MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT 14.123 (2009) by Peter Eso Lecture 9: Signaling Games

- 1. Intuitive Criterion and Divinity D1
 - 2. Spencian Signaling Games
 - 3. Cheap Talk

<u>Read</u>: FT 11.1-3; Crawford & Sobel: Strategic Information Transmission, *Econometrica*, 60 (1982), 1431-1450.

Previously in 14.123...

- In extensive-form, imperfect- or incomplete-information games, require sequential rationality (best reply to some beliefs) from all players. Beliefs are computed using Bayes' rule when possible.
- <u>Sequential equilibrium</u> needs <u>some</u> sequence $(\sigma^{\varepsilon}, \mu^{\varepsilon})$ to converge to (σ, μ) , such that each σ^{ε} is fully mixed and μ^{ε} is consistent with it.
- <u>Trembling-hand perfection</u>: $\exists \sigma^{\varepsilon} \varepsilon$ -constrained eqm, $\sigma^{\varepsilon} \rightarrow \sigma$ as $\varepsilon \rightarrow 0$. (Agent-normal form. Enough to find <u>one</u> such sequence.)
- An equilibrium is <u>stable</u> if it is trembling-hand perfect for <u>any</u> sequence of ε(s_i) weight-constraints that converge to zero.
 Issue of existence resolved by defining <u>stable sets</u> of equilibria.

1. Signaling Games

- <u>DEF</u>: <u>Signaling game</u>. A two-player Bayesian game such that:
 - 1. Nature selects P1's type, $\theta \in \Theta$ with probs $\pi(\theta) > 0$, Θ finite.
 - 2. P1 (Sender) chooses action $m \in M$ *M* is either finite or compact, $M \subset \mathbb{R}$.
 - 3. P2 (Receiver) observes *m* but not θ , picks $y \in Y$ *Y* is either finite or compact, $Y \subset \mathbb{R}$.

Payoffs are $u_1(\theta, m, y), u_2(\theta, m, y)$.

- Commonly used in social sciences. Examples:
 - 'Beer-quiche'; 'Quants and Poets get MBAs' games.
 - Spence's labor market signaling (FT pp. 456-460).
 - Pure communication games.

PBE in Signaling Games

- Denote $\mu(m) \in \Delta(\Theta)$ P2's <u>belief</u> about P1's type after seeing *m*. $\mu_{\theta}(m)$ is the weight P2 puts on type $\theta \in \Theta$ after seeing *m*.
- Denote $y^*(\mu,m)$ P2's (mixed) <u>best response(s)</u> to *m* given beliefs μ .
- Denote y^{*}(T,m) the set of (possibly mixed) best responses if P2 believes θ ∈ T, i.e., all y^{*}(μ,m) such that μ(m) has support T.
- <u>DEF</u>: <u>Perfect Bayesian equilibrium</u>. Assessment (m, y, μ) , with $m: \Theta \to \Delta(M), y: M \to \Delta(Y), \mu: M \to \Delta(\Theta)$ is PBE if
 - $m(\theta) \in \operatorname{argmax}_{m'} \{u_1(\theta, m', y(m'))\}; (P1 \text{ best responds})$
 - − $y \in y^*(\mu, m')$ for all $m' \in M$; (P2 best responds given beliefs)
 - μ satisfies Bayes rule (B) for all $m' \in m(\Theta)$.
- Introduced by Fudenberg and Tirole (1991).

Example: What PBE Rules Out

- Nature picks row (P1's type θ_i w/ prob π_i), P1 matrix, P2 column.
- P1 pooling on m_1 , P2 replying y_1 to m_2 is (Bayesian) Nash eqm. Not PBE, because y_1 is not a best reply to any belief μ .
- <u>THM</u>: In signaling games, PBE ⇔ sequential equilibrium.
 Beliefs of P2 generated by P1's trembles. FT p. 346.
- PBE can involve P2 believing that P1 uses a weakly dominated strategy, or that P1 uses an equilibrium-dominated strategy.

What PBE Does Not Rule Out

- P1 pooling on m₁, P2 replying y₁ to m₂ is perfect Bayesian eqm supported by P2's beliefs μ(θ₁|m₂) ≥ 1/2.
- This equilibrium is also sequential and trembling-hand perfect.
- But the only agent of P1 that can improve upon his equilibrium payoff by playing m_2 is θ_2 .
- <u>Forward induction</u>: P2 may try to figure out what P1 "wants to say" by deviating P2 does not think that it is a tremble.

Equilibrium Dominance

• <u>DEF</u>: Action *m*' is <u>equilibrium dominated</u> for type θ of P1 in PBE (m,y,μ) , if $u_1(\theta,m(\theta),y(m)) > u_1(\theta,m',y)$ for all $y \in y^*(\Theta,m')$.

Weaker than dominance: *m* against y(m) beats *m*' against $y^*(\Theta, m')$.

- Basic requirement of forward induction: Off-eqm beliefs should not put weight on nodes reached by equilibrium dominated actions.
 Beer-quiche: In 'pooling on quiche' eqm, 'beer' is equilibrium dominated for *W*, hence the equilibrium fails forward induction.
- Intuition? Cho & Kreps (QJE, 1987) propose a "speech":

"By deviating to 'beer', you must believe that I am S as type W would not gain from this offer compared to his eqm payoff."

• Stiglitz Critique: P2 should infer *W* from lack of deviation to 'beer' and reply 'duel' to 'quiche'. Thus even *W* would prefer to deviate.

Intuitive Criterion

- <u>DEF</u>: For PBE assessment (m,y,μ) and off-eqm message m' define J(m') = { θ ∈ Θ : u_S(θ,m(θ),y(m)) > max_{y'∈y*(Θ,m')} u_S(θ,m',y') }. The equilibrium fails the Intuitive Criterion at m' if J(m') ≠ Θ and { θ ∈ Θ : u_S(θ,m(θ),y(m)) < min_{y'∈y*(Θ\J(m'),m')} u_S(θ,m',y') } ≠ Ø.
- Due to Cho & Kreps (QJE, 1987).
- J(m') is set of types for which m' is equilibrium-dominated.
 A PBE fails the Intuitive Criterion if P2's best response with any beliefs on Θ\J(m') induces a deviation.
- Eliminates 'Pooling on quiche' in beer-quiche game. Generally weaker than stability in signaling games.

Divinity D1

- Pooling on m_1 (with $m_2 \mapsto y_1$, $\mu_{\theta_1}(m_2) \le 2/5$) is PBE with IC.
- But: θ₁ gains from deviation if σ₂(y₂) ≥ 1/3, while θ₂ gains from deviation if σ₂(y₂) ≥ 1/2. So, θ₁ gains for more responses to m₂.
- <u>DEF</u>: An equilibrium satisfies <u>Divinity "D1" Criterion</u> if P2's offequilibrium beliefs only put weights on types of P1 that gain from the deviation for the most (mixed) best responses.
- D1 is generally weaker than stability. Similar, but stronger concepts (still weaker than stability) are discussed in FT Ch. 11.2.

2. Spencian Signaling Games

- <u>DEF</u>: <u>Spencian signaling game</u>: $M, Y \subset [0,\infty), \Theta \subset \mathbb{R}$ finite;
 - For all y' > y, $u_1(\theta, m, y') > u_1(\theta, m, y)$. (Monotonicity)
 - For any belief $\mu \in \Delta(\Theta)$, unique best response $y^*(\mu,m) < \infty$, and y^* increases in μ (increases as μ increases in FSD sense).
 - $[\partial u_1(\theta, m, y)/\partial m]/[\partial u_1(\theta, m, y)/\partial y]$ is increasing in θ . (Spence-Mirrlees sorting condition.)
- Situations it intends to model:
 - Sender (P1) prefers Receiver (P2) to take higher actions;
 - Receiver wants his reply correlate with the Sender's type;
 - It is relatively less costly for higher Sender types to send higher messages.

Example

- Labor-market signaling: *θ* is productivity, *m* is schooling, *y* is wage.
- u₁(θ,m,y) = y m/θ.
 Schooling is "cheaper" for higher type (talent?).
- y*(θ,m) = θ.
 Firm(s) pay market wage for productivity.
- In this formulation schooling is unproductive; does not have to be.

Indifference curves, $\theta' < \theta$ (arrow indicates increasing prefs)

Riley Outcome

- Denote $\Theta = \{\theta_1, ..., \theta_k\}$ with $\theta_1 < ... < \theta_k$.
- <u>DEF</u>: The Riley outcome is a list of $(\underline{m}_i, \underline{y}_i)$, i=1, ..., k, such that $\underline{m}_1 = \operatorname{argmax}_m u_S(\theta_1, m, y^*(\theta_1, m))$ and $\underline{y}_1 = y^*(\theta_1, \underline{m}_1)$; while for all i = 2 k m maximizes $u_s(\theta, m, y^*(\theta, m))$ subject to

while for all i = 2, ..., k, \underline{m}_i maximizes $u_S(\theta_i, m, y^*(\theta_i, m))$ subject to $u_S(\theta_j, m, y^*(\theta_i, m)) \le u_S(\theta_j, \underline{m}_j, \underline{y}_j), \forall j \le i$, and $\underline{y}_i = y^*(\theta_i, \underline{m}_i)$.

- This is the <u>minimal-cost separating equilibrium</u> in the game.
- Riley outcome in the Labor Market Example:

$$\underline{m}_1 = 0, \underline{y}_1 = \theta_1; \quad \forall i > 1: \underline{m}_i = \underline{m}_{i-1} + \theta_{i-1}(\theta_i - \theta_{i-1}), \underline{y}_i = \theta_i.$$

■ Type θ_{i-1} prefers \underline{m}_{i-1} to \underline{m}_i iff $\theta_{i-1} - \underline{m}_{i-1}/\theta_{i-1} \ge \theta_i - \underline{m}_i/\theta_{i-1}$. In the minimal-cost separating equilibrium, set \underline{m}_i as low as possible and still satisfy this incentive constraint.

Recall D1 Criterion

- Fix a PBE (m, y, μ) where $m: \Theta \to M, y: M \to Y, \mu: M \to \Delta(\Theta)$; define $u_S^*(\theta) = u_S(\theta, m(\theta), y(m(\theta)))$, equilibrium payoff of type θ .
- Informal definition: (*m*,*y*,μ) satisfies the <u>D1 Criterion</u> if P2's offequilibrium beliefs only put weights on types of P1 that gain from the deviation for the most best responses.
- <u>DEF</u>: (m, y, u) fails the <u>D1 Criterion</u> if there exists $m' \in M \setminus m(\Theta)$ and $\theta, \theta' \in \Theta$, such that $\mu(\theta|m') > 0$, and

$$\{ y' \in y^*(\Theta, m') \mid u_S^*(\theta) \le u_S(\theta, m', y') \}$$

$$\subseteq \{ y' \in y^*(\Theta, m') \mid u_S^*(\theta') \le u_S(\theta', m', y') \}.$$

D1 Selects Riley

• <u>THM</u>: PBE outcome satisfying D1 \Leftrightarrow Riley outcome.

For simplicity, work with $u_1(\theta, m, y) = y - m/\theta$ and $y^*(\theta, m) = \theta$.

- <u>Lemma</u>: If θ plays *m* with positive probability in a PBE, then D1 implies that for all off-equilibrium m' > m and $\theta' < \theta$: $\mu(\theta'|m') = 0$.
- For all θ ' and m' > m, define $\hat{y}(\theta',m') = u_1^*(\theta') + m'/\theta'$. Type θ ' gains from deviating to m' > m iff reply is $y > \hat{y}(\theta',m')$. Now, $\hat{y}(\theta',m') \le \hat{y}(\theta,m')$ iff $u_1^*(\theta') + m'/\theta' \le u_1^*(\theta) + m'/\theta$. By equilibrium, $y(m) - m/\theta' \le u_1^*(\theta')$ and $y(m) - m/\theta = u_1^*(\theta)$, so $y(m) - m/\theta' + m'/\theta' \le y(m) - m/\theta + m'/\theta$. Therefore $\hat{y}(\theta',m') \le \hat{y}(\theta,m')$ and m' > m imply $\theta \le \theta'$.
 - $\theta' < \theta$ gains from m' > m for fewer replies than θ does; apply D1.

Illustration of the Lemma

- For all θ ' and $m' > m_{\theta}$, $\hat{y}(\theta',m') = u_1^*(\theta') + m'/\theta'$. Type θ ' gains from deviating to m' > m iff reply is $y > \hat{y}(\theta',m')$.
- Graph shows:

If $m' > m_{\theta}$ and $\theta' < \theta$, then $\hat{y}(\theta',m') > \hat{y}(\theta,m')$.

Proof that D1 Selects Riley:

- Recall lemma: If θ plays *m* in equilibrium, then D1 implies that for all *m*' > *m* and θ ' < θ , we have $\mu(\theta'|m') = 0$.
- If θ is the highest type that plays m in equilibrium with positive probability and θ' < θ also plays m in equilibrium, then y(m) < θ. By deviating to m' = m+ε, type θ guarantees a reply y ≥ θ because by the lemma, ∀θ' < θ, μ(θ'|m') = 0. Profitable, hence no pooling.
- Non-minimal separation by type θ is ruled out by D1 because θ gains from deviating to m(θ)-ε for more replies than any θ' < θ.
- <u>Issues with D1</u>: (i) Not intuitive (called "divine" for a reason);
 (ii) Specifies beliefs too strictly: P2 must put <u>zero weight</u> on all types of P1 that do not gain for the most replies to a deviation not needed for sustaining the Riley-outcome in equilibrium.

3. Cheap Talk

- Crawford & Sobel (1982): Bayesian sender-receiver game, where
 - Sender knows $\omega \in [0,1]$, pdf *f*; sends message $m \in M \supseteq [0,1]$. All messages are available in all states ("talk is cheap").
 - Receiver takes action $y \in \mathbb{R}$ given S's message. R cannot commit to a "reply rule" prior to S's message.
 - Message does not enter utility (second meaning of "cheap"). Single-peaked, concave utilities in *y* given ω . $u_i(\omega, y), i=S,R; \forall \omega, \exists y: \partial u_i(\omega, y)/\partial y = 0, \ \partial^2 u_i(\omega, y)/\partial y^2 < 0.$
 - Sorting condition: $\partial^2 u_i(\omega, y) / \partial \omega \partial y > 0$. $\Rightarrow y_i(\omega) = \operatorname{argmax}_y u_i(\omega, y)$ is <u>increasing</u> in ω .

■ $\partial u_i(\omega, y_i(\omega))/\partial y \equiv 0$, use implicit for theorem.

Crawford-Sobel Cheap Talk

- Perfect Bayesian / sequential equilibrium (*Q*,*P*,*y*):
 - Sender's strategy: measure $Q(m|\omega)$, $\int_M dQ(m|\omega) = 1$, $\forall \omega$. Suppose Q has a density, $q(m|\omega)$ on M. PBE condition: If m is in the support of q, then $m \in \operatorname{argmax}_{m'} u_1(\omega, y(m'))$.
 - Receiver's belief: measure $P(\omega|m)$, density $p(\omega|m)$ on Ω . R's strategy is $y: M \to \mathbb{R}$.

PBE conditions: (i) $y(m) = \operatorname{argmax}_{y}, \int_{0}^{1} u_{2}(\omega, y') dP(\omega|m)$. (ii) Bayes rule: $p(\omega|m) = q(m|\omega)f(\omega) / \int_{0}^{1} q(m|w) f(w)dw$.

<u>Note</u>: Since m does not have payoff consequences, we can assume without loss of generality that all messages are sent in equilibrium, so there is no off-equilibrium message m'.

Equilibrium Characterization

- <u>DEF</u>: Sender has <u>upward bias</u> if $\forall \omega \in [0,1], y_{S}(\omega) > y_{R}(\omega)$.
- <u>DEF</u>: In equilibrium (Q,P,y), action y' is <u>induced</u> in state ω' if ∫_{M'} dQ(m'|ω') > 0, where M' = {m' : y(m') = y'}.
 Y' = {y': ∃ω' s.t. y' is induced in ω'}, the set of <u>all induced actions</u>.
- <u>DEF</u>: (*Q*,*P*,*y*) is an <u>interval-partition equilibrium</u> if for all induced actions *y*' ∈ *Y*', the set of states in which *y*' is induced is an interval.
- <u>THM</u>: If the sender has upward bias, then all equilibria of the Crawford-Sobel cheap talk game are interval-partition equilibria with finitely many induced actions.
- <u>Note</u>: There can be infinitely many different messages (and even mixing over messages) in a finite interval-partition equilibrium, it does not matter: There are only finitely many induced actions.

Proof

- Suppose x, z ∈ Y' with x < z. If x is induced in state ω_x and z in ω_z, then S weakly prefers x to z in state ω_x, opposite is true in state ω_z. By continuity of u_s, there is ω' such that u_s(ω',x) = u_s(ω',z).
- By the strict concavity of $u_{s}: x < y_{s}(\omega') < z$.
- By the sorting condition: x is <u>not</u> induced by $\omega > \omega'$ and z is <u>not</u> induced by any $\omega < \omega'$. To see this: $\omega < \omega'$ iff $u_{S}(\omega,z) - u_{S}(\omega,x) = \int_{x}^{z} \partial u_{S}(\omega,y)/\partial y < \int_{x}^{z} \partial u_{S}(\omega',y)/\partial y = u_{S}(\omega',z) - u_{S}(\omega',x).$
- R knows this, so (by the sorting condition), $x \le y_{\rm R}(\omega') \le z$.
- Then, $z x \ge y_{S}(\omega') y_{R}(\omega') \ge \varepsilon > 0$ by upward bias assumption, which implies <u>*Y*</u> is finite in any equilibrium.
- By sorting: ω ' that induce same $y' \in Y$ ' form an interval. Q.E.D.

Leading Example

- Uniform *f*, constant bias $b = y_{\rm S}(\omega) y_{\rm R}(\omega)$, quadratic loss utility functions $u_i(\omega, y) = -(y y_i(\omega))^2$ for i = S, R. Normalize $y_{\rm R}(\omega) = \omega$.
- Interval-partition equilibrium with *N* induced outcomes: { $0=a_0, ..., a_N=1$ } such that $(a_i+a_{i+1})/2 - (a_i+b) = a_i+b - (a_{i-1}+a_i)/2$.
- Eqm condition yields second-order difference equation,

$$a_{i+1} = 2a_i - a_{i-1} + 4b$$
 for $i=1,...,N$; $a_0 = 0, a_N = 1$.

- For initial value a_1 , get $a_i = ia_1 + 2i(i-1)b$, i = 1,...,N. Terminal condition $a_N = 1$ gives $a_1 = [1 - 2N(N-1)b]/N$. *N*-partition equilibrium exists iff $a_1 > 0$, i.e., $N(N-1) \le 1/(2b)$.
- If there exists an equilibrium with *N* different induced actions, then there is also an equilibrium with (*N*-1) different induced actions. (This is true in general, not only in the example.)

Comments

- Positive message: talk is cheap, yet it may be informative. Negative message: continuum of states, finite # of induced actions.
- No information transmission (only "babbling") if bias is too high.
- Can use all feasible messages in any equilibrium.
 E.g, M = [0,1]: let S send m = uniform on [a_{i-1},a_i] when ω ∈ [a_{i-1},a_i].
 Standard equilibrium refinements do not restrict the equilibrium set.
- *Chen, Kartik & Sobel (2008): Denote y_0 action induced in $\omega = 0$.

*<u>THM</u>: If $u_{\rm S}(0,y_{\rm R}(0)) \ge u_{\rm S}(0,y_0)$, then there is another equilibrium with more induced actions. Under certain conditions, $u_{\rm S}(0,y_{\rm R}(0)) \le u_{\rm S}(0,y_0)$ holds in the equilibrium with the most induced actions.