (1,1,4,4,4), Z=1 (Fig. 6.2)

Optimal partition: Rumway 1: (2,2,2) Rumway 2: (2,2,2)

Individual Performance :

Runway 1: t1=636, Cl=418,500, tl= 380

=418,500, t,= 380

=636, C 5

Runway 2: ty 9

Combined Performance -

t=636

C=837,000

=380
Case 2: (inr i k0 k0 k) = (1,1,4,4,4), Z=2 (Fig. 6.3)
Pt ol 01’02’1’293 PR St B ] ) .

(Same as Case 1 except for the objective.)

Optimal Partition: Runway 1: (2,2,2) Runway 2: (2,2,2)
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Runway 1 O—@

*

Fig. 6.1.

*

vt OO0

*

Ry 2 (YO0 0—e—e-)

Fig. 6.2 : Case 1.

*

*

Fig. 6.3 : Case 1.
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Individual Performance:

Runway 1: t;=660 C,=333,300 t.= 303

Runway 2: t2=660 €.=333,300 t,= 303

2

Combined Performance .

t = 660
c = 666,600
t = 303

We note several facts (see also Figs. 6.2 and 6.3).
1) In each case the sequences on the two runways are identical
to one another.
2) The two cases exhibit the same optimal partitiom.
3) The two cases differ in the optimal sequencing and in their
measures of performance.
A question which arises after eximining these cases is whether the

two sequences on each runway always look "similar"” (In Cases 1 and 2

they are identical). The next two cases will show that this is not

always true: -

. . 0.0.0
10173027k Ky 0Ky = (2,2,5,5,5), Z=1 (Fig. 6.4)

Optimal partition: Runway 1: (2,0,5), Runway 2: (3,5,0)

Case 3: (

Individual Performance:

Runway 1: t,=645 c, = 506,700 t.=460
Runway 2: t,=664 C, = 691,200 22=418

Combined Performance :

t = 664
C =1,197,900
t = 436

-103-



, . 0.0.0 - .
Case 4: (101,102,kl,k2,k3) (2,2,5,5,5), 2=2 (Fig. 6.5)

(Same as case 3 except for the objective)

Optimal partition: Runway 1l: (0,5,3), Rumway 2: (5,0,2)

Individual performance:

Runway 1: t; = 697  C;=362,100 t. =344

Runway 2: t, = 774  C,=541,800 t.=318

Combined performance :

t = 774
C = 903,900
t = 329

We can note several facts (see also Figs. 6.4, 6.5):

1) In both cases, the partition between the two runways is total-
ly asymmetric (e.g., Case 3: All planes of category 2 go to
Runway 2, all planes of category 3 go to Runway 1, Category
1 is split).

2) The partitions of the two cases are different,

3) The same holds for the orders in the sequences.

We shall examine two more cases:
0 .0

. 0, _ - ;
iOl’ 1395 kl, k2’ k3) = (3, 3, 1, 3, 5), Z=1 (Fig. 6.6)

Optimal partitiom: Runway 1 (0,0,4), Runway 2: (1,3,1)

Case 5: (

Individual performance:

L = 360 € =90,000 & =225

2 402 CZ=242,100 t2=284

Combined performance:

Runway 1: t

Runway 2: t

t = 402
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*

ey 1 )—@—@—0—0—0—~ -

Fig. 6.4 : Case 3.

. ‘
Runway 2 %%%%%%...

Runway 1 @’W—‘@“@_H_‘

Fig. 6.5 : Case 4.

o~ TN N 7\
Runway 2 W—'u UU‘ _U—H

*
Rovey 1 @—@—@—@—O

Fig. 6.6 : Case 5.

*
Runway 2 H—M—@—O

Runway 1 .—@—‘@"‘H—.

Fig. 6.7 : Case 6.

*
Runway 2 ‘—O_@_—H
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c= 332,100

t=266

. . 0 .0 0, _ o
Case 6 (i, iy, k), ky, k) = (3, 3, 1, 3, 5), z=2 (Fig. 6.7)

(Same as case 5 except for the objective)

Optimal partition: Runway 1: (0,2,3), Runway 2: (1,1,2)

Individual performance:

Runway 1: t1=457 Cl = 146,100 t,=243

Rumway 2: t,=460 C, = 142,550 t,=219

Combined performance:

t = 460
C = 288,650
t = 231

We can note the following facts: (See also Figs. 6.6, 6.7)

1) Runway 1 in Case 5 is '"'dedicated'" solely to landings of cate-
gory 3, but not all of them land there. One is assigned to
Runway 2.

2) All 4 sequencings (2 "similar" cases, 2 runways) bear no re-
lationship to one another.

3) The Total Passenger Delays on each of the two runways in Case
5 are drastically different (C2 is 169% larger than Cl!).

However surprising this may be, it is indeed this partitioning
and sequencing that actually minimizes the Last Landing Time
(402 seconds).

4) A more general remark, motivated by Cases 5 and 6 is the following:

It is often customary to consider the minimization of the largest

of two quantities as being roughly equivalent to approximately
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equalizing those quantities. The reasoning of course is that

if the difference between the two quantities gets large enough,
then it is likely that the largest of them is not minimal.
Surprisingly enough, cases 5 and 6 provide a good counterexample
to the above reasoning. In fact, the two Last Landing Times
in Case 6 are 457 and 460, i.e. approximately equal. However,
the strategy that minimizes the largest of the two is in Case
3, where these quantities are 360 and 402, i.e. significantly
different from one another!

Counterexamples like the above should be a warning for ex-
ercising caution when trying to ''guess' the properties of so-
lutions of such minimax problems. In particular, one should
be careful when a solution procedure is based on heuristics
that try to take advantage of, supposedly '"intuitively obvious"
properties - properties that may conceivably not exist.

For instance, one could have based a solution algorithm for
the partitioning problem of the two runway. case on the "intui-
tively obvious'", yet non-existent property that the optimal
partition of the initial aircraft mix is, more or less, symmetric
between the two runways. Cases 3 and 4 show that this is not

in general true,

6.3 Further Remarks on the Two—-Runway ASP

The examples which we presented exhibit a sufficient number of inter-

esting characteristics to further stimulate one's curiosity on the two

runway Aircraft Sequencing Problem. The "elementary' solution procedure
y g

we presented provided a scheme through which the information created by
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the single runway algorithm is utilized to obtain the optimal partitioning
of the set of airplanes between the two runways. Nevertheless, this
procedure provides no help for answering questions arising from the ex-
amination of the computer runs, such as the following:

1) When are the sequences on the two runways ''similar' and when
are they completely different?

2) What causes a particular category of aircraft to be assigned
entirely to one runway while other categories are 'split''?

3) Is there an underlying pattern in the partitioning and se-
quencing schemes that we can use to improve the solution ef-
ficiency?

In addition to the above, some additional issues can be addressed:

a) What happens if we introduce priority considerations (i.e. Con~
strained Position Shifting) for two runways?

b) Can we extend the proposed procedure to three (or more) independent
runways?

c) What happens if the problem becomes ''dynamic'?

We shall discuss such issues in PartIII of this report. It will
be seen there that the degree of difficulty associated with most of
these questions is considerably higher than any we have encountered so

far.

6.4 Summary of the D.P. Approach to the ASP

This Chapter concludes our considerations on the Dynamic Programming
Approach to various problems connected with the optimal sequeneing of

aircraft landings. In this respect, the following problems were
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considered:

(1) The unconstrained ASP - single runway

(2) the Constrained Position Shifting ASP - single runway

(3) The unconstrained ASP - two runways.
All the problems above were considered "static'. Their 'dynamic'" ver-
sions will be discussed in Chapter 1l. Algorithms were developed spe-
cifically for (1) and (2). For (3), an "elementary" algorithm, based on
that of (1) was presented. All three algorithms exhibit computational
efforts and storage requirements which are bounded by polynomial functions
of the number of aircraft per category.

Appendices A,B,C, and D will examine, as mentioned in Chapter 4,
several issues addressed there. These issues deal with 'category cluster-

ing,"

the time separation matrix and other related problems. Among other
things, we shall extensively investigate under what conditions certain
wel; defined patterns are certain to occur in the optimal sequence and
how the specific structure of the ASP affects these patterns. Certain
other, less predictable patte%ns (like that of Case 7 in Chapter 4 (Fig.
4.6)) will be explained as well.

It will be seen that the approach used in these appendices con-
stitutes a new way of looking at the ASP and as such, is essentially
self-contained. Thus, no loss of continuity will occur should the
reader decide not to examine this material. On the other hand, the
extensive investigation of the same problem from a point of view dif-
ferent from the one used so far, may provide additional inmsight into

the problem.

A description of the computer programs used for the ASP will be given

in Appendix E.
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PART III

FINAL REMARKS
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CHAPTER 7

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

7.0 Introduction

In the single Chapter of this part of the report, we shall at-
tempt to do the following:

1) Review the results of this work

2) Suggest several directions towards which this work can be extended.

3) Discuss the problems associated with these extensions.

4) Address several issues concerning the real-world implementation

of the algorithms.

7.1 ASP: Review of the Results of this work

This work has developed algorithms for three versions of the general
probiem of sequencing aircraft landings at an airport. These were the
following: i

(1) Single runway airport - unconstrained case.

(2) Single runway airport - Constrained Position Shifting (CPS) case.

(3) Two-runway airport-unconstrained case.

In all three versions, the fact that the airplanes waiting to land,
however numerous, could be classified into a relatively small number of
categories, was exploited. Category classifications resulted in the de-
velopment of dynamic programming algorithms, which for all three versions

exhibit computational efforts and storage requirements which are polyno-

mially bounded functions of the number of aircraft per category. These

-111-



functions are exponential with respect to the number of categories, but
this number is usually of the order of 3 and can be at most 5. All three
versions of the problem were assumed "static'", namely no new aircraft ar-
rivals were assumed to occur during the time the existing aircraft land.
In all three versions, two alternative objective functions were con-
sidered. The first was the minimization of the Last Landing Time (LLT),

namely now to sequence a given set of aircraft so that they can land as

soon as passible. The second was the minimization of Total Passenger De
lay (TPD), namely how to sequence the landing of the aircraft so that
the sum of the waiting-to-land times for all passengers in the system is
as low as possible. The two alternative objectives are handled by the
dynamic programming algorithms with equal ease and produce, in general,
different optimal solutioms.

The CPS rules were seen to fit the dynamic programming procedure in
a particularly adequate way, with no increase in the order of magnitude
of the computational effort, for any value of the Maximum Position Shift
(MPS). This has been a substantial improvement over the complete enume-
ration procedure through which it was initially proposed that the CPS
problem be tackled [DEAR 76].

The two-runway problem was solved as a post-processing of the inform-
ation created by a single pass of the single runway unconstrained algor-
ithm. The complete enumeration approach to finding the optimal partition
of the set of aircraft between the two runways was seen not to increase
the order of magnitude of the computational effort of the problem.

In addition to the dynamic programming approach to the problem, an

extensive investigation of the underlying structure of the problem from

~112-~



a different point of view was presented in Appendices A through D. Spe-
cifically, issues like group clustering, the influence on the solution

of the structure of the time separation matrix and of the number of pas-

sengers per aircraft etc., were considered.

We shall now present what we feel can be done to extend the work on

the ASP in this report and what we think are the main problems associated

with that.

7.2  ASP: "Dynamic' Case

The arrival of the particular aircraft in the vicinity of the near
terminal area is signalled to the air traffic controller at a point in time
substantially prior to the instant when the aircraft actually starts its

final landing manoeuvre. This point in time is when the aircraft enters

the region which is under ground control (this is usually a cylindrically
shaped region with a radius of approximately 50 nautical miles centered
around the airport and of altitude apprqximately 10,000 feet). It is al-

so known as System Entrance Time (SET).

Assuming no other aircraft are in the system, the aircraft will
traverse the terminal area, gradually losing speed and altitude, execute
its landing manceuvre and finally land, at a time which we shall call Pre-

ferred Landing Time (PLT). This time depends on such parameters as the

craracteristics of the terminal area, the aircraft speed, pilot preferences
etc., Upon entrance into the verminal area (t=SET), the PLT of a particular
aircraft can be calculated.

The PLT of a particular aircraft can be taken to be the earliest time
when this aircraft can land. Its Actual Landing Time (ALT) may, in case
of conflict with other aircraft, occur later. The simplest case of such

a conflict is shown in Figure 7.1.
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At t=SETl and t=SET2, aircraft 1 and 2 enter our terminal area (i.e.
enter the (say) 50 n.m.-radius area that is under ground control). Let
PLTl and PLT2 be the preferred landing times of these two aircraft. Sup-

pose now that PLT1 < PLT2 but PLTZ-PLTl < t12 where t12 is the minimum
permissible time interval between the landing of aircraft 1, followed by
the landing of aircraft 2 ¢12 is the element of the time separation matrix
that corresponds to our case). It is apparent in our example above that
our two aircraft cannot land both at PLTl and PLTZ. One of them has to
wait and its actual landing time will occur later than its preferred
landing time.

Clearly, this is a different situation from our "static" case, where
all of our aircraft were waiting to land and were supposed able to do so
at any time\given sufficient prior notice.

The main difficulty associated with the extension of the "static"
algorithm into its "dynamic" version is the implicit presence of the PLT
constraints: Clearly, any solution which produces a landing time for an
aircraft which is earlier thaﬁ its corresponding PLT, is infeasible. It
is conceivable that our "dynamic" algorithm will produce such infeasible
solutions, if we make an update each time an aircraft enters our system
(i.e. at its corresponding SET). We suggest below several approaches to
overcome this difficulty:

1) Defer the inclusion of an arriving aircraft into the set of prob-
lem inputs, until the solution to be produced by the "dynmamic" algorithm
is guaranteed (or very likely) to be feasible. This approach, of course,

creates the problem of determining when this inclusion should be made.

It should be noted at this point that an easy way to guarantee feasible
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solutions is to put every arriving aircraft into a holding stack and in-
clude each aircraft as part of the problem's input only at its corresponding
PLT. In this way, we transform our 'dynamic'" problem into a "variable
reservoir' problem that can be handled easily by a modification of our
"static'" algorithm. It is clear that this approach will only work in si-

tuations of extreme congestion, when no other alternative exists than

putting arriving aircraft into holding stacks. For other situations how-
ever, this approach will create unnecessary delays and sub-optimal solu-
tions. Clearly, if we are to defer the inclusion of an aircraft into

our input without sacrificing the efficiency of our landing operation,

we should try intermediate points in time (as long as these can guarantee

feasible solutions). For example, we may include each aircraft as part

of our input at a prescribed (or, dependent on the system load) time in-
stant before its PLT. Or, do the same when the aircraft reaches a similar-
ly defined distance from the runway.

2) Another approach might be to try to solve the problem by trial and
error. This would involve updates at fixed points in time (say, every 30
seconds or 1 minute). Each update will include all present aircraft into
our system. If a landing time produced by the algorithm is less than the
corresponding PLT, the corresponding aircraft is termporarily removed from
our input and the problem is solved again, until a feasible solution is
obtained.

3) An approach which would also be sensible, but for which there is
no indication at this moment on whether it can be successful, is to try to

directly incorporate time constraints into our D.P. formulation, in a way

similar to how we had incorporated the CPS rules earlier. If this can be
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done, then the question on when to include an aircraft into our input is
eliminated, for we shall include it as soon as it appears and the algor-
ithm itself will take care of the PLT constraint. It should be pointed
out however, that the explicit inclusion of the time dimension into our
feasibility investigation is substantially different in concept from the
position-and-shift (non-dimensional) formulation of our priority con-
straints and is thus likely to create problems.

We now summarize our thoughts concerning the extension of our "static"
ASP algorithm to its equivalent "dynamic" version. We argued earlier

that in periods of extreme congestion, where the arrangement of aircraft

in holding patterns cannot be avoided, our "static" algorithm will have no

problem being extended to its ''dynamic' version. This extension will

involve updates each time an aircraft enters the holding stack. In each
update, we shall keep track of the position shifts of all aircraft, so
that the CPS rules are not violated.

Problems with our algorithm do appear at other than heavy traffic
situations. From a philosophical point of view, these problems should
perhaps be expected and it would not be fair to attribute the difficulties
created by these problems to the algorithm itself. It should be kept in
mind that all of our "static" algorithms were developed to solve specific

sequencing problems in heavily congested situations, where all of a sub-

stantial number of airplanes would like to use the runway facilities at

the same time, and no gaps in the utilization of these facilities exist.

It would therefore be reasonable to anticipate that these specialized

algorithms and their "dynamic'" extensions would work well for situations
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similar to those they were created for (heavy traffic) but would most
likely have some problems handling other, totally different, situations
with equal efficiency (light traffic, gaps in runway utilization, '"oc-
casional" arrivals only, etc.).

Still, we feel that the results obtained so far are sufficiently
interesting and promising to encourage further research on the subject along

the lines suggested above, rather than tackling the problem by means of

less sophisticated (enumerative or heuristic) approaches.

7.3 ASP-Multiple Runways

Despite the fact that the method we used to solve the two-runway ASP,
produced an algorithm with computational efficiency of the same order of
magnitude with that of the single runway algorithm, that algorithm used

a "brute force' approach to solve the problem of how to partition the set

of aircraft between the two runways. A possible refinement of the two-
funway algorithm would therefore be to take advantage of the problem's
special structure in order to develop a more sophisticated partitioning
strategy. This refinement would become a necessity if more than two run-
ways are involved, because then it would be extremely inefficient to ex-
amine all possible partitions of aircraft among all runways.

Another issue which can be examined in the two-runway case, is what
happens if we include MPS constraints into our problem. We can see that
this problem is substantially more complicated than the equivalent single
runway case, by the fact that the order that an aircraft has among the

th

landings of all the other aircraft (i.e Sth, 10, etc.), not only depends

on the relative position of this aircraft among other planes landing on
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the same runway, but on the landings that have taken place on the other

runway as well, this latter dependence being of a rather complex nature.
On the other hand, we might decide to define our MPS constraints in a dif-
ferent way, so that we can solve our problem by first partitioning our

set of aircraft (applying the two-runway unconstrained algorithm) and sub-
sequently solving two independent CPS problems for each of the runways.
Qur CPS rules will therefore be applied to each of the two sequences in-
dependently from one another. It is understood of course that this method
considers the concept of priority in a rather distorted way, since it is
always conceivable that an airplane which lands, say, 10th on the first
runway, lands actually later than an airplane which lands, say 1zth on

the second runway.

We should mention that any attempt to tackle the multiple runway
problem by direct application of dynamic programming would most likely
result in an explosion in the size of the state space and should now
include as state variables not only the numbers of aircraft per category
for all funways, but also the time intervals until the next landings. The
inclusion of continuous variables in the state space will make the problem
much larger than we can reasonably handle.

Finally, it should not be forgotten that runways are used also for
departures. How will departures affect our landing strategy? Clearly
a runway on which both landings and departures are performed presents a

different problem than the one we examined.
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7.4  ASP - Usefulness of the "S;eepes; Descent" Heuristic for TPD Miniza-
tion,

As mentioned in Appendix A, the "steepest descent" approach consists
of landing waiting aircraft by descending order of the ratio Pi/tii (Pi is
the number of passengers per aircraft of category i and tii is the cor-
responding element on the diagonal of the time separation matrix). The
above heuristic seems particularly appropriate for TPD minimization (Z=2)
in the single runway/unconstrained case ASP and has been seen (Appendix A)

to produce the exact optimal sequence in most of the cases. Specifically,

a prerequisite for the application of this heuristic is "group clustering,"”
namely when all the aircraft of each specific category land in a single
unbroken string.

While the strict application of the above heuristic without prior ve-
rification that "group clustering'" will indeed occur, will in general re-
sult in sub-optimal solutions, the following facts may suggest that the
usefulness of the heuristic can be substantially broader than it would
appear at first glance:

1) It was observed (Chapter 4) and subsequently verified mathematical-
1y (Appendices A through D) that "group clustering" constitutes the rule

rather than the exception in the cases examined.

2) In the rare cases where "group clustering"” did not occur (Case 7

of Chapter 4 for example), the deterjoration in TPD resulting from an ar-

bitrary assumption of "group clustering" was not substantial: the sub-

ptimal landing sequence resulting from an assumption of ''group clustering"

and an application of "steepest descent” in the above case exhibits a TPD
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of 766,350 passenger-seconds (Fig., 4.7a), as compared to a TPD of 758,550
passenger-seconds of the exact optimal sequence (Fig. 4.6). In other
words, our measure of performance in this case is seen to be rather in-
sensitive to the exact optimal sequence near its optimal value.

These observations suggest that "steepest descent' may be a good
heuristic to work with for TPD minimization in the single runway/uncon-
strained case ASP, and thus, it may conceivably be suitable for real-
world computer-assisted implementation. It may also be possible to extend
this heuristic to other cases as well, in particular to the CPS case and
to the two-runway case. Lt should be realized of course that the nature
of these latter problems (take for example the presence of MPS constraints
in the CPS problem) may require substantial modifications in the applica-
tion of this heuristic sequencing technique.

Summarizing, we express our feeling that substantial investigation
should be further pursued in order to establish the usefulness of thi;
heu?istic beyond the cases examined in this report.

Also, the development of a similar heuristic for LLT minimization
(Z=1) will probably require an analysis similar to the one presented in

Appendices A through D for the TPD minimization objective.

7.5 . ASP - Implementation Issues

.
-—s

It is beyond the scope of this report to get involved in detail
into prohlems connected with the implementation of the algorithms developed

here. We shall nevertheless attempt to give a flavor for the complexity

of these problems,
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The actual implementation of an Aircraft Sequencing algorithm is -
perhaps more difficult than the theoretical development of the algorithm
itself. Aviation Authorities and pilots can perhaps be convinced that a

sequencing strategy, if implemented, will result in the reduction of de-

lays, but they must also be convinced that this strategy can in fact be

implemented at all. This may be a very difficult thing to accomplish.

Safety will be the main consideration in this respect. Clearly, a "dy-
namic" algorithm which drastically shifts the position of each aircraft

at each.update, or dictates frequent and difficult rearrangement manoeuvres
in the terminal area will most likely be rejected.

Aircraft Sequencing should, of course, be computer-assisted, but
under no circumstances should the computer (at least at its current-level
of evolution) be allowed full control of the whole process. The process
should be flexible enough so that the participation of the human control-
ler in decisionﬂhkiné is possible. The controller should, for example,
be able to overgide the computer in cases of emergency or other unpredict-
able situations. Interaﬁtion with the pilots should also be allowed if
necessary.

We conclude by expressing our feeling that substantial research has

to be accomplished on these issues before any theoretical developments

can reach the implementation stage.
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APPENDIX A

ASP - INVESTIGATION OF GROUP '"'CLUSTERING"

The solution methodology developed in Chapter 4 for the ASP can be

used for any values of the input, namely for any values of the elements

tij of the time separation matrix and for any values Pi of the number of
passengers. Nevertheless, in the examples we presented, we could not help
but notice the fact that if the inputs were ''reasomable" enough, the out-

put exhibited certain very simple and well defined patterns: A first ob-

servation has been that all planes of the same category tend to be clustered
together. A second observation has been that the order of preference
among various categories depended, in a way which has still not been cla-
rified, on the values of the inputs. In Chapter 4 we saw a particular
example where this dependence was very delicate: Thus, while there was
only one minimal difference %n the inputs of Cases 8 and 9 (P3 was 120
passengers in Case 8 versus 130 in Case 9) the optimal sequences of these
two cases were strikingly different: In case 8, all planes of category 1
landed first, then all planes of category 2 and finally all planes of
category 3. In case 9 we had again grouping by categories but the order
now was 3, 1, 2.

A third observation has been that for other sets of "unreasonable'

inputs (Case 7 versus Case 6) the optimal patterns may be entirely unpre-

" dictable.

We have put the words ''reasonable' and "unreasonable' in quotes, be-

cause so far we do not know a priori if a set of inputs belongs to the first
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or to the second class and what behavior we can expect in the corresponding
output. To decide upon these, we must first define what we mean by
"reasonable" and second, if possible, develop a set of criteria, through

which we can predict the behavior of the optimal sequence by just verify-

ing whether the inputs satisfy these criteria or not.

Our task in this Appendix will therefore be to try to find relations
among the problem inputs, so that if those are satisfied, the optimal so-
lution can be predicted, without even having to run the dynamic program.
The driving force behind this approach is the strong clues that we have
perceived on the existence of a fundamental underlying structure, hidden
for the time being, which controls the whole problem. The hope is that
this structure, if it exists, will be simple enough, to be of practical
use in the solution of the problem.

Clustering in Groups

We start by investigating the issue of the clustering of the air-
planes of the same category in a single, unbroken string.

Let (A) be a segment of  a given landing sequence and (B) a rearrange-
ment of the elements of (A). Let us furthermore introduce the notation
a) > (B) if (@A) is Erefe?able te (B). This would happen if and only if
the contribution of (A) to the "cost” of our objective is less than the
corresponding contribution of (B).

The results which we shall present subsequently hold if our object-
~ive is to minimize Tatal Passenger Delay (TPD), (2=2) and no priority

constraints exist.

RESULT 1 (Fig. A.l): Interchange between two airplanes of categories i

and j between two airplanes of category i:
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Yy % Tt
(a) > (8) <=> =< =1l (A.1)
i 3

Proof: Let A = Cost (A) - Cost (B) and Q the number of passengers still
waiting to land after the first aircraft of category i of (A) has landed.
The subsequent numbers of passengers still waiting to land are shown in

in Fig. A.l.

Then A = Q.tii + (,Q-Pi)t + (Q-P.-P_)¢t, .

1 173751

—Q.ti - ('Q_Pj)tji - (Q—Pi—P

3 T
or A=P .t =P (t, +t . -t )
jooid it Tij TjioCii
Obviously (A) > (B) <=> A < 0, hence (A.1) #

We oBserve that (A.l1) is independent of the value of Q.

RESULT 2 (Fig. A.l):

If (t,.] satisfies
1]

t,.+¢t,. £t +t, (A.2)
ii i ij ji
P, P

and if 2 > 4, (4.3)
t,. t..
ii 33

then (A) > (B).

Proof: From (A.3)-and (A.2) we have:

t. t.. t,. + t.i - t,,
I).2_-’E.< l__;'.LJ. < =l PJ —2=, so by (A.1l) it follows
i 3 3

that (A) > (B). #

Some notes on notation:
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(a)

|
; |
> 1 items
. tij Q
tij Q-Pi tji Q—Pj
j i
-P -P -P -
tii YQ P1 j tii Q Pi Pj
i i
> 1 items

.

(B)

Fig. A.1.

@3 Fig. A.2.

"ANYTHING"
(Any sequence
of any number

of any categories)

> 1 items

}E%g? >1 it]?s
O
:
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a) From now on, we shall characterize a the time separation matrix

[tij] that satisfies (A.2) as '"(i,j)-reasonable." In Appendix B we

show how the elements of [tij] are derived for the ASP and in Appendix

C we prove mathematically that for real-world data and for all pairs
(i,j), a time separation matrix [tij] for the ASP is always "(i,j)-reason-
able."

b) We shall furthermore define that category i is "denser''than cate-
gory j if and only if (A.3) holds. Note that the ratios in (A.3) re-
present the rate of passengers landed per unit time if each category is
followed by itself. This concept is not to be confused with the one of
the landing velocity of a category. The notion of denseness, as we have
defined it, will turn out to bhe very important in our subsequent investi-

gation.

RESULT 3 (Fig. A.2):

A sequence of the form of Fig. A.2 cannot be optimal, unless:

;1 = _ii Pji ii (A.4)
1 3
t,. ti.+t.i-t..
Proof a) suppose first that Pll < — P] 2> . Then from (A.1)
i 3

we see that we can gain by moving category j downstream (in the sequence)
by one step. In fact by repeatedly applying (A.l) we can move j as far

down as one position before the last item of category i.

-, + -
Bp 0 Sig TR T Sy
>
P P,
i 3
clude that we can gain by moving j upstream as far as we can, namely as

b) If now then by similar arguments we con-

far up as one position after the first item of category i.

These two cases are depicted in Figure A.3
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i f1g T 51 T B
o) If = 5 —1= > then we have equilibrium but we can
i 3
see that this equilibrium is neutral, namely we can move j up or down

without any effect on the value of the solution #.

Observe that at this point we cannot say anything about whether

j will actually stop at one of the positions shown in (a) or (b) or whether
it will cross the border of the single time of category i and move further
up or down. This will depend on "what is beyond" this point. We will
 investigate this matter later.

A generalization of Result 3 is the following:

RESULT 4 (Fig. A.4):

A sequence of the form of Fig. A.4 is either non-optimal or neutral.

Proof: The argument here is that "ANYTHING" (see Fig. A.4) can be re-
garded as a new single category (with uniquely defined time and passenger
‘ characteristics), so that our result is a natural consequence of (A.4).
We shall examine how we can transform any sequence to an "equivalent"

single category in Appendix D. #

RESULT 5

If the time separation matrix [tij} is (i,})-reasonable then a unique

item of j in the middle of a string of items of category i should go down-
stream if i is "denser" tham j. -
Proof: Immediate from Results 2 and 3 #.

Important observation: Result 5 does not imply that j should neces-

sarily go upstream if j is "denser"” than i, because Result 2 is only a

sufficient and not a necessary condition. Observe also that Result
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5 is a clue that the "steepest-descent' criterion* applies at least in

several cases. We will encounter the same criterion many times later .

We look now at a slightly different configuration:

RESULT 6 (Fig. A.5)

Concerns whether two categories i and j should be seperated (A) or

overlap (B):

(A)>(B)<->Q(t t)+P(t it t)

1175337015754 1378397 F18y5 <

(A.5)

Proof: Similar to the proof of (A.1) # . Observe that (A.5) depends on

the value pf Q and this makes it not as handy as A.l), for Q will in ge-

neral depend on the upstream sequence.

RESULT 7 (Fig. A.5):

If [t jJ is '{i,j)-reasonabie" and i is "denser''than j then (A) > (B)
Proof: First of all, since {t ] id' (i,j)-reasonable", ty j i -tjiﬁo.

Second, noticing that the passenger outflow from the last node j is at

least P,, we conclude that Q 3 Pi + 2Pj. Taking into account these two

3

inequalities and (A.5) we conclude that to have (A) > (B), it is sufficient

to have (P, +2P t. . +t. . -t,.=t, Y+P.(t..+t,.-t, . )=-P,.t,, < 0 which, after
o have (P, j)( ii "33 i Jl) J( ji i3 337 1 i3 i

some manipulations, is equivalent to:

*By "steepest-descent” we mean the landing discipline that lands "denser"
categories first. It should be noted that this strategy is similar to
a well-established result in queuing theory [KLEI 75] where it is shown
that to minimize the average cost to users in a queuing system, one should
assign priorities by descending order of cost-per-unit-time ratios.
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t, .ttt . t, .+, ~t,,

ii "ij < i1 41 ii

P.+P, P (A.6)
i] h|

We will show that the above inequality always holds if i is "denser"

than j and [ti.l is '"(i,j)-reasonable":
J £+, ¢,
ii i3 .
P.+P, P A.7
iy j (A.7)
In fact, we check this, since(A.7) is equivalent to:

First, we show that

B, P,
P,.t,, +P.t,, <Pt +P.t,. or to—l<—
S RS S e £ I 4 F R A Tty

which is true since i is "denser'than j.

Second we show that:

t.. . .
A« AL i ii (A.8)
j b}

~

which is obvious if [tijl is (i,j)-reasonable".

Then (A.6) follows directly from (A.7) and (A.8). But (A.6) is a
sufficient condition for (A) > (B) and this concludes our proof. #.

This is an important result for it may help resolve an issue mentioned
earlier (see observation following the proof of Result 3), namely: Given
that i is "denser" than j, can we say anything about the sequence of Fig.
A.6?

At this point, we can say that while Result 3 states that the first
of the j's is correctly at its "downmost" position, Result 3 cannot re-

solve the question of whether it should go further downstream, getting in

fact interchanged with the last of i's so that finally the two categories
are fully separated and no overlap exists. Result 7 provides a "yes"

answer to this latter question.
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Still, Result 7 is not pawerful enough to help us decide what happens
with the sequence of Fig. A.7 (even if it is given that i is "denser" than
.

This is the issue we shall investigate next.

RESULT 8 (Fig. A.8)

i versus j given the presence of a third category k at the bottom:

(A) > (B)<=>Q[tii+tjk-t' -tik] + P [—tij-tjk-i-t

+ -t +t_ +
51 i ) Pj[t,tit

ik ik 73 1<0

ik
(A.9)
Proof: Similar to the proof of (A.1) #. Before moving to the next result,
we give the following definition:
A time separation matrix [tij} is "(i,j,k)-reasonable" if

i +
and only if tii+tjk £ Cji tik

Observe that this is a generalization of the concept of "(i,i)-

 reasonableness," in the sense that if a matrix is "(i,j,j)-reasonable,"

then this is exactly the same thing as being "(i,j)-reasonable.”" We
repeat that we study thoroughly '"(i,j,k)-reasonableness" in Appendix C
where we shaw that for the ASP, [tij] is "(i,j,k)-reasonable under all
(1,j,k) configurations, except when only j is a "heavy" jet and i has a

higher landing velocity than k.

RESULT 9 (Fig. A.8):

If [tij] is "(i,j,L)-reasonable" for both L=k and j and if i is
"denser" than j then (A) > (B).
Proof: The proof is similar to the proof of Result 7: We take into

account both t, .+t -t, -t .. <€ 0 ((i,j,k)-reasonableness) and the fact
— ii “jk ji ik —_—
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that Q > P1+Pj' So we obtain a sufficient condition for (A) > (B), the

following:

(Pi+PJ.) (_tii-_t. -t

~t. )+ P (-t -
)T By ey e )P

-t .+
j( t:jk tji+tik) < 0

or, equivalently, after some manipulations:

t, , At -

ii t1j+#31 tll
<

P, P

1 3

It is easy now to see that if [tij] is "(i,j)-reasonable" and if
i is "denser'" than j then the above is true #
Before commenting on the consequences of the above results, we state

below two more equivalent results which hold if category k is at the top.

RESULT 10 (Fig. A.9):

i versus j given the presence of a third category k at the top:
= ~-t, - -t, .+ - < 0 .
&) > (B) <=> Qleg -ty i¥e; =t Wy [t ¥y ey 1Pty (4.10)

Proof: Similar to the proof of (A.l) #.

RESULT 11: (Fig. A.9)

If: a) {tij] is not (i,k,j)-reasonable
b) [tij]is(i,j,k)-reasonable
¢) i is denser than j, then (B) > (A)

Proof: Let A= Cost(A) - Cost(B). Then, since tkj-tki+tii-1:ij > 0 because

of (a) and since Q> Pi, we have:
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> P -t, .+ -
A> Pl ottty - Pyt

But because of (b) tkj-tki+tji > tjj’ SO

A>pP,t. .. ~-P.t,.
1] 311

But from (c), this last quantity is > 0 so A>0#.

RESULT 12 (Fig. A.10)

i versus j at the end of the queue given the presence of category k:

t.. = i ] S
@) > () <=> i3+:h S AP = fed (A.11)
i 3
Proof: Similar to the proof of (A.1) #.
RESULT 13 (End of the queue as above but with k=i)
t,. £, .+t .-t
" Then @) > (8) <=> 5ot < A AL L (4.12)
‘ i j

Proof: From (A.l1), setting k=i #.

RESULT 14

If {tij] is (i,j)-reasonable and i is demser than j then (A) > (B)

in (A.12).
1979175 By
Proof: Because of (i,j)-reasonableness we have JP > 4 |
et i 3
Also 511 > —%3 then (A.12) holds #.
i i

We next present three results concerning the comparison of groups

of categories.
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i k k
- t, .
ij Q-Py iy @ kj ¢
J i 3
-P - P t -P
tji Q Pi Pj 1:iJ Q- i j1 Q
i 3j i
END D
(A) (B) (4) (B)
Fig. A.9. Fig. A.10.

ni items of

K k i,p!
. i
n,,j items of 7
i 3 "ANYTHING"
category j rd
. "4

N

category i i,P

|

END END
(4) (B)

Fig. A.11. Fig. A.12.
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RESULT 15 (Fig. A.1ll)

) > (B) <=> ninj(Pjtii —Pitjj)+(niPi+anj)(tki‘tkj)+

+ niPi(tjj-tji)-anj(tﬁ-tij) <0 (A.13)

Proof: Straightforward, taking into account the equivalence transforma-

tions of Appendix D. #

RESULT 16: (Fig. A.1l1)

If ng, nj are large, then (A) > (B) if and only if category i is

denser than category j.

Proof:If o, nj + 4o, then dominant term in (A.13) is the first one #.

RESULT 17:
1f [tij]is'(i,j,k)—reasonable; and if the relation [(A) > (B) for
(ni,nj)} is true, the relation [(A) > (B) for (ni+1, nj)] is also true.

Proof: The first relation yields that

ni[an t.. + P, (tkl tkj j ) -n, PitJJI < n P {t +:kj-tki-tij}

Since [tij} is '"li,j,k)-reasonablé’ the right-hand side is < 0. Therefore
the left-hand side is also < 0. A fortiori, the value of the left-hand
side will decrease if instead of n, we multiply the bracket by (ni+l).
But this is equivalent to saying that (A) > (B) for (ni+1, nj) #.

One can generalize the previous result by stating that if we know
that (A) > (B) for some values of (ni,nj) then we also know that (A)>(B)
for (ni,nj) where ni>ni. This result may prove itself useful when we

know how groups of a given size behave and we want to know what happens
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to groups of different size

OQur last result concerns what happens if we have a variable number

of passengers for aircraft of the same category. We shall examine other

issues connected to this case in Appendix D. For the moment our funda-

mental result is the following:

RESULT 18 (Fig. A.12):

Variable number of passengers per category:

If for any two aircraft of category i, Pi < Pi, then we can always
obtain an improvement by interchanging them. —

Proof: An interchange argument will suffice. #.

An important consequence of the above result is that as far as the
internal ordering of the aircraft of a certain category is concerned, one
cannot do better than by ordering them by descending order of number of
passengers. A formal proof of this result will be presented in Appendix
D, in the case where all aircraft of this category are clustered in a

single group. Nevertheless,.our observation holds also for any positions

that these aircraft may have in the sequence. It should however be pointed
out that this observation does not give an answer to the question of how
various categories interact with one another. To answer that question

in all its various aspects, one must get involved in an investigation
similar to the one that we performed so far, while also taking into ac-
count the variability of the numbers of passengers. It is felt that such

a task is beyond the scope of this dissertation. However, we contend
ourselves to state without proof that Result 4 (Fig. A.4) which we'de—

veloped for a constant number of passengers, holds also for the variable

number of passengers case, provided we have arranged the aircraft of
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category i by descending order of number of passengers.

Summary - Conclusions

This Appendix examined the ASP from a different point of view than
the one used in Part II. The main goal was to derive quantitative
relations between the problem inputs so that the optimal sequence exhibits
category clustering. In this respect, the following concepts were seen
to be important:

1) The concept of ''reasonableness' of the time separation matrix was
seen to appear in several configurations as a condition for category
clustering. In Appendix C it is shown that the time separation matrix
derived especially for the ASP (Appendix B) is always "(i,j)-reasonable"
and in all but one cases, (i,j,k)-reasonable"as well. In the case where
the matrix is not '(i,j,k)-reasonable”one would expect the possibility
that category clustering is not an optimal configuration. In Appendix
" C we show that Case 7 of Chapter 4 (where the categories do not cluster
entirely in groups) can be explained by ''reasonableness' considerationms.

2) The concept of éategory "density" was seen to govern which cate-
gory receives priority in sequencing. In this respect it was seen that
"denser'" categories (i.e. categories which deliver more passengers per
unit time if clustered in a group) tend to be preferred and be assigned
a higher priority than other categories. This is in accordance with the
"steepest descent" criterion (land "denser' categories first) that one
also encounters as a similar priority rule in queueing theory. This
criterion was shown to be asymptotically valid, but holds in many other

configurations as well.
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3) We have also looked at, although not examined in detail, the case
of a variable number of passengers per category. In this respect, we saw
that it always pays to order the corresponding airplanes by descending
order of passengers. In Appendix D we show that we can substitute any
such group of airplanes by an "equivalent” group with constant number

of passengers.
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APPENDIX B

ASP ~ DERIVATION OF THE TIME SEPARATION MATRIX

The purpose of this Appendix is to present how the elements of the
time separation matrix [tij] of the Aircraft Sequencing Problem are
derived from the characteristics of the aircraft of our problem.

Without loss of generality, we decide at this point that we shall
index the various categories by descending order of landing velocity.
Namely, for two categories i and j, i < j implies vy > vj and vice versa
(Vi’ vj are the landing velocities of i,j). The landing velocity of a
particular category is a very important parameter in itself, because:

1) It is mainly this parameter which determines how soon a particular
airplane will land after the landing of another omne.

2) The landing velocity is far from being the same for all airplanes.
Typical values of the landipng velocities of various categories were given
in Chapter 4.

The landing vel&city is not the only parameter which is important. An-
other ishij’ the minimum horizontal separation of an aircraft of category
j following an aircraft of category i. Wake vortex consideratioﬁé dictate
that hij be different for different combinations of i and j. The main
distinction between aircraft in this case concerns whether we have a
"heavy" jet or not. Thus, recent FAA regulations state that hij must

have the following values:

1) 3 nautical miles if the preceding aircraft i is not a heavy jet.
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2) 6 nautical miles if the preceding aircraft i is a heavy jet and
the following aircraft j is not.

3) 4 nautical miles if both i and j are heavy jets.

Before deriving a formula for tij’ let us define as F the horizontal

length of the common final approach, in nautical miles. F is of the or-

der of 6-8 nautical miles and is constant for all airplanes in the system.

We are now in a position to develop a formula for ti In [BLUM 60]

g
Blumstein suggested the following formula for ti"
J

1) "Qvertaking" case: The "following" airplane j has a landing ve-
locity greater than the landing velocity of the '"leading" airplane 1i.
(vi < vj <=> i > j.)

Then it is clear that the distance gap between i and j becomes smal-
ler and smaller with time, reaching its minimum permissible value hij at
the instant To’ at which airplane i lands. The time interval between
that specific instant and the instant airplane j lands is therefore

h,.
= ;il , as can be seen from Fig. B.l.

t..
ij 3

2) "Opening" case: In that case the "following" airplane j has a

landing velocity smaller than the landing velocity of the "leading" air-
i > <=> i < j).
plane i (vi v i< 3)

Then it is clear that the distance gap between i and j gets larger
and larger with time, having reached its minimum permissible value hi'
at the instant To at which the "leading" airplane i begins its final ap-
proach of length F. The time interval t, . between the two successive

h, +F
landings is therefore the difference between —%l—— (Time interval from

J
T to the landing of airplane j) and-%— (Time interval from To to the
)

i
h,, + F
landing of airplame i). Thus tij =2 . %- as can be seen from

j i



Fig. B.2.

h
Remark: If i=j the two cases coincide so tﬁ%
i
hi
Summary: i xj (v.gv ): t,, = Al (B.1)
ivj ij vj
i i > H = - — .
i<j (vi vj) tij —3——vj v (B.2)
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Distance
(1,3
ﬁ (h, +F) /v,
- ij i >
_ F/vi' tij
. 3
fslopel=
Vi"Vj \s \ lslopelg Vj
\ L~
4 \ /
\
h,. N\
1] \
~ x ¥
0 .
i lands j lands
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i
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APPENDIX C

ASP - QN THE "REASONABLENESS" OF THE TIME SEPARATION MATRIX

We saw in Appendix A that in certain cases where the time separa-

tion matrix [ti ] had some special characteristics, we were able to take

]
advantage of these and reach some conclusions about the optimal pattern
of the Aircraft Sequencing Problem which facilitated the solution. These
special characteristics are the "(i,j)-reasonableness" and, more gene-
rally, the "(i,j,k)-reasonableness" of the matrix, as they were defined
there. This Appendix will investigate under what conditions this matrix

is (i,j) or (i,j,k)-reasonable.

We repeat the definition of (i,j,k)-reasonableness:

A time separation matrix [Cif is (i,j,k)-reasonable if

and only if for the specific values of (i,j,k), we have

Es t,.-t, 0.

+t -
117551 8k ¢
Also:

A time separation matrix itij] is (i,j)-reasonable if

and only if it is (i,j,j)-reasonable.

Since the concept of (i,j,k)-reasonableness is more general, we
shall examine it directly.

In Appendix B we saw that the minimum horizontal separation hij is
by rule a constant of 3 nautical miles, except when i is a heavy jet,
when it is equal to &4 nautical miles if j is also a heavy jet and 6 nau~

tical miles otherwise.
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Being careful about this fact and indexing the heavy jet category
with index = 1 and the other categories by descending order of landing
velocity, we form the following 15 mutually exclusive and collectively

exhaustive cases:

1) i=j 6) k>i>j>1 11) j>i>k=1
2) k=i#j 7) k>i>j=1 12) k>j>i>1
3) i>j>k=1 . 8) i>k>j>1 13) k>j>i=1
4) i>j3k 1 9) i>k>j=1 14) k3j>1>1
5) i>j=k=1 10) j>i>k>1 15) j3k>i=1

We shall present here only one of the 15 cases, for demonstration
purposes, €ase 5:
Since i>j=k=1, this means that:

a) vi<vj=vk,

11 = By
c) hji = 6

d) hjk = 4 nautical miles.

A straightforward application of (B.1l), (B.2) (Appendix B) yields.

b) h

ot
[}
L}

< |

e El - SELE L4
i i3 ko ki i i i i

So E<O0 in this case, which means that our matrix is (i,j,k)-reasonable.
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After tedious but straightforward similar calculations for the re-
maining 14 cases, we have come to the following conclusions:
1) The tim ti i i i)~
) ime separation matrix [tij] of the ASP is always (4i,j)
reasonable.
2) The time separation matrix [tij] of the ASP is (i,j,k)-reasonable

in all cases except the case where k > i > j = 1 (Case 7). This cor-

responds to the case where j is a heavy jet and the landing velocity of i
is higher than that of k.

What complications can Case 7 create?

To answer that question we examine a real-world example. Suppose
we have 3 categories of aircraft:

1) B747's with a landing velocity of vl=150 knots and with number
of passengers P_=300.

1

2) B707's with v,=135 knots and P, = 150.

2 2

3) DC-9's with v,=120 knots and 'P3=1oo.

We furthermore assume that the length of the common final approach
is F = 8 nautical miles. ’
A straightforward application of (B.1), (B.2), incorporating also

the FAA regulations on minimum horizontal separatiom, yields the following

time separation matrix (in seconds):

96 181 228
{ti_j] = 72 80 117

72 80 90

One can recognize this matrix as one of those we already have used

in several of our examples.
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As it was suggested earlier, this matrix is (i,j,k)-reasonable for
all (i,j,k) except far the combination (2,1,3). In fact, for this combi-
nation, E=80-181+228-~117 = +10 > 0.

A consequence of this fact is that we cannot apply Result 9 of Chap-
ter 7, which states that segment (A) is preferable to segment (B) (Fig.
c.1l) if [tijJ is (2,1,3)-reasonable.

So segment (B) may, under certain circumstances, be preferable to

segment (A). And we may at this point recall a case we already have pre-
sented where exactly this happens. It is Case 7 in Chapter 4 where this
segment appears. (Fig. 4.6). Referring to this Case, we have shown in

Chapter 4 that it is impossible to improve upon the corresponding sequence.

(Fig. 4.7a, 4.7b).
Our investigation on the “"reasonableness' of [tij] has shed some

light on this whole issue.
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(a)

Fig. C.1.
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APPENDIX D

EQUIVALENCE TRANSFORMATIONS IN GROUP "CLUSTERING"

In Appendix A we saw under what conditions we should expect airplanes
belonging to a certain category to be clustered together in a separate
group. We also hinted that it can be shown that any sequence of any air-
planes can be considered as a single item, provided certain "equivalence"
criteria are met. (Result 4 of Appendix A.)

It may be possible that we can take advantage of this "groupiﬁg" in
our D.P. formulation: In fact, if we can show that the optimal sequence
corresponding to (kl’kZ”"’kN) airplanes consists solely of N groups,
each containing the ki items belonging to each partﬁcular category i,
then we essentially have only N items (instead of E k.) which we have
to sequence, namely the N "blocks'" of all categori:slclustered together.
So we may be able to use the same D.P. approach for the "clustered" sets
and bring the computational effort from g (ki+l) down to 2N iterations*.

At this moment, however, there are ;zée points which are still ob-
scure:

(1) What will be the "equivalent" time separation matrix?

(2) What will be the "equivalent" numbers of passengers?

(3) How shall we take into account the zeroth landing category?

The purpose of this Appendix is to answer the above questions and

*0f course this problem may be so simple, so that we can solve it by com-
plete enumeration.
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to describe the implementation of the 'grouping" procedure for the D.P.
formulation. The simplest way to state our problem is the following (Fig.
D.1):

Given a group of n items of category i, with constant number of pas-
sengers Pi, and two (not necessarily distinct from each other and from
i) categories k and j, is there a way to replace this group by a single

category I, so that the two segments of Fig. D.l are completely equivalent?

Before attempting to analyze the problem, we have to state explicit-

ly what we mean by complete equivalence. By this we mean that 3 condi-

tions should hold'simultaneously:

(1) Both segments deliver the same number of passengers
(2) Both segments have the same contribution in the Last Landing
Time of our sequence.
(3) Both segments have the same contribution in the Total Passenger
Delay of our sequence.
First of all it is not obvious at all whether actually there exists
a combination of parameters that satisfies (1), (2) and (3) simultaneous-
ly. Referring to Fig. D.l1 however, we can see that the unknowns of the
single category I are also three: tkI’ PI and th. This is a clue that
perhaps we can find a combination of them that satisfies (1), (2), and
(3) simultaneously. We proceed as follows:
For (1) to be satisfied, it is clear that category I should have
a number of passengers equal to the total numher of passengers within

the group. So

P_ = nP, (D.1)
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For (2) to be satisfied, we have to have
+ (- + =
g T (D, Fey T gt ot (D.2)

For (3) to be satisfied, we have to have:
thi+[(Q-Pi)+(Q—2Pi)+...+(Q—(n—l)P2]tii+(Q~nPi)tij=
= 0t H QPP

Rewriting we have:

b lne - n(n-1) - -
Qle (oDt 4, 4] T L R P L

= -+ -
Qle, pFepy1-Preyy
We observe now that the terms containing Q cancel out because of (D.2).

Also we take (D.l) into account so that:

n{n-1)

t. P, +noP.t.. =nP.t
2 ii i

i 1j 113

or, finally
_— (.3)
From (D.2) we find also that:

(n-1)
e ¥ B P (D.4)

So (D.1), (D.3), (D.4) constitute the solution to our problem #
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It is easy to see now the truth of the equivalence of Fig. D.2,

where:
PI = niP1
P.=n"P
ITY
n,~1) (n,-1)
= i I
o T T T T

The equivalence of Fig. D.3 is also true, with:

Py =Py

- fno-1) |

t1,END 2 Sii

Note the dummy node "END" after category L. Note also that there
is no passenger flow from I to "END" since they all have left the system
in node I. Node "END" is present, only to account for the second half
of the total delay (_n—l)tii of the group, since the first half was ac-
counted for before node I.

We shall state without proof several generalizations of the previous

results:

1) We show how to transform a string which may include any number
of various different categories into a single category I. (Fig. D.4.)

It is "straightforward" to show that:

n
Pr = 121 Py
1 n-1 n
Bz T S T '§F_;;-' izl fi,i+1 (m=§+l %
%1 1
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2) We show how to transform a string which includes n planes of cate-

gory i, but where the number of passengers is not constant, but varies,

Pl, P%,...,Pz, (Fig. D.5) into a single category I, or, equivalently,

i i
into a string of n planes of category i with a constant number of pas-
sengers Hi.

Before stating the equivalence formulae, it will be useful to futher

define:

m m
6i = Pi - Hi (m—l,...,n)

The equivalence formulae are

)
P, = PR
I m=1
Moo= : ‘
1 n n a
-
m=1 n—-1
Cer ™ Ceg T tig [ oll_ + =51
o m
I mé;
m=l n—-1
ry = gy " Cig | all, R,
and
t!,. =t
11 11l
n m
m;lmdi
' o= +
tki tki t11 nnl
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3) An important consequence of the above transformations emerges
when we consider the value of the Total Passenger Delay associated with
the segment of Fig. D.5. This value is equal to C=Q.tkI + (Q-PI)tIj
where Q is the total number of passengers from k to I.

Substituting we finally get

n
= i - m
C=0Qt, + tij) nHitij + e mzl ms

The last term in the expression is the only term we can affect by

rearranging the airplanes in the segment. So, in order to minimize C we
n

have to minimize z md?. The only way to do this is to rearrange the
n=1
airplanes by descending order of number of passengers, so that finally

1 2 n
R 6i ‘ &1 ‘ - e O ‘ 61.

This confirms the observation we have made in Appendix A when ex-
aminining variable numbers of passengers per category, namely that we can
always improve on Total Passenger Delay by rearranging airplanes of the
same category by descending order of number of passengers. (Result 18
of Appendix A.)

4) We show how to transform two_strings of ng planes of category i
and nj planes of category j (as shown in Fig.D:i6) where the number of
passengers is not constant, into two strings of n, planes of category
i and nj planes of category j with constant numbers of passengers, Hi, Hj:

Defining:
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-1 (m=l,...,ni)

-1 (m=1,...,n,)
J

It is not diffult to see that the equivalence formulae are:

-2 z‘
I'l.
m=1
o,
1
-2 1w
m=1
1 =
C11 7 tua
t!. = ¢t,
3 i a n
i
. 5‘; Zl &%
g, = t,, +t,, = S~ —
ST S HM F R i1 o I
n n,
a‘;‘ f 85
B T B41 7 Sy Eii'ﬁ' ¥ tii'gé?;?f"'
i i3m0 i I

5) A very important consequence of the last two relations” is the

following:
tf, +t' =t +t,
ji ij ji
Since also t', =t,, and t!, = t,, this means that:
i Tii 33 33
e, +t!, -t!, -t!, =t .+t -t,, -t

ii 33 ij B & . 1] ji
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The importance of this equality is obvious: If the matrix [ti,] is
J

(i,j)-reasonable (see Appendix C) this will mean that the right-hand-

side is € 0. But this will also mean that the derived matrix [t'.] is
1]

also (i,j)-reasonable. So we see that the (i,j)-reasonableness of a time

separation matrix (tij] is preserved when making transformations like

those above.

Let us now see how we can modify our D.P. formulation to account for

group clustering.

D.P. FORMULATION IN GROUP CLUSTERING

It is necessary to state at this point that this formulation should

not be used if one is not sure that there will be group clustering. If

we use it.blindly, we will obtain suboptimal solutions. So suppose for
the moment that we are somehow convinced that such a clustering will in-
deed occur.

Then our graph will consist of group nodes I,J,K, etc., corresponding
to group clusterings of catggories i,j,k, etc. (respectively), of an in-

dividual category node representing the zeroth landed category, and of

the END node, as defined earlier. (In Figure D.7.)

The time separation matrix linking the group nodes is given by:

1 1
TIJ tij + -2-(111«1)tii + §(nj 1)1*.jj

On the other hand, we should also know how individual categories are

linked with the groups. This is given hy the following formula:

1
T!.=¢t,, +=(n, -
iJ ij 2(nj l)tjj
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The numbers of passengers of the groups are given by:

The fundamental D.P. recursion is almost the same as before:

= '3 ] 1
VZ(L,kl,...,kN) z;§[WZ°T + VZ(x,kl,...,kN)]

where L is the currently landed item (which may be either a whole group,

if we are at stage n < N, or a single plane, if we are at stage n=N+l1).

Note that by comnstruction the ki's are either zero or one, since we have

at most one group per category. X is the set of i's with ki > 0 and:

N
=2

kj-l if j=x and n

kj otherwise
Also:
TL ifng N
X
' if n=
TLx if n=N+1

where T and T' were defined in (a), (b) above. And finally:

1 if Z=1
Z

o -4
1

N
) kP if Z=2
j=1 33
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As far as our boundary conditions are concerned, we have a minor
change from our original formulation which stated that VZ(L,O,O...)=O
for any L=1,...N and for Z=1,2.

This condition applies only for Z=2 here.

For Z=1 we have to account for the elapsed time between the last

group and the dummy node "END" as we saw earlier. So:

t

(nL-l)
T T2 LL

v, (L,0,...,0)
1
With the above modifications we can execute our D.P. algorithm as
usual. Note that we will have to rerun the recursions each time we change
the ni's because the time separation matrices [T] and [T'] will also

change.
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APPENDIX E

All computer programs of this work were written in FORTRAN IV and
run using the Time-Sharing Option (TSO) of the IBM 370/168 system at
M.I.T. All programs are interactive, prompting the user to enter the
input, select the options, modify the data, etc. Specifically, the
following programs were developed.

1) ASP-single runway-unconstrained case: This program implements the

algorithm described in Chapter 4. A typical output of this program is
shown in Table E.l. Referring to that table, it can be seen that the
program prompts the user to enter the time separation matrix, the number
of passengers and the problem's objective Z (as defined in Chapter 3).
Subsequently, and after one pass of the "optimization' part has been exe-
cuted, the program prompts the user to enter the initial state vector

(i ,ko,... 0) for the subsequent "identification" procedure, as described
0’1

in Chapter 4. Referring again to Table E.l, we can translate the symbols
appearing there as follows:
OPT.COST = V : Optimal value of the problem
STAGE n: Current stage
FROM a TO b —— ¢ d e; a is the category of the previous landing
aircraft, b is the category of the current landing. c. d.

and e are the values of the components of the k-vector at
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ENTER TIRE RATRIX
9618122

90
fN1EP H0S. OF PASSENGERS

100150100

gtJtCTIUE-? 1 FOR PURE TSP, B FOR UEIGHTED TSP

TIRE MATRIX
9¢ 181 228
2 Bo 117
2 8o

20
PASSENGERS 1 300 150 100

OBJECTIVE. 2

ENTER OT? Lgum. CAT. & 3 NOS. OF PLANES FROM @ TO 5,

3 1
INIT. COND!?
START FROMN CAY.

STAGE 11 FROAm 3
STAGE 10 FROHM 2
STAGE 9 FROM 2
STAGE 8 FROM 2
STAGE 7 FROM 2
STAGE 6 FROM
STRGE S5 FROM 2
STAGE 4 FROM 3
STAGE 3 FROM 3
SYAGE 2 FROM 3
STAGE 1 FROM 3
£MT£R OTH LAND. CAT.
2 5 §
lNlT. COND:s
START FROM CAY.
STAGE 12 FROR 3
STAGE 11 FROM 1
STAGE 10 FROM |
STARGE 9 FROM 2
STAGE 8 FROM 2
STARGE 7 FROM 2
STAGE € FROM 2
STRGE & FROM 2
STAGE 4 FROM )
STAGE 3 FROM 3
STﬂGE 2 FROH 3
TAGE 1 3

FRO
ENTER OTH LﬁND. CAT,

Table E.1: Typical output of computer program for the single runway-unconstrained case.

-t
(=]
§UUUUUN—NNNNU
[]
t
t

. “

-
o
W W WUV I e e )
t
t
]

COOOO OO e

OO OO O~ ~NLLIN

:

000 OCOOOOOIOO~N

COOOOGO~NLWLIIN

O e lNWANANRNRRNN

OBJECTIVE=
PAS 50

OBJECTIVE
PASSe 1856
PA§Se 1550
PASS- 1258
PASS= 1100
PASS« 950
PASSs 800
PASS« 658

& 3 NOS. OF PLANES FROﬂ . 70 S,

FORMAT(413) TO TERMINATE TYPE

e
TINE- B0

TINE- BO
TIME- B0
TIKE- BO
TINE. 72
TINE-181
TIRE-117
TIME= 90
TINE= 90
TIME- 90
TINE. 9

SusT1- 80
SUBT1- 166
SUBTL- 240
SUBTi- 320
SuBT1= 392
SUBT1. S§73
SUBT1-. €90
SUBT1- 780
SUsTi- 870
SUD?l' 960

COST-
COS5T-
COSTe
COS5T-
COST-
COST-
COST-
C0S57-
COST-
COST-

0ST»

UBT1 ¢
FORHA1(413) TO TERH!NATE TYPE

2
TInE- 72

TIHE= 9

SUBTI. 72

COST-

. COST»

COS5T-

SuUB
FORHAT(4!3) T0 TERﬂlNﬁTE TYPE

Example corresponds to Cases 7 and 6 of Chapter 4.

133200 susve-
1488060 SuBT2-
226258 SUBT2-
88066 5uBT2.
76608 SuBT2.
64000 SUBTZ~
52000 SUBT2~
58500 SUBTR2.
36000 SUBT2.
27000 SuBT2-
18006 SUBTZ.
9000 SUBT2-
~1 OR -2 OR -3

668558 REST- 08620
704558 REST. 54060
7315580 REST- 27039
749558 RESY. 9060
758559 REST- (]

OPT.COST- 936750
133200 REST. 803556
282000 REST. 654758
508256 RESTs 428500
§96258 REST. 340560
672250 REST- 264500
236250 REST- 206500
788250 REST» 14850

846750 REST- 90000
882750 REST- 54000
909758 REST. 27¢00
92775@ REST- 9400
936750 REST- [

This particular



that stage. (The particular case of Table E.l has N=3.)

PASS=x: Number of passengers still waiting to land at the current
stage.

TIME = y: Time interval between the landing of a and the landing of
b.

SUBT = Zl: Incremental time counter.

COST = w: Passenger delay incurred between the landing of a and the
landing of b (w=x.y)

SUBT2 = ZZ: Incremental passenger delay counter

REST = v: Value of optimal wvalue function at that particular state.

2) ASP-single runway-CPS case: This program implements the algor-

ithm developed in Chapter 5. A typical output of this program is shown
in Table E.2. Two additional inputs for the program are the initial FCFS
sequence and the value of MPS. 1In addition to the output produced by

the previous program, this program also displays the position shifts of
thé various aircraft, as well as the percent improvement in LLT and TPD
over the ones of the FCFS discipline. These are displayed in the fol-

lowing way: (See Table E.2.)

llell "COST"
LLTo (FCFS) TPDo (FCFS)
LLT TPD
LLT -LLT TPD -TPD
o} [e)
100 (_LLTO—LLT) /LLTO 100 (TPDO-TPD) / TPDO

3) ASP-Two runways-unconstrained case: This program implements the
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EgTER RAXINUN POSITION SHIFTING (MWPS) FORMAT(12)

TINE MATRIX

96181228

72 BO117

72 80 96

PASSENGERS 1 308 1580 100

OPJECTIVE. 2

CAT- 1 1 3223212133212 NM- 6 6 4 nPs- §
E'a‘TER L6 OR -l.’a.'a.‘4.’5,-€.l"0l HELP HIT RETURN

THIT. COMD3

START FROM CAT. 2 =~-- 6 6 4 O0DJECTIVE-

STAGE 15 FROA 2 YO 2 -— 5§ S 4 PASS- 2806 TINE- 86 SUBTI- 88 CO5T« 224000
STAGE t4 FROM 2 10 t --- 4 6 4 PASS- 2650 TINE= 72 SUBTie 152 COST- 198888
STARGE 13 FROM 1 T0 § --—- 3 6§ 4 PASSe 2350 TIME. 96 SUBTi= 248 C057e 225608
STRGE 12 FROM I T0 t ~— 2 65 4 PASS- 20580 TIME- 96 SUBTi» 344 COST- 196800
STAGE 11 FROM § TO0 t —- § 6 4 PA5S« 1750 TIME= 096 SUBT1= 440 COST+ 168060
STAGE 10 FROM 1 T0 2 --- 1 4 4 PASS~ 1450 TInE-181 SUBTLs 621 COST- 262458
STHGE 9 FROM 2 10 2 --- | 3 4 PASS- 13600 TINE- 80 SUMTI= 701 COSTe 104000
STRGE 8 FROM 2 10 3 —- 1 3 3 PASS= 1150 TIME-117? SUBTi- 818 CO5Te 134550
STAGE 7 FROM 3 T0 3 --- 1 3 2 PASS 1056 TINE- 90 SUBTI- 048 COST- 94568
STRGE 6 FROM 3 10 2 ~-- 1 2 2 PASSe 950 TINE- 80 SUBTi- 9088 COST~ 76800
STAGE S FROM 2 10 2 -—-- 1 1 2 PASSe 800 TINE- 88 SUBTL- 1668 COST- 64006
STAGE 4 FROM 2 10 1§ --- @ 1 2 PASS= 650 TIME- 72 SUBTI~ 1148 C(COS5T- 46899
STAGE 3 FROM { T0 2 ~--- @ & @ PASSs 350 TINE-181 SUBTI- 1321 COSTe 63358
STAGE 2 FROM 2 T0 3 ~—- 6 0 1 PASS= 200 TIME-§17 SUBTLI- 1438 COS5T- 23406
STRGE { FROM 3 T0 3 --- @ 0 O PASS= 100 TINE- 90 SUBTL- 1528 COST- 9600
WPS= §

LANDING ORDER t 0 1 2 3 485 6 7 8 9101112131415 TIRE COST
INITIAL SEQUENCE ¢ 2 1 1 3 2 2 3 2 1 2 &t 3 3 2 1 2 1729 2383800
OPTIMAL SEQUEICE + 2 2 1 1 1 § 2 82 3 3 2 2 1t 2 3 3 1528 1883250
POSITION SHIFTING' @& 3 -3 -f 4 6§ -1 0-5-3-1 2 2 2-3-] 21 500550
PERCENT GAINS : 11 20

EgTER Lo OR -1,-2,-3,-4,-5,-6.FOR HELP HIT RETURN

Table E.2: Typical output of the computer program for the single runway - CPS case.

example corresponds to Case 3 of Chapter 5.

susta-
SusT2s
SURT2-
SUBTR.
SUBTR2-
SuBT2.
susT2.
SURT2-
SUBT2.
SUBT2.
SUBT2-
SUBT2.
Sugta.
SUBT2e
SupT2-

0PT.COST-

224000

414860

640409

837226
1605200
1267650
1371650
1566220
1663708
1676788
174067088
1787500
1850858
1874250
18832560

REST-
REST-
REST.
REST-
REST.

1883258
16592560
1468450
1242850
1846058
878050
615600
511630
377058
282559
206550
142556
95756
32480
9006

This particular



~TLT-

" STHGE

1 1 4 4 4
OPTIMAL PARTITIONING § RUNWAY & ¢ 2 2 &

RUNUAY 1

START FRON
€TruE
STALE
STRGE
STRGE
STAGE
STAGE

RUNURY
START F
STHGE
STAGE
STHGE
STHGE
STAGE
STAGE

RUIMAY 18
RUHUAY 23

on

“RWLNNDN =Rwanor

EN;EREOT? LgNDé CAT. FOR RUNUAYS 1 AND 2 & 3 NOS.
OPTIMAL PARTITIONING ¢ RUAY 1 ¢ 2 6 S

RUHUAY 1

STARY FROM
STAGE 7

STAGE
STAGE
STAGE
STHGE

STAGE
STHGE

=uWwes N,

RUNUAY 2

START FROM
STAGE
STAGE
STHGE
STAGE
STAHGE
STRGE

reNWesNHhIn

STHGE
RUNHUAY 13
RUNUAY 23

ENTER @TH LAND. CAT. FOR RUNMAYS 1 AND 2 & 3 NOS.

Table E.3: Typical output of the computer program for the two-runway-unconstrained case.

CAT. 1 --- 28 &
FRON 1 0 1 --- 1 2
FROM 1 10 2 --- {1
FROW 2 10 2 --- 1 O
FROM 2 T0 3 =--- 1 O
FROW 3 T0 2 --- 1 &
FROW 3 T0 1 --- 0 O
CAT. i --- 2 2
FRON 1 10 { --- 1 2
FROM 1 0 2 --- 1 1
FROM 2 T0 2 --- 1 @
FROM 2 10 3 --- 1 @
FROW 3 10 3 --- { @
FROW 3 T0 § -~ & 0

TIME- 636 COSTe 418500
TINE~ 636 COST- 418500

CAT. 2 --- 2 ¢
FROM 2 10O 3 --- 2 0
FROM 3 10 3 --- 2 0@
FROM 3 10 3 --- 2 @
FROM 3 10 3 -~-- 2 @
FrROM 3 10 3 --- 2 @
FROW 3 10 § --- 1t @
FROM 1 M1 --- & 2@
CRY. g --- 3 S
FROM 2 Y0 2 =--- 3 4
FROW 2 10 2 --- 3 3
FROW 2 10 2 --- 3 2
FROM 2 T0 2 --- 3 1|
FROM 2 T0 2 --- 3 @
FROW 2 10 §t --- 2 @
FROM 1 100 1 --- 1 @
FROM 0 §{ --- 0 @

TINE= 645 COSTe 506700
TINE- 664 COST» 691200

[ 2 doditl 2y

[ X T od 11

[ T -F 1 RPN,

(X3 2 3 7 1 3 1 J

RUNUJAY 2 @

OBJECTIVE-
PASS- 1100

. PASS- 800

PASS= 650
PASSes 500
PASS= 489
PASS= 300

OBJECTIVE »
PHSS= 1100
PASS= 800
PASS= 650
PASSe 500
PASSe 400
PASS= 300

RUNUAY 2 3

OBJECTIVE-
PASS~ 1100
PASS« 1000
PASSs 900
PASSs 800
PASSe 700
PASSe 600
PASS= 300

OBJECTIVE-
PASS« 1650
PASS- 1500
PASS= 1350
PASS= 1200
PASSe 1050
PASS- 000
PASS« 600
PASS+ 300

e a2 &

TIRE. 96
TINE-181
TIRE- 80
TINE~117
TIRE= 90
TINE- 72

1
TINE- 96

TINE-181
TinE- 860
TINE-117?
TIME- 90
TinE= 72

3 5 ¢

1
TIME«117

TIRE- 90
TIME- 90
TINE- 90
TINE- 90
TiME- 272
TIingE- 96

TIRE- 80
TINE- B8O
TIME- BO
TINE- 80
TIRE. 80
TINE- 72
TINE- 96
TInE- 96

MINMAX»

SUBTH.
SUBTt.
SUBTY=
SUBT1-
SUBT1.
SUBTY.-

SUBT1-
SUBT1L=
SUBTH-
SUBTL.
SUBT1.
SUBT1-

SUBT1.
SUBTL=
SUBTL-
SUBT1~
SUBT1.
SUBTH.
SUBT1=

SUBTL«
SUBTY -
SUBT1-
SUBT1»
SUBTY -
SUBTS-
SUBTH-
SUBTL-

OF PLANES (MAX+5) FORMAT(513)
MINMAXe

636

COST-
COST-
COST-
CO5T-
€OS5T-
COST-

COST-
COST-
COST-
CO5T-
COST-
COST-

TO TERMINATE TYPE

664

cular example corresponds to Cases 1 and 3 of Chapter 6.

105600
144800
52000
$8500
6000
21600

105600
144800
52030
S8500
36000
21600

28800

132000
120080
108000
96000
84000
64809
57600
28800

© SUBTR2.

SuBT2.
SUBT2.
SuUBT2.
SUBT2~
SUBT2-

SuBT2.
SUBT2~
SuUBT2-
SUBT2.
SuBT2-
SUBT2.

1 OR

SUBT2.
SuBT2-
SuUBT2.
SUBT2.
SUBTR2.
SUBT2-
SuUsT2.

SURT2.
SUBT2e
suBta-
SUBT2.
SUBTY 1=
SUBTZ-
SuBTa-
SUBT&-

0"‘
105600
250460
302400
360900
396900
418500

OoPT.
105600
256400
302400
3606900
396900
418500

-2 0R -3

OPT.

128700
218700
299700
371700
434700
477900
506700

132000
252000
360000
456000
540000
604800
662400
691200

OF PLANES (MAX=5) FORMAT(SI3) TO TERMINATE TYPE -1 OR -2 OR -3

REST.
REST-

COST»
REST.
REST»
REST»
REST-
REST=
REST-

COST-

This parti-
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- STAGE 2 FROM

ENTER NOS. OF PASSENGERS
110110139
OBJECTIVE=? | FOR PURE TSP, @ FOR UEIGHTED TSP

2
TYPE 1 FOR A PRIORI GROUPING, ELSE RETURN

1
TINE RATRIX
70 100 130
76 80 {10
70 80 90
PASSENGERS & 110 110 130
ORJECTIVE. 2
GROUPING-
ENTER Nog. OF PLANES FOR 3 CATEGORIES, MAX=5 EACH
5

S
EN;ER OTH LAND.CAT.FORMAT(413) OR TYPE -1 OR -2 OR -3 OR -4

INIT. COMDs

START FROM CAT. 3

STRGE 3 FROM 3 10 3 ---
STAGE 2 FROM 3 10 1

OBJECTIVE. 2

PASSe 1756 TIRE<270 SUBTIe 278
PASSe 1100  TINE=390 SUBTi- 669
STAGE 1 FRON 1 10 & ~--- PASSe 550 TINE-400 SUBTi- 1060
STRGE 6 FROM 2 10 END --—- L] PASS L 71!15-160 SUBT1- 1220
Cg?ER OTH LAND.CAT. FORHAYH!J) OR TYPE -1 OR -2 OR -3 OR -

ENTER NOS. OF PASSENGERS
110110120 '
gBJECT!UE~7 1L FOR PURE TSP, 2 FOR UEIGHTED TSP

IYPE 1 FOR A PRIORI GROUPING, ELSE RETURN

TINE MATRIX

76 100 130

0 80 110

70 80 96

PASSENGERS 1 110 110 120

OBJECTIVE. 2

GROUPING= 1

ENTER NOS OF PLANES FOR 3 CATEGORIES, MAX=5 EACH

S
ENTEP OTN LAND.CAT.FORMAT(413) OR TYPE -1 OR -2 OR -3 OR -4

lNl'l'. COND3

START FROM CAT.

STAGE 3  FROM il ;g
STAGE 1 FROM 2 10 3 ---
STARGE & FROM 3 T0 END ---
ENTER OTH LAND.CAT. FORHAT(4!3) OR Tv

[ 22 X
L X 4 1 2.4

f  OBJECTIVE. 2

1 PASSe 1700 TIME-210 SUBTIe 210
1 PASSe 1150 TINE-400 SUBTiI- 616
& PASS- 600 TIME-458 SURTI- 1066
® PASSe 6 TINE-180 SUBTI- 1240
1 OR -2 OR -3 OR -4

[T IR}
[ BN}
(]
[

[ X 2 X T2

1
1
(]
9
L]
PE

Table E.4: Typical output of the computer program for the sing

clustering (grouping) as developed in Appendix D.
Cases 9 and 8 of Chapter 4.

OPT.COST- 1121500
CO5T- 472560 SURT2. 472500 REST- 649080
COST~ 420800 suNT2. 901560 REST. 229000
COST- 220000 SUBT2- 1121500 REST- [
COST- ¢ SUDT2« 1121500 REST- ()

OPT.COST- 1087000
COST- 357090 suBT2. 357000 REST- 736000

CO5T~= 460600 sudT2. 817008 REST- 270000
COST= 270000 SUBT2+ 1087008 REST- ¢
COST- [ SUBT2» 10687000 REST~ o

le runway-unconstrained case with a priori

This particular example corresponds to



algorithm of Chapter 6. A typical output of this program is shown in
Table E.3.

As in the single runway unconstrained case, the main input concerns
the time separation matrix, the number of passengers and the objective.
Subsequently, and after one pass of the "optimization" part of the equi-

valent single runway program has been executed, the program prompts the

user to enter the zeroth landed categories at the two runways and the
initial composition of our aircraft reservoir (in Table E.3 we have, for
example, (1,1,4,4,4) and (2,2,5,5,5)). The output of the program con-
sists of the optimal partitioning as well as the optimal. sequences for
each of the two runways. Referring to Table E.3, we can explain the
various symbols as follows:

JMINMAX": Optimal value of the problem (in terms of our objective)

"TIME'": Last Landing Time

"COST : Total Passenger Delay
The meaning of the rest of the symbols is identical to that of Table E.Ll.

4) ASP-single runway-unconstrained case with a priori group cluster-

ing. This program implements the modified D.P. algorithm presented at

the end of Appendix D when we are a priori sure that our airplanes will
be clustered in groups. A typical session is shown in Table E.4. This
program can also be run as the regular single runway-unconstrained case
program (Table E.l) if desired. The option parameter is called "GROUPING"
and is equal to 1 if a priori group clustering is desired, 0 otherwise

(Table E.4). As shown in Appendix D, our sequence terminates with a dum—-

my node called "END."

-173-



