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A Income and Substitution Effects 

The graphs illustrating how the response of demand to a price change can be decomposed into income 
and substitution effects can be found in any standard intermediate microeconomics textbook. 

B Consumer Choice 

This exercise is supposed to illustrate the mechanics of the two dual optimization problems - the utility 
maximization problem (UMP) and the expenditure minimization problem (EMP) - in order to review 
some of the most important concepts from classical consumer choice theory. Later in the lecture, this 
will be the basic framework for the discussion of individual labor supply decisions (where one good will 
be interpreted as ”leisure”), and standard results like Roy’s identity or Shepard’s lemma will often turn 
out to be useful when deriving household responses to changes in wages or income taxes. 

(1) The marginal rate of substitution between the two goods x1 and x2 is 

dx2 
���� ∂x

∂ 
1 
u(x1, x2) α x2 − γ2

MRS2,1 := = 
dx1 du=0 

= − 
∂x
∂ 

2 
u(x1, x2) 1 − α x1 − γ1 

(2) The utility maximization problem (UMP) is 

max 
� 

α log(x1 − γ1) + (1 − α) log(x2 − γ2)
� 

s.t. p1x1 + p2x2 ≤ y 
x1,x2 

While it is possible to solve the utility maximization problem by plugging the budget constraint into 
u(x1, x2) in order to reduce the UMP to a one-dimensional unconstrained problem (which we can since 
the budget constraint will clearly be binding), the mechanics of the problem will be more transparent if 
we solve it through its Lagrangian 

L(x1, x2, λ) = α log(x1 − γ1) + (1 − α) log(x2 − γ2) + λ 
� 

y − p1x1 − p2x2 

� 

The corresponding first-order conditions (FOC) are 

(I) 
∂L

= 0 
α 

= λp1
∂x1 

⇐⇒ 
x1 − γ1 

(II) 
∂L

= 0 
1 − α 

= λp2
∂x2 

⇐⇒ 
x2 − γ2 

(III) 
∂

∂λ

L
= 0 ⇐⇒ p1x1 + p2x2 = y 
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From (I) and (II), we get 

(I’) 
p1 

p2 
= 

α 
1 − α 

x2 − γ2 

x1 − γ1 
= −MRS2,1 

Graphically, (III) states that the optimal solution lies on the budget line, whereas (I’) implies that the 
budget line and the consumer’s indifference curve actually are tangents at the optimal bundle. 

M 

= y−p1x 
p2 

. M 
2(3) From the budget constraint (III), we know that the Marshallian demand for good 2, x

Plugging this into the tangency condition (I’), we obtain 
�

α 
�

Mα − p2γ2 

− γ1 

αy − p1x

xM 
1 M 1 + (y − p2γ2)= p1γ1 +p1 = p1x11 − α 1 − α 1 − α

⇐⇒ 
1 

M 
1and, solving for x

= (1 − α)γ1 + α
y − p2γ2 = γ1 + α

y − p1γ1 − p2γ2 

p1 

M x1 p1 

By symmetry, 

= γ2 + (1 − α) 
y − p1γ1 − p2γ2M x2 p2 

This gives us the indirect utility function 

v(p1, p2, y) = u 
� 

x M 
1 (p1, p2, y), x M 

2 (p1, p2, y)
� 

= log(y − p1γ2 − p2γ2) − α log(p1) − (1 − α) log(p2) + const. 

Therefore, 

∂ γ1 α 

∂ 1 

( ) = − −v p , p , y1 2
∂p γ γ− −y p p p1 1 2 2 2 1 

( ) =v p , p , y1 2

Plugging this into Roy’s identity, 
∂ 

∂y y − p1γ2 − p2γ2 

v(p1, p2, y) y − p1γ2 − p2γ2 
∂ 

∂p1 

v(p1, p2, y) 
M (p1, p2, y)= γ1 + α = x− 1 p1∂y 

M 
2In a similar fashion, we can check that x is consistent with Roy’s identity. 

(4)&(5) The cost function is the solution to the expenditure minimization problem (EMP) 

min 
� 

p1x1 + p2x2 

� 
s.t. α log(x1 − γ1) + (1 − α) log(x2 − γ2) ≥ u 

x1 ,x2 

and the corresponding Lagrangian is 

L(x1, x2, µ) = p1x1 + p2x2 + µ 
� 

α log(x1 − γ1) + (1 − α) log(x2 − γ2) − u
� 

with first-order conditions 

(A) 
∂L
∂x1 

= 0 ⇐⇒ p1 = µ 
α 

H 

H 

− γ1 

1 − α 
x1 

(B) 
∂L

= 0 p2 = µ
∂x2 

⇐⇒ − γ2x2 

(C) 
∂L

= 0 
∂µ 

⇐⇒ H H − γ1) + (1 − α) log(x1 2u = α log(x − γ2) 
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As in the previous part of this problem, the first two FOCs combine to 

Hp1 α x2 − γ2 H 1 − α p1 H(A’) 
p2 

=
1 − α x1 − γ1 

= −MRS2,1 = ⇒ x2 = 
α p2 

(x1 − γ1)H − γ2 

This should not come as a surprise, since each solution to the EMP is also the solution to a UMP. The 
main difference between the two programs is in the comparative statics with respect to price changes: the 
UMP holds the budget fixed but allows for changes in overall (indirect) utility, whereas the EMP traces 
out compensated demand moving along the indifference curve and adjusts the budget (the expenditure 
function) accordingly. 
Substituting (A’) into the constraint and collecting terms, we get 

(C’) u = log(x H − γ1) + (1 − α) log 

� 
1 − α p1 

� 

1 α p2 

Solving for Hicksian/compensated demand, xH 
1 , 

log(x H − γ1) = log 

� 

exp(u) 
� 

1 − 
α

α

p2 
�1−α

� 

= ⇒ x H = γ1 + exp(u) 
� 

1 − 
α

α

p2 
�1−α 

1 1 p1 p1 

In the same fashion, 
H 

� 
1 − α p1 

�α 

x2 = γ2 + exp(u) 
α p2 

Therefore, the expenditure function is 

H H 

� � 
α p2 

�1−α
� � � 

1 − α p1 
�α�

E(p1, p2, u) = p1x1 + p2x2 = p1 γ1 + exp(u) + p2 γ2 + exp(u)
1 − α p1 α p2 

Differentiating with respect to p1 using the product rule, 

∂ H ∂ H ∂ H 

∂p1 
E(p1, p2, u) = x1 + p1 

∂p1 
x1 + p2 

∂p1 
x2 

= x H + (α − 1)p1 exp(u) 
� 

αp2 
�1−α 

p α−2 + αp2 exp(u) 
� 
1 − α 

�α 

p α−1 
1 1 11 − α αp2 

= x H − α1−α(1 − α)α exp(u) 
� 

p2 
�1−α 

+ α1−α(1 − α)α exp(u) 
� 

p2 
�1−α 

= x H 
1 1 p1 p1 

(6) Expenditure on x1 as a function of income is simply 

p1x M = p1 

�
γ1 + α

y − p1γ2 − p2γ2 
� 

1 p1 

Since p1γ1 +p2γ2 is the expenditure for the subsistence level in each good, we can interpret y −p1γ1 −p2γ2 

as the portion of income that is still freely disposable after basic needs are satisfied. As with standard 
Cobb-Douglas preferences, this surplus income is spent in constant shares on each consumption good. 
But note that other than for Cobb-Douglas preferences, income and substitution effects on the total 
amount of consumption do not necessarily cancel out. 
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C Returns to Scale, Hypothesis Tests, Random vs. Fixed Effects 

(1) A production function f(L, K) is said to have constant returns to scale (CRS) if for any λ ≥ 0, 
f(λL, λK) = λf(L, K). For the Cobb-Douglas production function, we have 

Q(λL, λK) = γ(λL)α(λK)β = γλα+β LαKβ 

so that Q has CRS whenever α + β = 1. 

(2) Modifying the production function to 

Qt = γLα
t Kt

β exp(εt) 

and taking logs, we get the desired specification. Note that even if E[εt Lt,Kt] = 0, in general E[Qt] > 
γLαKβ because E[exp(εt)|·] > exp (E[εt|·]) = 1. 

|
t t 

Assuming E[εt Lt,Kt] = 0, we can estimate the parameters by regressing log(Qt) on log(Lt), log(Kt),|
and a constant (which will give us the intercept log(γ)). 

(i) The two most important types of tests for OLS are the t-test and the F-test. For a t-test, note that 
under the assumption of constant returns to scale, we can rewrite the problem as 

� 
Lt 

�
log(Qt) = log(γ) + α log(Lt) + (1 − α) log(Kt) + εt = log(γt) + α log + log(Kt) + εt

Kt 

Therefore for an t-test we would regress log output on log-capital, the log of workers per unit of capital, 
and a constant, and test whether the coefficient on capital, say π, is equal to one, 

π̂ − 1 
����

A T := ∼ tT −3
σπ̂ H0 :π=1 

where T is the number of periods over which the firm is observed. 
Alternatively, could do an F-test (Wald/LR/LM). The easiest way of doing this would be to estimate the 
unrestricted model (as on the problem set) and a restricted model 

[log(Qt) − log(Kt)] = log(γ) + α [log(Lt) − log(Kt)] + εt 

in order to obtain the respective sums of squared residuals, SSRU (unrestricted model), and SSRR 

(restricted model) in order to compute F for which under the null hypothesis of CRS, 

SSRR − SSRU 
����

A F := (T − 3) ∼ F(1,T −3)
SSRU H0:α+β=1 

(ii) Differences in managerial efficiency across firms translate to variation in the parameter γ, so that the 
new estimating equation becomes 

log(Qit) = log(γi) + α log(Lit) + β log(Kit) + εit 

If we believe that input choices (Lit, Kit) have nothing to do with managerial efficiency (i.e. (Lit,Kit)⊥ log(γi)), 
we could in principle pool all data points and estimate the model via OLS as before. However, there are 
two reasons for not doing that. Since the new model now is 

log(Qit) = log(γ) + α log(Lit) + β log(Kit)+	
�
log(γi) − log(γ)

� 
+ εit 

� 
=:

��
ηit 

� 

4 



�

1 �N(where log(γ) := N i=1 log(γi)), there are two reasons why the Gauss-Markov assumptions (on the new 
error term ηit) will in general not hold: 

1. The conditional mean restriction	 E[ηit Kit, Lit] = 0 does not hold unless log(γi) is uncorrelated 
with (Kit, Lit). 

|

2. Even if the conditional mean restriction holds, Cov(ηit, ηis) = Var(log(γi)) which is greater than 
zero as long as there is some heterogeneity across firms. 

A violation of the first kind will lead to biased and inconsistent estimates, whereas in the second case, 
OLS will only be inefficient. 
So if we suspect that e.g. more efficient management uses more inputs, our estimates of returns to scale 
using pooled OLS or GLS will be biased (Q: which way?). A standard way to address this problem with 
this type of data is to run a fixed-effects regression, which consists in subtracting the within-firm means 

�	 �Tfrom the data - e.g. log(Qit) := log(Qit) − 1 log(Qis) - and then run OLS over the transformed FE T s=1 
data. This procedure ensures that log(γi) drops out of the estimating equation and can therefore not 
affect our estimates. 
If endogeneity (i.e. the violation of the zero conditional mean restriction) was not an issue, we could still 
use the additional information on firm heterogeneity from the panel structure of the data set in order to 
improve the precision of our estimator and estimate the model using GLS for random-effects panel data 
models.1 The fixed-effects estimator is unbiased under these assumption, but not efficient. A reason for 
this is that while the fixed-effects transformation completely removes the ”noise” emanating from the 
individual intercept log(γi), it also subtracts something off the data which contains some noise on its |
own, and the optimal random-effects GLS solves this trade-off optimally. 

D Choice under Uncertainty, Insurance 

Given a random payoff X, the certainty equivalent CEX with respect to a strictly increasing (Bernoulli) 
utility function u( ) over money is defined by ·

u(CEX ) = E[u(X)] CEX := u−1 (E[u(X)])⇐⇒ 

The agent is said to be risk-averse if for any lottery X, 

u(E[X]) ≥ E[u(X)] 

i.e. the agent would always choose to receive the expected value of the payoffs for sure over the lottery 
itself. Being risk-averse is equivalent with u( ) being concave.2 ·

1The Random Effects GLS estimator for random-effects models runs a regression after subtracting from the data (in 

our case log(Qit), log(Kit), and log(Lit)) a fraction of the respective within-firm means (e.g. log(Qit)RE := log(Qit) −PTλ 1 log(Qis) etc.), and then runs pooled OLS on the transformed data. This doesn’t fully cancel out the firm-specific 
T s=1 

intercept, but it lowers its contribution to the overall OLS residual [εit − ε̄i] + (1 − λ) log(γi). The optimal value for λ 
actually turns out to be 

1 
λ = 1 − r 

σ2 

1 + T 
σ

c
2 
i 

ε 

where in our example, ci = log(γi) (see e.g. Wooldridge, ”Econometric Analysis of Cross Sectional and Panel Data”, 
pp.286-288). If there is much variation in managerial efficiency across firms, GLS puts more weights on the within-firm 
means to ”filter out” the common component, if on the other hand idiosyncratic variation over time (i.e. in εit dominates 
or if the panel is relatively short, putting too much weight on the within-means will only tune up the noise, and therefore 
GLS will be closer to pooled OLS 

2Jensen’s inequality states that for any concave function f ( ), E[f(X)] ≤ f(E[X])·
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� 

If u( ) is increasing, ·
u(E[X]) ≥ E[u(X)] = u(CEX ) 

implies that E[X] ≥ CEX . Therefore the agent would be willing to forego E[X] − CEX ≥ 0 on average 
for not having to bear the risk. In uncertain environments, labor contracts usually include an insurance 
component. 

E Investment Decisions 

The most important type of investment decisions you’ll see in Labor Economics concerns human capital. 
In order to be able to evaluate the return to an investment e.g. in education, it is often necessary to 
evaluate the present value of income streams over a longer period. If interest is paid at fixed intervals 
(say annually), an interest rate r translates to a discount factor δ := 1 so that the present value of a 1+r 
x per period over t periods is 

t t t t t+1

V0 = 
� 

δs x =
1 − δ

x 
� 

δs = 
x �

(δs − δs+1) = 
x 

�� 
δs 

� 
δs 

� 

= 
x(δ − δt+1) 

1 − δ 1 − δ 1 − δ 
− 

1 − δ 
s=1 s=1 s=1 s=1 s=2 

where in the last step, all summands that appear in both sums simply cancel out. 
With interest compounded continuously at rate �, the present value is calculated as 

t 

V0 = 
� 

0 
x exp(−�s)ds = 

� 

− 
x exp(

�

−�s)
�t

s=0 

= 
x � 

1 − exp(−�t)
� 

F Market Demand 

One possible linear specification for the demand function is Q = Ay − Bp where A, B ≥ 0. The price 
elasticity of demand is 

∂Q p Bp Bp 
η := 

∂p Q 
= − 

Ay − Bp 
= − 

Q 

G Long versus Short Regression 

Suppose we have estimated the two equations 

Wi = α̂L + Siβ̂L + TSiγ̂ + ε̂i 

Wi = α̂S + Siβ̂S + η̂i 

where (α̂L, β̂L, γ̂) and (α̂S , β̂S ) are the estimated regression coefficients and (ε̂i, η̂i) the corresponding 
OLS residuals, implying that in the sample 

Cov(Si, ε̂i) = Cov(TSi, ε̂i) = Cov(Si, η̂i) = 0 

by the usual properties of the OLS estimator. The coefficient on schooling from the ”short” regression is 

β̂S = 
Cov(Wi, Si) = 

Cov(Siβ̂L + TSiγ̂ + ε̂i, Si) = 
Var(Si)β̂L + Cov(TSi, Si)γ̂ 

= β̂L + 
Cov(TSi, Si)γ̂ 

Var(Si) Var(Si) Var(Si) Var(Si) 
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Therefore, the estimate from the short and long regressions differ only if the coefficient on test scores in 
the long regression is different from zero and if, in addition, test scores and schooling are correlated. 
We often think of the long regression as the regression ”we would like to run” and interpret the discrepancy 
between the two estimates as an ”omitted variables bias” in the short regression. However, in this 
particular example, it is not so clear whether that’s exactly the right way to think about the estimation 
problem (Q: under which circumstances would it be better to run the short regression if we want to give 
the coefficient on schooling a causal interpretation?). 
More generally, suppose we have a long regression 

Yi = X1iβL + X2iγL + εi 

where X1i and X2i are row vectors. Then estimating the short regression 

Yi = X1iβS + ηi 

would give us 

βS = (X�
1X1)−1X�

1Y = (X�
1X1)−1X�

1(X1βL + X2γL + ε) = βL + (X�
1X1)−1X�

1X2γL + 0 

H Partitioned Regression 

Suppose your regression model is 
Yi = X1iβ + X2iγ + εi 

Instead of obtaining an estimate for β by regressing Y on the full set of regressors, [X1, X2], it is also 
possible to start with two auxiliary regressions 

Yi = X2iθ + νi 

X1i = X2iπ + ηi 

and construct residuals 

Y⊥ := Y − X2θ̂ = (I − X2(X�
2X2)−1X�

2)Y =: (I − PX2 )Y 

X⊥
1 := X1 − X2π̂ = (I − X2(X2

� X2)−1X2
� )X1 =: (I − PX2 )X1 

where PX2 := X2(X2
�X2)−1X2

� is a matrix that represents a projection on the space spanned by the 
column vectors in X2 with the properties PX2 PX2 = PX2 and (I − PX2 )(I − PX2 ) = (I − PX2 ) (idem
potence, verify this using the definition of the projector). Also note that 

(I − PX2 )X2 = X2 − X2(X2
� X2)−1X�

2X2 = X2 − X2 = 0(N,k2) 

In a second stage we then regress 
Yi
⊥ = X1

⊥
iβ2 + ζi 

Using the results on projectors, we can verify that 

β̂2	 ≡ (X⊥
1 
� 
X1
⊥)−1X⊥

1 
� 
Y⊥ = (X�

1(I − PX2 )X1)−1X1(I − PX2 )(X1β + X2γ + ε) 
= β + (X�

1(I − PX2 )X1)−1X1(I − PX2 )X2γ + (X�
1(I − PX2 )X1)−1X1(I − PX2 )ε ≡ β̂LS 

so that this procedure is numerically identical to OLS on the full set of regressors. This is also true for 
the estimated standard errors from the second stage. 
This procedure is often also referred to as partialing out X2, or partitioned regression. In principle this 
method is useful for reducing the computational cost of running a regression with many regressors (which 
is of little practical relevance today), but it also helps understand what multivariate regression does: it 
attributes to each regressor the joint variation with the dependent variable which cannot be ”explained” 
by (i.e. which is orthogonal to) all other variables on the right-hand side of the regression equation. 
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I Probit/Discrete Choice 

The likelihood of the sample is defined as 

�(β, σ; y1, . . . , yN , X1, . . . , XN ) := P 
� 

Y1 = y1, Y2 = y2, . . . 
��� X1, X2, . . . , β, σ

� 

N
iid yi P{Xiβ ≤ εi} 1−yi=	

� 
P{Xiβ > εi}

i=1 

N �yi 
�

= 
� 

Φ 

� 
Xiβ 

1 − Φ 

� 
Xiβ 

��1−yi 

σ σ 
i=1 

where Φ(z) is the standard normal cdf. Taking logs, we get the log-likelihood function 

L(β, σ; y1, . . . , yN , X1, . . . , XN ) := log 
� 

�(β, σ; y1, . . . , yN , X1, . . . , XN )
� 

N

=	
�� 

yi log 

�
Φ 

� 
Xiβ 

�� 

+ (1 − yi) log 

�
1 − Φ 

� 
Xiβ 

��� 

σ	 σ 
i=1 

The maximum-likelihood estimator (MLE) for the parameters is defined as 

(β̂, σ̂)ML := arg max L(β, σ; y1, . . . , yN , X1, . . . , XN ) 
β∈Rk ,σ∈R+ 

For those not familiar with nonlinear estimation techniques, MLEs have a number of desirable properties 
as consistency and asymptotic efficiency (if the specification of the model is correct). 
At this point you may have noticed that the parameters we want to estimate always appear in ratios σ 

1 β 
which means that if we replace the ”true” value of σ, σ0, with, say, 2σ0, scaling up β by the same factor 
would leave the value of the log-likelihood unchanged. Therefore the maximum can’t be unique unless 
we normalize σ to some positive value, typically σ = 1. We say that σ is not identified from the data. 
Such a normalization (often it’s made only implicitly) is necessary for any type of discrete choice model 
(multiple choice, ordered choice, other distributions for the error term etc.). 
If you think of ui = −Xiβ+εi as the utility differential between working (and being paid) and not working, 
the fundamental reason for the identification problem is that, as you may recall from an intermediate 
micro class, a preference relation is only ordinal. I.e. any strictly monotone transformation of a given 
utility function represents exactly the same preferences, so that the scale of β has no empirical meaning. 
The MLE solves the first-order conditions to the maximization problem (recall that we normalized σ to 
one) 

N

0 = 
∂

L(β, 1; y1, . . . , X1, . . .) = 
� � 

yi 1 − yi 
� 

ϕ(Xiβ)Xi
∂β	 Φ(Xiβ) 

− 
1 − Φ(Xiβ)

i=1 

N

= 
� yi[1 − Φ(Xiβ)] − (1 − yi)Φ(Xiβ) 

ϕ(Xiβ)XiΦ(Xiβ)[1 − Φ(Xiβ)]
i=1 

N

=	
� yi − Φ(Xiβ) 

ϕ(Xiβ)XiΦ(Xiβ)[1 − Φ(Xiβ)]
i=1 

Now, instead of estimating the parameters, consider an alternative approach: you could always try to 
approximate the conditional mean E[Yi Xi] by just fitting a standard normal cdf Φ(Xiγ) via weighted|
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nonlinear least squares, i.e. 
N

γ̂NLS := arg min 
� 

wi 

� 
yi − Φ(Xiγ)

�2 

γ∈Rk 
i=1 

where wi are weights you may want to use for estimation. The first-order conditions for this problem are 

N

0 = 
� 

wi(yi − Φ(Xiγ))ϕ(Xiγ)Xi 

i=1 

Now, plugging in 
1 

wi := 
Φ(Xiγ)[1 − Φ(Xiγ)] 

these are exactly the same first-order conditions as for the maximum-likelihood estimator, so that for 
these particular weights, γ̂NLS = β̂ML. Since we don’t know the value of γ beforehand, we could start 
with a preliminary estimate γ(0) and update the weights using the estimate from the last stage as we go 
along. 
The main insight from this is that - regardless of whether the specification of the error distribution is 
correct - maximum-likelihood estimators for discrete-choice models approximate the conditional mean of 
yi with a weighted least-squares fit of the cdf chosen by the researcher. 

J Experimental Design 

Suppose you have N units, a share s of which is will be assigned to the treatment group, whereas the

remaining (1 − s)N units serve as controls.

Now you could simply go ahead and calculate the variance of the difference in outcomes Y as a function

of s,


Var( Ȳ 
T − Ȳ 

C ) = Var( Ȳ 
T ) + Var( Ȳ 

C ) = . . . 

However, it is slightly more instructive to set this up as a regression problem: define a treatment dummy 
� 

1 if unit i is treated 
Di = 0 otherwise 

and think of the problem as estimating the equation 

Yi = α + Diβ + εi 

The OLS coefficient will be an efficient estimate of the difference in means, and from standard results 
from regression analysis we know that since Var(εi Di) := σ2 = const. |

Var( β̂) = 
σ2 

= 
σ2 

= 
σ2 

NVar(Di) N(E[Di 
2] − E[Di]2) Ns(1 − s) 

Therefore the variance of the estimator for the treatment effect is minimized for the proportion s which 
maximizes the variance of the treatment indicator in the regression, s(1 − s), so that s∗ = 1 .2 
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