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Abstract

Under normal viewing conditions, humans find it easy
to distinguish between objects made out of different mate-
rials such as plastic, metal, or paper. Untextured materi-
als such as these have different surface reflectance prop-
erties, including lightness and gloss. With single isolated
images and unknown illumination conditions, the task of
estimating surface reflectance is highly underconstrained,
because many combinations of reflection and illumination
are consistent with a given image. In order to work out
how humans estimate surface reflectance properties, we
asked subjects to match the appearance of isolated spheres
taken out of their original contexts. We found that subjects
were able to perform the task accurately and reliably with-
out contextual information to specify the illumination. The
spheres were rendered under a variety of artificial illumi-
nations, such as a single point light source, and a number
of photographically-captured real-world illuminations from
both indoor and outdoor scenes. Subjects performed more
accurately for stimuli viewed under real-world patterns of
illumination than under artificial illuminations, suggesting
that subjects use stored assumptions about the regularities
of real-world illuminations to solve the ill-posed problem.

1. Introduction

Humans often take for granted their ability to recognize
materials such as metal, plastic and paper under a wide
range of viewing conditions. Humans succeed at this task
despite the fact that different combinations of illumination
and surface reflectance can produce identical images. For
example, a chrome sphere can be made to look like any
other sphere with just the right illumination.

Given that the task is formally underconstrained, how do
subjects recognize surface reflectance properties across dif-
ferent illuminations? Under ordinary viewing conditions,
an observer can draw on multiple sources of information.
Potentially useful cues include motion, binocular stereop-
sis, knowledge of illumination conditions, and familiarity
with the object. In this paper, we discuss how well sub-
jects can judge reflectance properties in the absence of such
cues, when forced to rely on stored assumptions about il-
lumination. In order to do this we measure their ability to
estimate reflectance properties from isolated images of sin-
gle spheres viewed out of their original contexts. We find
that subjects can perform the task well, as long as the illu-
mination conditions are characteristic of real-world scenes.

Researchers in computer vision and graphics often as-
sume that point source illumination simplifies the process of
reflectance estimation. Figure 1 shows synthetic images of
three identical spheres under different illuminations. Sphere

a b c

Figure 1. The sphere in (a) was rendered under
point source illumination. The spheres in (b) and (c)
were rendered under real-world illumination. All three
spheres have the same reflectance properties and yet
the impression of the material quality is clearer in (b)
and (c) than in (a).

(a) was rendered under point source illumination, while
spheres (b) and (c) were rendered under photographically-
captured real-world illumination [3]. The impression of the
material quality is clearer in (b) and (c) than in (a). We
show that humans estimate reflectance more reliably under
complex realistic illumination than under simple synthetic
illumination.

Why might real-world illumination facilitate reflectance
estimation? In the real world, light is typically incident on
a surface from nearly every direction, in the form of direct
illumination from luminous sources or indirect illumination
reflected from other surfaces. The illumination at a given
point can be described by the spherical image acquired by a
camera that looks in every direction from that point. Such
images or “illumination maps” have been captured photo-
graphically and used to render objects for the purposes of
realistic computer graphics. Recent work has shown that
the spatial structure of such real-world illumination maps
exhibits statistical regularity similar to that of natural im-
ages [5], see Figure 2. A computer system can take ad-
vantage of this regularity in recognizing surface reflectances
[4]. We suggest that humans might also exploit stored as-
sumptions about such regularities to solve this otherwise
underconstrained problem. Under illuminations for which
these assumptions do not hold, we expect systematic biases
in estimates of surface reflectance. For example, a sphere in
a low-contrast environment should look less glossy than it
would under more typical conditions.

2. Methods

In order to measure the accuracy of human surface re-
flectance estimation we asked subjects to perform a re-
flectance matching task. Subjects were presented with two
images of spheres that had been computer rendered under
different illuminations. Their task was to adjust two param-
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Figure 2. The image in (a) is a 2D panoramic projection
of a spherical real-world illumination map. The graph
in (b) shows the distribution of wavelet coefficients at
several scales for this illuminationmap, which are char-
acteristic of real-world images (for details, see [4] and
[5]).

eters of the surface reflectance of one sphere (the “Match”)
until it appeared to be made of the same material as the other
sphere (the “Test”), despite the difference in illumination.
Example stimuli are shown in Figure 3. Nishida and Shinya
[8] used a similar experimental design to study the effect of
surface geometry on apparent reflectance properties.

Observers. Four subjects with normal or corrected-to-
normal vision participated in the experiments. One was an
author (RF), two were experienced subjects who were naive
to the purpose of the study (JM and MS) and one was a
novice observer (RA) who was paid for participating.

Stimuli. Each Test or Match image contained a sphere that
was computer rendered using the Radiance software pack-
age [12]. As the screen was viewed from approximately 1m,
the spheres subtended a visual angle of roughly5◦. The
spheres were viewed against a standard coloured random-
check background, which can be downloaded from [1]. This
background was used to avoid the Gelb effect, i.e. the ten-
dency for an isolated surface to appear lighter in colour than
it really is. Blur was added to separate the sphere from the
background in depth. Because the same background was
used for all stimuli, it provided no systematic information
about the illumination.

The reflectances of the spheres were specified by the
isotropic Ward model [11], a physically realizable vari-
ant of the Phong shading model. This model approxi-
mates the reflectance properties of a wide range of phys-
ical surfaces with a few free parameters by representing
surface reflectance as the sum of two components: a dif-
fuse (“matte” or “Lambertian”) component and a specular
(“glossy”) component. To make the step-sizes perceptually
equal, the reflectance parameters were reparameterized (i.e.
the scales were stretched), according to the psychophysi-
cally uniform space proposed by Pellaciniet al. [9]. As the

Figure 3. An example screen from the matching ex-
periment. Subjects adjusted two parameters of the
sphere on the right until it appeared to be made of the
same material as the sphere on the left. Note that
at the moment the spheres have different reflectance
properties.

Contrast of Specular Reflection, c

D
istinctness of Specular R

eflection, d

c = 0.02 c = 0.11 c = 0.18

d = 
0.90

d = 
0.95

d = 
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Figure 4. Grid showing range of reflectance proper-
ties used in the experiments for a particular real-world
illumination map.
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perception of matte lightness has been studied extensively
before [2, 6, 7], we held the diffuse reflectance fixed for all
conditions. Subjects simultaneously adjusted two param-
eters controlling the specular component: the contrast of
the specular reflection,c, and the sharpness of the specu-
lar component,d.1 Increases inc lead to perceptually uni-
form increases in the glossiness of the surface; increases in
d alter the surface from rough—like brushed aluminium—
to smooth—like polished chrome. Ten values were used
for c and eleven ford, making a total of 110 possible sur-
face reflectances. These values spanned a range greater than
but including the range of reflectances that isotropic dielec-
tric materials such as gloss paint and sand-blasted plastic
exhibit in the real world. Figure 4 shows example stimuli
demonstrating the range of surface reflectances used in the
experiment. The spheres used in all conditions were spa-
tially uniform in surface reflectance (i.e. untextured).

Two classes of illumination were used to render the Test
spheres: real-world and artificial. The real-world Test illu-
minations consisted of eight illumination maps from both
indoor and outdoor scenes, which were captured photo-
graphically by a process described below. The artificially
generated Test illuminations consisted of: a single point
source; multiple point sources; a single extended rectangu-
lar source; Gaussian white noise; and Gaussian noise with a
1/f amplitude spectrum (pink noise) .2 The Match sphere
that the subject adjusted was viewed under the same real-
world illumination for all conditions. This allowed us to
examine systematic effects of illumination upon matching
performance. Examples of a sphere rendered under each of
the illuminations used in the experiment are shown in Fig-
ure 5; the spheres all have the same surface reflectance. It
should be noted that the illuminations contain finer detail
than is visible in these spheres; this detail was visible in
spheres with sharper (i.e. less blurred) specular reflections.

The real-world illuminations were based on high-
dynamic range light probe images acquired photographi-
cally by Debevecet al. [3]. This was done by composit-
ing wide-angle photographs at different exposures to cre-
ate a spherical image that maps the illumination at a point.
The overall brightness of each illumination was scaled such
that a standard Lambertian patch oriented perpendicular to
the observer would yield the same luminance under all il-
luminations. The artificial illuminations were created as

1The original Ward model uses two parameters to describe specular
reflection—the amount of specular reflectionρs, and the surface roughness
α. Parameterc increases monotonically withρs, while d = 1− α.

2We generated the white noise illumination map by summing spherical
harmonics whose coefficients up to a fixed order were chosen from inde-
pendent Gaussian distributions of equal variance. For the pink noise, the
spherical harmonic coefficients were chosen independently from Gaussian
distributions with standard deviation inversely proportional to the spherical
harmonic order, which is analogous to frequency. This process produces
noise whose power spectrum is similar to that of many real-world illumi-
nations and natural images [5].

spherical illumination maps and used to render spheres in
the same way as the real-world illuminations.

There are in principle two basic ways that subjects can
perform the task, and these depend on different features
of the subject’s experience. One approach is to attend to
the global, “high-level” percept of surface reflectance that
emerges as a consequence of unconscious processing of the
entire image. The second is to attend to “low-level” image
features, such as local variations in contrast and blur, which
correlate with the parameters of surface reflectance. Both
strategies require subjects to make assumptions about the
equivalence of features in the Test and Match images, and
thus the task is ill posed irrespective of the strategy.

In order to determine how subjects perform the task, a
control condition was used to complement the two main
classes of illumination. The control stimuli were photo-
graphic negatives of four of the real-world illumination con-
ditions. Specifically, only the luminances of the images
were inverted; the hues were maintained. The process of
inverting the image values preserves much of the spatial
structure of the image, along with its odd-order image statis-
tics. However, the percept of a uniform, coherent surface re-
flectance is interrupted, as can be seen in the example stim-
ulus shown in Figure 6. Subjects adjusted a photographic
negative of the standard probe. If subjects performed the
task by attending to the “high-level” features of their expe-
rience, then performance with the negative controls should
be compromised by the elimination of this source of infor-
mation. If performance is the same for both positive and
negative versions of the displays, then it is possible that sub-
jects perceptually equate “low-level” properties of the Test
and Match stimuli that correlate with surface reflectance.

Dealing with the limitations of the monitor.The dynamic
range of a good monitor is several orders of magnitude
smaller than the full range of luminances that result from
viewing a specular surface under typical conditions. We
used a number of presentation devices in an attempt to over-
come this.

First, all images were presented in a black room with the
lights off, to decrease the luminance of the darkest blacks
in the image. We estimated that as a consequence of this
we were able to achieve a high spatial frequency dynamic
range of about 30.

Second, rather than allowing the image values to clip,
the images were passed through a compressive non-linearity
of the type described by Tumblinet al. [10]. This is a
sigmoidal non-linearity that is linear for intermediate lumi-
nances but compresses low and high values. The same tone-
mapping function was used for every experimental condi-
tion. The monitor was calibrated to ensure linearity before
every session of the experiment.

Third, we applied synthetic glare to the rendered images
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Figure 5. Spheres rendered under each of the illumi-
nations used in the experiments. All spheres have the
same surface reflectance. The fifth real-world illumi-
nation (highlighted with a perimeter) was the standard
Match illumination.

Figure 6. Photographic negatives of spheres rendered
under the real-world illuminations that were used in
the main experiment. The image with a perimeter, a
polarity inverted version of the standard Match illumi-
nation, was used as the standard probe in the control
condition.

in order to mimic the optical effects of viewing high lu-
minances with the human eye. This was done according
to specifications derived by Wardet al. [13] from empiri-
cal measurements of the optical properties of the eye. This
process simulates the glare that would be experienced had
the brightest points in the images really been shown at their
correct luminances. The process has little effect except for
bright point sources.

Procedure.Each illumination condition was run in a sep-
arate block and the order of the blocks was randomized
across subjects. Thus each subject ran a total of 17 blocks
(8 real-world + 5 artificial + 4 control); these were run at
different times. Within a block, subjects made 110 observa-
tions: one for each of the possible reflectances of the Test
sphere. Thus for a given value ofc, the subject would per-
form 11 matches, although each of these would have a dif-
ferent value ofd. Conversely, for each given value ofd, the
subject would perform 10 matches, although each would
have a different values ofc. The reflectances within a block
were shown in random order.

Subjects could adjust both parameters simultaneously
using the keyboard and pressing the mouse button to move
onto the next trial when satisfied with the match. Subjects
were informed by a beep if they tried to exceed the range of
Match reflectances.

3. Results

3.1. Can subjects match surface reflectance under
unknown illumination?

Figure 7 shows example data from the matching ex-
periments. Subjects’ responses for specular contrast,c
and specular distinctness,d are plotted as two independent
graphs; the top row represents matches forc, the bottom row
for d. Each pair of plots shows one subject’s matches for a
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Figure 7. Match values plotted as a function of Test
values for individual subjects. Graphs in the top row
are matches for specular contrast, c; graphs in the bot-
tom row are for specular distinctness, d. The graphs
in (a) are subject RF’s matches for spheres under the
“St. Peter’s” illumination; (b) shows RA’s matches for
spheres under the “Eucalyptus” illumination; (c) shows
subject MS’s matches for spheres under the “Grace”
illumination.

single real-world illumination. Thex-axis represents the
true value of the Test reflectance property (c or d) and the
y-axis is the subject’s match. Thus Figure 7a, for example,
shows matching performance for thec parameter (top) and
d parameter (bottom) for subject RF viewing a sphere that
was illuminated as if it had been placed inside St. Peter’s
cathedral in the Vatican (the illumination depicted in Fig-
ure 4h). The grey value represents the density of responses
for a given Test value. Thus, if subjects always responded
with the same Match value to a given Test value, the corre-
sponding sample is white; the rarer the response, the darker
the grey.

The complete data set is summarized in Figure 8. These
are the pooled results from all subjects across all real-world
illuminations. These data show that, in fact, subjects can
estimate surface reflectance in the absence of contextual in-
formation to specify illumination. This is important given
that the task is formally ill posed. If subjects found the task
impossible, the Match values would not depend on the Test
values, i.e. the slope of the graphs would be zero. In fact,
subjects’ matches are closer to veridical than to chance per-
formance.

3.2. How accurate are subjects’ matches?

In order to quantify precisely how well subjects per-
formed, we calculated the root mean square (r.m.s.) error
between their Match values and the true values of the Test
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Figure 8. Data pooled across all subjects and across all
real-world illuminations for parameters c and d. Grey
value represents density of responses.

stimulus. This measure of accuracy can be expressed as a
percentage of the total range ofc andd that we used: the
worse the performance, the larger the percentage.

For specular contrast,c, the r.m.s. error for data pooled
across subjects and across all real-world illuminations was
28% of the total range of values that we used. For parameter
specular distinctness,d, the r.m.s. error across subjects and
across illuminations was 16% of the total range of values
that we used.

3.3. Are the parameters perceptually independent?

In Figures 7 and 8 the two parametersc andd were plot-
ted on separate graphs. This is only appropriate if the two
parameters are perceptually independent; i.e. if perceivedc
is not a function ofd, and vice versa. When Pellaciniet al.
[9] proposed their reparameterization of the Ward model,
they reported that the two parameters were perceptually in-
dependent. Our data support this finding.

On average there was no statistical dependence of per-
ceivedc on the Test value ofd, nor of perceivedd on the
Test value ofc. By binning the values of both Match pa-
rameters into small, intermediate and large values, we were
able to identify the origins of any interactions we found.
Although some illuminations did show small significant in-
teractions, these were inconsistent across bins and across
illuminations. This suggests that the small interactions are
biases introduced by the specific illuminations, rather than
a fundamental lack of independence in the visual represen-
tation of these two parameters.

3.4. Comparison between real-world and artificial
illuminations.

Subjects are more accurate at matching surface re-
flectance properties when objects are illuminated under
real-world conditions than when illuminated with a single
point source, for example. Figure 9 shows r.m.s. error
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across subjects for each illumination condition. The illu-
minations have been ranked by error. Light bars represent
the real-world illuminations and dark-bars represent the var-
ious artificial illumination conditions. In both (a) and (b) the
tendency for subjects to perform better with real-world than
with artificial illuminations is clear.

Of the spheres shown in Figure 5, the one illuminated
under a single extended rectangular source looks more sim-
ilar to the “real-world” spheres, than to the “point source”
sphere. This similarity in appearance is reflected in the re-
sults. As can be seen in Figure 9, accuracy for spheres illu-
minated under the extended source was comparable to the
“real-world” spheres, at least for parameterd. This suggests
that extended luminance edges might play an important role
in our ability to perceive surface reflectance.

Although r.m.s. error is a reasonable metric of perfor-
mance accuracy, it fails to capture quite how inaccurate sub-
jects’ matches are for some of the artificial illuminations.
Figure 10 shows mean matching plots across subjects for
the specular contrast parameter,c. The “Uffizi” illumination
shown in (a) resulted in the least accurate matches of any
of the real-world illuminations, and yet these errors reflect
a systematic bias, presumably introduced by idiosyncractic
statistical properties of that illumination. By contrast, the
matches for the white noise and pink noise conditions are
disorganized and noisy. Presumably this unreliability re-
flects the difficulty that subjects experienced in interpreting
these patterns as specular reflections. Indeed, the example
images shown in Figure 5 demonstrate that random patterns
of illumination do not lead to reliable percepts of surface
reflectance. This is particularly important in the case of
the pink noise, which has a similar amplitude spectrum to
typical real-world illuminations [5]. That subjects perform
worse for this condition suggests that the representation of
stored assumptions about the regularities of real-world illu-
minations does not solely contain information about spatial
frequencies.

3.5. Are subjects matching “high-level” or “low-
level” features?

As discussed above, there are two ways that subjects
can perform the matching task: by attending to their “high-
level” impression of surface reflectance, or by perceptually
equating “low-level” features that correlate with surface re-
flectance. Both tasks are underconstrained, but it is interest-
ing to investigate which approach subjects take. To this end,
a control condition was run featuring photographic nega-
tives of some of the real-world illuminations.

Figure 11 features mean matching plots across subjects
for an example real-world illumination (Eucalyptus) and its
negative counterparts. For specular contrast,c, subjects’
matches are less accurate in the negative Control condi-

specular contrast,c

a

0

5

10

15

20

25

30

35

40

45

St. P
et

er
's

Euc
aly

pt
us

Bea
ch

Cam
pu

s

Gra
ce

Kitc
he

n

Pink
 N

ois
e

Buil
din

g
Uffiz

i

Exte
nd

ed
M

ult
i

W
hit

e N
ois

e
Poin

t

c
: r

.m
.s

. e
rr

or
 (%

 to
ta

l r
an

ge
)

specular distinctness,d

b

0

5

10

15

20

25

30

Euc
aly

pt
us

Exte
nd

ed

Buil
din

g
Uffiz

i

Kitc
he

n

St. P
et

er
's

Gra
ce

Cam
pu

s

Bea
ch

W
hit

e N
ois

e
Poin

t

Pink
 N

ois
e

M
ult

i

d
: r

.m
.s

. e
rr

or
 (%

 to
ta

l r
an

ge
)

Figure 9. (a) R.m.s error for data poole across subjects
for specular contrast c. (b) R.m.s. error across sub-
jects for specular distinctness d. The different illumi-
nations have been ranked in ascending order of error.
Light bars represent real-world illuminations, dark bars
represent artificial illuminations. Artificial illuminations
tend to have higher error (worse performance) than
real-world illuminations.
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Figure 11. Matching plots for positive (left) and neg-
ative (right) versions of the “Eucalyptus” real-world il-
lumination. The top graphs are for specular contrast,
c and the bottom graphs for specular distinctness, d.
Data have been pooled across subjects.

tion than in the positive version. When subjects are match-
ing specular distinctness,d, performance is approximately
equal for positive and negative versions of the stimuli.

These data are summarized in Figure 12. Figure 12(a)
shows r.m.s. error across subjects for thed parameter. Er-
rors are statistically equal for positive and negative versions
of the stimuli. This does not guarantee that subjects are not
using their percept of reflectance to perform the task. How-
ever, it does not exclude the possibility that the perception
of spatial spread may be based on the low-level represen-
tations, rather than additional information carried by high-
level representations of surface reflectance. Figure 12(b)
shows r.m.s. error for thec parameter. Subjects are signif-
icantly better with the positive stimuli than their negative
counterparts. This suggests that the high-level representa-
tion of surface reflectance contains additional information
that helps subjects perform the task, because interruption of
this percept reduces performance accuracy. This also sug-
gests that subjects did indeed follow their instructions to
attend to the material quality of the spheres.

3.6. What cues are subjects using? Comparisons
between illuminations.

Even though subjects match reflectances accurately un-
der unknown real-world illumination, they exhibit biases
dependent on illumination. When we pooled data across all
subjects, we found that estimates ofc for each illumination
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Figure 12. Summarized r.m.s. error in estimates of c
and d for positive and negative images. Light bars rep-
resent positive images and dark bars represent their
negative counterparts.

tended to differ from the veridical values by a multiplicative
factor, while estimates ofd differed from the veridical val-
ues by an additive factor. In other words, estimatesĉ of c
cluster along a linêc = mc, wherem is a constant specific
to the test illumination. Estimateŝd of d cluster along a line
d̂ = d + a, wherea is a constant specific to the test illu-
mination. Figure 13 shows the best fit coefficientsm and
a for each illumination, making systematic biases between
illuminations explicit. The point wherem = 1 anda = 0
corresponds to unbiased estimates ofc andd, respectively.

These biases correlate with certain properties of the illu-
mination maps. For example, illumination maps containing
bright, point-like sources typically lead to increased esti-
mates of both the contrast and distinctness of the specu-
lar reflectance. The “Grace” and “St. Peter’s” illumina-
tions, which are dominated by bright indoor lights, exhibit
the highest values for bothm anda in Figure 13. In fu-
ture work, we plan to test the relationship between illumi-
nation map characteristics and reflectance estimation biases
by measuring subject performance with modified versions
of illumination maps. For instance, we can test the impor-
tance of the brightest light source by removing it while leav-
ing the remainder of the illumination map unaltered.

One salient aspect of Figure 13 is thatm is consistently
less than1, whilea is consistently greater than0 across illu-
minations. There are two possible explanations. One is that
the “Galileo” illumination, which was used as the Match
probe, is a statistical outlier in terms of the features that
subjects use to estimatec andd. Another possibility is that
the matching method introduces some systematic response
biases, as subjects prefer to avoid the ends of the scales, for
example. A pilot experiment featuring a different illumina-
tion for the Match probe suggests that both of these factors
play a role.
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Figure 13. Comparison between matches under real-
world illuminations. The x-axis represents an additive
bias term for estimates ofd, while they-axis represents
a multiplicative error factor for estimates of c. Point
(0,1) represents unbiased performance.

4. Conclusions

Estimating surface reflectance properties under unknown
illumination is underconstrained because many combina-
tions of lighting and reflectance can give rise to the same
images. However, we have shown that in the absence of
contextual cues to illumination, subjects can match surface
reflectance properties.

Real-world illumination contains statistical regularities
and subjects match spheres illuminated under real-world il-
lumination more accurately than they can match spheres il-
luminated under point light sources. It seems likely that
subjects make use of stored assumptions about the regulari-
ties of real-world illumination in order to perform the task.
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