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Lecture 24: Semidefinite Optimization 



1 Outline 
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1. SDO formulation 

2. The Maximum cut problem 

3. Minimizing Polynomials as an SDP 

4. Linear Difference Equations and Stabilization 

5. Barrier Algorithm for SDO 

2 SDO formulation 

2.1 Primal and dual 
Slide 2 

• 
(P ) : min C X • 

s.t. Ai • X = bi i = 1, . . . , m 

X � 0 

• 
m�

(D) : max yibi 

i=1 
m�

s.t. C − yiAi � 0 
i=1 

3 MAXCUT 
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Given G = (N,E) undirected graph, weights wij ≥ 0 on edge (i, j) ∈ E • 

Find a subset S ⊆ N : 
�

i∈S,j∈S wij is maximized ¯• 

xj = 1 for j ∈ S and xj = −1 for j ∈ S ̄ • 

1 
MAXCUT : max 

4 

n�n�
wij (1 − xixj ) 

i=1 j=1 

s.t. j = 1, . . . , n xj ∈ {−1, 1}, 

3.1 Reformulation 
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Let Y = xx�, i.e., Yij = xixj• 

Let W = [wij ]• 
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Equivalent Formulation • 

1 
MAXCUT : max 

n�n�
wij − W Y •

4 
i=1 j=1 

s.t. j = 1, . . . , n xj ∈ {−1, 1}, 
Yjj = 1, j = 1, . . . , n 

Y = xx� 

3.2 Relaxation 
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Y = xx� � 0
•


Relaxation • 

1 
RELAX : max 

n�n�
wij − W Y •

4 
i=1 j=1 

s.t. Yjj = 1, j = 1, . . . , n 

Y � 0 

3.3 Feasible set 
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• For n = 3, we have 
⎡
⎣ 

⎤
⎦ � 0 

1 Y12 Y13 

Y12 1 Y23 

1Y13 Y23 

An outer approximation to the true feasible set. Slide 7 

• 
MAXCUT ≤ RELAX 

It turns out that: • 

0.87856 RELAX ≤ MAXCUT ≤ RELAX 

The value of the SDO relaxation is guaranteed to be no more than 12% • 
higher than the value of the very difficult to solve problem MAXCUT 
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4 Minimizing Polynomials 

4.1 Sum of squares 
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A polynomial f(x) is a sum of squares (SOS) if • 

2f(x) = 
� 

gj (x) 
j 

for some polynomials gj (x). 

A polynomial satisfies f(x) ≥ 0 for all x ∈ R if and only if it is a sum of • 
squares.


Not true in more than one variable!
• 

4.2 Proof 
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2) Obvious. If f(x) = 
�

j gj (x) then f(x) ≥ 0.(⇐• 

(⇒) Factorize f(x) = C
�

j (x− rj )nj 
�

k (x− ak + ibk)mk (x− ak − ibk)mk . • 
Since f(x) is nonnegative, then C ≥ 0 and all the nj are even. Then, 
f(x) = f1(x)2 + f2(x)2, where 

�
(x − ak )

mk 
1 
2 

nj 
2f1 (x) = C (x − rj ) 

j k 

� 
b
mk 
k 

1 
2 

nj 
2f2 (x) = C (x − rj ) 

j k 

4.3 SOS and SDO 
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Let x̃ = (1, x, x2, . . . , xk )�. • 

x�Q˜f(x) = ˜ x is a sum of squares if and only if • 

x�Q˜f(x) = ˜ x,


where Q � 0, i.e., Q = L�L.


2Then, f(x) = ˜ x =x�L�L˜ ||L˜ . • x||

4.4 Formulation 
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Consider min f(x).•


Then, f(x) ≥ γ if and only if f(x) − γ = ˜ Q˜
x� x with Q � 0. This implies
•

linear constraints on γ and Q.


Reformulation
• 
max γ 

˜ x
� 

f(x) − γ = x�Q˜
s.t. 

Q � 0 
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4.5 Example 

4.5.1 Reformulation 
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3 4min f(x) = 3 + 4x + 2x 2 + 2x + x . 
3 4 2f(x) − γ = 3 − γ + 4x + 2x 2 + 2x + x = (1, x, x 2)�Q(1, x, x ). 

max γ 
s.t. 3 − γ = q11 

4 = 2q12, 2 = 2q13 + q22 

2 = 2q23, 1 = q33 

q11 q12 q13

⎡
⎣ 

⎤
⎦ � 0Q = q12 q22 q23 

q13 q23 q33 

Extensions to multiple dimensions. 

5 Stability 
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A linear difference equation • 

x(k + 1) = Ax(k), x(0) = x0 

• x(k) converges to zero iff | λi(A)| < 1, i = 1, . . . n 

Characterization: • 

| λi(A) < 1 A�P A − P � 0| ∀ i ⇐⇒ ∃ P � 0 

5.1 Proof 
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=) Let Av = λv. Then,(⇐• 

20 > v�(A�P A − P )v = ( λ − 1) v�P v, 
>0 

and therefore λ < 1| |


(=⇒ ) Let P = 
�∞

Ai�QAi, where Q � 0. The sum converges by the
• i=0 
eigenvalue assumption. Then, 

∞ ∞
A�P A − P = 

�
Ai�QAi − 

�
Ai�QAi = − Q � 0 

i=1 i=0 
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5.2 Stabilization 
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Consider now the case where A is not stable, but we can change some • 
elements, e.g., A(L) = A + LC, where C is a fixed matrix.


Want to find an L such that A + LC is stable.
• 

Use Schur complements to rewrite the condition: • 

(A + LC)�P (A + LC) − P � 0, P � 0 

P (A + LC)�P � 0 
P (A + LC) P 

Condition is nonlinear in (P , L) 

5.3 Changing variables 
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Define a new variable Y := P L • 

P A�P + C �Y � � 0 
P A + Y C P


This is linear in (P ,Y ).
• 

Solve using SDO, recover L via L = P −1Y • 

Primal Barrier Algorithm for SDO 
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X � 0 ⇔ λ1(X) ≥ 0, . . . , λn(X) ≥ 0 • 

Natural barrier to repel X from the boundary λ1(X) > 0, . . . , λn(X) > 0: • 

n�
log(λi(X)) = − 

j=1 

n�
− log( λi(X)) = − log(det(X)) 

j=1 

Slide 18 
•	 Logarithmic barrier problem 

min Bµ(X) = C X − µ log(det(X))•
s.t. Ai •X = bi , i = 1, . . . , m, 

X � 0 

Derivative: �Bµ(X) = C − µX−1 • 

Follows from


log det(X + H) ≈ log det(X) + trace(X−1
H) + · · · 
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•	
� 

KKT conditions •	
X = bi , i = 1, . . . , m, Ai • 

m� 

i=1 
C − µX−1 = yiAi. 

X � 0, 

•	 Given µ, need to solve these nonlinear equations for X, C, yi 

•	 Apply Newton’s method until we are “close” to the optimal 

•	 Reduce value of µ, and iterate until the duality gap is small 

6.1 Another interpretation 
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•	 Recall the optimality conditions:


X = bi , i = 1, . . . , m,
Ai •
m� 

i=1 
yiAi + S = C 

X,S � 0, 
X S = 0 

•	 Cannot solve directly. Rather, perturb the complementarity condition to X S =

µI.


•	 Now, unique solution for every µ > 0 (the “central path”) 

•	 Solve using Newton, for decreasing values of µ. 

7 Differences with LO 
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Many different ways to linearize the nonlinear complementarity condition • 

XS = µI 

Want to preserve symmetry of the iterates • 

Several search directions, most common is Nesterov-Todd. • 

8 Convergence 

8.1 Stopping criterion 
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•	 The point (X, yi ) is feasible, and has duality gap: 

m�
C • X − yibi = µX−1 • X = nµ 

i=1 

•	 Therefore, reducing µ always decreases the duality gap 
�0

Barrier algorithm needs O
�√

n log	
� 

iterations to reduce duality gap from �0 

to � 
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9 Conclusions 
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SDO is a very powerful modeling tool • 

SDO represents the present and future in continuous optimization • 

Barrier and primal-dual algorithms are very powerful • 

Many good solvers available: SeDuMi, SDPT3, SDPA, etc. • 

Pointers to literature and solvers: • 
www-user.tu-chemnitz.de/~helmberg/semidef.html 
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