MIT 14.123 (2009) by Peter Eso
Lecture 11: Global Games

1. A Contribution Game
2. Carlsson & van Damme (ECMA, 1993)
3. Morris & Shin (1998)

Read: Assigned reading (C-vD’92, M-S°98)
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Motivation

* Economic phenomena where outcomes vary in otherwise similar

environments (apparent multiplicity of equilibria?):

— Joint investment / partnerships
— Bank runs
— Currency attacks

— Electoral competition ...

* Explanation: Strategic complementarity and multiple equilibria;

coordination and/or coordination failure.

* Global games approach: Introducing incomplete information

(small noise in players’ perception of the game’s payoffs) makes
the game dominance solvable. The unique Bayesian equilibrium
exhibits “tipping point” features, matches data.
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1. A Contribution Game

Each player can contribute Give Not
endowment c to joint project. Give 11 0. ¢
1 util for each player 1s

generated 1ff both contribute. Not ¢, cc

If ¢ > 1, then ‘Not’ is strictly dominant strategy = (N,N).

If ¢ <0, then ‘Give’ is strictly dominant = (G,QG).

If ¢ € (0,1) then multiplicity: strict Nash equilibria (G, G), (N, N),

symmetric mixed equilibrium with Prob(G) = c ..

— ] —_—

Give 0 Multiple & mixed 1

Not
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Multiple Equilibria

If ¢ <1, then (G,G) 1s the ce(0,1)  Give Not
Pareto-optimal strict eqm. .

Give 1,1 0,c
Would anything explain
coordinating on (N,N)? Not ¢, 0 c,

In equilibrium (G,G), each player’s deviation loss 1s 1—c.

In equilibrium (N,N), the deviation losses are ¢ for each.

DEF: An equilibrium i1s risk dominant if the product of the players’

deviation losses is the greatest. (See Harsanyi & Selten (1988)).

In 2x2 symmetric games, a strategy is part of the risk dominant

equilibrium 1ff best responds to the other player’s 50-50% mixing.

Risk-dominance contradicts Pareto-dominance if ¢ € (1%, 1).
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Global Game Perturbation

Assume c 1s a random draw crandom  Give Not
from [a,b] © [0,1]. ,

. Give 1,1 0, c
Player i observes x; uniform
random on [c-¢, ct+¢], £>0 small. ~ Not ¢, 0 ¢, C

The players’ signals about the “payoff state” are independent
conditional on ¢, but not independent unconditionally (affiliated!).

Perturbation proposed by Carlsson & van Damme (ECMA 1993).
[Compare to: Each player’s payoff in each cell 1s independently
perturbed; learn own payoff only. =Harsany1’s Purification Thm.]

When player i learns x;, he makes inference about the state as well

as the other’s signal, and both play Bayesian equilibrium.
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lterated Dominance

Give X' X! 1-X1 Not

a+e 0 1/2 1 b-¢

If x, € [ate,b-¢], then i believes c 1s uniform on [x -¢,.x +¢], and

that x, 1s uniform on [x-2¢,x+2¢]. Expected payotf from ‘N’ is x; .
Let X° = 0. If x, < X°, then ‘N’ 1s strictly dominated for i (negative
payoff), while if x,> 1 — X°, then ‘G’ 1s strictly dominated for i.
Suppose j plays ‘G’ Vx;< X', k=0,1,... . Then, x, € [X*, X* + 2¢)
believes j plays ‘G’ with prob. > 2 — (x;, — X*)/4e, so ‘G’ dominates
‘N’ for x, if V2 — (x, — X¥)/4e > x, = x, <X = (2e + X")/(1+ 4e).
Similarly: If ‘G’ is dominated Vx,> 1-X* then so 1s Vx, > 1-X*".
X > XRaff XF <2, s0 lim_, X* = %.
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Give Not

X

! ! | i

a+e 0 1/2 1 b-¢
* In the perturbed game (global game a la Carlsson & van Damme),
there is a unique Bayesian equilibrium by iterated dominance:

Play ‘G’ if x, <%, ‘N’ if x, > 2, anything at x, = >.

* Iterated dominance in the global game selects the equilibrium in
accordance with risk dominance (even against payoff dominance).

* Players do not always coordinate on the risk dominant outcome in

the game they play (=given ¢). They do so if ¢ 1s small given c.
(G,G) (N,N)
: O | > C

0 1/2 1
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Why Risk Dominance?

Give Not

a+e 0 1/2 1 b-¢

Q > X

! i

c = ¥, s0 (G,G) — (1,1) Pareto-dominates (N,N) — (c,c), yet we
expect coordination on (N,N) in the global game for e <% .

Why does player i play ‘N’ with x, € (1/2,1)?

Since ‘N’ is dominant for x; > 1, i expects j to “switch” to playing
‘N’ at some x,” < 1. But then i would rather switch to ‘N’ earlier,
at some x;” € (x;-2¢, x,). By symmetry x;” = x"; unraveling.

Even if x, = x, = ¢ = %, the only thing commonly known about ¢
is that it belongs to [a,b].
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2. Carlsson & van Damme (1993)

2 x 2 games, such that (A,A) and
(B,B) are both Nash equilibria.
(A,A) is risk dominant:
(uy-uy))(vV)=V1,)

> (Uyymttyy) (Vyy=Vy))-

(A,A) risk dominant 1ff
2°2,">8"g"

A B
Uy Vi Uiz Vo
Uy Vo Uys Voo

A B
g g 0,0

0,0 g1ba gzb

Let s, be j’s strategy (Pr(A)) such that i is indifferent against s..

(A,A) risk dominant: s, +5, <1.
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I I I I I Massachusetts Institute of Technology

14.123 Lecture 11, Page 9




Dominance vs Risk Dominance

: : A B
* Dominance region:
a ‘ g & 0,0
D/ ={(uv)| g>0, g/<0}. S
B O, O gl ’ g2

* Risk-dominance region:

R"={(u,v)| g0 g,>0; g\, &,">0 = 5, + 5, < 1}.

* Next, introduce global game model, where
1. Nature selects a game from a set with parametrized payoffs.
2. Each player observes the parameters with some noise.
3. Players choose simultaneous actions.

4. Payoffs determined by players’ choices & payoff parameters.
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Global Games Theorem

Payoff parameter 8 € ® — R™; ® open; (1,v) are continuously

differentiable functions of & with bounded derivatives.

Prior on € has density # > 0, continuously diff'able, bounded.

Each player i observes a signal x, = 8+ en, where 7, is a bounded

random variable independent of 8 with a continuous density.

THM: Suppose x is on a continuous curve C < 0, such that
(u(c),v(c)) € R*Vc € C, and (u(c),v(c)) € D* for some c € C.

Then, A 1s the only rationalizable action at x when & is small.

Moral: The global games perturbation selects the risk-dominant

equilibrium in general 2 % 2 games with two pure equilibria.

II I | Massachusetts Institute of Technology 14.123 Lecture 11, Page 11



3. Application: Currency Attacks

Morris, S., and H. S. Shin: “Unique equilibrium in a model of self-
fulfilling currency attacks”, AER 1998

Fundamental: 8 € [0,1] uniform; the higher the better.

Competitive exchange rate: f(6); f s strictly increasing.
Exchange rate is initially pegged at e*> f(1).
A continuum (unit mass) of speculators, who either
— Attack, which costs > 0, or
— Not attack.
Government observes ratio of attackers; defends the peg or not.

The exchange rate is e” if defended, f(6) otherwise.
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Speculator’s Payoff

Exchange rate * Attack, not defended:

[ ¢ — f0)—1
* Attack, defended:

— 1

m*
|
S P
\

* No attack: 0

)

I I I | Massachusetts Institute of Technology 14.123 Lecture 11, Page 13



Government’s Payoff

Value of peg = v. c(s,0)

Cost of defending is c(s,60),
where s is the share of
speculators who attack.

c 1s Increasing in s and
decreasing in 6.

Gov't observes s and 6.
Defends the peg iff
v > c(s,0), and abandons it

otherwise.
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Speculators Commonly Know 0

<6 Attack Not 0 < 5 Attack Not
—
Attack 6‘(9) )1} & f(0) 1 Attack |e— RO —t| —t
(o
Not 0 0 Not 0 0 /
<0< 5 Attack Not
/ \
*_ . ’ *_ .
Attack e\f( 0) /t e—flO)—t
(o >
Not 0 \O

* Payoffs are the same for any two speculators; payoff of the
player choosing rows is shown in each matrix.
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Global Game Perturbation

Assume & is uniform on [0,1].

Each speculator i gets signal x, = 6 + 5,, where the n’s are ud
uniform on [— &, ] with £ > 0 small.

The distribution of 7,’s 1s common knowledge.

Government sees s and 6. It defends the peg iff v > ¢(s,0).
Let a(f) be lowest s where G abandons the peg: v = c(a(60),6).

a(f) = 0, increasing for 6> 4.

Let s = ratio of speculators that attack. Speculator payoff:
u(Attack,s,0) = e" — f(0) —t, if s > a(6); —t otherwise.
u(Not,s,0) = 0.
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Unique Equilibrium

* Speculators’ eqm strategy:
Attack iff x, <x.

~N

e s(0x*)=Pr(x,<x"| 0) s(O0x)=Y2 - Y20 —-x")e

=2 — (60— x7)/e. /

* Two conditions pin down
x* as well as 6 (in fig.):

1)At 6=6", s(6",x") = a(6), so
X =60—¢g[1-2a(6Y)].

2)Speculators are indifferent

to attack at 6=6", hence A :
[1—a(@)](e-f0)) =1t 0 x—¢ g x+te 0
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Conclusions

* 6 observed with small noise: “Attack” very likely iff § < §".

* “Risk dominance” in this game:
— Suppose all strategies equally likely: s uniform on [0,1].
— Expected payoff from Attack (1-a(6))(e*-f0)) — ¢
— Attack 1s “risk dominant” iff (1-a(0))(e*-f(0)) > ¢
— Cutoff value 6": (1-a(6"))(e*-f(6")) =t.

* Comparative statics: How & varies with ¢, e”, ¢ (cost scale):
— 6" decreases in ¢
— @ increases in e

— @ increases in cost parameter
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