
Recitation Notes 4 

Konrad Menzel 

October 6, 2006 

1 Grouped Data and Instrumental Variables 

1.1 How does OLS work? 

As usual, we start with our standard regression model 

Yi = α + Xiβ + εi 

where the Xis are scalars. Let’s just recall what OLS actually does 

1 �N ¯ 
β̂LS = N i=1 Yi(Xi − X)

= 
EN [XY ] − EN [X]EN [Y ] N→∞ E[XY ] − E[X]E[Y ] 

1 �N 
X̄) EN [X2] − EN [X]2 

−→ 
E[X2] − E[X]2 

N i=1 Xi(Xi − 

where EN [ ] is a shorthand for the sample mean. So what exactly in this line of reasoning tells us that ·
we have to estimate the different moments in that formula from the same data set? - the answer to this 
question is that this can’t be seen in the formula because it’s not true. From what we know about the 
probability limits (i.e. we can interchange the limit operation with addition, multiplication, division 
and actually any other continuous transformation), we could in principle replace each sample average in 
that expression with anything that plims to the right value. This opens up a wide range of possibilities, 
so we could e.g. 

completely ignore problems with data which are missing at random (i.e. independent of the values • 
of Xi and Yi), and just estimate the moments off the complete data we have 

estimate the moments from entirely different data sources as long as we are confident that they • 
cover the same population and have the same sampling design. 

we could put together ”pseudo-panels” by combining independent cross sections for different points • 
in time. 

•	 use moments from other sources that are aggregated at a group level, e.g. E[XiYi|group Gi], and 
then apply the law of iterated expectation by summing over the marginal distribution P(group Gi) 
which gives us back the unconditional expectation (this is sometimes a great option if we can’t 
access microdata about a particular variable - mention Josh’s paper on the Vietnam lottery). 

...and much more along these lines • 

The whole trick is that we just have to look for some way of taking (possibly conditional) expectations 
that just average out the noise in the data by a law of large numbers. 
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1.2 Group Means as Proxy Variables 

Sometimes we are completely missing any microdata on a variable we would like to include in our analysis, 
but instead there’s some aggregate data on that variable we’d like to use. More specifically, say we have 
a microdata set without reliable information on wages Xi

∗. Suppose we observe instead some covariates 
Wi (for instance dummies for type of work, industry, and specific metropolitan area, but would have to 
include all other regressors in the equation we want to estimate), and we are able to obtain average wages 
for each relevant group from a different source. Then we might suspect after the previous discussion that 
using these group averages as proxies should be a source of attenuation bias (but the error (Xi

∗ −E[Xi|Wi]) 
would have conditional mean zero, and therefore continue to be ”classical”). It turns out that this isn’t 
so (at least in the limit) since the reliability ratio 

λ = 
Cov (E[Xi|Wi], Xi

∗) 
= 

Cov (E[Xi|Wi], E[Xi
∗|Wi]) = 

Cov (E[Xi
∗|Wi], E[Xi

∗|Wi]) = 1 
Var (E[Xi Wi]) Var (E[Xi Wi]) Var (E[Xi

∗ Wi])| | |
so that there is no bias from measurement error in Xi. The intuitive reason for this is that using 
group means actually converts our estimation problem into a regression of group averages, for which 
the individual ”measurement error” averages out after conditioning on Wi. We can also interpret this 
regression as an instrumental variables estimator which uses the group characteristics Wi as instruments, 
and therefore deals with the measurement error problem in Xi. 

1.3 Main types of Bias in OLS 

Let’s now turn to the three main situations in which OLS is biased 

1. Measurement Error 

2. Omitted Variables 

3. Reverse Causality/Simultaneity 

Now recall that in the case of classical measurement error in the regressor, i.e. Xi = Xi
∗ + ν, the 

probability limit of the OLS coefficient is 

plimN β̂LS = λβ = 
Cov(X, X∗) 

β
Var(X∗) + Var(ν) 

whereas omitted variables bias in a model 

Yi = α + Xi
∗β + Wiγ + εi 

for which we don’t include W in the OLS regression, the LS estimator plims to 

Cov(Xi
∗,Wi)plimN β̂LS = β + 

Var(Xi
∗) 

γ 

In both cases, there is a random component in Y or X which makes us trouble. We’d therefore like to find 
a way of averaging out the errors like in the best-case OLS model without smoothing out the ”signal” 
about the regressor we are mainly interested in. It turns out that this is exactly what instrumental 
variables do. 
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1.4 Grouped-Data IV 

Assume we also observe a discrete variable Z which divides the sample into r groups (i.e. one group for 
which Z = 1, another with Z = 2, etc.). Then if we first estimate group-wise means E[Y Z], E[X Z], and 
then regress the conditional means on another, we get a new linear estimator 

| |

˜ Cov(EN [Y Z], EN [X Z]) Var(EN [X∗ Z])β + Cov(EN [X∗ Z], EN [W Z])γ 
β = 

Var(E
|
N [X|Z]) 

|
= 

Var(
|
EN [X∗|Z]) + Var(E

|
N [ν|Z]) 

|

Therefore, if the grouping implicit in Z is 

• independent ν and W , i.e. E[ν|Z] = E[ν] and E[W |Z] = E[X∗] (exclusion restriction), but 

• contains a signal about X∗, i.e. Var(E[X|Z]) > 0 (first stage) 

we have in the limit 

Indep.
Var(E[ν Z]) = Var(E[ν]) = 0 |

Indep.
Cov(E[X∗ Z], E[W Z]) = Cov(E[X∗ Z], E[W ]) = 0 | | |

so that the bias goes away as the sample gets large. Note again that as in the previous section, our 
estimation problems are resolved by a law of large numbers which, smoothes out the noise which was 
making trouble in standard OLS once we take group-wise means. 
However, this also comes along with a loss of information about the within-group correlations which are 
also informative about the coefficient we are looking for, since the conditional variance identity (also 
known as the ANOVA identity) tells us that 

Var(E[X∗|Z]) = Var(X∗) − E[Var(X∗|Z)] < Var(X∗) 

We saw that for panel data, fixed-effects estimators neutralize the bias from heterogeneity between groups 
(where ”groups” usually consist of multiple observations of the individual over time) by identifying 
parameters off the within variation. Instrumental variables estimators construct groups which are defined 
by the instruments in a way that we can get rid of the bias from within-group heterogeneity (e.g. in 
measurement error or omitted characteristics) by estimating effects only taking into account the between-
group variation. 

1.5 Two-Stage Least Squares (2SLS) 

In general, we could (and typically would) use linear projections of X on Z rather than conditional 
expectations, but this wouldn’t change the essence of the previous argument. This leads us to Two-Stage 
Least Squares (2SLS) which consists of two steps: 

1. First Stage: regress X on the instruments Z and recover fitted values X̂i := PZ Xi = Ziπ̂, where 
π̂ = (Z�Z)−1Z�X are the OLS coefficients from a regression of X on Z. 

2. Second Stage: regress Y on X̂, and the coefficient β̂IV on X̂ will be the 2SLS estimate for β. 

Therefore, if Xi is a scalar we have 
CovN (X̂i, Yi)

β̂2SLS = 
Var( X̂i) 
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If there is only one instrument Zi, this can be rewritten as 

β̂2SLS = 
CovN ( X̂i, Yi) 

Var( X̂i) 
= 

CovN (Zi ̂π, Yi) 
Var(Zi ̂π) 

(∗)
= 

π̂Cov(Zi, Yi) OLS = 

Cov(Zi ,Xi) 

Var(Zi) 
Cov(Zi, Yi) 

π̂2Var(Zi) 
� 

Cov(Zi,Xi ) 

Var(Zi ) 

�2 
Var(Zi) 

= 
Cov(Zi, Yi) 
Cov(Zi, Xi) 

where ”(*)” uses the fact that π̂ is constant across observations and can therefore be pulled out of the 
covariances. You can convince yourself that this implies that in the one-dimensional case, 2SLS is the 
same as regressing each X (first stage) and Y (reduced form) on the instrument Z, and taking the ratio 
of the two slope parameters. 
From this, we can see that the conditions on the instrument for getting a consistent estimator are 

1. εi := Yi − Xiβ − α is uncorrelated with Zi, which gives us Cov(Zi, Yi) = Cov(Zi, Xi)β. 

2. Z is correlated with X, i.e. Cov(Zi, Xi) = 0. 

If Z only takes values 0 or 1, E[Zi] = P(Z = 1), and the estimator simplifies further to 

ˆ Cov(Zi, Yi)
β2SLS = 

Cov(Zi, Xi) 

= 

� 
EN [Y |Z = 1] − EN [Y |Z = 0]

� 
Var(Z)(∗∗) 

(EN [X|Z = 1] − EN [X|Z = 0]) Var(Z) 

= 
EN [Y |Z = 1] − EN [Y |Z = 0] 
EN [X|Z = 1] − EN [X|Z = 0] 

since 

Cov(Zi, Yi) = E[ZiYi] − E[Zi]E[Yi] = 

� 
E[ZiYi] 

� 

P(Zi = 1) (∗∗) 
P(Zi = 1) 

− E[Yi]

= 
�

E[Yi|Zi = 1] − 
� 

E[Yi|Zi = 1]P(Zi = 1) + E[Yi|Zi = 0][1 − P(Zi = 1)]
�� 

P(Zi = 1) 

= (E[Yi|Zi = 1] − E[Yi|Zi = 0]) P(Zi = 1)[1 − P(Zi = 1)] 
= (E[Yi|Zi = 1] − E[Yi|Zi = 0]) Var(Zi) 

The new expression for 2SLS for a binary instrument is also known as the Wald instrumental variables 
estimator. 

1.6 2SLS as a Grouped Data IV (not covered in recitation) 

Now assume that we have k discrete instrumental variables Z, and we can think of them as dividing 
your sample into r cells. Without loss of generality, we can therefore assume that the instruments are 
indicator functions for the R mutually exclusive groups, i.e. 

� 
1 if observation i falls into cell r 

Zri := 0 otherwise 
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� 

In vector notation, we can therefore write the matrix of all instruments as 
⎡
⎢⎢⎢⎢⎢

⎤
⎥⎥⎥⎥⎥

ιN1 0 0 . . . 0 
0 ιN2 0 . . . 0 
0 0 ιN3 . . . 0 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 0 . . . ιNR 

Z = [Z1, Z2, . . . , ZR] = 
⎣ ⎦ 

possibly after reordering the observations, where ιn is an n-dimensional column vector of ones, and Nr


is the number of observations that falls into the rth cell.

For 2SLS, the first stage consists of fitting the endogenous right-hand side variable X onto the Zs in

order to obtain (again in matrix notation)


X̂ = PZX = Z(Z�Z)−1Z�X 
⎡
⎢⎢⎢⎢⎢

ιN1 0 0 . . . 0 
0 ιN2 0 . . . 0 
0 0 ιN3 . . . 0 

⎡
⎢⎢⎢⎢⎢

⎤
⎥⎥⎥⎥⎥

N1 0 0 . . . 0 
0 N2 0 . . . 0 
0 0 N3 . . . 0 

⎤
⎥⎥⎥⎥⎥

−1 ⎡
⎢⎢⎢⎢⎢

ιN1 0 0 . . . 0 
0 ιN2 0 . . . 0 
0 0 ιN3 . . . 0 

⎤
⎥⎥⎥⎥⎥ X= 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⎣ ⎣⎦ ⎣⎦ ⎦. . .. . . . . . . . . . . . 
0 0 0 0 0 0 0 0 0ιNR NR ιNR

. . . . . . . . . ⎡
⎢⎢⎢⎣ 

⎤
⎥⎥⎥⎦ 

= 

¯ ιN1 X1 
¯ ιN2 X2 

. . . 
¯ ιNR XR 

� 
EN [Xi Zi]

�N1 1 1 
= Z1Z� X + Z2Z� X + . . . + ZRZ� X = 1 2 R |

N1 N2 NR i=1 

since inside the inverse, ι�nιn = 
�n

j=1 1 = n. Notice that the whole trick is that groups are mutually 
exclusive, so that the inner product of the instrument matrix with itself is diagonal. The interpretation 
of what is going on here is also straightforward: fitting to/projecting onto the group dummies is exactly 
the same thing as replacing the variable with group-wise means. 
In the second stage, we do plain OLS of the left-hand-side endogenous variable Y on the fitted right-
hand-side endogenous variable, X̂, which gives us 

Cov(X, Yˆ ) Cov(PZX, Y ) Cov(EN [X Z], EN [Y Z])
β̂2SLS = 

Var(X̂) 
= 

Var(PZX) 
= 

Var(E
|
N [X|Z]) 

|

For the pairwise Wald IV between groups j and k, we basically do the same thing, only that we ignore 
all other groups, which is equivalent to doing 2SLS using instruments Zjk = [Zj, Zk], but since now we 
only have one binary instrument, the estimator simplifies significantly to 

β̂jk 
EN [Y |Zj = 1] − EN [Y |Zk = 1] Ȳ 

j − Ȳ 
k = = 

EN [X|Zj = 1] − EN [X|Zk = 1] X̄ 
j − X̄ 

k 

The asymptotic variance of this estimator under homoskedasticity of εi, i.e. Var(εi Zi) = Var(εi) = σ2 

can be computed as 
|

Var(Ȳ 
j − Ȳ 

k) σ2 
� 

N
1 
j 

+ 1 

X̄ 
k)2 

= 
σ2(Nj + Nk)NkVar(β̂jk) = = 

(X̄ 
j − (X̄ 

j − X̄ 
k)2 Nj Nk(X̄ 

j − X̄ 
k)2 
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If we write out the 2SLS estimator, we get 

β̂2SLS = 
Cov(EN [X|Z], EN [Y |Z])


Var(EN [X Z])

�R

r=1 NrX̄ 
r(Ȳ 

r 

|
− Y ̄)

= 
¯ ¯�

r
R 
=1 NrXr(X̄ 

r − X) 
�

r
R 
=1 NrX̄ 

r 
�

s
R 
=1 

N
N 

s (Ȳ 
r − Ȳ 

s)= �
r
R 
=1 NrX̄ 

r(X̄ 
r − X̄) 

�R
r=1 

�
s>r NrNs(X̄ 

r − X̄ 
s)(Ȳ 

r − Ȳ 
s) = 

N 
�

r
R 
=1 NrX̄ 

r(X̄ 
r − X̄) 

R
NrNs( ¯ X̄ 

s)2 R R

= 
�� 

N 
�R 

Xr 

¯
−
( ¯ ¯ 

β̂rs =: 
� � 

wrs β̂rs 

r=1 s>r t=1 NtXt Xt − X) r=1 s=r+1 

Notice that under homoskedasticity of εi, the weights on the pairwise Wald estimates β̂rs in the 2SLS 
estimator are 

NrNs(X̄ 
r − X̄ 

s)2 Nr + Ns 
wrs = 

N 
�

t
R 
=1 NtX̄ 

t(X̄ 
t − X̄) 

∝ 
Var( β̂rs) 

where ”∝” stands for ”proportional to”. This is exactly what the statement in the Angrist (1991) paper 
means that 2SLS is an ”efficient GLS-combination” of the pairwise Wald-IV estimators. 

1.7 Potential Problems: Weak Instruments, Many Instruments 

As we can see from the derivation, even with ”clean” instruments (i.e. IVs for which the exclusion 
restrictions hold) there are other potential problems in finite samples. As we saw above, IV works well 
under two conditions: 

1. Taking expectations conditional on Z averages out the measurement error in X or omitted variables 
in Y - ”spunk” in Jerry’s terminology - by the law of large numbers 

2. Smoothing conditional on Z doesn’t average out the ”signal” in the explanatory variable 

However, if the sample is small, the IV estimator may fail to do this properly for several reasons: 

If the cells defined by Z in the grouped-data IV remain relatively small even in a large sample, taking • 
group-wise averages doesn’t get rid of much of the ”spunk”. As an extreme example, one could 
argue that a dummy variable for each observation are valid instruments (the (ex ante) expectation 
of measurement error is certainly zero for each individual, and X will probably differ from one 
observation to another). But the first stage would in this case give us a perfect fit, and the fitted 
values are going to be identical to the actual variable, so that 2SLS would do exactly the same thing 
as OLS. Having many instruments may biase the 2SLS estimator towards OLS due to ”overfitting” 
of the first stage. 

•	 If Var(E[X|Z]) ≈ 0, we may with some probability end up with a sample for which EN [Xi|Zi = 
1] − EN [Xi|Zi = 0] is arbitrarily close to zero. Since this is the denominator of the corresponding 
Wald IV, this will blow up the estimator, and we are likely to end up with very extreme estimates 
of either sign. You can also see from the 2SLS formula that the same thing will happen there 
if the first stage is very weak. The finite-sample expectation and variance of a 2SLS with one 
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instrument and one endogenous regressor are actually not defined (even though Stata will still give 
you the asymptotic standard errors). However the median of 2SLS will still get it right, so that if 
we have one instrument and one endogenous variable, this is only an issue about the precision of 
the estimator. 

If both problems come together - i.e. if we have a very small first stage and more instrumental • 
variables than we actually need to identify the model - the weak instruments exacerbate any bias 
from correlations between the endogenous variables which are still picked up by the instrument. An 
approximation to the bias can be given as1 

(k − 2)σε,ν
Bias ≈ 

NR2σ2 
X 

where νi := Xi − Ziπ is first stage residual, k is the number of instrumental variables, and R2 is the 
unadjusted first-stage R-squared. Therefore, if instruments are sufficiently weak (i.e. the first-stage 
R-squared is very low), the bias may be very severe even if the number of instruments is small 
relative to the sample size so that overfitting is not really an issue. This is often referred to as the 
weak instruments problem. Intuitively, IV fails to perform well because the instruments pick up 
”more noise than signal” from the endogenous variable. 

So it’s always good to look at the first stage of your 2SLS regression (to check whether it’s sufficiently 
large and has a plausible sign), and be suspicious if your estimate with many IVs is much closer to OLS 
than if you just use as many instruments as necessary to identify the parameters. However, this section 
was only supposed to point out some potential problems, and you’ll see this in greater depth in 14.382. 

Discussion of the Replication of Angrist (1991) 

While all of you got most of the replication exercise right, I’d just like to go over Problem 3(b) on the first 
problem set again, because it’s a nice illustration of some of the main issues in the empirics of life-cycle 
labor supply. 

OLS Regressions 

The OLS coefficients are pretty close to Angrist (1991), and significantly negative. As we said before, this 
doesn’t make sense. We’d suspect that there are two sources of bias: marginal utility of lifetime wealth, 
λ, is likely going to be lower for individuals with generally high wages, which would cause a negative 
omitted variables bias. In addition, and more importantly, we generated wages by dividing earnings by 
hours, which is likely to lead to division bias, which is also negative. 

. reg lnh lnw, robust 

Regression with robust standard errors Number of obs 
= 15829 

F( 1, 15827) = 142.64 
Prob > F = 0.0000 
R-squared = 0.0172 
Root MSE = .30717 

1Bound Jaeger and Baker (1995): Problems with Instrumental Variables Estimation when the Correlation between the 
Instruments and the Endogenous Explanatory Variables is Weak, JASA 90 
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------------------------------------------------------------------------------

------------------------------------------------------------------------------

------------------------------------------------------------------------------

------------------------------------------------------------------------------

------------------------------------------------------------------------------

------------------------------------------------------------------------------

| Robust 
lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 

-------------+---------------------------------------------------------------
lnw | -.074059 .006201 -11.94 0.000 -.0862136 -.0619043 

_cons | 7.763484 .008386 925.77 0.000 7.747047 7.779922 

. reg lnh lnw year, robust 

Regression with robust standard errors Number of obs 
= 15829 

F( 2, 15826) = 77.29 
Prob > F = 0.0000 
R-squared = 0.0183 
Root MSE = .30701 

| Robust 
lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 

-------------+---------------------------------------------------------------
lnw | -.0723591 .0061878 -11.69 0.000 -.0844879 -.0602303 

year | -.0032761 .0008112 -4.04 0.000 -.004866 -.0016861 
_cons | 8.003794 .0602887 132.76 0.000 7.885622 8.121967 

. reg lnh lnw year year2, robust 

Regression with robust standard errors Number of obs 
= 15829 

F( 3, 15825) = 53.41 
Prob > F = 0.0000 
R-squared = 0.0190 
Root MSE = .30691 

| Robust 
lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 

-------------+---------------------------------------------------------------
lnw | -.0728822 .0061873 -11.78 0.000 -.0850099 -.0607545 

year | .1322667 .043383 3.05 0.002 .0472311 .2173022 
year2 | -.0009158 .0002935 -3.12 0.002 -.001491 -.0003406 
_cons | 2.99822 1.600729 1.87 0.061 -.1393911 6.135832 
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------------------------------------------------------------------------------

Fixed-Effects Regressions 

You should remember at this point that the main motivation for the fixed-effects approach at this point 
is that in the dynamic programming problem under perfect foresight, the (individual-specific) Lagrange 
multiplier does not only capture all information about wages and prices in other periods, but is also 
constant over time (by definition). In the MaCurdy specification, lambda-constant labor supply is mul
tiplicatively separable in the current wage and the Lagrange multiplier, so that after taking logs, the 
Lagrange multiplier is absorbed by an additive individual fixed effect. 
My ANACOVA/Fixed-Effects estimates are again similar to those in Angrist (1991) and even more 
negative than OLS. From our discussion of panel data, you should remember that the fixed-effects trans
formation exacerbates the problems with measurement error. I.e. FE might be even more negative than 
OLS because the division bias is under sensible assumptions about serial correlation even more severe in 
the within-regression. Also if there’s no longer perfect foresight about wages, the Lagrange multipliers 
might not only change over time, but they’d be negatively correlated with wages. This would invalidate 
the fixed-effects strategy, and we’d get negative omitted variables bias if the true intertemporal elasticity 
of substitution is positive (which it should be). 

. xtreg lnh lnw, fe i(id) 

Fixed-effects (within) regression Number of obs = 
15829 Group variable (i): id Number of 
groups = 1439 

R-sq: within = 0.0939 Obs per group: min = 
11 

between = 0.0002 avg = 11.0 
overall = 0.0172 max = 11 

F(1,14389) = 1491.79 
corr(u_i, Xb) = -0.4558 Prob > F = 
0.0000 

lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 
-------------+---------------------------------------------------------------

lnw | -.2627622 .0068031 -38.62 0.000 -.2760972 -.2494272 
_cons | 7.998834 .0087009 919.31 0.000 7.981779 8.015889 

-------------+---------------------------------------------------------------
sigma_u | .22734189 
sigma_e | .24242703 

rho | .46792124 (fraction of variance due to u_i) 

F test that all u_i=0: F(1438, 14389) = 7.66 Prob > 
F = 0.0000 

. xtreg lnh lnw year, fe i(id) 

Fixed-effects (within) regression Number of obs = 
15829 Group variable (i): id Number of 
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------------------------------------------------------------------------------

------------------------------------------------------------------------------

------------------------------------------------------------------------------

groups = 1439 

R-sq: within = 0.0940 Obs per group: min = 
11 

between = 0.0002 avg = 11.0 
overall = 0.0173 max = 11 

F(2,14388) = 745.98 
corr(u_i, Xb) = -0.4547 Prob > F = 
0.0000 

lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 
-------------+---------------------------------------------------------------

lnw | -.2621607 .0069094 -37.94 0.000 -.275704 -.2486174 
year | -.0003086 .0006188 -0.50 0.618 -.0015217 .0009044 

_cons | 8.020923 .0451372 177.70 0.000 7.932448 8.109398 
-------------+---------------------------------------------------------------

sigma_u | .22719147 
sigma_e | .24243336 

rho | .46757869 (fraction of variance due to u_i) 

F test that all u_i=0: F(1438, 14388) = 7.64 Prob > 
F = 0.0000 

. xtreg lnh lnw year year2, fe i(id) 

Fixed-effects (within) regression Number of obs = 
15829 Group variable (i): id Number of 
groups = 1439 

R-sq: within = 0.0963 Obs per group: min = 
11 

between = 0.0002 avg = 11.0 
overall = 0.0177 max = 11 

F(3,14387) = 511.06 
corr(u_i, Xb) = -0.4583 Prob > F = 
0.0000 

lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 
-------------+---------------------------------------------------------------

lnw | -.2650943 .0069173 -38.32 0.000 -.2786531 -.2515355 
year | .1975371 .0323412 6.11 0.000 .1341441 .2609301 

year2 | -.0013365 .0002184 -6.12 0.000 -.0017646 -.0009083 
_cons | .7159575 1.194753 0.60 0.549 -1.625913 3.057828 

-------------+---------------------------------------------------------------
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------------------------------------------------------------------------------

-----------------------

------------------------------------------------------------------------------

sigma_u | .22792748

sigma_e | .24212696


rho | .46981937 (fraction of variance due to u_i)


F test that all u_i=0: F(1438, 14387) = 7.68 Prob > 
F = 0.0000 

2SLS Estimates 

2SLS should definitely kill the measurement error, and also the omitted variables bias if the instruments 
are actually exogenous. One thing we can see right away is that it is much more difficult to replicate the 
IV estimates since standard errors are high despite the relatively large sample size. 
The exclusion restriction on the instruments is that, after controlling for a linear or quadratic time trend, 
the lifetime income effects that enter labor supply decisions through the marginal utility average out 
in the aggregate for each period - in other words, conditional on the parametric trend, all remaining 
variation in the marginal utility of wealth is cross-sectional. As you can see from the first stages of the 
IV regressions, the linear time trend is collinear with the full set of year dummies, so that one IV has to 
be dropped (similarly, for the quadratic trend, we have to drop 2 exogenous variables from the first stage, 
and so on). So in total, for a kth order approximation to the time trend, we have 11 − k instruments to 
identify the ISE, so that the equation is overidentified by a degree of 11 − k − 1. 
The results support the measurement error hypothesis because for all three specifications of the time 
trend, IV estimates are significantly higher than FE coefficients. This constitutes the basis of the Angrist 
(1991) test for measurement error. 

. ivreg lnh (lnw=yr*), robust first note: yr11 dropped due to 
collinearity 

First-stage regressions 

Source | SS df MS Number of obs = 15829 
-------------+------------------------------ F( 10, 15818) = 15.96 

Model | 47.6370661 10 4.76370661 Prob > F = 0.0000 
Residual | 4721.96357 15818 .298518369 R-squared = 0.0100 

-------------+------------------------------ Adj R-squared = 0.0094 
Total | 4769.60063 15828 .301339438 Root MSE = .54637 

lnw | Coef. Std. Err. t P>|t| [95% Conf. Interval] 
-------------+---------------------------------------------------------------

yr1 | -.1653508 .020369 -8.12 0.000 -.2052764 -.1254252 
yr2 | -.1236961 .020369 -6.07 0.000 -.1636217 -.0837705 
yr3 | -.1010749 .020369 -4.96 0.000 -.1410005 -.0611493 
yr4 | -.0447062 .020369 -2.19 0.028 -.0846318 -.0047806 
yr5 | -.0230886 .020369 -1.13 0.257 -.0630142 .016837 
yr6 | -.028766 .020369 -1.41 0.158 -.0686916 .0111596 
yr7 | -.0435892 .020369 -2.14 0.032 -.0835148 -.0036636 
yr8 | -.0109082 .020369 -0.54 0.592 -.0508338 .0290174 
yr9 | .0090843 .020369 0.45 0.656 -.0308413 .0490099 
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------------------------------------------------------------------------------
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-----------------------

------------------------------------------------------------------------------

yr10 | .0051704 .020369 0.25 0.800 -.0347552 .045096 
_cons | 1.295098 .0144031 89.92 0.000 1.266867 1.32333 

IV (2SLS) regression with robust standard errors Number of obs 
= 15829 

F( 1, 15827) = 8.45 
Prob > F = 0.0036 
R-squared = 0.0060 
Root MSE = .30893 

| Robust 
lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 

-------------+---------------------------------------------------------------
lnw | -.1339499 .04607 -2.91 0.004 -.2242524 -.0436474 

_cons | 7.83818 .0575247 136.26 0.000 7.725425 7.950935 

Instrumented: lnw Instruments: yr1 yr2 yr3 yr4 yr5 yr6 yr7 yr8 
yr9 yr10 

. ivreg lnh year (lnw=yr*), robust first note: yr11 dropped due to 
collinearity 

First-stage regressions 

Source | SS df MS Number of obs = 15829 
-------------+------------------------------ F( 10, 15818) = 15.96 

Model | 47.6370661 10 4.76370661 Prob > F = 0.0000 
Residual | 4721.96357 15818 .298518369 R-squared = 0.0100 

-------------+------------------------------ Adj R-squared = 0.0094 
Total | 4769.60063 15828 .301339438 Root MSE = .54637 

lnw | Coef. Std. Err. t P>|t| [95% Conf. Interval] 
-------------+---------------------------------------------------------------

year | .0165351 .0020369 8.12 0.000 .0125425 .0205276 
yr1 | (dropped) 
yr2 | .0251196 .0194308 1.29 0.196 -.012967 .0632062 
yr3 | .0312058 .0186685 1.67 0.095 -.0053867 .0677982 
yr4 | .0710394 .0181044 3.92 0.000 .0355527 .106526 
yr5 | .0761219 .0177573 4.29 0.000 .0413156 .1109282 
yr6 | .0539094 .0176401 3.06 0.002 .0193328 .0884859 
yr7 | .0225511 .0177573 1.27 0.204 -.0122552 .0573575 
yr8 | .0386971 .0181044 2.14 0.033 .0032104 .0741837 
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yr9 | .0421544 .0186685 2.26 0.024 .005562 .0787469 
yr10 | .0217055 .0194308 1.12 0.264 -.0163811 .0597921 

_cons | -.0111727 .1510744 -0.07 0.941 -.3072958 .2849504 

IV (2SLS) regression with robust standard errors Number of obs 
= 15829 

F( 2, 15826) = 12.67 
Prob > F = 0.0000 
R-squared = . 
Root MSE = .44074 

| Robust 
lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 

-------------+---------------------------------------------------------------
lnw | .5060088 .146741 3.45 0.001 .2183798 .7936379 

year | -.0123186 .0026191 -4.70 0.000 -.0174522 -.0071849 
_cons | 7.9516 .0849728 93.58 0.000 7.785043 8.118156 

Instrumented: lnw Instruments: year yr1 yr2 yr3 yr4 yr5 yr6 yr7 
yr8 yr9 yr10 

. ivreg lnh year year2 (lnw=yr*), robust first note: yr11 dropped 
due to collinearity 

First-stage regressions 

Source | SS df MS Number of obs = 15829 
-------------+------------------------------ F( 10, 15818) = 15.96 

Model | 47.6370661 10 4.76370661 Prob > F = 0.0000 
Residual | 4721.96357 15818 .298518369 R-squared = 0.0100 

-------------+------------------------------ Adj R-squared = 0.0094 
Total | 4769.60063 15828 .301339438 Root MSE = .54637 

lnw | Coef. Std. Err. t P>|t| [95% Conf. Interval] 
-------------+---------------------------------------------------------------

year | (dropped) 
year2 | .0001117 .0000138 8.12 0.000 .0000847 .0001387 
yr1 | (dropped) 
yr2 | .0261251 .0194831 1.34 0.180 -.0120639 .0643141 
yr3 | .0329933 .0187417 1.76 0.078 -.0037426 .0697293 
yr4 | .0733856 .0181716 4.04 0.000 .0377672 .109004 
yr5 | .0788033 .0177982 4.43 0.000 .0439168 .1136898 
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yr6 | .0567024 .0176434 3.21 0.001 .0221193 .0912856 
yr7 | .0252325 .0177224 1.42 0.155 -.0095055 .0599705 
yr8 | .0410433 .0180415 2.27 0.023 .0056798 .0764068 
yr9 | .043942 .0185976 2.36 0.018 .0074886 .0803954 

yr10 | .022711 .0193792 1.17 0.241 -.0152744 .0606964 
_cons | .5978321 .0763914 7.83 0.000 .4480963 .7475679 

IV (2SLS) regression with robust standard errors Number of obs 
= 15829 

F( 3, 15825) = 5.69 
Prob > F = 0.0007 
R-squared = . 
Root MSE = .57608 

| Robust 
lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 

-------------+---------------------------------------------------------------
lnw | .8193102 .3251283 2.52 0.012 .1820218 1.456599 

year | -.1706996 .137047 -1.25 0.213 -.4393272 .097928 
year2 | .001037 .0008984 1.15 0.248 -.000724 .0027981 
_cons | 13.59182 4.883424 2.78 0.005 4.019749 23.16388 

Instrumented: lnw Instruments: year year2 yr1 yr2 yr3 yr4 yr5 yr6 
yr7 yr8 yr9 yr10 
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Least Squares Fixed Effects Grouped Data / IV

 ’Interpersonal Bootstrap’ − Replications of Angrist (1991)

------------------------------------------------------------------------------

If I plot all replication results from the problem set answers you handed in (specification 2 with 
a quadratic trend) - including my own - you can see that due to sample size, OLS and Fixed-Effects 
estimates were relatively stable with regard to how you put together the data set applied the sample 
selection criteria. However, 2SLS isn’t just much less precisely estimated according to the asymptotic 
standard errors in the Stata output, but it’s also very sensitive to the definition of the sample, as you 
can see from the figure. I would also like to point out that no two people of us all got exactly the same 
sample or identical results for any of the specifications. 

The Card Critique 

One more thing to notice about the 2SLS estimates is that the better we control for time trends, the 
higher our estimate of the intertemporal elasticity of substitution becomes. This fits very well with the 
omitted variables bias story for the FE regression from not taking into account changes in λi that we 
could - under reasonable assumptions - expect to be negatively correlated with present wages (Why?). 
So let’s see what happens if we allow for a cubic time trend: 

IV (2SLS) regression with robust standard errors Number of obs 
= 15829 

F( 4, 15824) = 9.36 
Prob > F = 0.0000 
R-squared = . 
Root MSE = .64194 

| Robust 
lnh | Coef. Std. Err. t P>|t| [95% Conf. Interval] 

-------------+---------------------------------------------------------------
lnw | .9589432 .4019281 2.39 0.017 .1711184 1.746768 

year | -3.375522 4.043445 -0.83 0.404 -11.30113 4.55009 
year2 | .0440566 .0542894 0.81 0.417 -.0623567 .1504699 
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year3 | -.0001924 .000243 -0.79 0.428 -.0006686 .0002838 
_cons | 92.96352 100.1449 0.93 0.353 -103.3319 289.2589 

Instrumented: lnw Instruments: year year2 year3 yr1 yr2 yr3 yr4 
yr5 yr6 yr7 yr8 yr9 yr10 

...and again, we managed to increase our estimate of the ISE by another 14 percentage points. This is 
basically the main critique of this approach in the Card (1994) paper: if the true problem is omitted 
variables bias from aggregate trends in shocks to lifetime wealth (more precisely: shocks to expected 
lifetime wealth), time as an instrument doesn’t satisfy an exclusion restriction. Now, the data we are 
using for this exercise is from the 1970s which is the textbook example for unexpected macro shocks (in a 
few buzz words: oil crisis, stagflation, disappearance of the Phillips curve etc.). From our theory that the 
income effect of an increase in lifetime wealth on labor supply should be negative, we’d therefore interpret 
these IV coefficients which do not control sufficiently for aggregate time trends as underestimating the 
true ISE. 
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