
� � 

Recitation Notes 5 

Konrad Menzel


October 13, 2006


1 Instrumental Variables (continued) 

1.1 Omitted Variables and the Wald Estimator 

Consider a Wald estimator for the Angrist (1991) approach to estimating the intertemporal elasticity of 
substitution of labor supply for the regression 

hit = α + βwit + εit 

and assume that there are actually aggregate shocks to wages, in a way such that changes in the workers’ 
marginal utility of wealth generate a linear trend in labor supply, γ0 + γ1t. Therefore, the ”right” 
regression we should actually run is 

hit = γ0 + γ1t + βwit + εit 

Then, using some - arbitary - aggregate binary variable Z1t as an instrumental variable gives - by the 
2SLS formula from last week - the Wald estimand 

plimN β̂1 = 
E[hit|Z1t = 1] − E[hit|Z1t = 0]


E[wit|Z1t = 1] − E[wit|Z1t = 0]


E[wit|Z1t = 1] − E[wit|Z1t = 0] β + E[tγ + εit|Z1t = 1] − E[tγ + εit|Z1t = 0] 
= 

E[wit|Z1t = 1] − E[wit|Z1t = 0] 

Assuming that Cov(Z1t, εit) = 0, this simplifies to 

ˆ E[t|Z1t = 1] − E[t|Z1t = 0]
plimN β1 = β + γ1 =: β + ω1γ1 

E[wit|Z1t = 1] − E[wit|Z1t = 0] 

If e.g. we are looking at a balanced panel for the years 1969 to 1979 and Z1t = 1l{t > 1974}, we can 
calculate that 

75 + 76 + 77 + 78 + 79 69 + 70 + 71 + 72 + 73 + 74 
E[t|Z1t = 1] − E[t|Z1t = 0] = − = 77 − 71.5 = 5.5 
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So if there is an increase in wages over time which is accompanied by a negative time trend in the marginal 
utility of wealth, γ1 < 0, our IV derived from the year dummies gives downward biased estimates. 
Now. if we had a second binary instrument Z2, we could similarly obtain 

plimN β̂2 = β + 
E[t|Z2t = 1] − E[t|Z2t = 0] 

γ1 =: β + ω2γ1 
E[wit|Z2t = 1] − E[wit|Z2t = 0] 
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You should notice that all information we need to compute ω2 is observed in the data, and the only 
reason why we can’t compute the bias right away is that we don’t know γ1. 
But since we have two different instruments, it is possible to subtract out the biases by computing 

ω2β̂1 − ω1β2 ω2(β + ω1γ1) − ω1(β + ω2γ1)
β̃ = −→ = β 

ω2 − ω1 ω2 − ω1 

Note that for this we need two instruments that generate different ωs, and that this only works under the 
presumption that we know what the conditional averages of the omitted variable are (which in this case is 
trivial since we actually know the values of t). If we don’t know enough about the omitted variable (which 
is almost always the case), there is in general not much we can do to fix a ”contaminated” instrumental 
variable. 

1.2 2SLS as a Grouped Data IV 

Now assume that we have k discrete instrumental variables Z, and we can think of them as dividing 
your sample into r cells. Without loss of generality, we can therefore assume that the instruments are 
indicator functions for the R mutually exclusive groups, i.e. 

1 if observation i falls into cell r 
Zri := 

0 otherwise 

In vector notation, we can therefore write the matrix of all instruments as 

⎡ ⎤ 

ιN1 0 0 . . . 0 
⎢ 0 ιN2 0 . . . 0 ⎥ 

⎢ ⎥ 

Z = [Z1,Z2, . . . , ZR] = 
⎢

⎢ 

0 0 ιN3 . . . 0 ⎥

⎥ 

⎢ . . . . . ⎥ . . . . . 
⎣ . . . . . ⎦ 

0 0 0 . . . ιNR 

possibly after reordering the observations, where ιn is an n-dimensional column vector of ones, and Nr


is the number of observations that falls into the rth cell.

For 2SLS, the first stage consists of fitting the endogenous right-hand side variable X onto the Zs in

order to obtain (again in matrix notation)


ιNR XR 

X̂ = PZX = Z(Z�
Z)−1

Z
�
X 

⎡ 

ιN1 0 0 . . . 0 
⎤ ⎡ 

N1 0 0 . . . 0 
⎤−1 ⎡ 

ιN1 0 0 . . . 0 
⎤� 

⎢ 0 ιN2 0 . . . 0 ⎥ ⎢ 0 N2 0 . . . 0 ⎥ ⎢ 0 ιN2 0 . . . 0 ⎥ 

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 

= 
⎢ 

⎢ 

0 0 ιN3 . . . 0 ⎥ ⎢ 

⎥ ⎢ 

0 0 N3 . . . 0 ⎥ 

⎥ 

⎢ 

⎢ 

0 0 ιN3 . . . 0 ⎥ 

⎥ 
X 

⎢ 

⎣ 

. . . 
. . . 

. . . 
. . . 

. . . 
⎥ ⎢ 

⎦ ⎣ 

. . . 
. . . 

. . . 
. . . 

. . . 
⎥ 

⎦ 

⎢ 

⎣ 

. . . 
. . . 

. . . 
. . . 

. . . 
⎥ 

⎦ 

0 0 0 . . . ιNR 0 0 0 . . . NR 0 0 0 . . . ιNR 
⎡ 

ιN1 X1 
¯

⎤ 

= 
1 1 1 

⎢ 

⎢ ιN2 X2 

N1 N2 NR 
R

⎣ . 
Z1Z

� 

1X + Z2Z
� 

2X + . . . + ZRZ
� 
X = 

⎢ . 

¯

. 

⎥ 
� �N 

⎥ 

⎥ 
= EN [Xi|Zi] 

⎦ i=1 

¯

since inside the inverse, ι� nιn = j
n 
=1 1 = n. Notice that the whole trick is that groups are mutually 

exclusive, so that the inner product of the instrument matrix with itself is diagonal. The interpretation 
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of what is going on here is also straightforward: fitting to/projecting onto the group dummies is exactly 
the same thing as replacing the variable with group-wise means. 
In the second stage, we do plain OLS of the left-hand-side endogenous variable Y on the fitted right-
hand-side endogenous variable, X̂, which gives us 

ˆ X,Y ) Cov(EN [X|Z], EN [Y |Z]) Cov( ˆ Cov(PZX,Y )
β2SLS = = = 

Var( X̂) Var(PZX) Var(EN [X|Z]) 

For the pairwise Wald IV between groups j and k, we basically do the same thing, only that we ignore 
all other groups, which is equivalent to doing 2SLS using instruments Zjk = [Zj,Zk], but since now we 
only have one binary instrument, the estimator simplifies significantly to 

¯ ¯EN [Y |Zj = 1] − EN [Y |Zk = 1] Yj − Yk
β̂jk = 

EN [X|Zj = 1] − EN [X|Zk = 1] 
= 

X̄j − X̄k 

The asymptotic variance of this estimator under homoskedasticity of εi, i.e. Var(εi|Zi) = Var(εi) = σ2 

can be computed as 

Var(β̂jk) = 
Var(Ȳj − Ȳk)

= 
σ2 

N
1 
j 

+ 
N
1 
k 

= 
σ2(Nj + Nk) 

(X̄j − X̄k)2 (X̄j − X̄k)2 Nj Nk(X̄j − X̄k)2 

If we write out the 2SLS estimator, we get 

β̂2SLS = 
Cov(EN [X|Z], EN [Y |Z])


Var(EN [X|Z])

�R


NrX̄r(Ȳr − Ȳ )r=1 = 
�R

r=1 NrX̄r(X̄r − X̄) 
�R �R NsNrXr 

¯ (Ȳr − Ȳs)r=1 s=1 N = 
�R 

r=1 NrX̄r(X̄r − X̄) 
�R � 

NrNs(X̄r − X̄s)(Ȳr − Ȳs)r=1 s>r = 
�R

N r=1 NrX̄r(X̄r − X̄) 

R R R 
� � NrNs(X̄r − X̄s)

2 
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ˆ= 
�R βrs =: wrs βrs 

r=1 s>r N t=1 NtX̄t(X̄t − X̄) r=1 s=r+1 

Notice that under homoskedasticity of εi, the weights on the pairwise Wald estimates β̂rs in the 2SLS 
estimator are 

NrNs(X̄r − X̄s)
2 Nr + Ns 

wrs = ∝ 
N 

�R

t=1 NtX̄t(X̄t − X̄) Var(β̂rs) 

where ”∝” stands for ”proportional to”. This is exactly what the statement in the Angrist (1991) paper 
means that 2SLS is an ”efficient GLS-combination” of the pairwise Wald-IV estimators. 

1.3 Heterogeneous Treatment Effects (not covered in recitation) 

Assume you have data about a training program for unemployed workers, and you want to tell a policy 
maker whether the program was successful so that the government should continue to finance it. Say, your 
main outcome of interest is earnings six months after the training program, yi, and you know whether a 
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particular person participated (Di = 1) or not (Di = 0). 
Now, so far we have only looked at regressions of the type 

Yi = α + Diβ + εi 

This implies that across the whole population, everyone who participates earns exactly β dollars more 
than if he hadn’t received training. This doesn’t make much sense in a real-world application. For 
example we’d think that, say, a basic literacy program wouldn’t have much of an effect on more educated 
individuals, or that the causal effect of the number of children in a household on the mother’s labor 
supply differs a lot with the mother’s age, education and other characteristics. 
So we’d rather like to write the model as 

Yi = α + Diβi + εi 

which allows individuals not only to have different initial earnings levels, but each person could also 
benefit from the program to a different degree. 
So if people participated in the program regardless of their initial earnings level (say by random assign
ment), Di⊥εi, and we could run OLS 

ˆ E[DiYi] − E[Yi]E[Di] E[Diβi] − E[Diβi]E[Di]
βLS −→ = 

E[Di] − E[Di]2 E[Di] − E[Di]2 

E[Di] − E[Di]
2 

E[βi|Di = 1] 
= = E[βi|Di = 1]

E[Di] − E[Di]2 

by the law of iterated expectations. Therefore, OLS estimates the treatment effect on the treated in
dividuals for our training program, which need in general not be the same as the average treatment 

effect 

βATE := E[βi] 

for all individuals regardless of their actual treatment status. We might be tempted to think that it is 
a disadvantage of OLS that it doesn’t pick up the treatment effect for the whole population, but for 
practical purposes, this typically isn’t so. Often individuals which aren’t reached by our program aren’t 
too relevant for our evaluation question either - e.g. we wouldn’t observe unemployed economics PhDs 
participating in a basic literacy program, but we wouldn’t be too interested either in the effect of the 
literacy program on them because we’d never choose to send them to that program anyway on apriori 
grounds. The treatment effect on the treated answers the question about how much better off we are 
by running the program (ignoring the cost of running it) compared to a world in which we shut it down 
entirely and for everyone. 
In many situations, there is always some degree of self-selection into, or imperfect compliance with a 
particular treatment, but sometimes we have a good instrument Z for participation, e.g. a randomized 
encouragement to participate, some exogenous eligibility rule, or some factor that shifts exogenously 
individuals’ cost of taking up the program. 
This assignment Z makes only some people switch from control to treatment (compliers), and from 
treatment to control (defiers). But there are also individuals which participate no matter what (always

takers) or don’t in any case (never-takers). In order to formalize that, we denote the treatment a person 
would receive if Zi = 1 with D1i, and for Zi = 0, we would observe D0i. Now let’s also assume 

1. Independence: (Di, βi, εi)⊥⊥Zi 

2. Monotonicity: D1i ≥ D0i for all individuals 
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Under these assumptions 

β̂W ald = 
E[Yi|Zi = 1] − E[Yi|Zi = 0] 

E[Di|Zi = 1] − E[Di|Zi = 0] 
= 

E[Diβi|Zi = 1] − E[Diβi|Zi = 0] 

E[Di|Zi = 1] − E[Di|Zi = 0] 

E[D1iβi|Zi = 1] − E[D0iβi|Zi = 0] indep. E[(D1i − D0i)βi] 
= = 

E[D1i|Zi = 1] − E[D0i|Zi = 0] E[D1i − D0i] 

monot. E[D1i − D0i]E[βi|D1i = 1,D0i = 0] 
= 

E[D1i − D0i]


= E[βi|D1i > D0i] =: βLATE


That is, Wald (and thereby all instrumental variables estimators) estimate the average effect of the 
treatment on the subpopulation of compliers with a particular instrument. The important point to take 
away from this is that each instruments has a different set of compliers, so e.g. in the Angrist and Evans 
paper on the twin births and same-sex instruments we’d expect the LATE for the effect of the third 
child on mothers of twins to be different from the LATE on mothers whose first two children were of 
the same sex - the group of mothers that have a third child in order to balance the sex composition 
of their offspring is different from those mothers who have twins at their second birth (and therefore 
automatically have a third child). This is again not a weakness of the estimator, but we just have to be 
aware that each instrument defines its own Wald estimand. If Z is our policy intervention (e.g. offering 
a training program for which participation is voluntary), the instrumental variables estimator gives us 
directly the answer about the effect on those individuals which were affected by that policy, excluding 
people who would have received treatment in any case. And that’s the actual question we’d typically 
want to ask if we evaluate the policy corresponding to Z: we want to know by how much e.g. offering 
that particular training program makes everyone better off given that on the one hand in a world without 
that intervention there could still be close substitutes available, and that on the other hand, many people 
wouldn’t want to take part in the program either way. 

1.4 A Few Hints About Calculations with Scalars in Stata 

After running a regression in Stata, e.g. 

ivreg lnh year (lnw=z)


you can retrieve the estimated coefficient on lnw by typing 

local beta=_b[lnw]


where ”local” simply means that you define a scalar (formally a local macro), e.g. 

local abc=sin(345)+5


which you can then manipulate or display by typing, e.g. 

local def=‘abc’*456

display ‘def’+1.2345


The ‘’ marks around the name of the local name tell Stata to evaluate it - i.e. to put the number 
stored under the name abc into whichever expression the ‘abc’ part appears in. b[var1] refers to the 
coefficient on the variable var1 in the last regression of any kind you ran, and in a similar fashion you 
can retrieve the standard error of that coefficient in order to run a simple t-test: 

local beta=_b[lnw]

local se=_se[lnw]

display ‘beta’/‘se’
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