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Lecture 5: Background Risk


1. Calibrating Risk Aversion 

2. Refresher on (Log-)Supermodularity 

3. Background Risk & DARA 

Solve: Problem set handed out in class. 



Calibrating Risk Aversion

•	 Suppose u is CRRA(ρ) = x1-ρ/(1-ρ), and the agent’s initial wealth 

is w = $100,000. Consider a gamble ± $X with 50-50% chance. 

�	 X=30,000; ρ = 40: Risk premium is about $28,700 – too high. 

�	 X=30,000; ρ = 2: Risk premium is about $9,000 – OK? 

�	 X=500; ρ = 2: Risk premium is about $2.5 – too low? 

•	 It may be difficult to come up with reasonable parameters that 
match introspection and real-life evidence. 


Luckily, the Equity Premium Puzzle fizzled in 2008!


•	 Today: Background risk in real life (not present in bare-bones 
examples) may cause some of the apparent puzzles.  Decision-
making with risky initial wealth is non-trivial & interesting. 
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Lattices


• DEF: For any partially ordered set (X, ≥) and all x, y ∈ X define 
– The join  x∨y = inf{z∈X : z≥x, z≥y}; 
– The meet x∧y = sup{z∈X : x≥z, y≥z}. 

• DEF: (X,≥) is a lattice if ∀x, y ∈ X: x ∨ y ∈ X, x ∧ y ∈ X. 

• DEF: Given (X, ≥), for S, Z ⊆ X, let S ≥ Z (“S weakly exceeds Z in 
the strong set order”) if {x ∈ S, y ∈ Z} ⇒ {x∨y ∈ S, x∧y ∈ Z}. 

• THM: (X, ≥) is a lattice iff X ≥ X. (trivial) 

• DEF: (X, ≥) is a complete lattice if ∀S ⊆ X, inf S ∈ X, sup S ∈ X. 

• DEF: L is a sublattice of a partially ordered set (X, ≥) if L is a 
subset of X and it is a lattice. 
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Sublattices of n


• Example: L = n, ≥ is the usual (coordinate-wise) order on vectors; 
x∨y is coordinate-wise maximum, x∧y coordinate-wise minimum. 

• Sublattices of 2 : 

• Not sublattices of 2 :
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(Log-)Supermodularity


• DEF: A function f: X→  is supermodular if for all x, y ∈ X, 
f(x∨y) + f(x∧y) ≥ f(x) + f(y). 

• DEF: A function f: X→ + is log-supermodular if for all x, y ∈ X, 
f(x∨y) · f(x∧y) ≥ f(x) · f(y).


That is, h is log-spm if log(f) is supermodular.


• THM  (Topkis): A twice-differentiable f: n→  is supermodular 
iff for all i,j =  1,…,n, i ≠ j, and x ∈ n, ∂2f(x)/∂xi∂xj ≥ 0. 

•	 Examples: If X = , then f is supermodular, as well as log-spm. 
If X = n and f(x) ≡ f(∑xn), then f is log-spm iff log-convex. 

•	 (Log-)supermodularity captures complementarity. 
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Single Crossing


• DEF: Given lattice (X, ≥), function f: X → , is quasi-supermodular 
if ∀x,y ∈ X, f(x) – f(x∧y) ≥ (>) 0 implies f(x∨y) – f(y) ≥ (>) 0. 

• THM: If a function is supermodular or log-spm then it is quasi-spm. 

• DEF: g: → is single-crossing if ∀t’≥t: g(t) ≥(>) 0 ⇒ g(t’) ≥(>) 0. 

• DEF: f: × →  satisfies single-crossing differences if ∀z’ > z, 
g(t) ≡ f(z’,t) – f(z,t) is single-crossing. 

• THM: If (X, ≥) is a sublattice of n, then quasi-supermodularity 
⇒ single-crossing differences in every pair of coordinates.


■ Prove both Theorems in Recitation. ■


• Single-crossing conditions are used in a variety of settings. 
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Monotonic Comparative Statics


• DEF: Let B,B’ ⊆ X. B’≥B if ∀b∈B, b’∈B’: b∧b’∈B and b∨b’∈B’. 

• THM  (Topkis): Let (X, ≥) be a partially ordered set, f: X× →  

a supermodular function, B a sublattice of (X, ≥), and t’ ≥ t. Then, 

x*(t,B) ≡ argmax { f(x,t) | x ∈ B } 

is sublattice of (X, ≥) that is increasing (“isotone”) in t and B. 

• THM  (Milgrom & Shannon): Let (X, ≥) be a sublattice of n 

and T ⊆ . If B is a sublattice of X and f: X×T→ is q-spm, 
then x*(t,B) ≡ argmax { f(x,t) | x ∈ B } is increasing in B and t. 

■ Prove the latter Theorem in Recitation. ■ 
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Instances of Log-Supermodularity


•	 In mathematical statistics: Total Positivity of Order 2 (Karlin). 
(Re-)discovered and first applied in economics by Ian Jewitt, 
Paul Milgrom, and Xavier Vives (separately) in the 80’s. 

•	 The price-elasticity of demand, P·DP(P,t)/D(P,t), is weakly 
increasing in t iff the demand function, D(P,t), is log-spm. 

■	 ∂ln(D(P,t))/∂P = DP(P,t)/D(P,t). By Topkis’ Thm: 

D(P,t), is log-spm iff DP(P,t)/D(P,t) ↑ in t. ■


•	 A vector of random variables is affiliated (a notion of “positively 
correlated” used in auction theory) iff their joint pdf is log-spm. 

■	 Definition of affiliated pdf f : f(z∧z’) f(z∨z’) ≥ f(z) f(z’). 
Non-negative correlation conditional on any outcome-pair.■ 
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Instances of Log-Supermodularity


•	 A parametrized family of payoff-distributions F(x,t) is increasing 
in t in the MPR sense iff F is log-spm. 
■ F(x,1) MPR-dominates F(x,0) iff F(x,1)/F(x,0) ↑ in x. ■ 

•	 A parametrized family of payoff-distributions F(x,t) is increasing 
in t in the MLR sense iff F’ is log-spm.

■ F(x,1) MLR-dominates F(x,0) iff F’(x,1)/F’(x,0) ↑ in x. ■


•	 A Bernoulli-vNM utility index u is DARA iff u’(w+z) is log-spm 
in wealth (w) and the realization of the prize (z). 
■ u’ is log-spm iff log-convex; ∂ln(u’(x))/∂x = u”(x)/u’(x). ■ 

•	 Agent 1 is more risk averse than 2 if ui’(w) is log-spm in (w,i). 
■ log-spm: ∂ln(ui’(w))/∂w = ui”(w)/ui’(w) is increasing in i. ■ 
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A Theorem from Statistics


•	 Let X = X1 × … ×  Xn and Z = Z1 × … ×  Zm be sublattices of n and 
m with Xi ⊆  and Zj ⊆  for all i and j. Let T ⊆ . 

•	 Suppose u: X×Z→+ is a bounded utility function and f: Z×T →+ 

is a probability density function on Z for all t ∈ T. Define 

U(x,t) = ∫ u(x,z) f(z,t)dz. 

• THM  (Karlin): If u and f are log-spm, then U is log-spm. 

•	 Remark: Products of log-spm functions are clearly log-spm, 
but arbitrary sums of log-spm functions are not log-spm. 
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MCS in Decision Theory


• THM: If u and f are log-spm, then ∀t ∈ T and sublattice B ⊆ X, 

x*(t,B) ≡ argmax {U(x,t) | x∈B} is increasing in t and B. 

That is, for all t’ ≥ t and sublattices B’ ≥ B (in strong set order), 
we have x*(t’,B’) ≥ x*(t,B). 

■ Combine Karlin’s Thm (previous slide) with Milgrom & 
Shannon’s Thm (slide #6). ■ 
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Problem with Background Risk

• Agent has vNM utility u for wealth, strictly increasing & concave. 

•	 The agent is exposed to uninsurable risk:  Her initial wealth is 
~ ~ w0 + w, where w0 is a scalar, w is a random variable. 

~ ~ •	 Can invest in asset with random net return x, independent of w. 
~ ~ •	 Problem: Invest α to maximize E[u(w0+w+αx)]. 

~ ~ • Define v(z) = E[u(z+w)]. Problem  maxα E[v(w0+αx)]. 

• Are “good properties” of u inherited by 	v ? 

– Clearly, v’ > 0, v” < 0. (Differentiation goes through E.) 

–	 If u is DARA, is v DARA as well?

~
– If u is DARA & E[w] ≤ 0, then is v more risk averse than u? 
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DARA with Background Risk


• THM: If u: → is a DARA utility and f a pdf on Z ⊆ , then 
v(x) ≡ ∫Z u(x+z) f(z)dz, ∀x ∈ , 

is a DARA utility function. 

■	 u is DARA  u’(x1+x2+z) is log-spm in (x1,x2,z). 

f is log-spm because Z is one-dimensional. 

Let v’(x1+x2) ≡ ∫Z u’(x1+x2+z) f(z)dz. 

By Karlin’s Thm, v’(x1+x2) is log-spm in (x1,x2), 
hence v is DARA. ■ 

•	 Similar theorems are not true if u is not DARA. 
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DARA with Background Risk


• THM: Given utility u: → and pdf f with ∫ zf(z)dz ≤ 0, if rA(x,u) 
is decreasing and convex in x, then v(x) ≡ ∫Z u(x+z) f(z)dz, ∀x ∈ , 
is more risk averse than u. 

■	 To show: –∫Z u”(x+z) f(z)dz /  ∫Z u’(x+z) f(z)dz ≥ rA(x,u), 
that is, ∫Z rA(x+z,u) u’(x+z) f(z)dz ≥ rA(x,u) ∫Z u’(x+z) f(z)dz. 

Left-hand side exceeds ∫Z rA(x+z,u) f(z)dz ∫Z u’(x+z) f(z)dz 
because both rA and u’ are decreasing in z.  (Cov(rA,u’) ≥ 0.) 

∫Z rA(x+z,u) f(z)dz ≥ rA(x+E[z],u) by convexity of rA, and 
rA(x+E[z],u) ≥ rA(x,u) because E[z] ≤ 0 and DARA. ■ 

•	 Why assume E[z] ≤ 0? Otherwise background risk could increase 
wealth, possibly reducing risk aversion (DARA). 
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