MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT 14.123 (2009) by Peter Eso Lecture 10: Auction Games

- 1. Symmetric IPV Model: Equilibria of First- and Second-Price Auctions and the English Auction
 - 2. Vickrey's Efficiency Principle
 - 3. General Symmetric Affiliated Values Model (Milgrom & Weber (1982))

Read: Vickrey (1961), Milgrom & Weber (1982)

Why Study Auctions?

- Learn general ideas (e.g., Vickrey's efficiency principle) as well as useful techniques (e.g., comparative statics proofs).
- Auctions are simple market games with incomplete information; clean environments in which interesting effects can be exhibited and studied in isolation.
- Auction games (in particular, double auctions) provide the theoretical foundations for competitive markets.
- Auction theory can be relatively cheaply tested in field experiments on EBay.
- Auction theory and mechanism design have been used quite successfully to allocate resources (FCC auctions, etc.).

Example of an Auction Game

- Vickrey (1961) introduced and analyzed the first Bayesian game, even before Bayesian games were invented by Harsanyi.
- <u>Example</u>: Two bidders in a First Price Auction.
- <u>Model</u>: Each bidder has a valuation, v_i ~ iid uniform [0,1]. This fact is "commonly known", but v_i is privately known by *i*. Submit bids b₁, b₂ ∈ [0,1]; highest bid wins and is paid to seller. Payoff of bidder *i*: u_i(v_i,b_i,b_j) = 1_{b_i≥b_j} (v_i-b_i).
- <u>Result</u>: A bayesian Nash equilibrium in pure strategies is that bidder *i* with valuation v_i submits bid $v_i/2$.
- Submitting $b_i \le \frac{1}{2}$ yields payoff $\Pr(b_i \ge \frac{v_j}{2})(v_i b_i) = 2b_i(v_i b_i)$. This is maximized in b_i at $b_i = \frac{v_i}{2}$, as claimed.

1. Symmetric IPV Model

- Fixed number of potential buyers (*n*); each draws a valuation v_i <u>independently</u> from [0,1] according to the <u>same</u> cdf *F*.
- Valuations are <u>private</u> (bidder *i* knows his valuation, does not care about the signals others get) and are <u>privately known</u>.
- Suppose that bidders have vNM utility function *u*.
 Assume *u*(0)=0, 0 < *u*' < ∞, *u*'' ≤ 0.
- <u>THM</u>: Equilibrium in <u>First-Price Auction</u> is given by diff. eqn. $b'(x) = (n-1)f(x)/F(x)\cdot u(x-b(x))/u'(x-b(x)); \ b(0) = 0.$
- If all other bidders use b(.), then *i*'s profit from bidding $b_i = b(v_i')$ with valuation v_i is $F(v_i')^{n-1} u(v_i b(v_i'))$, which should attain its maximum in v_i' at $v_i' = v_i$, hence the differential equation. The boundary condition is from u(0-b(0)) = 0, no arbitrage.

Comparative Statics

- Lemma. Let $g, h : [0,\infty) \to \mathbb{R}$ continuous, differentiable, $g(0) \ge h(0)$; $\forall x \ge 0, \{g(x) \le h(x)\} \Longrightarrow \{g'(x) \ge h'(x)\}$. Then $g(x) \ge h(x), \forall x \ge 0$.
- See Milgrom & Weber (1982), p.1108. Idea: If *h* ever overtakes *g* then it must "cross from below", which it cannot by assumption.■
- <u>THM</u>: If *u* undergoes concave transformation (keeping u(0) = 0), then the equilibrium bid in the FPA increases for every valuation.
- For simplicity, compare equilibrium b(.) under strictly concave u(see p. 4) with equilibrium bid $\beta(.)$ under risk neutrality given by $\beta'(x) = (n-1)f(x)/F(x)\cdot(x-\beta(x))$ with $\beta(0) = 0$.

If $\beta(x) \ge b(x)$, then $b'(x) > \beta'(x)$ as $u(x-b(x))/u'(x-b(x)) > (x-\beta(x))$ by the strict concavity of *u*. By the Lemma, $\beta(x) \le b(x), \forall x \ge 0$.

Comparison of Auctions

- Consider <u>iid private values</u>, compare FPA with English auction or second-price auction (SPA); allow risk aversion.
- Recall that in SPA and English auctions, winner pays secondhighest valuation (irrespective of risk preferences).
 - Under private values, bidding v_i in the SPA / keeping bidding while price $< v_i$ in the English auction is dominant strategy.
- <u>THM</u>: In FPA with risk neutrality, $\beta(v_i) = E[\max_{j \neq i} \{v_j\} | \forall j: v_j \le v_i].$
 - $Differentiate \ \beta(v_i) = \int_0^{v_i} x \ (n-1)F^{n-2}(x)f(x)dx/F^{n-1}(v_i) \text{ in } v_i: \\ \beta'(v_i) = v_i \ (n-1)F^{n-2}(v_i)f(v_i) \ / \ F^{n-1}(v_i) \\ \int_0^{v_i} x \ (n-1)F^{n-2}(x)f(x)dx \ (n-1)F^{n-2}(v_i)f(v_i) \ / \ F^{n-1}(v_i) \\ = v_i \ (n-1)f(v_i)/F(v_i) \beta(v_i) \ (n-1)f(v_i)/F(v_i).$

 $\beta(v_i)$ indeed satisfies the differential equation on page 5.

Comparison of Auctions

• <u>THM</u> (Vickrey): Under iid private values and risk neutrality, the expected revenue of the FPA, SPA, and the English auction is the same: the expected value of the second-highest valuation.

Expected revenues are equal, but the <u>variances differ</u>: the FPA is less risky for the seller than either the SPA or the English auction.

- <u>THM</u>: Under iid private values and risk aversion, the expected revenue of the first-price auction exceeds that of the second-price auction and/or the English auction.
 - Under risk neutrality, expected revenue equivalence.
 SPA and English auction equilibria same with risk aversion.
 FPA equilibrium bids increase if bidders are risk averse.

2. Vickrey and Efficiency

- William Vickrey was particularly interested in designing mechanisms that induce efficient use of economic resources.
- Vickrey suggested congestion pricing for toll roads and public transportation. (Transportation economics considers him its founding father.) Trivia: Vickrey invented a subway turnstile that automatically adjusted the access price as a function of traffic.
- <u>Vickrey's Idea</u>: An efficient mechanism (auction, etc.) should make participants pay their external effects on all affected parties.
- The winner of an auction "crowds out" the second-highest bid, hence the winner should pay the second-highest bid (\Rightarrow SPA).
- *K*-units: Each bidder submits *K* bids; highest *K* bids win. If *i* wins *k_i* units then he pays the *k_i* highest losing bids submitted by others.

3. General Symmetric Model

- Milgrom and Weber (ECMA, 1982): General, symmetric model with affiliated values, risk neutrality.
- Information structure: Bidder *i*=1,...,*n* privately observes signal X_i ∈ ℝ; random variables S = (S₁,...,S_m) represent other risk.
- Buyer *i*'s valuation is V_i = γ(X_i, {X_j}_{j≠i}, S), where γ is continuous, strictly increasing in its first argument, weakly in the rest. Note that *i*'s valuation is symmetric in the signals of all *j* ≠ *i*.
- Assume that *f*, the joint pdf of $(X_1, \ldots, X_n, S_1, \ldots, S_m)$, is symmetric in its first *n* arguments and that the expectation of V_i is finite.
- <u>Affiliation</u>: For all $z, z' \in \mathbb{R}^{n+m}$, $f(z \wedge z') f(z \vee z') \ge f(z) f(z')$. $(z \wedge z' \text{ is coordinate-wise min, } z \vee z' \text{ is coordinate-wise max.})$

General Symmetric Model

- Recall that affiliation of f is equivalent to f being log-spm.
- In general, affiliation of (Y,Z) is stronger than Cov(Y,Z) ≥ 0, and stronger than the non-negative covariance of all monotone transformations of Y and Z, and even positive regression dependence, Pr(Y>y|Z=z) ↑ in z.
- Independence is a special case.
- <u>Example</u>:

Suppose *S* is an "underlying common value" and X_i is *i*'s "random sample" with conditional pdf $g(x_i|s)$ satisfying the Monotone Likelihood Ratio property: $g(x_i|s)/g(x_i|s')$ increasing in x_i for all s > s'. Then (X_i, S) are affiliated.

Preliminary Results

- Analyze behavior of bidder i=1 (wlog by symmetry), denote Y_1, \ldots, Y_{n-1} the largest, ..., smallest of X_2, \ldots, X_n .
- If (X_1, \ldots, X_n, S) are affiliated then so are $(X_1, Y_1, \ldots, Y_{n-1}, S)$.
- $V_1 = \gamma(X_1, Y_1, \dots, Y_{n-1}, S).$
- <u>Theorem 5</u> of Milgrom-Weber 1982: Let Z₁,...,Z_k be affiliated random variables and H: ℝ^k→ ℝ a weakly increasing function. Then, for all a₁≤ b₁, ..., a_k≤ b_k,

 $h(a_1,b_1, ..., a_k, b_k) = \mathbb{E}[H(Z_1,...,Z_k) | a_1 \le Z_1 \le b_1, ..., a_k \le Z_k \le b_k]$ is weakly increasing in all of its arguments.

Note: [a₁, b₁], ..., [a_k, b_k] define a sublattice in R^k. Theorem 5 says:
 If Z is an affiliated k-dim random variable, then its expected value conditional on a sublattice increases with the sublattice.

Equilibrium of the SPA

- Let $v(x,y) = E[V_1 | X_1 = x, Y_1 = y]$: Buyer 1's valuation conditional on his own signal and the highest of the other buyers' signals.
- <u>THM</u>: A symmetric eqm of the SPA is that all buyers bid $B^*(x) = v(x,x)$, their expected valuation conditional on winning in a tie.
- <u>Proof.</u> By Theorem 5, B*(x) = v(x,x) is strictly ↑ in x. Hence if the other bidders use B* then Bidder 1 pays B*(Y₁) when he wins.
 Suppose Buyer 1 bids b with signal X₁ = x. His payoff is,
 E[(V₁ B*(Y₁)) 1_{B*(Y₁)≤b} | X₁=x]

$$= E[(v(X_1, Y_1) - v(Y_1, Y_1)) \mathbf{1}_{\{B^*(Y_1) \le b\}} | X_1 = x]$$

= $\int_{-\infty}^{B^{*-1}(b)} [v(x, \eta) - v(\eta, \eta)] f_{Y_1}(\eta | x) d\eta.$

The integrand is positive iff $\eta \le x$, hence the integral is maximized by setting $B^{*-1}(b) = x$, i.e., by bidding $b = B^*(x)$.

Public Signal Disclosure in SPA

- Should the seller commit to publicly disclose *S* before the auction?
- Define $w(x,y,z) = E[V_1 | X_1 = x, Y_1 = y, S = z].$
- If the Seller commits to disclose *z* (the realization of *S*) then an equilibrium of the SPA is for all buyers to bid $B^{**}(x) = w(x,x,z)$.
- <u>THM</u>: Commitment to disclosing *S* weakly increases revenue: $R_N = E[v(Y_1, Y_1) | \{X_1 \ge Y_1\}] \le R_I = E[w(Y_1, Y_1, S) | \{X_1 \ge Y_1\}].$
- Note, $v(x,y) = E[v(X_1,Y_1)|X_1=x,Y_1=y] = E[w(X_1,Y_1,S)|X_1=x,Y_1=y].$ For $x \ge y$, $v(y,y) = E[w(X_1,Y_1,S)|X_1=y,Y_1=y]$ $= E[w(Y_1,Y_1,S)|X_1=y,Y_1=y] \le E[w(Y_1,Y_1,S)|X_1=x,Y_1=y].$ So, $R_N = E[v(Y_1,Y_1) \mid \{X_1 \ge Y_1\}] \le E[E[w(Y_1,Y_1,S)|X_1,Y_1] \mid \{X_1\ge Y_1\}]$ $= E[w(Y_1,Y_1,S) \mid \{X_1\ge Y_1\}] = R_I.$

Equilibrium of the English Auction

- <u>"Button" auction</u>: Continuous price clock, irreversible public exit.
- <u>Strategy</u>: Drop-out price given history of exits and own signal.
- Let $b_0(x) = \mathbb{E}[V_1 | X_1 = x, Y_1 = x, \dots, Y_{n-1} = x]$, and for all $k=1,\dots,n-1$ and prices (p_1,\dots,p_k) , set $b_k(x,p_1,\dots,p_k)$ recursively equal to $\mathbb{E}[V_1 | X_1 = Y_1 = \dots = Y_{n-k-1} = x, b_0(Y_{n-1}) = p_1,\dots, b_{k-1}(Y_{n-k}, p_1,\dots,p_{k-1}) = p_k].$
- <u>THM</u>: $(b_0, ..., b_{n-1})$ played by all bidders is an equilibrium.
- <u>Proof.</u> By Theorem 5, b_k is strictly increasing in x for all k. Bidders exit in increasing order of signals, losers' signals revealed. If Buyers 2,...,n use (b₀,..., b_{n-1}) then, if Buyer 1 wins, he pays E[V₁ | X₁=y₁, Y₁=y₁, ..., Y_{n-1}=y_{n-1}], which is less than his valuation, E[V₁ | X₁=x, Y₁=y₁, ..., Y_{n-1}=y_{n-1}], iff x ≥ y₁. Using (b₀,...,b_{n-1}) Buyer 1 wins iff X₁ ≥ Y₁, exactly when his profit is non-negative.

Comments

- Ex post equilibrium: (b₀,..., b_{n-1}) is best response to all others playing (b₀,..., b_{n-1}) even if the buyers know each others' signals (i.e., given y₁, ..., y_{n-1}). But: (b₀,..., b_{n-1}) is not dominant strategy.
- Interpretation of equilibrium strategy: Bid expected valuation conditional on winning in a tie with all remaining participants.
 (In SPA equilibrium strategy was to condition on a two-way tie.)
- The seller's revenue from buyer 1 in the English Auction is the same as it is in the SPA with $Y_2=y_2, ..., Y_{n-1}=y_{n-1}$ publicly revealed.
- The seller gains from the public revelation of signals affiliated with the buyers' valuations, hence the expected revenue of EA exceeds that of SPA. This is called the <u>Linkage Principle</u>.

Equilibrium of the FPA

- <u>THM</u>: There exists a strictly increasing symmetric equilibrium in the FPA where each bidder *i* with signal value x_i submits $\beta(x_i)$.
- We characterize β as the solution to a differential equation. If the other bidders use β , then buyer 1 with signal *x* bidding *b* gets $\pi(b,x) = \mathbb{E}[(V_1-b) \mathbf{1}_{\{\beta(Y_1) \le b\}} | X_1=x] = \int_{\underline{x}}^{\beta^{-1}(b)} [v(x,\eta) - b] f_{Y_1}(\eta|x) d\eta.$
- Maximization in *b* yields the FOC, $[v(x,\beta^{-1}(b)) - b] f_{Y_1}(\beta^{-1}(b)|x) / \beta^{*}(\beta^{-1}(b)) - \int_x^{\beta^{-1}(b)} f_{Y_1}(\eta|x) d\eta = 0.$
- In equilibrium it is optimal to bid $b = \beta(x)$, hence $[v(x,x) - \beta(x)] f_{Y_1}(x|x) / \beta'(x) - F_{Y_1}(x|x) = 0$, or equivalently $\beta'(x) = [v(x,x) - \beta(x)] f_{Y_1}(x|x) / F_{Y_1}(x|x)$, which is positive.
- If the support of X_i is bounded, i.e. $\underline{x} > -\infty$, then the boundary condition for this differential equation becomes $\beta(\underline{x}) = v(\underline{x},\underline{x})$.

Comparison of Auctions

- We already established (linkage principle): Expected revenue of English Auction ≥ Expected revenue of SPA.
- <u>THM</u>: Expected revenue of SPA \geq Expected revenue of FPA.
- Let $W^{M}(x,z)$ denote the expected payment Buyer 1 makes in mechanism $M \in \{\text{SPA}, \text{FPA}\}$ conditional on $X_1 = z$, playing as if his signal realization were *x*, and winning.
- $W^{\text{FPA}}(x,z) = \beta(x)$ $W^{\text{SPA}}(x,z) = \mathbb{E}[v(Y_1,Y_1) | X_1 = z, Y_1 \le x].$
- Note: $\partial W^{\text{FPA}}(x,z)/\partial z = 0 \le \partial W^{\text{SPA}}(x,z)/\partial z$.
- Define $R(x,z) = E[V_1 \mathbf{1}_{\{Y_1 \le x\}} | X_1 = z]$, Buyer 1's expected valuation conditional on $X_1 = z$, pretending $X_1 = x$ and winning.

Proof, continued

In mechanism M ∈ {FPA, SPA}, Buyer 1 maximizes in x R(x,z) – W^M(x,z) F_{Y1}(x|z).
In equilibrium, the maximum is attained at x = z.

• FOC: $\partial R(x,z)/\partial x - \partial W^M(x,z)/\partial x F_{Y_1}(x|z) = W^M(x,z) f_{Y_1}(x|z)$ at x=z.

- $W^{\text{FPA}}(z,z) > W^{\text{SPA}}(z,z) \Rightarrow \partial W^{\text{FPA}}(x,z)/\partial x < \partial W^{\text{SPA}}(x,z)/\partial x \text{ at } x=z.$
- Combined with $\partial W^{\text{FPA}}(x,z)/\partial z \leq \partial W^{\text{SPA}}(x,z)/\partial z$, this gives:

If $W^{\text{FPA}}(z,z) > W^{\text{SPA}}(z,z)$ then $dW^{\text{FPA}}(z,z)/dz < \partial W^{\text{SPA}}(z,z)/dz$.

• Since $W^{\text{FPA}}(\underline{x},\underline{x}) = W^{\text{SPA}}(\underline{x},\underline{x})$, Lemma implies $W^{\text{FPA}}(z,z) \le W^{\text{SPA}}(z,z)$ for all $z \ge \underline{x}$. The expected payment made by the winner is weakly greater in the SPA than it is in the FPA.

Summary

• Symmetric, iid private values, risk neutrality: Expected revenues of FPA and SPA are equal (Vickrey, 1961).

Generally: "Revenue Equivalence Thm" in Mechanism Design.

- Risk aversion of the buyers (or the seller) favors FPA for seller.
- Affiliated valuations (positive, statistical correlation of information) favors SPA, and English auction is even better.
- Asymmetries would make revenue comparison inconclusive.
- Other interesting (solved) questions:
 - Bidders' preferences over auction forms.
 - Stochastic number of bidders; entry
 - Information acquisition in auctions.