MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT 14.123 (2009) by Peter Eso Lecture 12: Repeated Games

- 1. Finitely Repeated Games
 - 2. Perfect Folk Theorem
- 3. Renegotiation Proofness

<u>Read</u>: FT 5.1, 5.2, 5.4; Farrell & Maskin (GEB 1989)

1. Repeated Prisoners' Dilemma

- Unique Nash equilibrium $(D,D) \rightarrow (0,0)$. Pareto-optimal (C,C) is <u>not</u> an equilibrium.
- Finite repetition, t = 1, ..., T: The only
 <u>Nash</u> outcome is (D,D) in every period.

$$\begin{array}{c|c} C & D \\ C & 1,1 & -1,2 \\ D & 2,-1 & 0,0 \end{array}$$

- By induction (similar, not ↔ to backward induction, SPE).
 In any Nash equilibrium σ*, both players play D in period T.
 Hence for any history that has positive probability up to T-1, player *i* has no incentive to play C at T-1, because no matter what he does his opponent plays D in period T anyway.
 Induction on the number of periods gives the result. ■
- In experiments (with humans or in Axelrod's tournament) we see cooperation. "Tit-for-tat" does well in reality with $T < \infty$.

Single-Deviation Principle

- Repeated games belong to the class of multi-stage games with observable actions ("almost-perfect information games").
- <u>THM</u>: A strategy profile of a multi-stage game with observable actions (finite-horizon or infinite-horizon with continuity at ∞) is a <u>subgame-perfect equilibrium</u> (SPE) <u>iff</u> the following holds:

For any history h^t (=the play up to, not including t) and i assume

- at *t* and thereafter everybody except for *i* plays according to the proposed equilibrium strategy profile, and
- at t+1 and thereafter *i* plays the proposed strategy profile;

then *i* does not have an incentive to deviate at h^t .

SPE with Finite Repetition

- Set of SPE may expand even with finite repetition (not in PD).
- Ingredients: Multiple equilibria that the players rank differently, sufficiently long time horizon, and patience.
- <u>THM</u> (Benoit and Krishna, 1985); two players, no discounting.

Suppose (v_1, v_2) and (v_1, v_2) are stage-game Nash eqm payoffs with $v_1 > v_1$ and $v_2 > v_2$.

 $\forall (v_1, v_2)$ feasible & in the shaded area, $\forall \varepsilon > 0$, there is $\underline{T} < \infty$ such that G^T with $T \ge \underline{T}$ has SPE with average payoffs within ε of (v_1, v_2) .

Proof

• Choose t^* such that

$$t^{*}(v_{1}"-v_{1}')/2 > w_{1} \equiv \max_{a} g_{1}(a),$$

$$t^{*}(v_{2}'-v_{2}")/2 > w_{2} \equiv \max_{a} g_{2}(a).$$

• Proposed SPE, at least $2t^*$ periods before the end of the game:

A. Play (v_1, v_2) until time $T - t^*$ unless someone deviates.

- B. If no deviation in (A), then in the final t^* periods alternate between (v_1, v_2) and (v_1, v_2) .
- C. If P1 deviates in (A), then play (v_1, v_2) to the end. If P2 deviates in (A), then play (v_1, v_2) to the end.
- Indeed approximates (v_1, v_2) for *T* sufficiently large.

Proof, continued

- Why SPE?
- Denote $t > t^*$ the remaining time.
- If no-one deviated before, P1 gets payoff $(t t^*)v_1 + t^*(v_1'+v_1'')/2$ if conforms, at most $w_1 + (t-1)v_1' < w_1 + tv_1'$ if deviates. Difference: $(t - t^*)(v_1 - v_1') + t^*(v_1'' - v_1')/2 - w_1 > 0$ for conform.
- Same goes for P2 if no-one deviated before.
- If anyone deviated already, then Nash equilibrium is played in every period, subgame perfect.
- In the final t^* periods, alternate over two Nash equilibria: SPE.

2. Infinite Repetition

- Repetition <u>without known bound</u> (can be finite in expectation) expands the set of equilibria even in the Prisoners' Dilemma.
- <u>THM</u>: Infinitely repeated PD, discounted payoffs with δ > ½ :
 "Grim Trigger" (=play C as long as both play C, play D forever if any player ever plays D) is SPE and yields (C,C), ∀t.
 - Equilibrium payoff is 1 per period. Single-period deviation yields payoff 2, and 0 from then on. $1/(1-\delta) > 2$ for $\delta > \frac{1}{2}$.
- This construction is rather special: In the Prisoners' Dilemma players can punish with stage game Nash equilibrium. This makes the infinitely repeated game equilibrium SPE.
- If the punishment is itself not an equilibrium (=not credible), then the repeated-game equilibrium is only Nash, not SPE.

Destruction By Repetition

- In the one-shot game the unique Nash equilibrium is (A,A) because A
 A is strictly dominant.
- (*A*,*A*) in all periods is SPE for finite or infinite repetition.

- <u>Claim</u>: Infinite repetition with $\delta > \frac{1}{2}$: (*B*,*B*) $\forall t$ is SPE outcome.
- Strategy $s^* = \{ \text{Play } B \text{ at } t = 1 \text{ and } \forall t \text{ such that both players played } s^* \text{ in period } t-1; \text{ play } C \text{ at } t \text{ if someone deviated from } s^* \text{ at } t-1 \}.$
- If $s^*(h_t) = B$: Using s^* get $K + \delta^t + \delta^{t+1} + \dots$; one-shot deviation to *A* yields $K + 2\delta^t - \delta^{t+1} + \delta^{t+2} + \dots$. Gain is $\delta^t (1 - 2\delta) < 0$.
- If $s^*(h_t) = C$: Using s^* get $K \delta^t + \delta^{t+1} + \dots$; one-shot deviation to *A* or *B* yields $K + 0\delta^t - \delta^{t+1} + \delta^{t+2} + \dots$. Gain is $\delta^t (1 - 2\delta) < 0$.

General Notation

- Each period play stage game g; infinitely repeated game is g[∞].
 In g, players are N = {1,...,n}, actions a_i ∈ A_i for i = 1,...,n.
- $g_i(\alpha)$ is *i*'s stage game payoff given a (mixed) action profile α .
- σ_i is <u>infinitely-repeated game strategy</u> for player *i*. Specifies (mixed) action α_i for all histories $h^t = (a^0, \dots, a^{t-1}), \forall t \ge 0$.
- $v_i(\sigma) = (1-\delta)\sum_{t\geq 0} \delta^t \sigma(h^t) g_i(\alpha^t | \sigma, h^t)$ is <u>average discounted payoffs</u> of strategy-profile σ . Comparable to per-period payoff.
- If the period-0 actions are already known, one can rewrite this as $v_i(\sigma) = (1-\delta)g_i(a^0) + \delta v_i(\sigma^c(a^0))$, where $\sigma^c(a^0)$ is the strategy profile in periods t = 1, 2, ... induced by σ given period-0 actions a^0 .
- S(σ) = set of <u>continuation profiles</u> of σ after every finite history. Note: σ is SPE of g[∞] iff all σ' ∈ S(σ) is SPE of g[∞].

Payoff Constraints In Any NE

- Here are two results regarding on the set of average discounted payoffs that may be the result of a Nash equilibrium of $g^T(\delta)$:
- <u>OBS 1</u>: Feasibility. If $(v_1, ..., v_n)$ are the average discounted payoffs in a Nash equilibrium, then

 $(v_1,...,v_n) \in co\{(x_1,...,x_n) \mid \exists (a_1,...,a_n) \text{ with } x_i = g_i(a_1,...,a_n), \forall i\}.$

- <u>DEF</u>: Minmax payoff, $\underline{v}_i = \min_{\sigma_{-i}} \max_{\sigma_i(\sigma_{-i})} g_i(\sigma_i(\sigma_{-i}), \sigma_{-i})$.
- <u>OBS 2</u>: Individual Rationality. If $(v_1, ..., v_n)$ are the average discounted payoffs in a Nash equilibrium, then $v_i \ge \underline{v}_i$ for all *i*.
- Suppose $(\sigma_{i}^{*}, \sigma_{-i}^{*})$ is NE of g^{T} , and construct σ_{i} so that $\sigma_{i}(h^{t})$ is a best-response to $\sigma_{-i}^{*}(h^{t})$ at every history h^{t} . Then, $U_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) \geq U_{i}(\sigma_{i}, \sigma_{-i}^{*}) \geq (1-\delta)/(1-\delta^{T+1}) (\sum_{t} \delta^{t} \underline{v}_{i}) = \underline{v}_{i}$.

Nash Folk Theorem For g[∞]

- <u>THM</u>: If $(v_1, ..., v_n)$ is feasible & strictly individually rational, then there exists $\underline{\delta} < 1$ such that $\forall \delta \ge \underline{\delta}$, there is a NE of $g^{\infty}(\delta)$ with average payoffs $(v_1, ..., v_n)$.
- Assume for simplicity, $\exists (a_1, \dots, a_n) \in A$ with $g_i(a_1, \dots, a_n) = v_i$.
- Denote m_{-i}^{i} the strategy-profile of players other than *i* that hold player *i* to his minmax payoff and m_{i}^{i} a best response to m_{-i}^{i} .
- Proposed equilibrium strategies: Each *i* plays
 - a_i at h_t such that (a_1, \dots, a_n) has been played $\forall t' \le t$.
 - *m^j_i* if player *j* was the first player to have deviated (or, if multiple players deviated first, simultaneously, then the lowest numbered one among them).

Proof, continued

- If player *i* follows this strategy, then his average payoff is v_i .
- If player *i* deviates in period *t*, then his average payoff is at most $(1-\delta)(v_i + ... + \delta^{t-1}v_i + \delta^t w_i + \delta^{t+1}\underline{v}_i + \delta^{t+2}\underline{v}_i + ...),$

where $w_i = \max_{a \in A} g_i(a)$ is *i*'s highest feasible payoff in *G*.

- Deviation is not worth it if

$$(w_i - v_i) \le \delta/(1 - \delta) (v_i - \underline{v}_i).$$

- Choose $\underline{\delta}$ such that $\underline{\delta}/(1-\underline{\delta}) \ge \max_i (w_i v_i) / (v_i \underline{v}_i)$.
- The theorem is useful as it characterizes the set of all Nash equilibria of $g^{\infty}(\delta)$, at least for high enough δ .

Why Go Beyond Nash

- Nash equilibrium is not a particularly appropriate concept for dynamic games. Reason: Incredible punishment threats.
- We can sustain (*C*,*C*) in the infinitelyrepeated game by P2 punishing P1 forever in case P1 ever deviates to *D*.

$$\begin{array}{cccc}
C & D \\
C & 1, 1 & 0, -10 \\
D & 2, 1 & 0, -10
\end{array}$$

- But the punishment hurts P2 more than it hurts P1; P2 may not want to carry it out.
- The example calls for requiring <u>subgame perfection</u>.

Perfect Folk Theorem

- <u>THM</u> Fudenberg and Maskin (1986). Let V^* be the set of feasible and strictly IR payoffs of *G*. Assume dim $(V^*) = n$. Then, for any $(v_1, \ldots, v_n) \in V^*$ there exists $\underline{\delta} < 1$ such that for all $\delta \ge \underline{\delta}$, there is a SPE of $g^{\infty}(\delta)$ with average payoffs (v_1, \ldots, v_n) .
- Wlog denote $\underline{v}_i = 0$, moreover assume $\exists a \in A : g_i(a) = v_i$ for all *i*.
- Pick $v' \in int(V^*)$ with $v'_i < v_i$ for all *i*. Let *T* such that $Tv'_i > w_i = \max_{a \in A} g_i(a)$.
- Pick $\varepsilon > 0$ so that for each *i*, $v_i(\varepsilon) = (v_i^{\prime}, v_{-i}^{\prime} + \varepsilon) \in V^*$ and $v_i^{\prime} + \varepsilon \leq v_i^{\prime}$. Let a^i such that $g_i(a^i) = v_i(\varepsilon)$.

Proof, continued

- Denote mⁱ the strategy-profile that minmaxes player i.
 Assume that mⁱ is either pure, or mixing probs can be detected.
- Here is the proposed SPE. Each player *i* plays the following strategy, which prescribes behavior for three "phases".
 - I. Play $(a_1,...,a_n)$ as long as no-one deviates from $(a_1,...,a_n)$. If player *j* deviates from phase I then go to phase II_j.
 - II_j. Play m_i^j for T periods, then go to phase III_j if no-one deviates. If player k deviates in II_j, then start over II_k.
 - III_{*j*}. Play a^{j}_{i} as long as no-one deviates from III_{*j*}. If player *k* deviates in III_{*j*}, then go to phase II_{*k*}.

Proof, finished

- Single-deviation principle in each phase.
- In phase I, deviating once yields at most $(1-\delta)w_i + \delta^{T+1}v'_i$ which is less than $v_i = (1-\delta^{T+1})v_i + \delta^{T+1}v_i$ if δ is close to 1, e.g., $\delta > (1+1/T)^{1/T}$, as $(1-\delta^{T+1})v_i = (1-\delta)(1+\delta+...+\delta^T)v_i > (1-\delta)Tv_i > (1-\delta)w_i$.
- In phase II_i , deviation by *i* postpones everything by *T*, not worth it.
- In II_{*j*}, if *i* deviates, he gets $(1-\delta)w_i + \delta^{T+1}v'_i$; if he conforms when *K* periods are still left of II_{*j*}, he gets $(1-\delta^{T+1-K})g_i(m^j) + \delta^{T+1-K}(v'_i+\varepsilon)$. Conform iff $\delta^{T+1}\varepsilon \ge (1-\delta)w_i + (1-\delta^{T+1-K})g_i(m^j) + (\delta^{T+1-K}-\delta^{T+1})(v'_i+\varepsilon)$, which holds as δ approaches 1 (LHS $\rightarrow \varepsilon$, RHS $\rightarrow 0$).
- In phase III_i or III_j the proof is like in phase I: Deviation provides gains for one period, loss for *T* periods, not worth it. ■

3. Renegotiation Proofness

- Criticism of repeated-game SPE with "punishment phases": Players may want to renegotiate, if both are hurt by punishment. Farrell & Maskin GEB'89 propose to consider the following.
- <u>DEF</u>: An SPE of g^{∞} , σ , is Weakly Renegotiation Proof (WRP), if $\forall \sigma', \sigma'' \in S(\sigma)$, σ' does not strictly Pareto-dominate σ'' .
- Think of S(σ), all possible infinite strategy profiles induced by σ, as "the plays we agree are in the playbook". If σ' ∈ S(σ) strictly Pareto-dominates σ" ∈ S(σ), then the players renegotiate σ' to σ".
- In PD, "(D,D) forever" has unique continuation, hence it is WRP.
 "Grim Trigger" is not WRP; it dominates continuation after (*D*,*D*).
- Internal consistency, not comparison across SPE's.

Theorem (Farrell & Maskin '89)

- Consider two players; normalize minmax payoffs to 0 and let V* denote all feasible, IR payoffs.
- Suppose $(v_1, v_2) \in V^*$. If there exist actions $(a_1^1, a_2^1), (a_1^2, a_2^2)$ such that

(1)
$$c_1 \equiv \max_x g_1(x, a_2^1) < v_1, g_2(a_2^1) > v_2$$

(2)
$$c_2 \equiv \max_x g_2(a_1^2, x) < v_2, g_1(a^2) > v_1$$

then for δ near 1 there is a WRP equilibrium with payoffs (v_1 , v_2).

* Conversely, if σ is WRP equilibrium with payoffs (v_1, v_2) , then there exist action-pairs a^1 and a^2 satisfying (1) & (2) weakly.

Proof

- <u>First</u>, we construct a WRP equilibrium if (1) and (2) hold.
- Suppose (v₁,v₂) = g(a₁,a₂). Propose WRP equilibrium as follows:
 (I): Play (a₁,a₂) until *i* deviates; then go to (II_i).
- (II_{*i*}): Play a^i for t_i periods, such that $t_i g_i(a^i) + w_i < (t_i + 1) v_i$. Then go back to (I). If *j* deviates from II_{*i*} then (re)start II_{*j*}.
- t_i exists by $g_i(a^i) < v_i$ and makes deviation from (I) unprofitable.
- Set δ high enough so that $p_i = (1 \delta^{t_i}) g_i(a^i) + \delta^{t_i} v_i$ satisfies

 $p_i > c_i$ and $(1 - \delta)w_i + \delta p_i < v_i$.

Possible because $g_i(a^i) \le c_i < v_i$.

• <u>Claim</u>: Proposed strategies form WRP eqm for such high δ .

Illustration for i = 1

- If P1 deviates from (I), get then (II₁) prescribes t₁ periods of g(a₁), and then v forever; payoffs are
 - $z = (1 \delta^{t_1})g(a^1) + \delta^{t_1}v_1$.
- During (II_1) , slide to v.
- If P1 deviates in (II₁), he gets $(1 - \delta)c_1 + \delta p_1 < p_1$.
- P2 does not deviate from (II₁) because $g(a^1) > v_2$.

• Continuation payoffs lie between z and v, Pareto-unranked, WRP!

*Proof Still Not Over

- <u>Second</u>: Given δ , if WRP eqm with payoffs (v_1, v_2) exists, then there are actions a^1 , a^2 such that (1) and (2) hold weakly.
- We show that a^1 satisfying (1) weakly exists; $a^2 \& (2)$ analogous.
- Let σ be the WRP eqm given δ . If there is an action-pair a such that $g_1(a) = v_1$ and $g_2(a) \ge v_2$, and in addition, $\max_x g_1(x,a_2) \le v_1$ as well, then a itself satisfies (1).
- Otherwise, consider σ¹, the worst continuation of σ for P1 after period 1 (prompted by a first-period action a' with g₁(a') ≥ v₁). If there are multiple worst-continuations of σ, then take the one that is best for P2.
- a^1 = initial action of σ^1 . We claim it satisfies (1) weakly.

*Proof Finished

- The worst continuation of σ for P1, σ^1 , satisfies $g_1^*(\sigma^1, \delta) \le v_1$ and $g_2^*(\sigma^1, \delta) \ge v_2$. (The former by def, the latter by WRP.)
- $g_2(a^1) \ge g_2^*(\sigma^1, \delta) (\ge v_2)$, establishing the second inequality in (1), because $g_2(a^1) < g_2^*(\sigma^1, \delta)$ would imply that $\underline{\sigma}^1$, the continuation of σ^1 after a^1 , satisfies $g_2^*(\underline{\sigma}^1, \delta) > g_2^*(\sigma^1, \delta)$, hence by WRP $g_1^*(\underline{\sigma}^1, \delta) \le g_1^*(\sigma^1, \delta)$, contradicting that σ^1 is the worst continuation for P1.
- The first inequality in (1), weakly, is that $\max_x g_1(x,a_2^1) \le v_1$. We show a bit more: $\max_x g_1(x,a_2^1) \le g_1^*(\sigma^1,\delta) \ (\le v_1)$. If $\max_x g_1(x,a_2^1) > g_1^*(\sigma^1,\delta)$, then P1 could profitably deviate in the first period of playing σ^1 , and since his continuation payoff cannot be lower than $g_1^*(\sigma^1,\delta)$, by definition of σ^1 , the deviation would be profitable overall. Hence $\max_x g_1(x,a_2^1) \le g_1^*(\sigma^1,\delta)$.