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1 Random Coefficient Models 

1.1 Motivation 

In the empirical literature on education and earnings, the main object of interest is the human capital 
earnings function (HCEF) 

Yi = α + βSi + γ1Xi + γ2Xi 
2 + εi 

Typically, IV estimates of the return to education are higher than OLS even though we’d thought that 
OLS already suffered from an upward ability bias (for a summary of results from prominent studies, see 
tables from Card’s handbook chapter on next page). There are several explanations for this empirical 
regularity 

1. OLS suffers from measurement error, IV does not 

2. publication bias: a study by Ashenfelter and Harmon finds a positive correlation between the point 
estimate and its sampling error across studies1 

3. Card’s favorite story: instruments in the literature affect populations with relatively low levels of, 
and therefore high returns to education 

In this recitation, I am planning to elaborate a little on the last point. 

1.2 Heterogeneous Treatment Effects 

Assume you have data about a training program for unemployed workers, and you want to tell a policy 
maker whether the program was successful so that the government should continue to finance it. Say, your 
main outcome of interest is earnings six months after the training program, yi, and you know whether a 
particular person participated (Di = 1) or not (Di = 0). 
Now, so far we have only looked at regressions of the type 

Yi = α + Diβ + εi 

This implies that across the whole population, everyone who participates earns exactly β dollars more 
than if he hadn’t received training. This doesn’t make much sense in most real-world applications. For 

1The story behind the publication bias typically goes follows: it’s hard to publish a study with a small t-statistic for the 
return to education. A study with a very imprecise estimator can only arrive at a significant t-statistic if the value of the 
coefficient is higher (in absolute value, but the return to education - at least in publishable studies - is usually positive). 
Therefore if studies are selected on having a large t-statistic, the imprecise estimators we see published must be on average 
higher than the more precise ones (and typically the IV standard error is several orders of magnitude higher than that of 
OLS). 
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Figure 1: Source: Card, D. (1999): The Causal Effect of Education on Earnings, Handbook of Labor 

Economics, ch 30, pp.1835-36 
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example we’d think that, say, a basic literacy program wouldn’t have much of an effect on more educated 
individuals, or that the causal effect of the number of children in a household on the mother’s labor 
supply differs a lot with the mother’s age, education and other characteristics. 
So we’d rather like to write the model as 

Yi = αi + Diβi 

which allows individuals not only to have different initial earnings levels, but each person could also 
benefit from the program to a different degree. Note that there is no εi in this equation. The reason for 
this is that the causal model for the potential outcomes should be understood as deterministic, i.e. the αi 

and βi are fixed for the individual. From this point of view the disturbance ε in the regression equation 
only captures our imperfect knowledge about the parameters in the potential outcomes for a particular 
individual i. 
So if people participated in the program regardless of their initial earnings level (this may stand for 
“ability”), αi⊥Di, and we could run OLS, remembering that for dummy regressions, 2 

(αi ⊥Di)
β̂LS = E[Yi|Di = 1] − E[Yi|Di = 0] = E[αi + βi|Di = 1] − E[αi|Di = 0] = E[βi|Di = 1] 

Therefore, OLS estimates the treatment effect on the treated individuals for our training program. If 
treatment was truly the outcome of a randomization, i.e. (αi, βi)⊥Di, we have in addition 

plimN β̂LS = E[βi|Di] = E[βi] =: βATE 

which is called the average treatment effect, i.e. the effect for all individuals regardless of their actual 
treatment status. We might be tempted to think that it is a disadvantage of OLS that it doesn’t pick up 
the treatment effect for the whole population, but for practical purposes, this typically isn’t so. Often 
individuals which aren’t reached by our program aren’t too relevant for our evaluation question either 
e.g. we wouldn’t observe unemployed economics PhDs participating in a basic literacy program, but we 
wouldn’t be too interested either in the effect of the literacy program on them because we’d never choose 
to send them to that program anyway on apriori grounds. The treatment effect on the treated answers 
the question about how much better off we are by running the program (ignoring the cost of running it) 
compared to a world in which we shut it down entirely and for everyone. 
In many situations, there is always some degree of self-selection into, or imperfect compliance with a 
particular treatment, but sometimes we have a good instrument Z for participation, e.g. a randomized 
encouragement to participate, some exogenous eligibility rule, or some factor that shifts exogenously 
individuals’ cost of taking up the program. 
This assignment Z makes only some people switch from control to treatment (compliers), and from 
treatment to control (defiers). But there are also individuals which participate no matter what (always

takers) or don’t in any case (never-takers). In order to formalize that, we denote the treatment a person 
would receive if Zi = 1 with D1i, and for Zi = 0, we would observe D0i. Now let’s also assume 

1. Independence: (Di, βi, εi)⊥⊥Zi 

2. Monotonicity: D1i ≥ D0i for all individuals 

2This is the far too complicated derivation I gave in recitation, just for completeness: 
` ´ 

E[DiYi] − E[Yi]E[Di] E[Diβi] − E[Diβi]E[Di] E[Di] − E[Di]
2 

E[βi|Di = 1] 
β̂LS −→ = = = E[βi|Di = 1]

E[Di] − E[Di]2 E[Di] − E[Di]2 E[Di] − E[Di]2 

by the law of iterated expectations. 
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Under these assumptions 

ˆ E[Yi|Zi = 1] − E[Yi|Zi = 0] E[Diβi|Zi = 1] − E[Diβi|Zi = 0] 
βWald = = 

E[Di|Zi = 1] − E[Di|Zi = 0] E[Di|Zi = 1] − E[Di|Zi = 0] 

E[D1iβi|Zi = 1] − E[D0iβi|Zi = 0] indep. E[(D1i − D0i)βi] 
=	 = 

E[D1i|Zi = 1] − E[D0i|Zi = 0] E[D1i − D0i] 

LIE E[βi|D1i = 1,D0i = 0]P(D1i = 1,D0i = 0) − E[βi|D1i = 0,D0i = 1]P(D1i = 0,D0i = 1) 
= 

P(D1i = 1,D0i = 0) − P(D1i = 0,D0i = 1) 

monot. E[βi|D1i > D0i]P(D1i > D0i) 
=	 = E[βi|D1i > D0i] =: βLATE 

P(D1i > D0i) 

That is, Wald (and thereby all instrumental variables estimators) estimate the average effect of the 
treatment on the subpopulation of compliers with a particular instrument. The important point to take 
away from this is that each instruments has a different set of compliers, so e.g. in the Angrist and Evans 
paper on the twin births and same-sex instruments we’d expect the LATE for the effect of the third 
child on mothers of twins to be different from the LATE on mothers whose first two children were of 
the same sex - the group of mothers that have a third child in order to balance the sex composition 
of their offspring is different from those mothers who have twins at their second birth (and therefore 
automatically have a third child). This is again not a weakness of the estimator, but we just have to be 
aware that each instrument defines its own Wald estimand. If Z is our policy intervention (e.g. offering 
a training program for which participation is voluntary), the instrumental variables estimator gives us 
directly the answer about the effect on those individuals which were affected by that policy, excluding 
people who would have received treatment in any case. And that’s the actual question we’d typically 
want to ask if we evaluate the policy corresponding to Z: we want to know by how much e.g. offering 
that particular training program makes everyone better off given that on the one hand in a world without 
that intervention there could still be close substitutes available, and that on the other hand, many people 
wouldn’t want to take part in the program either way. 

1.3 Example: General Exam 2003, Question I 

This part is based on Question I from the 2003 Labor Generals. We are given a human capital earnings 
function 

1 
k1S

2 yi = αi + biSi − 
2 i 

and individuals face a convex cost of schooling 

1 
ci = κi + riSi + k2Si 

2 

2 

where ri is often interpreted as the individual’s discount rate, or the opportunity cost of capital (for 
empirical purposes, earnings yi is actually understood to be in logs, but for the theoretical derivations, 
it should be just earnings). In order to determine the optimal level of schooling, the individual equalizes 
the marginal return to schooling to the marginal cost, 

bi − k1Si = ri + k2Si ⇐⇒ Si 
∗ =	

bi − ri 

k1 + k2 

If k2 = 0, the marginal return to schooling at the level of education chosen by the individual is 

∂yi 
= bi − k1Si 

∗ = ri
∂Si 
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which is also the equilibrium condition for the classic model we saw in class. But if the marginal cost of 
education is strictly convex (k2 > 0), we get instead 

∂yi bi − ri k2 k1 
= bi − k1 = bi + ri

∂Si k1 + k2 k1 + k2 k1 + k2 

which is a convex combination of the discount rate and bi. 
Now we want to estimate the return to schooling using a binary instrumental variable Z to address 
omitted variable bias and potential measurement error issues. More specifically, we assume that the 
instrumental variable shifts the capital cost (or discount rate for each individual, i.e. the individual faces 
ri = r0i if the instrument Zi = 0, and ri = r1i if it takes the value 1. If the instrument Z is independent 
of (bi, r0i, r1i), we can rewrite 

plimN β̂IV = 
E[yi|Zi = 1] − E[yi|Zi = 0] 

E[Si|Zi = 1] − E[Si|Zi = 0] 

E[biSi − k1Si 
2|Zi = 1] − E[biSi − k1Si 

2|Zi = 0] 
= 

E[Si|Zi = 1] − E[Si|Zi = 0] 

indep E[ΔSibi] − 12 k1E[Δ(Si 
2)] 

= 
E[ΔSi] 

because of independence of (r0i, r1i, bi) and Zi. From the last part, we know that 

bi − r1i bi − r0i r0i − r1i
ΔSi = − = 

k1 + k2 k1 + k2 k1 + k2 

and 

Δ(Si 
2) = S1

2 
i − S0

2 
i 

(
= 
∗) 

(S1i + S0i)(S1i − S0i) 

¯ ¯ r0i − r1i 
= 2SiΔSi = 2Si 

k1 + k2 

where the “trick” in (*) is to use the third binomial formula (a + b)(a − b) = a2 − b2 (though brute force 
would have given the same result). Plugging this back into the plim for the Wald estimator, and noticing 
that the (k1 + k2) terms cancel out, 

¯
ˆ E[(r0i − r1i)bi] − k1E[(r0i − r1i)Si]

plimNβIV = 
E[r0i − r1i] 

From this we can see that the Wald estimator weights individual returns by r0i − r1i, so that individuals 
who experience a high shift in the discount rate as a result of the intervention are “over-represented” 
relative to the other persons. 
Card’s argument about “discount rate bias” (he doesn’t call it like that) is that the instrumental variables 
which are typically used in the literature induce individuals to increase their schooling levels who would 
have received relatively low levels schooling otherwise, but therefore also have relatively high marginal 

returns. This means that if we are interested in a “population average” of the parameters in the HCEF, 
our IV estimates of the return to schooling are biased upwards. On the other hand one could argue that 
the effect on the subpopulation which is affected by the instrument is a more interesting policy parameters 
as long as that subpopulation is similar to the population which would be affected by a particular policy 
measure. E.g. as its title already states, the Angrist and Krueger paper which used quarter of birth 
dummies as instruments for high-school dropouts adequately estimates the effect of mandatory schooling 
on kids for which the legal constraints are actually “binding”/who are at the margin of dropping out in 
the absence of mandatory schooling. 
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