
MIT 14.123 (2009) by Peter Eso
Lecture 11: Global Games

1. A Contribution Game

2. Carlsson & van Damme (ECMA, 1993)

3. Morris & Shin (1998)

Read: Assigned reading (C-vD’92, M-S’98)
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Motivation
• Economic phenomena where outcomes vary in otherwise similar 

environments (apparent multiplicity of equilibria?):

– Joint investment / partnerships

– Bank runs

– Currency attacks

– Electoral competition …

• Explanation: Strategic complementarity and multiple equilibria; 

coordination and/or coordination failure.

• Global games approach: Introducing incomplete information 

(small noise in players’ perception of the game’s payoffs) makes 

the game dominance solvable.  The unique Bayesian equilibrium 

exhibits “tipping point” features, matches data.
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1. A Contribution Game

c, c c, 0Not

0, c1, 1 Give

NotGive

• If c > 1, then ‘Not’ is strictly dominant strategy  (N,N).

• If c < 0, then ‘Give’ is strictly dominant  (G,G).

• If c  (0,1) then multiplicity: strict Nash equilibria (G, G), (N, N), 

symmetric mixed equilibrium with Prob(G) = c .

0 1
c

Give NotMultiple & mixed

• Each player can contribute 

endowment c to joint project.

• 1 util for each player is 

generated iff both contribute.
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Multiple Equilibria

• In equilibrium (G,G), each player’s deviation loss is 1–c. 

In equilibrium (N,N), the deviation losses are c for each.

• DEF: An equilibrium is risk dominant if the product of the players’ 

deviation losses is the greatest.  (See Harsanyi & Selten (1988)).

In 2×2 symmetric games, a strategy is part of the risk dominant  

equilibrium iff best responds to the other player’s 50-50% mixing.

• Risk-dominance contradicts Pareto-dominance if c  (½, 1).

• If c < 1, then (G,G) is the 

Pareto-optimal strict eqm.

• Would anything explain 

coordinating on (N,N)? c, c c, 0Not

0, c1, 1 Give

NotGivec  (0,1)
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Global Game Perturbation

• The players’ signals about the “payoff state” are independent 

conditional on c, but not independent unconditionally (affiliated!).

• Perturbation proposed by Carlsson & van Damme (ECMA 1993).

[Compare to: Each player’s payoff in each cell is independently 

perturbed; learn own payoff only.  Harsanyi’s Purification Thm.]

• When player i learns xi , he makes inference about the state as well 

as the other’s signal, and both play Bayesian equilibrium. 

• Assume c is a random draw 

from [a,b]  [0,1].

• Player i observes xi uniform 

random on [c-ε, c+ε], ε>0 small. c, c c, 0Not

0, c1, 1 Give

NotGivec random
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Iterated Dominance

• If xi  [a+ε,b-ε], then i believes c is uniform on [xi-ε,xi+ε], and 

that xj is uniform on [xi-2ε,xi+2ε].  Expected payoff from ‘N’ is xi .

• Let X0 = 0. If xi < X0, then ‘N’ is strictly dominated for i (negative 

payoff), while if  xi > 1 – X0, then ‘G’ is strictly dominated for i.

• Suppose j plays ‘G’ xj < Xk, k = 0,1,… .  Then, xi  [Xk, Xk + 2ε) 

believes j plays ‘G’ with prob. > ½ – (xi – Xk)/4ε, so ‘G’ dominates 

‘N’ for xi if ½ – (xi – Xk)/4ε > xi   xi < Xk+1 = (2ε + Xk)/(1+ 4ε).

• Similarly: If ‘G’ is dominated xi > 1–Xk then so is xi > 1–Xk+1.

• Xk+1 > Xk iff Xk < ½, so limk→∞ Xk = ½.

xi

0 1a+ε b­ε

X0 X1 1­X1

1/2

Give Not
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Outcome

• In the perturbed game (global game à la Carlsson & van Damme), 

there is a unique Bayesian equilibrium by iterated dominance:

Play ‘G’ if xi < ½, ‘N’ if xi > ½, anything at xi = ½.

• Iterated dominance in the global game selects the equilibrium in 

accordance with risk dominance (even against payoff dominance).

• Players do not always coordinate on the risk dominant outcome in 

the game they play (=given c).  They do so if ε is small given c.

xi

0 1a+ε b­ε1/2

Give Not

c
0 11/2

(G,G) (N,N)
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Why Risk Dominance?

• c = ¾, so (G,G)  (1,1) Pareto-dominates (N,N)  (c,c), yet we 

expect coordination on (N,N) in the global game for ε < ¼ .

• Why does player i play ‘N’ with xi  (1/2,1)?

• Since ‘N’ is dominant for xj > 1, i expects j to “switch” to playing 

‘N’ at some xj
* ≤ 1.  But then i would rather switch to ‘N’ earlier, 

at some xi
*  (xj

*-2ε, xj
*).  By symmetry xi

* = xj
*; unraveling.

• Even if x1 = x2 = c = ¾, the only thing commonly known about c 

is that it belongs to [a,b].

xi

0 1a+ε b­ε1/2

Give Not
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2. Carlsson & van Damme (1993)

• 2 × 2 games, such that (A,A) and 

(B,B) are both Nash equilibria.

• (A,A) is risk dominant:
 (u11-u21)(v11-v12) 

  > (u22-u12) (v22-v21).

• Define g1
a = u11 – u21, etc.

• (A,A) risk dominant iff

g1
a g2

a > g1
b g2

b .

u22, v22u21, v21     B

u12, v12u11, v11     A

BA

g1
b, g2

b
0, 0     B

0, 0g1
a, g2

a
     A

BA

• Let sj be j’s strategy (Pr(A)) such that i is indifferent against sj. 

• (A,A) risk dominant:  s1 + s2 < 1.
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Dominance vs Risk Dominance

• Dominance region: 

Di
a ={(u,v)| gi

a>0, gi
b<0}.

g1
b, g2

b
0, 0     B

0, 0g1
a, g2

a
     A

BA

• Risk-dominance region:

Ra ={(u,v)| g1
a>0 g2

a>0; g1
b, g2

b>0  s1 + s2 < 1}.

• Next, introduce global game model, where

1. Nature selects a game from a set with parametrized payoffs.

2. Each player observes the parameters with some noise.

3. Players choose simultaneous actions.

4. Payoffs determined by players’ choices & payoff parameters.
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Global Games Theorem

• Payoff parameter θ   m;  open; (u,v) are continuously 

differentiable functions of   with bounded derivatives.

• Prior on   has density h > 0, continuously diff'able, bounded.

• Each player i observes a signal xi =  + i where i is a bounded 

random variable independent of  with a continuous density.

• THM: Suppose x is on a continuous curve C  , such that 
(u(c),v(c))  Ra c  C, and (u(c),v(c))  Da  for some c  C.

Then, A is the only rationalizable action at x when  is small.

• Moral: The global games perturbation selects the risk-dominant 

equilibrium in general 2 × 2 games with two pure equilibria.
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3. Application: Currency Attacks

Morris, S., and H. S. Shin: “Unique equilibrium in a model of self-

fulfilling currency attacks”, AER 1998

• Fundamental: θ  [0,1] uniform; the higher the better.

• Competitive exchange rate: f(θ);  f is strictly increasing.

• Exchange rate is initially pegged at e* ≥ f(1).

• A continuum (unit mass) of speculators, who either

– Attack, which costs t > 0, or

– Not attack.

• Government observes ratio of attackers; defends the peg or not.

• The exchange rate is e* if defended, f(θ) otherwise.
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Speculator’s Payoff

• Attack, not defended:

e* –  f(θ) – t

• Attack, defended: 

– t

• No attack: 0

e* – t

θ

e*

Exchange rate

f

θ
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Government’s Payoff

• Value of peg = v.

• Cost of defending is c(s), 

where s is the share of 

speculators who attack.

• c is increasing in s and 

decreasing in 

• Gov't observes s and θ. 

Defends the peg iff  

v > c(s,θ), and abandons it 

otherwise.


v

c(s,θ)

c(1,θ)

c(0,θ)


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Speculators Commonly Know θ

0 0Not

e*– f() – te*– f() – t Attack

NotAttackθ < θ

0 0Not

– te*– f() – t Attack

NotAttackθ < θ

0 0Not

e*– f() – te*– f() – t Attack

NotAttackθ < θ < θ

• Payoffs are the same for any two speculators; payoff of the 

player choosing rows is shown in each matrix.
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Global Game Perturbation

• Assume θ is uniform on [0,1].

• Each speculator i gets signal xi = θ + ηi , where the i’s are iid 

uniform on [– ] with  small.

• The distribution of i’s is common knowledge.

• Government sees s and θ. It defends the peg iff v > c(s,θ).
Let a(θ) be lowest s where G abandons the peg: v ≡ c(a(θ),θ).

• a(θ) = 0, increasing for θ > θ.

• Let s = ratio of speculators that attack.  Speculator payoff: 
u(Attack,s,) = e* – f(θ) – t, if s ≥ a(θ); –t otherwise.  
u(Not,s,) = 0.
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Abandon the peg

Unique Equilibrium

• Speculators’ eqm strategy:
Attack iff xi ≤ x*.

• s(θ,x*) = Pr(xi ≤ x* | θ)

= ½ – ½(θ– x*)/ε.

• Two conditions pin down 
x*  as well as θ*  (in fig.):

1)At θ=θ*, s(θ*,x*) = a(θ*), so 
x* = θ*– ε[1- 2a(θ*)].

2)Speculators are indifferent 
to attack at θ=θ*, hence 
[1 – a(θ*)](e*-f(θ*)) = t. θx*–ε

r

x*+ε

1

θ

a(θ)

θ*

s(θ,x*) = ½  ­ ½(θ – x*)/ε
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Conclusions

• θ observed with small noise: “Attack” very likely iff θ < θ*.

• “Risk dominance” in this game:

– Suppose all strategies equally likely: s uniform on [0,1].

– Expected payoff from Attack (1-a(θ))(e*-f(θ)) – t

– Attack is “risk dominant” iff (1-a(θ))(e*-f(θ)) > t

– Cutoff value θ*: (1-a(θ*))(e*-f(θ*)) = t.

• Comparative statics: How θ* varies with t, e*, c (cost scale):

– θ* decreases in t

– θ* increases in e*

– θ* increases in cost parameter 


