
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-045 October 12, 2011

Leader Election Using Loneliness Detection
Mohsen Ghaffari, Nancy Lynch, and Srikanth Sastry

Leader Election Using Loneliness Detection∗

Mohsen Ghaffari, Nancy Lynch, and Srikanth Sastry
{ghaffari, lynch, sastry}@csail.mit.edu

CSAIL, MIT
Cambridge, MA

October 12, 2011

Abstract

We consider the problem of leader election (LE) in single-hop radio networks with synchronized
time slots for transmitting and receiving messages. We assume that the actual number n of processes is
unknown, while the size u of the ID space is known, but is possibly much larger. We consider two types
of collision detection: strong (SCD), whereby all processes detect collisions, and weak (WCD), whereby
only non-transmitting processes detect collisions.

We introduce loneliness detection (LD) as a key subproblem for solving LE in WCD systems. LD
informs all processes whether the system contains exactly one process or more than one. We show that
LD captures the difference in power between SCD and WCD, by providing an implementation of SCD
over WCD and LD. We present two algorithms that solve deterministic and probabilistic LD in WCD
systems with time costs of O(log u

n) and O(min(log u
n ,

log(1/ε)
n)), respectively, where ε is the error

probability. We also provide matching lower bounds.
We present two algorithms that solve deterministic and probabilistic LE in SCD systems with time

costs of O(log u) and O(min(log u, log log n + log(1
ε))), respectively, where ε is the error probability.

We provide matching lower bounds.

1 Introduction

We study the leader election problem in single-hop radio networks with synchronized time slots for trans-
mitting messages, but where messages are subject to collisions. We focus on the time cost of electing a
leader and the dependence of this cost on the number n of actual processes in the network as well as on a
known, finite ID space I of the processes. We assume that, while n may be unknown, each process knows
its own ID and the ID space I . We only restrict the size of the ID space, u = |I|, to be at least n; the number
of processes in the system may be much smaller than the size of the ID space.

The time cost of leader election depends significantly on the ability of the processes to detect message
collisions. The problem has been well studied in single-hop systems which have no collision detection
(e.g., [3, 6, 11, 1, 9]) and in systems with strong collision detection (SCD) in which all processes can detect
message collisions (e.g., [14, 2, 4, 3, 7, 10]). However, the cost of leader election is under-explored in sys-
tems with weak collision detection (WCD) wherein only the listening processes detect message collisions.
∗This work partially supported by the NSF under award numbers CCF-0937274, and CCF-0726514, and by AFOSR under

award number FA9550-08-1-0159. This work is also partially supported by the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under grant agreement CCF-0939370.

1

We focus on the time costs of solving deterministic and probabilistic leader election in WCD systems and
compare them to the time costs for leader election in SCD systems.

The primary challenge to solving leader election in WCD systems is to distinguish the following two
cases: (1) n > 1 and all the processes transmit simultaneously resulting in a collision, which remains
undetected because no process is listening, (2) n = 1 and any message transmitted by the process does
not collide, but the successful transmission is undetected because no process is listening. In both cases
the transmitting processes receive the same feedback from the WCD system despite different outcomes.
Note that these two cases are distinguishable in SCD systems. Hence, loneliness detection — determining
whether or not there is exactly one process in the system — is a key subproblem of leader election.

Summary of Results. We define the Loneliness Detection (LD) problem and determine the time com-
plexity of solving LD in single-hop wireless networks. We show that LD can be solved deterministically in
WCD systems in O(log u

n) time slots for n > 1 and in O(log u) time slots for n = 1. Interestingly, in the
probabilistic case, if n > 1, LD can be solved in WCD systems in a constant number of rounds with high
probability; however, if n = 1, then our algorithm takes O(log u) time slots. We demonstrate that these
time bounds are tight by presenting matching lower bounds.

We use the aforementioned LD solution to implement an SCD channel on top of a WCD system. This
allows us to deploy SCD-based protocols on WCD systems. We explore such SCD-based protocols for LE
and present upper and lower bounds for both deterministic and randomized LE in SCD systems. First, we
present a deterministic LE protocol that terminates in at mostO(log u) time slots and show a matching lower
bound. For probabilistic LE, we interleave Nakano and Olariu’s algorithm from [10] with our deterministic
algorithm to solve the problem in O(min(log u, log log n + log(1

ε)) rounds with termination probability at
least 1 − ε (where 1 < ε < 0). We present a lower bound of Ω(min(log(un), log(1

ε))) for probabilistic LE
on SCD systems with termination probability at least 1 − ε. Note that the lower and upper bounds match
when ε = O(1

n) and u� n. Subsequently, we demonstrate that the same upper and lower bounds hold for
LE in WCD systems as well.

Organization. Section 2 presents the formal definitions and the system model assumptions used in
the remainder of this article. Section 3 specifies the deterministic and probabilistic leader election problem
as well as a third variant which is used to demonstrate lower bounds. Subsequently, we introduce the
problem of loneliness detection in Section 4 where we provide formal specifications for deterministic and
probabilistic variants of the problem. Also, in Section 4, we demonstrate the use of loneliness detection to
implement strong collision detection in weak collision detection systems. Next, in Section 5, we provide
algorithms to solve deterministic and probabilistic loneliness detection on weak collision detection systems
and demonstrate matching lower bounds. In effect, results from Sections 4 and 5 demonstrate tight bounds
for achieving strong collision detection on weak collision detection systems. We use these results in Section
6 to provide algorithms and matching lower bounds for solving leader election in strong as well as weak
collision detection systems. Finally, we end with a discussion on possible avenues for future research in
Section 7.

2 System Models, Definitions, and Notations

Our model considers a finite set of n processes with unique IDs from I — a finite ID space of size u. The
set J ⊆ I denotes the set of IDs of the n processes. The processes communicate with each other through
a broadcast communication channel. We assume that execution proceeds in rounds and that the rounds are
synchronized at all processes. We model this system using the Timed I/O Automata formalism [5].

While Timed I/O Automata adequately model deterministic system behavior, they do not model prob-

2

abilistic behavior. For the latter, we use Probabilistic Timed I/O Automata from [12] which is described
in [13, Chapter 2]. In deterministic Timed I/O Automata described in [5], the effect of an action a on the
automaton in a state s is a new state s′ which is uniquely determined by a and s. On the other hand, in
Probabilistic Timed I/O Automata derived from [12], the effect of an action a on the automaton in state s is
determined by a, s, and a discrete probability distribution µ over the set of possible states that the automaton
could be in as a result of executing action a (from state s).

2.1 Processes

Each process is modeled as a probabilistic automaton that interacts with a channel automaton and possibly
other automata. Each process is assumed to start from a fixed initial state. Processes communicate by broad-
casting messages on a wireless channel. Processes send messages from a fixed alphabet M. We assume
thatM does not contain special placeholder elements ⊥ and >, which denote silence and collision, respec-
tively. We assume that time is divided into rounds, and processes have synchronized clocks and can detect
the start and end of each round. Processes communicate only at round boundaries and the transmissions are
contained within a single round. We assume that all processes wake up at time 0, which is the beginning
of round 1. While the processes may or may not send a message in any given round, each process receives
either a message or silence (⊥) or collision notification (>) in every round.

A process i sends a messagem at the start of round r through the action send(m, r)i, which is an output
from process i, and receives a message m′ by the end of round r through the action receive(m′, r)i, which
is an input to process i. If a process i does not send a message in round r, then, for convenience, we state
and assume that process i executes action send(⊥, r)i. Also, if a process does not send a message in round
r, then it is assumed to be listening in round r. If a process i does not receive a message in round r, then
the process either receives silence through action receive(⊥, r)i or receives a collision notification through
action receive(>, r)i. For the remainder of this paper, we assume that in every execution, for each process i
and each round r, exactly one event of the form send(∗, r)i and exactly one event of the form receive(∗, r)i
occur.

In addition, processes may interact with other services and the “external world” through other input and
output actions.

2.2 Wireless Channels

A wireless channel, modeled as an I/O automaton and denoted channel automaton, is a broadcast medium in
which at most one process can successfully send a message in any round. Recall that processes communicate
by sending and receiving messages on a wireless channel. The properties of wireless channels described here
hold assuming that processes send their messages only at the start of each round. If processes send messages
only at the start of each round, then a wireless channel is guaranteed to provide feedback to all the processes
by the end of each round, and the feedback provided to each process is a function of the set of messages sent
in that round.

A channel automaton interacts with process automata through send actions, which are inputs to a chan-
nel, and receive actions, which are outputs from a channel. A process i sends a message m in round r
through action send(m, r)i and receives a message m in round r through action receive(m, r)i. For each
process i and each round r, if i does not send a message in round r, it performs action send(⊥, r)i as input
to the channel, and if the channel does not provide any feedback to process i in round r, then the channel
performs action receive(⊥, r)i as input to process i. If message collision occurs in round r, then the channel
may provide a collision feedback to a process i through action receive(>, r)i.

3

2.2.1 Well-formed Behavior

Recall that we assume that processes send their messages only at the start of each round, and the channel
guarantees that these processes receive messages and feedback from the channel by the end of each round.
We formalize this notion through the definition of well-formedness in the input and output events of the
channel and the times at which they occur. Let the pair (e, τ) denote infinite sequence e of send() and
receive() events and the associated sequence τ of increasing times t0, t1, . . . at which these events occur,
and let t0 = 0. The pair (e, τ) is said to be well-formed if (1) limr→∞ = ∞; (2) for every time t not in
the sequence τ , no send() or receive() events occur at time t; (3) for each process i, some send()i event
occurs at time t0; and (4) for each r ∈ N+, and for each process i, some receive()i event occurs at time tr,
and this is followed by some send()i event at time tr. Each time instance tr in τ marks the end of round r
and the start of round r + 1.

The process automata that preserve the well-formedness behavior of the system are said to be a well-
formed environment. We assume that in every admissible execution1 of the environment composed with the
channel, the channel preserves the well-formedness behavior; that is, if the environment is well-formed, then
for each aforementioned admissible execution α, the event sequence and time sequence (e, τ) associated
with α is also well-formed.

2.2.2 Time-bound Functions for Deterministic and Probabilistic Channels

Channel automata may be deterministic or probabilistic. In the case of deterministic channels, let α be
an arbitrary admissible execution of a channel composed with a well-formed environment consisting of n
processes. Suppose that, in α, the sends and receives occurs at times t0, t1, t2, We assume that a known
time-bound function B : N+ × N+ → R≥0 maps each round r to an upper bound B(n, r) on the real
time at which the round ends; B is monotonically non-decreasing with respect to r. Thus, in α, for each
r ∈ N+, tr ≤ B(n, r). Any deterministic channel that satisfies a time-bound function B is said to be a
B-time-bounded channel.

In the case of probabilistic channels, the real-time duration of a round is not fixed a priori: we assume
that every round terminates in finite time with probability 1. Moreover, we assume a probabilistic upper
bound on the time for each round to terminate, given by a time-bound function β : N+×N+×(0, 1]→ R≥0.
Informally, for each n ∈ N+, for each r ∈ N+ and for each ε ∈ (0, 1], β(n, r, ε) is an upper bound on the
real time by which round r terminates with probability at least 1− ε in a system consisting of n processes.
The function β is monotonically nondecreasing with respect to r and monotonically nonincreasing with
respect to ε. More precisely, for each well-formed probabilistic environment E consisting of n processes,
consider the probability distribution on admissible executions of the probabilistic channel with E. For each
r ∈ N+, let tr be a random variable that denotes the time at which round r terminates. Then the probability
that tr ≤ β(n, r, ε) is at least 1− ε. Any probabilistic channel whose round duration is upper bounded by a
function β is said to be a β-time-bounded channel.

2.2.3 Channel Behavior

The behavior of a channel in a round r is determined by the set of transmitting processes in round r. A
process i is said to be a transmitting process in round r if there exists an mi ∈ M such that the event
send(mi, r)i occurs. Note that, by our assumptions, if a process i is not a transmitting process in round r,
then the event send(⊥, r)i occurs. Let T denote the set of transmitting processes in round r.

1An admissible execution is one in which time advances to infinity.

4

If no process transmits a message in round r, and so |T | is 0, then for each process i in the system, the
event receive(⊥, r)i occurs; that is, all the processes receive silence in round r. If exactly one process j
transmits a message (say) m in round r, and so |T | is 1, then for each process i in the system, the event
receive(m, r)i occurs; that is, all the processes receive m in round r.

If two or more processes send messages in a given round, and so |T | > 1, then we say that the round
experiences a message collision. The responses given by a channel in the event of a message collision are
determined by the collision detection ability of the wireless channel. We consider two types of channels
with different collision detection properties.

Weak Collision Detection (WCD) Channels. In weak collision detection (WCD) channels, in the case
of a collision in a round r, every transmitting process receives its own message, and every process that is
listening receives a collision notification in that round. That is, if |T | > 1, then for each process i in T
for which event send(mi, r)i occurs, the event receive(mi, r)i occurs, and for each process j not in T , the
event receive(>, r)j occurs.

Strong Collision Detection (SCD) Channels. In strong collision detection (SCD) channels, if a message
collision occurs in a given round, then all the processes receive a collision notification in that round. That
is, if |T | > 1, then for each process i, the event receive(>, r)i occurs.

2.2.4 SCD is stronger than WCD

Systems with SCD are at least as powerful as systems with WCD because SCD provides more information
than WCD to the transmitting processes in a given round. We formalize this notion through a collection of
automata which uses a (deterministic) SCD channel and satisfies the properties of a (deterministic) WCD
channel. If the SCD channel is B-time-bounded, then the WCD channel is B-time-bounded as well. We do
not consider probabilistic SCD channels here.

Before we describe the automata, recall that channels interact with other automata using send and
receive actions. In order to distinguish the actions of an SCD channel from those of the automaton that
implements a WCD channel, we rename the send and receive actions associated with the automaton imple-
menting the SCD channel as sendSCD and receiveSCD actions respectively. The automata are illustrated
in Figure 1.

Pseudocode Notation. We use the following notations for the pseudocode presented in this document.
When an action at a process is triggered by an event e in the system, we denote the trigger with the notation
“upon event e” in the pseudocode. Similarly, when the automaton is waiting for the occurrence of an event
e to proceed, we denote it with the notation “wait until event e”. Instances in which an algorithm performs
an action a are denoted “perform a”.

We also use the following additional notations to bind values to certain variables. Consider the state-
ments “upon event e(x, y)” and “wait until event e(x, y)”. In both cases, if (say) x is undefined and y is
defined at the point in the code where the statements occur, then the semantics of the code is to wait until
any event of the form e(∗, y), and when an event (say) e(x′, y) occurs, bind the value of x′ to the variable x.

Next we describe a collection of automata Ai, one for each process i (collectively denoted A), that
interact with an SCD channel through sendSCD and receiveSCD actions and interact with the processes
in the system through send and receive actions. The pseudocode is given in Algorithm 1. The automata
satisfies the properties of a WCD channel with respect to the send and receive actions.

5

Figure 1: The automata collection that implement WCD channel on top of an SCD channel

For each process i, the automatonAi behaves as follows. When event send(m, r)i occurs, the automaton
executes the action sendSCD(m, r)i. When event receiveSCD(m′, r)i occurs, if m 6= ⊥ (process i
sent a message in the current round), then the automaton executes receive(m, r); otherwise the automaton
executes receive(m′, r).

Algorithm 1 Implementing WCD on a system with an SCD channel.
Variables:

m ∈M∪ {⊥}
m′ ∈M∪ {>,⊥}
r ∈ N+

Actions for each process i:
for r := 1 to∞

upon event send(m, r)i
perform sendSCD(m, r)i
wait until event receiveSCD(m′, r)i
if (m 6= ⊥) then perform receive(m, r)i
else perform receive(m′, r)i

endfor

Theorem 1. Automata A, which is described in Algorithm 1, when used with a B-time-bounded SCD
channel, satisfies the properties of a B-time-bounded WCD channel.

Proof. We show that A satisfies the requirements of a WCD channel by showing three properties: (1) If no
process sends a message in round r, then all the processes receive silence (⊥) in round r; (2) if exactly one
process sends a message (say) m in round r, then all the processes receive m in the round r; and (3) if two
or more processes send messages in round r, then all the listening processes receive a collision notification
(>) in round r whereas each transmitting process receives the message it sent. We demonstrate each of the
above three properties.

Property 1. If no process transmits a message in round r, then for each process i in the system, the event
send(⊥, r)i occurs, and from the description of A, event sendSCD(⊥, r)i occurs. From the properties of
SCD channels we know that event receiveSCD(⊥, r)i occurs for each process i, and from the description
of A we know that the event receive(⊥, r)i occurs; that is, all processes receive silence in round r.

6

Property 2. If exactly one process j transmits a message (say) m in round r, then event send(m, r)j
occurs and for every other process i in the system, the event send(⊥, r)i occurs. From the description of
A, we know that event sendSCD(m, r)j occurs for process j and event sendSCD(⊥, r)i occurs for every
other process i. From the properties of SCD channels we know that event receiveSCD(m, r)i occurs for
every process i in the system, and from the description of A we know that the event receive(m, r)i occurs
for every process i; that is, all processes receive the message m in round r.

Property 3. If a set T of two or more processes transmit messages in round r, then event send(mj , r)j
occurs for every process j ∈ T where mj ∈ M and event send(⊥, r)i occurs for every process i /∈ T .
From the description of A we know that for every process j ∈ T the event sendSCD(mj , r)j occurs, and
for every process i /∈ T , the event sendSCD(⊥, r)i occurs. From the properties of SCD channels we know
that event receiveSCD(>, r)i occurs for every process i in the system, and from the description of A we
know that the event receive(>, r)i occurs for every process i /∈ T , and for every process j ∈ T , the event
receive(mj , r)j occurs; that is, each process i not in T receives a collision notification, and each process i
in T receives its own message.

Thus, we have shown that A implements a WCD channel from an SCD channel. To complete the proof,
we have to verify that the time-bound function B (given for the SCD channel) is also a time-bound function
for the WCD channel. From the pseudocode in Algorithm 1, we know that the action sendSCD(∗, r)i
immediately follows the action of the form send(∗, r)i and the action receive(∗, r)i immediately follows
the action of the form receiveSCD(∗, r)i. In other words, if round r of the SCD channel ends at time t,
then the round r of the WCD channel ends at time t as well. Thus, if the time-bound function of the SCD
channel is B, then the time-bound function of the WCD channel is B as well.

3 The Leader Election Problem

In this section, we specify and describe two variants of the leader election problem: deterministic and
probabilistic. We also provide an overview of prior work in solving the leader election problem in wireless
systems.

3.1 Specification

Briefly, leader election (LE) is a problem in which all the processes in the system elect some process as the
leader unanimously. A solution to LE is an automaton that has an output action leader(l)i for each process
i and no input actions. The automaton eventually outputs leader(li)i (exactly once) at each process i, where
li is the ID of some process in the system, and for every pair of processes i and j, li = lj . The process li is
the leader.

More precisely, the LE problem is specified by two sets of properties of automaton executions: safety
and liveness properties. We consider two variants of the problem, deterministic and probabilistic, which
differ only in their liveness properties.

Safety Properties. We consider two safety properties. First, in any execution, for every process i ∈ J ,
at most one leader()i event occurs. Second, in any execution, for every pair of processes i, j ∈ J , if events
leader(li)i and leader(lj)j occur, then li = lj and li ∈ J .

Deterministic Liveness Property. The deterministic liveness property states that in any admissible
execution, for every process i ∈ J some event of the form leader(∗)i occurs.

Probabilistic Liveness Property. The probabilistic liveness property states that in the space defined
by all admissible executions, for every process i ∈ J , some event of the form leader(∗)i occurs with

7

probability 1.
Automata that solve deterministic leader election satisfy the safety properties and the deterministic

liveness property, whereas automata that solve probabilistic leader election satisfy the safety properties and
the probabilistic liveness property. Note that an automaton that solves deterministic leader election solves
probabilistic leader election as well.

Let R : N+ → N+ be a function that maps n — the number of processes in the system — to a
nonnegative integer. A solution to deterministic LE in which all the leader() events occur within R(n)
rounds is said to be R-round-bounded.

Let ρ : N+ × (0, 1] → N+ be a function that maps n — the number of processes in the system and ε
— the failure probability — to a nonnegative integer; let ρ be monotonically nonincreasing with respect to
ε. A solution ALE to probabilistic LE is said to be ρ-round-bounded if the following condition holds. In
the probability space defined by all admissible executions of ALE in a system consisting of n processes, for
every ε ∈ (0, 1], the probability that all the leader() events at all the processes occur within ρ(n, ε) rounds
is at least 1− ε.

3.2 Prior Work on Leader Election Using Collision Detection

There has been a significant body of work exploring the solvability and complexity of LE and the related
problem of local broadcast in wireless systems with collision. A significant portion of the results focus on
LE in SCD systems. In this section, we first discuss prior work related to SCD systems and then discuss
existing results for LE in WCD systems.
Deterministic LE in SCD Systems. For deterministic LE in single-hop networks, there exist matching
time bounds O(log n) from [2, 4] and Ω(log n) from [3] where n is the number of processes in the system
and n is known. For the scenarios where n, the number of processes in the system, is unknown, the best
known deterministic upper bound on the time complexity of LE in SCD systems is O(n) in [7] for arbitrary
multi-hop networks; however, the result in [7] assumes that an upper bound u of n is known and is inO(n).
As a special case, the same upper bound holds for single-hop networks as well.

To our knowledge, for deterministic leader election in single-hop SCD systems where n is unknown and
u is known, but u is unconstrained by n except that u > n, better upper and lower bounds than from [7] and
[3], respectively, are not known.
Probabilistic LE in SCD Systems. In the seminal paper [14], Willard established time bounds for proba-
bilistic leader election in single-hop wireless networks with SCD. Willard presented an algorithm that solves
leader election in expected time O(1), O(log log u), and log log n + o(log log n) in the cases where n, the
number of processes in the system is known, where n is unknown, but u — an upper bound on n — is
known, and where both n and u are unknown, respectively. For the case where n and u are unknown, the
results in [10] provided an improved algorithm with running time log log n+o(log log n) +O(log(1

ε)) with
probability of termination exceeding 1−ε. Although a lower bound of Ω(log logn) for this problem has been
presented in [10], the lower bound applies only for “uniform algorithms” in which all the processes transmit
with the same probability in each round (although the probability can vary from one round to another).
LE in WCD Systems. To our knowledge, the problem of leader election seems to be relatively under-
explored in the context of WCD. The best known timing bounds for deterministic leader election in single-
hop wireless networks with WCD are Θ(log n) where n is the number of processes in the system and is
known; the time bound is based on the results for broadcast in multi-hop wireless networks in [11].

8

4 The Loneliness Detection Problem

In this section, we specify and describe the loneliness detection problem. Also, we demonstrate that lone-
liness detection is the discriminator between SCD and WCD systems by implementing an SCD channel on
top of a WCD channel augmented with an automaton that solves loneliness detection.

4.1 Specification

Briefly, loneliness detection (LD) informs all the processes in the system whether or not there exists exactly
one process in the system. A solution to LD is an automaton that has an output action alone() and no input
actions. In some round r, for each process i, the loneliness detector outputs alone(aLD, r)i where aLD is
Boolean. The value of aLD is true iff there is exactly one process in the system. Note that we assume
that the loneliness detector outputs its alone() events at all processes in the same round; in this sense, the
loneliness detector is synchronous.

More precisely, the LE problem is specified by two sets of properties of automaton executions: safety
and liveness properties. We consider two variants of the problem, deterministic and probabilistic, which
differ only in their liveness properties.

Safety Properties. We consider three safety properties. First, in any execution, (a) if an alone(true, ∗)∗
event occurs, then there is exactly one process in the system; that is, n = 1, and (b) if an alone(false, ∗)∗
event occurs, then the system contains more than one process; that is, n > 1. Second, in any execution, for
every process i, at most one alone()i event occurs. Third, in any execution, if two events alone(∗, r)i and
alone(∗, r′)j occur for some pair of processes i and j, then r = r′.

Deterministic Liveness Property. The deterministic liveness property states that in any admissible
execution, for each process i some alone()i event occurs.

Probabilistic Liveness Property. The probabilistic liveness property states that in the space defined by
all admissible executions, for every process i some alone()i event occurs with probability 1.

Automata that solve deterministic loneliness detection satisfy the safety properties and the deterministic
liveness property, whereas automata that solve probabilistic loneliness detection satisfy the safety properties
and the probabilistic liveness property. Note that an automaton that solves deterministic loneliness detection
solves probabilistic loneliness detection as well.

Let R : N+ → N+ be a function that maps n — the number of processes in the system — to a
nonnegative integer. A solution to deterministic LD in which all the alone() events occur within R(n)
rounds is said to be R-round-bounded.

Let ρ : N+ × (0, 1] → N+ be a function that maps n — the number of processes in the system and ε
— failure probability — to a nonnegative integer; let ρ be monotonically nonincreasing with respect to ε.
A solution ALD to probabilistic LD is said to be ρ-round-bounded if the following condition holds. In the
probability space defined by all admissible executions of ALD in a system consisting of n processes, for
every ε ∈ (0, 1], the probability that all the alone() events at all the processes occur within ρ(n, ε) rounds is
at least 1− ε.

4.2 Loneliness Detection and Collision Detection

We show that Loneliness Detection (LD) is, in a sense, exactly the difference between SCD and WCD.
Specifically, we present two results: (1) we show that LD is trivially solvable in SCD systems, and (2) we
present an algorithm that, given a solution to LD on a WCD system, implements an SCD system.

9

4.2.1 LD in SCD systems

The following trivial algorithm, which we call single-broadcast-LD, solves LD in SCD systems and requires
just one round of communication. Each process i in the system sends a default message m at the beginning
of round 1 and waits until the end of round 1. If a collision notification is received at the end of round 1,
then the algorithm returns alone(false, 1)i, otherwise it returns alone(true, 1)i.

Theorem 2. The single-broadcast-LD algorithm implements LD in and SCD system.

Proof. If there is exactly one process in the system, then that process i does not receive a collision notifica-
tion, and hence returns alone(true, 1)i. On the other hand, if there is more than one process in the system,
then the messages of all the processes collide and each process i receives a collision notification in round 1.
Therefore, each process i returns alone(false, 1)i.

Thus, we have shown that LD can be solved on SCD systems using one round of communication. Next,
we show how, using the LD service, we can implement an SCD channel on top of a WCD system. The
implementation of LD on WCD systems is discussed later, in Section 5.

4.2.2 SCD on WCD Systems Using LD

We now present an algorithm that implements an SCD channel on top of a WCD channel augmented with
an LD service. In order to distinguish the actions of a WCD channel from the automaton that implements
an SCD channel, we rename the send and receive actions associated with a WCD channel as sendWCD
and receiveWCD actions, respectively. The implementation is described in Algorithm 2.

Algorithm 2 Implementing SCD on a system with a WCD channel augmented with an LD service.
The algorithm executes two tasks, Init and Communicate, concurrently at each process i.
Variables:

m ∈M∪ {⊥}
m′ ∈M∪ {>,⊥}
p2msg ∈ {“ack”,⊥,>}
rLD, rs ∈ N+

Task Init:
Wait until event alone(aLD, rLD)i from the LD service; halt

Task Communicate:
loop forever

/* Note that round rs for the SCD channel starts here and ends when receive(∗, rs)i is performed */
upon send(m, rs)i wait for Task Init to terminate
Transmit Round:

perform sendWCD(m, rLD + 2rs − 1)i
wait until receiveWCD(m′, rLD + 2rs − 1)i

Ack Round:
if (m = ⊥ and m′ ∈M) then perform sendWCD(“ack”, rLD + 2rs)i
else perform sendWCD(⊥, rLD + 2rs)i
wait until receiveWCD(p2msg, rLD + 2rs)i

if (m′ = ⊥) then perform receive(⊥, rs)i
else if (aLD = true) then perform receive(m, rs)i
else if (p2msg 6= ⊥) then perform receive(m′, rs)i
else perform receive(>, rs)i

end loop

The algorithm consists of two concurrent tasks: Init and Communicate. In the Init task each process i
waits for the output alone(aLD, rLD)i from the LD service. The Communicate task consists of two rounds,

10

Transmit and Ack, which are executed for every round rs of the SCD channel. Each of the rounds, Transmit
and Ack, uses one round of the underlying WCD channel. Let T denote the set of processes that transmit
some messagemi in round rs of the SCD channel via send(mi, rs)i for each process i ∈ T . In the Transmit
round, each process i ∈ T executes sendWCD(mi, rLD+2rs−1)i. All other processes listen to the channel
via send(⊥, rLD+2rs−1)i. At the end of the Transmit round, each process i ∈ T receives its own message
via the event receiveWCD(m′, rLD+2rs−1)i wherem′ = mi. Each listening process j receives one of the
following: silence (⊥), some message, or collision notification (>) via receiveWCD(m′, rLD + 2rs− 1)j .
At the end of the Transmit round, m′ contains the response from the channel in the Transmit round.

In the Ack round, each process i ∈ T listens to the channel via the event sendWCD(⊥, rLD + 2rs)i.
Each process j ∈ J \T sends an ack via the event sendWCD(“ack”, rLD + 2rs)j iff j received a message
in the Transmit round; otherwise j listens to the channel via the event sendWCD(⊥, rLD + 2rs)j . At
the end of the Ack round, each process receives either silence (⊥), “ack”, or collision notification (>) via
receiveWCD(p2msg, rLD + 2rs)∗. Thus, at the end of the Ack round, p2msg contains the response from
the channel in the Ack round.

If p2msg is “ack” or >, then the transmission in the Transmit round was successful, and m′, which
was received by the process at the end of the transmit round, is that transmitted message. If aLD is true,
then there is only one process in the system, and so the transmission in the Transmit round was successful.
However, if aLD is false and p2msg is ⊥, then there must have been a collision.

Although the Init and Communicate tasks are executed concurrently, the Communicate task waits for
the Init task to terminate before proceeding to sending and receiving messages on the WCD channel. This
ensures that the output of the loneliness detector is available to each process before the latter sends messages
on the WCD channel in the Communicate Task. The availability of the loneliness detector output allows
processes to detect sender-side collisions.

Lemma 3. Algorithm 2 satisfies the properties of an SCD channel.

Proof. The properties of an SCD channel are the following: (1) if no process sends a message in a round
(say) rs, then all the processes receive silence (⊥) in round rs; (2) if exactly one process sends a message
(say) m in round rs, then all the processes receive m in round rs; and (3) if two or more processes send
messages in round rs, then all the processes receive a collision notification (>) in round rs. Thus, the proof
involves demonstrating the aforementioned three properties. We consider each of them in turn.

Let T denote the set of transmitting processes in round rs of the SCD channel.
Case 1. T = ∅. For every process i,m = ⊥ in the Communicate Task and so i performs sendWCD(⊥,

rLD+2rs+1)i; from the properties of a WCD channel we know that event receiveWCD(⊥, rLD+2rs−1)i
occurs. Consequently, each process i executes receive(⊥, rs)i after the Ack round in Algorithm 2. Thus, if
no process sends a message in round rs, then all processes receive silence in round rs of the SCD channel.

Case 2. |T | = 1. Let j be the unique ID such that T = {j}. Thus, mj ∈M and for every other process
i ∈ J \ T , mi is ⊥. Therefore, from the properties of a WCD channel, we know that for every process i, m′i
ismj after the Transmit round. Sincemj ∈M, every process i ∈ J \T , executes sendWCD(“ack”, rLD+
2rs)i in the Ack round. We have two subcases to consider: (a) J \ T = ∅, and (b) J \ T 6= ∅.
Case 2(a). J \ T = ∅. Therefore, J = T = {j}; that is, j is the only process in the system. There-
fore, in the output alone(aLD)j at process j, aLD = true. Consequently, after the Ack round, the event
receive(mj , rs)j occurs.
Case 2(b). J \ T 6= ∅. Therefore, there exists at least one other process (say) i′ in the system, and
in the output alone(aLD)j at process j, aLD = false. From the algorithm, we know that some event
sendWCD(“ack”, rLD + 2rs)i′ occurs for i′ ∈ J \ T in the Ack round, and from the properties of a WCD

11

channel we know that for every process i (including j) p2msgi is not ⊥. Since, at each process i, m′i 6= ⊥,
aLD = false, and p2msgi 6= ⊥, process i executes receive(m′i, rs). But we already know that m′i = mj

for every process i. That is, if exactly one process sends a message in round rs, then all processes receive
that message in round rs.

Case 3. |T | > 1. Note that |T | > 1 ⇒ |J | > 1. Therefore, the alone() event for each process i is
alone(false, rLD)i in the Init Task; that is aLD = false at all processes i. For each process j ∈ T , mj ∈
M, and for each process i /∈ T ,mi = ⊥. Therefore, in the Transmit round, there exist at least two processes
x and y such that events sendWCD(mx, rLD + 2rs− 1)x and sendWCD(my, rLD + 2rs− 1)y occur for
some mx,my ∈ M. Since two or more processes send a message, there is a message collision. From the
properties of a WCD channel, we know that for every process j ∈ T , m′j is mj and for every process i /∈ T ,
m′i is > (and mi is ⊥). Therefore, in the Ack round, for each process i event sendWCD(⊥, rLD + 2rs)
occurs, and consequently, p2msgi is ⊥. Given that aLD = false, and m′i 6= ⊥ at every process i, each
process i executes receive(>, rs)i. That is, if two or more processes send a message in round rs, then all
processes receive collision notification (>) round rs.

Cases 1, 2, and 3, show that Algorithm 2 satisfies the properties of an SCD channel.

Lemma 4. If the WCD channel is BWCD-time-bounded and the LD service is RLD-round-bounded, then
the SCD channel implementation in Algorithm 2 is BSCD-time-bounded, where BSCD(n, r) = BWCD(n,
RLD(n) + 2r).

Proof. Recall that a time-bound function maps the number (n) of processes in the system and each round
number (r) to an upper bound on the real time at which that round ends. Let BWCD denote a time-bound
function for the underlying WCD channel. From the pseudocode we know that the deterministic LD service
outputs the alone() events in (some) round rLD of the WCD channel, and subsequently, for each process i in
the system, between every pair of events send(∗, r)i and receive(∗, r)i, there are exactly two sendWCD()
events of the form sendWCD(∗, rLD + 2r− 1)i and sendWCD(∗, rLD + 2r)i. However, from the RLD-
round-boundedness assumption, we know that rLD ≤ RLD(n) where n is the number of processes in the
system.

Therefore, BSCD(n, 1) is given by BWCD(n,RLD(n) + 2) and BSCD(n, r) for each round r is given
by BWCD(n,RLD(n) + 2r).

Theorem 5. Algorithm 2 implements a deterministic SCD channel on top of a WCD system with a determin-
istic LD service. If the WCD channel is BWCD-time-bounded and the LD service is RLD-round-bounded,
then the SCD channel implementation is BSCD-time-bounded, where BSCD(n, r) = BWCD(n,RLD(n) +
2r). Also, if each round of the WCD channel lasts 1 time unit, then each round r of the SCD channel
implementation in Algorithm 2 terminates at time RLD(n) + 2r.

Proof. Follows from Lemmas 3 and 4.

Algorithm 2 implements a probabilistic SCD channel if the underlying LD service is probabilistic.
Namely, consider executions of Algorithm 2 where the underlying LD service is probabilistic and ρLD-
bounded. We demonstrate the following.

Theorem 6. Algorithm 2 implements probabilistic SCD on top of a WCD channel augmented with a
probabilistic LD service. If the WCD channel is BWCD-time-bounded and the probabilistic LD service
is ρLD-round-bounded, then the probabilistic SCD channel implementation is βSCD-time-bounded where
βSCD(n, r, ε) = BWCD(n, ρLD(n, ε) + 2r).

12

Proof. The proof of correctness follows, in part, from Lemma 3 which shows that Algorithm 2 satisfies the
properties of strong collision detection. After the first round of the probabilistic SCD channel has terminated,
all future rounds require exactly two rounds of the underlying WCD channel. Since all alone() events occur
with probability 1, every SCD round terminates in finite time with probability 1. The remainder of this proof
verifies that the probabilistic SCD channel in a system consisting of n processes is βSCD-time-bounded.

Let ε ∈ (0, 1] denote an arbitrary, but fixed value. By assumption, BWCD(n, r) is an upper bound
on the real time at which round r of the underlying WCD channel (in a system consisting of n processes)
ends, and ρLD(n, ε) is an upper bound on the number of rounds within which some alone() event occurs
with probability at least 1 − ε. Note that the first message sent on the SCD channel is transmitted on the
WCD channel only after all the alone() events have occurred. Also, for each process i in the system, a
receive(∗, 1)i event occurs exactly two rounds after an alone()i event. From the LD specifications, we
know that all the alone() events in the system occur in a single WCD round, and from the specifications of
a WCD channel, we know that all the receive(∗, 1) events also occur in the same WCD round. Since all
alone() events occur within ρLD(n, ε) WCD rounds with probability at least 1− ε, we conclude that all the
receive(∗, 1) events occur by real time BWCD(n, ρLD(n, ε) + 2) with probability at least 1 − ε. In other
words, the first round of the SCD channel terminates by real timeBWCD(n, ρLD(n, ε)+2) with probability
at least 1− ε.

After the first round of the probabilistic SCD channel has terminated, all future rounds require exactly
two rounds of the underlying WCD channel. Therefore, each SCD-channel round r terminates by real time
BWCD(n, ρLD(n, ε) + 2r) with probability at least 1 − ε. Thus, we have shown that the SCD channel is
βSCD-time-bounded where βSCD(n, r, ε) = BWCD(n, ρLD(n, ε) + 2r).

Corollary 7. Algorithm 2 implements a βSCD-time-bounded probabilistic SCD on top of a BWCD-time-
bounded WCD channel and a ρLD-round-bounded probabilistic LD service where βSCD(n, r, ε) =
BWCD(n, ρLD(n, ε) + 2r).

4.3 Loneliness Detection Using Leader Election

Implementing LD on top of a WCD system augmented with a solution to LE is straightforward. Given a
solution to LE, solving LD takes just one additional round as follows: First, all the processes elect a leader
with the assumed solution to LE. In the next round of the assumed WCD system, (1) every process that is
not the leader transmits, outputs false, and then halts; (2) the leader outputs true iff it receives⊥ at the end
of this round, and outputs false otherwise. The correctness of the reduction is straightforward.

5 Algorithms and Lower Bounds for Loneliness Detection

In this section, we explore algorithms and lower bounds for Loneliness Detection. As shown in Section
4.2.1, LD can be solved in SCD systems in a single round, which gives us a trivial tight bound of Θ(1). The
remainder of this section focuses on LD in WCD systems.

5.1 Upper Bounds for Loneliness Detection in Weak Collision Detection Systems

We establish upper bounds for LD in WCD systems by presenting two algorithms, one deterministic and
the other randomized, that solve the LD problem. The deterministic algorithm solves the deterministic LD
problem in O(log u

n) rounds when n > 1 and in O(log(u)) rounds when n = 1, whereas the randomized
algorithm solves the probabilistic LD problem in O(log(1/ε)

n−1) rounds with probability 1− ε where ε ∈ (0, 1]

13

when n > 1. We then combine the deterministic and the randomized algorithms to solve probabilistic LD
for all values of n, including n = 1. For the lower bound, we show that termination of any solution to the
LD problem cannot be guaranteed in fewer than log(u) − log(n − 1) rounds for n > 1 and in fewer than
log(u) rounds for n = 1.

The algorithms presented in this section divide the execution into phases. Each phase consists of two
rounds of the WCD channel: a Transmit round and an Ack round. If a nonempty set T of processes send
a message in the Transmit round, then the processes in J \ T transmit in the Ack round to indicate that at
least one message was sent in the Transmit round.2 It is easy to see that for each process i, either sending a
message, receiving a message, or receiving a collision notification in the Ack round is a sufficient basis for
i to conclude that n > 1. In order to ascertain that n = 1, the single process waits for an adequate number
of phases in which the Ack rounds are silent. We describe the two algorithms in detail next.

5.1.1 Deterministic Algorithm for LD: Bitwise Separation Protocol (BSP).

BSP solves the deterministic LD problem in WCD systems inO(log u
n) rounds. The algorithm is as follows.

Let the ID of each process i be represented as a sequence of bits denoted idi; since the ID space is of size
u, the sequence is dlog(u)e bits long.3 Starting from the least significant bit, number the bits from 1 to
dlog(u)e, and let idi[k] denote the k-th bit of process i’s ID. Let Tk = {i ∈ J : idi[k] = 1}. The algorithm
proceeds in phases, each phase consisting of a Transmit round and an Ack round. Initially, no process is
halted.

In the Transmit round of the k-th phase, exactly the processes in Tk that have not yet halted transmit a
message. In the Ack round, if a process i ∈ J \ Tk that has not halted receives either a message or > in the
Transmit round, then i sends an “ack” message; furthermore, processes in Tk do not send a message in the
Ack round. If a process i ∈ J that has not yet halted either sends or receives an “ack” message or receives
> in the Ack round of a given phase k, then i outputs alone(false, 2k)i and halts.

If ⊥ is received in all the Ack rounds, then the algorithm terminates at the end of 2dlog ue rounds and
the lone process (say) j outputs alone(true, 2dlog ue)j . The pseudocode is shown in Algorithm 3.

Algorithm 3 Bitwise Separation Algorithm
Let id[1 . . . dlog(u)e] denote the sequence of bits of a process i where id[1] denotes the least significant bit.
Let m ∈M denote some special message that i sends to signal its presence in the system.
Execution proceeds in phases. Each phase consists of two rounds: a Transmit round and an Ack round.
Process i executes the following:

for k := 1 to dlog(u)e
Transmit round:

if (id[k] = 1) then perform send(m, 2k − 1)i
else perform send(⊥, 2k − 1)i
wait until receive(m′, 2k − 1)i

Ack round:
if (id[k] 6= 1 and m′ 6= ⊥) then perform send(“ack”, 2k)i
else perform send(⊥, 2k)i
wait until receive(m′′, 2k)i
if (m′′ 6= ⊥) then perform alone(false, 2k)i; halt.

endfor
perform alone(true, 2dlog(u)e)i

2Recall that J is the set of processes comprising the system.
3Note that idi may be represented as a natural number from the set [0, u− 1].

14

In order to show that BSP solves deterministic LD, we demonstrate that BSP satisfies the safety and
deterministic liveness properties of LD. For the proof of correctness, we define a failed phase as follows: a
phase k is said to be a failed phase if in the Transmit round of phase k, all the processes in the system that
have not yet halted, perform the same action (either transmit or remain silent). A phase that is not failed is
called a non-failed phase.

Proposition 8. In BSP, in any execution, for every process i there exists exactly one alone()i event.

Proof. The proof follows from the pseudocode in Algorithm 3 in which every process i eventually outputs
an alone()i event and immediately halts.

Lemma 9. In any execution of BSP, for each k, 1 ≤ k < dlog ue, letH denote the set of processes that have
not halted by the start of phase k; if phase k is a failed phase, then no process in H halts at phase k.

Proof. Since phase k is a failed phase, either all the processes inH transmit or all the processes inH remain
silent in the Transmit round of phase k. Furthermore, processes not inH remain silent in the Transmit round
of phase k. Thus, at the end of the Transmit round, all the processes that are not halted and are listening in
that round receive silence. From the pseudocode, we see that in the following Ack round, no process sends
an “ack” message, and therefore, no process in H halts by phase k.

Lemma 10. In any execution of BSP, for any phase k, let H denote the set of processes have not halted by
the start of phase k; if phase k is a non-failed phase, then all the processes in H halt by the end of phase k
by outputting events alone(false, 2k)∗.

Proof. Recall that in a non-failed phase, some process in H transmits in the Transmit round whereas some
process in H listens in the Transmit round. Therefore, in phase k some process (say) i ∈ H transmits
in the Transmit round whereas some other process (say) j ∈ H listens in the Transmit round. From the
pseudocode, we see that j receives either a message or a collision notification by the end of the Transmit
round, and therefore sends an “ack” message in the Ack round. Hence, by the end of the Ack round, all the
processes in H receive either an “ack” message or a collision notification; from the pseudocode, we see that
each process i ∈ H halts at the end of such an Ack round and outputs alone(false, 2k)i.

Let K = {k ∈ N+ : (∃i, j ∈ J)(idi[k] = 1 ∧ idj [k] = 0)}, and if K 6= ∅, then let k̂ = min(K). That
is, k̂ denotes the smallest bit position in which the IDs of two processes in the system differ.

Lemma 11. In BSP, if K is nonempty and k̂ = min(K), then in an (arbitrary) execution α of the system,
every phase smaller than k̂ is failed, no process halts before phase k̂, and phase k̂ is non-failed.

Proof. By construction, k̂ ≤ dlog ue; the first k̂ − 1 bits of the IDs all the processes in the system are
identical; and the k̂-th bit of some two processes in the system differ. Next, we prove the following claim:
for any k, 1 ≤ k < k̂, phase k is a failed phase and no process halts at phase k.

If k̂ = 1, then the claim is vacuously true. We assume k̂ > 1.
The proof of the claim is by strong induction on k. For the inductive hypothesis, we fix k, where

1 ≤ k < k̂, and for each k′, 1 ≤ k′ < k, we assume that phase k′ is a failed phase and no process halts at
phase k′. We show that the inductive hypothesis implies that phase k is a failed phase and no process halts
at phase k.

We consider two cases: (1) k = 1, and (2) k > 1. Let k = 1. Since the first bit of the process IDs of
all the processes are the same, all the processes either transmit or all the processes remain silent in the first

15

Transmit round. Thus, by definition, phase 1 is a failed phase. From Lemma 9 we know that no process
halts at the end of phase 1.

In the case where 1 < k < k̂, the k-th bits of the IDs of all the processes are identical. From the
inductive hypothesis we know that no process halts prior to phase k. Therefore, in phase k, either all the
processes transmit or all the processes remain silent in the Transmit round. Thus, by definition, phase k is a
failed phase, and from Lemma 9 we know that no process halts at the end of phase k.

It follows by strong induction that for any k, 1 ≤ k < k̂, phase k is a failed phase and no process halts
at phase k.

Therefore, at the start of phase k̂, no process is halted. By definition, there exists some pair of processes
i and j such that idi[k̂] = 1 and idj [k̂] = 0. Therefore, in the Transmit round of phase k̂, process i transmits
a message whereas process j listens in the Transmit round. That is, phase k̂ is a non-failed phase.

Lemma 12. In BSP, if an alone(true, ∗)∗ event occurs in an execution α, then there is exactly one process
in the system; that is, n = 1.

Proof. Consider any process i. Assume that the event alone(true, r)i occurs in α. From the pseudocode in
Algorithm 3, we see that event alone(true, r)i occurs only if r = 2dlog ue. For the purposes of contradic-
tion, we assume that n > 1.

Consider the setK defined above. Since n > 1 and all processes have unique IDs, we know thatK 6= ∅.
Let k̂ = min(K). We know that k̂ ≤ dlog ue.

From Lemma 11 we know that phases 1 through k̂ − 1 are failed phases, no process halts in phases 1
through k̂ − 1, and phase k̂ is a non-failed phase. Applying Lemma 10, we see that all the processes halt in
round 2k̂ and output events alone(false, 2k̂)∗. However, given that event alone(true, r)i occurs in α, this
contradicts Proposition 8 which states that for each process i exactly one alone()i event occurs. Therefore,
our assumption that n > 1 is false.

Lemma 13. In BSP, if an alone(false, ∗)∗ event occurs in an execution α, then the system contains more
than one process, that is, n > 1.

Proof. Assume that for some process i, event alone(false, ∗)i occurs in α. By the pseudocode, this event
occurs in an Ack round, say round 2r. This implies that i sends or receives an “ack” message or receives
a collision notification in round 2r. This implies that some message is received by a listening process in
the immediately-preceding Transmit round, which in turn implies that there are at least two processes in the
system.

Lemma 14. In BSP, in any execution, if two events alone(∗, r)i and alone(∗, r′)j occur for some pair of
processes i and j, then r = r′.

Proof. We fix processes i and j, i 6= j, and rounds r and r′, such that events alone(∗, r)i and alone(∗, r′)j
occur. Since n > 1, Lemma 13 implies that events alone(false, r)i and alone(false, r′)j occur.

From the pseudocode, we know that that in round r,m
′′
i 6= ⊥. That is, i either sends or receives an “ack”

message or receives a collision notification in round r. From the properties of the WCD channel we know
that all the other processes either send or receive an ack message or receive a collision notification in round
r; therefore, event alone(false, r)j occurs as well. Applying Proposition 8, we conclude that alone(∗, r′)j
and alone(false, r)j are the same event. Thus, the lemma is proved.

Recall that u denotes the size of the ID space for processes in the system, and n denotes the number of
processes in the system; naturally n ≤ u.

16

Lemma 15. In BSP, in any execution α, if n = 1, then for each process i, some alone()i event occurs in
round 2dlog(u)e, and if n > 1, then for each process i, some alone()i event occurs in at most 2(dlog ue −
dlog ne+ 1) rounds.

Proof. Suppose that n = 1 and the lone process in the system is i. From Proposition 8 we know that at
most one alone()i event occurs; from the pseudocode, we know that at least one alone()i event occurs;
that is, exactly one alone()i event occurs. Applying the contrapositive of Lemma 13, we see that the lone
alone()i event cannot be an alone(false, ∗)i event; hence, the an alone(true, ∗)i event occurs. From the
pseudocode, we see that event alone(true, 2dlog(u)e)i occurs in round 2dlog(u)e.

Alternatively, suppose that n > 1. Consider the set K and k̂ = min(K) described earlier. Since
representing unique IDs among n processes requires dlog ne bits, |K| ≥ dlog ne. Since each process ID in
the system is of length dlog ue bits, we infer that k̂ ≤ dlog ue − dlog ne + 1. From Lemma 11 we know
that phases 1 through k̂ − 1 are failed phases, no process halts at phases 1 through k̂ − 1, and phase k̂ is
a non-failed phase. Applying Lemma 10, we see that all the processes halt in round 2k̂ and output events
alone(false, 2k̂)∗. Since, k̂ ≤ dlog ue − dlog ne+ 1, we know that if n > 1, BSP for each process i, some
alone()i event occurs in at most 2(dlog ue − dlog ne+ 1) rounds.

Theorem 16. BSP solves the deterministic LD problem and is RLD-round-bounded where RLD(1) =
2dlog(u)e and for all n, where 1 < n ≤ u, RLD(n) = 2(dlog ue − dlog ne+ 1).

Proof. The safety properties are proved in Proposition 8, Lemmas 12, 13 and 14, and the deterministic
liveness property is proved in Lemma 15. Also, from Lemma 15 we see that for each process i, some
alone()i event occurs in round 2dlog(u)e if n = 1 and in at most 2(dlog ue − dlog ne + 1) rounds if
n > 1. That is, BSP is RLD-round-bounded where RLD(1) = 2dlog(u)e and for n where 1 < n ≤ u,
RLD(n) = 2(dlog ue − dlog ne+ 1).

Corollary 17. If the underlying physical system is a WCD system in which the duration of each round is 1
real-time unit, then BSP solves the deterministic LD problem in at most 2(dlog ue − dlog ne+ 1) real-time
units if n > 1 and in 2dlog(u)e real-time units if n = 1.

5.1.2 Random Separation Protocol (RSP).

The Random Separation Protocol solves probabilistic LD in WCD systems consisting of 2 or more pro-
cesses. If n > 1, then RSP verifies that n > 1 in 2 log(1/ε)n−1 rounds with probability at least 1 − ε where
ε ∈ (0, 1]. However, if n = 1, then RSP does not terminate. We use RSP to solve probabilistic LD for all
values of n in Section 5.1.3.

The protocol is identical to BSP except that IDs in RSP are infinite-bit strings in which the bits are
chosen independently and uniformly at random. For each process i, let the infinite-bit ID of process i be
denoted idi, and let idi[k] denote the k-th bit of idi. In each phase k, if idi[k] = 1, then i transmits in the
Transmit round; otherwise i listens in the Transmit round. It can be verified easily that RSP terminates in
the first phase k in which for some pair of processes i and j, idi[k] 6= idj [k]. The pseudocode is shown in
Algorithm 4.

Next, we show that RSP verifies if n > 1 in 2 log(1/ε)n−1 rounds with probability at least 1 − ε (where
ε ∈ (0, 1]).

Theorem 18. In RSP, if n > 1 and ε ∈ (0, 1], then for every process i, the event alone(false, r)i occurs
within the first log(1/ε)n−1 phases; that is, r ≤ 2 log(1/ε)n−1 , with probability at least 1− ε.

17

Algorithm 4 Random Separation Protocol.
Let m ∈M denote some special message that i sends to signal its presence in the system.
Execution proceeds in phases. Each phase consists of two rounds: a Transmit round and an Ack round.
Process i executes the following:

for k := 1 to∞
toss an unbiased coin p ∈ {0, 1} to determine the k-th bit of the ID
Transmit round:

if p = 1 then perform send(m, 2k − 1)i
else perform send(⊥, 2k − 1)i
wait until receive(m′, 2k − 1)i

Ack round:
if (p = 0 and m′ 6= ⊥) then perform send(“ack”, 2k)i
else perform send(⊥, 2k)i
wait until receive(m′′, 2k)i
if (m′′ 6= ⊥) then perform alone(false, 2k)i; halt.

endfor

Proof. Assume n > 1. Recall the definition of a failed phase from Section 5.1.1: a phase k is said to be a
failed phase if in the Transmit round of phase k, all the processes in the system that have not halted perform
the same action (either transmit or remain silent). A phase that is not failed is called a non-failed phase.

Applying Lemma 9 (originally for BSP) to RSP we see that RSP does not terminate until the first non-
failed phase, and applying Lemma 10 (originally for BSP) to RSP we see that RSP terminates (outputting
events alone(false, ∗)∗) right after the first non-failed phase.

Since RSP uses an unbiased coin, for each phase k and each process i, the probability of i transmitting in
the Transmit round of phase k is exactly 1

2 . Applying this observation to all the processes, and considering
the two cases where either all the processes transmit or all the processes do not transmit in a given Transmit
round, we see that the probability that a given phase is a failed phase is 2 · (1

2)n = (1
2)n−1.

Therefore, for any given ε ∈ (0, 1], the probability that RSP does not terminate in log(1/ε)
n−1 phases is the

probability that all of the first log(1/ε)n−1 phases are failed which is ((1
2)n−1)(

log(1/ε)
n−1

) = ε.

By substituting r = 2 log(1/ε)
n−1 in Theorem 18 we get the following corollary.

Corollary 19. In RSP, for every process i, an alone()i event occurs within r rounds with probability at least

1− (1
2)

r(n−1)
2 .

Often, the error probability ε is expressed as functions of n or u; common values of ε are 2−n and 2−u.
Let ε = 2−n; we substitute the value of ε in Theorem 18 and obtain the following result.

Corollary 20. In RSP, if n > 1, then for every process i the event alone(false, r)i occurs within the first
2 n
n−1 rounds with probability at least 1− 2−n.

Thus, for n > 1, the number of rounds within which RSP terminates with high probability is always at
most 4, and as n increases, it converges to 2.

Similarly, if we substitute ε = 2−u in Theorem 18, we get:

Corollary 21. In RSP, if n > 1, then for every process i the event alone(false, r)i occurs within the first
2 u
n−1 rounds with probability at least 1− 2−u.

18

5.1.3 Combined Separation Protocol (CSP).

Even though RSP terminates in fewer rounds than BSP with high probability, it terminates only if n > 1.
In other words, RSP can verify that a process is not alone, but it cannot confirm that a process is alone. We
can overcome this problem with the Combined Separation Protocol (CSP) which interleaves RSP and BSP
such that we execute BSP in the odd rounds and RSP in the even rounds; CSP terminates when either BSP
or RSP terminates.

Theorem 22. CSP solves probabilistic LD on WCD systems and is ρLD-round-bounded where

ρLD(n, ε) =

{
4dlog ue if n = 1,
4 min

(
(dlog ue − dlog ne+ 1), log(1/ε)

n−1

)
if n > 1.

Proof. The correctness follows from Theorems 16 and 18. The remainder of this proof demonstrates that
the LD service is ρLD-round-bounded.

We consider two cases: (1) n = 1, and (2) n > 1.
Case (1) If n = 1, then we know from Lemma 15 that BSP terminates in 2dlog ue rounds. Since BSP

runs in odd numbered rounds, CSP terminates in at most 4dlog ue rounds.
Case (2) If n > 1, the following arguments hold. Since BSP runs in the odd rounds of the CSP algorithm,

and from Lemma 15 we know that BSP terminates in at most 2(dlog ue − dlog ne + 1) rounds, therefore,
CSP terminates with probability 1 in 4(dlog ue − dlog ne+ 1) rounds.

Also, from Theorem 18 we know that RSP terminates in 2 log(1/ε)n−1 rounds with probability at least 1− ε.
Since RSP runs in even numbered rounds of CSP, for any given ε ∈ (0, 1], CSP terminates in 4 log(1/ε)n−1
rounds with probability at least 1− ε.

By substituting r = 4 log(1/ε)
n−1 in Theorem 22 we get the following corollary.

Corollary 23. If the underlying physical system in a WCD systems in which the duration of each round is
1 real-time unit, then CSP solves probabilistic LD in at most 4(dlog ue − dlog ne + 1) real-time units with

probability at least (1 − 2−
r(n−1)

4) if n > 1 and in at most 4(dlog ue − dlog ne + 1) real-time units with
probability 1 if n = 1.

5.2 Lower Bounds for Loneliness Detection in Weak Collision Detection Systems

In this section, we present lower bounds for both probabilistic and deterministic LD problems in WCD
systems. For the probabilistic case, in Theorem 26, we show that for any n > 1, and any ε ∈ (0, 1],

no algorithm that solves probabilistic LD can guarantee termination in fewer than min
(log(1

ε
)

n , dlog(u)e −
blog(n − 1)c − 1

)
rounds with probability greater than 1 − ε. That is, for any such n and ε, and for any

algorithm A that solves probabilistic LD, there exists a set of processes, JLB4, where |JLB| = n, such that

the probability of A terminating within min
(log(1

ε
)

n , dlog(u)e−blog(n−1)c−2
)

rounds, when A is run on
the system consisting of all processes in JLB , is at most 1− ε. We also show in Theorem 26 that for n = 1,
no algorithm that solves probabilistic LD can guarantee termination in fewer than dlog(u)e − 1 rounds. For
the deterministic case and n > 1, we show in Corollary 27 that no algorithm that solves deterministic LD
can guarantee termination in fewer than dlog(u)e − blog(n− 1)c − 1 rounds. These results show that time
complexities of algorithms BSP and CSP, presented in Theorems 16 and 22, respectively, match the lower
bounds.

4The subscript LB in JLB stands for lower bound.

19

Lemma 24. For any algorithmA that solves probabilistic LD in WCD systems, any n > 1, and any positive
integer r ≤ dlog(u)e − blog(n− 1)c − 2, there exists a set JLB of n processes, such that the probability of
A not terminating within r rounds, when A is run on the system consisting of all the processes in JLB , is at
least (1

2)rn.

Proof Sketch. For each process i, we consider executing A on system Si consisting of only process i.
Consider the probability space of all admissible executions of Si, and denote the probability of events in
this space Pri. For each such execution and each round z ≥ 1, define transi(z) to be true if i transmits
in round z, and false otherwise. We define the boolean function dtdi (dominating transmission decision)
on {1, ..., r} recursively. dtdi(1) is assigned the value that is more likely to be taken by transi(1), i.e.,
dtdi(1) = true iff Pri{transi(1) = true} ≥ 1

2 . Let DTDi,1 denote the event in the probability space Pri
that transi(1) = dtdi(1). For each z ≥ 2, we define dtdi(z) to be the value that is more likely to be taken
by transi(z), conditioned on DTDi,z−1, i.e., dtdi(z) = true iff Pri{transi(z) = true|DTDi,z−1} ≥ 1

2 .
Recall that r is a positive integer and r ≤ dlog(u)e − blog(n − 1)c − 2. Since for each process i and

each round z ≥ 1, there are two possible values for dtdi(z), there are 2r possible values for dtdi sequences
spanning r rounds. Since 2r < u

n−1 , by the pigeonhole principle, there exists a set JLB of n processes that
have identical sequences of dominating transmission decisions, i.e., ∀i, j ∈ JLB, dtdi = dtdj . For each z,
1 ≤ z ≤ r, let cdtd(z) denote the common dominating transmission decision of the processes of JLB in
round z.

Let S be the system consisting of exactly the processes in JLB . Consider an admissible execution α
of system S. If, for each process i ∈ JLB and each round z ≤ r of α, transi(z) = cdtd(z), then for
each i ∈ JLB there exists an execution βi in Si such that i cannot distinguish α from βi in the first r
rounds.5 However, in α, the only valid output is alone(false, ∗)∗ whereas in βi, the only valid output is
alone(true, ∗)∗. Hence, i cannot terminate within r rounds. By induction we show that the probability that
for each i ∈ JLB and z, 1 ≤ z ≤ r, transi(z) = cdtd(z) is at least (1

2)rn. Hence, with probability at least
(1
2)rn, A does not terminate within r rounds.

Proof. Assume for the sake of contradiction that there exists an algorithm A that solves probabilistic LD in
WCD systems, there exists n > 1 and there exists r ≤ dlog(u)e − blog(n − 1)c − 2, such that for every
set JLB of n processes, the probability that A, when run on in a WCD system consisting of exactly the
process in JLB , terminates within r rounds is strictly greater than 1 − (1

2)rn. We force a contradiction by
showing that for the given values of n and r (assumed above) there exists an execution where A violates
safety properties of the LD problem.

For each process i, we consider executing A in a system Si consisting of only process i. Consider the
space of all admissible executions of Si. Denote the probability of events in this space Pri. For each such
execution and each round z, 1 ≤ z ≤ r, define the transmission decision of i in round z, denoted by the
random variable transi(z), to be equal to true if i transmits in round z, and false otherwise. We define
the boolean function dtdi, standing for dominating transmission decision, on {1, ..., r} recursively. dtdi(1)
is assigned the value that is more likely to be taken by transi(1), i.e.,

dtdi(1) =
{
true if Pri{transi(1) = true} ≥ 1

2 ,
false otherwise.

LetDTDi,1 denote the event in the probability space Pri consisting of those executions in which transi(1)
= dtdi(1). For each z, z ≥ 2, we define dtdi(z) to be the value that is more likely to be taken by transi(z),

5Note the overloading of the random variable transi(z). Here, transi(z) denotes the transmission decision of process i at
round z in system S. Earlier, transi(z) denoted the same event in the system Si.

20

conditioned on DTDi,z−1, i.e.,

dtdi(z) =
{
true if Pri{transi(z) = true|DTDi,z−1} ≥ 1

2 ,
false otherwise.

DTDi,z denotes the event in the probability space Pri consisting of those executions in which, for every
round r′,1 ≤ r′ ≤ z, transi(r′) = dtdi(r′).

Since for each process i and each round z, 1 ≤ z ≤ r, there are two possible values for dtdi(z),
there are 2r possible values for a dtdi sequence spanning r rounds. Since 2r ≤ 2dlog(u)e−blog(n−1)c−2 <
2(log(u)+1)−(log(n−1)−1)−2 = u

n−1 , by the pigeonhole principle, there exists a set JLB of n processes such
that all processes in JLB have identical sequences of dominating transmission decisions, i.e., for every pair
of processes i, j ∈ JLB and each round z where 1 ≤ z ≤ r, we have dtdi(z) = dtdj(z). For each z,
1 ≤ z ≤ r, let cdtd(z) denote the common dominating transmission decision of the processes of JLB in
round z.

Let S denote the system consisting of exactly the processes in JLB . Consider the space of all admissible
executions of A in system S. We denote the probability of events in this space by PrS . For each z,
1 ≤ z ≤ r, and each i ∈ JLB , we define Ci,z to be the event in this space where for each round r′,
1 ≤ r′ ≤ z, transi(r′) = cdtd(r′); naturally, Ci,z−1 ⊇ Ci,z . Now, for every z, 1 ≤ z ≤ r, define
Gz =

⋂
i∈JLB Ci,z , and therefore, Gz−1 ⊇ Gz .

Note that for each z, 1 ≤ z ≤ r, for any execution in Gz , for each process i ∈ JLB , the response
that i receives from the channel for each round r′, 1 ≤ r′ ≤ z is equal to the message that i transmitted if
transi(r′) = true, and ⊥ otherwise. Let Πz denote the set of z-round prefixes of all executions in Gz .

Indistinguishability Claim: For every z, 1 ≤ z ≤ r, for every process i in system S, for each z-round
prefix α ∈ Πz , there exists a z-round prefix βi of some execution of system Si such that the execution is
in DTDi,z . In other words, for every z-round execution prefix α ∈ Πz , there exists a z-round execution
prefix βi such that process i cannot distinguish execution prefix α of system S from execution prefix βi of
system Si. In effect, for the first r rounds, the actions at each process i in an execution of system S in Gr
are identical to the actions at i in an execution of system Si in DTDi,r.

To get to the contradiction, we prove the following claim.
Claim. For each z, 1 ≤ z ≤ r, PrS{Gz} ≥ (1

2)zn.

Proof. The proof is by induction on z. For the base case, let z = 1. Note that each process i ∈ JLB is in the
same initial state in systems S and Si. By the definition of dominating transmission decision, we know that
in system Si, Pri{transi(1) = cdtd(1)} ≥ 1

2 , i.e., Pri{DTDi,1} ≥ 1
2 . Since i makes the same random

choices in both S and Si in the first round, PrS{Ci,1} = Pri{DTDi,1}, and hence, PrS{Ci,1} ≥ 1
2 .

Note that the random choices of different processes in JLB are independent of each other in the first
round, and hence, for all i ∈ JLB , the events Ci,1 are independent (and recall that for each such i,

PrS{Ci,1} ≥ 1
2). Therefore, PrS{G1} = PrS{∩i∈JLBCi,1} ≥ (

1
2

)n.

For the inductive step, assume that for some z, 2 ≤ z < r, PrS{Gz−1} ≥ (1
2)(z−1)n. By the defi-

nition of dominating transmission decision, we have the following: for each i ∈ JLB, P ri{transi(z) =
cdtd(z)|DTDi,z−1} ≥ 1

2 , and therefore, Pri{DTDi,z|DTDi,z−1} ≥ 1
2 . Note that the probability dis-

tribution of random choices of process i in round z of executions in system S, conditioned on Gz−1, is
identical to the probability distribution of random choices of process i in round z of executions in system
Si, conditioned on DTDi,z−1. Therefore, PrS{Ci,z|Gz−1} = Pri{DTDi,z|DTDi,z−1} ≥ 1

2 .
Since, for each pair of processes i and j, the eventsCi,z andCj,z , conditioned onGz−1, are independent,

and Gz = ∩i∈JLBCi,z , we obtain that PrS{Gz|Gz−1} ≥ (1
2)n. Therefore, from the inductive hypothesis,

21

and noting that Gz ⊆ Gz−1, we have PrS{Gz} = PrS{Gz|Gz−1} · PrS{Gz−1} ≥ (1
2)zn. Thus, we have

proved that for each z, 1 ≤ z ≤ r, PrS{Gz} ≥ (1
2)zn.

In particular, letting z = r, we see that PrS{Gr} ≥ (1
2)rn. Now, recall that we assumed that for every

set of processes with size n, the probability that A, when run on those n processes, terminates by r rounds
is strictly greater than 1 − (1

2)rn. Therefore, the probability that A, when run on system S, terminates by
r rounds is strictly greater than 1 − (1

2)rn. Since we know that PrS{Gr} ≥ (1
2)rn, there must exist an

execution γ of algorithm A in system S where γ terminates by r rounds and γ is in Gr. Let γr denote the
prefix of γ that is r rounds in length. By definition, γr is in the set Πr (which denotes the set of r-round
prefixes of executions in Gr). Hence, we can apply the indistinguishability claim (from above) to γr and
state that there exists an execution βi in system Si such that process i cannot distinguish γ from βi up to the
end of round r.

Since n > 1, we know from the properties of the LD problem that the output of each process i ∈
JLB in γ is equal to alone(false, ∗)i. By assumption, the output event alone(false, ∗)i occurs within r
rounds. Applying the indistinguishability claim, we see that the output event alone(false, ∗)i occurs in the
execution βi as well. However, since there is only one process in the system Si, this output in execution βi
is incorrect and violates the safety property of the LD problem.

Lemma 25. For n = 1, no algorithm that solves probabilistic LD in WCD systems guarantees termination
in fewer than dlog(u)e − 1 rounds.

Proof. The proof is by contradiction. Assume for the sake of contradiction that there exists an algorithm
A that solves probabilistic LD in WCD systems and always terminates within dlog(u)e − 2 rounds when
n = 1. We show that this leads to a contradiction by showing that there exists an execution whereA violates
the safety properties of the LD problem.

Let r = dlog(u)e − 2. For each process i, we consider executing A in a system Si consisting of
only process i, and let Ei be the set of all possible admissible executions of A in system Si. Choose an
arbitrary execution βi ∈ Ei. Note that from the properties of the LD problem, the output event in βi must
be alone(true, ∗)i. We define boolean function transi over {1, ..., r} as follows. For each z, 1 ≤ z ≤ r,
transi(z) is equal to true if i transmits in round z of βi, and false otherwise.

Since there are 2r different possible sequences of values for each transi, and 2r = 2dlog(u)e−2 <
2log(u)−1 < u, by the pigeonhole principle, there exist two processes j and j′ such that for every z, 1 ≤ z ≤
r, transj(z) = transj′(z). Let S be the system consisting of processes j and j′.

Consider the execution α of system S where processes j and j′, take exactly the same steps as they take
in βj and βj′ , respectively. We show that execution α is a valid execution for algorithmA in system S. First,
we show for each z, 1 ≤ z ≤ r, the execution prefix of α consisting of the first z rounds is a valid execution
prefix for algorithm A in system S. Next, we show that α violates the safety properties of the LD problem.

We show that for each z, 1 ≤ z ≤ r, the execution prefix of α consisting of the first z rounds is a valid
execution prefix for algorithm A in system S, by induction on z. For the base case, let z = 1. It is clear that
the execution prefix of α consisting of the first round is a valid execution in system S because the response
that each process i ∈ {j, j′} receives from the channel is its own transmitted message if transi(1) = true
and is ⊥ otherwise. For the inductive step, assume that the execution prefix of α consisting of the first z− 1
rounds is a valid execution for algorithm A is system S. Since the response that each process i ∈ j, j′

receives from the channel is equal to its transmitted message if transl(z) = true and is equal ⊥ otherwise,
the execution prefix of α consisting of the first z rounds is a valid execution in system S.

22

Note that j and j′ cannot distinguish α from βj and βj′ , respectively. Hence, in α, each process i outputs
alone(true, r)i at the end of round r. However, this output is incorrect for the LD problem in S.

Theorem 26. For any algorithm A that solves probabilistic LD in a WCD system, and any n > 1,
there exists a set JLB of n processes, such that, for any ε ∈ (0, 1], the probability that A terminates in

min
(log(1

ε
)

n , dlog(u)e − blog(n − 1)c − 2
)

rounds, when run on the system consisting of all processes of
JLB , is at most 1 − ε. For n = 1, no algorithm solves probabilistic LD in WCD systems can guarantee
termination in fewer than dlog(u)e − 1 rounds.

Proof. For n > 1, let r(ε) = min
(log(1

ε
)

n , dlog(u)e − blog(n − 1)c − 2
)
. From Lemma 24 and since

r(ε) ≤ dlog(u)e − blog(n − 1)c − 2, there exists a set of processes, JLB , where |JLB| = n, such that the
probability of A not terminating within r(ε) rounds, when A is run on the system consisting of all processes
in JLB , is at least (1

2)r(ε)n, and is therefore at most 1− (1
2)log(1

ε
) = 1− ε.

Similarly, for n = 1, the proof follows directly from Lemma 25.

Corollary 27. For n > 1, no algorithm that solves deterministic LD in WCD systems guarantees termina-
tion in fewer than dlog(u)e − blog(n − 1)c − 1 rounds. For n = 1, no algorithm that solves deterministic
LD guarantees termination in fewer than dlog(u)e − 1 rounds.

Proof. For the case where n > 1, assume, for the purpose of contradiction, that there exists an algorithm A
that solves deterministic LD in WCD systems and guarantees termination in fewer than dlog(u)e−blog(n−
1)c − 1 rounds. Since every solution to deterministic LD is also a solution to probabilistic LD, we conclude
thatA solves probabilistic LD in WCD systems and guarantees termination in fewer than dlog(u)e−blog(n−
1)c − 1 rounds. However, this conclusion contradicts Lemma 24.

Similarly, for n = 1, the proof follows analogously from Lemma 25.

Corollary 28. For n > 1, solving deterministic LD in WCD systems requires Ω(log(u)−log(n−1)) rounds.
For n = 1, solving deterministic LD requires Ω(log(u)) rounds.

Proof. The proof follows from Corollary 27, directly.

Recall from Section 4.2.1 that solving deterministic LD is straightforward in SCD systems with just one
round of communication. In Corollary 28, we showed that solving deterministic LD requires Ω(log(u) −
log(n− 1)) rounds of communication in WCD systems if n > 1, and Ω(log(u)) rounds of communication
in WCD systems if n = 1. Furthermore, we showed that SCD channels can be implemented on top of WCD
systems using an LD service. Thus, in a precise sense, deterministic LD captures the difference between
SCD and WCD systems.

5.3 Revisiting SCD on WCD Systems

Recall that in Section 4.2.2, we presented an implementation of an SCD channel on top of a WCD system
using an LD service; in Section 5.1, we presented the BSP and CSP algorithms that solve deterministic and
probabilistic LD, respectively, on top of a WCD system. Therefore, by replacing the LD service in Section
4.2.2 with the LD algorithms from Section 5.1, we should arguably be able to implement an SCD system on
top of a WCD system without using any special auxiliary services.

In the following two theorems, we demonstrate this claim by showing that BSP and CSP can be used as
the LD service for the construction presented in Section 4.2.2; we also study the time-bound functions of the
resulting SCD channels. Let SBSP denote the system which uses BSP (from Algorithm 3) as the LD service

23

and executes Algorithm 2. Similarly, let SCSP denote the system which uses CSP (from Section 5.1.3) as
the LD service and executes Algorithm 2.

Theorem 29. System SBSP implements a BSCD-time-bounded deterministic SCD channel on top of a
BWCD-time-bounded WCD system where BSCD(n, r) = BWCD(n, dlog ue − dlog ne+ 1 + 2r).

Proof. In Theorem 16, we showed that BSP solves the deterministic LD problem in a WCD system. Con-
sider an execution of BSP and suppose it terminates in round k, i.e., for each process i, an alone(aLD, k)i
event occurs. Note that BSP does not send any messages on the WCD channel after round k. Hence, Al-
gorithm 2 uses the WCD channel after round k in isolation; that is, no other component within the system
sends or receives messages on the WCD channel. Therefore, BSP can be used as an LD service in Algorithm
2.

In Theorem 16, we also showed that the BSP algorithm terminates in at most dlog ue − dlog ne + 1
rounds, i.e., k ≤ dlog ue − dlog ne + 1. If we use BSP as the LD service in Algorithm 2, we know from
Theorem 5 that Algorithm 2 implements an SCD channel on top of a BWCD-time-bounded WCD system.
Using Theorem 5, we conclude that a time-bound function BSCD for the resulting SCD channel is given by
BSCD(n, r) = BWCD(n, dlog ue − dlog ne+ 1 + 2r).

Theorem 30. System SCSP implements a βSCD-time-bounded probabilistic SCD channel on top of a
BWCD-time-bounded WCD system where

βSCD(n, r, ε) =

{
BWCD

(
n, 4dlog ue+ 2r

)
if n = 1,

BWCD

(
n, 4 min((dlog ue − dlog ne+ 1), log(1/ε)

n−1) + 2r
)

if n > 1.

Proof. In Theorem 22, we showed that CSP solves the probabilistic LD problem in WCD systems. Consider
an execution of CSP and suppose that it terminates in round k, i.e., for each process i, alone(aLD, k)i event
occurs. Similar to the proof in the deterministic case, note that CSP does not send any messages on the
WCD channel after round k. Hence, Algorithm 2 uses the WCD channel after round k in isolation; that is,
no other component within the system sends or receives messages on the WCD channel. Therefore, CSP
can be used as an LD service in Algorithm 2. Also, from Theorem 22 we know that CSP implements a LD
service and is ρLD-round-bounded where

ρLD(n, ε) =

{
4dlog ue if n = 1,
4 min((dlog ue − dlog ne+ 1), log(1/ε)

n−1) if n > 1.

If we use CSP as the LD service in Algorithm 2, we know from Theorem 6 that Algorithm 2 implements
a βSCD-time-bounded probabilistic SCD channel on top of a BWCD-time-bounded WCD system where
βSCD(n, r, ε) = BWCD(n, ρLD(n, ε) + 2r). Hence, for the resulted SCD channel, we have

βSCD(n, r, ε) =

{
BWCD

(
n, 4dlog ue+ 2r

)
if n = 1,

BWCD

(
n,min(4(dlog ue − dlog ne+ 1), 4 log(1/ε)

n−1) + 2r
)

if n > 1.

24

6 Algorithms and Lower Bounds for Leader Election

In this section, we study the LE problem in both SCD and WCD systems. For LE in SCD systems, we
present a deterministic algorithm BLEP and a randomized algorithm CLEP in Section 6.1. The randomized
algorithm CLEP we present in Section 6.1.2 is obtained by simply interleaving the algorithm by Nakano
and Olariu [10] with our deterministic algorithm BLEP. We also present lower bounds for deterministic and
probabilistic LE in SCD systems in Section 6.2 that match our upper bounds. For LE on WCD systems, we
again present both deterministic and randomized algorithms in Section 6.3. For this purpose, we combine
the LE algorithms for SCD systems with the algorithms of Section 5.3 that implement an SCD channel over
a WCD channel.

We also argue that the lower bounds for LE in SCD systems hold for WCD systems as well, and then,
we show that the time complexity of the aforementioned algorithms match the respective lower bounds.

6.1 Upper Bounds for LE in SCD Systems

In this section, we present two algorithms: Bitwise Leader Election Protocol (BLEP) and Combined Leader
Election Protocol (CLEP). The former is a deterministic algorithm that solves deterministic LE in SCD sys-
tems. The latter is a randomized algorithm which interleaves BLEP and Nakano and Olariu’s algorithm in
[10] to solve probabilistic LE in SCD systems. Later, in Section 6.2, we present lower bounds for determin-
istic and probabilistic LE that match the upper bounds from BLEP and CLEP, respectively.

6.1.1 Deterministic Upper Bound: Bitwise Leader Election Protocol.

BLEP solves deterministic LE in SCD systems in O(log u) rounds. Let the ID of each process i be repre-
sented as a sequence of bits denoted idi such that some bit in the sequence idi is 1.6 Since the ID space is
of size u, each such sequence is blog(u)c + 1 bits long. Starting from the least significant bit, number the
bits from 1 to blog uc+ 1, and let idi[k] denote the k-th bit of process i’s ID.

In BLEP, every process is active when contending to be the leader, inactive when it is not; a Boolean
variable active denotes whether or not a process is active. Initially, all the processes are active. The
execution proceeds from round 1 to round blog uc + 1. In each round r, every process i that is active, and
for which idi[r] = 1, transmits its ID idi; all other processes are silent in round r. At the end of round r,
every process j receives some response from the SCD channel. If j receives a collision notification > at the
end of round r, and j was active but did not transmit its ID in round r (because idj [r] = 0), then j ceases
to be active (becomes inactive) at the end of round r and therefore stops contending to be the leader. On
the other hand, if the response at the end of round r is the ID of some process l, then j elects l as the leader,
outputs leader(l)j , and halts. If j receives ⊥ at the end of round r, then j does nothing. The execution
proceeds to round r + 1, and so on, until round blog uc+ 1. The pseudocode is shown in Algorithm 5.

Lemma 31. In every execution of BLEP, for every process i, there exists at most one leader()i event.

Proof. Follows from the pseduocode in Algorithm 5.

Lemma 32. In every execution of BLEP, if an event leader(l)i occurs for some process i, then l is the ID of
some process in the system.

6Note that idi may be represented as a natural number from the set [1, u]. That is, the ID consisting of 0s for all the bits is not a
valid ID in the ID space. The reason for such restriction is the following. In BLEP, a necessary condition for a process to be elected
as the leader in round (say) k is that the k-th bit of it’s ID be 1; therefore, if a process i were to have an all-0-bit ID, then it will
never be elected leader. This becomes problematic in systems consisting of just process i.

25

Algorithm 5 Bitwise Leader Election Protocol
Let id[1 . . . blog uc+ 1] denote the sequence of bits of a process i where id[1] denotes the least significant bit.
We assume that at least one of bits in id[1 . . . blog uc+ 1] is 1.
Execution proceeds in rounds.
Process i executes the following:

active := true
for r := 1 to blog(u)c+ 1

if (active = true and id[r] = 1) then perform send(id, r)
else perform send(⊥, r)
wait until receive(m′, r)
if (m′ ∈ I) then perform leader(m′); halt.
if (m′ = >) then active := (active)&(id[r] = 1)

endfor

Proof. From the pseudocode in Algorithm 5, if an event leader(l)i occurs for some process i, then l = m′

at process i when the event occurs. Note that m′ is some message received by i. Since every message sent
in Algorithm 5 contains the ID of some process in the system, the lemma holds.

Lemma 33. In every execution of BLEP, for every pair of processes i and j and round r, if event leader(l)i
occurs in round r, then event leader(l)j occurs in round r as well.

Proof. Let round r′ be the earliest round at the end of which for some process (say) i, a leader(l)i event
occurs. From the pseudocode in Algorithm 5, we know that if event leader(l)i occurs at the end of round r′,
then l = m′ at process i where m′ is some message received by i at the end of round r′ and m′ is the ID of
some process in the system. From the properties of the SCD system, every other process j also receives m′

at the end of round r′. Therefore, for every other process j, the event leader(l)j occurs at the end of round
r′. In other words, for every pair of processes i and j and a round r, if event leader(l)i occurs in round r,
then event leader(l)j occurs in round r as well.

Lemma 34. In every execution of BLEP, for every process i, some leader()i event occurs within blog uc+1
rounds.

Proof. If there is exactly one process i in the system (that is, n = 1), then by construction we know that there
exists some r ≤ blog uc + 1 such that idi[r] = 1. Let rmin be the smallest such r. From the pseudocode,
we see that a leader()i event occurs at the end of round rmin. Thus, the lemma is proved for n = 1. For the
remainder of this proof, we assume n > 1.

For contradiction, assume that no leader() event occurs by the end of round blog uc+1. Since processes
have unique IDs, for each pair of distinct processes i and j, there exists some r′ ≤ blog uc + 1 such that
idi[r′] 6= idj [r′]. Therefore, at the end of round r′, it is not the case that both i and j remain active. Hence,
at the end of blog uc+ 1 at most one process remains active. Thus, we establish the following claim.

Claim 1. At most one process is active at the end of round blog uc+ 1.
Note that if a process (say) i becomes inactive in a round (say) r, then there exists some other process

(say) j which is active and transmits in round r. However, from the pseudocode, we see that such a process
j remains active at the end of round r. Hence, in any execution, it is not possible for all the processes to
become inactive. Thus, we establish the following claim.

Claim 2. At least one process is active at the end of round blog uc+ 1.
From Claims 1 and 2, we see that exactly one process is active at the end of round blog uc + 1; let i

denote that process. Consider the earliest round r ≤ blog uc + 1 at the end of which i is the only active
process. By construction, multiple processes are active at the beginning of round r. For i to be the only

26

process active at the end of round r, the following must be true: idi[r] = 1, and for each process j 6= i that
is active in round r, idj [r] = 0. Therefore, from the pseudocode, in round r, only i transmits its ID. From
the properties of SCD channels, at the end of round r, all the processes receive i’s ID. Therefore, for each
process j in the system, leader()j event occurs in round r ≤ blog uc + 1. However, this contradicts our
assumption that no leader() event occurs by the end of round blog uc+ 1.

Therefore, we know that for some process i, a leader()i event occurs in round r ≤ blog uc + 1. Now,
invoking Lemma 33 for process i, every other process j, and round r, we see that for every other process j,
leader()j event occurs in round r.

Theorem 35. BLEP solves deterministic LE and is RLE-round-bounded where RLE(n) = blog(u)c+ 1.

Proof. From Lemmas 31, 32, and 33, we know that BLEP satisfies the safety properties of LE, and from
Lemma 34 we know that BLEP satisfies the deterministic liveness properties of LE, and BLEP terminates
in at most blog uc+ 1 rounds.

6.1.2 Probabilistic Upper Bound: Combined Leader Election Protocol

Nakano and Olariu [10] presented a randomized LE algorithm for SCD systems that terminates in O(1)
rounds if n = 1, and in O(log log n + log(1

ε)) rounds with probability at least 1 − ε, where ε ∈ (0, 1], if
n > 1. To get a randomized LE algorithm for SCD systems with time complexity that matches the lower
bound in Section 6.2, we interleave Nakano-Olariu’s algorithm with BLEP and we call this algorithm CLEP.
In CLEP, we execute BLEP in the odd rounds and Nakano-Olariu in the even rounds.

Theorem 36. CLEP solves the probabilistic LE problem in SCD systems and is ρLE-round bounded where

ρLE(n, ε) =
{ O(1) if n = 1,
O(min(log u, log log n+ log(1

ε)) if n > 1.

Proof. The correctness of CLEP follows from the correctness of BLEP and Nakano-Olariu. The proof of
ρLE-round-boundedness follows from Theorem 35 and Lemma 3.3 in [10].

6.2 Lower bounds for LE in both SCD and WCD Systems

In this section, we present lower bounds for deterministic and probabilistic LE in SCD systems in Theorems
38 and 41, respectively. These lower bounds match (respectively) the upper bounds presented in Theorems
35 and 36. Also, since SCD systems have stronger assumptions about the collision detection abilities of
processes, these lower bounds hold for WCD systems as well. In order to demonstrate the lower bounds for
LE, we consider a variant of LE, denoted n-LE, in which the number of nodes n in the system is known to
all processes. The lower bounds that apply to n-LE apply to LE as well.

Lemma 37. For any n > 1 and any algorithm A that solves probabilistic n-LE in SCD systems, there exist
some set J ⊆ I of processes where |J | = n such that A, when run on J , is not guaranteed to terminate in
fewer than dlog(u)e − blog(n− 1)c − 1 rounds.

Proof Sketch. Assume for contradiction that there exists an n > 1 and an algorithm A that solves proba-
bilistic n-LE and always terminates within dlog ue − blog(n − 1)c − 2 rounds. We construct executions
of A for each process i in which i receives > from the channel in each round that it transmits and receives
⊥ otherwise. Using techniques from the proof of Lemma 24, we show that in such executions on some set
JLB of n processes, each process i ∈ JLB elects itself as the leader. This violates the properties of n-LE
and forces the contradiction.

27

Proof. Assume for the sake of contradiction that there exists an n > 1 and an algorithm A that solves
probabilistic n-LE such that for any set J ⊆ I of n processes, algorithmA, when run on J , always terminates
within dlog(u)e − blog(n− 1)c − 2 rounds.

Let k = dlog(u)e − blog(n − 1)c − 2. For each process i, for each z, 1 ≤ z ≤ k, a transmission
decision transi(z) is equal to true if i transmits in round z, and false otherwise. For each process i, the
leader decision leaderi is equal to true if i elects itself the leader, and false otherwise. Note that for each
process i, transi and leaderi are functions of executions of A on any set of processes that includes i. For
each execution of A, and for each process i in that execution, we define an action sequence to be a Boolean
sequence of the form ai1, a

i
2, . . . , a

i
k+1, where the first k elements are transmission decisions and the last

element is the leader decision.
Any execution ofA is said to be totally failed if, for each process i in the system, and each z, 1 ≤ z ≤ k,

if i transmits a message in round z, then i receives > from the channel, and i receives ⊥ otherwise.
For each process i, we consider executions of A in a (fake) system Si consisting of only process i

such that each such execution is totally failed.7 Let Pri denote the probability distribution on the space
of all totally-failed admissible executions in system Si. Let ASi be the set of all action sequences for i
associated with executions of Si in Pri. Since for each z, 1 ≤ z ≤ k + 1, there are two possible values
for az , |ASi| ≤ 2k+1. Therefore, since 2k+1 = 2dlog(u)e−blog(n−1)c−2 < 2(log(u)+1)−(log(n−1)−1)−2 =
2log(u)−log(n−1) ≤ u

n−1 , from the pigeonhole principle, there are at least n processes that share some action
sequence. That is, there exists a subset Jn of I , |Jn| = n and ∩i∈JnASi 6= ∅. Let cas, standing for
common action sequence, be an arbitrary action sequence in ∩i∈JnASi. Let cas[z] denote the value of the
z-th element of cas. For each process i and the system Si, let αi denote a fixed admissible execution in Si
such that the action sequence associated with αi for the first k steps and the final decision is equal to cas.

Now fix an SCD system S consisting of the processes in Jn. Let PrS denote the probability distribution
on the space of all admissible executions of algorithm A in system S. Recall that in all such executions, the
algorithm terminates within k rounds. Next we show that in this space, there is some execution in which
outputs of A are an incorrect solution for the n-LE problem. Specifically, we show that a sequence of steps
α in which each process takes steps corresponding to the common action sequence cas is an execution.

Let each process i ∈ Jn takes the same step in the first round of α as it does in the first round of αi.
Since process i is in the same initial state in systems Si and S, the action associated with process i in αi is
allowed for process i in system S. Thus, in the first round, either all the processes transmit concurrently or
all the processes are silent. Therefore, in α, the response process i receives from the SCD channel in the
first round is identical to the response i receives in execution αi.

Similarly, we see that each round z, where 1 ≤ z < k, of α may be constructed as follows: each process
i takes the same step in round z of α as i does in round z of αi. By the construction of αi for each process
i, we see that the step by i in round z is allowed from the preceding state of i. Since, the step by process i
in round z follows cas[z], the response from the SCD channel to process i in round z is > is i transmits in
round z, and ⊥ otherwise. Therefore, the state of process i at the end of round z is the same in αi and α.
Thus, the sequence α in which each process takes steps corresponding to the common action sequence cas
is an execution.

However, note that in α, either all the processes elect themselves as the leader or no process elects itself
as the leader and n > 1. Therefore, the final result of each process i is denoted by cas[k + 1]: the outputs

7Note that in any SCD system consisting of just process i, the sole process never receives >; consequently, we consider a
fake system Si where we assume that executions are always totally failed. We use such fake executions and demonstrate an
indistinguishability (with respect to i) between these fake executions and real executions in a system containing more than one
process (including process i). Such indistinguishability is what is used to establish the lower bound.

28

are an incorrect solution to the n-LE problem.

Theorem 38. For any n > 1, no deterministic LE algorithm in SCD systems can guarantee terminating in
fewer than dlog(u)e − blog(n− 1)c − 1 rounds.

Proof. Note that deterministic n-LE algorithms are just a special case of randomized n-LE algorithms.
Therefore, by Lemma 37, for any n > 1, no deterministic n-LE algorithm in SCD systems can guarantee
terminating in fewer than dlog(u)e − blog(n − 1)c − 1 rounds. Thus, we know that no deterministic LE
algorithm in SCD systems with n > 1, can guarantee terminating in fewer than dlog(u)e−blog(n−1)c−1
rounds.

Thus, we have demonstrated a lower bound for deterministic LE, and note that the lower bound matches
the upper bound in Section 6.1.1 when u� n. Next, we determine a lower bound for probabilistic LE.

Theorem 39. Let A be any 2-LE algorithm in SCD systems and suppose that k < dlog(u)e − 1 and u ≥ 2.
There exist two processes such that the probability of termination of A by the end of the k-th round, when A
is run on the system of those two processes, is at most 1− (1

4)k+1.

Proof Sketch. The proof structure is similar to that of Lemma 24. The key difference is the following. In the
proof of Lemma 24 we considered some special executions of an LD algorithm ALD in WCD systems with
just one process and showed that such executions are locally indistinguishable from some (other) special
executions ofALD in a WCD system with a specific set of n processes. In SCD systems, such a construction
is not feasible for the following reason. In WCD systems when a transmitting process always receives the
same feedback from the channel; on the other hand, in SCD systems, a transmitting process could receive
different feedback depending on whether or not a collision occurred. To circumvent this issue, we consider
executions of A — a solution to 2-LE problem in SCD systems — in a fake scenario where a process
receives > in every round that it transmits and receives ⊥ in every round that it remains silent. We use
such executions to demonstrate that with probability at least (1

4)r+1, A does not terminate in r rounds where
r < dlog ue − 1.

Proof. The proof is by contradiction. Suppose that there exists an algorithm A that solves the 2-LE problem
such that the probability of termination of A by the end of the round (say) k, where 0 < k < dlog(u)e − 1,
is strictly greater than 1− (1

4)k+1. We transform algorithm A to an algorithm B for the 2-LE problem that
always terminates in k rounds but might have outputs that are incorrect solutions to the 2-LE problem. The
transformation is as follows: algorithm B executes algorithm A for k rounds, if A terminates by the end of
round k, B outputs the same leader IDs that A outputs, and if A does not terminate by the end of round k,
each process outputs its own ID as the leader at the end of round k. Note that if A terminates by round k,
the outputs of B are correct solutions for the 2-LE problem. Therefore, by the assumption that for any two
processes, A terminates in at most k rounds with probability greater than 1− (1

4)k+1, we know that for any
two processes, the outputs of B, when B is run on the system of those two processes, are correct solutions
for the 2-LE problem with probability strictly greater than 1 − (1

4)k+1. Next we show that this leads to a
contradiction by showing that there exist two processes such that when B is run on the system of those two
processes for k rounds, the probability that outputs of B are incorrect solutions to the 2-LE problem is at
least (1

4)k+1.
For each process i, we define an action sequence for i to be a sequence of k ordered pairs of states with

an output and an input after each state pair plus a final state and a leader ID at the end of the sequence:
(state1, state′1), out1, in1, (state2, state′2), out2, in2, . . . , (statek, state′k), outk, ink, statek+1, leader.

29

An action sequence starts with a state pair. For each z, 1 ≤ z ≤ k, statez represents the state of process
i at the start of round z round and state′z represents the state of process i after it has made the random
choices for round z. For each z ≥ 1, outz represents the message that process i sends in round z. That
is, outz ∈ M ∪ {⊥} (where outz = ⊥ if i does not send any message in round z) and is a determined by
state′z . For each z ≥ 1, inz represents the response that process i receives from the channel in round z.
That is, inz ∈ M ∪ {⊥,>} where inz = ⊥ if i receives silence in round z and inz = > if i receives a
collision notification in round z. Also, statek+1 denotes the state of process i after k rounds and leader
denotes the ID that i outputs as the ID of the leader. In this model, state1 denotes the (unique) initial state
of process i. Also, for each z ≥ 2, statez is determined by state′z−1, outz−1 and inz−1

A totally-failed sequence is an action sequence in which, for each z, 1 ≤ z ≤ r, inz = ⊥ if outz = ⊥,
and inz = > otherwise. In totally-failed sequences, since inz−1 is determined by outz−1 which is in turn
determined by state′z−1, we see that statez is determined by just state′z−1. Similarly, leader is determined
by statek+1.

Now we define a probability distribution on the space of admissible executions corresponding to totally-
failed sequences of i, and we denote this probability distribution by Pri. In each round r, if i is in state s1
at the start of round r, then we denote the probability that process i is in state s2 after making the random
choices of this round by ps1(s2), 0 ≤ ps1(s2) ≤ 1. For each execution α in Pri, the probability that α
occurs is the product of probabilities of transitions between the two entries of each of its state pairs, i.e.,

k∏
z=1

(
pstatez(state

′
z)
)
.

For each totally-failed sequence at process i, we define a random variable transmission decision, transi
on {1, ..., k} as follows. For each z, 1 ≤ z ≤ k, if outz 6= ⊥, then transi(z) = true, and if outz = ⊥, then
transi(z) = false. We define the Boolean function dtdi, standing for dominating transmission decision,
on {1, ..., k} recursively. dtdi(1) is assigned the value that is more likely to be taken by transi(1), i.e.,

dtdi(1) =
{
true if Pri{transi(1) = true} ≥ 1

2 ,
false otherwise.

Let DTDi,1 denote the event in the probability space Pri that transi(1) = dtdi(1). For each z, z ≥ 2, we
define dtdi(z) to be the value that is more likely to be taken by transi(z), conditioned on DTDi,z−1, i.e.,

dtdi(z) =
{
true if Pri{transi(z) = true|DTDi,z−1} ≥ 1

2 ,
false otherwise.

DTDi,z denotes the event in the probability space Pri consisting of those executions in which, for every
round r′, 1 ≤ r′ ≤ z, transi(r′) = dtdi(r′).

Recall that leader denotes the ID that i outputs as the ID of the leader. We define the random variable
resulti to be true if leader = i, and false otherwise. We also define the dominating result of i, dri, to be
the value that is more likely to be taken by resulti, conditioned on DTDi,k, i.e.,

dri =
{
true if Pri{resulti = true|DTDi,k} ≥ 1

2 ,
false otherwise.

Note that for any k, there are 2k+1 possibilities for a sequence of dominating transmission decisions
through k rounds and the dominating result. Hence, if k < dlog(u)e− 1, there exist two processes that have

30

identical sequences of dominating transmission decisions for the first k rounds and identical dominating
results.

Choose one such pair (i, j) of distinct processes. Let cdtd be the common dominating transmission deci-
sion sequence of i and j. Also, let cdr be the common dominating result of i and j. Fix a system S to be the
SCD system consisting of i and j and executing algorithm B. We define an execution-sequence of system
S to be a sequence of k ordered 4-tuples of states with a 2-tuple output and a 2-tuple input after each state
4-tuple plus a 2-tuple final state and a 2-tuple leader, e.g., (statei1, state

′i
1 , state

j
1, state

′j
1), (outi1, out

j
1),

(ini1, in
j
1), (statei2, state

′i
2 , state

j
2, state

′j
2), (outi2, out

j
2), (ini2, in

j
2), . . ., (stateik, state

′i
k , state

j
k, state

′j
k),

(outik, out
j
k), (inik, in

j
k), (stateik+1, state

j
k+1), (leaderi, leaderj). An execution-sequence satisfies the fol-

lowing properties.
The sequence starts with a state 4-tuple. For each z ≥ 1, and each l ∈ {i, j}, statelz represents the

state of the process l at the start of round z and state′lz represents the state of process l after it has made its
random choices for round z. For each such z and l, outlz represents the message that process l takes in round
z and is determined by state′lz . That is, outlz ∈M ∪{⊥}. For each such z and l, inlz represents the response
that process l receives from the channel in round z and is determined by the properties of SCD channels and
the actions outiz and outjz . That is, inlz = M ∪ {⊥,>}. Also, statelk+1 denotes the final state of process
l after k rounds and leaderl denotes the ID that l outputs as the ID of the leader. Here, statel1 denotes the
(unique) initial state of process l. Also, for each z ≥ 2 and l ∈ {i, j}, statelz is determined by state′lz−1,
outlz−1 and inlz−1; however, since inlz−1 is determined by (outiz−1, out

j
z−1) which is in turn determined by

state′iz−1 and state′jz−1, we have that statelz is determined by just state′iz−1 and state′jz−1. Also, leaderl is
determined by statelk+1.

Now we define a probability distribution on the space of executions of system S and denote this prob-
ability distribution by PrS . In each round and for each l ∈ {i, j}, if process l is in state s1 at the start of
this round, then we denote the probability that process l is in state s2 after making the random choices of
this round by pls1(s2), 0 ≤ pls1(s2) ≤ 1. For each execution-sequence β in system S, the probability that an
execution corresponding to β occurs is

k∏
z=1

(
pistateiz

(state′iz) · pj
statejz

(state′jz)
)

where (stateiz , state
′i
z , statejz , state

′j
z) is the z-th state 4-tuple in β.

For each z, 1 ≤ z ≤ k, and each l ∈ {i, j}, we define Cl,z to be the the set of executions for which
in each round r′, 1 ≤ r′ ≤ z, transl(r′) = cdtd(r′); naturally, Cl,z−1 ⊇ Cl,z . We also state that an
execution is in Cl,k+1 if the execution is in Cl,k and drl = cdr. Now, for every z, 1 ≤ z ≤ k + 1, define
Gz = Ci,z ∩ Cj,z , and therefore, Gz−1 ⊇ Gz .

Note that for each z, 1 ≤ z ≤ k, if transi(z) = cdtd(z) and transj(z) = cdtd(z), then input that i
and j receive from the channel in round z is in the form stated for the totally-failed sequences, i.e., for each
l ∈ {i, j}, inlz is equal to ⊥ if transl(z) = ⊥, and > otherwise. Thus, we establish the following claim.

Failure-Round claim. If an execution is in Gz , then the corresponding z-round prefix of the action
sequences for i and j are z-round prefixes of a totally-failed sequence.

Now, in order to get to a contradiction, we prove that the probability of the event in the probability space
PrS that the leader IDs output in system S are incorrect solutions to the 2-LE problem is at least (1

4)k+1.
Note that in every execution inGk+1, processes output their own IDs as the leader, and therefore, the outputs
are an incorrect solution to the 2-LE problem. Hence, for getting to contradiction, it is sufficient to show

31

that PrS{Gk+1} ≥ (1
4)k+1. Next, we prove that for each z, 1 ≤ z ≤ k+ 1, PrS{Gz} ≥ (1

4)z by induction
on z.

For the base case, let z = 1. Note that by the definition of dominating transmission decision, we know
that for each l ∈ {i, j}, the probability that transl(1) = cdtd(1) is at least 1

2 , i.e., Prl{DTDl,1} ≥ 1
2 .

Since for each such l, the probability distribution of random choices of process l in first round is exactly the
same as probability distribution of random choices of that process in first round of totally-failed sequences,
we have PrS{Cl,1} = Prl{DTDl,1}. Since the random choices of i and j in the first round are independent
of each other, we establish that PrS{G1} ≥ 1

4 .
Now, for the inductive step, assume that for some z, 1 ≤ z ≤ k + 1, PrS{Gz−1} ≥ (1

4)z−1. First,
consider the case that z ≤ k. By the definition of dominating transmission decision, we know that for each
l ∈ {i, j} and for each z′, 2 ≤ z′ ≤ z, we have Prl{transl(z′) = cdtd(z′)|DTDl,z′−1} ≥ 1

2 . Note
that by the Failure-Round Claim, if an execution is in Gz′−1, then the action sequences for processes i
and j corresponding to the first z′ − 1 rounds of the execution are z′ − 1 round prefixes of totally-failed
sequences. Therefore, we can say that for each such z′, conditioned on Gz′−1, for each l ∈ {i, j}, the
probability distribution of random choices of process l in round z′ of system S is exactly the same as
probability distribution of random choices of process l in round z′ of totally-failed sequences conditioned
on DTDl,z′−1. Hence, PrS{transl(z) = cdtd(z)|Gz−1} = Prl{transl(z) = cdtd(z)|DTDl,z−1} ≥ 1

2 .
Since the random choices of i and j in round z, when conditioned on Gz−1, are independent of each other,
we have PrS{Gz|Gz−1} ≥ 1

4 . Therefore, from the inductive hypothesis, and noting that Gz ⊆ Gz−1, we
have PrS{Gz} = PrS{Gz|Gz−1} · PrS{Gz−1} ≥ (1

4)z .
Now, consider the case that z = k + 1. By the definition of dominating result, we know that for each

l ∈ i, j, Prl{resultl = true|DTDl,k} ≥ 1
2 . By an argument similar to above, we have PrS{resultl =

cdr|Gk} = Prl{resultl = drl|DTDl,k} ≥ 1
2 . Therefore, noting the independence of random choices of

i and j, when conditioned on Gk, we have PrS{Gk+1|Gk} ≥ 1
4 . Thus, applying the inductive hypothesis,

and noting that Gk+1 ⊆ Gk, we have PrS{Gk+1} = PrS{Gk+1|Gk} · PrS{Gk} ≥ (1
4)k+1.

Thus, there exist two processes such that the output leader IDs, whenB is run with the system consisting
of those two processes, are incorrect solutions to the 2-LE problem with probability at least (1

4)k.

Theorem 40. For any ID space I of size u, u ≥ 2, any ε, 0 < ε ≤ 1, and any algorithm A that solves
probabilistic 2-LE in SCD systems, there exist two processes with IDs from I such that, when A is run with
just those two processes, the probability that A terminates in min(log(1

4ε)/2, dlog(u)e − 2) rounds, when
run on the system of those two processes, is at most 1− ε.
Proof. Fix a 2-LE algorithmA in SCD systems. For any ε ∈ (0, 1], let k(ε) = min(log(1

4ε)/2, dlog(u)e−2).
Since k(ε) < dlog(u)e−1, by Theorem 39, we know that there exist two processes for which the probability
that A terminates in k(ε) rounds when run on the system of those two processes, is at most 1 − (1

4)k(ε)+1

and is therefore at most 1− (1
4)log(1

4ε
)/2+1 = 1− ε.

Theorem 41. For any ID space I of size u, u ≥ 1, any ε, 0 < ε ≤ 1, any n′, 1 ≤ n′ ≤ u
2 , and

any algorithm A that solves probabilistic 2n′-LE in SCD systems, there exist n = 2n′ processes with IDs
from I such that, when A is run with just those n processes, the probability that A terminates in at most
min(log(1

4ε)/2, dlog(un)e − 2) rounds is at most 1− ε.
Proof Sketch. Assume for the sake of contradiction that there exists some algorithm A that solves proba-
bilistic 2n′-LE and terminates within min(log(1

4ε)/2, dlog(un)e − 2) rounds with probability greater than
1 − ε. Consider an ID space I∗ of size u∗ = b un′ c. Using A we construct an algorithm A∗ that solves
probabilistic 2-LE by emulating A on groups of processes and terminates when A does. Since A terminates

32

within min(log(1
4ε)/2, dlog u∗e − 2) rounds with probability greater than 1 − ε where ε ∈ (0, 1], the same

bounds apply to A∗ as well, and this contradicts Theorem 40.

Proof. Assume for the sake of contradiction that there exists an ID space I∗ of size u∗, u∗ ≥ 1, an ε, 0 < ε ≤
1, an n′, 1 ≤ n′ ≤ u∗

2 , and an algorithm A∗ that solves probabilistic 2n′-LE such that for any set of n = 2n′

processes with IDs from I∗, the probability that A∗ terminates in at most min(log(1
4ε)/2, dlog(u

∗
n)e − 2)

rounds is strictly greater than 1−ε. Let u = bu∗n′ c. Consider an ID space of size u and call it I . We construct
another algorithm A that solves the 2-LE problem for the system of any pair of processes with IDs from I
in at most min(log(1

4ε)/2, dlog ue − 2) rounds with probability strictly greater than 1− ε.
Let the IDs in I∗ and the IDs in I be totally ordered and for any j ≥ 1, let id(j) and id∗(j) represent

the j-th ID in the ordering of I and I∗, respectively. We refer to all the processes in the ID space I as real
processes and the processes in the ID space I∗ as virtual processes.

With each real process i, we associate the virtual processes with IDs in the set vi = {id∗(j)|(i− 1) · n′
+1 ≤ j ≤ i · n′}. For each real process i, algorithm A on this process simulates the algorithm A∗ when
executed in the set vi as follows. In each round r, if exactly one of the processes in i∗ ∈ vi transmits in
A∗, then i transmits the same message in round r. If none of the processes in vi transmit a message in
round r, then i remains silent in round r. If multiple processes in vi transmit messages in round r, then i
transmits a special collision message (SCM) which denotes that round r experienced a collision. Also, if a
real process i receives a message that is not SCM, or it receives either ⊥ or >, it passes that message, or ⊥,
or > (respectively) to each process in the set vi that i is simulating. If a real process i receives SCM, then i
passes > to each process in the set vi.

Now, for any two processes from I , consider the scenario where system consists of those two processes
and both of processes simulate A∗ in the above manner. Then, in each round of A, if at most one virtual
process transmits, all virtual processes receive the same message as they would receive in A∗. If more than
one of the virtual processes transmit, either the transmitting virtual processes are from the same real process
or there are two of them that are from different real processes. In former case, both real processes receive
SCM and in latter case, both real processes receive >. Therefore, similar to what happens in A∗, all virtual
processes receive > in both cases.

In effect, virtual processes in A take exactly the same steps as they would take in A∗ and receive exactly
the same messages as they would receive inA∗. When algorithmA∗, simulated inA, terminates, one virtual
process is chosen as the leader and all virtual processes output the ID of that virtual leader. In A, real
processes output the ID of the real process responsible for the chosen leader, i.e., if the ID of the chosen
virtual leader is from the set vi, then real processes output the ID of process i.

From the above simulation we know that if A∗, when run on system of any n = 2n′ processes from
I∗, solves the 2n′-LE problem in at most min(log(1

4ε)/2, dlog(u
∗
n)e − 2) rounds with probability strictly

greater 1 − ε, algorithm A, when run on any pair of processes from I , solves the 2-LE problem in at

most min(log(1
4ε

)

2 , dlog(u
∗
n)e − 2) < min(log(1

4ε
)

2 , dlog(n
′(u+1)
2n′)e − 2) ≤ min(log(1

4ε
)

2 , dlog(u+1
2)e − 2) <

min(log(1
4ε

)

2 , dlog(u)e − 2) rounds with probability strictly greater than 1− ε. This is in contradiction with
the Theorem 40.

6.3 Algorithms for Leader Election in Weak Collision Detection Systems

In this section, we show that the LE problem in WCD systems can be solved in time complexities that match
the lower bounds presented in Section 6.2 for both deterministic and probabilistic cases. Recall that in
Section 5.3, we presented implementations of deterministic and probabilistic SCD channels on top of a WCD

33

system. Also, recall that in Section 6.1, we presented BLEP and CLEP as, respectively, deterministic and
randomized LE algorithms for SCD systems. To solve LE in WCD systems, we use these LE algorithms on
top of the aforementioned implementations of SCD system. We study the time complexities of the resulting
deterministic and randomized LE algorithms on WCD systems as a function of the time complexities of the
deterministic and probabilistic SCD implementations (respectively), and the time complexities of BLEP and
CLEP (respectively).

6.3.1 Deterministic LE in WCD systems

Theorem 42. For a BWCD-time-bounded WCD system with IDs from an ID-space of size u and consisting
of n processes, 1 ≤ n ≤ u, there exists an algorithm that solves deterministic LE and isRLE-round-bounded
where RLE(n) = BWCD(n,O(log u)).

Proof. In Theorem 29, we showed an implementation of a deterministic SCD channel on top of a WCD
system with a time-bound function BSCD(n, r) = BWCD(n, dlog(u)e − blog(n − 1)c + 2r). We also
showed in Theorem 35 that the BLEP algorithm solves the LE problem in SCD channels in at most dlog(u)e
rounds of the SCD channel. Therefore, when the BLEP algorithm uses the aforementioned SCD channel
implementation, BLEP terminates in at most dlog(u)e rounds of the aforementioned implementation of SCD
channel or equivalently by time BSCD(n, dlog(u)e) = BWCD(n, dlog(u)e − blog(n − 1)c + 2 dlog(u)e)
= BWCD(n,O(log u)).

Note that the time complexity presented above, O(log u), matches the Ω(log u − log n) lower bound
presented in Theorem 37 asymptotically when the size of the ID space is much larger than the actual number
of processes in the system, i.e., u� n.

6.3.2 Probabilistic LE in WCD systems

Theorem 43. For a BWCD-time-bounded WCD system with IDs from an ID-space of size u and consisting
of n processes, 1 ≤ n ≤ u, there exists an algorithm that solves probabilistic LE and is ρLE-round-bounded
where

ρLE(n, ε) =
{
BWCD(n,O(log(u))) if n = 1
BWCD(n,O(min(log u, log logn+ log(1

ε))) if n > 1.

Proof. In Theorem 30, we showed an implementation of a βSCD-time-bounded probabilistic SCD channel
on top of a BWCD-time-bounded WCD system where

βSCD(n, r, ε) =

{
BWCD

(
n, 4dlog ue+ 2r

)
if n = 1,

BWCD

(
n,min(4(dlog ue − blog(n− 1)c), 4 log(1/ε)

n−1) + 2r
)

if n > 1.

Also, in Theorem 36, we showed that CLEP solves the LE problem in SCD systems and terminates in
O(1) rounds if n = 1, and inO(min(log u, log log n+ log(1

ε)) rounds with probability at least 1− ε, where
ε ∈ (0, 1], if n > 1. Therefore, using the Union Bound, we know that the randomized LE algorithm in WCD
systems that we get by using CLEP on top of the aforementioned SCD channel implementation outputs all
the leader() events within ρLE(n, 2ε) time units with probability at least 1− 2ε where ε ∈ (0, 0.5], and

ρLE(n, 2ε) =


BWCD(n, 4dlog ue+ 2O(1)) if n = 1
BWCD(n,min(4(dlog ue − blog(n− 1)c), 4 log(1/ε)

n−1)
+ 2O(min(log u, log log n+ log(1

ε)))) if n > 1.

34

Hence, we have

ρLE(n, ε) =
{
BWCD(n,O(log(u))) if n = 1
BWCD(n,O(min(log u, log logn+ log(1

ε)))) if n > 1.

where ε ∈ (0, 1].

Here, we argue that the upper bounds presented above match the respective lower bounds. For the case
of n = 1, Theorem 26, along with the reduction of LD to LE in Section 4.3, shows an Ω(log u) lower
bound for solving LE in WCD systems. Hence, the O(log(u)) upper bound presented above matches the
the respective lower bound. For the case of n > 1, the O(min(log u, log logn + log(1

ε)) upper bound
presented above matches the lower bound presented in Theorem 41, when u� n and ε = O(1

n).

7 Conclusion

We studied the problem of Leader Election (LE) in single-hop wireless systems subject to collisions. We
presented matching upper and lower bounds for solving deterministic and randomized leader election in
strong detection (SCD) systems: deterministic LE can be solved in SCD systems in Θ(log u) rounds whereas
probabilistic LE can be solved in SCD systems in Θ(log 1

ε) rounds with probability at least 1− ε.
In order to demonstrate that the same bounds apply to the LE problem in weak collision detection

(WCD) systems as well, we introduced the problem of Loneliness Detection (LD). LD is a key subproblem
of leader election and as a discriminator between strong and weak collision detection. We showed that
LD can be used to implement an SCD channel on top of a WCD channel with a continuing overhead of
two WCD-channel rounds per the implemented SCD-channel round. We showed that LD can be solved in
SCD systems trivially, and we presented matching upper and lower bounds for solving deterministic and
probabilistic loneliness detection in WCD systems: deterministic LD can be solved in WCD systems in
Θ(log u− log n) rounds whereas probabilistic LD can be solved in WCD systems in Θ(1) rounds w.h.p., if
n > 1, and in Θ(log u) rounds, otherwise.

Discussion. Loneliness Detection is an elegant abstraction that captures the difference between SCD and
WCD systems. Since SCD systems provide more information about collisions to processes than WCD
systems do, designing protocols for SCD systems is potentially simpler and easier than designing protocols
for WCD systems. However, as shown in this article, efficient implementations of LD in WCD systems
and efficient implementation of SCD channels on top of WCD channels (using LD) enables us to run SCD-
based algorithms in WCD systems as well. Thus, LD helps in simplifying the design of protocols for WCD
systems.

Although we have discussed LD only in the context of systems with static membership, it may be
extended to systems with dynamic membership (including multi-hop systems). However, the utility of LD
as the discriminator between SCD and WCD systems in dynamic (and multi-hop) systems is not immediately
apparent and could potentially warrant a separate investigation.

Future Work. Several avenues of future research remain open. The LE problem can be extended across
multiple dimensions. Consider the following extensions. (1) We can consider single-shot leader election in
multi-hop systems with static membership. (2) We may also consider multi-shot leader election in systems
with dynamic membership; this problem can ensure the availability of a leader within the system infinitely-
often despite continual changes in the membership of the system. (3) We can consider multi-shot leader

35

election in single-hop network with static membership subject to fairness constraints which ensure that each
process becomes a leader infinitely often; solutions to the aforementioned problem act as a contention-
resolution protocol in single-hop systems and ensure a reliable local broadcast similar to the abstract MAC
layer [8].

The abstract MAC layer provides a reliable local broadcast service with timing guarantees expressed
in terms of abstract delay functions. Although the abstract MAC layer and related problems of contention
resolution, collision resolution, and local broadcast have been studied in the past, existing work focuses
either on systems with no collision detection or strong collision detection. The time costs for solving these
problems in weak collision detection systems remains unknown.

References

[1] Jacir Luiz Bordim, Yasuaki Ito, and Koji Nakano. Randomized leader election protocols in noisy radio
networks with a single transceiver. In Proceedings of the 4th International Symposium on Parallel and
Distributed Processing and Applications, pages 246–256, 2006.

[2] John I. Capetanakis. Tree algorithms for packet broadcast channels. IEEE transactions on information
theory, 25(5):505–515, 1979.

[3] A. E. F. Clementi, A. Monti, and R. Silvestri. Distributed broadcast in radio networks with unknown
topology. Theoretical Computer Science, 302:337–364, 2003.

[4] J.F. Hayes. An adaptive technique for local distribution. IEEE transactions on communication,
26:1178–1186, 1978.

[5] Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala, and Frits Vaandrager. The theory of Timed I/O
Automata, second edition. Synthesis Lectures on Distributed Computing Theory, 1(1):1–137, 2010.

[6] Dariusz Kowalski and Andrzej Pelc. Broadcasting in undirected ad hoc radio networks. Distributed
Computing, 18(1), 2005.

[7] Dariusz Kowalski and Andrzej Pelc. Leader election in ad hoc radio networks: A keen ear helps. In
International Conference on Automata, Languages and Programming, pages 521–533, 2009.

[8] Fabian Kuhn, Nancy Lynch, and Calvin Newport. The abstract mac layer. In Proceedings of the 23rd
International Conference on Distributed Computing, pages 48–62, 2009.

[9] Koji Nakano and Stephan Olariu. Randomized leader election protocols in radio networks with no col-
lision detection. In Proceedings of the 11th International Conference of Algorithms and Computation,
pages 362–373, 2000.

[10] Koji Nakano and Stephan Olariu. Uniform leader election protocols for radio networks. IEEE trans-
actions on parallel and distributed systems, 13(5), 2002.

[11] Johannes Schneider and Roger Wattenhofer. What is the use of collision detection (in wireless net-
works)? In Proceedings of the International Symposium on Distributed Computing, pages 133–147,
2010.

36

[12] Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science,
1995.

[13] Mariëlle Stoelinga. Alea jacta est: verification of probabilistic, real-time and parametric sys-
tems. PhD thesis, University of Nijmegen, the Netherlands, April 2002. Available via
http://www.soe.ucsc.edu/˜marielle.

[14] D. E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel. SIAM
Journal of Computing, 15:468–477, 1986.

37

