15.093 Optimization Methods

Lecture 24: Semidefinite Optimization



1 Outline

1. SDO formulation
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2. The Maximum cut problem
3. Minimizing Polynomials as an SDP
4. Linear Difference Equations and Stabilization

5. Barrier Algorithm for SDO

2 SDO formulation

2.1 Primal and dual
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(P): min CeX
st. A;eX =0, i=1,....m
X>0

(D): max Zyibi
i=1

=1

3 MAXCUT

e Given G = (N, E) undirected graph, weights w;; > 0 on edge (i,j) € E
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e Find a subset S C N: ZiGSj€§ w;; is maximized

ez;=1forjeSandx;=—1forjes
1 n n
MAXCUT : max ZZZwiju—:c,mj)
i=1 j=1
st. z;e{-1,1}, j=1,...,n

3.1 Reformulation
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o Let Y =z, ie, YV = zx;

o Let W = [wy]



e Equivalent Formulation

MAXCUT : max iiiw” —WeY

i=1 j=1
st. x;e{-1,1}, j=1,...,n
Yi;=1, j=1,...,n

Y = zx’

3.2 Relaxation
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oY =x2'>0

e Relaxation
1 n n
RELAX : max - > wi;-WeY

st. Yy;=1, j=1,...,n

3.3 Feasible set 7 SLIDE 6

e For n = 3, we have

1 Yy Yi3
Yo 1 Yo | =0
Yiz Yoz 1

An outer approximation to the true feasible set. SLIDE 7

MAXCUT < RELAX

e It turns out that:

0.87856 RELAX < MAXCUT < RELAX

e The value of the SDO relaxation is guaranteed to be no more than 12%
higher than the value of the very difficult to solve problem MAXCUT



4.3

4.4

Minimizing Polynomials

Sum of squares

A polynomial f(x) is a sum of squares (SOS) if

f@) =Y gi)

for some polynomials g;(x).

A polynomial satisfies f(z) > 0 for all € R if and only if it is a sum of
squares.

Not true in more than one variable!

Proof
(«) Obvious. If f(z) =3, g3 (z) then f(x) > 0.

(=) Factorize f(z) = C[[;(z —r;)"™ [[}(z — ar +ibg)™* (x — ar — iby)™*.
Since f(x) is nonnegative, then C' > 0 and all the n; are even. Then,

f(x) = fi(x)? + fa(z)?, where
Y n; Y

@ = ¢ @-r)T  (@-a)™
v Y
fo(x) = C2  (z—r;))2 bF
j k
SOS and SDO
Let & = (1,2,22,...,2%)".

f(x) = ' Q% is a sum of squares if and only if
flz) =7'Qz,

where Q = 0,i.e., Q = L'L.

Then, f(z) = &'L'L¥ = ||Li||?.

Formulation
Consider min f(z).

Then, f(z) > v if and only if f(z) — v = Z’QZ with @ = 0. This implies
linear constraints on v and Q.

Reformulation
max -y
st J @)=y = 7Qz
Q - 0
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4.5 Example

4.5.1 Reformulation
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min f(z) = 3+ 4z + 22° + 22° + .
flz) =y =3 —~v+4dax+22% +22° +2* = (1,2,22)'Q(1, z, z?).
max 7y
s.t. 33— Y = q11
4 =2q12, 2=2q13+ q22
2 =243, 1=gs33 3
qi1  qi2 13
Q=4 g1z g22 Q23 5-0
q13  g23 (g33
Extensions to multiple dimensions.
5 Stability
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e A linear difference equation
z(k+1) = Ax(k), z(0) = g
e (k) converges to zero iff |\;(A)| < 1,i=1,...n
e Characterization:
Ni(A) <1 Vi< 3IP~0 APA-P<0
.1  Proof
5 00 SLIDE 14
e (<) Let Av = Av. Then,
0>v(APA—P)=(]\?*-1)vPu,
~——
>0

and therefore |A| < 1

o (=) Let P=5% 32, AZ"QAi7 where @ > 0. The sum converges by the
eigenvalue assumption. Then,

o0 o0
APA-P=) A"QA' - A"QA'=-Q =<0

i=1 =0



5.2 Stabilization

e Consider now the case where A is not stable, but we can change some
elements, e.g., A(L) = A+ LC, where C is a fixed matrix.

e Want to find an L such that A + LC is stable.
e Use Schur complements to rewrite the condition:

(A+LC)YP(A+LC)—P <0, P>0

P (A+LC)P 0
P(A+ LC) P
Condition is nonlinear in (P, L)
5.3 Changing variables
e Define a new variable Y := PL
P AP+CY' <0
PA+YC P

e This is linear in (P,Y).
e Solve using SDO, recover L via L = P7'Y

6 Primal Barrier Algorithm for SDO

e X =05 M\(X)>0,...,A,(X) >0

Natural barrier to repel X from the boundary A1 (X) > 0,..., A, (X) > 0:

—Zlog(MX)) =

~log(J] (X)) = — log(det(X))
j=1

Logarithmic barrier problem

min  B,(X) =C e X — plog(det(X))
s.t. AZOX:bZ ,i:L...,m,
X >0

Derivative: VB,(X) = C — uX~!
Follows from

log det(X + H) ~ log det(X) + trace(X "H) + - - -
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6.1

KKT conditions
Al.X:bl ,i:l,...,m,
P
i=1
X >0,
Given p, need to solve these nonlinear equations for X, C,y;
Apply Newton’s method until we are “close” to the optimal

Reduce value of u, and iterate until the duality gap is small

Another interpretation
Recall the optimality conditions:

A;eX =b; ;i=1,...,m,

24
yiA; +S
i=1
X, 8 =0,
XS =0

Cannot solve directly. Rather, perturb the complementarity condition to X S =
pl.

Now, unique solution for every u > 0 (the “central path”)

Solve using Newton, for decreasing values of p.

Differences with LO

Many different ways to linearize the nonlinear complementarity condition

XS =ul

Want to preserve symmetry of the iterates

Several search directions, most common is Nesterov-Todd.

Convergence

Stopping criterion
The point (X, y;) is feasible, and has duality gap:
>
CeX — yibi:uxfloXZnu
i=1
Therefore, reducing i always decreases the duality gap

Barrier algorithm needs O +/nlog €0 jterations to reduce duality gap from eg
€
to e
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9 Conclusions
SLIDE 22

e SDO is a very powerful modeling tool

e SDO represents the present and future in continuous optimization

Barrier and primal-dual algorithms are very powerful

Many good solvers available: SeDuMi, SDPT3, SDPA etc.

Pointers to literature and solvers:
www-user.tu-chemnitz.de/ helmberg/semidef .html



