# MIT 14.123 (2009) by Peter Eso Lecture 11: Global Games

1. A Contribution Game

2. Carlsson & van Damme (ECMA, 1993)

3. Morris & Shin (1998)

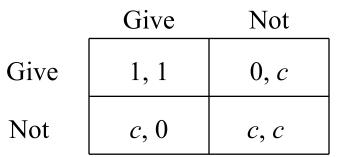
Read: Assigned reading (C-vD'92, M-S'98)

### Motivation

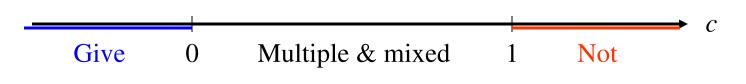
- Economic phenomena where <u>outcomes vary in otherwise similar</u> <u>environments</u> (apparent multiplicity of equilibria?):
  - Joint investment / partnerships
  - Bank runs
  - Currency attacks
  - Electoral competition ...
- Explanation: Strategic complementarity and multiple equilibria; coordination and/or coordination failure.
- <u>Global games approach</u>: Introducing incomplete information (small noise in players' perception of the game's payoffs) makes the game dominance solvable. The unique Bayesian equilibrium exhibits "tipping point" features, matches data.

### **1. A Contribution Game**

- Each player can contribute endowment *c* to joint project.
- 1 util for each player is generated iff both contribute.



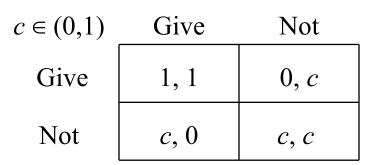
- If c > 1, then 'Not' is strictly dominant strategy  $\Rightarrow$  (N,N).
- If c < 0, then 'Give' is strictly dominant  $\Rightarrow$  (G,G).
- If  $c \in (0,1)$  then multiplicity: strict Nash equilibria (G, G), (N, N), symmetric mixed equilibrium with Prob(G) = c.





# **Multiple Equilibria**

- If *c* < 1, then (G,G) is the Pareto-optimal strict eqm.
- Would anything explain coordinating on (N,N)?



- In equilibrium (G,G), each player's <u>deviation loss</u> is 1–*c*. In equilibrium (N,N), the deviation losses are *c* for each.
- <u>DEF</u>: An equilibrium is <u>risk dominant</u> if the product of the players' deviation losses is the greatest. (See Harsanyi & Selten (1988)).

In  $2 \times 2$  symmetric games, a strategy is part of the risk dominant equilibrium iff best responds to the other player's 50-50% mixing.

• Risk-dominance contradicts Pareto-dominance if  $c \in (\frac{1}{2}, 1)$ .

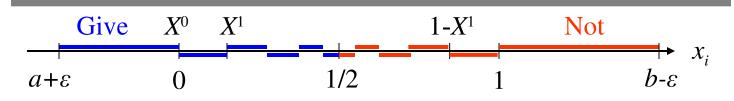
### **Global Game Perturbation**

- Assume *c* is a random draw from  $[a,b] \supset [0,1]$ .
- Player *i* observes x<sub>i</sub> uniform
  random on [*c*-ε, *c*+ε], ε>0 small.

| <i>c</i> random | Give | Not  |
|-----------------|------|------|
| Give            | 1, 1 | 0, c |
| Not             | c, 0 | С, С |

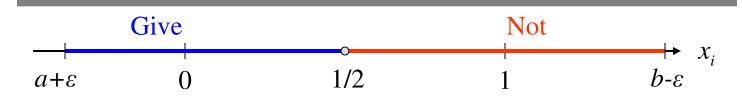
- The players' signals about the "payoff state" are independent conditional on *c*, but not independent unconditionally (affiliated!).
- Perturbation proposed by Carlsson & van Damme (ECMA 1993).
  [Compare to: Each player's payoff in each cell is independently perturbed; learn own payoff only. ⇒Harsanyi's Purification Thm.]
- When player *i* learns *x<sub>i</sub>*, he makes inference about the state as well as the other's signal, and both play Bayesian equilibrium.

#### **Iterated Dominance**

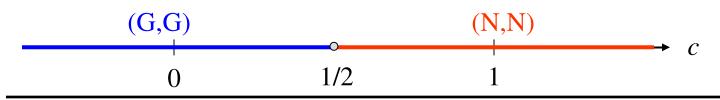


- If x<sub>i</sub> ∈ [a+ε,b-ε], then i believes c is uniform on [x<sub>i</sub>-ε,x<sub>i</sub>+ε], and that x<sub>j</sub> is uniform on [x<sub>i</sub>-2ε,x<sub>i</sub>+2ε]. Expected payoff from 'N' is x<sub>i</sub>.
- Let  $X^0 = 0$ . If  $x_i < X^0$ , then 'N' is strictly dominated for *i* (negative payoff), while if  $x_i > 1 X^0$ , then 'G' is strictly dominated for *i*.
- Suppose *j* plays 'G'  $\forall x_j < X^k$ , k = 0, 1, ... Then,  $x_i \in [X^k, X^k + 2\varepsilon)$ believes *j* plays 'G' with prob.  $> \frac{1}{2} - (x_i - X^k)/4\varepsilon$ , so 'G' dominates 'N' for  $x_i$  if  $\frac{1}{2} - (x_i - X^k)/4\varepsilon > x_i \iff x_i < X^{k+1} = (2\varepsilon + X^k)/(1 + 4\varepsilon)$ .
- Similarly: If 'G' is dominated  $\forall x_i > 1 X^k$  then so is  $\forall x_i > 1 X^{k+1}$ .
- $X^{k+1} > X^k$  iff  $X^k < \frac{1}{2}$ , so  $\lim_{k \to \infty} X^k = \frac{1}{2}$ .

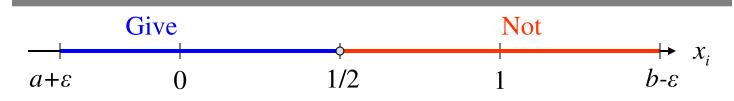
#### Outcome



- In the perturbed game (global game à la Carlsson & van Damme), there is a unique Bayesian equilibrium by iterated dominance:
  Play 'G' if x<sub>i</sub> < <sup>1</sup>/<sub>2</sub>, 'N' if x<sub>i</sub> > <sup>1</sup>/<sub>2</sub>, anything at x<sub>i</sub> = <sup>1</sup>/<sub>2</sub>.
- Iterated dominance in the global game selects the equilibrium in accordance with risk dominance (even against payoff dominance).
- Players do not always coordinate on the risk dominant outcome in the game they play (=given c). They do so if ε is small given c.



## Why Risk Dominance?



- c = <sup>3</sup>/<sub>4</sub>, so (G,G) → (1,1) Pareto-dominates (N,N) → (c,c), yet we expect coordination on (N,N) in the global game for ε < <sup>1</sup>/<sub>4</sub>.
- Why does player *i* play 'N' with  $x_i \in (1/2, 1)$ ?
- Since 'N' is dominant for x<sub>j</sub> > 1, i expects j to "switch" to playing 'N' at some x<sub>j</sub><sup>\*</sup> ≤ 1. But then i would rather switch to 'N' earlier, at some x<sub>i</sub><sup>\*</sup> ∈ (x<sub>j</sub><sup>\*</sup>-2ε, x<sub>j</sub><sup>\*</sup>). By symmetry x<sub>i</sub><sup>\*</sup> = x<sub>j</sub><sup>\*</sup>; unraveling.
- Even if x<sub>1</sub> = x<sub>2</sub> = c = <sup>3</sup>/<sub>4</sub>, the only thing <u>commonly known</u> about c is that it belongs to [a,b].

# 2. Carlsson & van Damme (1993)

- 2 × 2 games, such that (A,A) and (B,B) are both Nash equilibria.
- (A,A) is <u>risk dominant</u>:  $(u_{11}-u_{21})(v_{11}-v_{12})$  $> (u_{22}-u_{12}) (v_{22}-v_{21}).$
- Define  $g_1^a = u_{11} u_{21}$ , etc.
- (A,A) risk dominant iff  $g_1^a g_2^a > g_1^b g_2^b$ .

|   | A                      | В                |
|---|------------------------|------------------|
| A | $u_{11}, v_{11}$       | $u_{12}, v_{12}$ |
| В | $u_{21}, v_{21}$       | $u_{22}, v_{22}$ |
|   | А                      | В                |
|   |                        |                  |
| А | $g_1^{\ a}, g_2^{\ a}$ | 0, 0             |

- Let  $\underline{s}_j$  be j's strategy (Pr(A)) such that i is indifferent against  $\underline{s}_j$ .
- (A,A) risk dominant:  $\underline{s}_1 + \underline{s}_2 < 1$ .

### **Dominance vs Risk Dominance**

• Dominance region:

 $D_i^a = \{(u,v) | g_i^a > 0, g_i^b < 0\}.$ 

$$\begin{array}{c|c} A & B \\ A & g_1^{a}, g_2^{a} & 0, 0 \\ B & 0, 0 & g_1^{b}, g_2^{b} \end{array}$$

• Risk-dominance region:

$$R^{a} = \{(u,v) \mid g_{1}^{a} > 0 g_{2}^{a} > 0; g_{1}^{b}, g_{2}^{b} > 0 \Longrightarrow \underline{s}_{1} + \underline{s}_{2} < 1\}.$$

- Next, introduce global game model, where
  - 1. Nature selects a game from a set with parametrized payoffs.
  - 2. Each player observes the parameters with some noise.
  - 3. Players choose simultaneous actions.
  - 4. Payoffs determined by players' choices & payoff parameters.

### **Global Games Theorem**

- Payoff parameter θ ∈ Θ ⊆ ℝ<sup>m</sup>; Θ open; (u, v) are continuously differentiable functions of θ with bounded derivatives.
- Prior on  $\theta$  has density h > 0, continuously diffable, bounded.
- Each player *i* observes a signal  $x_i = \theta + \varepsilon \eta_i$  where  $\eta_i$  is a bounded random variable independent of  $\theta$  with a continuous density.
- <u>THM</u>: Suppose *x* is on a continuous curve C ⊆ Θ, such that (u(c),v(c)) ∈ R<sup>a</sup> ∀c ∈ C, and (u(c),v(c)) ∈ D<sup>a</sup> for some c ∈ C. Then, A is the only rationalizable action at *x* when ε is small.
- <u>Moral</u>: The global games perturbation selects the risk-dominant equilibrium in general  $2 \times 2$  games with two pure equilibria.

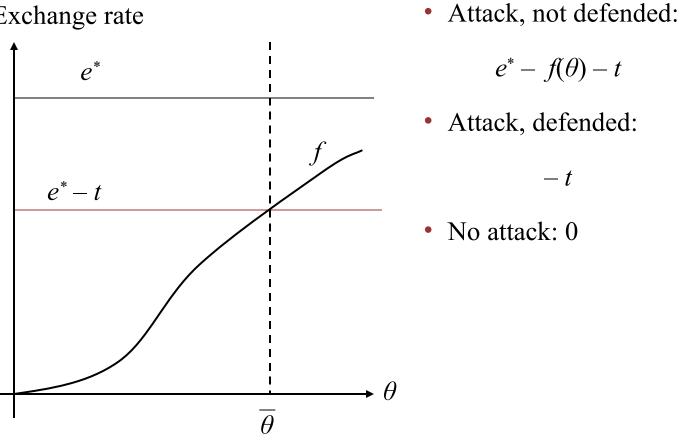
# **3. Application: Currency Attacks**

Morris, S., and H. S. Shin: "Unique equilibrium in a model of selffulfilling currency attacks", AER 1998

- Fundamental:  $\theta \in [0,1]$  uniform; the higher the better.
- Competitive exchange rate:  $f(\theta)$ ; f is strictly increasing.
- Exchange rate is initially pegged at  $e^* \ge f(1)$ .
- A continuum (unit mass) of speculators, who either
  - Attack, which costs t > 0, or
  - Not attack.
- Government observes ratio of attackers; defends the peg or not.
- The exchange rate is  $e^*$  if defended,  $f(\theta)$  otherwise.

# **Speculator's Payoff**

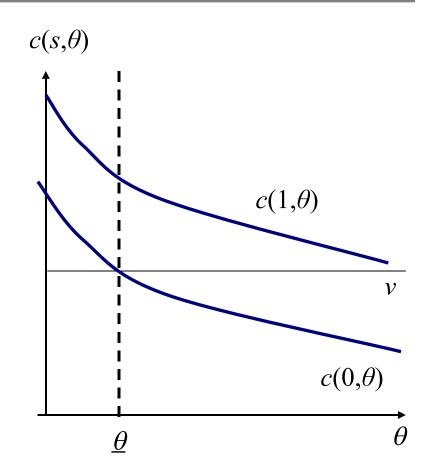
Exchange rate



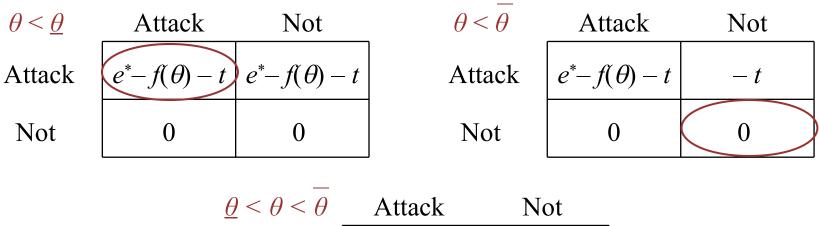


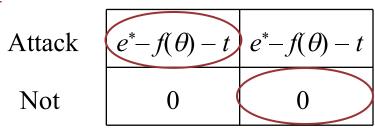
# **Government's Payoff**

- Value of peg = v.
- Cost of defending is c(s, θ),
  where s is the share of
  speculators who attack.
- *c* is increasing in *s* and decreasing in *θ*.
- Gov't observes s and θ.
  Defends the peg iff
  v > c(s,θ), and abandons it otherwise.



# Speculators Commonly Know θ





• Payoffs are the same for any two speculators; payoff of the player choosing rows is shown in each matrix.

#### **Global Game Perturbation**

- Assume  $\theta$  is uniform on [0,1].
- Each speculator *i* gets signal  $x_i = \theta + \eta_i$ , where the  $\eta_i$ 's are iid uniform on  $[-\varepsilon, \varepsilon]$  with  $\varepsilon > 0$  small.
- The distribution of  $\eta_i$ 's is common knowledge.
- Government sees *s* and  $\theta$ . It defends the peg iff  $v > c(s,\theta)$ . Let  $a(\theta)$  be lowest *s* where G abandons the peg:  $v \equiv c(a(\theta), \theta)$ .
- $a(\underline{\theta}) = 0$ , increasing for  $\theta > \underline{\theta}$ .
- Let s = ratio of speculators that attack. Speculator payoff:  $u(\text{Attack},s,\theta) = e^* - f(\theta) - t$ , if  $s \ge a(\theta)$ ; -t otherwise.  $u(\text{Not},s,\theta) = 0$ .

# **Unique Equilibrium**

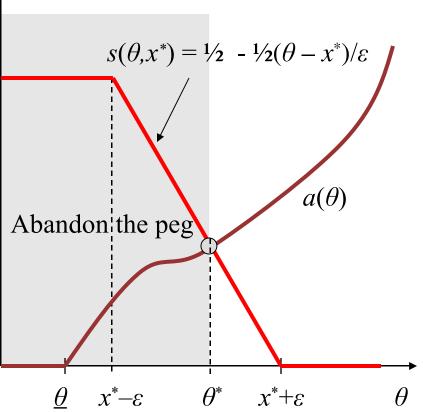
1

- Speculators' eqm strategy: rAttack iff  $x_i \le x^*$ .
- $s(\theta, x^*) = \Pr(x_i \le x^* \mid \theta)$ =  $\frac{1}{2} - \frac{1}{2}(\theta - x^*)/\varepsilon$ .
- Two conditions pin down
  x<sup>\*</sup> as well as θ<sup>\*</sup> (in fig.):

1) At 
$$\theta = \theta^*$$
,  $s(\theta^*, x^*) = a(\theta^*)$ , so  
 $x^* = \theta^* - \varepsilon [1 - 2a(\theta^*)].$ 

2) Speculators are indifferent to attack at  $\theta = \theta^*$ , hence  $[1 - a(\theta^*)](e^* - f(\theta^*)) = t.$ 





#### Conclusions

- $\theta$  observed with small noise: "Attack" very likely iff  $\theta < \theta^*$ .
- "Risk dominance" in this game:
  - Suppose all strategies equally likely: *s* uniform on [0,1].
  - Expected payoff from Attack  $(1-a(\theta))(e^*-f(\theta)) t$
  - Attack is "risk dominant" iff  $(1-a(\theta))(e^*-f(\theta)) > t$
  - Cutoff value  $\theta^*$ :  $(1-a(\theta^*))(e^*-f(\theta^*)) = t$ .
- Comparative statics: How  $\theta^*$  varies with *t*,  $e^*$ , *c* (cost scale):
  - $\theta^*$  decreases in t
  - $\theta^*$  increases in  $e^*$
  - $\theta^*$  increases in cost parameter