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Consider a two period matching model. Each period, every worker gets an 
offer �i, independently drawn from some fixed distribution, which, for simplicity, 
has mean zero. The value of the new offer is observed before the worker has to 
decide whether or not to take the new job. This match specific wage component 
is the only source of wage variation, so there is no wage growth due to experience 
or specific capital. Thus, the true (structural) wage profile is flat. Any observed 
wage growth will be due to sorting. To evaluate the bias arising from this in 
OLS regressions, it is useful to figure out the quantity E(� X,T ), i.e. the|
expectation of the current � for a worker with experience X and tenure T . Note 
that the current wage is � = �X−T +1. 

In the first period, everybody is in their first job, so 

E(� 1, 1) = 0 | 

At the beginning of the second period everybody receives a new independent 
draw from the same distribution. Workers with offers �2 > �1 will switch jobs. 
Thus, 

E(� 2, 1) = E(�2 �2 > �1)| | 
Similarly for stayers 

E(� 2, 2) = E(�1 �1 > �2)| | 
Notice that the right hand sides of these two equations are symmetric and since 
�1 and �2 are independent, we have 

E(�2 �2 > �1) = E(�1 �1 > �2)| | 

= E(� 2, 1) = E(� 2, 2)⇒ | | 
which says that the second period wages of movers and stayers are the same 
in the model without wage growth on the job. Put differently, conditional on 
experience � is independent of tenure. The symmetry underlying the result is 
illustrated in Figure (1). 

Intuitively, there are two offseting effects. First, movers tend to have worse 
offers the first period. Secondly, movers tend to have better offers the second 
period. In this model, the two effects are of the exact same magnitude, that’s 
what makes the second period expected wages equal. 
Now, consider per period true wage growth on the job, due to, say, specific 
training or learning-by-doing, which is β. This makes the condition for moving 
more stringent, it implies 

E(� 2, 1) = E(�2 �2 > �1 + β)| | 
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Figure 1 

Second period wages for stayers are 

E(� | 2, 2) = E(�1 | �1 + β > �2) = E(�1 | �1 > �2 − β) 

Notice that these two equations are not symmetric anymore. The wage growth 
effect introduces a wedge which makes moving less likely. This implies that we 
are now taking expectations of �2 for movers over a smaller region and 
expectations �1 for stayers over a larger region. Thus 

E(�2 | �2 > �1 + β) > E(�1 | �1 > �2 − β) 

= E(� 2, 1) > E(� 2, 2)⇒ | | 
This is most easily seen in the same type of graph again (Figure 2). 

In terms of the two effects mentioned above, movers still may have below 
average offers in period one but this effect is muted because β enhances the 
value of the first period job (even for low values of �1). On the other hand, 
since β makes the condition for moving more stringent, second period offers for 
movers must have been particularly good. The introduction of a positive β 
mutes the first effect (which is negative) and enhances the second (which is 
positiv). This is why we know that movers must have a higher � conditional on 
experience. The true tenure effect will therefore be underestimated in an OLS 
regression: 

EβÞ = β + E(� | 2, 2) − E(� | 2, 1) < β 
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Figure 2 

The Normal Learning Model1 

In many models in the matching and labor contract literature match quality or 
productive ability is not immediately revealed. A convenient tool for modeling 
uncertainty about productivity is the normal learning model. Suppose that 
output y is a noisy function of true ability η, i.e. y = η + � with 
η ∼ N(M, 1/H) and � ∼ N(0, 1/h). The quantities H and h, (i.e. one over the 
variances) are refered to as precision and turn out to be a useful way to 
represent uncertainty in the model. Assume that η and � are independent. 
Suppose a firm hires a worker from a random pool of applicants. The worker’s 
ex ante expected productivity is M . We want to know the firm’s (and possibly 
the worker’s) updated belief after one period of production, i.e. we want to 
know the conditional density f(η y). Using Bayes’ Rule | 

f(η, y) f(y η) f(η)
f(η | y) = 

f(y)
= � 

f(y |
| 
η) f(η)dη 

Using the normal density function 
� 

H 
e−

1
2 H(η−M)2 

f(η) = 
2π 

� 
h 

e−
1 
2 h(y−η)2 

f(y η) = f(η + � η) = f(�) = | | 
2π 

1This section is drawn from notes by Bob Gibbons. 
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The rest is pure algebra. 

1 

f(y | η) f(η) = 

� 

2
h

π 

� 

2
H

π
e− 2 {h(y−η)2 +H(η−M)2} 

Concentrating on the exponent for a second 

h(y − η)2 + H(η − M)2 = (H + h)η2 − 2η(HM + hy) + HM2 + hy2 

Taking the first two terms on the right hand side and completing the square 
yields �

HM + hy 
�2 � 

HM + hy 
�2 

(H + h) η − − (H + h)
H + h H + h 

so that we can rewrite 

h(y − η)2 + H(η − M)2 = (H + h) 
�
η − 

HM + hy 
�2 

H + h 

−(H + h) 
� 
HM + hy 

�2 

+ HM2 + hy2 

H + h � 
≡K

��
(y) 

� 

Notice that this separates the equation into two terms, one involving η and the 
other one independent of η (denoted K(y)). This yields 

f(y η) f(η) = 

� 
h 

� 
H 

� 
2π 1

2 K(y) 

� 
H + h

e− 2
1 (H+h)[η− HM+hy ]2 

H+h| 
2π 2π H + h

e− · 
2π 

Substituting into Bayes’ formula 

1 1 HM+hy
� 

h 
� 

H 
� 

2π e− 2 K(y) 
� 

H+h e− 2 (H+h)[η− H+h ]2 

f(η y) = 
2π 2π H+h · 2π 

1 1 HM +hy
| � � 

h 
� 

H 
� 

2π e− 2 K(y) 
� 

H+h e− 2 (H+h)[η− ]2 

dηH+h 
2π 2π H+h 2π· 

1 HM +hy
� 

H+h e− 2 (H+h)[η− ]2 
H+h 

2π 
= 

1 HM+hy� � 
H+h e− 2 (H+h)[η− H+h ]2 

dη2π 

1 HM+hy

� 
H + h 

2 (H+h)[η− ]2 
H+h= e−

2π 

where the first step uses the fact that K(y) is independent of η, and the 
second step results from the fact that we are dealing with a proper normal 
density function which integrates to one. Thus we found 

�
HM + hy 1 

�
η | y ∼ N ,

H + h H + h 
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It is easy to extend this to t-period updating. Denote the conditional mean 

M1 = E(η y) = 
HM + hy | 

H + h 

and the conditional precision 

H1 = H + h 

Analogously, 

Ht−1Mt−1 + hyt HM + h 
�t 

1 yi
Mt = E(η | y1, ..., yt) = 

Ht−1 + h 
= 

H + th 

and 
Ht = H + th 

Learning about Match Quality 

We can use the normal learning model to study the two period matching 
model where match quality is not observed ex ante. Thus, assume that output 
in job j is given by yjt = ηj + �t. Assume that η has mean zero and precision 
one, while � has mean zero and precision h. If the worker gets all the surplus 
from the match and the wage is set at the beginning of each period then the 
wage on job j in the first period is 

wj1 = E(ηj ) = 0 

If there is no growth of wages due to specific capital then the worker will move 
to a new job whenever 

wj2 = E (yj2|yj1) = E (ηj |yj1) = 
hyj1 

< 0
1 + h 

or yj1 < 0.

Use E(w X, T ) again to denote the conditional expectation of the wage of a
|
worker with experience X and tenure T. An average mover earns in the second 
period just the unconditional mean of the match qualities 

E(w 2, 1) = 0 | 

while a stayer is expected to make 

E(w | 2, 2) = E [E(y2 | y1) | y1 > 0] 
h 

= E(y1 y1 > 0) > 0
1 + h 

| 

so we have 

E(w 2, 2) > E(w 2, 1)| | 
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Stayers earn more than movers. The matching model with learning implies 
that OLS will overestimate the tenure coefficient (conditioning on experience). 
As we add wage growth β on the job the condition for switching jobs becomes 
again more stringent. A worker switches if 

wj2 = 
hyj1 + β < 0
1 + h 

or 
1 + h 

yj1 < −β 
h 

Notice that match quality becomes completely revealed as h −→ ∞. In this 
case, the model (almost) collapses back to the case were matches were an 
inspection good. The only difference is that here it still takes a period to learn 
about match quality, so there is no selection effect due to second period wages 
for movers as in the model in the first section of the handout. Here, movers all 
earn zero in the second period. On the other hand, as h −→ 0 output is 
completely random and there is no match specific component anymore. Thus, 
it makes never sense to change jobs. If some worker changed jobs accidentally 
(or for some exogenous reason) they would loose the job specific wage 
component β. So we would find in the case of h = 0 and completely exogenous 
moving that 

E(w | 2, 2) − E(w | 2, 1) = β 

OLS would estimate true returns to tenure. For positive and finite h 

E(w | 2, 2) − E(w | 2, 1) > β 

so that OLS still overestimates the return to tenure. This follows from 
� ����

hy1 
� � 

hy1 
����

hy1 
�

E(w | 2, 2) = E w2 1 + h
> −β = E 

1 + h 
+ β 

1 + h
> −β 

h 
� ��� 1 + h 

� 

= 
1 + h

E y1 �y1 > −β
h 

+ β > β 
� 

>

��
0 

� 

This means that Topel’s procedure of identifying a lower bound on the true 
return to tenure crucially depends on his assumption of matches being 
inspection goods. If matches are experience goods he identifies an upper 
bound to the returns to tenure. If both aspects are present (i.e. there is some 
ex ante knowledge about the match quality but this knowledge is imperfect) 
we can presumably not put any bounds on the bias in β anymore. (You could 
work that out as an exercise. For example, let productivity on the each job 
still be yjt = ηj + �t. After the first period, the worker receives a signal 
s2 = η2 + u on his productivity in a new job.) 
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