MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT 14.123 (2009) by Peter Eso Lecture 5: Background Risk

- 1. Calibrating Risk Aversion
- 2. Refresher on (Log-)Supermodularity
 - 3. Background Risk & DARA

<u>Solve</u>: Problem set handed out in class.

Calibrating Risk Aversion

- Suppose *u* is CRRA(ρ) = $x^{1-\rho}/(1-\rho)$, and the agent's initial wealth is w = \$100,000. Consider a gamble $\pm \$X$ with 50-50% chance.
 - $X = 30,000; \rho = 40$: Risk premium is about \$28,700 too high.
 - $X = 30,000; \rho = 2$: Risk premium is about \$9,000 OK?
 - X=500; $\rho = 2$: Risk premium is about \$2.5 too low?
- It may be difficult to come up with reasonable parameters that match introspection and real-life evidence.

Luckily, the Equity Premium Puzzle fizzled in 2008!

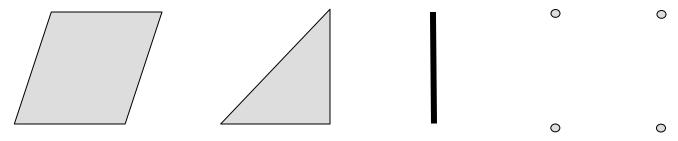
• <u>Today</u>: Background risk in real life (not present in bare-bones examples) may cause some of the apparent puzzles. Decision-making with <u>risky initial wealth</u> is non-trivial & interesting.

Lattices

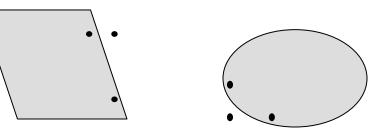
- <u>DEF</u>: For any partially ordered set (X, \ge) and all $x, y \in X$ define
 - The join $x \lor y = \inf\{z \in X : z \ge x, z \ge y\};$
 - The meet $x \land y = \sup \{z \in X : x \ge z, y \ge z\}$.
- <u>DEF</u>: (X,\geq) is a <u>lattice</u> if $\forall x, y \in X$: $x \lor y \in X, x \land y \in X$.
- <u>DEF</u>: Given (X, \ge) , for $S, Z \subseteq X$, let $S \ge Z$ ("*S* weakly exceeds *Z* in the strong set order") if $\{x \in S, y \in Z\} \Rightarrow \{x \lor y \in S, x \land y \in Z\}$.
- <u>THM</u>: (X, \ge) is a lattice iff $X \ge X$. (trivial)
- <u>DEF</u>: (X, \ge) is a <u>complete lattice</u> if $\forall S \subseteq X$, inf $S \in X$, sup $S \in X$.
- <u>DEF</u>: *L* is a <u>sublattice</u> of a partially ordered set (*X*, ≥) if *L* is a <u>sub</u>set of *X* and it is a <u>lattice</u>.

Sublattices of Rⁿ

- Example: L = ℝⁿ, ≥ is the usual (coordinate-wise) order on vectors;
 x∨y is coordinate-wise maximum, x∧y coordinate-wise minimum.
- Sublattices of \mathbb{R}^2 :



• <u>Not</u> sublattices of \mathbb{R}^2 :



(Log-)Supermodularity

- <u>DEF</u>: A function $f: X \to \mathbb{R}$ is <u>supermodular</u> if for all $x, y \in X$, $f(x \lor y) + f(x \land y) \ge f(x) + f(y)$.
- <u>DEF</u>: A function $f: X \to \mathbb{R}_+$ is <u>log-supermodular</u> if for all $x, y \in X$, $f(x \lor y) \cdot f(x \land y) \ge f(x) \cdot f(y)$.

That is, h is <u>log-spm</u> if <u>log(f)</u> is supermodular.

- <u>THM</u> (Topkis): A twice-differentiable $f: \mathbb{R}^n \to \mathbb{R}$ is supermodular iff for all i, j = 1, ..., n, $i \neq j$, and $x \in \mathbb{R}^n$, $\partial^2 f(x) / \partial x_i \partial x_j \ge 0$.
- Examples: If $X = \mathbb{R}$, then *f* is supermodular, as well as log-spm. If $X = \mathbb{R}^n$ and $f(x) \equiv f(\sum x_n)$, then *f* is log-spm iff log-convex.
- (Log-)supermodularity captures <u>complementarity</u>.

Single Crossing

- <u>DEF</u>: Given lattice (X, \ge) , function $f: X \to \mathbb{R}$, is <u>quasi-supermodular</u> if $\forall x, y \in X$, $f(x) - f(x \land y) \ge (>) 0$ implies $f(x \lor y) - f(y) \ge (>) 0$.
- <u>THM</u>: If a function is supermodular or log-spm then it is quasi-spm.
- <u>DEF</u>: $g: \mathbb{R} \to \mathbb{R}$ is <u>single-crossing</u> if $\forall t' \ge t: g(t) \ge (>) 0 \Rightarrow g(t') \ge (>) 0$.
- <u>DEF</u>: $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfies <u>single-crossing differences</u> if $\forall z' > z$, $g(t) \equiv f(z',t) - f(z,t)$ is single-crossing.
- <u>THM</u>: If (X, \ge) is a sublattice of \mathbb{R}^n , then <u>quasi-supermodularity</u> \Rightarrow <u>single-crossing differences</u> in every pair of coordinates.

■ Prove both Theorems in Recitation. ■

• Single-crossing conditions are used in a variety of settings.

Monotonic Comparative Statics

- <u>DEF</u>: Let $B, B' \subseteq X$. $B' \ge B$ if $\forall b \in B$, $b' \in B'$: $b \land b' \in B$ and $b \lor b' \in B'$.
- <u>THM</u> (Topkis): Let (X, \ge) be a partially ordered set, $f: X \times \mathbb{R} \to \mathbb{R}$ a supermodular function, *B* a sublattice of (X, \ge) , and $t' \ge t$. Then, $x^*(t,B) \equiv \operatorname{argmax} \{ f(x,t) \mid x \in B \}$

 $x(l,B) = \arg \max \{ f(x,l) \mid x \in B \}$

is sublattice of (X, \geq) that is increasing ("isotone") in *t* and *B*.

• <u>THM</u> (Milgrom & Shannon): Let (X, \ge) be a sublattice of \mathbb{R}^n and $T \subseteq \mathbb{R}$. If *B* is a sublattice of *X* and $f: X \times T \rightarrow \mathbb{R}$ is q-spm, then $x^*(t,B) \equiv \operatorname{argmax} \{ f(x,t) \mid x \in B \}$ is increasing in *B* and *t*.

■ Prove the latter Theorem in Recitation. ■

Instances of Log-Supermodularity

- In mathematical statistics: Total Positivity of Order 2 (Karlin). (Re-)discovered and first applied in economics by Ian Jewitt, Paul Milgrom, and Xavier Vives (separately) in the 80's.
- The price-elasticity of demand, $P \cdot D_P(P,t)/D(P,t)$, is weakly increasing in *t* iff the demand function, D(P,t), is log-spm.
 - $\partial \ln(D(P,t))/\partial P = D_P(P,t)/D(P,t)$. By Topkis' Thm: D(P,t), is log-spm iff $D_P(P,t)/D(P,t) \uparrow$ in t. ■
- A vector of random variables is <u>affiliated</u> (a notion of "positively correlated" used in auction theory) iff their joint pdf is log-spm.
 - Definition of affiliated pdf $f: f(z \land z') f(z \lor z') \ge f(z) f(z')$. Non-negative correlation conditional on any outcome-pair.

Instances of Log-Supermodularity

- A parametrized family of payoff-distributions F(x,t) is increasing in *t* in the <u>MPR sense</u> iff *F* is log-spm.
 - F(x,1) MPR-dominates F(x,0) iff F(x,1)/F(x,0) ↑ in x.
- A parametrized family of payoff-distributions F(x,t) is increasing in *t* in the <u>MLR sense</u> iff *F*' is log-spm.

■ F(x,1) MLR-dominates F(x,0) iff F'(x,1)/F'(x,0) ↑ in x.

• A Bernoulli-vNM utility index *u* is <u>DARA</u> iff *u*'(*w*+*z*) is log-spm in wealth (*w*) and the realization of the prize (*z*).

■ *u*' is log-spm iff log-convex; $\partial \ln(u'(x))/\partial x = u''(x)/u'(x)$.

- Agent 1 is more risk averse than 2 if $u_i'(w)$ is log-spm in (w,i).
 - log-spm: $\partial \ln(u_i'(w))/\partial w = u_i''(w)/u_i'(w)$ is increasing in *i*.

A Theorem from Statistics

- Let $X = X_1 \times ... \times X_n$ and $Z = Z_1 \times ... \times Z_m$ be sublattices of \mathbb{R}^n and \mathbb{R}^m with $X_i \subseteq \mathbb{R}$ and $Z_j \subseteq \mathbb{R}$ for all *i* and *j*. Let $T \subseteq \mathbb{R}$.
- Suppose $u: X \times Z \to \mathbb{R}_+$ is a bounded utility function and $f: Z \times T \to \mathbb{R}_+$ is a probability density function on Z for all $t \in T$. Define

 $U(x,t) = \int u(x,z) f(z,t) dz.$

- <u>THM</u> (Karlin): If u and f are log-spm, then U is log-spm.
- Remark: Products of log-spm functions are clearly log-spm, but <u>arbitrary</u> sums of log-spm functions are not log-spm.

MCS in Decision Theory

• <u>THM</u>: If *u* and *f* are log-spm, then $\forall t \in T$ and sublattice $B \subseteq X$, $x^*(t,B) \equiv \operatorname{argmax} \{ U(x,t) \mid x \in B \}$ is increasing in *t* and *B*.

That is, for all $t' \ge t$ and sublattices $B' \ge B$ (in strong set order), we have $x^*(t',B') \ge x^*(t,B)$.

 ■ Combine Karlin's Thm (previous slide) with Milgrom & Shannon's Thm (slide #6).

Problem with Background Risk

- Agent has vNM utility u for wealth, strictly increasing & concave.
- The agent is exposed to uninsurable risk: Her initial wealth is $w_0 + \tilde{w}$, where w_0 is a scalar, \tilde{w} is a random variable.
- Can invest in asset with random net return \tilde{x} , independent of \tilde{w} .
- <u>Problem</u>: Invest α to maximize $E[u(w_0 + \tilde{w} + \alpha \tilde{x})]$.
- Define $v(z) = E[u(z + \widetilde{w})]$. Problem $\Leftrightarrow \max_{\alpha} E[v(w_0 + \alpha \widetilde{x})]$.
- Are "good properties" of *u* inherited by *v* ?
 - Clearly, v' > 0, v'' < 0. (Differentiation goes through E.)
 - If u is DARA, is v DARA as well?
 - If *u* is DARA & $E[\tilde{w}] \leq 0$, then is *v* more risk averse than *u*?

DARA with Background Risk

- <u>THM</u>: If $u: \mathbb{R} \to \mathbb{R}$ is a DARA utility and f a pdf on $Z \subseteq \mathbb{R}$, then $v(x) \equiv \int_Z u(x+z) f(z) dz, \forall x \in \mathbb{R}$,
 - is a DARA utility function.
 - *u* is DARA \Leftrightarrow *u*'(*x*₁+*x*₂+*z*) is log-spm in (*x*₁,*x*₂,*z*).

f is log-spm because Z is one-dimensional.

Let $v'(x_1+x_2) \equiv \int_Z u'(x_1+x_2+z) f(z) dz$.

By Karlin's Thm, $v'(x_1+x_2)$ is log-spm in (x_1,x_2) , hence v is DARA.

• Similar theorems are <u>not true</u> if u is not DARA.

DARA with Background Risk

- <u>THM</u>: Given utility $u: \mathbb{R} \to \mathbb{R}$ and pdf f with $\int zf(z)dz \le 0$, if $r_A(x,u)$ is <u>decreasing</u> and <u>convex</u> in x, then $v(x) \equiv \int_Z u(x+z) f(z)dz$, $\forall x \in \mathbb{R}$, is <u>more risk averse</u> than u.
 - To show: $-\int_{Z} u''(x+z) f(z)dz / \int_{Z} u'(x+z) f(z)dz \ge r_A(x,u)$, that is, $\int_{Z} r_A(x+z,u) u'(x+z) f(z)dz \ge r_A(x,u) \int_{Z} u'(x+z) f(z)dz$. Left-hand side exceeds $\int_{Z} r_A(x+z,u) f(z)dz \int_{Z} u'(x+z) f(z)dz$ because both r_A and u' are decreasing in z. (Cov $(r_A, u') \ge 0$.) $\int_{Z} r_A(x+z,u) f(z)dz \ge r_A(x+E[z],u)$ by convexity of r_A , and $r_A(x+E[z],u) \ge r_A(x,u)$ because $E[z] \le 0$ and DARA.
- Why assume E[z] ≤ 0? Otherwise background risk could increase wealth, possibly reducing risk aversion (DARA).