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Proofs for Lecture 5, 14.123 (Peter Eso) 

On page 6 of the slides, there are two theorems regarding quasi-supermodularity. 
We provide their proofs here. 

Recall, f on lattice X is quasi-spm if 

∀x, y ∈ X : {f(x) − f(x ∧ y) ≥ 0} ⇒ {f(x ∨ y) − f(y) ≥ 0} ; 

and if the first inequality is strict, the second one is strict too. 

THM: Supermodularity or log-supermodularity of f implies quasi-supermodularity. 

Proof: Supermodularity of f is 

∀x, y ∈ X : f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y), 

which is equivalent to 

∀x, y ∈ X : f(x ∨ y) − f(y) ≥ f(x) − f(x ∧ y). 

If the right-hand side is non-negative, then so is the left-hand side, implying 
that f is q-spm. 

By definition, f is log-spm if 

∀x, y ∈ X : f(x ∧ y)f(x ∨ y) ≥ f(x)f(y), 

or equivalently, 

∀x, y ∈ X : f(x ∧ y)/f(y) ≥ f(x)/f(x ∨ y). 

If the LHS exceeds 1, so does the RHS, implying f is q-spm.� 

Recall that a function h : R × R → R satisfies single-crossing differences 
if for all reals z� > z and t, g(t) ≡ h(z�, t) − h(z, t) is single crossing, i.e.,

∀t� ≥ t, {g(t) ≥ (>)0} ⇒ {g(t�) ≥ (>)0}.


THM: If X is a sublattice of Rn, then f satisfies single-crossing differences

in evey pair of coordinates provided it is q-spm. 
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Proof: Let t� > t and z� > z be four real numbers, and define 

x = (z �, t, x−ij ) , y = (z, t� , x−ij ) 

for any x−ij values of the coordinates other than i and j. 
Since x ∨ y = (z�, t�, x−ij ) and x ∧ y = (z, t, x−ij ); f being q-spm implies 

{f (z �, t, x−ij ) − f (z, t, x−ij) ≥ 0} ⇒ {f (z �, t� , x−ij ) − f (z, t� , x−ij) ≥ 0} . 

Fixing x−ij and letting g(t) ≡ f (z�, t, x−ij ) − f (z, t, x−ij ), this condition is 
equivalent to g(t) ≥ 0 ⇒ g(t�) ≥ 0 for z� > z, single-crossing differences in 
coordinates i and j.� 

* * * 

Recall that for sets B,B� ⊆ X (subsets of a lattice) we say that B� ≥ B 
if, for all b ∈ B and b� ∈ B�, we have b ∨ b� ∈ B� and b ∧ b� ∈ B. 

On page 7 of the slides, we state Milgrom and Shannon’s theorem: 

THM: Suppose (X, ≥) is a sublattice of Rn, and T ⊆ R. If B is a sublattice 
of X and f : X × T → R is q-spm, then x ∗(t, B) ≡ arg max {f(x, t)|x ∈ B}

is increasing in t and B.


Proof: Let B� ≥ B, t� ≥ t, and let x ∈ x ∗(t, B) while x� ∈ x ∗(t�, B�). We

want to show that (i) x ∨ x� ∈ x ∗(t�, B�), and (ii) x ∧ x� ∈ x ∗(t, B). 

Note: x ∧ x� ∈ B and x ∨ x� ∈ B� because x ∈ B, x� ∈ B� and B� ≥ B. 

(i) Since x maximizes f (given t) over B, and x ∧ x� ∈ B, we have 

f(x, t) ≥ f(x ∧ x �, t). 

Since f is q-spm, this inequality implies 

f(x ∨ x �, t) ≥ f(x �, t). 

Noting (again) that f is q-spm, this implies that for t� ≥ t, 

f(x ∨ x �, t�) ≥ f(x �, t�). 

Thus, since x� ∈ x ∗(t�, B�) and x ∨ x� ∈ B�, we must have x ∨ x� ∈ x ∗(t�, B�). 
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(ii) Since x� maximizes f (given t�) over B�, and x ∨ x� ∈ B�, we have 

f(x �, t�) ≥ f(x ∨ x �, t�). 

f is q-spm, hence for all t ≤ t� , 

f(x �, t) ≥ f(x ∨ x �, t). 

Applied again, 
f(x ∧ x �, t) ≥ f(x, t), 

wihch implies x ∧ x� ∈ x ∗(t, B).� 

3





