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Abstract

We study the frequent problem of approximating a target matrix with a ma-
trix of lower rank. We provide a simple and efficient (EM) algorithm for solving
weightedlow rank approximation problems, which, unlike simple matrix factor-
ization problems, do not admit a closed form solution in general. We analyze, in
addition, the nature of locally optimal solutions that arise in this context, demon-
strate the utility of accommodating the weights in reconstructing the underlying
low rank representation, and extend the formulation to non-Gaussian noise models
such as classification (collaborative filtering).
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1 Introduction

Low-rank matrix approximation with respect to the squared or Frobenius norm has
wide applicability in estimation and can be easily solved with singular value decom-
position. For many application, however, the deviation between the observed matrix
and the low-rank approximation has to be measured relative to a weighted-norm. While
the extension to the weighted norm case is conceptually straightforward, standard algo-
rithms (such as SVD) for solving the unweighted case do not carry over to the weighted
case. Only the special case of a rank-one weight matrix (where the weights can be de-
composed into row weights and column weights) can be solved directly, analogously
to SVD [1]. Perhaps surprisingly, the weighted extension has attracted relatively little
attention.

Weighted-norms can arise in several situations. A zero/one weighted-norm, for
example, arises when some of the entries in the matrix are not observed. External
estimates of the noise variance associated with each measurement may be available
(e.g. gene expression analysis) and using weights inversely proportional to the noise
variance can lead to better reconstruction of the underlying structure. In other applica-
tions, entries in the target matrix represent aggregates of many samples. When using
unweighted low-rank approximations (e.g. for separating style and content [2]), we as-
sume a uniform number of samples for each entry. By incorporating weights, we can
account for varying numbers of samples in such situations.

Shpak [3] and Luet al. [4] studied weighted-norm low-rank approximations for the
design of two-dimensional digital filters where the weights arise from constraints of
varying importance. Shpak studies gradient-based methods while Luet al. suggested
alternating-optimization methods. In both cases, rank-k approximations are greedily
combined fromk rank-one approximations (unlike for the unweighted case, such a
greedy procedure is sub-optimal).

We suggest optimization methods that are significantly more computationally effi-
cient and simpler to implement (Section 2). We also consider other measures of devi-
ation, beyond weighted-Frobenius norms. Such measures arise, for example, when the
noise model associated with matrix elements is known, but is not Gaussian. Classifica-
tion, rather than regression, also gives rise to different measures of deviation. Classi-
fication tasks over matrices arise, for example, in the context of collaborative filtering.
To predict the unobserved entries, one can fit a partially observed binary matrix using
a logistic model with an underlying low-rank representation (input matrix). In sections
3 and 4 we show how weighted-norm approximations can be applied as a subroutine
for solving these more general low-rank problems.

We note that low-rank approximation can be viewed as an unconstrained matrix
factorization problem. Lee and Seung [5] studied generalizations that impose (non-
negative) constraints on the factorization and considered different measures of devia-
tion, including versions of the KL-divergence appropriate for non-negative matrices.
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2 Weighted Low-Rank Approximations

Given a target matrixA ∈ <n×d, a corresponding non-negative weight matrix
W ∈ <n×d

+ and a desired (integer) rankk, we would like to find a matrixX ∈
<n×d of rank (at most)k, that minimizes the weighted Frobenius distanceJ(X) =∑

i,a Wi,a (Xi,a −Ai,a)2.

2.1 A Matrix-Factorization View

It will be useful to consider the decompositionX = UV ′ whereU ∈ <n×k and
V ∈ <d×k. Since any rank-k matrix can be decomposed in such a way, and any pair of
such matrices yields a rank-k matrix, we can think of the problem as an unconstrained
minimization problem over pairs of matrices(U, V ) with the minimization objective
J(U, V ) =

∑
i,a Wi,a (Xi,a − (UV ′)i,a)2 =

∑
i,a Wi,a (Xi,a −

∑
α Ui,αVa,α)2.

This decomposition is not unique. For any invertibleR ∈ <k×k, the matrix pair
(UR, V R−1) provides a factorization equivalent to the pair(U, V ), andJ(U, V ) =
J(UR, V R−1), resulting in ak2-dimensional manifold of equivalent solutions (an
equivalence class of solutions consists of a collection such manifolds, asymptotically
tangent to one another). In particular, any (non-degenerate) solution(U, V ) can be or-
thogonalized to a (non-unique) equivalent orthogonal solutionŪ = UR, V̄ = V R−1

such thatŪ ′Ū = I and V̄ ′V̄ is a diagonal matrix.1 Instead of limiting our attention
only to orthogonal decompositions, it is simpler to allow any matrix pair(U, V ), re-
sulting in an unconstrained optimization problem (but remembering that we can always
focus on an orthogonal representative).

We first revisit the well-studied case where all of the weights are equal to one.
In this case, the partial derivatives of the objectiveJ with respect toU, V are ∂J

∂U =
2(UV ′−A)V , ∂J

∂V = 2(V U ′−A′)U . Solving ∂J
∂U = 0 for U yieldsU = AV (V ′V )−1

and focusing on an orthogonal solution whereV ′V = I andU ′U = Λ is diagonal,
yields U = AV . Substituting back into∂J

∂V = 0, we have0 = V U ′U − A′U =
V Λ − A′AV . The columns ofV are mapped byA′A to multiples of themselves, i.e.
they are eigenvectors ofA′A. Thus, the gradient ∂J

∂(U,V ) vanishes at an orthogonal
(U, V ) if and only if the columns ofV are eigenvectors ofA′A and the columns ofU
are corresponding eigenvectors ofAA′, scaled by the square root of their eigenvalues.
More generally, the gradient vanishes at any(U, V ) if and only if the columns ofU are
spanned by eigenvectors ofAA′ and the columns ofV are correspondingly spanned
by eigenvectors ofA′A. In terms of the singular value decompositionA = U0SV ′

0 ,
the gradient vanishes at(U, V ) if and only if there exist matricesQ′

UQV = I ∈ <k×k

(or more generally, a zero/one diagonal matrix rather thanI) such thatU = U0SQU ,
V = V0QV .

The global minimum can be identified by investigating the value of the objective
function at these critical points. Letσ1 ≥ · · · ≥ σm be the eigenvalues ofA′A. For crit-
ical (U, V ) that are spanned by eigenvectors corresponding to eigenvalues{σq|q ∈ Q},
the error ofJ(U, V ) is given by the sum of the eigenvaluesnot in Q (

∑
q 6∈Q σq), and

1We slightly abuse the standard linear-algebra notion of “orthogonal” since we cannot always have both
Ū ′Ū = I andV̄ ′V̄ = I.
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so the global minimum is attained when the eigenvectors corresponding to the highest
eigenvalues are taken. As long as there are no repeated eigenvalues, all(U, V ) global
minima correspond to the same low-rank matrixX = UV ′, and belong to the same
equivalence class (a collection ofk2-dimensional asymptotically tangent manifolds). If
there are repeated eigenvalues, the global minima correspond to a polytope of low-rank
approximations inX space (and inU, V space, form a collection of higher-dimensional
asymptotically tangent manifolds).

What is the nature of the remaining critical points? For a critical point(U, V )
spanned by eigenvectors corresponding to eigenvalues as above (assuming no repeated
eigenvalues), the Hessian has exactly

∑
q∈Q q −

(
k
2

)
negative eigenvalues: We can re-

place any eigencomponent with eigenvalueσ with an alternate eigencomponent not al-
ready in(U, V ) with eigenvalueσ′ > σ, decreasing the objective function. The change
can be done gradually, replacing the component with a convex combination of the orig-
inal and improved components. This results in a line between the two critical points
which is a monotonic improvement path. Since there are

∑
q∈Q q −

(
k
2

)
such pairs of

eigencomponents, there are at least this many directions of improvements. Other than
these directions of improvements, and thek2 directions along the equivalence mani-
fold corresponding tok2 zero eigenvalues of the Hessian, all other eigenvalues of the
Hessian are positive (except for very degenerateA, for which they might be zero).

Hence, in the unweighted case, all critical points that are not global minima are
saddle points. DespiteJ(U, V ) not being a convex function, all of its local minima are
global.

When weights are introduced, the critical point structure changes significantly. The
partial derivatives become (with⊗ denoting element-wise multiplication):

∂J
∂U = 2(W ⊗ (UV ′ −A))V ∂J

∂V = 2(W ⊗ (V U ′ −A′))U (1)

The equation∂J
∂U = 0 is still a linear system inU , and for a fixedV , it can be solved,

recoveringU∗
V = arg minU J(U, V ) (sinceJ(U, V ) is convex inU ). However, the

solution cannot be written using a single pseudo-inverseV (V ′V ). Instead, a separate
pseudo-inverse is required for each row(U∗

V )i of U∗
V :

(U∗
V )i = (V ′WiV )−1V ′WiAi = pinv(

√
WiV )(

√
WiAi) (2)

whereWi ∈ <k×k is a diagonal matrix with the weights from theith row of W on
the diagonal, andAi is the ith row of the target matrix2. In order to proceed as in
the unweighted case, we would have liked to chooseV such thatV ′WiV = I (or
is at least diagonal). Although we can do this for a singlei, we cannot, in general,
achieve this concurrently for all rows. The critical points of the weighted low-rank
approximation problem, therefore, lack the eigenvector structure of the unweighted
case.3 Another implication of this is that the incremental structure of unweighted low-
rank approximations is lost: An optimal rank-k factorization cannot necessarily be
extended to an optimal rank-(k + 1) factorization.

2Here and throughout the paper, rows of matrices, such asAi and(U∗
V )i, are treated in equations as

columnvectors.
3WhenW is of rank one, concurrent diagonalization is possible, allowing an eigenvector-based solution

to the weighted low-rank approximation problem [1].
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Lacking an analytic solution, we revert to numerical optimization methods to min-
imize J(U, V ). But instead of optimizingJ(U, V ) by numerically searching over
(U, V ) pairs, we can take advantage of the fact that for a fixedV , we can calculate
U∗

V , and therefore also the projected objectiveJ∗(V ) = minU J(U, V ) = J(U∗
V , V ).

The parameter space ofJ∗(V ) is of course much smaller than that ofJ(U, V ), making
optimization ofJ∗(V ) more tractable. This is especially true in many typical appli-
cations where the the dimensions ofA are highly skewed, with one dimension several
orders of magnitude larger than the other (e.g. in gene expression analysis one often
deals with thousands of genes, but only a few dozen experiments).

RecoveringU∗
V using (2) requiresn inversions ofk × k matrices. The dominat-

ing factor is actually the matrix multiplications: Each calculation ofV ′WiV requires
O(dk2) operations, for a total ofO(ndk2) operations. Although more involved than the
unweighted case, this is still significantly less than the prohibitiveO(n3k3) required
for each iteration in Luet al. [4], or for Hessian methods on(U, V ) [3], and is only a
factor ofk larger than theO(ndk) required just to compute the predictionUV ′.

After recoveringU∗
V , we can easily compute not only the value of the projected

objective, but also its gradient. Since∂J(V,U)
∂U

∣∣∣
U=U∗V

= 0, we have

∂J∗(V )
∂V = ∂J(V,U)

∂V

∣∣∣
U=U∗V

= 2(W ⊗ (V U∗
V
′ −A′))U∗

V . (3)

The computation requires onlyO(ndk) operations, and is therefore “free” afterU∗
V has

been recovered.
The Hessian∂

2J∗(V )
∂V 2 is also of interest for optimization. The mixed second deriva-

tives with respect to a pair of rowsVa andVb of V is (whereδab is the Kronecker
delta):

<k×k 3 ∂2J∗(V )
∂Va∂Vb

= 2
∑

i

(
Wiaδab(U∗

V )i(U∗
V )′i −G′

ia(V ′WiV )−1Gja(Va)
)
, (4)

where: Gia(Va) def= Wia(Va(U∗
V )′i + ((U∗

V )′iVa −Aia)I) ∈ <k×k. (5)

By associating the matrix multiplications efficiently, the Hessian can be calculated
with O(nd2k) operations, significantly more than theO(ndk2) operations required for
recoveringU∗

V , but still manageable whend is small enough.
Equipped with the above calculations, we can use standard gradient-descent tech-

niques to optimizeJ∗(V ). Unfortunately, though, unlike in the unweighted case,
J(U, V ), andJ∗(V ), might have local minima that are not global. Figure 1 shows
the emergence of a non-global local minimum ofJ∗(V ) for a rank-one approximation
of A =

(
1 1.1
1 −1

)
. The matrixV is a two-dimensional vector. But sinceJ∗(V ) is invari-

ant under invertible scalings,V can be specified as an angleθ on a semi-circle. We plot
the value ofJ∗([cos θ, sin θ]) for eachθ, and for varying weight matrices of the form
W =

(
1+α 1

1 1+α

)
. At the front of the plot, the weight matrix is uniform and indeed

there is only a single local minimum, but at the back of the plot, where the weight
matrix emphasizes the diagonal, a non-global local minimum emerges.

The functionJ∗(V ) also has many saddle points, their number far surpassing the
number of local minima. In most regions, the function is not convex. Therefore,
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Figure 1: Emergence of local
minima when the weights become
non-uniform.
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Figure 2: Reconstruction of a1000 × 30 rank-
three matrix.

Newton-Raphson methods are generally inapplicable except very close to a local min-
imum.

2.2 A missing-values view and an EM procedure

The weighted low-rank approximation problem can also be viewed as a maximum
likelihood problem with missing values. Consider first systems with only zero/one
weights, where only some of the elements of the target matrixA are observed (those
with weight one), while others are missing (those with weight zero). Referring to a
probabilistic model parameterized by a low-rank matrixX, whereA = X + Z andZ
is white Gaussian noise, the weighted cost ofX is equivalent to the log-likelihood of
the observed variables.

This suggests an expectation-maximization procedure. In eachEM update we
would like to find a new parameter matrix maximizing the expected log-likelihood of a
filled-in A, where missing values are filled in according to the distribution imposed by a
current estimate ofX. This maximum-likelihood parameter matrix is the (unweighted)
low-rank approximation of the mean filled-inA, which isA with missing values filled
in from X. To summarize: In theEexpectation step values from the current estimate
of X are filled in for the missing values inA, and in theMmaximization stepX is
reestimated as a low-rank approximation of the filled-inA.

In order to extend this approach to a general weight matrix, consider a probabilistic
system with several target matrices,A(1), A(2), . . . , A(N), but a single low-rank param-
eter matrixX, whereA(r) = X + Z(r) and the random matricesZ(r) are independent
white Gaussian noise, with fixed variance. When all target matrices are fully observed,
the maximum likelihood setting forX is the low-rank approximation of the their av-
erage. Now, if some of the entries of some of the target matrices are not observed, we
can use a similarEM procedure, where at the expectation step values from the current
estimate ofX are filled in for all missing entries in the target matrices, and in the max-
imization stepX is updated to be a low-rank approximation of the mean of the filled-in
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target matrices.
To see how to use the above procedure to solve weighted low-rank approxima-

tion problems, consider systems with weights limited toWia = wia

N with integer
wia ∈ {0, 1, . . . , N}. Such a low-rank approximation problem can be transformed
to a missing value problem in the form above by “observing” the valueAia in wia of
the target matrices (for each entryi, a), and leaving the entry as missing in the rest of
the target matrices. TheEM update then becomes:

X(t+1) = unweighted-low-rank-approx
(
W ⊗A + (1−W )⊗X(t)

)
(6)

Note that this procedure is independent ofN . For any weight matrix (scaled to weights
between zero and one) the procedure in equation (6) can thus be seen as an expectation-
maximization procedure. This provides for a very simple method for finding weighted
low-rank approximations.

2.3 Reconstruction experiments

Since the unweighted or simple low rank approximation problem permits a closed form
solution, one might be tempted to use such a solution even in the presence of non-
uniform weights (i.e., ignore the weights). We demonstrate here that this procedure
would accompany a substantial loss of reconstruction accuracy as compared to the EM
algorithm designed for the weighted problem.

To this end, we generated1000 × 30 low rank matrices combined with Gaussian
noise models to yield the observed (target) matrices. For each matrix entry, the noise
varianceσ2

ia was chosen uniformly between zero and some maximal noise level. The
planted matrix was subsequently reconstructed using weighted low-rank approximation
(EM with weightsWia = 1/σ2ia), and unweighted low-rank approximation (SVD).
The quality of reconstruction was assessed by an unweighted squared distance from the
“planted” matrix. SVD reconstruction is heavily affected by matrix entries with high
variance, orders of magnitude larger than most entries in the matrix. To further aid the
SVD reconstruction, target values associated with very small weights (very high noise
variance) were set to zero.

Figure 2 shows the quality of reconstruction attained by the two approaches as a
function of the signal (variance of planted low-rank matrix) to noise (overall variance
of the error) ratio. The performance of the EM algorithm incorporating the weights is
clearly superior albeit comes at a cost of guaranteeing only a locally optimal solution.

The performance of the EM algorithm is tied to initialization. When initialized to
X = 0, the EM algorithm typically converged after about a dozen iterations, always to
what seemed to be the global minimum (lower weighted-distance to the data than the
planted solution or any of the “zeroed” unweighted solutions, and the same minimum
to which all gradient-based optimizations converged). However, when initialized to
other starting points (e.g. to the unweighted low-rank approximation), in many cases
EM converged to a much worse local minimum.
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3 Low-rank logistic regression

In certain situations we might like to capture a binary data matrixy ∈ {−1,+1}n×d

with a low-rank model. A natural choice in this case is a logistic model parameterized
by a low-rank matrixX ∈ <n×d, such thatPr (Yia = +1|Xia) = g(Xia) indepen-
dently for eachi, a, whereg is the logistic functiong(x) = 1

1+e−x . One then seeks a
low-rank matrixX maximizing the likelihoodPr (Y = y|X).

Using a weighted low-rank approximation, we can fit a low-rank matrixX mini-
mizing a quadratic loss from the target. In order to fit a non-quadratic loss such as a
logistic loss, Loss(yia, Xia) = log g(yiaXia), we use a quadratic approximation to the
loss.

Consider the second-order Taylor expansion oflog g(yx) aboutx̃:

log g(yx) ≈ log g(yx̃) + yg(−yx̃)(x− x̃)− g(yx̃)g(−yx̃)
2 (x− x̃)2

≈ − g(yx̃)g(−yx̃)
2

(
x−

(
x̃ + y

g(yx̃)

))2

+ log g(yx̃) + g(−yx̃)
2g(yx̃) (7)

The log-likelihood of a low-rank parameter matrixX can then be approximated as:

log Pr (y|X) ≈ −
∑
ia

g(yiaX̃ia)g(−yiaX̃ia)
2

(
Xia −

(
X̃ia + yia

g(yiaX̃ia)

))2

+ Const

(8)
Maximizing (8) is a weighted low-rank approximation problem. Note that for each
entry(i, a), we use a second-order expansion about adifferentpointX̃ia. The closer the
origin X̃ia is toXia, the better the approximation. This suggests an iterative approach,
where in each iteration we find a parameter matrixX using an approximation of the
log-likelihood about the parameter matrix found in the previous iteration.

For the Taylor expansion, the improvement of the approximation is not always
monotonic. This might cause the method outlined above not to converge. In order
to provide for a more robust method, we use the following variational bound on the
logistic [6]:

log g(yx) ≥ log g(yx̃) + yx−yx̃
2 − tanh(x̃/2)

4x̃

(
x2 − x̃2

)
= − 1

4
tanh(x̃/2)

x̃

(
x− yx̃

tanh(x̃/2)

)
+ Const (9)

log Pr (y|X) ≥ −1
4

∑
ia

tanh(X̃ia/2)

X̃ia

(
Xia − yiaX̃ia

tanh(X̃ia/2)

)
+ Const (10)

with equality if and only ifX = X̃. This bound suggests an iterative update of the
parameter matrixX(t) by seeking a low-rank approximationX(t+1) for the following
target and weight matrices:

A
(t+1)
ia = yia/W

(t+1)
ia , W

(t+1)
ia = tanh(X(t)

ia /2)/X
(t)
ia . (11)

Fortunately, we do not need to confront the severe problems associated with nesting
iterative optimization methods. In order to increase the likelihood of our logistic model,
we do not need to find a low-rank matrix minimizing the objective specified by (11),
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just one improving it. Any low-rank matrixX(t+1) with a lower objective value than
X(t) (with respect toA(t+1) andW (t+1)) is guaranteed to have a higher likelihood:
A lower objective corresponds to a higher upper bound in (10), and since the bound is
tight for X(t), the log-likelihood ofX(t+1) must be higher than the log-likelihood of
X(t). Moreover, if the likelihood ofX(t) is not already maximal, there are guaranteed
to be matrices with lower objective values.

Therefore, we can mix weighted low-rank approximation iterations and logistic
bound update iterations, while still ensuring convergence. In many applications we
would also want to associate external weights with each entry in the matrix, or equiva-
lently accommodate missing, or multiple, samples. This can easily be done by multi-
plying the weights in (11) by the external weights.

Note that the target and weight matrices corresponding to the Taylor approximation
and those corresponding to the variational bound are different: The variational target
is always closer to the current value ofX, and the weights are more subtle. This
ensures the guaranteed convergence (as discussed above), but the price we pay is a
lower convergence rate. The Taylor approximation provides for faster convergence in
most cases, but is not guaranteed to converge.

4 Low-rank approximation with a mixture noise model

Weighted Frobenius distance low-rank approximation corresponds to finding a maximum-
likelihood low-rank matrixX, where we assume that our observations are generated by
X + Z, whereZ is i.i.d. Gaussian noise. Here we tackle the problem in whichZia are
still i.i.d., but now they are generated from some alternate distributionPrZ , specified

as a mixture of GaussiansPrZ(zia) =
∑m

c=1 pr

(
2πσ2

r

)1/2 exp
(
(zia − µr)2/(2σ2

r)
)
.

For an observations matrixy, we would like to find the low-rank matrixX maximizing
the likelihoodPr (y = X + Z). To do so, we introduce latent variablesCia specifying
the mixture component of the noise at(i, a). The problem can then be solved using
EM. In theMaximization step we maximize:

EC [log Pr (y|X, C)] = −
∑
ia

ECia

[
1
2 log 2πσ2

Cia
+ 1

2σ2
Cia

((Xia − yia)− µCia
)2

]
= −

∑
ia

∑
c

Pr(Cia=c)
2σ2

c
(Xia − (yia + µc))

2 + Const,

= − 1
2

∑
ia

Wia (Xia −Aia)2 + Const

where: Wia =
∑

c

Pr(Cia=c)
σ2

c
, Aia = yia +

∑
c

Pr(Cia=c)µc

σ2
c

/Wia, (12)

which is a weighted low-rank approximation problem. The posteriorsPr (Cia = c) are
easily computed in theExpectation step using the current low-rank parameter matrix
X. As with the low-rank logistic regression, we can interleave the weight and target
matrix updates with the weighted low-rank approximation iterations.
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This can further be extended to the situation in which the error model is unknown,
and we would like to search not only over the underlying low-rank structureX, but also
over the appropriate error model forZ. To do so, we use two separateMaximization
rounds, one forX and one for the noise-model parameters.

5 Conclusion

We have provided a simple and efficient algorithm for solving weighted low rank ap-
proximation problems. These problems are important in their own right and also appear
as subroutines in solving a class of more general low rank formulations. Some of these
were already outlined in this paper. Similar approaches can be used for other convex
loss functions with a bounded Hessian. Further extensions of the methods include for-
mulating and solving semi-supervised versions of the estimation problem, where the
noise model appears as a nuisance parameter.

We are continuing to study the weighted low-rank approximation problem, under-
standing the sensitivity of EM and gradient methods to the weight distribution, and
tracking local minima as the weights change (morphing weights as a function of iter-
ation might also aid in convergence). We are applying these techniques to problems
involving factor-gene binding arrays and robust collaborative filtering.
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