MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT 14.123 (2009) by Peter Eso Lectures 1-2: Expected Utility

1. Outline

2. Refresher on Preference Representations

- 3. Lotteries and Expected Utility
- 4. Positive and Normative Interpretations

<u>Read</u>: MWG 3.A-C, 6.A-6.B

<u>Solve</u>: 6.B.3, 6.B.4, 6.B.6, 6.B.7

Administrative Matters

- Instructor: Peter Eso.
- Office hours: Feel free to drop an email, propose two possible meeting times. I'll choose one, then you come by.
- Prerequisites: Fall semester Graduate Micro or Waiver.
- Grade: Weekly Problem Sets, One Exam (Midterm).
- Texts: Mas-Colell, Whinston & Green; Fudenberg & Tirole.
 Further readings: Rubinstein, Osborne & Rubinstein.
 See the Syllabus for details & precise references.
- Any questions? Ask now or write email.

Course Overview

- Decision Theory and Game Theory, 6 + 7 lectures.
- Decision Theory:

Preferences over Lotteries; Expected Utility Theory; Measuring Risk and Risk Aversion; Applications; Beyond Expected Utility (Other Theories).

• Game Theory (Advanced Topics):

Rationalizability; Advanced Equilibrium Notions;Applications: Signaling games, Auctions, Global games;Dynamic and Repeated Games.

Introduction

- Economics is about explaining and predicting <u>choice</u>.
- It is assumed that economic agents choose their <u>most desirable</u> alternative among the set of <u>feasible ones</u>.
 - Interpret it "as if", not necessarily "deliberate".
 - "This morning I took the shuttle to MIT because this was the best possible way to come in." Discuss.
- Desirability is represented by <u>preferences</u> and/or <u>utility</u>.
 - Attitudes may be expressed over outcomes never experienced (Would you prefer to be Superman or Spiderman?).

Preferences

- Set of alternatives: X. For all x, y ∈ X, answer the following quiz. Choose <u>one</u>:
 - $\Box \text{ I strictly prefer } x \text{ to } y.$
 - \Box I strictly prefer *y* to *x*.
 - \Box I am indifferent between *x* and *y*.
- "Illegal" answers (see also Rubinstein (2007), p.2):
 - \Box I don't know.
 - \Box x and y are incomparable.
 - □ It depends (on circumstances, how you ask).
 - \Box I strictly prefer *x* to *y* and *y* to *x*.
 - \Box I don't just "prefer" *x* to *y*, I "love" *x* compared to *y*.

Preferences

- The answers induce a "strong" preference relation > and a "weak" preference relation ≿ exactly as one would expect:
 - $x \succ y$ if the answer is "I strictly prefer x to y";
 - $x \succeq y$ if "I strictly prefer x to y" or "I am indifferent".
- <u>DEF</u>. \succeq is <u>complete</u> on *X* if $\forall x, y \in X$, either $x \succeq y$ or $y \succeq x$.
- <u>DEF</u>. \succeq is <u>transitive</u> on *X* if $\forall x, y, z \in X$, $\{x \succeq y \text{ and } y \succeq z\} \Rightarrow x \succeq z$. [Note: Complete and transitive is called <u>rational</u> in MWG.]
- <u>Transitivity is strong</u>. Violations may arise when evaluating complex bundles (aggregation), or comparing similar bundles. Lack of it may be frustrating (e.g., for social planner or parent).

Utility Representation

- <u>DEF</u>. Utility fcn $u : X \to \mathbb{R}$ represents \succeq if $u(x) \ge u(y) \Leftrightarrow x \succeq y$.
- <u>THM</u>: If *u* represents \succeq , then \succeq is complete and transitive.

• Follows from the same properties of \geq on real numbers.

• <u>THM</u>: If *X* is <u>finite</u> and ≿ is complete and transitive, then there exists a utility function that represents ≿.

■ $u(x) = |\{y \in X : x \succeq y\}|$: # of alternatives that x beats weakly.

- <u>THM</u>: If *X* is <u>countable</u> and ≿ is complete and transitive, then there is a utility function with a bounded range that represents ≿.
 - $X \equiv \{x_1, x_2, ...\}. \text{ Let } u(x_{-1}) = 0, u(x_0) = 1. \text{ For all } n = 1, 2, ..., \text{ set} \\ u(x_n) = [\max\{u(x_k) | x_n \succeq x_k, n > k\} + \min\{u(x_k) | x_k \succeq x_n, n > k\}]/2 . \blacksquare$

Utility Representation

- What can go wrong if *X* is a continuum? Lexicographic prefs.
- <u>DEF</u>: \succeq is <u>continuous</u> on *X*, a set with a topology (e.g., $X \subseteq \mathbb{R}^n$): If $x \succ y$ (i.e., $x \succeq y$ and not $y \succeq x$), then for all *x*' near *x* and all *y*' near *y*, we have $x' \succ y'$. ("near •" \Leftrightarrow "in an open ball around •".)
- <u>THM</u> (Debreu): If ≿ is complete, transitive and continuous on a connected set X ⊆ ℝⁿ, then there exists a (continuous) utility function that represents ≿.
 - Let *Z* be a countable, dense subset of *X*. (Such *Z* exists because *X* is assumed to be connected, hence separable.) By the last THM, there is a bounded *u* representing \succeq on *Z*. $\forall x \in X$, let $u(x) = \sup \{u(z) \mid x \succ z, z \in Z\}$, or 0 if sup is empty. Works bc/ if $x \succ y$, then $\exists z, z' \in Z$ such that $x \succ z \succeq z' \succ y$.

Take Away on Preferences

- An economic agent's attitudes towards alternatives is expressed by a <u>preference relation</u> or a <u>utility function</u> maximized by his choice.
- This is a model of behavior; neither preferences nor utilities can be observed directly (e.g., in the brain). As such, they do not "exist".
- When can preferences be represented via a utility function?
 - Countable X: If \geq is complete and transitive.
 - $X \subseteq \mathbb{R}^n$, connected: If \succeq is complete, transitive and continuous.
- Absolute utility levels are meaningless (only relative scale matters): <u>THM</u>: If *u* represents \succeq and $f : \mathbb{R} \to \mathbb{R}$ is strictly increasing, then v = f(u) also represents \succeq .

Model of Choice under Risk

- Up until now, we did not distinguish <u>actions</u> (choices) and <u>outcomes</u>, assuming choices have deterministic consequences.
- <u>Framework for stochastic decision problems</u>:
 Fix *X*, a finite set of <u>prizes</u> (outcome such as final wealth level or consumption bundle), and let actions correspond to <u>lotteries</u> (distributions) over *X*. Study preferences over objective lotteries.
- <u>DEF</u>: Set of lotteries over *X* is $\Delta(X) \equiv \{p \in [0,1]^{|X|} | \sum_i p_i = 1\}$. Denote p(x) the probability of $x \in X$ according to lottery *p*.
- Many decision problems do not fit this framework e.g., if the probabilities of outcomes are not objectively defined. Other frameworks apply without objective probs or even a state space.

Compound Lotteries

- Enrich the set of actions to include compound lotteries.
- <u>DEF</u>: Given lotteries $p^1, \dots, p^K \in \Delta(X)$ and weights $\alpha_1, \dots, \alpha_K \ge 0$ with $\sum_k \alpha_k = 1$, the corresponding <u>compound lottery</u>, $\bigoplus_k \alpha_k p^k$, is an action where Nature picks each lottery p^k with probability α_k , and the prize in *X* is picked according to the lottery chosen by Nature.
- For *K*=2, we can also write $\alpha_1 p^1 \oplus (1-\alpha_1) p^2$.
- Note that $\bigoplus_k \alpha_k p^k \notin \Delta(X)$ while $\sum_k \alpha_k p^k \in \Delta(X)$.
- <u>DEF</u>: A preference relation ≿ for (compound) lotteries on X satisfies <u>Reduction of Compound Lotteries</u> if ⊕_k α_k p^k ~ ∑_k α_k p^k. (Here "A~B" denotes "A≿B and B≿A".)
- From now on, we represent compound lotteries as reduced ones.

Preferences over Lotteries

- Suppose that the preferences ≿ over Δ(X) are continuous, complete, transitive. Then there is a utility function *v* that represents them:
 ∀*p*,*p*' ∈ Δ(X), *v*(*p*) ≥ *v*(*p*') ⇔ *p* ≿ *p*'. (Follows from Debreu's Thm.)
- Denote the sure outcome $x \in X$ by $\delta_x \in \Delta(X)$.
- \succeq over $\Delta(X)$ induces complete, transitive preferences over *X*, which can be represented by utility $u: \forall x, x' \in X, u(x) \ge u(x') \Leftrightarrow \delta_x \succeq \delta_{x'}$.
- Questions for this week and next week:
 - 1) What additional assumptions on \succeq result in a "nice" utility function *v*; in particular, $v(p) = \sum_{x \in X} p(x)u(x)$?

2) How are properties of *u* (utility fcn on *X*) and \succeq related?

Independence and Continuity

- <u>Independence Axiom</u>: For any $p,q,r \in \Delta(X)$ and any $\alpha \in (0,1)$, $p \succeq q \Leftrightarrow \alpha p + (1-\alpha)r \succeq \alpha q + (1-\alpha)r$.
- The "irrelevant, third lottery" that enters both compound lotteries with the same weight does not reverse the agent's preferences.
- <u>Continuity</u> (formal definition for preferences over lotteries): For any $p,q,r \in \Delta(X)$, the sets $\{\alpha \in [0,1] : \alpha p + (1-\alpha)q \succeq r\}$ and $\{\alpha \in [0,1] : r \succeq \alpha p + (1-\alpha)q\}$ are <u>closed</u>.
- This is a "topological" definition; an alternative definition can be given with "distances": If *p* ≻ *q*, then all lotteries sufficiently close to *p* also dominate all lotteries sufficiently close to *q*.

Expected Utility

- <u>THM</u> (von Neumann & Morgenstern): If \succeq is continuous, complete and transitive on $\Delta(X)$ (with *X* finite), and satisfies Independence, then there exists a collection of utility indices $u(x) \in \mathbb{R}$, $\forall x \in X$, such that \succeq is represented by $v(p) \equiv \sum_{x \in X} p(x)u(x)$ for all $p \in \Delta(X)$.
- We say that in this case the utility index *u* over the sure alternatives represents the agent's preferences over all lotteries, because

 $\forall p,q \in \Delta(X): p \succeq q \Leftrightarrow \sum_{x \in X} p(x)u(x) \ge \sum_{x \in X} q(x)u(x).$

- Preferences that satisfy the hypothesis of the Theorem are called "Expected Utility" preferences (for obvious reasons).
- The utility index *u* is sometimes called "Bernoulli utility index" or "von Neumann-Morgenstern [vNM] utility function".

Proof of the EU Theorem

• <u>Lemma</u>: Suppose \succeq on $\Delta(X)$ satisfies the Independence Axiom. Let $x, y \in X$ be such that $\delta_x \succ \delta_y$. Then, for any $1 \ge \alpha \ge \beta \ge 0$, $\alpha \delta_x + (1-\alpha) \delta_y \succ \beta \delta_x + (1-\beta) \delta_y$.

■ By Independence, $\alpha \delta_x + (1-\alpha)\delta_y > \delta_y$. Using it again, $\alpha \delta_x + (1-\alpha)\delta_y > \beta/\alpha[\alpha \delta_x + (1-\alpha)\delta_y] + (1-\beta/\alpha)\delta_y = \beta \delta_x + (1-\beta)\delta_y$.

- <u>Lemma</u>: If \succeq is continuous, then for any $x, y, z \in X$ with $\delta_x \succ \delta_y \succ \delta_z$, there exists $\alpha \in (0,1)$ such that $\alpha \delta_x + (1-\alpha)\delta_z \sim \delta_y$.
 - Archimedean Axiom, often used as an alternative to continuity. Let $\alpha = \inf\{\beta \in [0,1] : \beta \delta_x + (1-\beta)\delta_z > \delta_y\}$. Note $\alpha \in (0,1)$. It is easy to see that $\alpha \delta_x + (1-\alpha)\delta_z > \delta_y$ and $\delta_y > \alpha \delta_x + (1-\alpha)\delta_z$ both contradict continuity, hence $\alpha \delta_x + (1-\alpha)\delta_z \sim \delta_y$.

Proof of the EU Theorem

- Let *M* be a maximal and *m* a minimal element of *X* according to \geq .
- By the two Lemmas, for all $x \in X$, there exists a <u>unique</u> $u(x) \in [0,1]$ such that $u(x)\delta_M + [1-u(x)]\delta_m \sim \delta_x$. Note u(M) = 1 and u(m) = 0.
- Clearly, for any $p \in \Delta(X)$, $p \equiv \sum_{x \in X} p(x) \delta_x$.
- Fix $p \in \Delta(X)$, and successively replace each $\delta_x \in X$ with the equivalent lottery $u(x)\delta_M + [1-u(x)]\delta_m$.
- By the Independence Axiom, for all $q \in \Delta(X)$, $p \succeq q \Leftrightarrow p(x)\{u(x)\delta_M + [1-u(x)]\delta_m\} + [1-p(x)]\{\sum_{z \neq x} p(z)/[1-p(x)]\delta_z\} \succeq q$.
- Hence, $p \succeq q \Leftrightarrow \{\sum_{x \in X} p(x)u(x)\}\delta_M + \{\sum_{x \in X} p(x)(1-u(x))\}\delta_m \succeq q$.
- Therefore $v(p) \equiv \sum_{x \in X} p(x)u(x)$ indeed represents \succeq .

Take Away on EU (Basics)

- Model: Finite set of outcomes, *X*. Decision maker has preferences ≿ over lotteries, *p* ∈ Δ(*X*). Compound lotteries are reduced.
- <u>Assumptions</u>: ≿ is complete and transitive over Δ(X); moreover, it satisfies Archimedes' Axiom and the Independence Axiom.
- <u>Main Result</u>: \succeq can be represented by a utility function $v: \Delta(X) \to \mathbb{R}$ of the form $v(p) = \sum_{x \in X} p(x)u(x)$, where $u(x) \equiv v(\delta_x)$.
- <u>Interpretation</u>: Under the assumptions, the decision maker has a utility function over the deterministic *outcomes*; the decision maker evaluates *lotteries* according to their *expected utility*.

Graphical Representation

- Three outcomes, $z \succ y \succ x$ with p(x)+p(y)+p(z)=1.
- The indifference curves are parallel, straight lines with slope [u(y)-u(x)]/[u(z)-u(y)], preference ≿ increases up- and leftward.

^{14.123} Lectures 1-2, Page 18

Why Parallel, Straight Lines?

• <u>DEF</u>: Preferences \succeq on $\Delta(X)$ satisfy <u>betweenness</u> if

 $\forall p,q \in \Delta(X), \forall \lambda \in [0,1]: p \sim q \Rightarrow \lambda p + (1-\lambda)q \sim q.$

- Betweenness follows from the Independence Axiom (set p ~ q = r).
 It implies that the indifference curves are straight lines.
- Why are the indifference lines <u>parallel</u>?
- Pick any two lotteries p ~ q (i.e., on the same indifference curve). Mix in δ_z (the best, sure alternative) with the same weight λ. By the Independence Axiom, λp+(1-λ)δ_z ~ λq+(1-λ)δ_z. This defines a parallel indifference curve closer to δ_z.

Discussion: Basic Properties

- What other preferences over lotteries may be reasonable?
 (Examples taken from Rubinstein (2007), pp. 95-96.)
 #1 Preference for "less dispersion", ∑_{x∈X} (p(x)-1/|X|)².
 #2 Preference for "more certainty", max_{x∈X} p(x).
 #3 Increase "prob. of good outcomes", ∑_{x∈G} p(x), where G ≥ X\G.
 #4 Better "worst-case", min_{x∈X} {u(x) |p(x)>0}.
 #5 Better "most-likely prize", argmax_{x∈X} {p(x)}.
- Only Expected Utility satisfies both Achimedean Continuity and Independence. (Note that #3 is a special case of EU).

For example, #4 (often used in Computer Science to evaluate stochastic outcomes) fails Continuity; #2 fails Independence.

Discussion: Basic Properties

• Expected Utility is <u>linear in probabilities</u>:

If *v* is an EU representation of \succeq , then $\forall p,q \in \Delta(X), \forall \lambda \in [0,1]$: $v(\lambda p + (1-\lambda)q) = \lambda v(p) + (1-\lambda)v(q).$

- <u>THM</u> (Uniqueness): If $\sum_{x \in X} p(x)u(x)$ and $\sum_{x \in X} p(x)w(x)$ both represent \succeq , then $\exists \alpha > 0$ and β such that $w(x) = \alpha u(x) + \beta$.
 - Let $\alpha > 0$ and β solve $w(M) = \alpha u(M) + \beta$ and $w(m) = \alpha u(m) + \beta$. For any $x \in X$, there exists p_x such that $\delta_x \sim p_x \delta_M + (1-p_x)\delta_m$, so $w(x) = p_x w(M) + (1-p_x)w(m) = p_x [\alpha u(M) + \beta] + (1-p_x)[\alpha u(m) + \beta]$ $= \alpha [p_x u(M) + (1-p_x)u(m)] + \beta = \alpha u(x) + \beta$.
- Any positive monotone transformation of *v* also represents ≿, but it is not an EU representation unless the transformation is affine.

Discussion: Normative Appeal

- Violators of EU can fall victim to "Dutch book" bets and die poor.
- Suppose (in violation of Independence) that there exist *p*, *q* ∈ Δ(*X*) and α ∈ (0,1) such that *q* ≻ *p* but α*p* ⊕ (1-α)*q* ≻ *q*. Compensate agent to accept *q* as the default lottery outcome.
 - 1. Offer agent to change the outcome to *p* with probability α ; he is willing to pay for this bet as $\alpha p \oplus (1-\alpha)q > q$.
 - 2. If the probability α event occurs and *p* becomes the default, ask agent to pay to change it back to $q \succ p$. Repeat from Step 1.
- Harsanyi (JPE 1955) suggested normative EU approach to moral preferences. <u>Result</u>: Behind the veil of ignorance, *be utilitarian*. Precedes and contradicts Rawls' egalitarian moral philosophy.

Discussion: Positive Appeal

- Introspection and observation of economic behavior often conform to the expected utility hypothesis (more on applications next week).
- <u>Allais paradox</u>. Choose A or B, then C or D.
 - (A) Win \$1 million for sure.
 - (B) Win \$5M with 10% chance, \$1M with 89%, nothing with 1%.
 - (C) Win \$1M with 11% chance, nothing with 89%.
 - (D) Win \$5M with 10% chance, nothing with 90%.

Many subjects choose A and D in violation of expected utility: If u(1) > .1*u(5) + .89*u(1), then adding .89*u(0)-.89*u(1) to both sides yields .11*u(1) + .89*u(0) > .1*u(5) + .9*u(0).

Allais Paradox, Graphically

Resolutions

- A systematic violation of expected utility appears to be indifference curves that *fan out*. (Explains Allais and some other paradoxes.)
- Resolution: Discard Independence, require Betweenness. <u>Weighted Expected Utility:</u> $W(p) = \sum_{x \in X} \gamma(x) p(x) u(x) / [\sum_{x \in X} \gamma(x) p(x)].$
- Other axiom-systems yield <u>R</u>ank-<u>D</u>ependent <u>Expected U</u>tility, $R(p) = \sum_{x \in X} \pi(p(x)) x$. Expected value with distorted prob weights.
- Machina (1982) weakens Independence to get "local" expected utility the indifference curves are curved, but differentiable.
- Big literature, very thoroughly researched, especially within the framework of "preferences over objective lotteries". But is the framework the right one? (Probs are given? Compound lotteries?)

Fundamental Challenges

- Tversky and Kahnemann (1981). "Outbreak of disease is about to kill 600 people. Choose treatment program A or B; then C or D."
 - (A) 400 people die.
 - (B) Nobody dies with 1/3 chance, 600 people die with 2/3 chance.
 - (C) 200 people saved.
 - (D) All saved with 1/3 chance, nobody saved with 2/3 chance.
 - 78% of subjects pick B, 28% of subjects (in different group) pick D. But A is equivalent to C, B is equivalent to D (apart from wording).
- <u>Possible resolution</u>: People infer probabilities from how a question is framed, not only from the direct meaning of the question.
 The role of *language in decision theory* is an open research area.