
1 

Recitation Notes 1 

Konrad Menzel 

September 18, 2006 

Digression: Deriving the Slutsky Equation using Roy’s Iden
tity 

As in the lecture, denote compensated and uncompensated demand for leisure as l(p, w, ȳ), and lc(p, w, ū), 
respectively. Analogously to the other derivation, we start from 

l(p, w, ȳ) = lc(p, w, v(p, w, ȳ)) 

It turns out that it is more convenient to formulate this problem in terms of ”excess” demand for leisure 
l(p, w, ȳ) − T (i.e. beyond the initial time endowment of T hours), so that we don’t have to worry about 
changes in the value of the full income wT +ȳ. In other words, we evaluate the consumer’s trading options 
relative to an initial bundle (l0, x0) = (T, ȳ) when we allow her to trade leisure for the consumption good 
at a rate w

p , i.e. the real wage. Excess demand for leisure is equal to the negative of hours worked and 
must therefore be non-positive. 
Taking derivatives with respect to ȳ, we get 

∂ ∂ ∂ 
l(p, w, ȳ) = lc(p, w, v(p, w, ȳ)) v(p, w, ȳ) (∗)

∂ȳ ∂ū ∂ȳ

Differentiation with respect to w gives us 

∂ ∂ d 
l(p, w, ȳ) = 

�
l(p, w, ȳ) − T 

� 
= lc(p, w, v(p, w, ȳ))

∂w ∂w dw 
∂ ∂ ∂ 

= lc(p, w, v(p, w, ȳ)) + lc(p, w, v(p, w, ȳ)) v(p, w, ȳ)
∂w ∂ū ∂w 

Roy’s ID ∂ ∂ ∂ 
= lc(p, w, v(p, w, ȳ)) − lc(p, w, v(p, w, ȳ)) v(p, w, ȳ) 

�
l(p, w, ȳ) − T 

� 

∂w ∂ū ∂ȳ

(∗) ∂ ∂ 
= lc(p, w, v(p, w, ȳ)) − l(p, w, ȳ) 

�
l(p, w, ȳ) − T 

� 

∂w ∂ȳ

Bringing the second summand to the left-hand side gives the Slutsky equation as derived in the lecture. 
We can also put this in terms of labor supply, where h(p, w, ȳ) := T − l(p, w, ȳ) is the number of hours 
worked, so that 

∂ ∂ ∂ 
∂w 

hc(p, w, v(p, w, ȳ)) = 
∂w 

h(p, w, ȳ) − 
∂ȳ

h(p, w, ȳ)h(p, w, ȳ) 
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2 Measurement Error 

In Labor Economics, we work a lot with survey data, which is often very messy, mainly for the following 
reasons: 

1. the survey doesn’t really measure the exact concept used in our economic framework (e.g. human 
capital) 

2. subjects do not know the exact answer 

3. response behavior is subject to a number of psychological biases (in particular if subjects don’t 
understand the question well) 

While there’s not always an easy solution to this problem, the classical errors in variables framework is a 
good way of understanding about how bad data will affect the results of empirical analysis and suggests 
some ways to address the problem. 

2.1 Notation 

Want to estimate model / population regression 

Yi
∗ = α + Xi

∗β + εi 

but the observed data is generated by the measurement equations 

Yi = Yi
∗ + ηi


Xi = Xi
∗ + νi


Recall that for a bivariate regression of Yi on Xi and a constant, the probability limit of the regression 
coefficient is 

plimN β̂N = 
Cov(Xi, Yi) = 

Cov(Xi, α + Xi
∗β + εi + ηi = 

Cov(Xi, Xi
∗) 

β + 
Cov(Xi, εi + ηi) (1)

Var(Xi) Var(Xi) Var(Xi) Var(Xi) 

This holds mechanically without any further assumption on where the data actually comes from. The 
factor in front of the true coefficient, 

Cov(Xi, Xi
∗) Var(Xi) + Cov(Xi

∗, νi)
λ := = 

Var(Xi) Var(Xi
∗) + Cov(Xi

∗, νi) + Var(νi) 

is often referred to as the reliability ratio. If Xi
∗ and νi are uncorrelated, this coefficient gives the 

proportion of the variation in the observed Xi which actually consists of a ”signal” about Xi
∗ (as opposed 

to the ”noise” νi). With this basic formula, it is possible to assess the consequences of a wide range of 
possible forms of measurement error. 
Reliability ratios λ of key variables (see Angrist and Krueger, 1999): 

cross-sectional earnings: ca. 0.7, annual changes in panel data: falls to 0.6 • 

educational attainment: ca. 0.9 • 

annual hours worked: about 0.6 • 
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Scatter plot removed due to copyright restrictions. 

Angrist, Joshua D., and Alan B. Krueger. "Empirical Strategies in Labor Economics." 
Chapter 23 in Handbook of Labor Economics. Orley Ashenfelter and David E. Card. 
New York, NY: Elsevier, 1999, p. 1347. ISBN: 0444822895. 

Figure 1: Employer versus employee-reported log wages with OLS regression line (Source: Angrist and 
Krueger (1999), Handbook of Labor Economics ch. 23, p.1347) 

The graph from Angrist and Krueger uses information on wages that was collected independently from 
employers and employees and matched for each employee later on. Since we have two independent 
measurements for the key variable, we are in a position to assess the overall quality of the data. If there 
wasn’t measurement error in either variable, all points in the scatter plot should lie on the 45-degree line. 
You should also convince yourself that under the assumption of independent measurement errors the slope 
of the regression line (i.e. the regression coefficient) estimates the reliability ratio of employee-reported 
wages (which is on the x-axis). Running that regression after switching the role of the two measurements 
(i.e. switching the axis) will typically not give the inverse of the slope of the regression line, but we’d get 
back the reliability ratio of employer-reported wages, which will also be between zero and one. In this 
example, one can immediately see that the slope of the regression line is substantially less than 1. 

2.2 Classical Measurement Error 

With ”classical” measurement error, we mean that ηi and νi are uncorrelated with each other and, most 
importantly, the true values Xi

∗ and Yi
∗ (and therefore also uncorrelated with ε). From the expression 

for the probability limit of the OLS coefficient in (1), we can see that since under the classical errors 
in variables assumptions, εi and ηi are uncorrelated with Xi, the asymptotic bias of the OLS estimate 
reduces to (1 − λ)β. 
You should actually try all the following variants of the measurement error problem by taking your 
favorite regression, and add some computer-generated noise to some variables or others in order to get 
a better intuition for the mechanics of the problem. In Stata you can add normally distributed random 
noise with standard deviation, say, 0.5 by typing 

gen x = x_star + 0.5*invnorm(uniform()) 
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2.2.1 Error in Dependent Variables Yi 

We can see right away from the formula for λ that if measurement error on Yi is classical, and all other 
variables are correctly measured, 

Cov(Xi, Xi
∗) Var(Xi) + Cov(Xi

∗, νi) Var(Xi
∗)

λ := = = = 1 
Var(Xi) Var(Xi

∗) + Cov(Xi
∗, νi) + Var(νi) Var(Xi

∗) 

so that there is no bias since (1 − λ)β = 0. However, poor measurement of Yi is equivalent to an increase 
in the variance of εi, and therefore increases the standard errors of the OLS coefficients. 

2.2.2 Error in Explanatory Variables Xi 

This is the most important case for practical purposes in empirical work. From the derivation above, we 
know that 

plimN β̂N = λβ 

with 
Cov(Xi, Xi

∗) Var(Var(νi))
λ = 

Var(Xi) 
= 1 − 

Var(Xi
∗) + Var(νi) 

< 1 

Therefore, with classical error in the regressor, the coefficient on the mismeasured variable is biased 
towards zero. This bias is commonly referred to as attenuation bias. 
The basic intuition for this bias is relatively straightforward: assume we replace Xi

∗ with a computer-
generated random number before we run the regression. We’d then expect the coefficient on that ”junk” 
regressor to be zero. If we add some ”signal” to that variable, we’d expect the coefficient to move in the 
direction of the true value of the parameter. 
Since the biased estimate is equal to λβ, note that if we knew the signal-to-noise ratio of the mismeasured 
variable, we could construct λ, and correct our estimates. It turns out that most econometric solutions 
to the error-in-variables problem are based on this idea. 

2.2.3 Problems with Additional Controls Wi 

Now consider a small variation of the original model in which we also include another variable Wi in 
order to control for some part of the variation in Yi, but aren’t particularly interested in the coefficient 
on that control: 

Yi
∗ = α + Xi

∗β + Wi
∗γ + εi 

where Wi
∗ is also potentially mismeasured: 

Wi = Wi
∗ + ζi 

We’d now like to reduce this problem to a bivariate regression in order to be able to fit it into our 
framework, and as you might recall from problem H on the review exercise, we can do that with a 
partitioned regression: regress Yi on the residuals from a regression of Xi on Wi, 

X̃i := Xi − Wiπ̂XW ≡ Xi − Wi 
Cov(Xi,Wi) = Xi − Wi 

Cov(Xi
∗, Wi

∗) 
Var(Wi) Var(Wi) 

Note that for the coefficient estimate, it doesn’t matter whether we orthogonalize Yi as well (though it 
does matter when we compute standard errors). The probability limit of the OLS coefficient is now 

ˆ Cov(Yi, X̃i) Cov(Xi
∗β + Wi

∗γ, Xi − Wiπ̂XW )plimN βN = = 
Var( X̃i) Var(Xi − Wiπ̂XW ) 
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� 

Now we can simplify the numerator to 

Cov(Xi
∗β + Wi

∗γ, Xi − Wiπ̂XW ) = 
� 

Cov(Xi
∗, Xi) − Cov(Xi

∗,Wi)π̂XW 

� 
β + 

� 
Cov(Wi

∗, Xi) − Cov(Wi
∗,Wi)π̂XW 

� 
γ 

� 
Cov(Xi

∗,Wi
∗) 

� 

= Cov(Xi
∗, Xi) − Cov(Xi

∗, Wi) Var(Wi) 
β 

� 
Cov(Xi

∗,Wi
∗) 

�
+ Cov(Wi

∗, Xi
∗) − Cov(Wi

∗,Wi) Var(Wi) 
γ 

�
Var(Wi

∗) 
� �

Var(Wi
∗) 

� 

= 1 − R2 

Var(Wi) 
Cov(Xi

∗, Xi)β + 
Var(Wi) 

Cov(Xi
∗,Wi

∗)γXW 1 − 
�

Var(Wi
∗) 

� 
Var(ζi)= 1 − R2 

Var(Wi) 
Cov(Xi

∗, Xi
∗)β + 

Var(Wi
∗) + Var(ζi)

Cov(Xi
∗,Wi

∗)γXW 

∗ 

where R2 is the R-squared of a regression of W ∗ on X∗, and the denominator becomes XW 

Var(Xi − Wiπ̂XW ) = Var(Xi) − 2Cov(Xi,Wi)π̂XW + Var(Wi)π̂2 
XW 

Cov(Xi,Wi)2 �
Var(Wi

∗) 
� 

= Var(Xi) − 
Var(Wi) 

= 1 − R2 

Var(Wi) 
Var(Xi

∗) + Var(νi)XW 

∗ 

Now, in the case that there is no measurement error in Wi, we therefore get 

[1 − R2 ]Var(Xi
∗)β Var(νi)plimN β̂N = XW = 

�
1 − 

� 

β
[1 − R2 ]Var(Xi

∗) + Var(νi) [1 − R2 ]Var(Xi
∗) + Var(νi)XW XW 

This means that in the presence of additional controls Wi, attenuation bias gets worse the stronger the 
true Xi

∗ is correlated with Wi
∗, since the controls start picking up a larger share of the variation in Yi that 

should actually have been attributed to Xi
∗. In addition, we can say that adding controls will exacerbate 

attenuation bias unless the controls are uncorrelated with Xi
∗ - in which case we’d have no reason to 

control for them. 
Now conversely, if there’s no measurement error in Xi, but there is classical error in the controls, 

Var(Wi ) 

Var(Wi ) 

�
1 − R2 

XW 

� 
Var(Xi

∗ Var(ζi))β + Cov(Xi
∗, Wi

∗)γVar(Wi ) �
1 − R2 

XW 

Var(W )+Var(ζi )∗
plimN β̂N 

i= � 
Var(Xi

∗)Var(Wi)


Cov(Xi
∗,Wi

∗)γ

Var(ζi) 

Var(W )+Var(ζi)∗ 
i= β + �

1 − R2 
XW 

∗Var(Wi ) 

Var(Wi) 

Var(ζi)= β + BW[1 − R2 ]Var(Wi
∗) + Var(ζi)XW 

where BW is the omitted variables bias that would obtain if we didn’t control for Wi
∗ at all. Therefore, 

while measurement error in other controls doesn’t cause attenuation bias on the coefficient of interest, 
the control absorbs only part of the omitted variables bias. 

2.3 Group Means as Proxy Variables 

Sometimes we are completely missing any microdata on a variable we would like to include in our analysis, 
but instead there’s some aggregate data on that variable we’d like to use. More specifically, say we have 

Var(Xi
∗) 

5 



a microdata set without reliable information on wages Xi
∗. Suppose we observe instead some covariates 

Wi (for instance dummies for type of work, industry, and specific metropolitan area), and we are able to 
obtain average wages for each relevant group from a different source. Then we might suspect after the 
previous discussion that using these group averages as proxies should be a source of attenuation bias (but 
the error (Xi

∗ − E[Xi|Wi]) would have conditional mean zero, and therefore continue to be ”classical”). 
It turns out that this isn’t so (at least in the limit) since 

Cov (E[Xi Wi], Xi
∗) Cov (E[Xi Wi], E[Xi

∗ Wi]) Cov (E[Xi
∗ Wi], E[Xi

∗ Wi])

λ = 

Var (E[X
|

i|Wi]) 
= 

Var (
|
E[Xi|Wi]) 

|
= 

Var (E
|
[Xi

∗|Wi]) 
|

= 1


so that there is no bias from measurement error in Xi. The intuitive reason for this is that using 
group means actually converts our estimation problem into a regression of group averages, for which 
the individual ”measurement error” averages out after conditioning on Wi. We can also interpret this 
regression as an instrumental variables estimator which uses the group characteristics Wi as instruments, 
and therefore deals with the measurement error problem in Xi. 

2.4 Classical Measurement Error in Panel Data 

With panel data, our basic model becomes 

Yit = αi + X∗
itβ + εit 

where Xit = it and X∗ = it−1 and νit = �νi,t−1 + ξitX∗ + νit, it τX∗ + µit follow AR(1) process with 
τ, � ∈ (−1, 1), and we want to allow for αi to be correlated with Xi

∗. 
One way of estimating this model is by running a pooled OLS regression of first differences ΔYit := 
Yi,t − Yi,t−1 for t = 2, .., T on ΔXit := Xit − Xi,t−1. The reliability ratio for the differenced data is 

Cov(ΔXit, ΔX∗ ) Var(ΔX∗ )
λ = it = it

Var(ΔXit) Var(ΔX∗ ) + Var(Δνit)it

Var(Δν∗ )it= 1 − 
Var(ΔX∗ ) + Var(Δνit)it

(1 − �)Var(νit)= 1 − 
(1 − τ)Var(X∗ ) + (1 − �)Var(νit)it

Var(νit)= 1 − 1−τ Var(X∗ ) + Var(νit)1−� it

since 

Var(Δνit) = Var([� − 1]νit−1 + ξit) = (1 − �)2Var(νit) + Var(ξit) 
= (1 − �)2Var(νit) + (1 − �2)Var(νit) = 2(1 − �)Var(νit) 

where we use that 

0 0

Var(νit) = Var(νi0) = Var 

� � 
�sξis 

� 

= 
� 

�2sVar(ξit) = 
1 

Var(ξit)1 − �2 
s=−∞ s=−∞ 

This indicates that the estimator based on first-differences has more attenuation bias if and only if τ > �, 
i.e. if the ”signal” is more correlated than the measurement error.

Alternatively, we can estimate the coefficients with a fixed effects regression. Since this is equivalent to
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putting in individual-specific dummies, the formula for OLS with other controls derived above suggests 
that again, the bias must be worse than in pooled OLS. However, it also turns out that, if the panel is 
longer than 2 periods, if measurement error are less correlated than the true values of X∗ , first differences it

shows a larger attenuation bias than fixed effects. 
Actually, the difference between the biases in these two panel estimators can be used to recover the 
signal-noise ratio from which in turn we can reconstruct the correct λ, so that with panels of length 
greater than 2 periods, we can construct a consistent estimate in the presence of measurement error.1 

2.5 Cures for Classical Measurement Error 

2.5.1 Get Better Data 

Sometimes the same data set allows for several different ways of constructing a variable of economic 
interest (e.g. instead of relying on responses on the number of weeks worked in a year, we could also 
subtract the number of weeks not worked from the total number of weeks). With several independent 
measures, we can also estimate reliability ratios, or decide which variables seem to be more appropriate 
for our purposes based on a priori considerations. Sometimes there are also ways of obtaining better 
quality data from other sources (this works particularly well for grouped data which only approximates 
some conditional expectation). By the reasoning in the section on grouped means as proxies, one could 
also think about replacing the poorly measured variable by a group average from a different data set. 

2.5.2 Get the Reliability Ratio for the Messy Data 

There may be information on the reliability ratio for a certain type of data from other sources/datasets 
or validation data. We can then simply apply the ”trick” mentioned above of adjusting the estimate by 

βLSdividing the attenuation bias out of our estimate: β̂adj := 
ˆ

λ . 

2.5.3 Instrumental Variables 

In some cases, we observe a second - probably equally noisy - independent measurement of Xi
∗, 

Zi = Xi
∗ + ξi 

We can then use that measurement as an instrumental variable in a 2 stage least square procedure, which 
gives us a consistent estimate for the coefficient on Xi: 

plimN β̂IV =	
Cov(Zi, Yi) = 

Cov(Xi
∗, Yi) = 

Var(Xi
∗)β 

= β
Cov(Zi, Xi) Cov(Xi

∗, Xi) Var(Xi
∗) 

Another way of thinking about what instrumental variables actually does in this case is going back to 
the relation between attenuation bias and the reliability ratio: 

Cov(Zi, Yi) Cov(Zi, Yi)/Var(Zi) β̂LS λβ
plimN β̂IV = 

Cov(Zi, Xi) 
= 

Cov(Zi, Xi)/Var(Zi) 
= plimN 

λ̂
= 

λ 
= β 

Therefore, in the bivariate case the IV procedure is equivalent to first estimating the reliability ratio 
of the regressor by regressing the alternative measure on it (”first stage” regression), and then adjust 
the biased estimate from the ”second stage” regression of Yi on Xi by dividing through the estimated 
reliability ratio (in IV terminology ”backing out the structural form”). 

1see Grilliches and Hausman (1984): ”Errors in Variables in Panel Data” 
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�

Good choices for instrumental variables aren’t limited to other measurements of the noisy regressor in 
a narrow sense, but in principle we can use any variable which is to some degree correlated with the 
signal - Cov(Zi, Xi

∗) = 0 - but not the noise or measurement error (you should convince yourself that 
the reasoning above still goes through). In the oldest version of this type of estimator, the instrument 
consisted actually of a single dummy variable according to which the sample was split in two groups, one 
of which had a higher average value for the mismeasured variable than the other. The ”grouped means 
as proxies” estimator described above is another example for an IV estimator, using group characteristics 
as instrumental variables for the regressor of interest. 

2.5.4 Panel Data 

As a short note, there is a paper by Grilliches and Hausman (1984):”Errors in Variables in Panel Data”, 
which you will see / will have seen in 14.382 which exploits the difference between the first-differences 
and the fixed-effects panel estimators to correct the bias of either estimator of β. 

2.6 ”Non-Classical” Measurement Error 

2.6.1 Error in Limited Dependent Variables 

This section is only supposed to give an important caveat: if the mismeasured variable doesn’t have full 
support on the real line (e.g. wages have to be positive - though log wages don’t have to), the classical 
error in variables assumptions aren’t plausible for data close to the boundaries. For instance, if we look 
at a binary variable - e.g. whether a person has a college degree or not - the measurement error (the 
term used for discrete variables is misclassification) can’t possibly be uncorrelated with the true value: 
if the true value of the dummy is ”1”, measurement error can only consist in reporting ”0” instead, and 
vice versa, so that the measurement error is negatively correlated with the truth. 
There are many more technical econometric papers that propose solutions to this problem. 

2.6.2 Division Bias (Borjas, 1980) 

Sometimes, an explanatory variable used in the analysis is a function of our data on the dependent 
variable. Suppose we want to estimate (uncompensated) labor supply elasticity with respect to hourly 
wages (which we assume to be exogenous for now) 

log h∗i = α + β log wi + εi 

Unfortunately, we only have information on total income yi and hours worked hi for all individuals in 
our dataset. We could therefore run an alternative regression 

log hi = α + β[log yi − log hi] + εi 

If all variables are measured accurately, 

log yi − log hi = log(wih
∗) − log hi = log wi + log h∗ − log h∗ = log wii i i 

so that the fact that our dependent variable also appears on the right-hand side of the equation doesn’t 
represent a problem per se. However, if we allow for (classical) error in variables in hi, 

log hi = log h∗i + ηi 

we actually end up estimating the equation 

log hi = α + β[log yi − log h∗ − ηi] + εi + ηi = α + β(log wi − ηi) + εi + ηii 
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so that the OLS coefficient plims to 

plimN β̂N = 
Cov(log wi − ηi, log hi) = 

Cov(log wi − ηi, log wiβ + εi + ηi) 
Var(log wi − ηi) Var(log wi) + Var(ηi) 

Var(log wi)β − Var(ηi) Var(ηi)= 
Var(log wi) + Var(ηi)

= λβ − 
Var(log wi) + Var(ηi) 

so that, in addition to classical measurement error, we have a negative bias from the fact that the 
measurement error affects both the dependent and the main explanatory variable. The problem here is 
that, other than in the classical errors in variables model, the measurement error in the regressor (log 
wages) is mechanically related to the error in the dependent variable. I.e. if we measure fewer than 
actual hours worked, we overestimate hourly wages and will therefore get an estimate of the labor supply 
elasticity which is biased downward. 
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