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MIT 14.123 (2009) by Peter Eso

Lecture 10: Auction Games


1.	 Symmetric IPV Model: Equilibria of First- and Second-
Price Auctions and the English Auction 

2. Vickrey’s Efficiency Principle 

3. General Symmetric Affiliated Values Model 
(Milgrom & Weber (1982)) 

Read: Vickrey (1961), Milgrom & Weber (1982) 



Why Study Auctions?


•	 Learn general ideas (e.g., Vickrey’s efficiency principle) as well 
as useful techniques (e.g., comparative statics proofs). 

•	 Auctions are simple market games with incomplete information; 
clean environments in which interesting effects can be exhibited 
and studied in isolation. 

•	 Auction games (in particular, double auctions) provide the 
theoretical foundations for competitive markets. 

•	 Auction theory can be relatively cheaply tested in field 
experiments on EBay. 

•	 Auction theory and mechanism design have been used quite 
successfully to allocate resources (FCC auctions, etc.). 
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Example of an Auction Game


•	 Vickrey (1961) introduced and analyzed the first Bayesian game, 
even before Bayesian games were invented by Harsanyi. 

•	 Example: Two bidders in a First Price Auction. 

•	 Model: Each bidder has a valuation, vi ~ iid uniform [0,1]. 
This fact is “commonly known”, but vi is privately known by i. 
Submit bids b1, b2 ∈ [0,1]; highest bid wins and is paid to seller. 
Payoff of bidder i: ui(vi,bi,bj) = 1{bi ≥ bj} (vi – bi). 

•	 Result: A bayesian Nash equilibrium in pure strategies is that 
bidder i with valuation vi submits bid vi /2. 

■ Submitting bi ≤ ½ yields payoff Pr(bi ≥ vj /2)(vi – bi) = 2bi(vi – bi). 
This is maximized in bi at bi = vi /2, as claimed. ■ 
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1. Symmetric IPV Model

•	 Fixed number of potential buyers (n); each draws a valuation vi 

independently from [0,1] according to the same cdf F. 
•	 Valuations are private (bidder i knows his valuation, does not care 

about the signals others get) and are privately known. 
•	 Suppose that bidders have vNM utility function u. 

Assume u(0)=0, 0 < u’ <  ∞, u” ≤ 0. 
•	 THM: Equilibrium in First-Price Auction is given by diff. eqn. 

b’(x) = (n-1)f(x)/F(x)·u(x – b(x))/u’(x – b(x)); b(0) = 0. 
■ If all other bidders use b(.), then i’s profit from bidding bi = b(vi’) 

with valuation vi is F(vi’)n-1 u(vi -b(vi’)), which should attain its 
maximum in vi’ at  vi ’=vi , hence the differential equation. The 
boundary condition is from u(0-b(0)) = 0, no arbitrage.■ 
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Comparative Statics


•	 Lemma. Let g, h : [0,∞)→ continuous, differentiable, g(0) ≥ h(0); 
∀x > 0, {g(x) < h(x)}  {g’(x) ≥ h’(x)}. Then g(x) ≥ h(x), ∀x ≥ 0. 

■ See Milgrom & Weber (1982), p.1108.  Idea: If h ever overtakes g 
then it must “cross from below”, which it cannot by assumption.■ 

•	 THM: If u undergoes concave transformation (keeping u(0) = 0), 
then the equilibrium bid in the FPA increases for every valuation. 

■ For simplicity, compare equilibrium b(.) under strictly concave u 
(see p. 4) with equilibrium bid β(.) under risk neutrality given by 

β’(x) = (n-1)f(x)/F(x)·(x-β(x)) with β(0) = 0. 
If β(x) ≥ b(x), then b’(x) > β’(x) as u(x-b(x))/u’(x-b(x)) > (x-β(x)) 
by the strict concavity of u. By the Lemma, β(x) ≤ b(x), ∀x ≥ 0. ■ 
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Comparison of Auctions

•	 Consider iid private values, compare FPA with English auction or 

second-price auction (SPA); allow risk aversion. 
•	 Recall that in SPA and English auctions, winner pays second-

highest valuation (irrespective of risk preferences). 
■	 Under private values, bidding vi in the SPA / keeping bidding 

while price < vi in the English auction is dominant strategy. ■ 

•	 THM: In FPA with risk neutrality, β(vi) = E[maxj≠i{vj}| ∀j: vj≤vi]. 

■	 Differentiate β(vi) = ∫0 
vi x (n-1)Fn-2(x)f(x)dx/Fn-1(vi) in vi : 

β’(vi) = vi (n-1)Fn-2(vi)f(vi) / Fn-1(vi) 
–	∫0 

vi x (n-1)Fn-2(x)f(x)dx (n-1)Fn-2(vi)f(vi) / Fn-1(vi) 
= vi (n-1)f(vi)/F(vi) – β(vi) (n-1)f(vi)/F(vi). 

β(vi) indeed satisfies the differential equation on page 5. ■ 
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Comparison of Auctions


•	 THM (Vickrey): Under iid private values and risk neutrality, the 
expected revenue of the FPA, SPA, and the English auction is the 
same: the expected value of the second-highest valuation. 

Expected revenues are equal, but the variances differ: the FPA is 
less risky for the seller than either the SPA or the English auction. 

•	 THM: Under iid private values and risk aversion, the expected 
revenue of the first-price auction exceeds that of the second-price 
auction and/or the English auction. 
■	 Under risk neutrality, expected revenue equivalence. 

SPA and English auction equilibria same with risk aversion. 
FPA equilibrium bids increase if bidders are risk averse. ■ 
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2. Vickrey and Efficiency


•	 William Vickrey was particularly interested in designing 
mechanisms that induce efficient use of economic resources. 

•	 Vickrey suggested congestion pricing for toll roads and public 
transportation.  (Transportation economics considers him its 
founding father.) Trivia: Vickrey invented a subway turnstile that 
automatically adjusted the access price as a function of traffic. 

•	 Vickrey’s Idea: An efficient mechanism (auction, etc.) should 
make participants pay their external effects on all affected parties. 

•	 The winner of an auction “crowds out” the second-highest bid, 
hence the winner should pay the second-highest bid ( SPA). 

•	 K-units: Each bidder submits K bids; highest K bids win. If i wins 
ki units then he pays the ki highest losing bids submitted by others. 
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3. General Symmetric Model

•	 Milgrom and Weber (ECMA, 1982): 

General, symmetric model with affiliated values, risk neutrality. 

•	 Information structure: Bidder i=1,…,n privately observes signal 
Xi ∈ ; random variables S = (S1,…,Sm) represent other risk. 

•	 Buyer i’s valuation is Vi = γ(Xi, {Xj}j≠i, S), where γ is continuous, 
strictly increasing in its first argument, weakly in the rest. 
Note that i’s valuation is symmetric in the signals of all j ≠ i. 

•	 Assume that f, the joint pdf of (X1,…,Xn,S1,…,Sm), is symmetric in 
its first n arguments and that the expectation of Vi is finite. 

•	 Affiliation: For all z,z’ ∈ n+m, f(z∧z’) f(z∨z’) ≥ f(z) f(z’). 
(z∧z’ is coordinate-wise min, z∨z’ is coordinate-wise max.) 
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General Symmetric Model

•	 Recall that affiliation of f is equivalent to f being log-spm. 

•	 In general, affiliation of (Y,Z) is stronger than Cov(Y,Z) ≥ 0, and 
stronger than the non-negative covariance of all monotone 
transformations of Y and Z, and even positive regression 
dependence, Pr(Y>y|Z=z) ↑ in z. 

•	 Independence is a special case. 

•	 Example: 
Suppose S is an “underlying common value” and Xi is i’s 
“random sample” with conditional pdf g(xi|s) satisfying the 
Monotone Likelihood Ratio property: g(xi|s)/g(xi|s’) increasing in 
xi for all s > s’. Then (Xi,S) are affiliated. 
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Preliminary Results


•	 Analyze behavior of bidder i=1 (wlog by symmetry), denote 
Y1,…,Yn-1 the largest, …, smallest of X2,…,Xn. 

•	 If (X1,…,Xn,S) are affiliated then so are (X1,Y1,…,Yn-1,S). 
•	 V1 = γ(X1, Y1,…,Yn-1, S). 
•	 Theorem 5 of Milgrom-Weber 1982: Let Z1,…,Zk be affiliated 

random variables and H: k→  a weakly increasing function. 
Then, for all a1 ≤ b1, …, ak ≤ bk, 
h(a1,b1, …, ak,bk) = E[ H(Z1,…,Zk) | a1 ≤ Z1 ≤ b1, …, ak ≤ Zk ≤ bk ] 
is weakly increasing in all of its arguments. 

•	 Note: [a1, b1], …, [ak, bk] define a sublattice in k. Theorem 5 says: 
If Z is an affiliated k-dim random variable, then its expected value 
conditional on a sublattice increases with the sublattice. 

14.123 Lecture 10, Page 11 



Equilibrium of the SPA

•	 Let v(x,y) = E[ V1 | X1=x, Y1=y ]: Buyer 1’s valuation conditional 

on his own signal and the highest of the other buyers’ signals. 
•	 THM: A symmetric eqm of the SPA is that all buyers bid B*(x) = 

v(x,x), their expected valuation conditional on winning in a tie. 
•	 Proof. By Theorem 5, B*(x) = v(x,x) is strictly ↑ in x. Hence if the 

other bidders use B* then Bidder 1 pays B*(Y1) when he wins. 
Suppose Buyer 1 bids b with signal X1 = x. His payoff is, 
E[(V1 – B*(Y1)) 1{B*(Y1)≤b} | X1=x ] 


= E[(v(X1,Y1) – v(Y1,Y1)) 1{B*(Y1)≤b} | X1=x ]

= ∫-∞ 

B*-1(b) [v(x,η) – v(η, η)] fY1(η|x) dη.

The integrand is positive iff η<x, hence the integral is maximized 
by setting B*-1(b) = x, i.e., by bidding b=B*(x). ■ 
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Public Signal Disclosure in SPA

•	 Should the seller commit to publicly disclose S before the auction? 
•	 Define w(x,y,z) = E[ V1 | X1=x, Y1=y, S=z ]. 
•	 If the Seller commits to disclose z (the realization of S) then an 

equilibrium of the SPA is for all buyers to bid B**(x) = w(x,x,z). 
•	 THM: Commitment to disclosing S weakly increases revenue: 

RN = E[v(Y1,Y1) | {X1>Y1}] ≤ RI = E[w(Y1,Y1,S) | {X1>Y1}]. 
■ Note, v(x,y) = E[v(X1,Y1)|X1=x,Y1=y] = E[w(X1,Y1,S)|X1=x,Y1=y]. 

For x ≥ y, v(y,y) = E[w(X1,Y1,S)|X1=y,Y1=y] 
= E[w(Y1,Y1,S)|X1=y,Y1=y] ≤ E[w(Y1,Y1,S)|X1=x,Y1=y]. 

So, RN = E[v(Y1,Y1) | {X1>Y1}] ≤ E[ E[w(Y1,Y1,S)|X1,Y1] | {X1>Y1} ] 
= E[w(Y1,Y1,S) | {X1>Y1}] = RI. ■ 
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Equilibrium of the English Auction

•	 “Button” auction: Continuous price clock, irreversible public exit. 
•	 Strategy: Drop-out price given history of exits and own signal. 
•	 Let b0(x) = E[ V1 | X1=x, Y1=x, …, Yn-1=x ], and for all k=1,…,n-1 

and prices (p1,…,pk), set bk(x,p1,…,pk) recursively equal to 
E[ V1 | X1=Y1=…=Yn-k-1=x, b0(Yn-1)=p1, …, bk-1(Yn-k, p1,…,pk-1)=pk]. 

•	 THM: (b0,…, bn-1) played by all bidders is an equilibrium. 
•	 Proof. By Theorem 5, bk is strictly increasing in x for all k. 

Bidders exit in increasing order of signals, losers’ signals revealed. 
If Buyers 2,…,n use (b0,…, bn-1) then, if Buyer 1 wins, he pays


E[ V1 | X1=y1, Y1=y1, …, Yn-1=yn-1], which is less than his valuation, 

E[ V1 | X1=x, Y1=y1, …, Yn-1=yn-1], iff x ≥ y1. Using (b0,…,bn-1) 

Buyer 1 wins iff X1 ≥ Y1, exactly when his profit is non-negative.■
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Comments

•	 Ex post equilibrium: (b0,…, bn-1) is best response to all others 

playing (b0,…, bn-1) even if the buyers know each others’ signals 
(i.e., given y1, …, yn-1). But: (b0,…, bn-1) is not dominant strategy. 

•	 Interpretation of equilibrium strategy: Bid expected valuation 
conditional on winning in a tie with all remaining participants. 
(In SPA equilibrium strategy was to condition on a two-way tie.) 

•	 The seller’s revenue from buyer 1 in the English Auction is the 
same as it is in the SPA with Y2=y2, …, Yn-1=yn-1 publicly revealed. 

•	 The seller gains from the public revelation of signals affiliated 
with the buyers’ valuations, hence the expected revenue of EA 
exceeds that of SPA. This is called the Linkage Principle. 
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Equilibrium of the FPA

•	 THM: There exists a strictly increasing symmetric equilibrium in 

the FPA where each bidder i with signal value xi submits β(xi). 
•	 We characterize β as the solution to a differential equation. If the 

other bidders use β, then buyer 1 with signal x bidding b gets 
π(b,x) = E[ (V1-b) 1{β(Y1) ≤b}| X1=x ] = ∫x 

β-1(b) [v(x,η) – b] fY1(η|x) dη. 
•	 Maximization in b yields the FOC, 

[v(x,β-1(b)) – b] fY1(β-1(b)|x) / β’(β-1(b)) – ∫x 
β-1(b) fY1(η|x) dη = 0. 

•	 In equilibrium it is optimal to bid b= β(x), hence 
[v(x,x) – β(x)] fY1(x|x) / β’(x) – FY1(x|x) = 0, or equivalently


β’(x) = [v(x,x) – β(x)] fY1(x|x)/FY1(x|x), which is positive.

•	 If the support of Xi is bounded, i.e. x > -∞, then the boundary 

condition for this differential equation becomes β(x) = v(x,x). 
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Comparison of Auctions

•	 We already established (linkage principle):  Expected revenue of 

English Auction ≥ Expected revenue of SPA. 

•	 THM: Expected revenue of SPA ≥ Expected revenue of FPA. 

■ Let WM(x,z) denote the expected payment Buyer 1 makes in 
mechanism M ∈ {SPA,FPA} conditional on X1 = z, playing as if 
his signal realization were x, and winning. 

•	 WFPA(x,z) = β(x) 
WSPA(x,z) = E[ v(Y1,Y1) | X1 = z, Y1 ≤ x ]. 

•	 Note: ∂WFPA(x,z)/∂z = 0 ≤ ∂WSPA(x,z)/∂z. 

•	 Define R(x,z) = E[ V1 1{Y1 ≤ x} | X1=z ], Buyer 1’s expected valuation 
conditional on X1 = z, pretending X1 = x and winning. 
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Proof, continued

•	 In mechanism M ∈ {FPA, SPA}, Buyer 1 maximizes in x 

R(x,z) – WM(x,z) FY1(x|z). 

In equilibrium, the maximum is attained at x = z.


•	 FOC: ∂R(x,z)/∂x – ∂WM(x,z)/∂x FY1(x|z) = WM(x,z) fY1(x|z) at x=z. 

•	 WFPA(z,z) > WSPA(z,z)  ∂WFPA(x,z)/∂x < ∂WSPA(x,z)/∂x at x=z. 

•	 Combined with ∂WFPA(x,z)/∂z ≤ ∂WSPA(x,z)/∂z, this gives: 

If WFPA(z,z) > WSPA(z,z) then dWFPA(z,z)/dz < ∂WSPA(z,z)/dz. 

•	 Since WFPA(x,x) = WSPA(x,x), Lemma implies WFPA(z,z) ≤ WSPA(z,z) 
for all z ≥ x. The expected payment made by the winner is weakly 
greater in the SPA than it is in the FPA.  ■ 

14.123 Lecture 10, Page 18 



Summary

•	 Symmetric, iid private values, risk neutrality: Expected revenues 

of FPA and SPA are equal (Vickrey, 1961). 
Generally: “Revenue Equivalence Thm” in Mechanism Design. 

•	 Risk aversion of the buyers (or the seller) favors FPA for seller. 

•	 Affiliated valuations (positive, statistical correlation of 
information) favors SPA, and English auction is even better. 

•	 Asymmetries would make revenue comparison inconclusive. 

•	 Other interesting (solved) questions: 
–	 Bidders’ preferences over auction forms. 
–	 Stochastic number of bidders; entry 
–	 Information acquisition in auctions. 
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