15.093 Optimization Methods

Lecture 24: Semidefinite Optimization

1 Outline

- 1. SDO formulation
- 2. The Maximum cut problem
- 3. Minimizing Polynomials as an SDP
- 4. Linear Difference Equations and Stabilization
- 5. Barrier Algorithm for SDO

2 SDO formulation

2.1 Primal and dual

$$(P): \min \quad \boldsymbol{C} \bullet \boldsymbol{X}$$

s.t. $\boldsymbol{A}_i \bullet \boldsymbol{X} = b_i \quad i = 1, \dots, m$
 $\boldsymbol{X} \succeq \boldsymbol{0}$

$$(D): \max \sum_{i=1}^{m} y_i b_i$$

s.t. $C - \sum_{i=1}^{m} y_i A_i \succeq \mathbf{0}$

3 MAXCUT

- Given G = (N, E) undirected graph, weights $w_{ij} \ge 0$ on edge $(i, j) \in E$
- Find a subset $S \subseteq N$: $\sum_{i \in S, j \in \overline{S}} w_{ij}$ is maximized
- $x_j = 1$ for $j \in S$ and $x_j = -1$ for $j \in \overline{S}$

$$MAXCUT: \max \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(1 - x_i x_j)$$

s.t. $x_j \in \{-1, 1\}, \quad j = 1, \dots, n$

3.1 Reformulation

- Let $\boldsymbol{Y} = \boldsymbol{x}\boldsymbol{x}'$, i.e., $Y_{ij} = x_i x_j$
- Let $\boldsymbol{W} = [w_{ij}]$

SLIDE 4

SLIDE 3

SLIDE 2

• Equivalent Formulation

$$MAXCUT: \max \quad \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} - \boldsymbol{W} \bullet \boldsymbol{Y}$$

s.t. $x_j \in \{-1, 1\}, \quad j = 1, \dots, n$
 $Y_{jj} = 1, \quad j = 1, \dots, n$
 $\boldsymbol{Y} = \boldsymbol{x} \boldsymbol{x}'$

3.2 Relaxation

- $Y = xx' \succeq 0$
- Relaxation

RELAX: max
$$\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} - \boldsymbol{W} \bullet \boldsymbol{Y}$$

s.t. $Y_{jj} = 1, \quad j = 1, \dots, n$
 $\boldsymbol{Y} \succeq \boldsymbol{0}$

3.3 Feasible set

An outer approximation to the true feasible set.

SLIDE 7

SLIDE 6

- •
- It turns out that:

 $0.87856 \ RELAX \leq MAXCUT \leq RELAX$

 $MAXCUT \leq RELAX$

• The value of the SDO relaxation is guaranteed to be no more than 12% higher than the value of the very difficult to solve problem MAXCUT

Slide 5

4 Minimizing Polynomials

4.1 Sum of squares

• A polynomial f(x) is a **sum of squares** (SOS) if

$$f(x) = \sum_{j} g_j^2(x)$$

for some polynomials $g_j(x)$.

- A polynomial satisfies $f(x) \ge 0$ for all $x \in \mathbb{R}$ if and only if it is a sum of squares.
- Not true in more than one variable!

4.2 Proof

- (\Leftarrow) Obvious. If $f(x) = \sum_j g_j^2(x)$ then $f(x) \ge 0$.
- (\Rightarrow) Factorize $f(x) = C \prod_j (x r_j)^{n_j} \prod_k (x a_k + ib_k)^{m_k} (x a_k ib_k)^{m_k}$. Since f(x) is nonnegative, then $C \ge 0$ and all the n_j are even. Then, $f(x) = f_1(x)^2 + f_2(x)^2$, where

$$f_1(x) = C^{\frac{1}{2}} \prod_j (x - r_j)^{\frac{n_j}{2}} \prod_k (x - a_k)^{m_k}$$

$$f_2(x) = C^{\frac{1}{2}} \prod_j (x - r_j)^{\frac{n_j}{2}} \prod_k b_k^{m_k}$$

4.3 SOS and SDO

- Let $\tilde{x} = (1, x, x^2, \dots, x^k)'$.
- $f(x) = \tilde{x}' Q \tilde{x}$ is a sum of squares if and only if

$$f(x) = \tilde{x}' \boldsymbol{Q} \tilde{x},$$

where $\boldsymbol{Q} \succeq \boldsymbol{0}$, i.e., $\boldsymbol{Q} = \boldsymbol{L'L}$.

• Then, $f(x) = \tilde{x}' \mathbf{L}' \mathbf{L} \tilde{x} = ||L \tilde{x}||^2$.

4.4 Formulation

- Consider $\min f(x)$.
- Then, $f(x) \ge \gamma$ if and only if $f(x) \gamma = \tilde{x}' Q \tilde{x}$ with $Q \succeq 0$. This implies linear constraints on γ and Q.
- Reformulation

s.t.
$$\begin{cases} \max \gamma \\ f(x) - \gamma &= \tilde{x}' \boldsymbol{Q} \tilde{x} \\ \boldsymbol{Q} \succeq \boldsymbol{0} \end{cases}$$

SLIDE 11

SLIDE 9

SLIDE 10

4.5 Example

4.5.1 Reformulation

$$\min f(x) = 3 + 4x + 2x^{2} + 2x^{3} + x^{4}.$$

$$f(x) - \gamma = 3 - \gamma + 4x + 2x^{2} + 2x^{3} + x^{4} = (1, x, x^{2})' \mathbf{Q}(1, x, x^{2}).$$

$$\max \gamma$$
s.t. $3 - \gamma = q_{11}$

$$4 = 2q_{12}, \ 2 = 2q_{13} + q_{22}$$

$$2 = 2q_{23}, \ 1 = q_{33}$$

$$\mathbf{Q} = \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix} \succeq \mathbf{0}$$

Extensions to multiple dimensions.

5 Stability

• A linear difference equation

$$x(k+1) = Ax(k), \qquad x(0) = x_0$$

- x(k) converges to zero iff $|\lambda_i(\mathbf{A})| < 1, i = 1, \dots n$
- Characterization:

$$|\lambda_i(\mathbf{A})| < 1 \quad \forall i \iff \exists \mathbf{P} \succ 0 \quad \mathbf{A}' \mathbf{P} \mathbf{A} - \mathbf{P} \prec 0$$

5.1 Proof

• (\Leftarrow) Let $Av = \lambda v$. Then,

$$0 > v'(\mathbf{A}'\mathbf{P}\mathbf{A} - \mathbf{P})v = (|\lambda|^2 - 1)\underbrace{v'\mathbf{P}v}_{>0},$$

and therefore $|\lambda|<1$

• (\Longrightarrow) Let $P = \sum_{i=0}^{\infty} A^{i'} Q A^{i}$, where $Q \succ 0$. The sum converges by the eigenvalue assumption. Then,

$$\boldsymbol{A'PA} - \boldsymbol{P} = \sum_{i=1}^{\infty} \boldsymbol{A^{i'}QA^{i}} - \sum_{i=0}^{\infty} \boldsymbol{A^{i'}QA^{i}} = -\boldsymbol{Q} \prec \boldsymbol{0}$$

SLIDE 13

SLIDE 14

5.2 Stabilization

- Consider now the case where A is not stable, but we can change some elements, e.g., A(L) = A + LC, where C is a fixed matrix.
- Want to find an L such that A + LC is stable.
- Use Schur complements to rewrite the condition:

$$(\mathbf{A} + \mathbf{L}\mathbf{C})'\mathbf{P}(\mathbf{A} + \mathbf{L}\mathbf{C}) - \mathbf{P} \prec 0, \qquad \mathbf{P} \succ 0$$

$$\begin{pmatrix} & \uparrow \\ \mathbf{P} & (\mathbf{A} + \mathbf{L}\mathbf{C})'\mathbf{P} \\ \mathbf{P}(\mathbf{A} + \mathbf{L}\mathbf{C}) & \mathbf{P} \\ \end{pmatrix} \succ 0$$

Condition is nonlinear in $(\boldsymbol{P}, \boldsymbol{L})$

5.3 Changing variables

• Define a new variable Y := PL

$$\begin{bmatrix} \mathbf{P} & \mathbf{A}'\mathbf{P} + \mathbf{C}'\mathbf{Y}' \\ \mathbf{P}\mathbf{A} + \mathbf{Y}\mathbf{C} & \mathbf{P} \end{bmatrix} \succ \mathbf{0}$$

- This is linear in (\mathbf{P}, \mathbf{Y}) .
- Solve using SDO, recover \boldsymbol{L} via $\boldsymbol{L} = \boldsymbol{P}^{-1}\boldsymbol{Y}$

6 Primal Barrier Algorithm for SDO

- $\boldsymbol{X} \succeq \boldsymbol{0} \Leftrightarrow \lambda_1(\boldsymbol{X}) \ge 0, \dots, \lambda_n(\boldsymbol{X}) \ge 0$
- Natural barrier to repel \boldsymbol{X} from the boundary $\lambda_1(\boldsymbol{X}) > 0, \dots, \lambda_n(\boldsymbol{X}) > 0$:

$$-\sum_{j=1}^{n} \log(\lambda_i(\boldsymbol{X})) =$$
$$-\log(\prod_{j=1}^{n} \lambda_i(\boldsymbol{X})) = -\log(\det(\boldsymbol{X}))$$

SLIDE 18

• Logarithmic barrier problem

min
$$B_{\mu}(X) = C \bullet X - \mu \log(\det(X))$$

s.t. $A_i \bullet X = b_i$, $i = 1, ..., m$,
 $X \succ \mathbf{0}$

• Derivative: $\nabla B_{\mu}(\mathbf{X}) = \mathbf{C} - \mu \mathbf{X}^{-1}$ Follows from

$$\log \det(\mathbf{X} + \mathbf{H}) \approx \log \det(\mathbf{X}) + \operatorname{trace}(\mathbf{X}^{-1}\mathbf{H}) + \cdots$$

SLIDE 16

SLIDE 17

• KKT conditions

$$\mathbf{A}_{i} \bullet \mathbf{X} = \mathbf{b}_{i} \quad , i = 1, \dots, m,$$
$$C - \mu \mathbf{X}^{-1} = \sum_{i=1}^{m} y_{i} \mathbf{A}_{i}.$$
$$\mathbf{X} \succ \mathbf{0},$$

- Given μ , need to solve these nonlinear equations for X, C, y_i
- Apply Newton's method until we are "close" to the optimal
- Reduce value of μ , and iterate until the duality gap is small

6.1 Another interpretation

• Recall the optimality conditions:

$$\mathbf{A}_{i} \bullet \mathbf{X} = \mathbf{b}_{i} , i = 1, \dots, m,$$

$$\sum_{i=1}^{m} y_{i} \mathbf{A}_{i} + \mathbf{S} = \mathbf{C}$$

$$\mathbf{X}, \mathbf{S} \succeq \mathbf{0},$$

$$\mathbf{X} \mathbf{S} = \mathbf{0}$$

- Cannot solve directly. Rather, perturb the complementarity condition to ${\bf X}\,{\bf S}=\mu{\bf I}.$
- Now, unique solution for every $\mu > 0$ (the "central path")
- Solve using Newton, for decreasing values of μ .

7 Differences with LO

• Many different ways to linearize the nonlinear complementarity condition

$$\mathbf{X}\mathbf{S} = \mu\mathbf{I}$$

- Want to preserve symmetry of the iterates
- Several search directions, most common is Nesterov-Todd.

8 Convergence

8.1 Stopping criterion

• The point (\mathbf{X}, y_i) is feasible, and has duality gap:

$$\mathbf{C} \bullet \mathbf{X} - \sum_{i=1}^{m} y_i b_i = \mu \mathbf{X}^{-1} \bullet \mathbf{X} = n\mu$$

- Therefore, reducing μ always decreases the duality gap
- Barrier algorithm needs $O \sqrt{n} \log \frac{\epsilon_0}{\epsilon}$ iterations to reduce duality gap from ϵ_0 to ϵ

SLIDE 21

SLIDE 20

9 Conclusions

- SDO is a very powerful modeling tool
- SDO represents the present and future in continuous optimization
- Barrier and primal-dual algorithms are very powerful
- Many good solvers available: SeDuMi, SDPT3, SDPA, etc.
- Pointers to literature and solvers: www-user.tu-chemnitz.de/~helmberg/semidef.html