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Lectures 1-2: Expected Utility


1. Outline 
2. Refresher on Preference Representations 

3. Lotteries and Expected Utility 
4. Positive and Normative Interpretations 

Read: MWG 3.A-C, 6.A-6.B 
Solve: 6.B.3, 6.B.4, 6.B.6, 6.B.7 



Administrative Matters


•	 Instructor: Peter Eso. 

•	 Office hours: Feel free to drop an email, propose two possible 
meeting times. I’ll choose one, then you come by. 

•	 Prerequisites: Fall semester Graduate Micro or Waiver. 

•	 Grade: Weekly Problem Sets, One Exam (Midterm). 

•	 Texts: Mas-Colell, Whinston & Green; Fudenberg & Tirole. 
Further readings: Rubinstein, Osborne & Rubinstein. 
See the Syllabus for details & precise references. 

•	 Any questions? Ask now or write email. 
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Course Overview


• Decision Theory and Game Theory, 6 + 7 lectures. 

•	 Decision Theory: 
Preferences over Lotteries; Expected Utility Theory; 
Measuring Risk and Risk Aversion; Applications; 
Beyond Expected Utility (Other Theories). 

•	 Game Theory (Advanced Topics): 
Rationalizability; Advanced Equilibrium Notions; 
Applications: Signaling games, Auctions, Global games; 
Dynamic and Repeated Games. 
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Introduction


•	 Economics is about explaining and predicting choice. 

•	 It is assumed that economic agents choose their most desirable 
alternative among the set of feasible ones. 

–	 Interpret it “as if”, not necessarily “deliberate”. 
–	 “This morning I took the shuttle to MIT because this was the 

best possible way to come in.” Discuss. 

•	 Desirability is represented by preferences and/or utility. 
–	 Attitudes may be expressed over outcomes never experienced 

(Would you prefer to be Superman or Spiderman?). 
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Preferences


•	 Set of alternatives: X. For all x,y ∈ X, answer the following quiz.  
Choose one: 

� I strictly prefer x to y. 

� I strictly prefer y to x. 

� I am indifferent between x and y. 

•	 “Illegal” answers (see also Rubinstein (2007), p.2): 
� I don’t know. 
� x and y are incomparable. 
� It depends (on circumstances, how you ask). 
� I strictly prefer x to y and y to x.

� I don’t just “prefer” x to y, I “love” x compared to y.
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Preferences


•	 The answers induce a “strong” preference relation  and a “weak” 
preference relation  exactly as one would expect: 

�	 x  y if the answer is “I strictly prefer x to y”; 

�	 x  y if “I strictly prefer x to y” or “I am indifferent”. 

• DEF.  is complete on X if ∀x,y ∈ X, either x  y or y  x . 

• DEF.  is transitive on X if ∀x,y,z ∈ X, {x  y and y  z}  x  z. 

[Note: Complete and transitive is called rational in MWG.] 

•	 Transitivity is strong. Violations may arise when evaluating 
complex bundles (aggregation), or comparing similar bundles. 
Lack of it may be frustrating (e.g., for social planner or parent). 
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Utility Representation


• DEF. Utility fcn u : X →  represents  if u(x) ≥ u(y)  x  y. 

• THM: If u represents , then  is complete and transitive. 

■ Follows from the same properties of ≥ on real numbers. ■ 

• THM: If X is finite and  is complete and transitive, then there 
exists a utility function that represents . 
■ u(x) = |{y∈X : xy}|: # of alternatives that x beats weakly.■ 

• THM: If X is countable and  is complete and transitive, then there 
is a utility function with a bounded range that represents . 

■	 X ≡ {x1,x2,…}. Let u(x-1)=0, u(x0)=1. For all n=1,2,…, set 
u(xn) = [max{u(xk)|xnxk,n>k} + min{u(xk)|xkxn,n>k}]/2 .■ 
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Utility Representation


•	 What can go wrong if X is a continuum? Lexicographic prefs. 
• DEF:  is continuous on X, a set with a topology (e.g., X ⊆ n): 

If x  y (i.e., x  y and not y  x), then for all x’ near x and all y’ 
near y, we have x’  y’. (“near •”  “in an open ball around •”.) 

• THM  (Debreu): If  is complete, transitive and continuous on a 
connected set X ⊆ n, then there exists a (continuous) utility 
function that represents . 

■	 Let Z be a countable, dense subset of X. (Such Z exists 
because X is assumed to be connected, hence separable.) 
By the last THM, there is a bounded u representing  on Z. 
∀x∈X, let u(x) = sup{u(z) | xz, z∈Z}, or 0 if sup is empty. 
Works bc/ if x  y, then ∃z,z’ ∈ Z such that x  z  z’  y. ■ 
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Take Away on Preferences


•	 An economic agent’s attitudes towards alternatives is expressed by 
a preference relation or a utility function maximized by his choice. 

•	 This is a model of behavior; neither preferences nor utilities can be 
observed directly (e.g., in the brain). As such, they do not “exist”. 

•	 When can preferences be represented via a utility function? 
– Countable X: If  is complete and transitive. 
– X ⊆ n, connected: If  is complete, transitive and continuous. 

•	 Absolute utility levels are meaningless (only relative scale matters): 
THM: If u represents  and f : → is strictly increasing, then 
v = f(u) also represents . 
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Model of Choice under Risk


•	 Up until now, we did not distinguish actions (choices) and 
outcomes, assuming choices have deterministic consequences. 

•	 Framework for stochastic decision problems: 
Fix X, a finite set of prizes (outcome such as final wealth level or 
consumption bundle), and let actions correspond to lotteries 
(distributions) over X. Study preferences over objective lotteries. 

• DEF: Set of lotteries over X is Δ(X) ≡ {p ∈ [0,1]|X| | ∑i pi = 1}. 
Denote p(x) the probability of x ∈ X according to lottery p. 

•	 Many decision problems do not fit this framework – e.g., if the 
probabilities of outcomes are not objectively defined.  Other 
frameworks apply without objective probs or even a state space. 
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Compound Lotteries


• Enrich the set of actions to include compound lotteries. 

• DEF: Given lotteries p1,…,pK ∈ Δ(X) and weights α1,…,αK ≥ 0 
with ∑k αk = 1, the corresponding compound lottery, ⊕k αk pk, is an 
action where Nature picks each lottery pk with probability αk , and 
the prize in X is picked according to the lottery chosen by Nature. 

• For K=2, we can also write α1 p1 ⊕ (1-α1) p2 . 

• Note that ⊕k αk pk ∉ Δ(X) while ∑k αk pk ∈ Δ(X). 

• DEF: A preference relation  for (compound) lotteries on X 
satisfies Reduction of Compound Lotteries if ⊕k αk pk ~ ∑k αk pk. 
(Here “A~B” denotes “AB and BA”.) 

• From now on, we represent compound lotteries as reduced ones. 
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Preferences over Lotteries


•	 Suppose that the preferences  over Δ(X) are continuous, complete, 
transitive. Then there is a utility function v that represents them: 
∀p,p’∈ Δ(X), v(p) ≥ v(p’)  p  p’. (Follows from Debreu’s Thm.) 

•	 Denote the sure outcome x ∈ X by δx ∈ Δ(X). 
•	  over Δ(X) induces complete, transitive preferences over X, which 

can be represented by utility u: ∀x,x’ ∈ X, u(x) ≥ u(x’)  δx  δx’ . 

•	 Questions for this week and next week: 

1) What additional assumptions on  result in a “nice” utility 
function v; in particular, v(p) = ∑x∈X p(x)u(x) ? 

2) How are properties of u (utility fcn on X) and  related? 
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Independence and Continuity 
•	 Independence Axiom: For any p,q,r ∈ Δ(X) and any α ∈ (0,1), 

p  q  αp + (1-α)r  αq + (1-α)r . 

•	 The “irrelevant, third lottery” that enters both compound lotteries 
with the same weight does not reverse the agent’s preferences. 

•	 Continuity (formal definition for preferences over lotteries): 

For any p,q,r ∈ Δ(X), the sets {α∈[0,1] : αp + (1-α)q  r} and 

{α∈[0,1] : r  αp + (1-α)q} are closed.


•	 This is a “topological” definition; an alternative definition can be 
given with “distances”: If p  q, then all lotteries sufficiently close 
to p also dominate all lotteries sufficiently close to q. 
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Expected Utility


• THM  (von Neumann & Morgenstern): If  is continuous, complete 
and transitive on Δ(X) (with X finite), and satisfies Independence, 
then there exists a collection of utility indices u(x)∈, ∀x∈X, such 
that  is represented by v(p) ≡ ∑x∈X p(x)u(x) for all p∈Δ(X). 

•	 We say that in this case the utility index u over the sure alternatives 
represents the agent’s preferences over all lotteries, because


∀p,q∈ Δ(X): p  q  ∑x∈X p(x)u(x) ≥ ∑x∈X q(x)u(x).


•	 Preferences that satisfy the hypothesis of the Theorem are called 
“Expected Utility” preferences (for obvious reasons). 

•	 The utility index u is sometimes called “Bernoulli utility index” or 
“von Neumann-Morgenstern [vNM] utility function”. 
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Proof of the EU Theorem


•	 Lemma: Suppose  on Δ(X) satisfies the Independence Axiom. 
Let x,y ∈ X be such that δx  δy . Then, for any 1 ≥ α > β ≥ 0,


αδx + (1-α)δy  βδx + (1-β)δy .


■ By Independence, αδx + (1-α)δy  δy . Using it again, 
αδx + (1-α)δy  β/α[αδx+(1-α)δy] + (1-β/α)δy = βδx + (1-β)δy .■ 

•	 Lemma: If  is continuous, then for any x,y,z ∈ X with δx  δy  δz , 
there exists α ∈ (0,1) such that αδx + (1-α)δz ~ δy . 

■	 Archimedean Axiom, often used as an alternative to continuity. 
Let α = inf{β∈[0,1] : βδx + (1-β)δz  δy}. Note α∈(0,1). 
It is easy to see that αδx + (1-α)δz  δy and δy  αδx + (1-α)δz 

both contradict continuity, hence αδx + (1-α)δz ~ δy . ■ 
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Proof of the EU Theorem


•	 Let M be a maximal and m a minimal element of X according to  . 

•	 By the two Lemmas, for all x ∈ X, there exists a unique u(x) ∈[0,1] 
such that u(x)δM + [1-u(x)]δm ~ δx. Note u(M) = 1 and u(m) = 0. 

•	 Clearly, for any p∈ Δ(X), p ≡ ∑x∈X p(x)δx. 

•	 Fix p∈Δ(X), and successively replace each δx∈X with the equivalent 
lottery u(x)δM + [1-u(x)]δm . 

•	 By the Independence Axiom, for all q ∈ Δ(X), p  q  
p(x){u(x)δM + [1-u(x)]δm } + [1-p(x)]{∑z≠x p(z)/[1-p(x)]δz}  q. 

•	 Hence, p  q  {∑x∈X p(x)u(x)}δM + {∑x∈X p(x)(1-u(x))}δm  q. 

•	 Therefore v(p) ≡ ∑x∈X p(x)u(x) indeed represents . ■ 
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Take Away on EU (Basics)

•	 Model: Finite set of outcomes, X. Decision maker has preferences 
 over lotteries, p ∈ Δ(X). Compound lotteries are reduced. 

•	 Assumptions:  is complete and transitive over Δ(X); moreover, it 
satisfies Archimedes’ Axiom and the Independence Axiom. 

• Main Result:  can be represented by a utility function v: Δ(X) →  

of the form v(p) = ∑x∈X p(x)u(x), where u(x) ≡ v(δx). 

•	 Interpretation: Under the assumptions, the decision maker has a 
utility function over the deterministic outcomes; the decision maker 
evaluates lotteries according to their expected utility. 
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Graphical Representation


•	 Three outcomes, z  y  x with p(x)+p(y)+p(z)=1. 

•	 The indifference curves are parallel, straight lines with slope 
[u(y)-u(x)]/[u(z)-u(y)], preference  increases up- and leftward. 

Pr(

δx δy 
∙	 ∙ 

z) 
δz1	 ∙ 

p(x)u(x) + p(y)u(y) + p(z)u(z) = u(y) 

better 

Pr(x)
0	 1 
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Why Parallel, Straight Lines?


• DEF: Preferences  on Δ(X) satisfy betweenness if 

∀p,q∈Δ(X), ∀λ∈[0,1]: p ~ q  λp+(1-λ)q ~ q. 

•	 Betweenness follows from the Independence Axiom (set p ~ q = r). 
It implies that the indifference curves are straight lines. 

•	 Why are the indifference lines parallel? 
•	 Pick any two lotteries p ~ q (i.e., on the same indifference curve). 

Mix in δz (the best, sure alternative) with the same weight λ. 
By the Independence Axiom, λp+(1-λ)δz ~ λq+(1-λ)δz . 
This defines a parallel indifference curve closer to δz . 
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Discussion: Basic Properties


• What other preferences over lotteries may be reasonable? 
(Examples taken from Rubinstein (2007), pp. 95-96.) 

#1 Preference for “less dispersion”, ∑x∈X (p(x)-1/|X|)2. 
#2 Preference for “more certainty”, maxx∈X p(x). 
#3 Increase “prob. of good outcomes”, ∑x∈G p(x), where G ≥ X\G. 
#4 Better “worst-case’’, minx∈X {u(x) |p(x)>0}. 
#5 Better “most-likely prize”, argmaxx∈X {p(x)}. 

• Only Expected Utility satisfies both Achimedean Continuity and 
Independence. (Note that #3 is a special case of EU). 

For example, #4 (often used in Computer Science to evaluate 
stochastic outcomes) fails Continuity; #2 fails Independence. 

14.123 Lectures 1-2, Page 20 



Discussion: Basic Properties


•	 Expected Utility is linear in probabilities: 

If v is an EU representation of , then ∀p,q∈Δ(X), ∀λ∈[0,1]: 
v(λp+(1-λ)q) = λv(p) + (1-λ)v(q). 

• THM  (Uniqueness): If ∑x∈X p(x)u(x) and ∑x∈X p(x)w(x) both 
represent , then ∃α > 0 and β such that w(x) = αu(x) + β. 

■	 Let α > 0 and β solve w(M) = αu(M) + β and w(m) = αu(m) + β. 
For any x ∈ X, there exists px such that δx ~ pxδM + (1-px)δm , so 
w(x) = pxw(M) + (1-px)w(m) = px[αu(M)+β] + (1-px)[αu(m)+β] 

= α[pxu(M)+(1-px)u(m)] + β = αu(x) + β. ■ 

•	 Any positive monotone transformation of v also represents , but it 
is not an EU representation unless the transformation is affine. 
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Discussion: Normative Appeal 
•	 Violators of EU can fall victim to “Dutch book” bets and die poor. 

•	 Suppose (in violation of Independence) that there exist p, q ∈ Δ(X) 
and α ∈ (0,1) such that q  p but αp ⊕ (1-α)q  q. Compensate 
agent to accept q as the default lottery outcome. 

1. Offer agent to change the outcome to p with probability α; 
he is willing to pay for this bet as αp ⊕ (1-α)q  q. 

2. If the probability α event occurs and p becomes the default, ask 
agent to pay to change it back to q  p. Repeat from Step 1. 

•	 Harsanyi (JPE 1955) suggested normative EU approach to moral 
preferences. Result: Behind the veil of ignorance, be utilitarian. 
Precedes and contradicts Rawls’ egalitarian moral philosophy. 
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Discussion: Positive Appeal

•	 Introspection and observation of economic behavior often conform 

to the expected utility hypothesis (more on applications next week). 

•	 Allais paradox. Choose A or B, then C or D. 

(A) Win $1 million for sure. 
(B) Win $5M with 10% chance, $1M with 89%, nothing with 1%. 

(C) Win $1M with 11% chance, nothing with 89%. 
(D) Win $5M with 10% chance, nothing with 90%.


Many subjects choose A and D in violation of expected utility:

If u(1) > .1*u(5) + .89*u(1), then adding .89*u(0)-.89*u(1) to 

both sides yields .11*u(1) + .89*u(0) > .1*u(5) + .9*u(0).
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Allais Paradox, Graphically


Pr($5) 

1 

1 

0 
A ∙ 

∙∙ B 

C 

D 

∙ 

B’ ∙ 

Indifference curves 

Pr($0) 

“Common consequence” paradox: A  B but D  C. 

“Common ratio” paradox: A  B’ but D  C. 
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Resolutions


•	 A systematic violation of expected utility appears to be indifference 
curves that fan out. (Explains Allais and some other paradoxes.) 

•	 Resolution: Discard Independence, require Betweenness. 
Weighted Expected Utility: W(p) = ∑x∈X γ(x)p(x)u(x)/[∑x∈X γ(x)p(x)]. 

•	 Other axiom-systems yield Rank-Dependent Expected Utility, 
R(p) = ∑x∈X π(p(x)) x.  Expected value with distorted prob weights. 

•	 Machina (1982) weakens Independence to get “local” expected 
utility – the indifference curves are curved, but differentiable. 

•	 Big literature, very thoroughly researched, especially within the 
framework of “preferences over objective lotteries”.  But is the 
framework the right one? (Probs are given?  Compound lotteries?) 
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Fundamental Challenges


•	 Tversky and Kahnemann (1981). “Outbreak of disease is about to 
kill 600 people. Choose treatment program A or B; then C or D.” 

(A) 400 people die. 
(B) Nobody dies with 1/3 chance, 600 people die with 2/3 chance. 

(C) 200 people saved. 
(D) All saved with 1/3 chance, nobody saved with 2/3 chance. 

78% of subjects pick B, 28% of subjects (in different group) pick D. 
But A is equivalent to C, B is equivalent to D (apart from wording). 

•	 Possible resolution: People infer probabilities from how a question 
is framed, not only from the direct meaning of the question. 
The role of language in decision theory is an open research area. 
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