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Abstract
Wave-based release policies are prevalent in warehouses with an automated sorter, and take different

forms depending on how much waves overlap and whether the sorter is split for operating purposes. Waveless
release is emerging as an alternative policy adopted by an increasing number of firms. While that new policy
presents several advantages relative to waves, it also involves the possibility of gridlock at the sorter. In
collaboration with a large US online retailer and using an extensive dataset of detailed flow information,
we first develop a model with validated predictive accuracy for its warehouses operating under a waveless
release policy. We then use that model to compute operational guidelines for dynamically controlling the main
parameter of its waveless policy, with the goal of maximizing throughput while keeping the risk of gridlock
under a specified threshold. Secondly, we leverage that model and dataset to perform through simulation
a performance comparison of wave-based and waveless policies in this context. Our waveless policy yields
larger or equal throughput than the best performing wave-based policy with a lower gridlock probability
in all scenarios considered. Waveless release policies thus appear to merit very serious consideration by
practitioners. Facilities using a non-overlapping wave policy should also consider overlapping waves or a
split sorter policy.

1 Introduction and Practice Review

Efficiently fulfilling a high volume of small orders chosen from a large number of skus is

critical to many online retailers, direct mail-order firms, and retail distributors shipping to

many stores on a frequent basis. A common warehouse design in such environments involves

an automated sorter allowing different items in the same order to be picked upstream by

different workers (Johnson 1998). While automated sorters take different forms, they all typ-

ically include an accumulation conveyor and a recirculating loop or "dogtrack" from which

items are directed by a diversion mechanism towards individual chutes or lanes (also called

"drop points") temporarily assigned to a single order or a small subset of orders with the

same shipping destination. When all the relevant items have been diverted to a chute, these

items can then be packed and/or loaded into a truck as a complete set. Disaggregating a

possibly large set of orders into individual item picking instructions distributed simultane-

1 The question of this title is from Gilmore (2006b).
2 Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02142.
E-mail: jgallien@mit.edu
3 Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02142. E-
mail: theo_w@mit.edu
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ously in several parts of the warehouse (batch and zone picking) and using such a sorter to

subsequently re-aggregate these items downstream (since items from the same order may be

picked by different workers in different zones) results then in average labor costs per order

which can be significantly lower than with other system design alternatives (Choe, Sharp

and Serfozo 1992, Petersen 2000, Bragg 2003).

The traditional approach for coordinating the flow of work through the warehouse in such

systems is aptly referred to as wave picking. In its simplest form, it consists of releasing large

batches of orders (the waves) in a sequential manner, so that picking work for a given wave

can only start when all the items from the previous wave have been already picked (Choe,

Sharp and Serfozo 1992, Petersen 2000). Likewise, items of a given wave are only released

into the sorter when all the orders from the previous wave have been already sorted and/or

packed (Armstrong, Cook and Saipe 1979, Meller 1997). This approach presents several

benefits:

— Using large wave sizes increases the density of items to be picked and thus picking la-

bor productivity (Russell and Meller 2003, Le Duc and de Koster 2007), at least at the

beginning and in the middle of the wave (see discussion below);

— Pick lists can be determined for all the workers simultaneously at specific points in time,

and can be communicated using simple technology (i.e. paper printout). Indeed, the

earliest descriptions of wave picking implementations in industry (e.g. Armstrong, Cook

and Saipe 1979) predate by many years the advent of sophisticated computing and wireless

communication technologies;

— Blocking effects at the sorter can be completely avoided by ensuring that the number of

orders in each wave is less than or equal to the number of sorter lanes (e.g. Armstrong,

Cook and Saipe 1979, Johnson and Meller 2002, Owyong and Yih 2006).

However, many sources also discuss several important drawbacks associated with wave

picking:

— Because the time for a picker to complete a wave is subject to both predictable and

unpredictable variability, even when the work assignment within a wave is balanced across

pickers and zones, some idle time may still occur. This may reduce the productivity of

picking labor at the end of a wave and ultimately overall picking capacity (e.g. Choe,

Sharp and Serfozo 1992, Petersen 2000, see also practitioners’ discussions in Gilmore

2006a, Gilmore 2006b and Bradley 2007);
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— While large wave sizes typically improve picking labor productivity, they also generate

a large buffer of inventory (i.e. cycle stock) between picking and sorting. Such buffer

is costly because of the corresponding accumulation conveyor equipment and floor space

requirements (Russell andMeller 2003, Bradley 2007). Because of the relationship between

wave sizes and number of sorter chutes pointed earlier, wave sizes also drive the sorter

purchase cost, which can reach several millions of dollars for large facilities (Johnson and

Lofgren 1994, Hinojosa 1996);

— As with any batch processing, waves add a cycle time component to order completion

times, which can be an issue in environments with time-sensitive customers such as online

retailing (Chew and Tang 1999, Johnson and Meller 2002, Le Duc and de Koster 2007);

— The sequential release into the sorter of non-overlapping waves with a number of orders

roughly equal to the number of lanes may result in low capacity utilization. This is because

the lanes corresponding to completed and/or packed orders cannot be re-assigned until

the end of the current wave (Johnson and Lofgren 1994 and Johnson 1998). This issue

is particularly critical during peak periods because sorters are very capital-intensive and

thus often constitute the throughput bottleneck (Apple 2006, Perkins 2008, Gilmore 2006a

and Bradley 2007);

— Finally, the workload of packers can be fairly concentrated at the end of each wave. This

phenomenon can be modeled by using the realistic assumption that items are uniformly

distributed within each wave (Hinojosa 1996, Johnson 1998) and considering for each order

the expected maximum arrival time into a chute over all its items4; given automated sorter

are typically not used for single item orders, most chutes only become ready to be packed

in the last third of the wave (Hinojosa 1996, 2006), which results in relatively low packing

labor productivity at the beginning.

As a result, more sophisticated forms of wave picking have been developed in order to

mitigate these problems:

— To reduce pickers’ idling at the end of waves, some companies allow different waves to

overlap in the picking area, either across zones (Armstrong, Cook and Saipe 1979) or even

within each zone (Owyong and Yih 2006). However, this practice creates the need for a

pre-sorting operation downstream in order to separate items from different waves before

4 The last item of an order with m items is then located on average at a relative position of
m/(m+ 1) within the wave.

3



release into the sorter and/or additional buffer space. In addition, differences of wave

completion times across pickers and/or zones may accumulate over the course of a shift,

unless an effective dynamic re-allocation of labor is performed;

— To increase sorter and packing labor utilization as well as overall throughput, different

waves are sometimes also allowed to overlap in the sorter. A first strategy consists of

starting the release of each wave as soon as the previous one has reached a specified in-

termediate completion threshold such as 90% (Bozer, Quiroz and Sharp 1988) or 50%

(Johnson and Lofgren 1994). The best threshold to employ is typically determined em-

pirically or through simulation, and seems to vary widely across facilities. As pointed out

in Johnson (1998), overlapping waves in the sorter also present some control challenges,

in part because of the associated potential blocking effects when all the lanes and/or

the recirculating buffer become full (see discussion below). A second strategy consists

of splitting the sorter lanes in two, where each half is dedicated to a wave so that pack-

ers can work on a completed wave in one half while the next wave is being sorted into

the other half (Ruben and Jacobs 1992, Russell and Meller 2003, Perkins 2008). In the

ideal operating regime, the sorter completes the processing of that second wave shortly

before packers complete the first one, so that packers are not starved for work during

the transition between consecutive waves, and complete sorter lanes do not idle for long.

Approaching this ideal requires a careful balance of wave completion times across packers,

and between the packers and the sorter. To that end, some companies define several cate-

gories of workers according to their productivity and assign different numbers of orders or

lanes to workers according to their category (with the fastest packers receiving the largest

number of orders, see Ruben and Jacobs 1992). However, the pervasive unpredictable

variability affecting the order packing and sorting times may easily disrupt this balance,

thus reducing labor and/or equipment utilization. In addition, that strategy divides the

largest possible wave size by two, which may impact picking labor productivity.

Because even these more sophisticated forms of wave picking still create challenges, a

growing number of companies that include American Eagle Outfitters and Green Mountain

Coffee have been using in their warehouses an alternative work release control policy referred

to as waveless picking or continuous flow picking (Bradley 2007). While the different imple-

mentations of this new policy vary in details (see Forger 2005, Hinojosa 2006, Perry 2007,
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Trebilcock 2007, McMahon 2008 and Morris 2008), they all involve the same core princi-

ple, which is perhaps best explained through a comparison with traditional wave picking.

As discussed earlier, wave picking conceptually involves a first queue of incoming customer

orders and a second picking queue corresponding to all the orders covered by the current

active picking assignments; whenever the second queue becomes empty, it is replenished at

once by an entire batch of a given number of orders (the wave), which is transferred then

as a whole from the first queue. In contrast, waveless picking involves the continuous trans-

fer of individual orders from the first queue to the second one, based on a priority ranking

of incoming customer orders that is typically based on target shipping dates. The second

queue (called a revolving batch or a virtual wave) still has a maximum capacity, which is

an important control parameter that we will later refer to as the revolving batch size; when

that maximum buffer size is reached, any new customer order may only enter the picking

queue as another one exits, which occurs when the last one of its items is picked. Pick lists

for individual pickers are determined and continually updated in real-time from the picking

queue, using a partition of the warehouse storage area into continuous picking loops with a

fixed travel direction (the zones), and a dynamic partition of each picking loop between all

the pickers assigned to that zone. Specifically, every worker’s pick list consists at all times

of all the items from orders in the picking queue that are located between his last recorded

position and that of the next picker down his picking loop, in the order corresponding to the

relative positions of these items along the loop. In addition, this method involves a labor bal-

ancing mechanism which continuously evaluates for each zone the expected completion time

of the current picking queue by all pickers assigned to that zone, and re-assigns individual

pickers across zones whenever imbalances between these completion times exceed specified

thresholds. Finally, the buffer upstream of the sorter is used to delay within some limits the

induction into the sorter of items belonging to orders with other items further upstream in

the process (using for example one of the policies described in Johnson 1998), with the goal

of reducing the accumulation time of orders once they are assigned to chutes.

Note that the waveless policy just described critically relies on expensive technology and

software, specifically dependable real-time two-way wireless digital communications with

every active picker in the warehouse (typically provided by portable devices also including a

bar-code reader and an LCD screen), and real-time centralized database management. The
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motivation for implementing this novel warehouse control policy however is that while it

applies the principles of batch and zone picking and may thus achieve relatively high picking

labor productivity (with the density of pick assignments determined by the revolving batch

size), it also appears to eliminate some of the inefficiencies associated with wave picking. In

particular, no picker is ever starved for work at the end of a wave and, relative to facilities

allowing picking waves to overlap, there is no need for a pre-sorting operation. In addition,

the rate at which orders become available for packing is more steady because it does not

increase towards the end of waves, and completed orders in sorter chutes never need to

wait before they can be assigned to a packer. Finally, any urgent incoming order can be

assigned for picking almost instantly without waiting until the end of the current wave,

and the average completion time of all orders is improved by the elimination of the cycle

time before picking and the cycle stock between picking and sorting that are introduced

by waves. Indeed, several trade journal articles and corporate white papers point out that

waveless picking may generate substantial improvements in both labor costs and throughput

relative to traditional wave picking (Hinojosa 2006, Apple 2006, Cooke 2007, Perry 2007),

and several support this claim with observations from actual implementations (Forger 2005,

Bradley 2007, Morris 2008, McMahon 2008). Industry commentators have also described

waveless picking as an application to warehouses of lean manufacturing principles, because

of the lot size reduction it entails.

An essential caveat however is that waveless picking no longer involves the release into the

sorter of separate batches of a fixed number of orders, which assures that its accumulation

space is never exceeded. That new policy therefore creates the potential for severe blocking

(Bradley 2007). Specifically, when all the chutes in the sorter are tied up (either by incom-

plete orders or by complete orders waiting for a packer), upstream congestion can start to

build up. As a result, the very items needed to complete orders tying up chutes and relieve

this congestion may no longer reach the sorter because of... the same congestion. This phe-

nomenon is known as gridlock (Johnson and Lofgren 1994), and because the corresponding

recovery procedure is typically long and laborious, it can significantly reduce capacity and

productivity (Holste 2008). In the words of Sam Sanders, a warehouse consultant quoted in

Bradley (2007): "It’s like a game of solitaire. If all the slots in the game are full, the game

is over, and you lose. If you have 10,000 SKUs and 1,200 drop points, you can have a lot of
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SKUs on the sorter with no place to drop into. If you want to work with continuous flow,

you have to be cognizant of this."

The work to be described here started from a collaboration with a leading US online

retailer (our industrial partner), who had switched all of its warehouses with an automated

sorter from wave-based to waveless picking before our interaction began. While our part-

ner reports observing then significant increases in throughput, equipment utilization and

labor productivity, it did not initially impose formal guidelines for how managers should

dynamically adjust the primary control levers of this new order release policy, and indeed

experienced gridlock more frequently than desired during the peak demand seasons following

that implementation. This situation motivated in part the two research objectives pursued

in this paper, using an extensive dataset of detailed flow information obtained from our

industrial partner: (Objective 1) Develop a quantitative model to generate operational con-

trol guidelines for waveless picking during peak demand periods, with the goal of maximizing

throughput while keeping the likelihood of gridlock sufficiently low ; and (Objective 2) Leverage

this model to conduct a rigorous performance comparison between wave-based and waveless

release policies in the context of our industrial partner’s warehouses. After a discussion of

the related literature and our contributions in §2, we describe our work on the first objective

stated above in §3. We then present a quantitative model describing wave-based picking in

the context of our partner’s warehouses in §4, and discuss in §5 the simulation experiments

we performed in order to achieve our second objective. Concluding remarks are provided in

§6, and the Online Appendix to this paper contains supporting material, including auxiliary

results and detailed algorithm statements. Mathematical variables in capital letters refer

throughout to random quantities, while those in lower case refer to deterministic quantities.

Also, notations with an upper (resp. lower) bar refer to the maximum (resp. minimum)

value in an index set or interval, variables in bold refer to vectors or control policies, and

new terminology being defined appears in italics.

2 Related Literature and Paper Contributions

We limit our discussion to papers specifically motivated by warehouses with an automated

sorter, and we refer the reader to the surveys by de Koster, Le-Duc and Jan Roodbergen

(2007) and Gu, Goetschalckx and McGinnis (2007) for recent and extensive reviews of the

many design and control problems arising with other types of warehouses. Also, literature
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that is methodologically related to our analysis is discussed in subsequent sections.

A first set of papers positively answers the question of whether an automated sorter

constitutes a justified design choice in some environments. This question is closely related

to the choice of an order picking policy, because the need for sortation only arises when

pick lists do not preserve order integrity. Using simple queueing models, Choe, Sharp and

Serfozo (1992) compare the order cycle times associated with the three strategies of single

order picking, batch picking and batch zone (wave) picking with an automated sorter. With

more complex simulation models, Petersen (2000) investigates the policy of sequential zone

picking in addition to the three others just mentioned, considering not just order cycle time

but also labor requirements. Finally, Russell andMeller (2003) develop a simple deterministic

cost model to inform the decision of whether manual or automated sorting should be used

in a warehouse operating under wave picking. In the specific environment of online retailer

Amazon.com, Bragg (2003) also considers similar simple deterministic cost model to assess

various warehouse design alternatives.

A second group describes the use of simulation models to determine various dimensioning

and control parameters of warehouses with automated sorters, given specific design objec-

tives. Bozer and Sharp (1985) explore the impact on sorter throughput of the number of

sorter lanes and their storage capacity as well as the use of recirculation and the concentra-

tion of items from the same order within a wave. That study is complemented by Bozer,

Quiroz and Sharp (1988) who also investigate the throughput implications of the wave profile

(size, distribution of items per order), the lane assignment policy and the degree to which

consecutive waves are allowed to overlap. Finally, Johnson and Lofgren (1994) report the

successful use of simulation model decomposition when designing a new warehouse with an

automated sorter. This decomposition is enabled by sufficient picking capacity together with

the wave release strategy, which effectively decouples the areas of picking and sorting. Also

relevant to sorter design decisions is Johnson and Meller (2002), which presents an analytical

model predicting the throughput of induction stations used in split-case sorting operations,

where workers need to manually place incoming items onto moving trays bound to sorter

chutes.

A last set explores more specific operational problems motivated by the use of automated

sorters. We first note that, although not reviewed here, some of the papers investigating
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the problems of storage assignment, zoning, order batching and picker routing within the

order picking area considered in isolation (see de Koster, Le-Duc and Jan Roodbergen 2007)

are also potentially relevant to the operations we focus on. However, only a couple develop

models that capture the impact of these decisions on the sorting process. Among them,

Armstrong, Cook and Saipe (1979) and Le-Duc and de Koster (2005) formulate mixed integer

optimization models to compute order batches, taking into account both discrepancies in

wave completion times across zones and limitations of sorter capacity. In the context of

module-based fulfilment centers, Owyong and Yih (2006) present a heuristic for modifying

pick lists to reduce order consolidation time or chute-dwell time, which is the time between

the arrivals of the first and last item of a customer order in a sorter chute. Finally, Meller

(1997) describes integer programming models for the problem of assigning orders to sorter

lanes (lane assignment), assuming that the sequence of incoming items is known. Relaxing

this last assumption, Johnson (1998) develops an analytical model predicting the impact of

various lane assignment strategies on expected total wave sorting time.

In all the literature just discussed, wave picking is the only operating policy considered for

warehouses with an automated sorter. To the best of our knowledge, the present paper is the

first to present a mathematical model for the problem of order release control in a warehouse

operating under waveless picking (see §1 for background), and to address quantitatively

the questions of whether and how gridlock may be avoided under such policy. This study

also leads us to investigate and characterize the relationship between the release strategy

for picking orders and the sorter operation, which has been consistently described as an

important object of research (Johnson 1998, Petersen 2000, Owyong and Yih 2006). Finally,

the solution we develop for the order release problem mentioned above enables us to present

the first meaningful quantitative performance comparison between wave-based and waveless

picking in a specific context.

3 Waveless Release Model and Analysis

As part of the waveless picking policy described in §1, the main daily flow control levers

available to our partner include the size of the revolving batch, which can be adjusted a few

times per hour, as well as the staffing levels for pickers and packers, which can be adjusted

a few times per day (we refer the interested reader to the Online Appendix for a detailed

description of our partner’s warehouses). Note that staffing decisions for induction stations
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(and more generally their capacity) are not explicitly considered in this section. This is

because our partner uses induction stations with automated coordinated induction belts

which were designed using realistic throughput models of the type described in Johnson and

Meller (2002), so that only few operators are required to achieve a high induction capacity.

Also, the differences in possible control change frequencies just stated justify our focus on

the revolving batch size under the assumption that staffing levels constitute fixed exogenous

parameters.

The revolving batch size affects the overall picking rate in two ways. First and foremost,

through the resulting density of items to be picked along the picking paths. Secondly,

through the starvation of pickers occuring when the revolving batch size is set to a low

value5. Fortunately, our partner had developed through extensive empirical studies a simple

but reliable model that determines the size of the revolving batch required in its environment

in order to generate a specified average overall picking rate under a given staffing level for

pickers. However, no formal guidelines were available at the outset of our interaction for

dynamically changing the target picking rate as a function of observed process conditions

(conveyor system congestion, numbers of complete, incomplete and unassigned sorter chutes)

and packers’ staffing level6. This was mostly problematic during peak demand period, when

the pressures for high throughput sometimes resulted in gridlock (see §1).

In the remainder of this section, we present a quantitative model and analysis developed to

identify flow control strategies for waveless picking that maximize throughput while keeping

the probability of gridlock under an acceptably low level during such peak demand periods.

We define our predictive model in §3.1, present related approximate dynamics and discuss

their validation in §3.2, state the optimization problem we consider in §3.3 and finally discuss

an associated solution algorithm in §3.4.

3.1 Predictive Model Our model for predicting congestion in our partner’s warehouse

as a function of the flow control policy employed is a serial queueing network with three

stations and features similar to that found in Gallien and Wein (2001). It is defined as

follows:
5 Picking rate in this setting can be conceptually modeled by the throughput of a closed queueing network with a
single station having as many servers as there are pickers, and where the number of circulating
entities, which corresponds to the revolving batch size, affects the service rate.
6 Instead, managers tended to apply informal guidelines prescribing to try and stabilize the process around target
numbers of complete and incomplete sorter chutes. These target numbers were not supported by any
analysis, appeared inconsistent across managers and facilities, and adherence to those guidelines was not enforced.
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— Each circulating entity in this network represents a customer order, and the arrival rate of

these orders to the network over time is the primary control we ultimately seek to optimize

(in §3.3). This input is modeled as a Poisson process whose rate at time τ ≥ 0 is denoted
λ(τ), and the associated release rate control policy will be noted λ. In the real system,

λ(τ) corresponds to the average current rate at which orders are picked. As in Russell

and Meller (2003), we thus do not explicitly model the warehouse layout, stowing policies

and picker routing policies employed; however we do consider their aggregate impact on

the overall rate at which pickers release items onto the conveyor system. Specifically, this

impact is captured by the empirical model mentioned above, which links overall average

picking rate with the revolving batch size and the pickers’ staffing level, and thus enables

a practical implementation of flow control policies characterized by target order picking

rates (converting average order pick rate to average item pick rate is straightforward

since the average number of items per order E[M ] is easily determined). This modular

approach is more tractable, but also alleviates the need to explicitly model features which

tend to be more idiosynchratic such as the layout of the picking area. In other settings,

the relationship between batch size, staffing levels and average overall picking rate may

also be determined empirically, or through analytical models of the kind developed by

Chew and Tang (1999) and Le-Duc and de Koster (2007). We also note that the arrival

process in our model is random, which reflects that the actual system is only partially

controllable. That is, specifying the revolving batch size for a given staffing level only

implements an average picking rate, from which the current instantaneous picking rate

may differ — this stems in practice from variability in the actual density of picks along

the picking loops, pickers’ individual productivity, the actual number of items per order,

etc. The specific structure assumed for that randomness (Poisson) is motivated by both

analytical tractability considerations and the intuitive relevance of Palm’s theorem to this

setting. Because the maximum picking rate achievable is limited in practice by various

factors, we assume an upper bound λ̄ for this control. During the peak demand periods

that we are most concerned with, the virtual queue of orders placed by customers but not

yet released for picking is always sizeable and never empties. As a result, our assumption

that the upper bound λ̄ is exogenous seems reasonable. Finally, because of practical

database synchronization issues, the frequency at which the revolving batch size may be
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adjusted is limited. As a result, we assume that the average picking rate λ(τ) may only

be changed in our model at discrete time points separated by a period δ (of the order

of a few minutes). As a result, the release policies λ considered effectively implement a

discrete sequence of controls (λt)t∈N, where each discrete time period t ∈ N corresponds
to the continuous time interval [tδ, (t+ 1)δ), i.e. λ(τ) = λt for τ ∈ [tδ, (t+ 1)δ).

— The first station of this queueing model has an infinite number of servers, each with

identically distributed service times following a distribution noted A and representing the

time-to-chute, or time between the first time at which an item belonging to a customer

order is released for picking anywhere in the warehouse and the first time at which an item

from that order reaches a sorter chute. The process representing the number of orders

undergoing service in this first station is denoted X(τ), and provides a partial measure of

the conveyor congestion upstream of the sorter. In the following, we will use the notation

Xt , X(tδ).

— The second station has a finite number of servers equal to the number of sorter chutes

n, each with identically distributed service times following a distribution noted B and

representing the chute-dwell time of every order, which is the time that each customer

order spends in a chute before all its items are complete. The number of orders undergoing

service in this second station thus represents the number of incomplete chutes in the sorter

at any point in time, and follows a process denoted Y (τ). As before, we define Yt , Y (tδ).

— Finally, the third station represents the packing stage. It has a finite number of servers

equal to the number w of packers assigned to the sorter, each with identically distributed

service times representing the pack-to-pack time C, or cycle time experienced by a packer

for each customer order (e.g. time spent walking to the next chute + time spent packing).

The process representing the number of orders in this station (in queue and in service)

is denoted Z(τ), which thus corresponds to the number of complete chutes in the sorter

at any point in time. Its values at the discrete time points (tδ)t∈N are also denoted

Zt , Z(tδ).

The considerations that led us to formulate the predictive model just described are the

following:

— The primary model data (A,B,C, λ̄, w) is readily available in practice. This is because

our partner’s warehouses use a sophisticated data collection system involving bar-code
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scanners carried by pickers and packers and also placed in many locations in the conveyor

system, induction stations and sorter chutes. This system generates a database of de-

tailed flow timing information for individual orders from which our model’s service time

distributions can be constructed;

— The primary model output (X(τ), Y (τ), Z(τ)) is directly observable in practice, and in

fact that information corresponds exactly to that actually observed by managers when

adjusting the revolving batch size. This model feature thus guarantees that the informa-

tional requirements of any closed loop release control policy developed will be realistic,

and also allows for a quantitative model validation to be performed (see §3.2.2);

— Note that Y (τ) + Z(τ) represents at any time τ the total number of busy chutes (either

incomplete, complete and waiting for a packer, or being packed). The occurence of gridlock

can thus be directly expressed in terms of our model’s primary output as the event Y (τ)+

Z(τ) > n, where n denotes the total number of sorter chutes. Besides, consider any release

control policy λ ensuring with sufficiently high probability that this event does not occur

(we discuss in §3.3 how this may be achieved). Under such policy the seemingly salient

model assumption of infinite buffer size at the third station is in fact immaterial.

The appealing features of this model formulation do come with a price however. The

actual time-to-chute and chute-dwell time of any particular order depend directly on the

transit times between the picking area and the sorter of all the items it contains. In turn,

those transit times are affected in practice by the congestion upstream of the sorter7. But

the congestion upstream of the sorter is directly related to the output process X(τ) rep-

resenting the number of orders in the first station of our model. In summary, the service

times A and B of the first two stations in our model could not a priori be considered ex-

ogenous, let alone stationary8. While one could conceivably attempt to create an analytical

model predicting these service times as a function of the release rate and/or output process

{(X(τ), Y (τ), Z(τ)) : τ ≥ 0}, we believe that such model would be considerably more com-
plicated than ours. To capture this endogeneity, we consider a small number of congestion

levels g ∈ {1, ..., ḡ} corresponding to adjacent consecutive ranges [dg, dg+1) for conveyor sys-
tem congestion, defined more precisely as the total number of items I(τ) on the conveyor

7 The Online Appendix contains a mathematical statement of the relationship between transit
times and time-to-chute and chute-dwell time, as well as a study of the dependence of transit times on congestion.
8 The same observation could conceivably be made for the service times of the third station because
the walking time of packers also appears endogenous. However, data shows that C is in fact fairly stationary.
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system between the picking area and the sorter. We then fit the distributions of A and B

for all time periods in our data set when the system was in each congestion level, and thus

obtain empirical distributions A(g) and B(g) for all the congestion levels g just defined. Re-

markably, the distributions A(g) and B(g) constructed by this method are unimodal for each

g (whereas the empirical distribution of A and B obtained for the entire data set are not),

thus validating our approach at a qualitative level (see the Online Appendix for empirical

density plots of these service time distributions).

Finally, the last modeling step consists of identifying a relationship between the total

number of items I(τ) on the conveyor system (which characterizes the congestion level g)

and the output (X(τ), Y (τ), Z(τ)), so that the dynamics of our model be well defined. With

E[M ] denoting the average number of items per customer order as before, the expression

E[M ]X(τ) results in a significant underestimation of the number of items I(τ) in process

between the picking area and the sorter, because many items still on the conveyors belong

to customer orders with one or several other items already in a chute, and are therefore

not accounted for by the process X. However, the expression I(τ) ≈ E[M ](X(τ) + Y (τ)/2)

provides a relatively accurate estimate for the total number of items on the conveyors — this

expression corresponds to the approximation that the order statistics of the arrival times of

the items of each shipment to their corresponding chute are equally spaced in expectation.

Ultimately, this method and the resulting predictive accuracy of our model are validated by

performing a comparison of actual system output and simulated model output over time for

given starting conditions and picking rate history (see §3.2.2).

3.2 Approximate Dynamics

3.2.1 Derivation Our next step is to study the dynamics of the queueing model described

in §3.1, that is characterize how the process (Xt, Yt, Zt) evolves over time as a function of any

release control policy λ considered. We want to understand in particular how such policy

may dynamically affect the likelihood of the gridlock event {Yt+Zt > n}. Unfortunately, the
exact analysis of that queueing model appears challenging because (i) the short control time

period δ precludes the use of any steady-state analysis; and (ii) service time distributions for

the first two stations depend on the congestion level and are thus state-dependent. These

observations motivate the development of an approximate version of our queueing model that

is more amenable to analysis but still offer a suitably realistic representation of the actual
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pick-to-ship process described earlier. We specifically consider the following approximations:

— The second queue has an infinite number of servers. This assumption is justified in light

of the optimization problem that we consider eventually (in §3.3), where the probability of

the gridlock event {Y (τ)+Z(τ) > n}, which contains the event {Y (τ) > n), is constrained

to be very small.

— The service times A(g), B(g) and C of the three queueing stations follow exponential

distributions with first moments given by actual data. The empirical distributions of

B(g) and C constructed from data have coefficients of variation that are close to 1 and

shapes that are similar to that of an exponential (see Online Appendix). However, the

empirical distributions we constructed for A(g), which have positive and relatively large

support lower bounds determined by the speed of conveyors, do not. Note that Weber

(2005) derives more accurate system dynamics for this model through an approximating

queueing network that is still Markovian, using phase-type distributions and results on the

Mt/G/∞ queue from Eick, Massey and Whitt (1993). However, we have found that the

resulting increase of the number of state space dimensions does increase computational

requirements for our approximate DP algorithm to a level that is impractical, at least at

the time of writing.

— Orders move at most one station downstream during each time period [tδ; (t+ 1)δ). This

approximation substantially simplifies system dynamics, and does not seem to much harm

prediction accuracy: because the actual expected service times E[A(g)] and E[B(g)] at the

first and second stations are several times larger than the control period δ, the transitions

that this assumption ignores have very low probability relative to all others.

— The congestion level remains constant within each control period [tδ; (t + 1)δ). When

simulating the exact queueing dynamics for the model described in §3.1 under various

policies and input parameters, we have found that consecutive changes of congestion level

occuring less than δ time units apart were very rare.

— The minimum of the numbers of packers w and closed chutes Z(τ) remains constant

within each control period [tδ; (t+1)δ). We have likewise observed that policies performing

seemingly well in simulations resulted in a relatively high capacity utilization for the third

queue, yielding min(w,Z(τ)) = w with high probability.

From elementary properties of markovian queues, the above approximations result in
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the following discrete-time system dynamics (see Weber 2005 for this and other related

derivations of transient system dynamics)9:

⎧⎪⎪⎨⎪⎪⎩
Xt+1 = Xt +N→X

t −NX→Y
t

Yt+1 = Yt +NX→Y
t −NY→Z

t

Zt+1 = Zt +NY→Z
t −NZ→

t

gt =
Pḡ

g=1 g1[dg,dg+1)(E[M ](Xt +
Yt
2
))

with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N→X

t ∼ Poisson(λtδ)
NX→Y

t ∼ Binom(Xt, 1− e−
δ

E[A(gt)] )

NY→Z
t ∼ Binom(Yt, 1− e−

δ
E[B(gt)] )

NZ→
t ∼ Poisson( (w∧Zt)δE[C] )

,

(1)

where the four random variables (N→X
t , NX→Y

t , NY→Z
t , NZ→

t ) represent the number of cus-

tomer orders that are respectively released into the first station, moved from the first to the

second and the second to the third station, and processed out of the third station, between

time periods t and t + 1. An appealing feature is that simulating system (1) only involves

generating four standard random variables in each time period, and can thus be performed

very efficiently. Computations can be even further reduced by substituting the binomial vari-

ables NX→Y
t and NY→Z

t with normal random variables having the same mean and variance,

which from the De Moivre-Laplace theorem is asymptotically exact for the large values of

Xt and Yt that are typical of our setting.

3.2.2 Validation Our next step was to validate the approximate queueing dynamics (1)

using numerical simulation; the high-level procedure was to compare the predicted model

state under some given release rate and packer staffing history against that actually observed

in the real system when subjected to the same input. Specifically, we collected data series

recording the actual state evolution (x∗(τ), y∗(τ), z∗(τ)), actual control history λ∗(τ) and

actual number of staffed packers w∗(τ), each with one data point per minute and spanning

a period of several days during a peak demand period faced by our industrial partner.

In the context of the order release control problem that we formally define in the next

section, a particularly relevant prediction lead-time is the control period δ (of the order of

a few minutes), since the associated dynamic program involves an expectation of the value

function at time τ + δ given the system state at time τ . We thus computed for every time

τ the average release rate over the following period of length δ, λ̃
∗
(τ) = 1

δ

δ−1P
i=0

λ∗(τ + i), and

9 In particular, the last expression of (1) corresponds to the departure process over a period of length
δ from a Markovian queue with w servers assumed to work continuously, except in the ramp-up
periods. This assumption is appropriate given the very high utilization of that queue for most
of the scenarios considered (particularly when nearing the gridlock state), and in the other scenarios we verified that
the associated expression was still an acceptable approximation.
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simulated the random variables (Xt+1, Yt+1, Zt+1) characterized by (1) given (Xt, Yt, Zt) =

((x∗(τ), y∗(τ), z∗(τ)), λt = λ̃
∗
(τ) and w = w∗(τ). We then compared them with the actual

state for the corresponding period (x∗(τ+δ), y∗(τ+δ), z∗(τ+δ)). Note that the historical data

available only corresponds to a specific realization of our stochastic predictive model. For this

reason, any discrepancy between the actual state (x∗(τ+δ), y∗(τ+δ), z∗(τ+δ)) and (say) the

estimated mean of the random variables (Xt+1, Yt+1, Zt+1) just defined should be interpreted

in light of the variability predicted by the model around those means. While our findings

were consistent across all state variables, due to space constraints we only report here actual

and predicted values for the number of busy chutes, which is particularly relevant in this

context because the occurence of gridlock is modeled by the event {Yt+Zt > n}. Specifically,
Figure 1 shows the mean E[Yt+1+Zt+1] and associated centered empirical range with length

6σ[Yt+1+Zt+1] thus estimated at each record time point (τ) over one full (representative) day,

along with the actual corresponding historical value y∗(τ + δ) + z∗(τ + δ). Also highlighted

in Figure 1 (with a gray background) are the time periods corresponding either to workers’

breaks (from approximately 1:30 to 2:00, 5:30 to 6:00, 8:00, 10:15, 12:00 to 13:00, 15:15,

17:30 to 18:00, 20:15, 22:15, 23:30 onwards) or reduced activity due to shift change-over,

equipment maintenance, breakdown or repair (around 0:15, 3:15, 11:30 to 12:00, 21:00).

Our main observation on the results shown in Figure 1 is that the time periods when

the actual number of busy chutes falls outside of the empirical range predicted by our

model coincide almost exactly with the workers’ breaks and episodes of equipment mainte-

nance/breakdown mentioned above. Furthermore, in all these periods the model significantly

overestimates the number of busy chutes. This overestimation follows from the fact that our

queueing model does not capture explicitly the induction stations at which items coming

from the conveyor system are individually placed on the sorter’s tilting trays. Indeed, the

transition rate between the first and second stations in our queueing model only depends on

the number of orders in the first station as well as its service time (time-to-chute) distribu-

tion, and thus does not directly account for the staffing of induction stations. This modeling

choice is justified during the regular (non-highlighted) working hours, as the induction sta-

tions have appropriate processing capacity then. However, the periods highlighted in Figure

1 drastically impact the staffing of these induction stations, so that the actual flow of items

into the sorter then is either considerably reduced (maintenance/breakdown) or stopped
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Figure 1: Predicted Distribution Yt+1 + Zt+1 and Actual Value y∗(τ + δ) + z∗(τ + δ) of the
Number of Busy Chutes over a 24 Hour Period.

(work breaks). Indeed, note that the actual number of busy chutes remains constant during

all work breaks listed above, which reflects that actual flows into the sorter (induction) and

out of it (packing) are stopped then. While the model correctly captures the packing rate

reduction during such periods through its input data w, it ignores the corresponding decrease

in induction rate, leading to the overestimation observed.

While the results observed during the highlighted periods enhanced our understanding of

the relationship between our model and the actual system, they did not seem relevant to

validation since gridlock may not occur during periods of forced reduced activity. During

regular working hours the actual number of busy chutes observed almost always lied within

our model’s predicted range, so that the approximate dynamics tested appeared sufficiently

accurate given our purposes; this validation exercise was thus deemed conclusive.

3.3 Optimization Problem Formulation We now state and discuss the formulation

CDP [β] which provides the framework of our optimization study:
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CDP [β] : max
λ

E[
P+∞

t=0 α
tλt|X0, Y0, Z0]

s.t.: E[
P+∞

t=0 α
t1{Y λt +Zλt >n}|X0, Y0, Z0] ≤ β

λt ∈ [0, λ̄] for all t ∈ N,
(2)

where α ∈ (0, 1) is a discount factor, 1{.} is an event indicator function, β is the risk budget
or parameter defining the level of risk tolerated for the event of gridlock (see discussion

below), expectations are taken over the sample space of release and service time realizations,

and (X0, Y0, Z0) is the initial state of the system. In (2), the maximum is taken over all

stationary closed-loop and non-anticipative policies λ, and the notations Y λ
t and Zλ

t reflect

the dependence of the model output process (Yt, Zt) on the release control policy considered.

Since no ambiguity arises from the present context however, we will almost always omit that

dependence in the following.

The objective function in (2) captures the goal of maximizing the throughput of the

pick-to-ship process considered. Observe however that it is the (discounted) sum of release

rates, which are proportional to the process input as opposed to process output — this is

justified by the first constraint, which effectively prevents any unbounded accumulation of

inventory in the system and is further discussed below. Note that the discount factor α

introduces a preference for units shipped in earlier periods. The classical interpretation of

such discount factor as one minus a Bernoulli probability that the future stream of rewards

may be interrupted is appealing here: when running into gridlock, the real pick-to-ship

process goes through a lengthy recovery procedure which is not captured by the queueing

model described in §3.1. In addition, we may consider α for practical purposes as a tuning

parameter affecting the features and performance of the policies derived. However, the

primary reason for us to study here the discounted cost formulation (2) is that it is easier

to solve numerically than the natural average cost formulation of the same problem. That

latter formulation is formally linked to (2) through the following limiting statements10, which

are proven in Blackwell (1962) and hold for any initial state:⎧⎨⎩ lim
α→1−

(1− α)E[
P+∞

t=0 α
tλt|X0, Y0, Z0] = lim

k→∞
1
k
E[
Pk−1

t=0 λt]

lim
α→1−

(1− α)E[
P+∞

t=0 α
t1{Yt+Zt>n}|X0, Y0, Z0] = lim

k→∞
1
k
E[
Pk−1

t=0 1{Y λt +Zλt >n}] = lim
t→∞

P(Yt + Zt > n)

(3)

10 Blackwell proves the first equality in each line for a finite state Markov Chain. The second
equality in the second line follows from the ergodicity of Markov chains with unique steady-state distributions.
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The second and third equality statements in (3) imply that the first constraint in (2) is

asymptotically equivalent as α→ 1 (a very relevant regime given the numerical value we use

for α are very close to 1) to the much more intuitive expression

lim
t→∞

P(Yt + Zt > n) ≤ (1− α)β,

which specifies an upper bound on the steady-state probability that the system is in a state

of gridlock; the comparably unintuitive exact expression of that constraint in (2) (i.e. a

discounted sum of indicator functions) is only motivated by technical dynamic programming

considerations (see §3.4). From a modeling perspective, that constraint thus balances the

throughput maximization objective in (2) with the need to avoid the state of gridlock. Note

that it is only a probabilistic statement: because the support of the inter-arrival and service

time distributions we use are neither bounded from above or bounded away from zero,

with any policy resulting in some positive release rates it is impossible to guarantee in a

deterministic sense that gridlock will never occur.

Finally, observe that the statement of problem CDP [β] depends on the initial state

(X0, Y0, Z0). However, we have used values of the discount factor α that are very close

to 1 in our experiments, and observed that the choice of the initial state had very little

impact on the results, if any. This is explained in part by the limiting statements (3), where

the r.h.s is independent of the initial state, as is typical of the objective of an average cost

DP formulation.

3.4 Optimization Algorithm We have specifically formulated the dynamic program

CDP [β] in (2) so it would belong to a family of constrained Markov decision processes for

which some theoretical results and approximate computational methods can be easily derived

(see Altman 1999 for a review, and Hordijk and Spieksma 1989 for an application of these

methods to a queueing model with features similar to ours). In particular, we now outline a

method for computing a solution to CDP [β] by solving a sequence of related unconstrained

dynamic programs UDP [θ] obtained for any θ ≥ 0 as

UDP [θ] : max
λ

E[
P+∞

t=0 α
t
¡
λt − θ.1{Yt+Zt>n}

¢ |(X0, Y0, Z0) = (x, y, z)]

s.t.: λt ∈ [0, λ̄] for all t ∈ N,
(4)

where the underlying state dynamics are identical to those of the original problem CDP [β].

The problem UDP [θ] just defined is thus a Lagrangian relaxation of CDP [β] where the
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first constraint in (2) is now captured through the objective function and weighted there

by the multiplier θ, to be interpreted as an instant penalty for entering a gridlock state,

i.e. {Yt + Zt > n}. Define now jθ(x, y, z) as the optimal cost-to-go function for UDP [θ],

equal to rθ(x, y, z)− θ.cθ(x, y, z) with rθ(x, y, z) , E[
P+∞

t=0 α
tλθt |(X0, Y0, Z0) = (x, y, z)] and

cθ(x, y, z) , E[
P+∞

t=0 α
t1{Y λθt +Zλ

θ
t >n}|(X0, Y0, Z0) = (x, y, z)], where λ

θ is an optimal policy

for UDP [θ]. The following results are obtained through a straightforward adaptation to the

discounted case of the proofs of Lemma 3.1, Theorem 4.3 and Theorem 4.4 from Beutler and

Ross (1985) and Corollary 3.5 from Beutler and Ross (1986):

Lemma 1 There exists a stationary optimal policy λ for CDP [β] that is deterministic in
all states but one, and randomizes between at most two actions in that state. Moreover, λ
achieves E[

P+∞
t=0 α

t1{Yt+Zt>n}|(X0, Y0, Z0) = (x, y, z)] = β and there exists θ∗ ≥ 0 such that
λ is optimal for UDP [θ∗].

Lemma 2 Suppose that for some θ ≥ 0 there exists a policy λθ such that λθ is optimal for
UDP [θ] and achieves E[

P+∞
t=0 α

t1{Yt+Zt>n}|(X0, Y0, Z0) = (x, y, z)] = β. Then λθ is optimal
for CDP [β].

Lemma 3 For any initial state (x, y, z), jθ(x, y, z), rθ(x, y, z) and cθ(x, y, z) are all monotone
non-increasing in θ.

The solution method we have implemented consists of a line search over θ, where the

optimal solution λθ to UDP [θ] is computed at each iteration along with the corresponding

cost-to-go functions jθ, rθ and cθ using standard approximate DP methods (see below), and

the search proceeds until a value of θ achieving cθ(x, y, z) ≈ β is found. Lemma 1 asserts that

such θ exists; Lemma 2 suggests that once such θ is found, the resulting policy λθ should be

(near) optimal for CDP [β]; finally the monotonicity of cθ shown in Lemma 3 indicates that

an efficient search can be used. The specific algorithm we have implemented is a dichotomic

search over a specified interval [θ, θ̄], with an accuracy termination parameter �. While

a more detailed description and discussion of convergence properties can be found in the

Online Appendix, we observe here that this algorithm may require to solve up to log2(
θ̄−θ
�
)

unconstrained dynamic programs UDP [θ] in order to compute a solution to CDP [β]. The

associated computational efforts may thus seem daunting at first. However, we were able to

reduce computations to a practical level through the following additional steps: (i) In order

to solve each instance of UDP [θ], we use an approximate policy iteration algorithm relying
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on the Robbins-Monro stochastic approximation scheme for the evaluation step, and Monte-

Carlo simulations for the improvement step (see the Appendix for a detailed statement

of this algorithm, related references and discussion); and (ii) At the k-th iteration of the

search algorithm (with corresponding multiplier value θk), we use the best policy found for

UDP [θk−1] at the previous iteration as a starting point to the policy iteration algorithm

used to solve problem UDP [θk].

In the remainder of this paper, we refer to the policy obtained from the algorithm just

stated as ADP β (the superscript β is omitted when no ambiguity arises) and denote its

release rate function as λADP (x, y, z) or λADP
t , λADP (Xt, Yt, Zt).

3.5 Policy Structure We now discuss the qualitative features of policy ADP β. Theoret-

ical results on the structure of optimal policies for problem (2) have so far eluded us, which

is relatively unsurprising given the relative complexity of the underlying model (a queueing

network with discrete-time controls and service times depending on a function of congestion

in some parts of the network)11. As a result, the following discussion is based instead on a

large number of consistent empirical observations.

λ
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Figure 2: Release Rate Function of Policy ADP β for the Scenarios w ∈ {0.75p, p, 1.25p} and
β(1− α) = 10−6.

The main observed features of policy ADP β are illustrated by Figure 2, which includes

plots of its normalized release rate λADP
t as a function of the reduced and normalized state

11 While it is conceivable that such results could be obtained assuming simplified model dynamics
(with exogenous service times for example), such a study falls outside the scope of the present
paper, in part because validation experiments of the type described in §3.2.2 show that simplified
versions of the model we consider have poor predictive accuracy in the industrial setting motivating our study.
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(Xt/n, (Yt + Zt)/n)
12 for three representative scenarios characterized by a limiting gridlock

probability of 10−6 and a number of packers w ∈ {0.75p, p, 1.25p}, where p is the average
number of packers used by our industrial partner during peak demand periods. A first

intuitive feature observed is that the release rate is a decreasing function of the state, in the

sense that λADP (x0, y0, z0) ≤ λADP (x, y, z) when x0 ≥ x, y0 ≥ y and z0 ≥ z. In particular,

the policy releases orders at the maximum rate allowed when the system is almost empty

(this region of the state space corresponds to the upper middle corner of all plots in Figure

2), and stops releases altogether in the regions of the state-space corresponding to heavy

congestion (as seen in the lower middle corner of the plots). A second noteworthy feature is

that the release rate function displays sudden drops, as seen around Xt/n ≈ 85% in Figure

2 (a), Xt/n ≈ 95% in Figure 2 (b) and Xt/n ≈ 100% in Figure 2 (c). While this is not

obvious from these figures alone because of the state reduction used, it can be verified that

these drops correspond to transitions of the congestion level E[M ](Xt + Yt/2) between two

consecutive ranges of values characterizing system dynamics (see §3.2.1). Indeed, simulation

shows that these drops enable the policy to maintain the system in a desirable steady-state

congestion level13.

Finally, the structure of policy ADP β is sensitive to the number of packers. Figure 2

(a) shows that with a small number of packers, the release rate function λADP
t is almost

independent of Xt. In such a regime good policies must heavily utilize packing capacity, and

any given change in the arrival rate of orders to the third packing station has a substantial

impact on its occupancy process, or number of green chutes Zt. Consequently, the ADP β

policy thus reacts considerably more to changes in the state variable Zt than to changes of

Xt or Yt, which is easily verified quantitatively (along with all similar statements in this

discussion) by examining the relative values of the partial derivatives ∂λADP (x,y,z)
∂x

, ∂λ
ADP (x,y,z)

∂y

and ∂λADP (x,y,z)
∂z

in relevant regions of the state space. In addition, ADP compensates then

for even small deviations around an implicit target value for Zt with drastic changes in

its instantaneous release rate, as illustrated by the sudden drop of the release rate surface

seen in Figure 2 (a) around (Yt + Zt)/n ≈ 80%. In contrast, Figure 2 (c) illustrates that
with a high number of packers, policy ADP β reacts much more to changes in the number

12 More precisely the function plotted in the plane (Xt, Yt + Zt) is f(x, b) , 1
b+1

b

j=0

λADP (x, j, b− j).

13 The Online Appendix contains a more extensive discussion on why some congestion levels are
preferable to others.
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of orders in transit Xt than to changes in the number of busy chutes Yt + Zt, and it can

be verified that λADP
t is in fact almost independent of Zt then. In this scenario with low

packing utilization, completed chutes tend to be attended to immediately by a packer, i.e.

the jobs representing them in our model experience little or no queueing in the third station.

Consequently, any temporary increase of Zt around its operating steady-state average is

absorbed by spare packing capacity, and likely corrected by the time any change in the order

release rate can have any impact on the sorter (second and third queueing stations), as the

expected time-to-chute E[A(g)] is long relative to the pack-to-pack time E[C] (see §3.1).

4 Wave Release Models

The model described in the previous section was primarily constructed with the goal of

helping our industrial partner optimize its waveless release policy. The present section dis-

cusses how it can also be modified in order to support a partial performance comparison with

wave-based policies through simulation. As observed by Johnson and Lofgren (1994) and

others, these more traditional policies effectively decouple the warehouse areas of picking

and sorting, since only batches of orders that have been completely picked (the waves) are

typically released into the sorter. Our wave release models reflect this decoupling, in that

they only consider the picking operation and the conveyor system leading to the sorting area

through the assumption that complete waves of picked orders are always ready to be released

into the sorter for induction, sorting and packing. This approach enables a meaningful com-

parison between wave-based and waveless release policies along the performance dimensions

of throughput (the primary concern of our partner during the peak demand periods which

motivated our study), gridlock probability, packer utilization and sorter utilization. However,

it leaves aside the dimensions of order cycle time as well as storage and/or conveyor space

requirements for the intermediary buffer between picking and sorting, which as emphasized

in §1 constitute substantial negatives of wave picking. Finally, picker utilization is another

important performance dimension that we are unable to fully explore, because our models

do not explicitly capture the detailed layout and resulting picking tours in the picking area

(see §3.1 and related discussion in §6).

In order to enable a meaningful comparison with waveless policies, we consider mod-

els capturing the most sophisticated wave release policies observed in practice (see §1 for

background), as described in §4.1 and §4.2 below.
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4.1 Overlapping Waves Policy Under this policy and according to common industrial

practice (see §1), complete waves of items corresponding to a number of orders equal to

the number of sorter chutes (n) are successively released into the sorter. This is modeled

using a three station serial queueing network sharing several features with the one stated in

§3.1 and defined as follows. First, each wave is modeled as a sequence of items generated

by simulating n independent draw from a distribution M of the number of items per order

constructed from empirical data, and assuming that the items of each order are uniformely

distributed within the wave (as in Hinojosa 1996 and Johnson 1998). Also, the first and last

items of each order within the wave are tagged14, for a reason that will soon become clear.

Note that in the waveless picking model of §3 induction capacity is only considered implicitly

through the dependence of transit times on the congestion upstream of the sorter. While

justified for the stationary steady-state associated with waveless release, that approach is

not appropriate to model transient wave-based release. This is because induction stations

are periodically faced then with the sudden release of large batches of orders, so that the

congestion generated by their capacity limitations does becomes material over short time

periods. The first station in our wave picking model thus represents the induction stations,

and it processes individual items from each incoming wave with a service time retrieved from

the actual dataset of flow information obtained from our partner. The second station is an

infinite server queue representing as before the incomplete chutes, however its service time

for each order is now given endogenously by the time between the completion of its first and

last items by the induction station (hence the tagging mentioned above). Finally, the third

station represents the packing queue and is identical to that described in §3.1.

In the simplest form of wave picking, each wave is released into the sorter just when the

last order of the previous one is packed. As in Bozer, Quiroz and Sharp (1988)) and Johnson

and Lofgren (1994) however, we consider the more general release policy whereby each wave

is released as a given percentage of the chutes in the sorter (denoted Ω ∈ (0, 100]) become
empty. This policy is easily simulated using the model defined above, and is referred to as

WΩ in the remainder of this paper. Note that the simple non-overlapping policy described

earlier corresponds to the particular case W100. Also, overlapping waves (Ω < 100) give rise

to the possibility of gridlock, which is still characterized by the event Y (τ)+Z(τ) > n, with

14 The waves do not include single item orders, which are packed through a separate process in
the warehouses of our industrial partner.
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Y (τ) and Z(τ) representing as before the number of orders in the second and third stations

at time τ , respectively. This leads us to define Ωβ as the wave overlapping parameter such

that the corresponding policy WΩβ achieves the same steady-state gridlock probability as

policy ADP β, i.e lim
τ→∞

P(Y (τ) + Z(τ) > n) = (1− α)β (see §3.3).

4.2 Split Sorter Policy As described in §1 and Ruben and Jacobs (1992), Russell and

Meller (2003) and Perkins (2008), this alternative policy involves the sequential release of

waves with a number of orders equal to half the number of chutes in the sorter, or n/2. The

sorter chutes are split in two halves (each dedicated to a separate wave), packers give priority

to completed orders in the oldest wave, and a new wave is released as soon as one of the two

halves becomes empty. The model we use to represent this policy is the same as described in

§4.1, except that the size of each wave is halved and the second station as well as the queue

of the third station are duplicated, creating a fork from the first station and a merge into the

servers of the third station. Each wave is assigned the second station duplicate which was

empty upon its release, and this assignment is implemented at the fork following the first

(induction) station. Finally, orders belonging to the oldest wave are given a higher priority

by packers. That is, packers may start working on orders from a more recent wave, but only

if no order from the previous wave is ready to be packed. In the remainder of this paper,

this policy is referred to as W/2.

5 Numerical Experiments

The goal of our simulation study is to estimate and understand the relative performance of

various order release control policies in the setting of our industrial partner’s warehouses. We

first review the policies considered and other experimental design issues in §5.1, then present

and discuss our results in §5.2. The Online Appendix also contains additional experiments

designed to assess the robustness of the waveless release policies considered with respect to

transient disruptions.

5.1 Experimental Design In addition to the waveless release policy ADP β derived in

§3 and the wave-based release policiesWΩ andW/2 defined in §4.1 and §4.2 respectively, we

also consider the following simple waveless release policies:

Policy CST β (constant release): Releases orders at the constant rate λCST ∈ [0, λ̄] cor-
responding to the best constant solution to (2). That rate is easily found by simulation-based
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search.

Policy CWP β (constant work in process): Releases orders at a rate given by the func-

tion

λCWP (x, y, z) =

½
λ̄
CWP if x+ y + z < k̄
0 otherwise

, (5)

where the parameters λ̄CWP ∈ [0, λ̄] and k̄ ∈ N are likewise determined by simulation-based
search so that the resulting policy is the best solution to (2) within the family of CONWIP

policies defined by (5). We consider CONWIP policies here because despite their simplicity,

they have been found to perform well in many environments (Spearman and Zazanis 1992).

The range of simulation scenarii we consider is characterized by three different values

for the number of packers w ∈ {p, 1.125p, 1.25p}, where p denotes the average number of
packers working in our industrial partner’s warehouse during a peak demand period, under

the staffing policies prevailing at the beginning of our interaction. We also consider two

risk values β̄ (high risk) and β (low risk), which correspond under our assumed discount

factor α = 0.97 to limiting gridlock probabilities of β̄(1 − α) ' 10−3 and β(1 − α) ' 10−6
(see §3.3). In practice the level of gridlock risk associated with β̄ is deemed unacceptably

high by our industrial partner, but we consider it here to perform an analysis of sensitivity

relative to the risk parameter. The main performance measure we investigate is the simulated

throughput γD ,E[
Pk−1

t=0 λ
D
t ]/k of each policyD ∈ {ADP β, CWP β, CST β,WΩ,W/2}, where

the notation λDt denotes the simulated release rate of policy D at time t and time index k

corresponds to 3.5 simulated days (graphical representations of system behavior suggest

that all policies have long reached steady-state by then)15. In order to enable a meaningful

assessment and preserve our partner’s confidential information, all throughput results are

provided as a ratio to the average throughput γHIST observed in our industrial partner’s

warehouse during a period with no breaks and p packers assigned to the sorter. Note that

for all policies the packing capacity w(E[C])−1 (or service rate of the third station described

in §3.1 and §4) constitutes an upper bound for the throughput rate, and that the packing

utilization is given by γD/ (w(E[C])−1). While policies ADP β, CWP β, CST β and WΩβ are

constructed so that their limiting gridlock probability is set by design to β(1− α), we also

report the estimated gridlock probability P(Gridlock) associated withWΩ for other values of Ω.

Finally, we also report the sorter utilization given by E[Y D
∞+ZD

∞]/n, where the numerator is
15 Note that γCST = λCST .
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Number of
Packers (w)

p 1.125p 1.25p

Chutes per
Packer (n/w)

55 48.8 44

ADP β [ADP β̄]
Throughput

Packing Utilization
Sorter Utilization

104.4 [104.4]
99.4 [99.4]
85.5 [88.2]

109.3 [109.5]
92.6 [92.8]
78.2 [79]

110.3 [110.4]
84.1 [84.1]
80 [81.2]

CWP β [CWP β̄]
Throughput

Packing Utilization
Sorter Utilization

104 [104.3]
99.0 [99.3]
80.4 [83.2]

105.3 [106.4]
89.2 [90.1]
77.1 [78.2]

105.8 [106.5]
80.6 [81.2]
77.1 [78.9]

CST β [CST β̄]
Throughput

Packing Utilization
Sorter Utilization

101.9 [103]
97.0 [98.0]
74.3 [74.5]

102.7 [104.6]
87.0 [88.7]
74.1 [74.3]

102.8 [104.7]
78.3 [79.8]
74.9 [75.2]

WΩβ [WΩβ̄ ]

Throughput
Packing Utilization
Sorter Utilization

Ωβ [Ωβ̄ ]

98.7 [101.5]
94.7 [97.2]
78.1 [80.7]
49 [46]

108.9 [109.9]
92.6 [93.5]
79.9 [80.9]
44 [37]

110.3 [110.6]
84.0 [84.6]
76.7 [76.8]]
31 [30]

W60

Throughput
Packing Utilization
Sorter Utilization
P(Gridlock)

89.9
86
70.7
0

95.3
81
69.9
0

100
76.5
69.3
0

W100

Throughput
Packing Utilization
Sorter Utilization
P(Gridlock)

66.2
63.3
52.1
0

71.3
60.6
52.3
0

75.9
52.5
52.6
0

W/2

Throughput
Packing Utilization
Sorter Utilization
P(Gridlock)

103.2
98.7
61.6
0

105.3
89.6
38.2
0

105.4
80.7
36.2
0

Table 1: Numerical Simulation Results. Notes: All numbers shown in the third and subsequent rows are
percentages. The length of the 95% confidence interval for all simulation results reported is smaller than 0.2% of the
corresponding estimate.

an estimate obtained from simulation for the average number of busy chutes in steady-state

under each policy D considered.

5.2 Results and Discussion Table 1 summarizes our steady-state simulation results.

We discuss here separately the results for the waveless policies (in §5.2.1) then the results

for the wave-based policies (in §5.2.2). A relative performance comparison between the two

types of policies based on these results is provided as part of our concluding remarks in §6.

We also refer the reader to the Online Appendix for a discussion of additional simulation

experiments conducted to assess the robustness of some of the policies considered with respect

to transient shocks and inacurrate input data.

5.2.1 Waveless Release Policies Table 1 shows that for the waveless policies D ∈
{ADP β, CWP β, CST β} considered, the effective packing capacity utilization γD/w(E[C])−1
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is quite high at 97% and above when the number of packers w is equal to p (and, a fortiori,

when w < p), then drops to 92.6% and below for w = 1.125p and even more drastically at

84.1% and below for w = 1.25p. We observe that three factors may conceptually constrain

throughput in this system: the maximum release rate λ̄, the packing capacity w(E[C])−1 and

the gridlock probability constraint. Because the maximum release rate is substantially higher

than the packing capacity, both in practice and in all simulation scenarios considered here,

only the last two are relevant. With a relatively low number of packers w ≤ p, packing is

effectively the system bottleneck as the throughput of all policies remains relatively close

then to the overall packing capacity. Because packing capacity is an upper bound on the

long-term average throughput of all policies independently of the gridlock risk β, this also

indicates that all three policies are near-optimal then, and that the gridlock probability

constraint results in very little throughput loss relative to the unconstrained problem. When

the number of packers increases (w > p) however, both their effective utilization and the

marginal gain in throughput from this additional packing capacity decrease under all policies

considered, so that the gridlock constraint becomes the system bottleneck.

A deeper interpretation of these results stems from Theorem 1 in Chao and Scott (2000),

which states that the stochastic processes representing the number of jobs in a set of G/M/w

queueing systems with constant service effort w(E[C])−1 increase with the number of servers

w for the stochastic ordering relationship. This implies in our setting that the fractiles of

the distribution of busy chutes Yt + Zt increase with the number of packers w when the

overall packing utilization is held constant, or equivalently that with more packers a lower

utilization is required to maintain any of these fractiles at a constant value (as the gridlock

probability constraint requires). Another relevant insight from queueing theory is that the

performance measures of highly congested queues are much more sensitive to a given change

in their capacity utilization than that of less congested queues. Consequently, when the

number of packers is low and packing utilization is high, even a small change in the release

rate significant impacts the fractiles of the distribution of busy chutes and the probability of

gridlock. Equivalently, a given increase in the tolerated probability of gridlock affords little

additional throughput then. Indeed, for every policy considered in Table 1 the additional

average throughput obtained by increasing the gridlock risk parameter from β to β̄ increases

with the number of packers w, and it is almost negligible for policies ADP β and CWP β in the
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high congestion scenario where w = p. This also explains why the throughput superiority

of ADP β relative to CWP β increases from 0.4% for w = p to 4.5% for w = 1.25p, and

that of CWP β relative to CST β increases from 2.1% to 3% as w increases from p to 1.25p

(similar results are observed with β = β). Indeed, the range of instantaneous release rates

that do not lead to a violation of the gridlock probability constraint is more limited when

w ≤ p and packing utilization is high. As a result, the greater structural ability of ADP

relative to CWP (resp. CWP relative to CST ) to dynamically adapt the release rate to

process conditions does not provide substantial benefits then. As seen in Figure 3 however,

when w = 1.25p policy ADP and to a slightly lesser extent CWP are more able to address

temporary stochastic increases of the number of busy chutes Yt + Zt above their operating

averages by reducing the instantaneous release rate accordingly, which results in a smaller

volatility of the process Yt+Zt, and ultimately maintains higher sorter and packing utilization

than CST , and therefore greater throughput, for the same level of risk.
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n

Figure 3: Two Standard Deviation Range of the Steady-State Number of Busy Chutes
E[Yt + Zt] ± 2σ[Yt + Zt] for Policies ADP β, CWP β and CST β with w = 1.25p Packers.
Note: Statistics are computed after 2 days of simulated time.

We also believe that the significant decrease of packing capacity utilization just beyond

the average number of packers p actually used by our industrial partner is not coincidental,

and in fact lends support to the validity of our results. The organizational structure used in

our partner’s warehouse defines a picking team and a packing team, with separate perfor-
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mance metrics. A key metric used for the packing team is the average worker productivity,

defined for a given period of time as the number of orders packed divided by the correspond-

ing number of man×hours used. This metric thus creates a local incentive to maximize
packing capacity utilization, which explains that the actual staffing level of packers coincides

with the point beyond which the marginal (throughput) return of additional packing capac-

ity starts to markedly decrease. However, we submit that the appropriate staffing level of

packers should be determined by weighing the labor cost incurred against the overall system

throughput it enables. In particular, during peak demand periods when the financial ben-

efits of additional throughput and short customer lead-times are particularly high, keeping

packing capacity heavily utilized may not be as important per se, and the current policy may

result in staffing less packers than is optimal, as surge packing capacity play an important

role in avoiding gridlock. In that respect, the results shown in Table 1 should enable a more

precise examination of this trade-off by our industrial partner, and a better understanding

of the impact of local staffing policies on system throughput.

Finally, the results shown in Table 1 suggest that, in the case where p packers are assigned

to the sorter, policies CST β, CWP β and ADP β may yield a throughput increase of 1.9% to

4.4% relative to the throughput γ observed in our industrial partner’s warehouse under com-

parable staffing conditions. It may be surprising at first that even policy CST β outperforms

the policy used in our partner’s warehouse. We point out however that despite its simplicity

CST β is still obtained through optimization (over the constant release rate λCST ), while the

release policy used by our partner at the beginning of our interaction was not fully formal-

ized and relied at least in part on the judgment of employees having sometimes little or no

experience with warehouse dynamics during peak demand periods. Unfortunately, similar

historical performance data was not readily available to us for numbers of staffed packers

that are different than p. However, assuming that the relative performance of CST β and our

partner’s historical policy would be maintained in such scenarii, we can speculate from Table

1 that policy ADP β (resp. CWP β) would only yield a very modest throughput improvement

with fewer packers than p, but an increase in throughput close to 8% (resp. 3%) with 25%

more packers than when w = p. In any case, our model predicts that the combined use of

policy ADP β and addition of 25% more packers than p would increase throughput relative

to the historical performance we have observed by about 10%.
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5.2.2 Wave-Based Release Policies System dynamics under the wave-based policies

WΩ and W/2 are qualitatively very different from that under the waveless policies discussed

in §5.2.1. As should be intuitively obvious from their definition in §4, these policies give

rise to a periodic or cyclical steady-state, with a period equal to the average time between

consecutive wave releases. To better interpret the results reported in Table 1, Figures 4

(a) to (d) show how the steady-state averages of the main system processes evolve within a

period for various wave-based policies of interest.
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Figure 4: Periodic Cycles of the Average Number of Incomplete Chutes E[Yt], Complete
Chutes E[Zt] and Busy Chutes E[Yt+Zt]±2σ[Yt+Zt] in Steady-State for SelectedWave-Based
Release Policies with w = 1.25p Packers. Notes: Statistics are computed between the first two consecutive
wave release times after 2 days of simulated time, except for W/2 for which dynamics following two wave releases are
shown.

The example of policy W100 illustrated by Figure 4 (a) is relevant because this simple
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form of wave release policy seems to be fairly common (see Armstrong, Cook and Saipe

1979, Meller 1997 and §1) and also because it is a useful starting point for understanding

the other wave-based release policies. Its periodic cycle corresponds by definition to the

completion of an entire wave of n orders (the number of sorter chutes), and is characterized

by three consecutive phases: (i) as the induction stations start to process the wave of orders

just released, the number of incomplete chutes Yt drastically increase. Its rate of increase

progressively slows down as the items inducted become more likely to belong to an order for

which a chute has already been opened. During this first phase, packers mostly idle, and the

transition to the second phase occurs at the peak of the number of incomplete chutes Yt over

the period; (ii) as the induction rate of "chute closers" (last inducted item in an order) starts

to exceed that of other items, the number of incomplete chutes Yt starts to decrease and the

number of completed orders ready to be packed starts to overwhelm the packing capacity,

hence the increase of Zt. The transition to the third phase occurs when no more incomplete

chutes remain, which coincides with the peak of the number of chutes waiting to be packed

Zt; (iii) all busy chutes are occupied by complete orders, which the packers work on until the

sorter becomes empty. Note that the dynamics simulated by our model for policy W100 are

thus very consistent with several empirical observations of its behavior found in the literature

(see §1). In particular, because packing activity is concentrated during the last two phases

described above, overall packing utilization is relatively low for this policy (less than 64% in

all scenarios reported in Table 1). Sorter utilization is also very low (less than 53%) since

waves are only released when the sorter is empty16. As a result, the throughput of this policy

is about 30% lower than that of some other policies tested, including some with no risk of

gridlock, and it is not significantly increased by the addition of packers.

The much better throughput performance of policies WΩβ and W60 seen in Table 1 may

be understood by noting from Figure 4 (a) that the peak of the number of busy chutes

Yt + Zt is very localized within the period of W100, and that the volatility of that process

around its mean is relatively small. This observation suggests that overall throughput may

be considerably increased with little additional risk of gridlock by processing in parallel two

or more waves which have been appropriately staggered. Specifically, by releasing another

wave late in the second phase (as WΩβ does) or in the third phase (as W60 does) shown in

16 Sorter utilization can be observed graphically in Figures 4 (a) to (d) as the ratio of the area
under the curve E[Yt + Zt] to the total plot area.
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Figure 4 (a), the increase of busy chutes corresponding to that second wave coincides with

the decrease of busy chutes corresponding to the first one, so that the total number of busy

chutes may still be kept below the gridlock threshold (in formal physics terms, gridlock occurs

when consecutive waves approach resonance). Also, packing capacity is better utilized then

because the second phase (W60) or third phase (WΩβ) associated with one wave effectively

overlaps with the first phase of the next one. Figures 4 (a), (b) and (c) thus illustrate the

evolution of system dynamics occurring when waves are increasingly made to overlap in this

manner, and the shorter periods seen in their x-axis show the corresponding improvement in

throughput (the number of orders released at the beginning of each period is equal to n for

all policies WΩ considered) — note also from these Figures that the average idling period of

packers within each cycle increases with Ω. More specifically, it is seen in Figure 4 (b) (resp.

(c)) that, consistent with the definition of W60 (resp. WΩβ), new waves are released under

that policy when 40% (resp. 1−Ωβ = 69%) of the chutes in the sorter are occupied. When

the relatively mild degree of overlap Ω = 60 is used, nearly all these chutes contain complete

orders from the previous wave. At the beginning of the period, packers work initially on

these chutes while new chutes are being opened by inducted items from the current wave,

explaining why the total number of busy chutes increases initially at a slower rate for as long

as packing work from the previous wave remains. With the more extensive wave overlap

corresponding to Ωβ = 31, induction stations are still processing items from the previous

wave upon the release of a new wave. As a result, among all the sorter chutes which are

occupied by orders from the previous wave then, approximately 45% contain incomplete

orders and only 24% contain complete orders. As a result, it takes some time on average

for the induction stations to start processing items from the new wave after it is released,

which explains why the number of busy chutes initially decreases at the beginning of the

cycle — note from Figure 4 (c) that any given wave only completes packing approximately

30 minutes after the subsequent one is released.

In addition, because the estimated gridlock probability forW60 reported in Table 1 is zero

across all scenarios, that policy illustrates the existence of a range for the overlap parameter

Ω where there is no trade-off between throughput performance and risk. However, policy

WΩβ and Figure 4 (c) show that the risk of gridlock does appear when the overlap parameter

Ω is further decreased — with p packers for example, it is estimated to be 10−6 at Ωβ = 49,
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and 10−3 at Ωβ̄ = 46. This follows from the resonance effect mentioned earlier combined

with the greater variability of the process Yt + Zt representing the number of busy chutes,

now generated as the sum of two or more random processes corresponding to different waves.

The numerical values of Ωβ and Ωβ̄ for w = p and a fortiori those for w = 1.25p (Ωβ = 31

and Ωβ̄ = 30) also suggest that, below a certain threshold for Ω, the gridlock probability is

extremely sensitive to that parameter.

Finally, the dynamics associated with the split sorter policy W/2 which are illustrated

by Figure 4 (d) are easily understood by noting that each half of the sorter processes then

non-overlapping waves of size n/2. However, waves assigned to different sorter halves do

overlap, creating dynamics for the overall number of incomplete, complete and busy chutes

which are qualitatively comparable to that observed under W60. However, the peaks of the

number of busy chutes underW/2 occur about twice as frequently, and only involve one half

of the sorter each time. As seen in Table 1, these smaller and more frequent releases result

in relatively high packing utilization (80.7% with 1.25p packers), and therefore a throughput

performance only slightly lower to that of WΩβ , which is particularly remarkable because

W/2, in contrast with WΩβ , does not involve any risk of gridlock and does not require the

determination of a critical policy parameter such as Ω. It must be pointed out however that

the reduction of wave sizes under policyW/2may negatively affect picking labor productivity

(see §1 and following discussion in §6).

6 Conclusion

We now discuss the progress presented in this paper towards the two research goals stated

in §1:

(Objective 1) Develop a quantitative model to generate operational control guidelines for

waveless picking during peak demand periods, with the goal of maximizing throughput while

keeping the likelihood of gridlock sufficiently low. We presented in §3 a queueing model of

our partner’s waveless operation which is adapted to the input data available in practice and

describes the most important process flow dynamics in that setting. This model seems to have

appropriate predictive accuracy (as established through a validation experiment described

in §3.2.2) and may be embedded in an optimization formulation for which an approximate

solution procedure can be used, as described in §3.3 and §3.4. This amounts to an operational

solution to the problem defined in the objective statement. From the standpoint of improving
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our partner’s waveless operation, our simulation results (in §5) suggest that its throughput

may be increased by several percentage points with that solution (ADP ), which is significant

in this particular context given the high demand seasonality, the high cost of surge capacity,

and the time-sensitivity of customers during peak season (e.g. Christmas). They also indicate

that packing was a bottleneck for our partner, presumably because of local staffing incentives

which ignored the system-wide importance of surge packing capacity for avoiding gridlock.

In addition, the benefits of using ADP relative to much simpler waveless release heuristics

such as CONWIP (CWP ) and constant release (CST ) increase substantially with more

packing capacity (see §5.2.1). In any case, a salient quantitative prediction from this study

is that an increase of staffed packers by 25% along with the implementation of the policy

ADP we derived could increase process throughput by as much as 10%.

(Objective 2) Leverage this model to conduct a rigorous performance comparison between

wave-based and waveless release policies in the context of our industrial partner’s warehouses.

Slight modifications of the waveless model described above allowed us to simulate and un-

derstand the performance of the most common wave-based release policies found in practice

(see §4 and §5.2.2). Because this wave release model relies on the same detailed input dataset

used to simulate waveless release policies, it enables a meaningful comparison between these

two different types of control. As is obvious from contrasting Figures 3 and 4, our results

illustrate that the qualitative behavior of the workload seen by the sorter and the packers

over time is strikingly different under wave-based and waveless policies. Specifically, wave-

based policies give rise to contrasted periodic cycles featuring high predictable variability,

while their waveless counterparts exhibit constant steady-state averages. From a throughput

standpoint, the results presented in Table 1 suggest that, when sufficient packing capacity is

available (e.g. w = 1.25p), the performance of our waveless policy ADP β is virtually iden-

tical to that of the best performing wave policy WΩβ considered, which is obtained through

a simulation-based search over the wave overlap parameter Ω so that both policies have the

same gridlock probability. The throughput superiority of ADP β over WΩβ increases when

packing capacity is more constrained however, because the extent to which waves can overlap

while still satisfying the gridlock probability constraint is reduced then, so that the relative

ability of WΩβ to utilize packers is diminished (see Figure 4 (a)-(c) and associated discussion

in §5.2.2). In addition, the comparison with the other wave-based policies considered (W100,
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W60, W/2) along the dimension of throughput is very favorable to ADP β regardless of pack-

ing capacity. In particular, the performance differential relative to the non-overlapping wave

policy W100 (more than 35% in all scenarios considered) is remarkable in light of that pol-

icy’s prevalence — the deterministic assurance of never experiencing gridlock has therefore an

enormous cost in terms of throughput when implemented through W100. It should be noted

however that these evaluations of throughput performance rely on a key assumption of our

wave-based release model, which is that a complete wave of picked items is always available

to be released into the sorter when required. That assumption is very salient with respect

to our performance comparison, because it implies that all wave-based policies considered

require considerably more buffer inventory and storage space upstream of the sorter (which

requires either storage conveyors or handling labor) than waveless policies, and therefore ex-

perience longer order cycle times. In addition, should that assumption not be always quite

satisfied in practice, the throughput performance of the wave-based release policies could be

much lower than predicted by our model.

More generally our quantitative results, which only focus on selected performance di-

mensions, inform a broader qualitative comparison between wave-based and waveless release

policies. To the extent that the model and procedure developed in §3 generate waveless re-

lease policies with an arbitrarily low probability of gridlock, our work reduces the relevance

of that performance dimension to the comparison at stake. Although we find that policies

ADP β and WΩβ yield the same throughput when many packers are available, in practice

very few facilities using wave-based release control seem to use an optimal value of the wave

overlap parameter. As a result, many of these warehouses could possibly increase their over-

all processing capacity through waveless picking. Beyond throughput, waveless policies seem

unquestionably superior along the dimensions of order cycle time, storage space and work-in-

process/buffer inventory (see above discussion). On the other hand, a significant advantage

of wave-based release policies which should not be underestimated in practice is their simplic-

ity and low implementation cost. The split-sorter policy W/2 is remarkable in that respect,

because it does not require the determination of any parameter or other preliminary com-

putation, yet performs relatively well in terms of throughput across all scenarios considered

(which is unsuprising given it has been designed to achieve a high packing utilization, see §1).

In terms of software implementation, many vendors offer so-called warehouse management
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systems (WMS) or warehouse control systems (WCS), which among other functionalities

facilitate the management of wave-based release policies. In contrast, software solutions

supporting waveless picking are not yet as widely available, and seem to be occasionally de-

veloped internally. Finally, a critical performance dimension that our model leaves aside is

picking labor, which account for a significant fraction of many warehouses’ operating costs.

While a detailed quantitative study of this issue seems a particularly good opportunity for

future research, it lies beyond the scope of this paper because any model used for such study

would need to capture many more operational details than the one developed in §3, such as

storage policies and the layout of the order picking area. We point out however that waveless

picking does seem a priori to have very strong advantages in that regard. Specifically and

as discussed in §1, under waveless picking no picker is ever starved for work at the end of

a wave and, relative to facilities allowing picking waves to overlap, waveless picking does

not require a pre-sorting operation for separating items belonging to different waves before

induction.

In closing, we observe that given order cycle times are becoming increasingly important

competitive factors and the costs of technologies and tools required by waveless policies seem

likely to continue decreasing in the future, waveless picking appears worthy of serious consid-

eration for any warehouse with an automated sorter, particularly for any new construction

project which does not involve switching costs and resistance to change. Our work may also

have short-term implications for existing warehouses using a non-overlapping wave release

policy similar toW100. Specifically, facilities among these where the layout of the order pick-

ing area, the number of skus and the number of sorter lanes n are such that using waves of

size n/2 would not significantly reduce picking labor productivity should consider switching

to a split sorter policy W/2. Also, facilities with less margin in terms of wave size should

consider overlapping waves, as our results suggest the existence of a fairly large range of val-

ues for the wave overlap parameter which entail no risk of gridlock. These recommendations

are clearly tentative however, because they are only supported by a study of a few specific

warehouses belonging to a single firm.
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A.1. Warehouse Outbound Process Description

The warehouses which we focused on with our partner have an automated sorter with stan-

dard tray-tilting technology and a physical layout similar in key aspects to those described in

the papers discussed in section §2 of the paper. We focus here on the outbound process which

includes picking, sorting and packing, and leave aside the inbound operation of receiving and

stowing. Figure A.1 provides a schematic layout representation.

pick zones

circulating
buffer

packers labeling
shipping

conveyor system sorter

de-tote

pickers

merge

chutes

order
release
control

tilting
trays

item
release
control

Figure A.1: Flow Diagram of the Pick-to-Ship Process Considered

Since our partner is an online retailer shipping directly to customers from its warehouses,
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a first noteworthy feature is the use of split-case picking and sorting, as in Johnson and

Meller (2002). Also, the very large selection of items offered by our partner (a marketing

advantage often leveraged by online retailers, who are not limited by the page and shelf space

restrictions of mail order catalogs and physical stores, respectively) results in a relatively large

picking area and long item travel times to the sorter. As in many other large warehouses,

the picking area is subdivided into several zones, each having its dedicated team of workers

(pickers). Pickers have portable digital 2-way wireless communication devices with a bar

code scanner and an LCD screen showing the nature and location of items to be picked.

Picking an item involves scanning its bar-code and placing it into one of several plastic

containers (totes) carried by an individual rolling cart. Totes are offloaded when full onto a

conveyor belt spreading through their pick zone, which relieves the pickers from unloading

travel, as described in Owyong and Yih (2006). Conveyor belts carrying totes coming out

of all the pick zones lead after a merge point to an accumulation buffer where selected totes

may be temporarily held for the purpose of reducing the accumulation time of orders in

sorter chutes (chute-dwell time), or time between the arrivals of the first and last item of

each order in a chute. In our partner’s warehouses, this accumulation conveyor upstream

of the induction stations and the recirculating conveyor of tilting trays in the sorter is itself

a recirculating loop (hereafter denoted recirculating buffer), as in Le-Duc and de Koster

(2005). The induction (de-tote) stations have automated coordinated induction belts and

were designed using realistic throughput models of the type described in Johnson and Meller

(2002), resulting in relatively high capacity and low labor costs. In this setting, packers thus

constitute the other large labor category of the outbound process besides pickers. They are

tasked with putting the items from any completed chute into a cardboard box of appropriate

size and place it onto a conveyor leading to automated stuffing and labeling stations. Their

work is guided by a light system signaling every chute as complete (green), incomplete

(orange), or unassigned (no light). Finally, we point out that our partner’s warehouses use

a sophisticated data collection system involving bar-code scanners carried by pickers and

packers and also placed in many locations in the conveyor system, induction stations and

sorter chutes. This system generates a database of detailed flow timing information for

individual orders which provided many insights about the actual behavior of this process, as

discussed in the next section.
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A.2. Flow Data Analysis.

The database of order flow event timing mentioned in the previous section enabled a quan-

titative analysis of order flows in our partner’s warehouses, and ultimately provided us with

the distributional input data required by the quantitative models defined in sections §3.1

and §4 of the paper. A first quantity of interest that we analyzed is the empirical distrib-

ution of transit time, or time necessary for a given item to travel from the pick zone where

it is collected to its assigned chute in the sorter. As an illustration, Figure A.2 shows the

empirical p.d.f. of transit times for items picked from a given picking zone over a 24 hour

period during the peak of the 2003 season, which constitutes a representative example of the

many other such distributions we have constructed.
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Figure A.2: Empirical Density of Transit Times from the Same Picking Zone Over 24 Hours

Note that the relative time units used for the x-axis in Figure A.2 to disguise our partner’s

confidential data show a variation from 1 to 12 of the item transit times over that period,

which was typical across all picking zones over that time period. Another typical feature

is that the distribution shown in Figure A.2 is multi-modal, suggesting that it results from

the superposition of several heterogeneous system behavior modes. We hypothesized that
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these behavioral modes were primarily driven by conveyor congestion, and that the overall

behavior or the pick-to-ship process could be characterized fairly accurately using a limited

number of congestion levels, each corresponding to a range of values for the total number

of items on the conveyor system between the picking area and the sorter. To verify that

hypothesis, we constructed and plotted the data series representing the number of items on

the entire conveyor system over time during the same 24h period, and we defined a limited

number of congestion levels based on the amount of data available (indexed in the following

as g ∈ {1, ..., ḡ}). Figure A.3 illustrates this process on a dataset which led us to define 7
congestion levels.
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Figure A.3: Number of Items on Conveyor System Over 24 Hours

The next step was to construct the empirical item transit time distributions for each

picking zone again, but this time for each congestion level separately. That is, instead of

considering all the items picked from a given picking zone over 24 hours as before, we only

considered the items that were picked from that picking zone during the times when the

system was in a given congestion level. Figure A.4 shows two such transit time distributions

for the same conveyor zone as Figure A.2, and corresponding to congestion levels g = 2 and

6 respectively. They also show the Gumbel (or CMT1) distributions with the same first two

moments as the empirical distributions just defined.
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These figures illustrate the following features, which we found typical of all other picking

zones and congestion levels:

• These empirical transit time distributions seem (mostly) unimodal, seemingly validating

at a qualitative level the hypothesis formulated earlier that the heterogeneous behaviors

of transit times when observed over long periods of time can be satisfactorily explained

by the variations of the system congestion level. Observe that the modes of the distrib-

utions represented in Figures A.4 (a) and (b) correspond exactly to the peaks observed

on the distribution represented in Figure A.2 around the relative time values 2 and 4.5

respectively.

• The empirical transit time distributions seem to be very well fitted by CMT1 distribu-

tions. This is remarkable as the CMT1 distributions are typically only introduced because

of their mathematical properties (as is the case in section §A.6 of this Online Appendix),

and not their modeling potential. However, it has already been observed (Gallien and

Wein 2001) that CMT1 distributions are suitable for modeling transportation times, as

their sharp left tail represents typical physical limitations of the transportation means (in

the present setting, the conveyor belt speed), while their heavier right tail accounts for all

the potential problems encountered along the way (here, congestion at the merge points

and delays at the circulation buffer for example).
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Besides its predictive validity, the notion of congestion levels just defined also generated

interesting new insights about the behavior of the pick-to-ship process, as shown by examin-

ing the dependence of the empirical time-to-chute and chute-dwell time distributions defined

in section §3.1 of the paper on the congestion levels g ∈ {1, ..., ḡ}. As illustrated by Figure
A.5 (a representative example constructed with 5 congestion levels), the mean time-to-chute

E[A(g)] follows an unsurprising overall increasing trend with g, however the mean chute-dwell

time E[B(g)] exhibits a noticeable drop at an intermediary congestion level, and increases

beyond that. Our industrial partner and we believe this phenomenon, which we consistently
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Figure A.5: Variation of Expected Time-to-Chute E[A(g)] and Chute-Dwell Time E[B(g)]
with Congestion Level g

observed on several disjoint data sets and with various congestion level definitions, to be

explained by the circulating buffer (see §A.1). Specifically, this buffer includes an active tote

release logic allowing to dynamically delay the arrival of selected totes to the sorter, with

the goal of reducing chute-dwell time for the orders containing items in those totes. The

tote delaying logic implemented (which we are not at liberty to describe in more details)

does not have any impact for low congestion levels (such as 1 and 2 on Figure A.5 (b)).

For medium to high congestion levels (3 and 4 on Figure A.5 (b)) however, the circulating

buffer performs its function adequately and the active control logic implemented results in a

significant reduction of the average order chute-dwell time. This buffer does have a limited
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capacity however, so that when congestion increases further (to 5 on Figure A.5 (b)), it be-

comes full and, in order to preserve throughput, loses then its ability to increase the sojourn

time of selected totes (think of Little’s law). The role played by this buffer also explains the

slight drop of E[A(g)] observed in Figure A.5 (a) at congestion level 4, although this is not

nearly as significant. In summary, this data analysis uncovered the existence of a non-trivial

nominal operating regime (congestion level 4 in Figure A.5) resulting from the design of this

process, further motivating the development of order release control policies able to stabilize

the process around it (see section §3.5 in the paper).

A.3. Statement and Discussion of Search Algorithm.

We now describe the search algorithm that we implemented in order to compute approxi-

mations of the multiplier θ and policy λθ solving both UDP [θ] and CDP [β], as described

in section §3.4 of the paper:

Algorithm SEARCH[�] input: Input data for problem CDP [β], numbers θ, θ̄ ≥ 0

such that θ ≤ θ∗ ≤ θ̄ with θ∗ defined as in Lemma 1 in the paper.

output: A number θ and policy λθ that is near optimal for CDP [β].

1. Set k = 1, θk = θ, θ
k
= θ̄;

2. Set θk = θk+θ
k

2
; compute an optimal solution λθk to UDP [θk], and cθ

k
(x, y, z);

3. If cθ
k
(x, y, z) > β set θk+1 = θk and θ

k+1
= θ

k
; otherwise set θk+1 = θk and

θ
k+1

= θk;

4. If (θ
k+1−θk+1) < �, stop, set θf = θ

k+1
, compute an optimal solution λf to UDP [θf ],

and return (θf ,λf); otherwise set k = k + 1 and go to step 2.

We initialized that algorithm by setting θ to 0 and θ̄ to the first value of a geometric

sequence (θk)k∈N such that cθ
k
(x, y, z) > β. Note that, as described in the paper, we only

compute approximate solutions to the unconstrained DPs UDP [θk] stated in the algorithm

definition. While we were not able to develop a theoretical characterization of the conver-

gence properties of SEARCH[�], the following Lemma provides an a posteriori bound for the

suboptimality of any policy to which it converges:

Lemma 1 Let (x, y, z) be the initial system state, let (λ, θ) be the output of algorithm
SEARCH[�], and let λ∗ an optimal policy for CDP [β]. Then cλ(x, y, z) ≤ β, i.e. λ is
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feasible for CDP [β], and

rλ∗(x, y, z)− θ(β − cλ(x, y, z)) ≤ rλ(x, y, z) ≤ rλ∗(x, y, z). (A.1)

Proof: Let (θ∗, λ∗) be as defined in the statement of Lemma 2 in the paper, and let

(θ, λ) be the algorithm output. Because θ > θ∗, from Lemma 3 in the paper we have

rλ(x, y, z) ≤ rλ∗(x, y, z) and cλ(x, y, z) ≤ cλ∗(x, y, z) = β, hence λ is feasible. Furthermore,

since the policy λ∗ is suboptimal for UDP [θ],

rλ∗(x, y, z)− θ.cλ∗(x, y, z) ≤ rλ(x, y, z)− θ.cλ(x, y, z).

Substitution yields (A.1), completing the proof.

The intuitive interpretation for the suboptimality gap θ(β−cλ(x, y, z)) appearing in (A.1)
is that suboptimality increases when the final policy λ does not use all the allowed risk

provided by the model formulation, and this effect is all the more sensitive as the penalty for

violating the constraint is high. That gap however can indeed only be evaluated a posteriori,

since neither the final value of θ nor the difference β− cλ(x, y, z) are known in advance. The

missing link in this characterization of convergence properties is a relationship showing that

(and how) θ(β − cλ(x, y, z)) decreases as � goes to zero, which we have unfortunately not

been able to establish theoretically. In practice however, the final value of θ(β − cλ(x, y, z))

obtained for our choice of � was always less than 2% (and in most cases, less than 1%)

of rλ∗(x, y, z). This is not surprising because from Lemma 1 in the paper, there exists an

optimal policy for CDP [β] which only randomizes between two actions in one state; given the

very high number of states, randomization in a single one has little impact, and deterministic

policies can match the desired risk value for all practical purposes.

A.4. Description of Approximate DP Algorithm.

We now describe the algorithm that we have implemented in order to solve approximately

each instance of the dynamic program UDP [θ] described in section §3.4 of the paper and

the previous section of this Appendix3; additional background on the corresponding approx-

imate dynamic programming methods and concepts may be found in Bertsekas and Tsit-

3 For notational simplicity, we omit any dependence on θ of the functions and variables mentioned
in this subsection.
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siklis (1996). Our first approximation consists of discretizing the state and control spaces.

Specifically, we consider increasing finite sequences x̂ = {x̂i}mi=0, ŷ = {ŷj}mj=0, ẑ = {ẑk}mk=0,
λ̂ = {λ̂i}ci=0 and the projection P : N3 → x̂× ŷ× ẑ defined such that P(x, y, z) minimizes
within x̂× ŷ× ẑ the rectangular distance to state (x, y, z) ∈ N3. The control space λ̂ is
obtained by a regular discretization λ̂i , iλ̄/c, but our state space discretization is denser

around the states that are more likely to be visited often. That is, x̂, ŷ and ẑ are constructed

such that the simulated steady state occupancy measure P(P−1(x̂i, ŷj, ẑk)) under the best
constant solution to the optimization problem CDP [β] defined in the paper is approximately

constant over (i, j, k), subject to a maximum value constraint for the discretization step sizes

x̂i+1 − x̂i, ŷj+1 − ŷj and ẑk+1 − ẑk.

Secondly, we implement a policy iteration algorithm relying on an approximate Robbins-

Monro stochastic approximation scheme for the evaluation step, andMonte-Carlo simulations

for the improvement step. Starting with a policy λq : x̂× ŷ× ẑ→ λ̂ and initial value function

estimates j0q , r
0
q and c

0
q defined over x̂× ŷ× ẑ, the evaluation step implements the recursion⎧⎨⎩ rs+1q (x̂, ŷ, ẑ) = (1− γs)r

s
q(x̂, ŷ, ẑ) + γs

£
λq(x̂, ŷ, ẑ) + α.rsq(P(x0, y0, z0))

¤
cs+1q (x̂, ŷ, ẑ) = (1− γs)c

s
q(x̂, ŷ, ẑ) + γs

£
1{ŷ+ẑ>n} + α.csq(P(x0, y0, z0))

¤
js+1q (x̂, ŷ, ẑ) = rs+1q (x̂, ŷ, ẑ)− θ.cs+1q (x̂, ŷ, ẑ),

(A.2)

for all (x̂, ŷ, ẑ) ∈ x̂× ŷ× ẑ, where γs , a
b+s

is a diminishing step function (a and b are

constant), and (x0, y0, z0) denote a simulated realization under system (4) in the paper of

variables (Xt+1, Yt+1, Zt+1) given (Xt, Yt, Zt) = (x̂, ŷ, ẑ) and λt = λq(x̂, ŷ, ẑ). Termination for

recursion (A.2) is triggered by either s+ 1 = neval or

sup
(x̂,ŷ,ẑ)

|js+1(x̂, ŷ, ẑ)− js(x̂, ŷ, ẑ)| ≤ �1,

where neval is a specified maximum number of policy evaluation steps and �1 > 0 is a specificed

accuracy parameter. At that point, js+1q is considered an estimate for the value function jq

of policy λq. The ensuing policy improvement step consists of computing

λq+1(x̂, ŷ, ẑ) = argmax
λ∈λ̂

Ã
λ− θ.1{ŷ+ẑ>n} + α

1

nmc

nmcX
ω=1

jq(P(x0ω, y0ω, z0ω))
!

(A.3)

for all (x̂, ŷ, ẑ) ∈ x̂× ŷ× ẑ, where (x0ω, y0ω, z0ω)uω=1 are nmc simulated realizations under system
(4) in the paper of variables (Xt+1, Yt+1, Zt+1) given (Xt, Yt, Zt) = (x̂, ŷ, ẑ) and λt = λ. The

evaluation step (A.2) applied to policy λq+1 provides then an estimate for its value function

9



jq+1. At that point the main recursion loop just described is repeated (and the algorithm

proceeds to another policy improvement step), unless q + 1 = nimprov or

sup
(x̂,ŷ,ẑ)

|jq+1(x̂, ŷ, ẑ)− jq(x̂, ŷ, ẑ)| ≤ �2, (A.4)

where nimprov is a specified maximum number of policy improvement steps and �2 > 0 is a

specificed accuracy parameter.

The computational time of the algorithm just described is primarily driven by the number

of simulations of system (4) in the paper that it performs, which is bounded from above by

nimprov.m
3(cnmc + neval).

In our numerical experiments, we have found that with about 22, 000 states (m3) and 100

control values (c), the maximum number of improvement steps nimprov, evaluation steps neval

and Monte-Carlo estimations nmc could be chosen so that the final value of the l.h.s of

(A.4), also known as the Bellman error, was no larger than 2% of the average value function

upon algorithm termination. This required a computational time of about 30 minutes on

a modern computer. Longer computations did lower the Bellman error further, but we

observed that the resulting policy remained almost identical beyond that point. Finally,

when implementing the dichotomic search over the multiplier θ described in section §3.4 of

the paper and §A.3, we found that after solving 8 to 10 instances of UDP [θ] (or about 4 to 5

hours of computations) our suboptimality bound for the resulting policy relative to problem

CDP [β] was always below 2% (see Lemma 1).

A.5. Transient Robustness Experiments.

The goal of the set of simulation experiments reported here is to assess the robustness of the

waveless picking policies considered in the paper relative to temporary mispecifications of

the input data under which they are derived (see section §5 in the paper for a definition of

notations and background on our simulation experiments). Such mispecifications may arise

in practice as the result of undetected changes in process conditions, so that given the diffi-

culty of monitoring such a large operation this issue is important to our industrial partner.

Attempting to reproduce the actual process disruptions that we had most often heard about

in various conversations with warehouse managers, we thus designed three transient simu-
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No Experiment
Disruption 1 2 3

PADP (gridlock) less than 10−4 2.6 0.5 17

PCWPβ

(gridlock) less than 10−4 49 39 6

PCSTβ (gridlock) less than 10−4 5.7 47 4
PCWPγ

(gridlock) 7.6 100 68 42
PCSTγ (gridlock) 39 54 94 81

Table A.1: Gridlock Probabilities During Transient Simulation Experiments

lation experiments. All these simulated disruptions were initiated from steady-state (or 5

days of simulation under normal conditions) and with a number of packers equal to p, unless

mentioned otherwise. We mostly considered the simulated response of the policies ADP ,

CWP and CST obtained for a risk level β = β assuming w = p packers. For reasons that

will soon be clear, the last two will be thereafter denoted by CWP β and CST β. Because

both initial risk and throughput performances seem to provide an appropriate comparison

basis, we also considered the policies CWP and CST obtained for w = p and risk levels

resulting in the same throughput for these policies as the throughput γADP of the policy

ADP obtained with (w, β) = (p, β). These are noted here CWP γ and CST γ. The main

performance metric that we monitored in these experiments is the proportion of simulation

replications where the gridlock event Yt + Zt > n did occur during the 2 simulated days

following the start of the disruption, noted here PD(gridlock) where D is any of the poli-

cies {ADP,CWP β, CST β, CWP γ, CST γ}. Table A.1 contains a summary of our results4,
which we discuss in the remainder of this section after a more detailed description of each

experiment.

A.5.1. Experiment 1: Conveyor Speed-Up Our first experiment consists of tem-

porarily decreasing all time-to-chute (first station service times) by 20% during 6 hours. This

design was motivated by the possibility in the actual system that the speed of one or several

conveyor belts would increase above its normal value, or that the merge priority of a loaded

conveyor belt relative to others would become temporarily high, triggering a faster release of

items onto the sorter. Because some of these items would be chute openers (first items of an

order), this can result in a sharp increase of the number of busy chutes, potentially leading

4 Table A.1 notes: All results are shown as percentages, and have a standard estimation error
from simulation lower than 0.5%.
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to gridlock.

Figure A.6: Evolution of the Average Fraction of Busy Chutes Yt+Zt
n

during Experiment 1

Figure A.6 represents the evolution over time of the fraction of busy chutes (averaged

across replications) for all three policies considered, while Figure A.7 represents an average

of their release rates over the same time period. Observe first (from the period prior to the

disruption shown in Figure A.6) that while by design all policies have the same risk, ADP

operates much closer to gridlock than CWP β and CST β do. The initial average proportion

of busy chutes seen there for ADP is around 85%, while CWP β is around 81% and CST β

around 75%.

When the disruption occurs, the proportion of busy chutes suddenly increases by about

6% for ADP , 10% for CST β and more than 12% for CWP β. The upper bound of the

two standard deviations simulated range for busy chutes goes close to 100% during the

experiment for all three policies.

Policy ADP responds to that disruption by quickly decreasing its release rate for a short

period of time, which stabilizes within two hours the number of busy chutes to a higher

value than normal, but relatively safe nonetheless. The system thus spends little time close

12



Figure A.7: Evolution of the Average Relative Release Rate E[λt]

λ̄
during Experiment 1

to gridlock, which it only experienced in 2.6% of all simulated replications (see Table A.1). As

the disruption ends, the second queue is suddenly starved, whichADP sees as an opportunity

to release more orders (as seen in Figure A.7), before quickly returning the system to its

original steady-state.

The transient disruption considered involves an increase of the transition rate of orders

between the first and second queues. As result, it creates a simultaneous decrease of the

number Xt in the first queue and an increase of the number Yt in the second, which leaves

the total number in system Xt + Yt + Zt relatively unaffected. Consequently, the response

to that disruption by policy CWP β is very muted (if observable at all), as seen in Figure

A.7. Because CWP β adjusts its release rate dynamically to keep Xt+ Yt+Zt at a constant

value, but at the same time the sejourn time of orders in the first queue has decreased, the

steady state to which the system converges following the immediate transient response to

the disruption is one where the number of busy chutes Yt+Zt is maintained at a higher value

than before (see Figure A.6). For this reason, CWP is the most dangerous policy in that

experiment (under CWP β the system entered gridlock in 49% of replications, under CWP γ

in all of them). Likewise, the release rate of CST β remains (by definition) exactly identical

13



throughout the disruption. The initial transient system response under CST β is thus similar

to that under CWP β, because for different reasons both policies ignore the initial decrease

of Xt and increase of Yt. However, under CST β the transition rate between the first and

second queue starts converging back to the external release rate after an hour or so, causing

the number of busy chutes to start decreasing towards its prior steady-state value. For that

reason policy CST β fares much better in that experiment than CWP β despite its simplicity,

only running the system into gridlock in 5.7% of replications (54% for CST γ, see Table A.1).

A.5.2. Experiment 2: Pick Zone Shutdown Our second experiment consists of

temporarily increasing all chute-dwell times (second station service times) by 50% during

one hour of simulated time. Is is motivated by the possibility that the incoming flow to

the sorter of items originating from a specific pick zone may be temporarily reduced or

halted in the actual system — according to our personal communications with managers

at our industrial partner, this could be caused for example by a worker omitting to close

the pass-through gate of a conveyor belt carrying items from that zone, or an unscheduled

interruption of work by pickers in that specific area of the warehouse. As a result, many

chutes may remain incomplete until the flow gets back to normal, and the overall throughput

of the second queue would decrease. The number of busy chutes would therefore increase,

potentially leading to gridlock.

The response of the system to that disruption is best understood by first considering

policy CST , because under that policy the input rate to the second queue remains unchanged

throughout, so that the evolution of busy chutes over time shown in Figure A.8 is entirely

explained by changes in the output rate of the third (packing) queue. Specifically, when the

disruption begins the input rate to that queue is suddenly reduced as the service time of all

orders in the second queue increases. After a short lag during which packers maintain the

overall output by exhausting the queue of orders at the third station, packers are progressively

starved and the number of busy chutes therefore quickly increases. As the second queue starts

to return towards an equilibrium with a higher number of chutes and its output rate starts

to increase back to its original value, packer utilization starts to increase again and the rate

at which the number of busy chutes increases starts to drop (this is noticeable in the last

third of the disruption period in Figure A.8). Finally, the convergence of the system back to
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Figure A.8: Evolution of the Average Fraction of Busy Chutes Yt+Zt
n

during Experiment 2

steady-state is particularly slow under CST , and so is therefore the decrease of the number

of busy chutes after the end of the disruption. As a result, the system lingers for a long time

in an operating regime that is dangerously close to gridlock (see upper bound of simulated

range in Figure A.8), and CST performs worst overall in that experiment among all policies

considered (as seen in Table A.1 CST β experienced gridlock in 47.1% of replications, CST γ

in 94%).

As seen in Figure A.9 policy CWP does respond to that disruption by sharply decreasing

its release rate, however the initial system response under that policy is similar to that under

CST (see Figure A.8). This is because CWP ’s response comes after a lag of about a quarter

of the disruption period. We believe that lag to result from several factors; the first is that

the initial queue of orders in the (third) packing station is larger than that of CST by about

40%, as the values of E[Z∞]
n

corresponding to CST and CWP obtained through simulation

for w = p (9.8% and 13.9% respectively) indicate. Depleting that larger queue of work thus

allows packers under CWP to slightly postpone starvation relative to CST (as well as the

corresponding decrease of packing rate and increase of busy chutes), as described above.

Secondly, because CST is only sensitive to changes in the total number of orders in process
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Figure A.9: Evolution of the Average Relative Release Rate E[λt]

λ̄
during Experiment 2

Xt+Yt+Zt, its response is both delayed and muted by the fact that the disruption considered

initially changes the number of incomplete chutes Yt and number of complete chutes Zt with

opposite rates at first, so that their sum remains initially constant. Finally, as all other

release control policies in this system CWP may only affect the number of busy chutes after

a lag corresponding to the service time in the first station. Overall, CWP only achieves to

stop the increase in busy chutes after about two thirds of the disruption period; by then the

upper bound of the simulated range for Yt + Zt is well above the gridlock level, explaining

that the overall performance of CWP in that experiment is only marginally better than

that of CST (as seen in Table A.1 CWP β entered gridlock in 39% of replications, CWP γ

in 68%).

As seen in Figure A.9, the response by policy ADP to that disruption is qualitatively

similar to that of CWP , howeverADP responds sooner and with a more drastically reduction

of its release rate. This is because ADP is sensitive to the individual value of the number of

incomplete chutes Yt, which immediately starts to increase when the disruption begins. Since

the initial queue at the third station is longer under ADP (in simulations E[Z∞]
n

= 19.2% for

w = p), so is the initial period until the depletion of that queue during which dZt
dt
≈ −dYt

dt
and
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the number of busy chutes remains approximately constant. These features enable policy

ADP to overcome the control lag introduced by the service time at the first station (time-to-

chute): Figure A.8 shows that the average number of busy chutes under that policy actually

decreases after the initial period just described, before the increase in release rate starting

around the middle of the disruption period causes it to increase back to about its original

value by the end. Because the variability of the number of busy chutes is increased by that

disruption, the upper bound of the simulated range for Yt + Zt actually increases during

the disruption period, and the system under policy ADP did experience gridlock in 0.5% of

replications (see Table A.1). That performance is nevertheless substantially better than that

of all other policies considered. Also noteworthy is the behavior of ADP after the disruption

ends. As Figure A.8 shows, as the disruption ends and the chute-dwell time (service time

of the second station) suddenly increases back to its original value, the average number of

busy chutes under both CWP and ADP starts to quickly decreases, whereas that reduction

and the return to steady-state are considerably slower under CST . However, Figure A.9

shows that, in contrast to CWP , policy ADP is able to exploit that temporary reduction of

the number of busy chutes by temporarily increasing its release rate above its original value,

that is push more flow into the system (all while maintaining it in a much safer operating

regime, as evidenced by Table A.1).

A.5.3. Experiment 3: Downstream Choke Our last transient experiment consists of

temporarily reducing the number of staffed packers by 50% for 10 minutes of simulated time.

It is motivated by the possibility in the real system that the operations downstream of the

sorter (labelling and shipping) may also experience some disruptions, leading to a limitation

of the sorter output due to congestion propagating backwards. This experimental design

also constitutes a plausible representation of other types of real system disruptions such as

unscheduled breaks by the packers, or a stockout of the empty cardboard boxes available to

them. Because this event affects the last queue which is farthest from the admission control

point, and because in the scenario considered prior to the disruption (w = p) packing already

constitutes a bottleneck (see section §5 in the paper), that disruption turns out to be quite

severe.

Indeed, Figure A.10 shows that under all policies considered the average number of busy
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Figure A.10: Evolution of the Average Fraction of Busy Chutes Yt+Zt
n

during Experiment 3

chutes suddenly and drastically increases as soon as the disruption starts, even though poli-

cies CWP β and ADP decrease their respective release rates right away. This is because the

control lag introduced by the first station service time is of the same order of magnitude as

the disruption period length. As a result, the input rate to the second queue is unchanged

for most of the disruption period, while the transient shock considered consists of a sudden

reduction of the packing rate (rate of output from the third queue). The policies considered

can therefore do little to prevent the increase in busy chutes resulting from the differen-

tial between these rates during the disruption period. For this reason, we suggest that the

empirical gridlock probabilities for policies ADP , CWP β and CST β reported in Table A.1

(17%, 6% and 4% respectively) reflect more the differences between initial (steady-state)

average numbers of busy chutes for these policies before the disruption begins (85.5%, 80.4%

and 74.3% respectively, as seen in Table 1 of the paper) than any intrisic differences in how

these policies are able to mitigate the disruption. In fact, the average number of busy chutes

under ADP , CWP β and CST β is seen on Figure A.10 to increase over the disruption period

by approximately 9.5% of the total number n available, regardless of the policy considered.
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Figure A.11: Evolution of the Average Relative Release Rate E[λt]

λ̄
during Experiment 3

From that perspective, the comparison with the policies CWP γ and CST γ having the same

initial throughput as ADP that is suggested by Table A.1 may be a more grounded one in

this setting, and is also favorable to ADP (the system entered gridlock in 42% of replications

under CWP γ, in 81% under CST γ).

A.6. Item Release Control Study

The sorter capacity depends in part on the number of chutes, the number of staffed packers,

and the average chute-dwell time E[B]; the chute-dwell time of each order depends in turn

on the number m of items in that order, and the transit time Ti necessary for each item

i ∈ {1, ...,m} it contains to travel from the pick zone where it is collected to its assigned

chute in the sorter. Figure A.12, which displays the timeline of a single customer order with

4 items going through this process, illustrates all the quantities just defined.

An important process feature is that the transit times just defined are highly variable

(hence their notation Ti suggesting their modeling as random variables), as they are affected

in practice by many factors including: (i) conveyor belt distances between each pickzone and

the sorter; (ii) tote congestion encountered on the conveyor system; (iii) time spent on the
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Figure A.12: Timeline of Customer Order through the Pick-to-Ship Process

circulating buffer; (iv) conveyor system breakdowns; etc. For examples of empirical transit

time distributions constructed from historical order flow data in our partner’s warehouse, see

§A.2. A key observation however is that some of the variability affecting the transit times

of items belonging to the same order, for example that resulting from factor (i) above, may

be predictable upfront. For instance, consider a customer order for two items (i, j) stored in

locations that are very far apart from each other in the warehouse, one being in particular

much closer to the sorter than the other, so that E[Ti]¿ E[Tj]. In this case, it would seem

sensible to try and delay the picking of item i at the outset by some delay ci, so that the

two items arrive to the sorter close together and tie up as little chute capacity as possible;

one could for example set ci = E[Tj] − E[Ti] so that E[Ti + ci] = E[Tj]. More generally,

the problem of item release control consists of setting appropriate postponement lead-times

ci ≥ 0 to delay the picking of each item i of an order, with the goal of reducing its chute-dwell

time (see Figure A.12 for an illustration). In the setting of our partner’s warehouses, these

postponement delays are implemented by slightly altering the waveless picking logic under

which orders are released into the active picking assignment queue. Specifically, whenever a

customer order is transferred from the first virtual queue of incoming orders to the second

picking queue representing the active picking assignments (see section §1 of the paper), the
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corresponding transfer of any individual items in that order with a positive postponement

lead-time (as specified by the control rule just discussed) is then delayed accordingly.

The item release control problem just stated is also explicitly mentioned in Forger (2005),

Owyong and Yih (2006), Trebilcock (2007) and, more implicitly, in Le-Duc and de Koster

(2005); this type of postponement control mechanism is also identical to that studied in

Gallien and Wein (2001). It can be formally stated in the present setting as:

Min
c1,...,cm

E[B] = E[ max
1≤i≤m

(Ti + ci)− min
1≤i≤m

(Ti + ci)]

subject to: ci ≥ 0 ∀i
, (A.5)

where T1, ..., Tm are random transit time variables with specified distributions. Note that

the notation E[B] used in (A.5) is not coincidental, as this objective of this optimization

problem is exactly equal to the expected value of the chute-dwell time, as defined in section

§3.1 of the paper. Likewise, the time-to-chute or service time of the first queueing station

discussed in that section can be expressed for each order in terms of the transit time variables

as A = min
1≤i≤m

(Ti + ci).

The remainder of this section presents some work performed with the goal of identifying

an item release control policy improving upon the one used by our partner. It contains the

statement of theoretical results obtained under specific distributional assumptions for the

transit times (in §A.6.1), an implementation study (in §A.6.2) and an impact assessment

study (in §A.6.3).

A.6.1. Analysis. We first state formally our optimality result for the optimization
problem (A.5) just stated.

Proposition 1 Let m ∈ N\{0, 1}, k > 0 and (T1, ..., Tm) be m independent r.v.’s such that
for all i, Ti ∼ CMT1k(αi) for some αi > 0 (or equivalently P(Ti ≤ τ) = exp(−αie

−kτ )),
then the vector (c∗1, ..., c

∗
m) defined by

c∗i ,
µ

max
j∈{1,...,m}

E[Tj]
¶
− E[Ti] (A.6)

satisfies min
i∈{1,...,m}

c∗i = 0 and is an optimal solution to (A.5).

Proof: Note that if P(Ti ≤ τ) = exp(−αie
−kτ) then E[Ti] = γ+lnαi

k
where γ denotes

Euler constant, and since the family of r.v’s (T1, ..., Tm) is closed under maximization and
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translation we have

E[max(T1 + c1, ..., Tm + cm)] =
γ + ln

¡Pm
i=1 αie

kci
¢

k
. (A.7)

Also

P(min(T1, ..., Tm) > τ) =
mY
i=1

(1− exp(−αie
−kτ))

= 1 +
mX
i=1

(−1)i
X

{β1,...,βi}⊂{α1,...,αm}
exp

Ã
−
Ã

iX
j=1

βj

!
e−kτ

!

so that

E[min(T1 + c1, ..., Tm + cm)] =
mX
i=1

(−1)i+1
X

{β1,...,βi}⊂{α1ekc1 ,...,αmekcm}

γ + ln

Ã
iP

j=1

βj

!
k

. (A.8)

The objective function f(c1, ..., cm) of (A.5) can thus be expressed in closed form as the

difference of the left-hand sides of (A.7) and (A.8). The first-order optimality condition of

the unconstrained problem is then obtained from

∂f(c1, ..., cm)

∂ci
=

αie
kciPm

j=1 αjekcj
−1+

m−1X
j=1

(−1)j+1
X

{β1,...,βj}⊂{α1ekc1 ,...,αmekcm}\{αiekci}

αie
kci

αiekci +
Pj

s=1 βs
.

(A.9)

It can be easily seen through direct substitution in (A.9) that for any constant φ > 0 the

solution (c(φ)i )i∈{1,...,m} defined by

c
(φ)
i , 1

k
ln

φ

αi
or αie

kc
(φ)
i = φ for all i

solves the first-order condition ∂f(c1,...,cm)
∂ci

= 0. Note that setting φ = maxi∈{1,...,m} αi yields

c
(φ)
i ≥ 0 for all i, min

i∈{1,...,m}
c
(φ)
i = 0 and

c
(φ)
i =

1

k

µ
ln

µ
max

j∈{1,...,m}
αj

¶
− lnαi

¶
=

µ
max

j∈{1,...,m}
E[Tj]

¶
− E[Ti].

To finally prove that a solution of the first-order condition is optimal it suffices to observe

that the objective f(c1, ..., cm) is convex, since E[max(T1 + c1, ..., Tm + cm)] is convex in
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(ci)i∈{1,...m} and E[min(T1 + c1, ..., Tm + cm)] is concave in (ci)i∈{1,...m}.

The distributional assumptions stated in Proposition 1 imply that the transit times follow

Gumbel distributions with the same variance, a particular example of a distributional family

that is closed under maximization and translation (see Gallien and Wein 2001). However,

notice that the objective function in (A.5) is a range, thus involving not just the maxi-

mum but also the minimum of translated random variables. Because the family of Gumbel

distributions just mentioned is not closed under minimization or range, it is noteworthy

that problem (A.5) can still be solved in closed form. Observe also that there are infinitely

many optimal solution to (A.5), as the range operator is not affected by translations so that

(ci + τ)1≤i≤m will be optimal for any τ ≥ 0 provided (ci)1≤i≤m is. The additional condition
mini∈{1,...,m} ci = 0 is thus not justified by the formulation of problem (A.5) alone, but rather

by context as any solution with a higher value of min
i∈{1,...,m}

ci would not improve the expected

chute-dwell time relative to (c∗i ) defined by (A.6), however it would increase the cycle time

of the corresponding customer order.

Finally, note that the optimal solution described in Proposition 1 is also optimal for the

deterministic approximation of problem (A.5) obtained by replacing each transit time Ti

by a deterministic equivalent E[Ti]. Proposition 1 thus provides a theoretical justification

for the intuitive solution proposed for the two-item order example mentioned earlier, and

more generally for the deterministic approximation just described. However, we caution the

reader that the validity of such approximation is far from general and seems very sensitive to

model details, as that same approximation turns out to be quite coarse in other very similar

settings (see Gallien and Wein 2001).

Interestingly, our industrial partner had already implemented release postponement delays

using an equation very similar to (A.6) before interacting with us, although it had developed

that formula from intuition (which we suspect meant applying the deterministic approxima-

tion mentioned earlier), as opposed to a formal analysis of the type just presented. More

specifically, our partner would measure a few times per year the medians ξq of the transit

times corresponding to each pick zone q ∈ {1, ..., q̄}. For each order with m items indexed

by i ∈ {1, ...,m} received between those measurement updates, it would then determine the
set of pick zones q , (qi)i∈{1,...,m} from which these items should be picked, and implement
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postponement delays given by

ĉi(q) =

µ
max

j∈{1,...,m}
ξqj

¶
− ξqi. (A.10)

However, that policy seemed to ignore some important drivers of predictable transit times

variability. In the following subsection, we describe the study we performed in order to

implement the theoretical analysis presented earlier, and attempt to improve upon the item

release control policy (A.10) just described.

A.6.2. Implementation Study. Our first goal was to characterize the transit time

distributions using all the information available at the time when each order was released, so

that the item postponement delays implemented then through equation (A.6) would rely on

estimators of the corresponding expected transit times that would be as accurate as possible.

We first realized when visiting the facility that each individual pick zone q ∈ {1, ..., q̄}, defined
by our industrial partner to partition the entire picking area for labor allocation purposes,

still covered a relatively large space and sometimes spanned several floors. In particular,

two totes originating from the same pick zone could travel towards the sorter on conveyor

paths with lengths differing by several hundred meters, so that the existing subdivision of

the picking area into pick zones seemed too coarse for our purposes. As a result, we defined

a finer partition of the picking area into smaller subdivisions that we called conveyor zones,

indexed in the following as r ∈ {1, ..., r̄} with r̄ À q̄. These were specifically defined so that

the actual lengths of the conveyor paths followed by totes released in the same conveyor zone

would be considerably more homogeneous.

In order to better understand additional drivers of predictable variability for the item

transit times, we constructed and examined the empirical distributions of transit times for

items picked within the same conveyor zone, following the overall methodology described in

§A.2. This data analysis work resulted in a set of fitted CMT1 transit time distributions

T , {T (r, g) : r ∈ {1, ..., r̄}, g ∈ {1, ..., ḡ}}, specifically one for each conveyor zone and
congestion level. Combining these distributions with the analysis described in §A.6.1, the

item release control policy that we recommended implementing for each customer order

consisted of:

1. Identifying the current system congestion level g;
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2. Identifying the conveyor zone ri ∈ {1, ..., r̄} in which each item i ∈ {1, ...,m} of the
customer order is to be picked;

3. Postponing the release of the picking order for each item i ∈ {1, ...,m} by the lead-time

c∗i (r, g) =
µ

max
j∈{1,...,m}

E[T (rj, g)]
¶
− E[T (ri, g)], (A.11)

where the dependence on r , (ri)i∈{1,...,m} and g is shown explicitly.

Note that even in the theoretical setting where the item transit time distributions for each

order would be independent and exactly given by the CMT1 distributions from the set T
defined above, the policy defined by equation (A.11) would likely be suboptimal. This is

because the fitted CMT1 distributions T (r, g) obtained from the data analysis just described

do not belong to CMT1 families that are closed under maximization and translation. That

is, two distributions T (r, g) and T (r0, g) from the set T of fitted distributions corresponding
to different conveyor zones r and r0 but the same congestion level g do not typically have the

same variance. This represents a deviation from the assumptions required for Proposition 1

to hold and the policy defined by (A.11) to be rigorously optimal, although it is not clear

what the corresponding optimality loss amounts to. Furthermore, it is also not clear how

damaging the independence assumption for these transit times actually is. Motivated by

these questions, the following section provides an assessment of the potential benefits to be

derived from an implementation of policy (A.11) in our industrial partner’s warehouse.

A.6.3. Impact Assessment. Our methodology was to develop a Monte-Carlo

simulation model that could provide a reliable prediction of the expected chute-dwell time

associated with our proposed release control policy c∗ , (c∗i )i∈{1,...,m} defined by (A.11),

enabling a comparison over a large number of customer orders with that resulting from the

release control policy ĉ ,
³
ĉi
´
i∈{1,...,m}

used by our industrial partner before our interaction

and defined by (A.10). As a first step designed to assess our model’s predictive accuracy

and establish a baseline for comparison, we simulated the random variable defined for each

congestion level g ∈ {1, ..., ḡ} as

B(ĉ, g) , max
1≤i≤M

(T (Ri, g) + ĉi(Q))− min
1≤i≤M

(T (Ri, g) + ĉi(Q)), (A.12)

where M (number of items per order) and R , (Ri)i∈{1,...,M} (congestion zones in which the
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items are to be picked) were random variables following empirical distributions {P(M =

m) : m ≥ 2} and {P(Ri = r) : r ∈ {1, ..., r̄}} constructed from the first half of our data

set (referred to in the following as the training set), and such that for every realization of

M , R1, ..., RM are i.i.d. The number of components of random vector Q , (Qi)i∈{1,...,M}

was likewise determined by the outcome of the r.v. M , with each value Qi ∈ {1, ..., q̄}
for i ∈ {1, ...,M} given by the pick zone containing the simulated congestion zone Ri. In

order to evaluate the predictive accuracy of the simulation model defined by (A.12), we

then compared its output with the empirical distribution of the actual chute-dwell time

for each congestion level Bg constructed directly from the second half of our data set (the

evaluation set). For illustration purposes, Figures A.13 (a) and (b) contain plots of the

empirical probability density functions (p.d.f.) of B(ĉ, 6) and B6, obtained respectively by

Monte-Carlo simulation and direct construction from the evaluation set, for congestion level

g = 6. Note that the effective support of these distribution starts at zero, reflecting cases

where all items from the same order travel through the process in the same tote, a typical

occurence for orders consisting of several identical items.

E
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 D

en
si

ty

Relative Time Units Relative Time Units

(a) Simulated Chute-Dwell Time Bℓ̂, 6,
data from training set

(b) Actual Chute-Dwell Time B6,
measured from evaluation set

2 3 4 5 6 71

2.7

2 3 4 5 6 8 9 10 11 12 131

Figure A.13: Empirical Density of Actual and Simulated Chute-Dwell Time for Congestion
Level g = 6

More generally, the predicted (resp. measured) expected chute-dwell times E[B(ĉ, g)]

(resp. E[Bg]) obtained by applying the method just described for all congestion levels are

shown in the second and third columns of Table A.2, with the relative prediction error³
E[B(ĉ, g)]− E[Bg]

´
/E[Bg] shown in its fourth column. Using the relative picking frequen-

cies of each congestion level in our entire data set to weight these relative prediction errors,

we computed an estimate of the overall relative prediction error associated with our simula-
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Congestion
Level
g

Simulated
Chute-Dwell

Time
E[B(ĉ,g)]

Actual
Chute-Dwell
Time Data

E[Bg]

Relative
Prediction
Error

E[B(ĉ,g)]−E[Bg]
E[Bg ]

Optimized
Chute-Dwell

Time
E[B(c∗,g)]

Relative
Improvement
Potential

E[B(c∗,g)]−E[B(ĉ,g)]
E[B(ĉ,g)]

1 2.779 2.784 -0.15% 2.739 -1.44%
2 2.610 2.628 -0.68% 2.562 -1.84%
3 2.298 2.280 0.79% 2.274 -1.04%
4 2.904 2.904 0% 2.862 -1.45%
5 2.736 2.748 -0.43% 2.730 -0.22%
6 2.604 2.574 1.17% 2.574 -1.15%
7 2.724 2.706 0.67% 2.694 -1.10%

Table A.2: Simulation Results for Item Release Control Experiments

tion model as 0.53%, a result establishing in our view the relatively high predictive power of

our simulation model.

As a second step designed to assess the relative improvement potential of our suggested

policy c∗, we simulated for each congestion level g ∈ {1, ..., ḡ} the random variable

B(c∗, g) , max
1≤i≤M

(T (Ri, g) + c∗i (R, g))− min
1≤i≤M

(T (Ri, g) + c∗i (R, g)), (A.13)

where the random variables M and R , (Ri)i∈{1,...,M} were generated as in (A.12), and the

item release postponement delays c∗i (R, g) were computed for each random order realization

according to (A.11). The fifth and sixth columns of Table A.2 respectively show the esti-

mated average chute dwell time E[B(c∗, g)] obtained for each congestion level through the

Monte-Carlo simulation procedure just described, and the corresponding predicted relative

improvement potential
³
E[B(c∗, g)]− E[B(ĉ, g)]

´
/E[B(ĉ, g)].

We believe that the bias introduced by the relative prediction error of our simulation

model shown in the fourth column of Table A.2 for each congestion level should equally

apply to both the model’s prediction for the current policy ĉ and that for our proposed

policy c∗; this is because that bias most likely follows from our estimation of the transit time

distributions, as opposed to the specific values of the postponement delays. Accordingly, the

results shown in the last column of Table A.2 suggest that our proposed policy c∗ should

in practice decrease the average chute-dwell time by at least 1% in six congestion levels

out of seven, and by 0.22% in the last one. The data available to us however does not

allow us to further back up the claim that the bias of our simulation model relative to the

real system applies to both ĉ and c∗ in a systematic way. One could thus also consider
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Number of Packers w p 112.5%p 125%p

100× γADP∗ −γADP
γADP 0 0.27 0.29

Table A.3: Relative Impact on Throughput of a 1.18% Reduction in Chute-Dwell Time

a more pessimistic (in our view overly conservative) scenario where our simulation model

would in fact overestimate the true performance of our proposed policy c∗ whenever that

model underestimates the performance of the current policy ĉ (that is, whenever the relative

prediction error in Table A.2 is positive). Assuming that relative overestimation for c∗ to

have the same absolute value than the corresponding underestimation for ĉ, our improvement

prediction results would still be significant in all congestion zones but one, with 3 of them

having a predicted average chute-dwell time reduction larger than 1.44%, and the other three

having predicted reductions of 0.4%, 0.25% and 0.22% respectively.

In addition, the queueing model discussed in section §3.1 of the paper, because it in-

cludes chute-dwell time as primary input data, is also useful for evaluating the impact of the

item release policy we developed on throughput (which arguably constitutes a more relevant

performance measure than average chute-dwell time). Specifically, we used that model to

simulate the impact on throughput of the 1.18% average reduction of chute-dwell time pre-

dicted in §A.6.3, with the policy ADP obtained with risk level β and under various staffing

scenarios (as defined in section §5.1 in the paper). The results are shown in Table A.35,

where γADP
∗ refer to the average throughput obtained with the reduced chute-dwell times,

while γADP denotes the average throughput obtained with the original chute-dwell times

used in our earlier experiments.

Consistent with the results discussed in Section §5.2 of the paper, Table A.3 shows that

in the scenario with the same number of packers as used by our partner (p), packing is

effectively the relevant system-wide constraint on throughput, so that improving other parts

of the system (such as chute-dwell time) has little impact if any. Even with more packers

however, the predicted impact of the chute-dwell time reduction attributable to our proposed

item release policy remains very small. While disappointing in a way, these results thus

provided the useful determination that the potential for improving our partner’s warehouse

5 Table notes: the estimates of throughput γADP∗ obtained have a standard estimation error from
simulation lower than 0.04%.
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operation through better item release control policies was most likely very limited.
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