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Lecture 5: Background Risk

1. Calibrating Risk Aversion
2. Refresher on (Log-)Supermodularity
3. Background Risk & DARA

Solve: Problem set handed out in class.
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Calibrating Risk Aversion

 Suppose 1 is CRRA(p) = x!'/(1-p), and the agent’s initial wealth
is w=$100,000. Consider a gamble + $X with 50-50% chance.

= X=30,000; p =40: Risk premium is about $28,700 — too high.
= X=30,000; p = 2: Risk premium is about $9,000 — OK?
= X=500; p = 2: Risk premium is about $2.5 — too low?

* It may be difficult to come up with reasonable parameters that
match introspection and real-life evidence.

Luckily, the Equity Premium Puzzle fizzled in 2008!
« Today: Background risk 1n real life (not present in bare-bones

examples) may cause some of the apparent puzzles. Decision-
making with risky initial wealth 1s non-trivial & interesting.
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Lattices

DEF: For any partially ordered set (X, >) and all x, y € X define
— The join x\Vy = inf{zeX : z>x, z>y};
— The meet x\y = sup{zeX : x>z, y>z}.

DEF: (X,>)is alatticeif Vx, ye X: xVye X x AyeX.

DEF: Given (X, >), for §, Z < X, let § > Z (“S weakly exceeds Z in
the strong set order”) if {x € S,y e Z} = {x\V/y € S, x\y € Z}.

THM: (X, >) 1s a lattice iff X > X. (trivial)

DEF: (X, >) is a complete lattice if VS < X, inf S € X, sup S € X.

DEF: L 1s a sublattice of a partially ordered set (X, >) if L is a
subset of X and it is a lattice.
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Sublattices of R

« Example: L = R”, > 1is the usual (coordinate-wise) order on vectors;
x\/y 1s coordinate-wise maximum, x/\)y coordinate-wise minimum.

« Sublattices of R? :

/ o

« Not sublattices of R? :

o
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(Log-)Supermodularity

DEF: A function /: X— R is supermodular if for all x, y € X,
Javy) + fxny) 2 f(x) + ).
DEF: A function f/: X— R 1s log-supermodular if for all x, y € X,

SxVy) - fxny) 2 fx) - f).
That 1s, / 1s log-spm 1f log(f) 1s supermodular.

THM (Topkis): A twice-differentiable /: R"— R 1s supermodular
iff forallij=1,...,n, i #/, and x € R", 62]‘(x)/8xi8xj > 0.

Examples: If X = R, then fis supermodular, as well as log-spm.
If X=R"and f(x) = f(D x,), then f1s log-spm iff log-convex.

(Log-)supermodularity captures complementarity.
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Single Crossing

DEF: Given lattice (X, >), function f/: X — R, is quasi-supermodular
if Vx,y € X, f(x) — fixA\y) > (>) 0 implies f(x\/y) — f{y) > (>) 0.

THM: If a function 1s supermodular or log-spm then it 1s quasi-spm.

DEF: g: R—R is single-crossing if V¢’ >t: (1) >(>) 0 = g(¢’) >(>) 0.

DEF: f: RxR — R satisfies single-crossing differences if Vz’ > z,
a2(t) = f(z°,1) — f(z,t) 1s single-crossing.
THM: If (X, >) 1s a sublattice of R”, then quasi-supermodularity

—> single-crossing differences in every pair of coordinates.

m Prove both Theorems in Recitation. =

Single-crossing conditions are used in a variety of settings.
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Monotonic Comparative Statics

« DEF: Let B,B’ < X. B’>B1f VbeB, b’eB’: bAb’eB and b\Vb’eB’.
« THM (Topkis): Let (X, >) be a partially ordered set, /: Xx R— R
a supermodular function, B a sublattice of (X, >), and " > 7. Then,
x"(t,B) = argmax { f{x,f) | x€ B}
1s sublattice of (X, >) that 1s increasing (“isotone”) in 7 and 5.

 THM (Milgrom & Shannon): Let (X, >) be a sublattice of R”
and 7 R. If B 1s a sublattice of X and /: Xx7T—R is q-spm,
then x*(¢,B) = argmax { f(x.,f) | x € B } is increasing in B and 1.

m Prove the latter Theorem in Recitation. m
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Instances of Log-Supermodularity

 In mathematical statistics: Total Positivity of Order 2 (Karlin).
(Re-)discovered and first applied in economics by Ian Jewitt,
Paul Milgrom, and Xavier Vives (separately) in the 80’s.

* The price-elasticity of demand, P-D,(P,t)/D(P.t), 1s weakly
increasing in ¢ i1ff the demand function, D(P,?), 1s log-spm.

m OIn(D(P,1))/0P = D,(P,t)/D(P.t). By Topkis’ Thm:
D(P,t), 1s log-spm iff D,(P,f)/D(P,t) 1 int. m

A vector of random variables 1s affiliated (a notion of “positively
correlated” used in auction theory) iff their joint pdf is log-spm.

m Definition of affiliated pdf /: f(zAzZ") f(zVz") = f(z) f(27).
Non-negative correlation conditional on any outcome-pair.m
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Instances of Log-Supermodularity

A parametrized family of payoff-distributions F(x,7) is increasing
in 7 in the MPR sense iff F'1s log-spm.

m /(x,1) MPR-dominates F(x,0) iff 7 (x,1)/F(x,0) 1 inx. m

A parametrized family of payoff-distributions F(x.7) is increasing
in 7 in the MLR sense iff /" 1s log-spm.

m /(x,1) MLR-dominates F(x,0) iff 7'(x,1)/F’(x,0) T in x. m

A Bernoulli-vNM utility index « 1s DARA iff «’(w+z) 1s log-spm
in wealth (w) and the realization of the prize (z).

m u is log-spm iff log-convex; oln(u’(x))/0x = u”(x)/u’(x). m
Agent | 1s more risk averse than 2 1f #,’(w) 1s log-spm 1n (w,i).

m log-spm: Oln(u,;”(w))/ow = u,”(w)/u;”(w) 1s increasing in i. m
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A Theorem from Statistics

Let X=X, x...xX and Z=Z,x ... x Z be sublattices of R” and
R™with X, R and Z, < R forall /and ;. Let T < R.

Suppose u: XxZ—R . is a bounded utility function and f: ZxT —R,
1s a probability density function on Z for all 7 € 7. Define

Ux,t) = | u(x,z) fiz,f)dz.
THM (Karlin): If z and f are log-spm, then U 1s log-spm.

Remark: Products of log-spm functions are clearly log-spm,
but arbitrary sums of log-spm functions are not log-spm.
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MCS Iin Decision Theory

 THM: If u# and f are log-spm, then V7 € 7T and sublattice B < X,
x"(t,B) = argmax {U(x,f) | x€B} is increasing in ¢ and B.

That 1s, for all #” > 7 and sublattices B’ > B (in strong set order),
we have x"(’,B) > x"(1,B).

m Combine Karlin’s Thm (previous slide) with Milgrom &
Shannon’s Thm (slide #6). =
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Problem with Background Risk

Agent has vNM utility u for wealth, strictly increasing & concave.

The agent 1s exposed to uninsurable risk: Her initial wealth 1s
w, + w, where w,, is a scalar, w is a random variable.

Can invest in asset with random net return x, independent of w.
Problem: Invest o to maximize E[u(w +w+ox)].
Define v(z) = E[u(z+w)]. Problem < max  E[v(w,tax)].
Are “good properties” of z inherited by v ?
— Clearly, v’ > 0, v’ < 0. (Differentiation goes through E.)
— Ifu1s DARA, 1s v DARA as well?
— Ifuis DARA & E[w] <0, then is v more risk averse than ?
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DARA with Background Risk

 THM: If u: R—R 1s a DARA utility and f'a pdf on Z € R, then
v(x) = J Lu(x+z) f(z)dz, Vx e R,
1s a DARA utility function.
m u 1S DARA & u’(x,+x,+z) 1s log-spm 1n (x,x,,2).
f1s log-spm because Z is one-dimensional.
Let v’ (x,*x,) = JZ u’(x,+x,+z) f(z)dz.
By Karlin’s Thm, v’(x,+x,) 1s log-spm in (x,,x,),

hence vis DARA. m

e Similar theorems are not true if © 1s not DARA.
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DARA with Background Risk

« THM: Given utility u: R—R and pdf f with | zf{z)dz < 0, if r,(x,u)
is decreasing and convex in x, then v(x) = |, u(x+z) fiz)dz, Vx € R,

1s more risk averse than u.

m To show: - LU (x+z) fliz)dz / J LU (xtz) Az)dz = 7 (x,u),
that is, |, 7,(xtz,u) u’ (x+2) fz)dz > r (x,u) [, u’ (x+2) fz)dz.

Left-hand side exceeds |, r,(x+zu) flz)dz |, u’(x+2) fiz)dz
because both 7, and .’ are decreasing in z. (Cov(r,,u’)>0.)

|7, (xtzu) fiz)dz > r (x+E[z],u) by convexity of 7, and
r(x+E[z],u) = 7 (x,u) because E[z] <0 and DARA. m

 Why assume E[z] < 0? Otherwise background risk could increase
wealth, possibly reducing risk aversion (DARA).
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