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Statistical Learning 

A statistical learning problem always has the following structure: 

•	 we have a prior on the likelihood of some event B, P(B) 

•	 we then observe that some event A happens, where we know the joint probability of A and B, 
P(A ∩ B) 

•	 we finally update our beliefs about A, where the posterior about B satisfies Bayes’ rule 

P(B|A) = 
P(

P

A

(B

∩
) 

B) 

Whenever we can take the limits, this generalizes to densities of continuous random variables, so that 

f(y1, y2) f(y1, y2)
f(y1 y2) = = � ∞|

f(y2) 
−∞ 

f(y1, y2)dy1 

This is in practice often a very nasty problem, because it’s typically hard to calculate the integral that 
gives us the marginal distribution of y2. 

1.1 The Normal Learning Model 

A notable exception is the case in which y1 and y2 are jointly normal, i.e. 
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In order to write down the joint density, we first need to invert the covariance matrix, 
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where the correlation coefficient � is defined as 
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Now before we start working through the algebra, let’s for a second go back to Bayes’ rule and see where 
we actually want to get: ideally, we’d like to factor the joint density into 

f(y1, y2) = f̃(y1, y2)g(y2) 

˜where we know how to calculate the integral 
� 

f̃(y1, y2)dy1 = F (y2), so that 

f(y1, y2) f̃(y1, y2)g(y2) f̃(y1, y2)
f(y1 y2) = � ∞ = 

∞ 
=|

−∞ 
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f̃(y1, y2)g(y2)dy1 F̃ (y2) 

Since the conditional density is defined by a ratio, we have to know f(y1, y2) only up to a proportionality 
factor that can depend on everything except y1. 
The density of the bivariate normal is, up to the normalization 
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Picking out the terms inside the exponential which depend on y1, collecting by powers of y1, and com­
pleting the square, we get 
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If we define 
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Now, going back to our expression for the joint density, 
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where f̃(y1, y2) looks exactly like a normal density function, except for the normalizing factor. 
Now we can finally calculate the density of y1 conditional on y2, where we multiply both numerator and 
denominator by the normalizing factor in order to make the denominator integrate to one: 
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Now it is easy to see that the density just corresponds to a normal 

σ12 
y1|y2 ∼ N µ1 + 
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Notice that the update on the expectation of y1 is the new information in the realization of y2 times a 
regression coefficient. This isn’t all that surprising since under the assumptions of this model, OLS gives 
the best linear predictor, and is also Maximum Likelihood under the normality assumption. 

1.2 The Jovanovic Example 

In the model we saw in the lecture, a worker has productivity η ∼ N 
�
M, 1 

�
, where all parties only

H 
iid. �

1 
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observe y = η + ε, where ε⊥⊥η, and ε ∼ N 0, .
h 

From the conditional distribution formula derived above, we get 
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E[η|y] = µη + 
σy 

2 
(y − µy) = M + 

ση + σε 
2 
(y − M) 

1 h HM + hy 
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H h 

The conditional expectation of the worker’s productivity is therefore simply an average of the marginal 
expectation and observed output weighted with the respective precision. 
The conditional variance from our derivation above simplifies to 
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Therefore the posterior over the worker’s productivity is 
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We can easily extend this to more than one period. Defining the posteriors recursively, we get that 

| η − 
σy 

2 
= 

H 
− = 

1 
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where, by induction, 
1 1 1 

= = 
Ht Ht−1 + h H + (t − 1)h 

and 
Ht−1Mt−1 + hyt−1 HM + h

�t−1 
s=1 ys

Mt = = 
Ht−1 + h H + (t − 1)h 

An important thing to notice is that Bayes’ rule ensures that the posterior mean of η {y1, . . . , yt−1} is a 
martingale, 1 i.e. that its expectation is equal to its prior at s ≤ t, 

|

+ h
�t−1

HsMs r=s yr HsMs + h(t − s)Ms 
EsMt = = = Ms

Hs + (t − s)h Hs + (t − s)h 

Any reasonable definition of conditional expectations should actually satisfy this martingale property,

since otherwise we must have made inefficient use of information at some point.

We can also see that as t increases,


1A random process Xt is called a martingale if for every s < t, Es[Xt] = Xs, i.e. there are no predictable shifts in levels 
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•	 each additional datapoint carries less weight 

•	 in the limit, the posterior of η doesn’t depend on the initial prior anymore, since its weight decreases 
as more and more information about the worker’s productivity comes in. 

The following section gives a very prominent model that is a nice illustration of these properties of learning 
models. 

The Holmström (1982) Career Concerns Model 

In Holmström’s (1982) career concerns model, there is a manager who produces 

yt = η + at + εt 

0, 1 
h 

is again an idiosyncratic productivity shock, productivity η ∼ N M 1 
H 

isn’t known 
iid. 

where εt ∼ N 
to anyone in the economy, and in every period the manager can choose an effort level at (whith convex 
costs c(at)), which is not observed by the market. 
The labor market observes past output {y1, . . . , yt−1} and makes competitive wage offers each period 

wt = E[yt|y1, . . . , yt−1] = E[η|y1, . . . , yt−1] + at 
∗ 

where the manager’s effort choice at 
∗ is common knowledge in equilibrium. Note that the wage is set at 

the beginning of each period, before the manager takes his decision about effort. 
Notably, the current wage wt doesn’t depend on the choice of effort at in the same period, so that in the 
static problem, at 

∗ = 0. But, and this is the central idea of the model, wt+1 does depend on at because 
the manager may be able to manipulate the market’s beliefs about his productivity by deviating from 
the equilibrium effort choice. 
From the normal updating formula, we get 

E[wt+1 y1, . . . , yt−1, at] = 
HtMt + h(Et[yt|·] − Mt − at 

∗)
|
Ht + h


= 
HtMt + h(at − at 

∗) 
=: λtMt + (1 − λt)(at − a ∗)

Ht + h	 t 

Since λt = 
H+(t

h 
−1)h 

depends only on fixed parameters, the choice of effort at doesn’t depend on past 

effort choices nor realizations of output. In particular it doesn’t matter whether the manager actually 
knows η beforehand or not. 
We assume that the manager maximizes the expected net present value of his lifetime utility over an 
infinite horizon, 

∞ 

max U := 
s=t 

δs−t c(as{Et[ws|a] − )} 

Since as noted before, future effort choices don’t depend on at, the first-order condition with respect to 
at becomes 

ws a 

� 
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∂ 
U = 0 c �(at)⇔ = δs−t

Et
∂at ∂at s=t 

Therefore 
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c �(at) = (1 − λt) δs−t λr 

s=t r=t 
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= δs−t 

H + th Ht + rh 
s=t r=t 

=: kt	 (1) 

where kt falls to zero at rate 1 
t 
, so that the marginal cost of effort falls at rate 

t
1 
2 . 

This model has two peculiar features: 

•	 The manager exerts effort even though his current wage doesn’t depend on the output in that 
period. This can be seen as an investment in his productivity signal on the market 

•	 The market’s beliefs about the manager’s productivity becomes insensitive to current information 
on output, which decreases the manager’s incentive to exert effort over time. 

The infinite-horizon model keeps the incentive to invest in the market signal constant (if the manager 
was going to retire in period T , there would be a steeper decrease in effort), and the decline in effort is 
solely driven by the decline in the ”elasticity” of the posterior with respect to current output. 
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