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MIT 14.123 (2009) by Peter Eso

Lecture 6: Beyond EU


1. State-Dependent EU 

2. Subjective EU and Ellsberg’s Paradox 

3. Rabin’s Puzzle & Measuring riskiness


Read: Finish MWG Chapter 6, assigned readings. 




Expanding Expected Utility


•	 In many applications the “choice over objective-probs lotteries” 
framework is not appropriate. 

–	 It may matter what causes the payoff, not just its level and 
probability. State-of-Nature Representation of Uncertainty. 

–	 Choices may be given without explicit probabilities of the 
outcomes. Subjective Probabilities. 

•	 Examples: 
–	 Insurance: Suppose the probability of an accident is 1%. 

“$100 with 1% chance” ?? “$100 if accident happens”. 

–	 Betting on the Winner of the 2009 Champions’ League 
(or next year’s Super Bowl, or Best Actress at the Oscars…). 
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State Dependent EU


•	 Suppose there is a (finite) set of states, S. 
Each state s ∈ S has probability πs which is known (for now). 

•	 In each state, the outcome belongs to a (finite) set X. 
•	 The set of alternatives is a vector of objective lotteries over X in 

each state, Δ|S|, where Δ is the (|X|-1) dimensional simplex. 
•	 Compound lotteries are reduced to simple ones in each state. 
•	 However, lotteries are not reduced further by aggregating the 

probability of a given outcome across states in which it occurs. 
E.g., X = {a,b}, S = {s1,s2,s3} each state has 1/3 chance. 
Lottery (a,a,b) is not reduced to 2/3·a+1/3·b, because 
payoff a in state s1 is not the same as payoff a in state s2. 
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State Dependent EU


• THM: If a preference relation  over Δ|S| is continuous, complete, 
transitive, and satisfies the Independence Axiom, then it can be 
represented by a state-dependent expected utility function. 
A degenerate lottery (x1,…,xS) is evaluated by ∑s πs us(xs). 

•	 This result follows directly from the EU Theorem. Instead of a 
single utility index u on X, here we determine a vector of utilities, 
(u1,…,u|S|). Each payoff xi ∈ X may have a different utility index 
in each state (they are treated as different outcomes). 

•	 This theorem is not particularly deep. 
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Application: Insurance


•	 Two states, S = {“no accident”, “accident”}, probs π1, π2, resp. 
W/o insurance, the outcome is (w,w-D), where w is the initial 
wealth, D the damage. Let u1(0) = u2(0) = 0, u1’(x) > u2’(x) ∀x>0; 
and both ui ’ are decreasing. Fair insurance is available. 

x1 

x2 

0 

• 

w 

Slope: –π1/π2• 

Slope: –π1u1’(x)/π2u2’(x) 

• 

The agent’s 
optimal choice is 
less-than-full 
insurance. 

w-D 
Does u1’(x) > u2’(x) 
make sense? 
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A Subjective Framework


•	 In many decision problems with uncertainty, the “lotteries” we 
choose from do not come with objectively defined probabilities. 

•	 Example: Bet on the winner of Best Actress at the Oscars. 
Five nominees (ex ante), people may disagree on the odds. 
They still have preferences over bets on the winner. 

•	 Framework: There are “states of nature” ( “The winner is X”). 
A “gamble” is a set of objective lotteries, each one corresponding 
to a state. Two sources of uncertainty: (a) risk within a state; 
(b) uncertainty over which state will occur. 

•	 Set of alternatives: Δ|S| = set of objective lotteries in each state.  
Lotteries are reduced in each state, but not across states. 
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Utility Representations


•	 Fix a preference relation  on Δ|S| and assume it is continuous, 
complete, transitive, and satisfies the Independence Axiom. 

•	 Suppose, for a moment, that the probability of state s is πs . 
→  has a state-dependent expected utility representation:


(x1,…,x|S|)  (y1,…,y|S|) iff ∑s πs us(xs) ≥ ∑s πs us(ys).


•	 Now suppose that each state has probability πs’ = 1/|S|. The same  
preference  (which is given without reference to the probabilities 
of the states) is represented by V(x) = ∑s vs(xs); s.t. vs(xs) ≡ πs us(xs). 

•	 The modeler does not know the decision-maker’s assessment of 
the πs‘s. But the decision-maker’s behavior may reveal that 
assessment. 
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Subjective Expected Utility


•	 How can the modeler “tease out” the decision maker’s (agent’s) 
subjective probability assessment regarding the states? 

•	 If the decision-maker really has state-dependent expected utility, 
then there is no way. 

Example: If ($1,0)  (0,$1) then either the agent thinks state 
s1 is more likely than state s2, or the agent’s marginal utility 
for money is greater in s1 than s2 , or both. 

•	 Subjective EU Idea: Assume that the decision-maker has state-
independent risk-preferences. His vNM utility function can be 
determined by how he evaluates objective lotteries (useful we kept 
them in the model). Then, get subjective πs’s from the preferences. 
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Subjective Expected Utility


• DEF: Given  with utility-representation (u1,…,u|S|), the induced 
state-contingent preference relation is s such that for p,q ∈ Δ, 
p s q iff ∑x∈X ps(x)us(x) ≥ ∑x∈X qs(x)us(x). 

• DEF:  is state-uniform if s = s’ for all s,s’ ∈ S. 

• THM: Suppose that the set of alternatives is Δ|S|, where S is a finite 
set of states. If  is continuous, complete, transitive, state-uniform 
and satisfies the Independence Axiom, then there exist probability 
weights (π1,…,π|S|) and utility function u such that 

(x1,…,x|S|)  (y1,…,y|S|) iff ∑s πs u(xs) ≥ ∑s πs u(ys). 

• Richer model, more assumptions; probabilities from preferences. 
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Ellsberg’s Paradox


•	 Two bags, each has two balls. The “$20 gamble” pays $20 if you 
guess the color of a randomly-selected ball correctly. 

•	 Bag A contains 1 red and 1 green ball. How much would you pay 
for the “$20 gamble”? Average = $9.74, Fox and Tversky (1995). 

•	 Bag B also contains two balls, but the color mix is not specified. 
How much would you pay for the “$20 gamble”? Avg = $8.53. 

•	 Subjective EU  The agent has a probability assessment πR = 
Pr(Red) for each bag. No matter what πR is for Bag B, one cannot 
do worse guessing the color of the ball in Bag B than guessing it 
in Bag A. Behavior is inconsistent with Subjective EU. 
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Ellsberg’s Paradox


•	 Proposed Solution: Ambiguity Aversion. 

•	 The bet on Bag B is “ambiguous”: the probabilities are not given. 
The decision-maker cannot rule out any distribution (prior). 
Perhaps s/he evaluates a gamble as its minimum expected utility 
over all possible distributions. 

•	 Idea dates back to Wald (1950), Statistical decision functions. 

•	 Gilboa and Schmeidler (JME 1989), using subjective framework, 
give a set of axioms for an agent’s preferences to be represented 
by a vNM utility function u and a set of priors P such that 
V(x) = minπ∈P ∑s πs u(xs). 

•	 The set of priors captures the extent of ambiguity aversion. 
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Ellsberg’s Paradox

•	 More recently, Klibanoff et al. (2005, ECMA) axiomatize: 

EU preferences over lotteries, subjective EU over second-
order lotteries. Representation:  V(x) = Eμ[(∑s πs u(xs))], 
where μ is a (subjective) distribution of prob. weights π that 
the agent considers possible, and  is increasing, concave. 

•	 Bag A: Two states (ball is R or G), μ puts prob. 1 on πR = 1/2. 
Bag B: μ might put positive prob on a range of πR’s. 
Prefer the “$20 gamble” with Bag A if  is concave. 

•	 But: In Fox-Tversky experiment, ambiguity aversion is found only 
if the subject is asked both questions (in comparison), not when 
s/he only faces the “$20 gamble” with either Bag A or Bag B. 
The agent is suspicious that the experimenter is an adversary? 
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Final Comments on EU Models


•	 The Expected Utility model of preferences over risky lotteries 
builds on compelling axioms and admits a simple representation. 
Framework can have objective or subjective probabilities. 

•	 Models with risk and risk aversion explain a variety of observed 
phenomena. Many strange effects can be accommodated by 
taking into account background risk or state-dependent utility. 

•	 There are few paradoxes that raise fundamental questions about 
framing and how people understand choice problems (ambiguity). 

•	 Apparent violations of rational choice models inspired work in 
Behavioral Economics (from Rabin to Gül & Pesendorfer) and 
Decision Theory (Machina, Epstein, recently Klibanoff et al, …). 
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Rabin’s Puzzle


•	 Suppose we flip a fair coin; you win $100 if H, lose $90 if T. 

•	 Do you take this bet given your current wealth?  Higher wealth? 

•	 Repeating the experiment with different wealth levels and stakes 
should calibrate your risk aversion – if your behavior is consistent 
with some vNM utility function. 

• THM  (Rabin, 2000 ECMA): An agent that has concave vNM 
utility and turns down a bet to win $100 or lose $90 with equal 
probabilities at all wealth levels should also turn down a bet to 
win $x or lose $800 with equal probabilities for any x ∈ . 
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*Proof (Recitation)

■ u” ≤ 0  [u(w+100) – u(w+10)]/90 ≤ [u(w+100) – u(w)]/100, so 

u(w+100) – u(w+10) ≤ .9 [u(w+100) – u(w)].  (*)  

•	 Agent turns down the gamble at w+100, hence 
[u(w+200) + u(w+10)]/2 ≤ u(w+100), or 
u(w+200) – u(w+100) ≤ u(w+100) – u(w+10). 

•	 (*)  u(w+200) – u(w+10) ≤ .9 [u(w+100) – u(w)]. 
Induction: u(w+100k) – u(w+100(k-1)) ≤ .9k-1[u(w+100) – u(w)]. 

•	 Gain u(x) – u(w) ≤ ∑ k ≥ 1 u(w+100k) – u(w+100(k-1)) 
≤ (1 + .9 + .92 +…)[u(w+100) – u(w)] ≤ 10[u(w+100) – u(w)]. 

•	 Loss: u(w) – u(w-800) = ∑1≤k≤8 u(w-100(k-1)) – u(w-100k) 
≥ (1 + … + (10/9)8) [u(w+100) – u(w)] > 10[u(w+100) – u(w)]. ■ 
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Insight from the Puzzle


•	 As we increase w by $100, if the agent keeps turning down the 
gamble (+$100, -$90 with equal probs) then his utility increment 
declines by a constant factor (that is, exponentially). 
This is why he does not take the second bet for any large x. 

•	 Possible answers: 

(1) Is there anybody who turns down that gamble with any w? 
(I became risk neutral to small bets as soon as I got a job.) 

(2) Initial wealth as a “mental state”? 

•	 We pursue answer (1) next. 
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Measuring Riskiness


Dean Foster and Sergiu Hart, “An Operational Measure of 
Riskiness”, working paper, 2008. 

•	 Measure the riskiness of a gamble without a detailed model of 
decision making (e.g., no utility fcn, no expected utility). 

•	 Idea: Calculate the “critical level of wealth” at which it is “safe” 
to accept a gamble (bet). 

•	 Gambles: Positive expected value random variables that have 
negative realizations. 

•	 When is it “safe” to accept a gamble?  The decision maker with a 
given initial wealth wants to avoid bankruptcy. 
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Setup

•	 A gamble g is a random variable with finitely many possible 

outcomes, x1,…,xm, each with positive probability pi , i=1,…,m. 

•	 Assume that the expected value of g is positive, ∑i pixi > 0. 

•	 Denote the maximal loss of g by L(g) = –min{xi}, and assume 
L(g) > 0. (There is a negative outcome). 

•	 Denote the set of all such gambles by G. 

•	 Let the decision maker’s initial wealth be W1. In a static setup, the 
way to avoid bankruptcy is not to take any g with L(g) > W1. 

•	 The paper’s approach is more sophisticated: dynamic setup, 
potentially unknown process (gt)t>1 , nature as “adversary”. 

•	 Avoid bankruptcy: limt→∞ Wt = W∞ > 0. 
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An Example


•	 Suppose g is the 50-50% gamble, win $100 or lose $90. 
(Recall Rabin’s puzzle.) 

•	 Suppose that the decision maker faces an iid sequence of such 
gambles. (Main results will not assume the process is known.) 

•	 Suppose that in period t = 1,2,…, the decision maker can take on 
any proportion of the gamble, i.e., αtg in period t, αt ∈ [0,1]. 

•	 Assume that the agent uses a “simple proportional strategy”: 
Computes a number Q, called “critical wealth” for gamble g, and 
with wealth Wt in period t, he chooses αt = max{Wt /Q,1}. 

Interpretation: If Wt is greater than the critical wealth Q, 
then take the whole gamble, if not, take a portion of it. 
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An Example, cont’d


•	 How will Wt evolve, given g and strategy corresponding to Q ? 

•	 WT = WT-1 + αT-1 gT-1 = WT-1 + (WT-1 /Q)gT-1 = WT-1 (1+gT-1 /Q) 
= W1 ∏t≤T (1+gt /Q). 

•	 Suppose, for instance, that Q = 500 for the gamble 50-50% chance 
of +100 and -90. Then, 1+gt /Q = 1.2 and 0.82 with equal 
probabilities; i.e., the returns in each period are +20% or -18%. 
In the long run, by the Law of Large Numbers, the average wealth 
change per period is √1.2*0.82 = 0.992. Almost surely, Wt → 0. 

•	 If Q = 1000, then 1+gt /Q ∈ {1.1, 0.91}, the long-run average per-
period wealth growth is √1.1*0.91 = 1.005, so Wt →∞. 

• At Q	= 900, the long-run average growth is exactly unity. 
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More Generally


•	 Suppose that gt is iid, and the agent uses the “simple proportional 
strategy” described above, with critical wealth Q. 

•	 THM: Let R solve E[ ln(1+g/R) ] = 0. 
If Q > R then Wt →∞; while if Q < R then Wt → 0, almost surely. 

■	 By compounding returns and using the Law of Large 
Numbers as we did in the example. ■ 

•	 Note: For any g, there is a unique solution R to E[ln(1+g/R)] = 0. 
This needs a little proof. 

•	 If the gamble is 50-50% chance of gain a and loss b, 0 < b < a, 
then R = ab/(a-b). 

•	 We may call R an objective measure of riskiness. 
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Going Full Tilt

•	 Relax the iid assumption and assume instead that (gt)t≥1 is any 

process where each gt belongs to a finite cone G. 

•	 Indeed, assume that the process is generated by an adversary – 
Nature picks the gambles to maximize the chance of bankruptcy 
given the agent’s strategy. 

•	 Let αt ∈ {0,1} instead of [0,1].  (Nature can scale up/down bets.) 

•	 THM: ∀g, let R(g) be the unique solution to E[ ln(1+g/R(g)) ] = 0. 
If a strategy rejects g at W < R(g) then it avoids bankruptcy, i.e., 
limt→∞ Wt > 0 for any sequence (gt)t≥1 and any initial wealth W1. 

■	 Proof is similar to calculations in the example; uses 
martingale convergence theorem in the general case.■ 
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Properties of Riskiness R


• THM: For all gambles g, h ∈ G, 

(1) If g and h have the same distribution, then R(g) = R(h). 

(2) Homogeneity: R(λg) = λR(g). 

(3) Riskiness exceeds maximal loss: R(g) > L(g). 

(4) Sub-additivity: R(g+h) ≤ R(g) + R(h). 

(5) Convexity: ∀λ∈(0,1), R(λg+(1-λ)h) ≤ λR(g) + (1-λ)R(h). 

(6) Independent gambles: For independent random vars g and h, 
min{R(g),R(h)} < R(g+h) < R(g) + R(h).


■ All follow from the formula. ■
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Connections


•	 Agent with vNM utility u rejects gamble g at initial wealth W iff 
E[u(W+g)] < u(W). 

For u(x) = ln(x), reject g iff E[ln(1+g/W)] < 0, i.e., W<R(g). 

To avoid bankruptcy, reject any gamble that log-utility rejects. 
Or: CRRA(ρ) utility guarantees no-bankruptcy if ρ ≥ 1. 

•	 Rabin’s puzzle: “Reject a gamble at all wealth levels W” ?  
Is W total current wealth (including value of all future earnings, 
human capital etc.), or gambling wealth (amount ready to lose). 

•	 Compare with riskiness measures used in finance, like VaR 
(value at risk). Those are even more ad hoc, this is at least 
motivated with a good story. 
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