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Abstract

This thesis studies the economics of technology adoption in the healthcare industry.
The first chapter analyzes the impact of health information technology (HIT) on the
quality and intensity of care delivered to Medicare inpatients. Building an organiza-
tional model, I show how the adoption of HIT may improve patient health and may
either increase or decrease medical expenditures. Using Medicare claims data from
1998-2005, I estimate the effects of HIT by exploiting variation in hospitals' adoption
statuses over time, analyzing 2.5 million inpatient admissions across 3900 hospitals.
HIT is associated with an initial 1.3% increase in billed charges. Additionally, HIT
adoption appears to have little impact on the quality of care, measured by patient
mortality, medical complication rates, adverse drug events, and readmission rates.
These results are robust to the addition of rich controls for pre-trends. The find-
ings suggest that HIT is not associated with improvements in either the efficiency or
quality of hospital care for Medicare patients, through five years after adoption.

In the second chapter, I investigate the scope for physician learning about the
value and applications of new medical technologies across geographic regions. In
particular, I analyze the diffusion of positron emission tomography and deep brain
stimulation, using data on Medicare claims from 1998-2005. The mix of patient
diagnoses treated with the new technologies changes substantially during the early
stages of diffusion. Moreover, states that are late to adopt these technologies do not
repeat the process of experimental learning undertaken by early adopters to discover
which patients should receive the new treatment

In the third chapter, I analyze several policy initiatives that aim to manage the



usage of medical technologies and discuss key determinants of technology adoption
that may be fruitful targets for future research and policy intervention. Effective
technology policy must balance cost, control with a recognition that new medical
technologies have been associated with tremendous health and longevity gains. I
find that existing Medicare coverage determinations and state certificate of need
programs appear to have little influence on actual resource utilization, in part driven
by lack of enforcement of existing policies.

Thesis Supervisor: David Autor
Title: Professor of Economics

Thesis Supervisor: Michael Greenstone
Title: 3M Professor of Environmental Economics
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Chapter 1

The Effects of Health Information

Technology on the Costs and

Quality of Medical Care 1

1.1 Introduction

Technology adoption, and information technology in particular, has been linked to

productivity growth in a wide variety of sectors. However, a historical perspective

suggests caution is warranted in linking any particular technology to the promise

of substantial, sustained productivity growth within a specific industry. Work by

1I would like to thank David Autor, Amy Finkelstein, and Michael Greenstone for invaluable
guidance throughout this project. I gratefully acknowledge David Cutler and Frank Levy for their
very helpful comments and suggestions. I thank Jason Abaluck, Joshua Angrist, Joshua Aronson,
David Chan, Tatyana Deryugina, Joseph Doyle, Brigham Frandsen, Robert Gibbons, Jonathan Gru-
ber, Nathan Hendren, Nancy Keating, Danielle Li, Amanda Pallais, Christopher Palmer, Michael
Powell, Joseph Shapiro, Pian Shu, Catherine Tucker, Heidi Williams, and participants at MIT's
labor lunch for their comments. I am also grateful to Mohan Ramanujan and Jean Roth for their
assistance in obtaining and managing the data. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship.



the McKinsey Global Institute (2002) argues that the pro(ictivity acceleration of

t he 1990s, widely attribiuted to information technology (IT), was concentrated in a

limited number of sectors, and IT was only one of several factors that combined to

create the produhctivity jiunp.

In this paper, I analyze the impact of health information technology (HIT) on the

costs and quality of medical care, testing whether the technology has demonstrated

potential to improve the productivity of the health care sector. Health care costs

were $2.3 trillion in 2008, and have been rising at a rate of 4.9% per year, in real

terms, averaged over the past 40 years. As costs continue to grow, high rates of

medical error and unnecessary or redundant expenditures persist. Many observers

and policyinakers are looking to health information technology as a key tool to

improve the efficiency of the health care sector, by preventing medical errors, cutting

redundant tests, and improving health outcomes. Estimates of potential savings

due to HIT adoption vary, with widely cited, though controversial, work by the

RAND Institute projecting a $142-$371 billion per year reduction in health spending

(Hillestad et al. 2005).

Hospitals invested $4.7 billion in HIT in 2009, and are poised to increase their

investments over the coming decale. The Health Information Management Systems

Society estimates that hospitals will spend approximately $26 billion dollars in IT

applications between 2010-2014 (HIMSS Analytics 2009). These expenditures will

be driven partly by a federal program, the 2009 HITECH Act, which will implement

reinmiursement incentives and penalties designed to encourage HIT adoption. These

new incentive payments are projected to increase net Medicare and Medicaid spend-

ing by $30 billion over nine years (2011-2019). However, the Congressional Budget

Office estimates the total costs of the legislation to be markedly lower, $19 billion,

since it predicts that HIT will reduce medical expenditures and thus reduce related



federal spending.

This st udy focuses primarily on two types of health information techinology: elec-

tronic inedical records and clinical decision support. Electronic medical records main-

tain patient information and physician notes in a computerized data base rather than

a paper chart. Electronic records allow the provider to track the patient's health over

time, read the input of other consulting physicians, or recall his own clinical assess-

ment from a previous day or hospital visit.. Clinical decision support provides timely

reminders and suggestions to medical practitioners. Decision support may recom-

mend screening tests based on a patient's age and medical conditions, flag drug-drug

interactions and drug allergy information, or discourage the provider from repeating

a test or imaging procedure by highlighting a previously ordered result.

The paper introduces a theoretical model of hospital organization that analyzes

the potential effects of HIT adoption. Firstly, electronic records will raise the quality

of communication across providers, which may in turn increase reliance on specialists

and reduce redundant testing. Secondly, electronic records may reduce the effort cost

of following a patient's treatment course, which may increase the intensity of provided

treatment. Lastly, clinical decision support may encourage the primary physician to

provide treatment for conditions that are less familiar to him, reducing reliance on

specialists. The net impact of these three channels on total medical expenditures,

health outcomes, and quality of care is ambiguous.

I use the theoretical model to inform an empirical analysis of the the impact

of HIT, using Medicare claims data. HIT is associated with 1.3% higher medical

expenditures, significant at the 10% level. The marked increase in the log of medical

expenditures can be seen graphically in Figure 1, which plots coefficients from a

nonparametric event study regression. HIT is adopted in year 0, and expenditure

growth is seen after adoption. Other results find that length of stay and number



of physicians consulted do not change significantly after adoption. Despite the cost

increases, HIT is associated with very modest reductions in patient mortality of 0.03

pecnCntage points [95% confidence interval: -0.36 to 0.30 percentage points]. Further,

there are no significant improvements in the complication rate, adverse drug events,

readmission rate, or frequency of outpatient cancer screenings, after HIT adoption.

The results fail to measure a social benefit to HIT adoption over this period,

although it should be noted that the finding is local both to the types of software

systems commonly implemented over the study period, from 1998-2005, and the

organizational structure of adopting hospitals. I will discuss these limitations further

in the penultimate section of the paper.

These findings are estimated in a 20% sample of Medicare claims from 1998-

2005; the sample includes 2.5 million inpatient admissions at 3880 hospitals. The

claims data allows detailed tracking of patients' health outcomes, services rendered,

and medical expenditures. HIT adoption is measured at the hospital level from the

Health Information and Management Systems Survey (HIMSS).

A fixed effects econometric model exploits within-hospital across-time variation

in HIT adoption status to estimate the effects of adoption. The multi-year panel

data along with variation in the timing of HIT adoption, allows the inclusion of rich

controls for time trends beyond those used in conventional difference-in-differences

analysis; in particular, I control for state-year fixed effects, adopter-specific time

trends, and differential trends that vary according to a hospital's baseline charac-

teristics. I analyze potential threats to validity, testing for simultaneous changes in

other hospital investments and probing the robustness of the results to any changes

in patient sorting across hospitals.

This analysis has several advantages over previous research. First, it estimates

the impact of HIT over a broad, national sample of hospitals, rather than presenting



a case stu(dy of a single institution or HMO (cf. Bates et al. 1999; Deinakis et al.

2000; Evans et al. 1994; Javitt et al.). Second, it uses panel data to implement a

difference-in-differences strategy, instead of relying on cross-sectional evidence (cf.

DesRoches et al. 2010, Hiinielstein et al. 2010). Third, in contrast to earlier work,

the analysis brings together a large complement of outcome variables that include

mortality outcomes, quality of care measures, and medical expenditures (cf. Miller

and Tucker 2009, Cullough et al. 2010, Furukawa et al. 2010). Lastly, I implement

a more robust empirical strategy that controls for a rich set of state-by-year fixed

effects and differential time trends that vary by hospital characteristics, rather than

imposing uniform time trends across hospitals (cf. Miller and Tucker 2009, Cullough

et al. 2010).

The paper proceeds as follows. Section 2 provides a conceptual framework for how

HIT adoption may affect the delivery of medical care. Section 3 describes the data in

more detail, discusses the HIT adoption decision, and compares the characteristics

of adopters and non-adopters. Section 4 presents the empirical strategy and results.

Section 5 analyzes the policy implications and interpretation of these findings. The

final section summarizes the results and concludes.

1.2 Conceptual Framework

Over the course of caring for a patient, a physician must make decisions about

whether to deploy a variety of medical resources, including diagnostic tests, imaging,

and specialized consulting physicians. On the one hand, each additional test or

consultation has some chance of improving the patient's diagnosis, treatment, and

ultimate health status. On the other hand, additional tests and consultations are

costly, and poorly coordinated plans from specialists increase the risk of medical



complications and errors. When deciding which tests to order and specialists to call,

a physician must carefully balance the (uality of his existing information set, the

additional costs, and the benefits and risks to the patient's health. HIT has the

potential to change each of these tradeoffs, thus significantly shifting the practice of

medicine, as well as its associated costs and expected health outcomes. The theory

presented here lays out the basic mechanisms through which HIT may change the

use of various inputs to healthcare production, and links these behavioral changes

to testal-le empirical predictions. To date, there has not been a careful modeling of

the impact of HIT on medical practices.

1.2.1 Modeling Physician Behavior and Patient Health

The existing public health literature on HIT predicts three main channels through

which technology adoption may impact patient outcomes. First, electronic medical

records are predicted to reduce costs by reducing redundant testing, and improve

health outcomes by minimizing coordination failures. These two effects both work

through the channel of improving communication across providers. Secondly, elec-

tronic medical records are thought to make it easier for the physician to track the

patient's health needs and inputs over time, by reducing the effort cost of following a

patient's care. Lastly, clinical decision support is designed to improve the diagnosis

and treatment of patients by providing timely reminders and information about med-

ical best practices. Each of these three channels-improved communication, lower

effort costs of treating a patient, and better information about optimal care-could

have other effects on the costs and quality of care provision beyond the conventional

wisdom outlined above. The model I lay out in this section elucidates how changing

these three parameters may affect the quality and costs of care.



I develop an organizational model of care delivery in an inpatient hospital setting,

adapting the Dessein and Santos (2006) model to the particulars of the health pro-

duction context. This work builds on the theoretical insight of Becker and Murphy

(1992) that a key limitation to specialization is imposed by the cost of coordinat-

ing workers. It enriches the Becker and Murphy framework by modeling the spe-

cific tradeoffs within the healthcare production function associated with consulting

a specialized physician, i.e. the potential for improved adaptation to the patient's

idiosyncratic needs versus the increased risk of coordination failure across physicians.

A patient's health depends on how well his treatments match his medical needs.

Suppose a patient is admitted to the hospital with two diagnoses that are contributing

to an acute medical problem. The patient has idiosyncratic needs 01 for the primary

diagnosis and 02 for the secondary diagnosis. For example, a patient with a hip

fracture may be admitted to the orthopedic service for surgery; however, the patient

may also suffer from heart disease and be medicated regularly with blood thinners

to reduce the risk of heart attack. The surgeons will need to consider the patient's

cardiac health when deciding whether he is fit for surgery, and the patient's usual

blood thinners may need to be discontinued to minimize the risk of uncontrolled

bleeding during surgery.

The patient's needs are indexed by the intensity of the optimal treatments, where

higher values of 0 correspond to more intensive use of medical resources. I assume

that excessive treatment and insufficient treatment are both harmful to the patient's

health. An insufficiently treated disease is likely to cause future health problems

and prevent, the patient from maintaining his optimal health. On the other hand,

excessive treatment has its own set of health risks, e.g. higher risk of hospital acquired

infection with each additional day spent as an inpatient, side effects and potential

adverse reactions to drugs, and risks associated with surgical intervention.



The physician must offer a treatment plan for each diagnosis, which consists of

a main treatment. I; i indexes the problem being treated, i E {1, 2}. The selectled

treatment will maximize the )atient's health when it is exactly equal to the patient's

need for that diagnosis, i.e. I' = 64.

In addition to selecting the appropriate treatment intensity for each of the pa-

tient's diagnoses, care providers must ensure that the treatment plans are harmonized

across diagnoses. The patient's health may be compromised if the treatment of the

primary condition is not coordinated with the treatment of the secondary condition.

A third action, 112 is required to coordinate the treatments; the risk of negative treat-

ment synergies is minimized when t12 = 2. For example, preparation for surgery

may require changing the management of a patient's chronic illnesses, e.g. pausing

the prescription of blood thinners to prevent excessive bleeding during an operation;

or, drugs prescribed by two different providers may have negative synergies which

require adjustment of the patient's prescriptions.

Patient's health can be expressed mathematically by the following healthcare

production function:

H = H* - #[(t -01)2 + (2 - 2)2 - o[(12 - t2)21 (1.1)

In equation (1), H* represents tile patient's optimal health, # parameterizes the

importance of adapting the main treatment intensity to the patient's needs, and

# parameterizes the importance of coordinating the treatment of the patient's two

medical conditions.

Medical care is associated with both financial and effort costs. More intensive

treatments require more effort from the physician, who will need to follow the patient

more carefully, and are associated with higher medical expenditures. The physician



may choose to consider these increased financial and effort costs when selecting a

treatment. I assume that both effort and financial costs are proportional to treatment

intensity, t*.

The physician will select a treat ment plan to maximize his utility, which depends

on the patient's health and the associated costs of treatment.

U = E[H* -#[(t - 01)2 + (t2 - 02)2] -0(t12 _ 2 2

expectation of patient health

-y [At' + At2 + 1{d = s}(a + 6(1 - c))] (1.2)
treatment costs specialist costs

The parameter 7 measures the relative weight put on costs in the physician's utility

function, and A is equal to the sum of effort costs plus financial costs associated

with one unit of treatment. 1{d = s} is a indicator variable which equals one if a

specialist is called. In the event that a specialist is called, monetary costs of care

will increase by a fixed amount to reimburse the specialist and the primary physician

must endure a fixed effort cost associated with requesting the specialist consultation.

The sum of these two costs is paramaterized by a. In addition, the specialist will

have to repeat 6 worth of testing and imaging if he does not receive the information

from the primary physician, which occurs with probability 1 - c.

Financial incentives can either discourage or encourage intensive treatment in this

model. Under capitation payments for Medicare inpatients, hospitals will generally

prefer to reduce treatment intensity to reduce costs, i.e. financial incentives will

make A positive. On the other hand, for outpatient care and professional services not

included in the capitation payments, financial incentives may encourage the physician

to provide more intensive treatments, in order to increase his reimbursements. In this

case, A may be negative, and effort costs and financial incentives will have opposing



effects.

A key challenge to delivering optimal care is determining the best t reatnent

course for a given patient. The population distribution of medical needs is O6 ~

N(5, 2 ). A doctor cannot, perfectly observe an individual patient's needs, and must.

rely on a noisy signal, 0 = 02 + Ej. The noise in this signal, e is Normally distributed

with a mean of zero, and a variance that depends on whether the treating physician

decides to call a specialist.

A specialist is better at adapting to the patient's needs for the second diagnosis,

because he observes a more precise signal of 02, i.e. C2 N(0, o,d), and or, >Co,

where d = p if the primary physician treats the patient, and d = s if the specialized

doctor treats the patient. This assumption is consistent with recent evidence that

specialists obtain better health outcomes than general practitioners within their area

of speciality (Ayanian et al. 2002, Landon et al. 2003, Wells and Sturm 1995).

Consulting a specialist will also introduce a risk of coordination failure, in the

event that the two physicians do not successfully communicate their treatment plans

to each other. As the reliance on specialized physician services has grown over

the recent decades, there has been concern that coordination failures are increasing

the frequency of medical errors (Chandi et al. 2000, Epstein 2005). In the model, I

parameterize the quality of communication with c; with probability 1 -c, the primary

physician will not learn the specialist's treatment plan t2 . As a result, the primary

physician will not be able to select the optimal coordinating action, i.e. t1 #2
which will reduce the patient's health.

There is significant regional variation in the reliance on medical specialists. Baiker

and Chandra (2004) document that a one standard deviation increase in the supply

of medical specialists is associated with 50% more Medicare beneficiaries seeing more

than 10 doctors in the last six months of life. This evidence suggests that the decision



to call a specialist is a margin along which the primary physician may adjust his

behavior, and there may indeed be scope for increasing or decreasing the reliance on

specialists.

If the primary physician chooses not to call a specialist, he will choose 1l and t2

to maximize his utility as written in Equation (2), using the noisy signal lie received

of 01 and 02. Solving the maximization problem yields the optimal treatment:

" = ' 0 A, i E {1, 2} (1.3)P - _+ 1 2#

The first term in the treatment expression above is the patient's expected optimal

treatment, given the signal of his medical needs and the population distribution of

needs. As long as A is positive, e.g. when the hospital receives capitation pay-

ments, this equation indicates that the offered treatment is less intensive than the

unconstrained optimum due to the costs of care.

If no specialist is called, then there is no risk of communication failure, and the

treatments for the patients' two conditions are perfectly coordinated, i.e. t12 = t.

With the treatment in Equation (3) above, the patient's expected health status is:

H, = H* - 2# 0 (1.4)

The noisier the signal of the patient's health, or,, and the higher the variance in the

population distribution, o, the more difficult it will be for the physician to select

the optimal treatment. In addition, higher costs of care are associated with lower

overall health, since the patient will receive a lower than optimal treatment intensity.

I assmne that the physician decides whether to call a specialist before evaluating

the patient. If a specialist is called, the primary physician will not analyze the



patient's secoind iedical problem, and so will not receive any signal of 02. If a

specialist is called, the opt imal treatment for medical problem 1 is the same as

above, but the specialist 's choice of treatment for medical problemn 2 is now:

22 42+ + #(1 -c) Al
t = + 60 (1.5)

- 4+#(1-c) + +#(1-C) 24

The treatment is again related to the weighted average of the patient's signal 02,

and the average value 2; however, the weights are different from those in the single-

physician case. On the one hand, the specialist observes a more precise signal of the

patient's needs, which will tend to increase the weight he puts on the signal 02. On

the other hand, in the event of a communication failure, the primary physician will

not learn about the specialist's treatment plan and will set the coordinating action

12 = 02, inducing coordination costs. The risk of this communication failure causes

the specialist to tilt his action closer to the population mean 02 thani he would in the

case of perfect communication.

If a specialist is called, the patient's expected health status is:

oj2 2( -c) 2 oj2
HS = H* - * - /( - + '' .0r (1.6)

+02,4 + /(1-c) 4 + #(1-c)os±u, 24

Now, the patient's health status depends not only on the precision of his health signal

and the cost of his care, but also on the quality of communication between his two

providers.

The primary physician will choose to call a specialist if doing so will improve the

patient's expected health by a large enough margin to compensate for the increased

costs. Using the expressions for the optimal treatments written above, and compar-

ing the patient's health production function under the specialist and no-specialist



scenarios, 1 derive that the primary physician will call a specialist if and only if the

following condition is met:

(oi - E') (oa + ci) #(1 - c) -y1d sI(a 46(- (1.7)
o2 (o + of, 4 +3(1 - c*)

The primary physician will call a specialist if the gains from improved adaptation

outweigh the additional billing costs and the risk of coordination costs in the event of

communication failure. As the gap between the precision of the primary physician's

signal and the specialist's signal grows, the primary physician becomes more likely

to call a specialist. As the communication channel worsens, the physician becomes

decreasingly likely to request a consultation.

1.2.2 Modeling the Effects of HIT

HIT has the potential to change three key parameters of the above model, ultimately

impacting both the costs and the quality of delivered care.

Proposition 1. Electronic patient records raise c, the quality of communication. Im-

proved communication may increase reliance on specialists, while reducing redundant

testing. It will improve health outcomes and may either increase or decrease medical

expenditures.

Electronic medical records allow the primary physician to access the specialist's

report easily and in a timely manner. Thus, electronic records may improve the

quality of communication between the specialist and the primary physician, raising

the parameter c .

In Equation (7), increases in c will increase the likelihood that a specialist is

called by reducing the risk of coordination failure and reducing costs associated with



redu1ndant testing. Calling a specialist, will reduce adaptation costs, since the special-

ist is better at adapting to the patient's needs. As a result of this increased reliance

on specialists, patfient health should improve. In the enpirical work, I measure pa-

ient health by the niortality rate, which should weakly decline after the adoption

of electronic records. Medical conplications, adverse drug events, and readinission

rates may also decrease, since these may be signals of poorly coordinated care plans.

1Inproving the comtmunication channel will reduce the risk of re(indant testing,

conditional on a specialist being called. Existing evidence suggests that redundant

testing is ramlpant in both the inpatient. and outpatient setting. One study estimated

2.7% of inpatient hospital spending is on redundant tests (Jha et al. 2009), and

another found that in the three months following an admission, 8.6% of follow-up

tests were redindant (Bates et, al. 1998). By making it easier to access images and

notes produced by other physicians, HIT imay reduce the frequency of redundant

testing. In the empirical work, I will directly test. whether the frequency of repeated

inaging falls after the introduction of an electronic medical record.

The net impact of the improved communication channel on total medical expendi-

tures is ambiguous. If improved coimimunication induces more reliance on specialists,

this will tend to increase billing since the specialists will submit additional charges

for their evaluation and management of the patient. In cases where a specialist

was being consulted before the introduction of electronic records, redundant testing

should decrease as a result of the improvement in communication quality. The drop

in redundant testing will tend to reduce billing. The empirical results will test which

effect dominates.

Proposition 2. Electronic reconis may reduce the effort cost of intensive treatment,

A. This will increase the treatment intensity. Under a capitation payment systen,



an increase n treatment intensity is likely to improve patient health.

A second effect of electronic records may be to reduce the effort cost of treating

a patient inore intensively. Monitoring the patient and following up on additional

testing and new treatment plans may be easier if relevant information is consolidated

into a single electronic system. For example, the physician may be more likely to

order one more set of imaging to rule out a possible but unlikely diagnosis, if the

process of ordering and viewing the result is made easier.

A decrease in A will increase the treatment, intensity for both diagnoses, regardless

of whether a specialist is consulted. For this reason, overall medical expenditures

may rise after HIT adoption, driven by longer lengths of stay, or higher expen-

ditures on diagnostic testing, medications, and surgical treatment. I will test for

expenditure increases in each of these categories. When financial incentives associ-

ated with capitation payments drive the treatment intensity to be lower than then

health-maximizing optinun, then this reduction in A will improve patient health by

increasing treatment intensity. On the other hand, in a fee-for-service setting, there

may be over-provision of medical treatment before HIT adoption; HIT could further

amplify this mechanism, thus reducing patient health outcomes.

Proposition 3. Clinical decision support may reduce the noise in the primary physi-

cian's signal of the patient's needs o . This will reduce the likelihood that a specialist

is called and reduce medical expenditures. The total impact on patient health is tech-

nically ambiguous, but it is likely that improvements in health would dominate.

Clinical decision support software may have different effects on care delivery than

electronic records. In particular, clinical decision support could significantly decrease

the specialist's advantage, by making information about diagnosis and treatment of a



wide variety of conditions easily accessible to all care providers. The primary physi-

cian may feel reassired that the reminders and information available in the decision

support software improve his ability to treat a patient with a medical condit ion which

is less common or familiar to him. In the model, this is represented by a reduction

in 2111 E,p

By improving t he primary physicians ability to recognize the patient's optimal

treatment, decision support will reduce the likelihood that a specialist is called. With

fewer specialists conslted, decision support may reduce costly coordination failures,

medical expenditures, and redundant testing. Patients' health outcomes could either

inprove or worsen after clinical decision support adoption. The physician may stop

calling a specialist after decision support implementation to forgo the added costs

of a specialist's workup, even if the patient's health would still be improved by

the consultation. However, conditional on having the primary physician treat the

condition, the patient's health should improve after the implementation of clinical

decision support.

The propositions above highlight the effects of HIT through the three channels

cited in the existing literature. I find that the impact of these changes on patient

health and medical expenditures is theoretically anbiguous, contrary to conventional

wisdom. Thus empirical work is critical to evaluating which impulse dominates in

practice. I empirically test the net effect of these three channels by studying how the

intensity of treatment, patient health, and quality of care evolve after HIT adoption.



1.3 Data and Descriptive Statistics

1.3.1 Data sources and sample construction

I stu(dy the impact of HIT on the costs and quality of care between 1998-2005, using

data from three sources: Medicare Claims Data from the Center for Medicare and

Medicaid Studies, the Health Information and Management Systems Survey (HIMSS)

conducted by the Dorenfest Institute, and the American Hospital Association Annual

Survey.

The HIMSS tracks HIT adoption at hospitals across the country; it includes

questions about a wide variety of HIT functionalities and the timing of technology

adoption. The annual survey includes 90% of non-profit, 90% of for-profit, and 50%

of government-owned (non-federal) hospitals. The survey excludes hospitals with

fewer than 100 beds. I construct an indicator variable of HIT adoption which equals

one if the hospital has contracted either clinical decision support or computerized

patient records. As reported in Panel A of Table 1, 54% of hospitals have contracted

at least one of these two technologies by 1998, and an additional 23% of hospitals

contract HIT for the first time during the study period.

THe HIMSS data is, to my knowledge, the only broad panel data on HIT adoption

over this period. A shortcoming of the data is that although it differentiates the

adoption of many different electronic capabilities, it does not record information on

the quality of the HIT systems or the precise functionalities they include. I turn to

the 2008 survey conducted by the American Hospital Association, reported by Jha et

al. (2009a; 2009b), to understand which specific capabilities are likely to be included

in the HIT installations I observe. This smaller survey covers 2370 hospitals, as

compared to the 3880 hospitals included in the broader HIMSS data, and provides



a snapshot of HIT installations in the 2008 survey year, a few years after the end of

my study period in 2005.

Jha et al. (2009b) report, that the four most common components of electronic

patient records are demographic characteristics (fully implemented in one or imore

unit at 89% of surveyed hospitals), medication lists (68%), discharge snmnaries

(66%), and list, of current medical conditions (48.5%); these four functionalities are

highly likely to be features of the electronic record systems I observe. Daily physician

progress notes (separate from discharge summaries) are less broadly diffused (29%),

but may be a key component of about half of the record systems. Thus, electronic

record systems allow physicians to easily track a patient's course of medications,

treatment course during previouis hospital visits, and current medical needs.

The most common feature of clinical decision sulpport are drug allergy alerts (fully

implemented in at least. one unit at 68% of surveyed hospitals) and drug-drug inter-

action alerts (68%). Roughly half of the clinical decision support systems includes

clinical guidelines and reminders, such as reminders to prescribe beta blockers after

a myocardial infarction (implemented at 30% of surveyed hospitals) or provide pneu-

monia vaccines (38%). Decision support should improve the treatments primarily by

ensuring that prescriptions are appropriately targeted and consistent with current

standard of care guidelines.

I link the HIT adoption survey to data on all Part A and Part B Medicare claims

for a 20% sample of patients over eight years, from 1998-2005. The Medicare claims

data allows me to construct measures of patient health, medical expenditures, and

the quality of hospital care. Because HIT adoption is observed at the hospital-level,

I cannot observe which outpatient care providers are linked to an interoperable HIT

system. For this reason, my analysis focuses on patients receiving inpatient care. The

sample includes patients adnitted to a hospital with a primary diagnosis of acute



myocardial infarction, stroke, hip fracture, lung cancer, colon cancer, gastrointestinal

hemorrhage, or pneuionia. This set of diseases was chosen following previous work

such as Baiker and Chandra (2004) because hospitalization for these conditions is

likely to be a good proxy for disease incidence. I follow all inpatient and outpatient

Medicare claims for these patients for one year following their first in-sample hospital

admission.

In addition to studying this inpatient population, I track the use of outpatient

preventive care services performed in the full 20% sample of Medicare recipients. For

the study of outpatient preventive care, I analyze the subset of services performed

by institutional providers, i.e. hospitals, for which I observe the HIT adoption status

of the institution. I focus on mammography and colon cancer screenings, as these

services are commonly provided on an outpatient basis within a hospital setting.

Limiting the primary analysis to Medicare patients does reqmire compromising

the breadth of the population studied. If HIT has heterogeneous effects which depend

on the patient age group, then a limitation of this analysis is that it only identifies

effects on the elderly population. The benefit of using Medicare data is the rich set

of claims observable in this data allows me to measure the effects of HIT on a broad

range of relevant outcome variables, in a panel data setting. In addition, Medicare

enrolled 15% of the US population and accounted for 20% of total health spending

in 2007, fractions that are likely to grow as the population ages. Lastly, elderly

patients are highly likely to have multiple medical problems, putting them at greater

risk for the coordination failures and mistakes that health IT is specifically designed

to prevent.

Lastly, I complement the Medicare claims and HIMSS data with data from the

annual American Hospital Association (AHA) survey. The AHA survey allows me to

measure several key hospital characteristics, including hospital investments in other



diagnostic and therapeutic technologies, staffing levels, and total number of patient

adlissions.

Data are matched across these three sources using the hospital's Medicare provider

number. Patients are indicated as exposed to HIT according to the adoption status

of the admitting hospital, where they received inpatient treatment. HIT adoption

statius is observed for a sample of 3880 hospitals. I was able to match 90% of Medi-

care inpatient stays to the IT adoption status of the admitting hospital. There are a

total of 2.5 million individuals in the inpatient sample, each of whom is tracked for

one year following their hospital admission.

1.3.2 Summary Statistics

Table 1 provides an overview of hospitals' 1998 baseline characteristics by their adop-

tion status. Adopting hospitals are larger on average than non-adopters, with twice

as many inpatient beds, and an average of 8300 annual admissions compared to 3300

admissions for non-adopters. Adopters are more likely to be academic hospitals, be

designated as a trauma center, and have adopted PET, MRI, and CT scanners. New

scanners and new HIT systems both require large fixed cost investments, which may

be more profitable for larger hospitals.

Patient characteristics do not differ as dramatically across hospitals. Comparing

columns (1) and (2), adopters serve a slightly younger and more racially diverse

population. Consistent with the younger population, adopters have a 0.7 percentage

point lower one-year mortality rate amongst in-sample patients, as reported in Panel

D. Total medical expenditures in the one year following an inpatient admission are

30% higher for patients at adopting hospitals.

Adopting hospitals offer more intensive treatment in the pre-period along a num-



ber or margins, including more ordering of electrocardiograms, longer hospital stays,

and more )hysicians evaluating each patient. In addition, adopters have notably

higher self-reported conIplication rates, with at least. one code indicating a con-

plication reported for 6.5% of patients, as compared to 4.4% of patients amongst

non-adopting hospitals. By contrast, the rate of self-reported adverse drug events is

not higher amongst adolting hospitals.

The pre-period differences between adopters and non-adopters suggest that it

will be important in the remaining analysis to control for baseline differences and

allow for the possibility of differential trends across hospitals with different adoption

statuses. In addition, I will show that my results are robust to omitting the set

of non-adopting hospitals from the estimation sample. The estimates become less

precise when non-adopters are removed, so for this reason, I include them in the main

results. I will further discuss the strategies I use to account for this heterogeneity in

Section 4.1.

Two striking characteristics of this population indicate that it is particularly

well-suited to identifying the impact of HIT. First, these patients are quite ill, with

a 10% mortality rate in the baseline year. Thus, improvements in health may well

be expected to occur along the margin of one year mortality, making survival a

reasonable indicator of health in this sample. Second, the average patient in this

sample sees over ten unique physicians during their admission and the year following.

The large number of providers per patient suggests that there is significant scope for

coordination failures within this population, if information is overlooked or missed

as the patient shuttles between different doctors.



1.4 Empirical Results

1.4.1 Empirical Estimation Strategy

To examine how HIT affects medical expenditures and patient health, I use a fixed

effects regression model as follows:

Yht = ah + #1HlTht + Nt + Xhto + pIHITAdopterbYrt + QhYrtv + Cht (1.8)

Yht is the outcome variable for a hospital h at time t. ah are hospital fixed effects.

HITht is a binary variable equal to one if a hospital has contracted either a clinical

decision support or an electronic medical records system in the current year or in an

earlier year. 7, is a vector of state-year fixed effects. Xht is a vector of hospital and

patient characteristics. I control for the hospital's investment in CT, MR1, and PET

scans, as well as its status as a trauma hospital. Included patient characteristics are

1-year age bins, race, sex, and primary diagnosis. HITAdopterh is a dummy variable

which equals one if the hospital has adopted HIT by the end of the study period

in 2004; this variable is interacted with a linear time trend. Lastly, Qh is a vector

of hospital size dumnmy variables, indicating which quartile the hospital falls into

according to number of inpatient admissions in the 1998 base year; these variables

are also interacted with the time trend.

This specification is analogous to a difference-in-differences framework. The key

coefficient of interest is #1, which indicates how the outcome variable changes af-

ter a hospital has adopted health information technology. I compare the outcome

variable within an adopting hospital before and after HIT adoption, controlling for

the estimated counterfactual time trend the hospital would have experienced, had

it not adopted HIT. Included state-year fixed effects capture state-specific shocks



and trends in medical practice patterns or unobserved characteristics of the patient

population. Allowing unrestricted, differential trends by quartile of hospital size

and the hospital's eventual adoption status allows for different types of hospitals to

experience different trends.

Identification of equation 1.8 is based on the assumption that adoption of HIT

is not coincident with other discontinuous changes in lospital organization, provider

quality, or unobserved patient characteristics that would affect the measured outcome

variables. Hospitals of the same size quartile, same eventual adoption status, and

in the same state nmist be on parallel trends in the absence of HIT adoption, after

controlling for observable changes in patient diagnoses and demographics.

In addition to including state*year fixed effects, I have also run every specification

including county*year fixed effects, and the results do not change substantially. An

F-test rejects the joint significance of the county-year fixed effects, after the inclusion

of state-year effects, so county-year fixed effects are omitted from the specifications

reported here.

Observations are at the hospital-year level based on the annual average of each

variable across all in-sample patients admitted to that hospital. Accordingly, obser-

vations are weighted by the number of in-sample patients. There are 27,317 obser-

vations in total. Standard errors are clustered at the hospital level.

I report a second set of results which estimates a full trend-break model, as

follows:

Yht = ah + #1HlTht + #2HIThtYrt + y, + Xht6 + pHITAdopterYrt + QhYrtv + Eht

(1.9)

The regression above includes both fl and #2 terms, allowing not only for a shift in

the outcome variable at the time of HIT adoption, but also a break in the time trend.



If HIT adoption gradually changes hospital behaviors each year after adoption, then

estimating #2, the trend break, will allow more accurate estimates of the full effects

of HIT.

In addition to reporting the two sets of regression estimates described above, a

related set, of graphical results are included. These graphs are based on regressions

which include the same set of fixed effects and controls listed in Equation 1.8, but

replace the key independent variable with a series of dummy variables indicating the

year in normalized time. The coefficients on these normalized year dummy variables

provide a year-by-year estimate of the treatment effect in event time.

This series of graphs provides a nonparanetric way of visually assessing how the

outcome variable evolves after HIT adoption. The HIMSS survey data measures the

year in which HIT was first contracted from the software vendor; installation and

implementation may be rolled out gradually in the year or two following the initial

contract. Thus, these figures are useful for assessing whether the full impact of HIT

is not realized until a few years after adoption.

Each of these specifications remains vulnerable to the possibility that some un-

observed characteristic of the hospital or its patients changed right at the time of

HIT adoption, thus confounding the estimated treatment effects. I deal with this

threat to validity in three ways. First, I directly control for observed patient and

hospital characteristics that may be evolving at the time of HIT adoption. Second,

in Section 1.4.5, I demonstrate that these observable characteristics are not changing

discontinuously at the time of HIT adoption. However, both of these approaches are

vulnerable to the possibility that unobserved patient. characteristics are changing at

the time of HIT adoption. To address selection on unobservables, I present results

that aggregate the unit of observation from the hospital to the county to account

for the possibility that patient sorting may be more severe across hospitals within a



county, rat-her tlhan across counties. I show that. the conclusions do not change in

the county-aggregated specifications.

Last ly, to improve the power of my tests and reduce the rate of false positive

results, I group outcome variables into three conceptual categories and create stan-

dardized effect measures across these outcomes. The three domains are: intensity

of treat mient, quality of inpatient hospital care, and the frequency of outpatient

preventive screening. These groupings allow me to perform omnibus tests analyz-

ing whether HIT is affecting treatment patterns in a particular direction within a

domain. I report both separate results for each outcome variable, as well as the ag-

gregated standardized effect. I account for the cross-equation covariance structure of

the error terms when estimating standard errors for each outcome within a domain.

Standard errors remain clustered at the hospital level.

The standardized effect is constructed by combining the estimated coefficients

across each outcome variable within a domain. In particular, the standardized effect

equals:

1 i E {1, 2} (1.10)
jE J

where #15 is estimated by Equation 1.8 for outcome variable j, or similarly for both

#1l and #2j estimated by Equation 1.9. oa is the standard deviation of the outcome j
amongst the hospitals that eventually adopt HIT, in the baseline year of 1998, prior

to their adoption. Dividing by the standard deviation harmonizes the units across

the diverse outcome variables. J is the total number of outcomes within a domain.

1.4.2 Impact of HIT on Mortality and Expenditures

Table 2 reports the results on patient health and medical expenditures. Columns

(1) and (3) report results from estimating Equation 1.8, columns (2) and (4) report



the full trend-break model specified in Equation 1.9. Because most outcomes do not

display significant breaks in slope of the time trend after HIT adoption, I focus on

the Equation 1.8 specification throughout the discussion.

The relationship between nedical expenditures and HIT is presented in columns

(1) and (2) of Table 2, as well as in Figure 1. HIT is associated with initial increases

in spending of around 1.3% (p=5.6%), in column (1). The 95% confidence interval

suggests that there are no substantial decreases in expenditure, with the lower-bound

at a 0.03% decrease and the upper bound a 2.6% increase. Column (2) estimates a

larger, significant initial increase in expenditure of 1.8%, but suggests that adopters

eventually return to the baseline trend, although the change in the trend is not

statistically significant. The three-year effect is reported at the bottom of the table

for the trend-break specifications. The three-year effect is within my observation

sample for most adopting hospitals, so I focus on that estimate when analyzing the

trend-break model. In column (2), I find that three years after HIT adoption, the

increase in expenditures is estimated to be 0.8%, although a t-test fails to reject the

null hypothesis of no change in expenditures.

Figure 1 illustrates the expenditure result graphically. The trend in expenditures

appears to accelerate in the few years immediately following adoption, although the

acceleration in the trend is largely within the bounds of the estimated 95% confidence

interval. I will further unpack the relationship between HIT adoption and medical

expenditures in Section 1.4.3, analyzing which services drive the estimated increase

in expenditure.

Results reported in Table 2, columns (3) and (4), find no significant relationship

between HIT adoption and 1-year patient mortality, contrary to the predictions of

many observers. The point estimate in Table 2, column (3) suggests that HIT is

associated with a 0.03 percentage point reduction in the mortality rate. The 95%



confidence interval on the mortality effect in Table 2, column (3), bounds an effect

not larger in magnitullde than a decrease of 4 deaths or increase of 3 deaths per 1000

patients, relative to a mean of 100 deaths per 1000. Recall that this is an acutely ill,

elderly population, so the baseline mortality rate is quite high. Figure 2 confirms the

small, insignificant effect size, with the mortality rate in years 0 through 5 remaining

very close to the baseline levels before HIT adoption.

The modest increases in medical expenditures, coupled with the lack of signifi-

cant improvement in the mortality rate, suggests further evidence of flat-of-the-curve

medicine. By reducing the effort cost of intensive treatment, HIT may encourage the

provision of care, even if the medical returns to this additional care are low. The

lack of a mortality response to the expenditure increase is consistent with evidence

from many recent studies (Murphy and Topel 2003; Baiker and Chandra 2004). An

alternative explanation of the increased expenditures is that HIT systems improve

billing capture, without changing medical behavior. This behavior would also drive

increased expenditures with no commensurate improvement in mortality rates.

In sum, although I find no evidence of cost savings or substantial mortality ben-

efit, the cost and mortality estimates cannot exclude the possibility that HIT is a

valuable investment. To further investigate the potential impact of HIT, I analyze

a number of different measures of how HIT may change the intensity of treatment

and quality of care provided. If HIT is to improve health, it may do so through a

number of channels previously outlined: reducing adverse drug events, medical coin-

plications, and readmissions. If HIT is associated with cost savings, we may observe

shorter lengths of stay and less repeated imaging. Testing these specific channels will

illuminate the cost/benefit tradeoffs by providing additional evidence of the impact

along both of these margins.



1.4.3 Impact of HIT on the Intensity & Efficiency of Care

Medical Expenditures

The increase in medical expenditures reported in Table 2 could be driven by sev-

eral factors: more screening and diagnostic tests, longer hospital visits, increased

spending on treatment interventions such as medications and operations, or higher

spending on outpatient care and physician services. Table 3 analyzes separately the

relationship between HIT adoption and each of these categories of spending. I find

that HIT is associated with temporary increases in three of the four categories of

spending, but the magnitude and statistical significance of the increase varies con-

siderably by category.

Spending on diagnostic testing and imaging increased by 1.6% following HIT

adoption, or about $160 per patient, significant at the 10% level, as estimated in

the column (1) specification. Figure 3 illustrates the trend expenditure growth on

diagnostic testing, after HIT adoption. The trend break model estimated in Table 3,

column (2), suggests that expenditure growth is slower amongst adopters after HIT

adoption, although the coefficient is small and imprecisely estimated. This category

of expenditure has the highest estimated 3-year effect, a 1.3% increase, although the

3-year estimate is not statistically distinguishable from zero. The estimated increase

in diagnostic testing accords with the model prediction that HIT may reduce the

effort costs of ordering and following additional tests, and, as a result, may increase

a physician's propensity to order a more intensive work-up. The estimate suggests

that any potential, unobserved decrease in redundant testing is counteracted by a

larger overall increase in testing, and HIT is not associated with substantial cost

savings due to less frequent imaging.

I also find evidence of increased expenditures on hospital stays, although the asso-



ciation is not statistically significant at conventional levels in either specifications. In

particular, it appears that there is an initial bump in expendit ures on inpatient care,

followed by a gradual return to the baseline trend. The initial expenditure increase

is about 1.1%, which is smaller than the estimated effect on diagnostic imaging.

By three years post-adoption, inpatient expenditures are estimated to be only 0.7%

higher amongst adopters, which is not statistically significant.

A similar pattern emerges for expenditures on medications, durable medical

equipment, operating room staffing, and blood transfusions. This expenditure in-

dex, with results reported in Table 3, columns (5) and (6), measures spending on

treatments (as opposed to diagnosis or monitoring). In the column (5) specification, I

find an increase of 1.5% higher spending. Again, the full trend-break model indicates

a gradual return to the baseline trend. After three years, expenditures on treatment

interventions and medications are only 0.8% higher amongst HIT adopters, which is

not statistically distinguishable from zero.

Physician services and outpatient care experience the smallest change in spend-

ing after HIT adoption. The point estimate in column (3) suggests a decrease in

expenditure of 0.9%, but the effect is not statistically distinguishable from zero.

This category of spending on professional services and outpatient care does not ex-

perience any of the expenditure growth found in other categories, and indeed, may

slightly offset the other increases in expenditures.

In slim, there is evidence of increased spending associated with more intensive

diagnostic work-ups and interventions. Inpatient hospital expenses and outpatient

physician services do not change as much after adoption. There may be greater

scope for increases associated with testing, imaging, operations, and inpatient phar-

macy, since inpatient reimbursements are largely determined by the capitation-based

Medicare diagnosis related group payments.



Usage of Diagnostic Testing

As described in the theory section, HIT is predicted to increase the reliance on

diagnostic testing and imaging by increasing the intensity of treatment, but it is

also predicted to reduce the rate of redundant testing. The net effect of these two

impulses on diagnostic expenditures was found to be positive in the above section.

In this section, 1 investigate the source of the increase in spending on diagnostics

by analyzing electrocardiograms (EKs). Results are reported in Table 4. EKGs

are a very common form of diagnostic testing amongst the sampled patients, which

measure the heart's rhythm and performance. The total number of EKGs per patient

increases by 0.04 after HIT adoption, a result which is significant at the 5% level.

Graphical evidence on the number of EKGs performed is presented in Figure 4, where

EKG ordering appears to rise sharply following HIT adoption.

As reported in Table 4, column (3), the probability that a patient receives at

least one EKG increased by about 0.6 percentage points, significant at the 10% level.

Columns (5) and (6) look directly at the relationship between HIT adoption and

redundant testing, analyzing the propensity for a patient to receive two or more

EKGs within 30 days of their initial admission. By studying tests repeated within

a relatively short window of time, I narrow the outcome to a measure more likely

to include redundant, unnecessary testing. Although not all repeated tests are indi-

cations of redundancy, a decrease in this outcome variable would suggest that HIT

helps providers reduce repetitive testing. HIT adoption is associated with a 0.6 per-

centage point increase in the likelihood of repeated testing, although the estimate is

not statistically significant. The magnitude and statistical significance of the coeffi-

cient increases in the full trend-break model to a 0.9% increase in repeated testing

three years post adoption, significant at the 5% level. Thus, HIT adoption is not



associated with a ineasurable reduction in redundant testing.

Research )y Doyle et al. (2010) found physicians from a highly-ranked medical

school spent less money on diagnostic testing per patient than physicians from a

lower-ranked program, )t. achieved equivalent health outcomes. One explanation is

that testing may substitute for the physician's cognitive time, medical knowledge.,

or critical reasoning abilities, which could otherwise be applied to diagnosing the

patient. Providing HIT might further encourage this margin of substitution away

from cognitive time towards increased testing by making it easier to order and follow

test results. If there is a margin of substitution between testing and cognitive eval-

uation, shifting the margin may change costs without substantially affecting health

outcomes.

Taken together, these results suggest that the propensity to order an EKG in-

creased immediately after HIT adoption, and the increase came both from patients

who became more likely to have a second, third, or subsequent EKG, as well as from

patients who were more likely to receive a first EKG screen. By making tests eas-

ier to order and follow-up, HIT may encourage care providers to order more tests.

Relatedly, physicians have told me in interviews that the value of a subsequent test

is higher when they can easily view a prior test to track changes in the patient's

status. These results suggest that a major predicted source of cost savings from HIT

adoption, eliminating redundant testing, may not be realized.

Length of Stay and Reliance on Specialists

I now investigate the relationship between HIT and intensity of treatment by an-

alyzing the impact on length of stay and reliance on medical specialists. Longer

hospital stays signal a higher level of treatment intensity; results on length of stay



are reported in colmnns (1) and (2) of Table 5. HIT adoption is not associated with

any substantial change in length of stay, with the 95% confidence interval bounding

the effect between 1 hour shorter stay and 1 hour longer stay per patient, from a

mean of 7 (lays per patient.

In addition, the total number of physicians seen within 1 year of admission does

not change after HIT adoption. For this outcome, I separate the effects of clinical

decision suIpport (CDS) and electronic medical records (EMR) in the econometric

model, since theory predicted that these technologies would have opposite effects

on the number of specialists consulted. Results from this specification are reported

in the bottom panel of Table 5. The point estimates are quite small in magnitude

and not statistically significant. The coefficients have the opposite sign relative to

the predictions of the theory, but the effects of EMR and CDS are not statistically

distinguishable from each other, and each 95% confidence interval is bounded close

to zero.

Since there is no evidence of significant heterogeneity of the effects of EMR and

CDS. I combine both software types into the usual HIT adoption indicator to estimate

the standardized composite effect. I find no significant relationship between HIT

adoption and this measure of treatment intensity, as reported in Table 5, columns

(5) and (6), as well as Figure 4. The 95% confidence interval around the estimate

is bounded between a 0.01 standard deviation decline and 0.02 standard deviation

increase in the intensity of treatment. This result confirms the finding that HIT

adoption is not associated with economically substantial or statistically significant

reductions in the costs and efficiency of care delivery, over the study period.



1.4.4 Impact of HIT on Hospital Quality

Quality of Inpatient Care

In this section, I analyze the impact of HIT on three measures of the quality of in-

patient hospital care: 30-day readmission rate, complication rate, and adverse drg

events. The results are reported in Table 6. Consistent with the null results on mor-

tality, I find no impact of HIT on the 30-day readmission rate. A high readmission

rate may indicate inadequate treatment of a patient's needs during their admission,

and as such, poor quality of care. Incorrect prescriptions for the patient's home reg-

imen and inadequate followup can also drive rising readmission rates. By improving

the quality of inpatient care and making it easier to track the patient's medication

list and construct an appropriate home regimen, HIT could reduce readmission rates.

The 95% confidence interval bounds the coefficient between a 0.3 percentage point

decline and a 0.06 percentage point increase in the readmission rate, from a mean

of 8.4%. The lower bound suggests any reduction in readmission rate is not greater

than 1 fewer readmission per 330 patients, from a mean of 28 readmissions per 330.

I similarly find no association between HIT adoption and reported complication

rates, as reported in columns (3) and (4) of Table 6. Following Hougland et al.

(2009), 1 measure the frequency of medical complications based on self-reported

ICD-9 codes, which include errors (e.g. foreign object left in body, contaminated or

infected blood transfusion) and complications (e.g. hemorrhage or infection due to

procedure, abnormal reaction to surgery). The 95% confidence interval on medical

complication rates bounds the estimate very close to zero: between a 0.4 percentage

point reduction and 0.04 percentage point increase, from a mean of 6.5 percentage

points.

Next, I analyze rates of adverse drug events. Rates of adverse drug events are also



constructed on the basis of self-reported ICD-9 codes, and include failures in dosage,

accidental poisoning b y drugs, or complications caused by the use of a nedication

(Hougland et al. 2009). This outcome is perhaps the one most, directly linked to

the specific features of the HIT software-medication lists, drug-drug interaction re-

minders, and drug allergy flags are all common components of popular HIT systems.

In columns (5) and (6), 1 estimate slight increases in adverse dIrug events associated

with HIT adoption. In column (5), the increase is a 0.14 percentage point increase,

significant at the 10% level, which is equivalent to a 9% increase in the rate of ad-

verse drug events. The effect is only marginally significant, but suggests that HIT

adoption is not associated with reduced risk of pharmaceutical mismanagement.

Lastly, the standardized composite effect summarizes the findings across these

three measures and finds no evidence of improvements in the quality of inpatient

care. The composite effect is bounded between a -0.03 and 0.02 standard deviation

change in the quality of care. Indeed, Figure 5 illustrates the flat path of the quality

of care composite after HIT adoption.

Quality of Outpatient Preventive Care

Another dimension along which HIT has been predicted to improve the quality of

care is by increasing adherence to preventive care guidelines (cf. Hillestad et al.

2005). EMR may increase the use of appropriate vaccines and screening services

by making it easier for the clinician to observe whether the patient has recently

received the service. CDS can provide reminders to physicians to order preventive

care. Estimates from Bigelow et al. (2005) suggest that 52 million Americans over 50

have not received appropriate screening for colorectal cancer; and 19 million women

over 40 have not had the recominended screening for breast cancer. It is thought



that there are large health benefits to receiving these early detection and preven-

tive care services. Furthermore, if HIT can be shown to influence medical practice

patterns for these widely accepted services, then it may hold promise for guiding

physicians towards the recommended, evidence-based course of action, even as the

specific guidelines and treatments evolve.

I study the impact of HIT adoption on the usage of colon cancer screenings and

diagnostic mammograms billed by institutional providers for outpatient, care. These

results are reported in Table 7. An observation in these regressions is a hospital-

year, and the outcome variable is the log count of screening services provided at

that hospital. The sample is restricted to hospitals which bill at least one outpatient

colon or breast cancer screening in every year from 1998-2005. Regression specifi-

cations for these outcome variables are similar to those described in Equations 1.8

and 1.9. Rather than controlling for the demographic characteristics of the inpatient

population, I substitute a control for the size of the outpatient population serviced.

Controlling for the number of outpatients seen at that hospital in the previous year

ensures that an increase in the patient population is not confounded with higher

rates of preventive care provision.

I find no significant effects of HIT on the provision of cancer screenings. The

point estimates suggest modest increases in mammography screenings and small

decreases in colon cancer screenings, but the effects are imprecisely measured and not

statistically different from zero. In Table 7, the upper bound of the 95% confidence

interval is a 5% increase in colon screenings and a 7% increase in mammograms.

Increases of this magnitude would make slight progress towards bridging the large gap

between the preventive care recommendations and the care that is actually delivered.

The standardized effect aggregating the two types of cancer screenings is reported

in columns (5) and (6), as well as in Figure 6. I do no find evidence of a substantial



increase in the screening rates, aggregated across the two outcomes. The point

estimate suggests 1% of a standard deviation increase in screening, with a confidence

interval boinding a 0.02 standard deviation decline and a 0.04 standard deviation

increase. In sum, I do not find strong evidence that HIT adoption is associated with

increases in preventive care screenings, although modest effects cannot be ruled out.

1.4.5 Threats to Validity and Extensions

HIT Adoption and Patient Composition

The results suggest that HIT adoption is not associated with improvements in patient

health, care quality, nor reductions in medical expenditures over the study period.

One potential explanation for these findings is that after HIT adoption, the patient

population being treated at, the hospital becomes more complexly or acutely ill, along

dimensions not fully captured by the included patient demographic and diagnosis

controls. It could be that very ill patients select into hospitals that have adopted

HIT systems, or that, hospitals anticipate a change in their patient population and

adopt HIT in response. These more ill patients would have worse health outcomes

and higher medical expenditures, and could mask any improvements in care related

to HIT adoption.

To address the concern of patient sorting, I test directly for compositional changes

in the patient population after HIT adoption. Using patient characteristics as the

outcome variables of interest, I run regressions analogous to the specifications in

Equations 1.8 and 1.9. For these results, I omit patient and hospital characteris-

tic controls from the right-hand side, in order to test directly for changes in these

variables.

Results of these regressions are reported in Table 8, Panel A. In columns (1)



and (2), I find that HIT adoption is associated with slight 0.9% increases in the

number of Medicare patients treated at the hospital. The increase is not. statistically

distinguishable from zero, but may suggest that HIT adopting hospitals are growing

more quickly at the time of adoption.

However, even if adopting hospitals do serve a slightly growing patient population,

I find no evidence that the patient disease or demographic characteristics change after

HIT adoption. In columns (3) and (4), 1 test whether the diagnosis related group

(DRG) weight associated with the patient's initial hospital admission increases after

HIT adoption. Medicare calculates the DRG weight to facilitate its capitation based

reimbursement for inpatient, admissions. Reimbursenient is a linear function of the

DRG weight multiplied by a cost index and adjusted for geography. Hence, the

DRG weight provides an indication of how complex the patient's medical needs are,

since it is proportional to the usual costs of treating a patient with that particular

constellation of diagnoses. Any increases in DRG weight could be evidence of either

an increasingly complex and sick underlying patient population, or "up-coding" a

patient's medical conditions enabled by the HIT software.

I find no evidence of changes to the diagnosis related group weight associated

with HIT adoption. The point estimates are very small, a 0.005 increase in DRG

weight, from a mean of 1.52, or less than a 0.3% increase in the estimated costs. The

95% confidence interval bounds the effect between a 0.006 decline in DRG weight

and a 0.016 increase. The DRG weight does not indicate systematic changes in the

illness of the underlying patient population.

I estimate a series of regression equations using patient demographic character-

istics as the outcome variables of interest, including age, race, and sex. I then test

the joint significance of the coefficients estimating the impact of HIT adoption on

this set of characteristics across each equation, in a seemingly unrelated regression



framework. I cannot reject the nill hypothesis that. there is no change in patient

demographics after HIT adoption; the p-value is 0.500 in the basic Equation 1.8

specification.

Similarly, I find no evidence of changes to the hospital's case-mix after HIT

adoption. I test the joint significance of the coefficient on HIT adoption across a

series of regression eqiuations which use indicator variables for the patient's diagnosis

as outcome variables. The p-value of this test is 0.967, indicating that I cannot reject

the null hypothesis that there is no relationship between HIT adoption and case-mix.

The evidence presented in this section suggests that although adopting hospitals

are growing at a faster rate than non-adopters, observable characteristics of the

patient, population are not changing abruptly right at the moment of HIT adoption.

It is unlikely that changes in patient composition are driving the earlier null results

on health outcomes and positive findings on expenditures and imaging frequency,

although I cannot rule out the possibility that patient selection is changing along

unobservable dimensions at the time of adoption.

HIT adoption and Other Hospital Investments

A second factor that may potentially confound estimates of the effect of HIT is

that hospitals that choose to invest in HIT may be making other changes to their

organizations. If hospitals were simultaneously investing in new imaging technology,

for example, then these changes could be driving the estimated increases in diagnostic

testing. In Table 8, Panel B, I analyze whether hospitals adopting HIT are also

simultaneously investing in other costly medical technologies.

I construct an index of investment in medical technology, which is the sum of

three indicator variables for whether the hospital has adopted a positron emission



tomography (PET) scanner, magnetic resonance imaging (MIl) scanner, and con-

puted tomography (CT) scanner. Although HIT adopters are more likely to have

each of these three technologies in the baseline year, investment in these technolo-

gies is uncorrelated with the timing of the HIT adoption decision. As reported in

columuns (1) and (2), HIT adoption is negatively related to the technology invest-

ment index, but the estimated coefficient is small and statistically insignificant. This

finding alleviates concerns that the reported increases diagnostic imaging are driven

by contemporaneous investments in imaging technology by adopting hospitals.

In columns (3) and (4), 1 analyze whether HIT adoption is related to a hospital's

status as a trauma center. To obtain designation as a trauma center, a hospital

must have the resources to evaluate and stabilize severely injured patients, including

the capability for emergency resuscitation, surgery, and intensive care. Becoming a

trauma center requires a hospital to maintain a specialized staff of physicians and

surgeons large enough to provide uninterrupted emergency coverage, and may also

require investment in a helicopter landing pad and other specialized equipment.

HIT adoption is negatively associated with the likelihood of being a designated

trauma hospital. HIT adopters are 3 percentage points less likely to be designated

trauma centers after adoption, significant at the 5% level. One explanation is that

the large investments made in HIT adoption crowd out investment in becoming a

designated trauma center. Trauma centers admit more critically ill patients, and thus

may have worse health outcomes than other hospitals. The fact that HIT adopters

are less likely to become trauma centers suggests that adopters may have a healthier

patient population. This will bias the results towards finding a positive impact of

HIT on health. To mitigate bias from this confounding factor, I directly control for

trauma hospital status in all of the regression specifications reported in earlier tables,

although adding this control does not materially change the results.



Lastly, I study whether hospitals adjust staffing inputs around the time of HIT

adoption. Because the majority of hospitals do not directly employ their physician

staff, the AHA survey data does not measure the number of physicians who are

practicing and admitting to a particular hospital. The available measures of staffing

include nursing and other support, facilities, and managerial staff. In columns (5)

and (6), I find that HIT adoption is associated with modest, though statistically

insignificant, 1.5% increases in staffing levels. This increase could be driven by the

growing patient population or the increased need for IT support staff during the HIT

implementation period.

In columns (7) and (8), I restrict the analysis to nursing staff. The number of full-

time equivalent nurses increases by about 1.3% after HIT adoption, but the effect

is imprecisely estimate(l an(l not distingulishable from zero. There is no evidence

that HIT adoption is associated with reductions in the nursing staff, despite the fact

that some of the functions automated by HIT systems may replace bookkeeping and

report generating work previously done by nurses.

1.4.6 Robustness Tests

I further probe the robustness of my findings to the possibility of patient sorting

outlined above. In particular, I aggregate the unit of observation from the hospital

to the county level. If there is a greater scope for sorting across hospitals within a

county, but little scope for sorting across counties, than these results will mitigate

bias due to unobserved patient sorting.

These results are reported in Table 9, Panel A. The regressions estimated here

echo the specifications in Equations 1.8 and 1.9, however instead of a binary variable

for HIT adoption, the adoption variable now equals the fraction of patients within the



county treated at an adopting hospital. I omit the controls for differential trends by

quartile of hospital size, since the observations are now aggregated to the county level.

The point estimates are quit e similar to those reported in earlier tables, although

the standard errors are larger, making the findings less precise. Because aggregating

to the county reduces precision without changing the overall findings, I prefer the

hospital-level analysis for my main results.

In columns (1) and (2), 1 estimate a 1% increase in medical expenditures as-

sociated with HIT adoption, which is close to the 1.3% increase estimated in the

hospital-level results. Similarly, the coefficient on patient mortality is extremely

small in magnitude. Lastly, I find no economically large or statistically significant

change in the intensity of treatment or quality of inpatient care standardized out-

comes.

A second set of robustness checks is performed in Table 9, Panel B. Here, I test

the concern that heterogeneity across adopting and non-adopting hospitals makes

non-adopting hospitals a poor control group. Omitting the non-adopters from the

regressions, I can estimate the impact of HIT using only adopting hospitals to esti-

mate the time trends and impact of control variables.

The results omitting non-adopters are extremely close to the baseline regression

estimates. HIT is associated with a 1.3% increase in medical expenditures and a

0.03 percentage point decline in the mortality rate, as before. The impact of HIT

on the intensity and quality of care standardized outcomes remains small and not

significant. The results presented earlier are not driven by the inclusion of never-

adopting hospitals in the control group. In light of the consistent results, I prefer

including non-adopters in the baseline specifications to improve the precision of the

estimates.



1.4.7 Testing for Heterogeneous Returns to HIT Adoption

In the final set of results, I test whether the returns to HIT adoption are heteroge-

nous either by the type of hospital adopting the software or the type of software

being adopted. For the first set of results, reported in Table 107 Panel A, I test for

heterogeneity in the impact of HIT by hospital size. One might predict that large

hospitals have a larger ex ante coordination problem than small hospitals, so there

could be further scope for HIT to benefit large hospitals. I compare hospitals in

the top and bottom quartile based on the number of inpatient admissions reported

in the AHA survey in the 1998 base year. Again, I run the regressions separately

for each quartile and then test the equality of the coefficients across the two equa-

tions. Along this dimension, I do not find significant heterogeneity in the impact of

HIT. Small hospitals experience larger increases in expenditures and larger declines

in mortality, but the differences in the effect size between large and small hospitals

are not statistically distinguishable.

Panel B tests whether hospitals with more comprehensive HIT installations ex-

perience greater returns to adoption. A leading hypothesis for why existing HIT

systems appear to have modest, if any, impact on the quality and costs of care is

that many of the current systems are not comprehensive enough to realize the full

benefits to HIT adoption. Electronic medical records, clinical decision support, and

a clinical data repository are thought to be three key ingredients for an effective

HIT system (Fonkych and Taylor 2005). A clinical data repository integrates all

electronic patient information into a single interface, and is thus thought to make

the decision support and electronic record systems easier to use.

I test whether the effects of adopting a comprehensive HIT system, with all three

software packages contracted, differ from the effects of the basic HIT components



studied in the previous sections. I code a biinary variable indicating that a hospital

has adopted a comprehensive HIT system if all three software packages are in place.

Regressions follow the same structure outlined in Equations 1.8 and 1.9, but now

each equation also includes the binary variable for adoption of a comprehensive HIT

system. In addition, the trend-break model, based on Equation 1.9, includes an

interaction between the comprehensive HIT adoption and normalized time.

I find no evidence that comprehensive HIT systems are associated with greater

benefits to patient health, as compared to basic installations. Comprehensive HIT

adoption is associated with more modest increases in expenditures than basic HIT

systems, suggesting the full installation dampens the cost increases associated with

the more limited installation. However, I cannot reject the null that the impact of

the comprehensive system is equivalent to the impact of the basic system; the p-value

of the test is 0.094.

Comprehensive HIT systems are associated with very small increases in mortality

rates, where basic HIT systems are associated with a reduction in the mortality rate.

However, both point estimates are very small and not statistically significant, and the

difference between them is also not significant. The evidence presented in this section

does not suggest that more comprehensive HIT systems will have substantially larger

returns than the systems studied in the main results. 2

1.5 Interpretation and Policy Predictions

On the whole, my results suggest that hospital HIT installations between 1998 and

2005 made little progress towards improving the quality and efficiency of the Ameri-

can healthcare system. HIT adoption was not associated with better health outcomes
2 For a test of other alternative definitions of an HIT system, see results in Appendix Table Al.



or reduced costs. This runs contrary to the expectations of many policynakers and

the optimisin of the academic literature.

At the OLS estimated values of the coefficients, HIT adoption cost $1.9 million in

additional spending for every additional life saved, not accounting for the installation

costs of an HIT system. This is above the estimated $1.5 million value of remaining

life for the average 75-year-old, as estimated by Murphy and Topel (2006), and above

the $1.56 million value per statistical life estimated by Ashenfelter and Greenstone

(2004). My in-sample patients are likely to have higher mortality rates than the

average person of the same age, due to the selection on illness requiring inpatient

admission, and so the Murphy & Topel value of a statistical life likely overstates the

true value. Ashenfelter and Greenstone's estimate adjusts for neither patient age

nor illness; thus it also provides an upper bound for the value relevant to the study

population.

Accounting for the costs of installing an HIT system, the cost-benefit analysis

becomes less attractive. I estimate the costs of installation and maintenance at.

$15 million over 10 years, using the more conservative estimates from the Southern

California Evidence-based Practice Center (2006), or about $190 per inpatient ad-

mission. Including these expenses, an HIT system costs an estimated $2.5 million

per life saved, at the estimated coefficient values.

One potential explanation for the low returns to HIT adoption is that unlike in

other industries, where there were direct profit incentives to maximize the productive

gains of a new technology, the incentives for physicians to use HIT as a tool to reduce

billing and improve quality of care may be much weaker. The model presented in

Section 2 of this paper demonstrated that HIT does not mechanically reduce billing

costs, contrary to the conventional wisdom. Physicians have little incentive within

most health care organizations and current reimbursement structures to reduce the



intensity of treatment they provide, so there is no a priori reason to believe that they

will use HIT as a tool to accomplish this particilar goal.

Bresnahan, Brynjolfsson, and Hitt (2002) find that it is often the combination of

IT adoption and complementary organizational and technical innovation that leads

to productivity gains. Cutler (2010) applies this argument to the healthcare sec-

tor. arguing that coupling information technology with organizational change may

tremendously reduce the existing inefficiencies. Even if HIT could be a useful tool for

reducing costs and raising the quality of care in a different institutional context, these

returns may not be realized without changes to the current organizational structures

and incentives facing care providers. Future research may explore this possibility

by testing whether the returns to HIT vary across hospitals with different physician

reimbinrsement and contracting structures. For example, care delivered at amlbula-

tory surgical centers, where physicians may have ownership stakes and strong profit

incentives to increase billing, could be contrasted with care delivered by managed

care organizations or the Veterans Health Administration, where incentives are more

likely to encourage reduced expenditures.

A second explanation for this finding is that HIT systems will evolve and improve,

so future gains to adoption may greatly exceed the impact estimated here. The effects

of HIT that I measure in this paper are local to the types of HIT commonly adopted

over the study period. Within this data, I find no evidence that more comprehensive

HIT systems are associated with substantially more favorable outcomes than basic

IT installations. However, if new systems differ substantially from those currently

offered, or if there are large positive synergies to adopting many ancillary components

of an HIT system, then the results estimated here will not capture the full returns

to HIT adoption.

A third possibility is that users take time to understand the software and learn



how to apply it effectively to their own work. This is a popular explanation for the

productivity paradox of the 1980s and early 1990s, about which Robert Solow ob-

served, "We see the computers everywhere but in the pro(uctivity statistics." David

(1990) argues that information technology iay require a long time scale to realize

substantial returns, following the historical pattern of the diffusion and productivity

gains of the dynamo. This possibility is difficult to test empirically, both because

it requires a long data series, and because such a long-delayed relationship may be

difficult to distinguish from other trending factors in the data. Nevertheless, the

preceding analysis cannot rule out this possibility.

Within the limited window of the 7-year study period I analyze, the gains to HIT

adoption do not appear to change substantially in the third, fourth, and fifth years

after adoption. Indicators of patient mortality, readnissions, complications, and

errors do not trend significantly downward several years after HIT adoption, as can

be seen in Figures 2 and 5. The increase in total medical expenditures may be more

transitory, with the regression results suggesting that the initial increases may not

persist several years after adoption; however, there are no signs of substantial cost

savings, even five years after initial adoption. The results do not suggest substantially

higher returns to adoption even after physicians and nurses have had a few years to

adjust to the new software systems.

A limitation of this analysis is that I do not test how HIT affects hospital oper-

ating costs; it may, for example, reduce bookkeeping costs or increase the number of

outpatient clinic patients a physician can evaluate in a fixed amount of time. Lack-

ing data on hospital's cost structures, this paper focused on measuring the health,

quality of care, and medical billing impact.

The evidence presented here suggests that there is little social benefit to HIT

adoption in the inpatient hospital setting. Patient health outcomes do not improve



significantly; expenditures by the Medicare social insurance program do not decrease.

The argument for public subsidies of HIT adoption then hinges on the expectation

that returns to HIT adoption will be higher in the future, perhaps in part. due

to innovation induced by the regulatory requirements of the HITECH act subsi-

dies. St udying how the ret urns to HIT evolve remains a critical area of research

as the HITECH legislation goes into effect over the next decade. A complemen-

tary research agenda would investigate whether particular organizational structures

encourage higher-return adoption of HIT.

1.6 Conclusion

This study has analyzed the effects of Health Information Technology (HIT) adoption

on the quality and intensity of medical treatment, both theoretically and empirically.

It developed a model of inpatient healthcare delivery with attention to how the chal-

lenge of adapting care to a patient's idiosyncratic needs and coordinating care across

disparate providers shapes treatment plans. I integrate physician effort, medical ex-

penditures, and health outcomes into a single physician utility maximization model

that may be useful for analyzing a variety of policy interventions. The model cap-

tures several key features of healthcare production which had not previously been

unified into a single theoretical apparatus. The model provided key insight into the

potential for HIT to increase the costs of care, a prediction that has not been widely

discussed or acknowledged in the existing literature on HIT adoption.

The basis of the empirical analysis is a comparison of adopting hospitals before

and after they first contract an HIT system. The impact of HIT adoption on Medicare

patients receiving inpatient hospital care is measured using claims data from 1998-

2005. Medical expenditures increase by approximately 1.3% after HIT adoption, in



)articular due to increases in diagnostic testing anl operative and pharmaceutical

intervention. The cost increases are imprecisely imeasured though, and may not

persist several years after adoption. The quality of hospital care, as ineasured b-y the

mortality rate, readnissions. adverse drug events, and complications, does not change

after HIT adoption. These results are robust to alternative specifications, including

aggregating to the county level to mitigate potential bias due to patient selection,

and omitting hospitals that never adopt HIT from the estimation saumple. Overall, I

find that HIT adoption is not associated with either cost savings or improved health

outcomes over the study period. The evidence suggests that further research should

be pursued into the conditions that might allow HIT to realize positive returns,

before additional public money is spent.
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Figure 1: Log(1-Year Medical Expenditures)
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Notes:
The figure plots regression coefficients and 95% confidence intervals firm a single regression where the

dependent variable is Log(1 -Year Medical Expenditures). The regression includes a series of explanatory
dummy variables indicating the year relative to initial HIT adoption, for hospitals that change their
adoption status over the study period. Adoption occurred in year 0.

Each regression controls for hospital fixed effects, state*year fixed effects, a differential time trend
amongst adopting hospitals, as well as time trends that vary by quartile of hospital size. Additional controls
include patient age (in 1 -year bins), sex, race, and primary diagnosis code. The 95% confidence interval is
plotted in grey above and below the coefficient estimates. An observation is a hospital-year, 1998-2004.
There are 27,317 observations in total.

Regressions are weighted by the number of patient observations that comprise the hospital-year
observation, and standard errors are clustered by hospital.
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Figure 2: Mortality Rate
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Notes:
See notes to Figure 1. The figure plots regression coefficients and 95% confidence intervals from a single

regression where the dependent variable is the I-year mortality rate. The regression includes a series of
explanatory dummy variables indicating the year relative to initial HIT adoption, for hospitals that change
their adoption status over the study period. Adoption occurred in year 0.



Figure 3: Log(Expenditures on Diagnostic Testing & Imaging)
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Notes:
See notes to Figure 1. The figure plots regression coefficients and 95% confidence intervals from a single
regression where the dependent variable is the Log(Expenditure on Diagnostic Testing and Imaging). The
regression includes a series of explanatory dummy variables indicating the year relative to initial HIT
adoption, for hospitals that change their adoption status over the study period. Adoption occurred in year 0.
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Figure 4: Intensity of Treatment Standardized Effect
Log(Length of Stay) & Log(Number of Physicians)
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Notes:
See notes to Figure 1. The figure plots regression coefficients and 95% confidence intervals from a single

regression where the dependent variable is a standardized effect that combines log(length of stay) and
log(number of physicians seen) coefficients into a single index. The regression includes a series of
explanatory dummy variables indicating the year relative to initial HIT adoption, for hospitals that change
their adoption status over the study period. Adoption occurred in year 0.
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Figure 5: Quality of Inpatient Care Standardized Effect
Readmission, Complications, Adverse Drug Events
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Notes:
See notes to Figure 1. The figure plots regression coefficients and 95% confidence intervals from a single
regression where the dependent variable is a standardized effect that combines readmission rates,
complication rates, and adverse drug event coefficients into a single index. The regression includes a series
of explanatory dummy variables indicating the year relative to initial HIT adoption, for hospitals that
change their adoption status over the study period. Adoption occurred in year 0.
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Figure 6: Quality of Outpatient Preventative Care Standardized Effect
Log(Screening Mammograms) & Log(Colon Cancer Screenings)
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Notes:
See notes to Figure 1. The figure plots regression coefficients and 95% confidence intervals from a single

regression where the dependent variable is a standardized effect that combines log(screening
mammograms) and log(colon cancer screenings) coefficients into a single index. The regression includes a
series of explanatory dummy variables indicating the year relative to initial HIT adoption, for hospitals that
change their adoption status over the study period. Adoption occurred in year 0.

The regression controls for hospital fixed effects, state*year fixed effects, a differential time trend
amongst adopting hospitals, as well as time trends that vary by quartile of hospital size. In addition, it
controls for the number of unique patients seen at that hospital in an outpatient setting in the previous year.
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Table 1: Summary Statisties 1996 Baseline
HIT Switchers Never HIT Always HIT

(1) (2) (3)
A. Sample Size

No. of hospitals 882 915 2086
No. of sampled patients per hospital 79 35 85

B. Hospital Characteristics
No. of beds 209 101 223
Total admissions 8298 3300 9078
Total Medicare admissions 3187 1391 3487
FTEs 953 418 1075
Trauma hospital 0.300 0.235 0.322
Academic hospital 0.229 0.07 0.263
PET scanner 0.087 0.032 0.093
MRI machine 0.648 0.356 0.655
CT scanner 0.949 0.801 0.930

C. Sample Patient Characteristics
Minority fraction 0.136 0.116 0.133
Age 77.0 77.8 76.6

D. Patient Outcomes
Medical expenditures: 1 year 44,385 34,052 44,450
1-Year mortality 0.0993 0.106 0.099

E. Redundancy, Specialization, & Costs
Average number of EKGs 1.4 1.15 1.5
Frac. receiving at least 1 EKG 0.222 0.151 0.226
Frac. receiving 2+ EKGs w/in 1 mo. 0.160 0.119 0.162

F. Intensity of Treatment
Length of stay 6.9 6.6 7.0
Number of physicians: 1 year 13.3 10.5 13.4

G. Hospital Quality
Medical complication 0.065 0.044 0.066
Medication erro 0.016 0.019 0.018
Radmissinn 0.0843 0.082 0.085

H. Outpatient Preventative Care
No. of screening mamograms 208 92 193
No. of colon cancer screenings 9 41 91

Notes:
All summary statistics are calculated on an annual basis for the 1998 base year. Sample includes hospital inpatients

with one of the following diagnoses: acute myocardial infarction, stroke, pneumonia, hip fracture, lung cancer, colon
cancer, or gastrointestinal bleed.

A hospital is considered an "HIT Switcher" if it adopts HIT between 1999-2004, and thus can be used to identify the
effects of HIT adoption in the subsequent regressions. A hospital is in the "Always HIT" category if HIT was
adopted prior to 1999. Hospitals in the "Never HIT" category have not adopted by the end of the study period.
Hospital characteristics are from the American Hopsital Association survey; HIT adoption is from the Health

Information Management Systems Survey; all other variables are from the Medicare claims data. HIT is defined here
as the adoption of at least one of the following technologies: Clinical Decision Support or Electronic Medical
Records.



Table 2: Effect of HIT Adoption on Health and Total Expenditures
Log(Medical Expenditures) Patient Mortality

(1) (2) (3) (4)
HIT Adoption 0.01285* 0.01761** -0.00030 0.00055

(0.00672) (0.00828) (0.00170) (0.00193)
Post-Adoption Trend -0.00328 -0.000588

(0.00251) (0.00074)

3-Year Effect 0.00778 -0.00121
(0.00701) (0.00212)

Mean of Dep. Var. $44,385 $44,385 0.0993 0.0993

Notes:
The entries report the coefficients and standard errors (in parenthesis) from 4

separate regressions, where the dependent variable is Log(Medical Expenditures) in
columns (1) and (2), and Patient Mortality in columns (3) and (4). Columns (1) and
(3) report results from regressions that include HIT Adoption as the explanatory
variable of interest. Columns (2) and (4) regressions include an HIT Adoption
dummy and the interaction between time and HIT adoption.

Each regression controls for hospital fixed effects, state*year fixed effects, a
differential time trend amongst adopting hospitals, as well as time trends that vary by
quartile of hospital size. Additional controls include patient age (in I-year bins), sex,
race, and primary diagnosis.

An observation is a hospital-year, 1998-2004. There are 27,317 observations.
Regressions are weighted by the number of patient observations that make up the
hospital-year observation and standard errors are clustered by hospital.

Rows denoted "3-Year Effect" report results of a test of significance of the linear
combination of "[coefjHITAdoption + 3*[coefJinteraction", which estimates the
effect of HIT adoption 3 years after implementation.

HIT Adoption data from the Dorenfest Institute Survey; Hospital characteristics
from the American Hosptial Association survey; patient demographics and outcomes
from the Medicare claims data. *** denotes significance at 1% level; ** denotes
significance at 5% level; * denotes significance at 10% level.



Table 3: Effect of HIT Adoption on Components of Medical Expenditures
Log(Expend. on Log(Expend. on Log(Expend. on Log(Expend. on

Diagnostics) Inpatient Hospital Stay) Pharmacy & Physician Svcs,
Operations) Outpatient Care)

(1) (2) (3) (4) (5) (6) (7) (8)
HIT Adoption 0.01623* .01955* .01110 0.01520 .01512* .02204** -0.00929 -0.00854

(0.00829) (0.01026) (0.00792) (0.00981) (0.00843) (0.01074) (0.01277) (0.01597)
Post-Adoption Trend -0.00228 -0.00282 -0.00476 -0.00052

(0.00314) (0.00288) (0.00336) (0.00527)

3-Year Effect 0.01270 0.00674 0.00776 -0.01009
(0.00869) (0.00807) (0.00873) (0.01394)

Mean Expend. $9,887 $9,887 $14,324 $14,324 $15,027 $15,027 $5,148 $5,148

Notes:
See notes to Table 2. Entries are parameter estimates and clustered standard errors (in parentheses) from 8 separate

regressions. The dependent variables are indicated in the column labels. Odd numbered columns report results from
regressions that include HIT Adoption as the explanatory variable of interest. Even numbered columns report results
from regressions that include an HIT Adoption dummy and the interaction between time and HIT adoption.

*** denotes significance at 1% level; ** denotes significance at 5% level; * denotes significance at 10% level.



Table 4: Effect of HIT Adoption on Diagnostic Testing
Total Number of EKGs Did the Patient Receive Did the Patient Receive 2+

Any EKG? EKGs within 30 Days?

(1) (2) (3) (4) (5) (6)
HIT Adoption .03652** .04704** 0.00557* 0.00506 .00568 0.00280

(0.01775) (0.02166) (0.00335) (0.00388) (0.00366) (0.00431)
Post-Adoption Trend -0.00724 0.00036 0.00198

(0.00704) (0.00129) (0.00127)

3-Year Effect 0.02531 0.00612 0.00875**
(0.01948) (0.00612) (0.00394)

Mean Dep. Var. 1.4 1.4 0.22 0.22 0.16 0.16

Notes:
See notes to Table 2. Entries are parameter estimates and clustered standard errors (in parentheses) from

6 separate regressions. The dependent variables are indicated in the column labels. Odd numbered
columns report results from regressions that include HIT Adoption as the explanatory variable of interest.
Even numbered columns report results from regressions that include an HIT Adoption dummy and the
interaction between time and HIT adoption.

*** denotes significance at 1% level; ** denotes significance at 5% level; * denotes significance at 10%
level.



Table 5: Effect of HIT Adoption on Intensity and Efficiency of Care
Log(Length of Stay) Log(# of Physicians) Standardized Intensity

Composite

HIT Adoption

Post-Adoption Trend

3-Year Effect

Mean Dep. Var.

CMS Adoption

EMR Adoption

CDS Post Trend

EMR Post Trend

CDS=EMR?

3 Year Comb. Effect

(1)
0.00087

(0.00268)

(2)
-0.00195

(0.00334)
0.00195

(0.00115)

0.00390
(0.00300)

6.9 6.9

(3)
0.00356

(0.00487)

(4)
0.00743

(0.00670)
-0.00268

(0.00210)

(5)
0.00569

(0.00841)

-0.00062

(0.00461)
13.3 13.3

Separating Effects of EMR and CDS:
0.002440 0.00557
(0.00598) (0.00708)
-0.00089 0.00191
(0.00389) (0.00603)

-0.00185

(0.00149)
-0.00096

(0.00132)

0.675

0.00155
(0.00623)

0.899

-0.00097

(0.00615)

Notes:
See notes to Table 2. Entries are parameter estimates and clustered standard errors (in parentheses). The

dependent variables are indicated in the column labels. In the first panel, odd numbered columns report
results from regressions that include HIT Adoption as the explanatory variable of interest. Even
numbered columns report results from regressions that include an HIT Adoption dummy and the
interaction between time and HIT adoption.
Results reported in columns (5) and (6) combine estimates from the previous columns to estimate a
standardized composite effect.
The bottom panel separates the effects of electronic medical records (EMR) and clinical decision

support (CDS) by including separate explanatory variables for each type of software adoption. The
"CDS=EMR?" row tests whether the estimated effect of clinical decision support equals the estimated
effect of electronic medical records.

*** denotes significance at 1% level; ** denotes significance at 5% level; * denotes significance at 10%
level.

(6)
0.00382

(0.01103)
0.00130

(0.00366)

0.00771

(0.00885)



Table 6: Effect of HIT Adoption on Quality of Inpatient Care
30-Day Readmission Rate of Medical Rate of Adverse Drug Standardized Inpatient

Rate Complication Events Quality Composite

(1) (2) (3) (4) (5) (6) (7) (8)
HIT Adoption -0.00126 -0.00102 -0.00181 0.00147 0.00143* .00170* -0.00332 0.00379

(0.00097) (0.00120) (0.00114) (0.00142) (0.00074) (0.00089) (0.01440) (0.01775)
Post-Adoption Trend -0.00016 -0.00023 -0.00019 -0.00493

(0.00041) (0.00050) (0.00032) (0.00600)

3-Year Effect -0.00152 -0.00218 0.00113 -0.01100
(0.00109) (0.00129) (0.00088) (0.01612)

Mean Dep. Var. 0.0843 0.0843 0.065 0.065 0.016 0.016

Notes:
See notes to Table 2. Entries are parameter estimates and clustered standard errors (in parentheses). The dependent

variables are indicated in the column labels. Odd numbered columns report results from regressions that include HIT
Adoption as the explanatory variable of interest. Even numbered columns report results from regressions that include an
HIT Adoption dummy and the interaction between time and HIT adoption.

Results reported in columns (7) and (8) combine estimates from the previous columns to estimate a standardized
composite effect.

*** denotes significance at 1% level; ** denotes significance at 5% level; * denotes significance at 10% level.



Table 7: Effect of HIT Adoption on Outpatient Preventive Care
Log(# of Screening Log(# of Colon Cancer Standardized Preventive

Mammograms) Screenings) Care Composite

(1) (2) (3) (4) (5) (6)
HIT Adoption 0.01809 0.03278 0.00868 -0.00890 0.01232 0.01085

(0.02406) (0.03501) (0.02345) (0.03730) (0.01643) (0.02448)
Post-Adoption Trend -0.00646 0.00772 0.00064

(0.00886) (0.01109) (0.00716)

3-Year Effect 0.01227 0.01330 0.01278
(0.02135) (0.00716) (0.02184)

Mean Dep. Var. 208 208 96 96

Notes:
The entries report the coefficients and standard errors (in parentheses), where the dependent variable is

noted in the column labels. Odd numbered columns report results from regressions that include HIT
Adoption as the explanatory variable of interest. Even numbered columns report regressions that include
an HIT Adoption dummy and the interaction between time and HIT adoption. Results reported in columns
(5) and (6) combine estimates from previous columns into a standardized composite effect.

Each regression controls for hospital fixed effects, state*year fixed effects, a differential time trend
amongst adopting hospitals, as well as time trends that vary by quartile of hospital size. In addition, it
controls for the number of unique patients seen at that hospital in an outpatient setting in the previous
year.

An observation is a hospital-year, from 1999-2005. There are 21,955 observations. Regressions are
weighted by the number of patient observations that make up the hospital-year observation and standard
errors are clustered by hospital.

Rows denoted "3-Year Effect" report results of a test of significance of the linear combination of
"[coefjHITAdoption + 3*[coefjinteraction", which estimates the effect of HIT adoption 3 years after
implementation.

HIT Adoption data from the Dorenfest Institute Survey; Hospital characteristics from the AHA survey;
patient demographics and outcomes from the Medicare claims data. *** denotes significance at 1% level;
** denotes significance at 5% level; * denotes significance at 10% level.



Table 8: Threats to Validity: Patient Selection & Hospital Investments

HIT Adoption

Post-Adoption Trend

3-Year Effect

Mean Dep. Var.

p-value

HIT Adoption

Post-Adoption Trend

3-Year Effect

Mean Dep. Var.

HIT Adoption

Post-Adoption Trend

A. Patient Characteristics: Regression Results
Log(# of Medicare Admissions) Diagnosis Related Group Weight

(1) (2)(3) (4)
0.00872 0.01162 0.00495 0.00326
(0.01124) (0.01258) (0.00576) (0.00691)

-0.00200 0.00116
(0.00394) (0.00241)

3191

0.00562
(0.01282)

3191 1.524

0.00675
(0.00666)

1.524

B. Patient Characteristics: Omnibus Tests
Patient Demographics: Age, Race, Sex Patient Diagnosis Indicator Variables

(1) (2) (3) (4)
0.500 0.417 0.967 0.994

C. Hospital Investments: Regression Results
Technology Index Trauma Hospital

(1) (2) (3) (4)
-0.00626 -0.01202 -.032433** -0.02849
(0.02804) (0.03492) (0.01436) (0.01937)

0.00398 -0.00272
(0.01100) (0.00660)

-0.00009 -0.03666**
(0.02973) (0.01510)

1.685 1.685 0.301 0.301

D. Staffing Inputs: Regression Results
# of Full Time Employees # of Full Time Nurses

(1) (2) (3) (4)
0.01489 0.01771 0.01112 0.00733

(0.00933) (0.01123) (0.01018) (0.01265)
-0.00194 0.00262
(0.00328) (0.00406)

3-Year Effect

Mean Dep. Var. 954

0.01188
(0.00976)

954 240

0.01519
(0.01096)

240

Notes:
The entries in Panels A, C, and D report the coefficients and clustered standard errors (in parentheses)

from 12 separate regressions, where the dependent variable is noted in the column labels for each panel.
Odd numbered columns report results from regressions that include HIT Adoption as the explanatory
variable of interest Even numbered columns report regressions that include an HIT Adoption dummy and
the interaction between time and HIT adoption.

Panel B presents p-values from an omnibus test that tests the joint significance of the HIT adoption
variable across equations. In columns (1) and (2), dependent variables are patient demographic
characteristics. In columns (3) and (4), dependent variables are indicator variables for each in-sample
diagnosis. Odd numbered columns directly test whether the coefficients on the binary HIT adoption
variable are equal across all equations. Even numbered columns test the equality of the three-year effect.
Each regression (across all panels and columns) controls for hospital fixed effects, state-year fixed effects,

a differential time trend amongst adopting hospitals, and time trends that vary by quartile of hospital size.
See notes to Table 2 for further details. *** denotes significance at 1% level; ** denotes significance at

5% level; * denotes significance at 10% level.



Table 9: Robustness Tests
Patient Mortality Standardized Intensity Standardized Inpatient

Composite Quality Composite

HIT Adoption

Post-Adoption Trend

(1) (2) (3) (4) (5) (6) (7) (8)
A. Aggregate Unit of Observation to County Level

0.01004 0.00862 0.00009 -0.00011 0.01866 -0.00788 -0.01259 -0.00800
(0.01040) (0.01314) (0.00240) (0.00282) (0.01453) (0.01754) (0.01830) (0.02115)

0.00099 0.00013 0.01447 -0.00250
(0.00403) (0.00118) (0.00384) (0.00455)

3-Year Effect

Mean Dep. Var.

HIT Adoption

Post-Adoption Trend

3-Year Effect

Mean Dep. Var.

0.01159

(0.01069)
$44,385 $44,385

0.01309* 0.01779**
(0.00668) (0.00827)

-0.00323
(0.00254)

0.00811
(0.00700)

$44,385 $44,385

0.00030

(0.00315)
0.0993 0.0993

0.03552

(0.01421)

B. Exclude Never-Adooting Hospitals
-0.00025 0.00076 0.00703 0.00358
(0.00170) (0.00194) (0.00845) (0.01109)

-0.000692 0.00239
(0.00074) (0.00368)

-0.00132
(0.00212)

0.0993 0.0993

-0.01551

(0.01835)

-0.00461 0.00072

(0.01450) (0.01787)
-0.00368

(0.00604)

0.01074

(0.00890)

-0.01033

(0.01622)

Notes:
Panela A & B: The entries report the coefficients and standard errors (in parentheses) from 16 separate regressions,

where the dependent variable is noted in the column labels. Odd numbered columns report results from regressions that
include HIT Adoption as the explanatory variable of interest. Even numbered columns report regressions that include an
HIT Adoption dummy and the interaction between time and HIT adoption.

Panel A: An observation is a county-year, 1998-2004. There are 14,279 observations in total. Regressions are
weighted by the number of patient observations that make up the county-year observation and standard errors are
clustered by county. Each regression controls for county fixed effects, state*year fixed effects, and a differential time
trend amongst adopting counties. Additional controls include patient age (in I-year bins), sex, race, and primary
diagnosis.
Panel B: An observation is a hospital-year, 1998-2004. There are 21,068 observations in total. Regressions are

weighted by the number of patient observations that make up the hospital-year observation and clustered by hospital.
Each regression controls for hospital fixed effects, stateyear fixed effects, and linear time trends that vary by quartile of
hospital size. Additional controls include patient age (in I-year bins), sex, race, and primary diagnosis.

Panels A & B: Rows denoted "3-Year Effect" report results of a test of significance of the linear combination of
"[coefjHITAdoption + 3[coeflinteraction", which estimates the effect of HIT adoption 3 years after implementation.
The p-value of each test is reported immediately below each coefficient.

HIT Adoption data from the Dorenfest Institute Survey; Hospital c from the AHA survey; patient
demographics and outcomes from the Medicare claims data. *** denotes significance at 1% level; * denotes

at 5% level; * denotes significance at 10% level.

Log(Medical
Expenditures)



Table 10: Heterogeneous Returns to HIT Adoption

Log(Total Expenditures) 1-Year Mortality

A. Hospital Size: Top vs. Bottom Quartile

Large Hospital Small Hospital Large Hospital Small Hospital

HITAdoption 0.01452 .02888*** -0.00164 -0.00771

(0.01576) (0.00389) (0.00375) (0.00173)

p-value 0.376 0.141

B. Type of HIT System: Basic vs. Comprehensive

Basic HIT Comprehensive Basic HIT Comprehensive
System HIT System System HIT System

HITAdoption .01407** 0.00431 -0.00043 0.00055

(0.00680) (0.00828) (0.00171) (0.00215)

p-value 0.094 0.510

Notes:
Panel A: The entries report the coefficients and clustered standard errors (in parentheses) from 4 separate

regressions, where the dependent variable is noted in the column header at the top. All regressions that
include HIT Adoption as the explanatory variable of interest.
Regressions are run separately for the sub-sample of small hospitals, and the sub-sample of large hospitals.

Each regression controls for hospital fixed effects, state-year fixed effects, and a differential time trend
amongst adopting hospitals. Additional controls include patient age (in I-year bins), sex, race, and primary
diagnosis. There are 5630 observations in the small hospital specifications and 6784 observations in the
large hospital specifications.

Panel B: The entries report the coefficients and clustered standard errors (in parentheses) from 2 separate
regressions, where the dependent variable is noted in the column header at the top. There are two
explanatory variables of interest in each regression. A basic HIT system is defined as either clinical decision
support or electronic medical record adoption. A comprehensive HIT system is defined as the adoption of
both of those systems plus a clinical data repository.

Each regression controls for hospital fixed effects, state*year fixed effects, a differential time trend
amongst adopting hospitals, as well as time trends that vary by quartile of hospital size. Additional controls
include patient age (in I-year bins), sex, race, and primary diagnosis. There are 27,317 observations.
Both Panels: The "p-value" row reports the p-value from a test of equality of the two coefficients listed in

the preceding columns. Regressions are weighted by the number of patient observations that make up the
hospital-year observation.

HIT Adoption data from the Dorenfest Institute Survey; Hospital characteristics from the AHA survey;
patient demographics and outcomes from the Medicare claims data. *** denotes significance at 1% level;
** denotes significance at 5% level; * denotes significance at 10/o level.



Appendix Table Al: Analysis of C
Log(Medical

Expenditures)
Patient Mortality Standardized Intensity

Composite
Standardized Inpatient

Quality Composite

CPOE Adoption

Post-Adoption Trend

(1) (2) (3) (4) (5) (6) (7) (8)
A. Impact of Computerized Physician Order Entry

0.03054*** 0.03278*** 0.00343 0.00444 0.00637 0.00666 0.01341 0.01799
(0.00971) (0.01128) (0.00266) (0.00284) (0.02041) (0.02434) (0.01467) (0.01657)

-0.00314 -0.00142 -0.00042 -0.00650
(0.00596) (0.00171) (0.01384) (0.00828)

3-Year Effect

Mean Dep. Var.

0.02337
(0.01508)

$44,385 $44,385

0.00019
(0.00492)

0.0993 0.0993

CPOE, LIS, RIS

Post-Adoption Trend

B. Impact of Computerized Physician Order Entry, Laboratory Info. Sys, & Radiology Info. Sys.
0.01555** 0.01518* 0.00188 0.00222 0.00847 0.00879 -0.01403 -0.01433
(0.00732) (0.00791) (0.00193) (0.00200) (0.01586) (0.01719) (0.01056) 0.01119

0.00098 -0.00090 -0.00085 0.00079
(0.00546) (0.00166) (0.01263) (0.00782)

3-Year Effect

Mean Dep. Var.

0.01811
(0.01507)

$44,385 $44,385

-0.00047
(0.00486)

0.0993 0.0993

Notes:
See notes to Table 2. Entries are parameter estimates and clustered standard errors (in parentheses) from 16 separate

regressions. The dependent variables are indicated in the column labels. For these results, the usual explanatory variable is
replaced with an indicator variable for the adoption of computerized physician order entry (CPOE) in Panel A or the
simultaneous adoption of CPOE, a laboratory information system, and a radiology information system in Panel B.
Odd numbered columns report results from regressions that include technology adoption as the explanatory variable of interest.
Even numbered columns report results from regressions that include an HIT Adoption dummy and the interaction between time
Each rgression controls for hospital fixed effects, state*year fixed effects, a differential time trend amongst CPOE adopting

hospitals, as well as time trends that vary by quartile of hospital size. Additional controls include patient age (in 1-year bins), sex,
race, and primary diagnosis.
An observation is a hospital-year, 1998-2004. There are 27,317 observations. Regressions are weighted by the number of patient

observations that make up the hospital-year observation and standard errors are clustered by hospital.
Rows denoted "3-Year Effect" report results of a test of significance of the linear combination of "[coefjHITAdoption +

3*[coeflinteraction", which estimates the effect of HIT adoption 3 years after implementation.
HIT Adoption data from the Dorenfest Institute Survey; Hospital characteristics from the AHA survey; patient demographics

and outcomes from the Medicare claims data. *** denotes significance at 1% level; ** denotes significance at 5% level;
denotes significance at 10% level.

Discussion:
As with the main results on eletronic records and cliical decision support, computerized physician order entry systems (CPOE)

are associated with increased costs, although the increase may not be permanent. Mortality rate and quality of care measures do
not improve after HIT adoption.

Results are similar for hospitals adopting CPOE alongside laboratory information systems and radiology information systems.
Expeditures rise after adoption, although more modestly, while ther are no signs of improvment in patient health or quality of
care.

0.00540
(0.03410)

-0.00149
(0.02207)

0.00624
(0.03465)

-0.01195
(0.02229)



Chapter 2

Diffusion of New Medical

Technologies: Evidence on

Physician Learning 1

2.1 Introduction

The adoption of new medical technologies has driven substantial gains in longevity

as well as steep expenditure growth in the health care industry over recent decades.

Improving the process by which physicians learn about new technologies and incor-

porate them into their medical practice is thus critical to realizing value in the health

care industry. In this paper I investigate the determinants of early adoption of new

11 would like to thank David Autor, Amy Finkelstein, and Michael Greenstone for invaluable
guidance throughout this project. I thank Jason Abaluck, Joshua Aronson, Joseph Doyle, Jonathan
Gruber, Danielle Li, Amanda Pallais, Heidi Williams, and participants at MIT's labor lunch for
their comments. I am also grateful to Mohan Ramanujan and Jean Roth for their assistance in
obtaining and managing the data. John Wang provided excellent research assistance. This material
is based upon work supported by the National Science Foundation Graduate Research Fellowship.



technologies, as well as t he scope for physician learning across geographic regions. In

particular, I analyze whether late adopting regions are able to effectively apply the

lessons of early adopters when determining how to use a new diagnostic or therapeu-

tic technology. I find evidence that late adopters do not fully repeat the process of

experimental learning indertaken by early adopters, suggesting that there may be

efficiency gains associated with staggering the adoption of new medical technologies.

The Congressional Budget Office (2008) has estimated that about half of the

4.9% real rate of growth in health spending has been driven by technology adoption.

Some of this technology adoption has had tremendously high returns. For example,

the survival probability of low birthweight babies has improved by 12 percentage

points with a rate of return of over 500% (Cutler and Meara 2000). On the other

hand, some high cost technologies, such as angioplasty, appear to be overused despite

low marginal returns, while other technologies with low costs and high estimated

health benefits, such as beta blockers, appear underused. These inefficiencies, against

the backdrop of rising costs, suggests that a richer understanding of what drives

technology adoption could be critical to formulating policies that would ultimately

improve the efficiency with which new technologies are adopted or discarded.

This study focuses on the diffusion of two medical technologies: positron emission

tomography (PET) scans and deep brain stimulation. PET scanning is a nuclear

imaging technique that produces a three dimensional image of cellular metabolic

activity. The technology is now widely used in clinical oncology, and in more limited

use to diagnose certain neurologic diseases and to map heart function. PET scanning

was first approved in 1995 for analyzing heart function, and the indications for usage

were progressively expanded between 1998-2005. Over the study period, it was most

frequently applied to patients with lung cancer. PET scanners require large capital

investments of $1 million to $2.5 million, as well as learning about the relevant



clinical applications and scan interpretation required to implement the technology

effectively.

The second technology is deep brain stimulation, a surgical treatment, for neu-

rological movement disorders. The procedure involves the implantation of a device

that sends electrical impulses to targeted areas of the brain, suppressing involuntary

movement. The procedure was FDA approved in 1997 for essential tremor, in 2002

for Parkinson's Disease, and in 2003 for dystonia. The most frequent application over

the study period is to Parkinson's Disease. In addition to these explicitly covered

diagnoses, physicians have also experimented with deep brain stimulation as a treat-

ment for epilepsy and, in rare cases, psychiatric conditions. As a novel intervention

for advanced neurological disease, it is targeted to a narrow population and requires

significant new surgical training to adopt the technology.

Using Medicare claims data, I demonstrate that there is substantial heterogeneity

in the timing of technology adoption across states. For PET scans, the extent of the

market is correlated with early adoption and application of the scanning technologies,

likely driven by the high fixed costs of investment. This correlation is not present for

deep brain stimulation, perhaps because the economies of scale are smaller for this

intervention.

I find that the mix of patients treated with the new technologies changes substan-

tially during the early stages of diffusion, as physicians learn about which patients

benefit from the intervention. Notably, late adopting states do not appear to repeat

the learning experience of early adopters; rather, their patterns of technology usage

mirror the contemporaneous usage patterns of early adopters, albeit with less popula-

tion penetration. The medical returns to technology usage do not evolve measurably

over the study period for these two technologies.

The paper proceeds as follows. Section 2 provides further discussion of the context



and data, comparing t he characteristics of early and late adopters. Section 3 outlines

the empirical strategy and the highlights how the applications of the technologies

have evolved over time. Section 4 presents results related to the changing returns

to technology usage. Section 5 concludes by analyzing the policy inplications and

limitations of these findings.

2.2 Industry Context & Data

2.2.1 Technology diffusion and physician learning

The adoption of new medical technologies is often associated with high initial costs.

As with PET scanners, a large capital outlay may be required. Clinical staff must be

trained on the application and operation of the technology. Physicians will need to

learn which patients can benefit from the intervention, and what the potential costs,

side effects, and treatment synergies may be. In addition, clinicians may need time

to perfect their technique: developing appropriate dosages, treatment schedules, or

honing surgical skill.

Understanding the determinants of technology adoption and the relative impor-

tance of peer learning versus learning-by-doing mechanisms is critical to formulating

optimal social policy and reimbursement coverage for new medical interventions.

In particular, policymakers must grapple with whether reimbursement permission

should be staggered across geographic regions, whether early adopters should be sub-

sidized, and the optimal timing of widespread insurance reimbursement allowance.

In the US context, these policy issues are particularly pressing given that Medicare

exercises significant market power, providing insurance for one in seven Americans,

and private industry frequently follows Medicare's lead in approving coverage of new



medical technologies (Van de Water 2008).

This research builds on the recent literature on technology diffusion and learning

in the healthcare in(istry. Several earlier studies have analyzed the determinants

of miedical technology adoption (Coleman et al. 1966, Taub et al. 2011, Azoulay

2002, Berndt et al. 2003), and found that new scientific evidence, physician age,

degree of specialization, social networks, and market concentration all play a role in

determining a physician's decision to adopt a new technology. Other work by Skin-

ner and Staiger (2005) documented that there is significant geographic correlation

between the adoption of effective medical technologies and the state-level patterns

of adoption of hybrid corn, tractors, and computers. They propose that state-level

human capital may be a critical explanatory variable behind these patterns of diffu-

sion. This body of work describes who chooses to adopt a new technology, but does

not directly test whether these patterns are socially efficient, and if there are gains

from the observed staggering of adoption.

Recent work by Ramanarayanan (2008) and Huckman and Pisano (2006) find ev-

idence of learning-by-doing and firm-specific learning, respectively, amongst cardiac

surgeons. This research describes some of the ways in which physician learning may

be specific to his own experience and practice context, but does not directly test

how effectively learning about new technologies can be transferred across physicians.

By exploiting a national panel data set, this paper provides insight into how the

patterns of technology usage evolve amongst early and late adopters, demonstrating

how provider learning manifests itself in the patterns of technology usage.



2.2.2 Medicare claims data

The primary data source for this analysis is a 20% sample of Medicare Part A and

Part B claims, for a period of eight years from 1998 until 2005. These include clainis

rendered for inpatient hospital care an(d for physician services delivered in both an

inpatient and outpatient context.. Using this data, I construct a national panel

data set on deep brain stimulation and PET scan usage, permitting comparisons

across regions, over time. I observe the diagnoses, conorbidities, and prior medical

expenditures of patients selected to receive treatment with the new technology, and

contrast these characteristics with those of the broader popiulation of patients with

related diagnoses. In adition, data on patient mortality and health outcomes allow

an analysis of the evolving returns to technology usage.

One limitation of this data is that I can only observe technology adoption and

usage amongst the population of Medicare patients. If physicians tend first to apply

a new technology to non-Medicare patients, then there may be measurement error

in the identification of early- and late-adopting regions. In addition, estimates of the

learning costs associated with technolo&y adoption would be biased towards zero, if

much of the costs are borne by patients not included in this sample.

These concerns are mitigated by the fact that the diseases targeted by deep

brain stimulation and PET scanning are much more prevalent amongst the elderly,

Medicare-eligible population. For Parkinson's Disease, the most frequent indication

for deep brain stimulation, the average age of onset is 60, and deep brain stimulation

is a treatment option only for late stages of the disease (Reider et al.; National

Institute of Health 2010). The most common recipients of PET scans over this

period were lung cancer patients, 68% of whom are diagnosed after the age of 65

(National Cancer Institute). Due to the high concentration of these diseases amongst



the elderly, it is less likely that a physician would adopt the technology exclusively

for the non-Medicare population.

The analysis contrasts the adoption experience at the state level, comparing dif-

fusion of the new technologies across early- and late-adopting states. I focus on

the state-level adoption experience for a few reasons. Foremost, finer levels of ge-

ographic gradation make it very difficult to identify precisely which areas are early

adopters (ie to the small number of in-sample patients receiving treatment with

the new technology. I have implemented this analysis at the county-level, and the

results are qualitatively similar, but much less precise. Secondly, medical licensure,

statewide professional organizations, hospital regulation, and exposure to malprac-

tice law, all operate at the state-level, and thus, the state is a natural unit of analysis

for understanding variation in medical practices.

States are grouped into early- and late-adopting regions according to the earliest

year in which technology usage exceeded the 25th percentile of technology penetra-

tion as a fraction of the target population for that technology in that state. For PET

scanning, this corresponds to the year that 0.1% of patients with eligible diagnoses

received at least one scan; thirty-one states reached this threshold by 2000 and are

categorized as early adopters. For deep brain stimulation, the threshold corresponds

to 0.07% of patients with eligible diagnoses receiving treatment; 27 states reached

this threshold by 1999 and are categorized as early adopters. The results that follow

are not sensitive to these precise definitions and are robust to alternative thresh-

olds for the definition of "early" and "late" adopters. Figures 1 and 2 present maps

illustrating which states are early adopters for each technology.

The usage of PET scanners expanded rapidly over the study period, with the

average penetration amongst eligible patients increasing 30-fold from 0.02% in 1998

to 0.6% in 2005. Figure 3 contrasts the diffusion of PET scanners across early and



late alopting states, plotting the fraction of patients with eligible diagnoses receiving

a scan over time. The 95% confidence interval around each point estimate is plotted

in grey. The difference in the penetration rates between early and late adopters

increases through the early years of the diffusion process; at the peak in 2002, early

adopters are performing 0.2 percentage points more scans per eligible patient than

late adopters, or 88% more scans.

Figure 4 displays the diffusion pattern for deep brain stimulation. Due to the rel-

ative rarity of this intervention, the diffusion curves are estimated with less precision,

and distinguishing early from late adopters becomes more difficult. Compared to the

case of PET scanning, the initial differences between the early and late adopters in

1998 are more substantial, suggesting that amongst early adopters, many of them

took up the technology immediately following FDA approval in 1997. The gap be-

tween the early and late adopters closes over the study period, and the levels of

adoption are not statistically distinguishable in the later years. However, an F-test

rejects the joint hypothesis that early and late adopters have equivalent diffusion

levels in each year.

2.2.3 Summary statistics: comparing early and late adopters

Table 1 contrasts the characteristics of early and late adopters in the baseline year

of 1998. In Panel A, it is reported that early adopters of PET scans have an 85%

greater population of patients with eligible diagnoses, compared to late adopters.

PET scanning is a technology that likely exhibits high returns to scale, since there

are high fixed costs to purchasing and staffing the machine which can then be used

for many patients.

In addition to the greater population of eligible patients in early adopting states,



the mortality rate of patients with lung cancer diagnoses is substantially higher in

early adopting states, and the patients receive more intensive medical treatment with

greater spending and more (lays spent, as a hospital inpatient. Thus, early adopting

states not only have more eligible patients, but also a greater population of severely

ill patients.

In Table 1, Panel B, we see that early adopters of deep brain stimulation actually

have smaller populations of patients diagnosed with Parkinson's Disease or essential

tremor. Since the marginal costs of providing each additional surgery are likely very

high relative to the fixed costs of offering the service, the size of the market may be

less critical to the adoption decision.

Patients with Parkinson's Disease appear to be less severely ill and receive less

costly medical intervention in early adopting states relative to the late adopters.

Since the success of an intervention designed to mitigate the symptoms of Parkin-

son's Disease is unlikely to have a direct impact on mortality, I use an alternative

health outcome for these patients: the incidence of hip fractures. Tremor symptoms

exacerbate the risk of falling and inhibit the patient's ability to break his fall, and as

a result, patients with poorly controlled Parkinson's Disease are more likely to have

hip fractures (Pressley 2003). The rate of hip fractures amongst all patients with a

diagnosis of Parkinson's is 1.7% in early adopting states, compared to 1.9% in late

adopting states.

A limitation of the state-level analysis that follows is that there is substantial

heterogeneity in the baseline rates of disease prevalence and severity across regions.

The observed patterns of adoption are endogenous to to the state's demand for the

technology, including patient characteristics and physician proclivity to adopt new

interventions. The context is not a natural experiment and the self-selection of

state-level technology adoption must. be considered when interpreting the results. In



particidar, to the extent, that the medical returns and patients receiving treatment

differ across early- and late-adopters, some of these differences may be attributable

to differences in the patient population or physician skill and preferences, rather than

directly attributable to a learning mechanism or lack thereof. The concern is even

more important in light of the significant unobserved patient heterogeneity in this

context; because I cannot identify a clinically equivalent patient seeking treatment,

in two different states, I rely on aggregate statistics to make comparisons about the

propensity to offer the new intervention and the returns to its application. These

limitations are discussed further below, in the context of the results.

2.3 Applications of New Medical Technologies

As physicians experiment with a new medical technology, they learn both about the

value of the intervention and about which patients benefit most from treatment.

This learning process shapes how many patients receive treatment with the new

technology, which types of patients receive the treatment, and what the medical

returns are to these interventions. I explore each of these three outcomes of the

learning process in turn.

2.3.1 Do late adopters have accelerated diffusion paths?

First, I analyze how the number of patients receiving treatment evolves over time. If

physicians find a technology to be clinically or financially valuable to their practice

relative to alternative treatment modalities, usage of the technology should increase

over the stages of diffusion as more physicians adopt the technology and adopting

physicians increase their intensity of usage. In this way, the demonstrated success



of technology adoption in one area may accelerate the adoption in another area.

Amongst late adopters, physicians who are just beginning to use the technology will

have less uncertainty about the technology's value, and so will apply the technology

more intensively and more rapidly to match the diffusion pattern in other regions.

Figure 5 plots the coefficients and 95% confidence interval from a regression

that provides year-by-year estimates of the level of PET diffusion. Time has been

normalized so that year 0 is the first year in which the state has achieved at least the

25th percentile level of diffusion or 0.1%. The normalized trends are displayed for

early adopters who reached this threshold by 2000, and late adopters who reached

the threshold in 2001 or later.

Figure 5 displays little evidence of accelerated adoption amongst later adopters

of PET scanners. The diffusion curves appear to be nearly parallel, with the late

adopters a little over one year behind the early adopters throughout the entire study

period. Regression analysis bears this out: an F-test fails to reject. the hypothesis

that the normalized year indicators differ across early and late adopters. The late

adopters do not appear to be catching up to earlier adopters over this period.

Analogous results for deep brain stimulation are presented in Figure 6. Here,

time has been normalized so that year 0 is the first year in which the state has

achieved at least a 0.07% adoption level; early adopters have reached this threshold

by 1999. The picture is murkier for deep brain stimulation, as compared to PET,

for a few reasons: the earliest stages of adoption are unobserved for the first wave of

adopters; and the small sample of patients receiving treatment reduces the precision

of the diffusion estimates. Again, an F-test fails to reject the hypothesis that the

normalized year coefficients are equal for early- and late-adopters.

There are a few potential explanations for this finding that the new technologies

did not diffuse more quickly amongst late adopters. First, returns to technology



adoption may be state-specific, so late adopters would not learn very much about the

technology from early adopters. The argument that returns are highly heterogeneous

across states is weakened by the fact that late adopters appear to be expanding their

use of the technology at a similar rate as early adopters, and there is no evidence

within the frame of this sample that they settle on a significantly lower steady-state

adoption level. However, to fully test for differences in the steady state level of

technology usage, a longer time series would be required.

A second explanation is that resource or capacity limitations may dictate the

speed of diffusion within a region, and learning about a technology's returns may

have limited influence on the speed with which it is adopted. Lastly, it is possible

that information about the value of a technology or the conditions under which

the technology has positive returns is difficult to communicate or does not diffuse

perfectly. In this case, even if the returns to adoption are similar across states, late

adopters may not have accelerated adoption paths. To disentangle these potential

explanations, I turn to the evolving patterns of which patients are targeted with a

new technology.

2.3.2 Do late adopters apply new technologies for the "right"

diagnoses?

Once a technology has received FDA approval, physicians have significant leeway

to apply the technology more broadly than the approved indications. Moreover,

the initial indications for treatment may not correspond to the patients with the

greatest medical return. With both PET scans and deep brain stimulation, there

were substantial changes in the mix of patients receiving treatment over the observed

stages of adoption.



One test of the scope for information transfer across regions is whether late adopt-

ing states repeat that experinentation process undertaken by the early adopters. In

particular, does the case mix of a late adopter in its first or second year of technology

usage mirror the first or second year of technology usage by an early adopter? Or do

late adopters innediately adopt the current best practices of the more experienced

regions? If there are risks or costs associated with the early stages of adoption, it

would be more beneficial to stagger adoption as long as the late adopters do not need

to repeat the complete learning experience of earlier adopters.

To test whether late adopting states repeat the experimentation of early adopters,

applying a new technology to lower return patients, I estimate regressions where

the outcome variable is the share of scans or surgeries performed for a particular

indication in state s at time 1. The regression takes the following form:

TechnologySharet = a1 + a 2LateAdopter,EligibleSharet + #1YrtEligibleSharet+

#2YrtLateAdopterEligibleShiareat + -yEligibleSharet + Q.1)

LateAdopter is an indicator variable for whether the observation is from a late adopt-

ing state. Yrt is a running variable for the current calendar year. EligibleSharet is

a variable indicating the fraction of the potentially eligible population with the di-

agnosis of interest. Each included variable is interacted with the fraction eligible to

capture the fact that states with smaller eligible populations will mechanically have

those diagnoses represent a smaller fraction of treated patients, and that this smaller

population will attenuate any potential growth in treatment for those indications. I

also report results from an alternative un-interacted linear specification, but the in-

teracted model is the preferred specification for the aforementioned reason. Standard

errors are clustered at the state level.



If there are limited cross-region or nationally centralized learning mechanisms,

then late adopters must repeat some of the learning experience of early adopters.

In particular, we would expect a 2 to have the opposite sign of #1, indicating that

the late adopters are some years behind the early adopters in their choice of clinical

applications, after controlling for any differences in their patient population. In the

extreme case of no learning, we would additionally expect that #2 would be zero,

i.e. that the slope of their learning curve will be identical to that of the earlier

adopters. With imperfect information transfer, we might expect #2 would have the

same sign as #1, indicating an accelerated trend for late adopters, as they catch up

to the current, best practices. Perfect information transfer would be characterized by

a 2 and #2 both equal to zero, i.e. the late adopters exactly match the patterns of

clinical application chosen by the earlier adopters at a given point in time.

In addition to the specification parameterized above, I also non-parametrically

estimate the year-by-year changes in the technology's applications separately for

early and late adopters. This is accomplished with a regression that includes a series

of indicator variables for the year of the observation, and an interaction between

the current year and whether the state is a late adopter. Plotting these coefficients

ensures that nonlinear time trends are not creating misleading results in the linear

regression framework outlined above.

In Table 2, Panel A, the evolving applications of PET scans are documented.

First approved for mapping of heart function in 1995, PET became increasingly

applied to cancer patients, rather than heart disease patients, over time. Although

the total number of patients provided with PET scans increased across all eligible

diagnoses with greater technology availability and familiarity, the growth was much

more rapid in cancer diagnoses than heart disease diagnoses. In 1998, 47% of PET

scans performed were for cancer-related indications; by 2005, 71% of PET scans were



for cancer pat ients.

Regressions reported in Table 2, Panel A, estimate that amongst early adopting

states, there were 18% per year more patients with eligible cancer diagnoses receiving

scans. In the non-interacted, additive specification this amounts to a an additional

3.4 percentage points of total performed PET scans were applied for cancer diag-

noses rather than for non-cancer indications each year, a result that is statistically

significant at the 1% level. Amongst late adopters, a larger fraction of PET scans

were performed for cancer indications from the beginning, although the difference is

not statistically significant, and there is no evidence that the rate of growth in cancer

scans differed for late adopters. The point estimate on the interaction between time

and late adoption is small in magnitude at -0.6 percentage points per year, and not

statistically distinguiishable from zero. These results are illustrated in Figures 7a and

71). Figure 7a illistrates the growing share of cancer-related PET scans performed

by early adopting hospitals. Figure 7b plots the difference in the cancer share of

PET scans amongst later adopters relative to early adopter's benchmark in a given

year; the coefficient estimates hover near zero for the duration of the period.

As reported in Figures 8a and 81), the inverse pattern emerges in the analysis

of heart scans as a share of total scans, with heart scans declining over the study

period. Again, there is no evidence that late adopters repeat the learning process

undertaken by early adopters.

A competing explanation for these findings, besides efficient transfer of medical

learning across states, is that late adopting hospitals have more patients suitable for

PET imaging with cancer diagnoses, relative to early adopters. In this case, the fact

that their treatment patterns match those of the early adopting hospitals may be

due to differences in their patient population, and not due to transferred learning

about which patients may benefit from the technology. The share of patients with the



relevant eligible diagnosis is an inperfect proxy for the proportion of the popilation

suitable to the new treatment, so this control may not fully capture differences in

the patient population. However, along all observable dimensions, the poplation

of late adopting states is, if anything, less sufited to cancer applications on average,

compared to early adopters. 18.9% of eligible patients in early adopting states have

cancer diagnoses in 1998, compared to only 18. 1%{ of eligible patients in late adopting

states. Moreover, the early adopting states have a more ill population of cancer

patients, with a higher mortality rate, which would be associated with indications

for more frequent and intensive monitoring with PET technology.

Within the set of PET scans performed on cancer patients, there were also changes

in the composition of patients targeted. In particular, a growing fraction of cancer

scans were performed on lymphoma patients relative to lung cancer patients. Again,

the late alopters appear to copy the current practice of early adopters in selecting

which cancer patients should receive the new treatment. Neither the interaction

term nor the level shift is statistically distinguishable from zero. The nonparametric

regression results are plotted in Figures 9 and 10.

In the case of deep brain stimulation, applications to Parkinson's Disease, the

most common indication, made up a relatively constant share of total cases. How-

ever, essential tremor cases became a shrinking share as applications to convulsions,

epilepsy, and other less common indications grew. The evidence for deep brain stim-

ulation in Table 2, Panel B, and in Figures 11 and 12, illustrates a similar pattern as

the evidence for PET scanning. Late adopters do not appear to repeat the learning

undertaken by early adopters about which indications should be receiving treatment

with the new technology. The intercept shift and interaction term on the time trend

are not statistically distinguishable from zero in any of the specifications. Although

late adopters do not experience accelerated diffusion curves relative to early adopters,



they do appear to learn from early adopters about the appropriate indications for

treatment.

2.3.3 Do late adopters apply technologies to the "right"

types of patients?

In addition to analyzing the changing diagnosis mix of treated patients, I also study

prior patterns of medical resource utilization to analyze how the disease severity of

treated patients evolves throughout the technology's diffusion path. I analyze three

measures of disease severity, all constructed using the patient's inpatient medical

claims from the year preceding their treatment with the new technology: (lays spent

over previous year as a hospital inpatient, prior year's inpatient hospital charges,

and the Charlson comiorbidity index. The comorbidity index is constructed as the

weighted sum of a patient's chronic health conditions and is designed to predict a

patient's mortality risk. In this context, it provides an indication of how precarious

the patient's medical condition was, particularly as it related to secondary diagnoses.

For this analysis, I focus on the most common indication for each technology:

lung cancer patients receiving PET scans, and Parkinson's Disease patients receiving

deep brain stimulation. The regression framework is similar to that outlined above

in equation 1, and it takes the following form:

PatientHealthStatus., = ai + a 2LateAdopterTreated. + #1YrtTreated,+

#2YrtTreated.LateAdopter, + yt + 6tLateAdopter, (24)

The outcome variable is an indicator of the patients' health status for patients in state

s in year I with treatment status n, where it indicates whether the patient received



treatment with the new technology. These regressions include patients untreated

with the new technology so that time trends in nedical resource utilization and

comorbidity reporting can be allowed to flexibly differ across early and late adopting

states. The inclusion of these patients identifies a set of year fixed effects that

differ according to the state's status as an early or late adopter, -yt and 6t. The

coefficient #1 on the interaction YrtTreated, summarizes how the set, of patients

receiving treatment with the new technology evolves within early adopting states.

The coefficients a 2 and #2 describe the difference between late adopters' and early

adopters' treated patients in a given year.

To improve the power of the tests and redice the rate of false positive results,

I also create standardized effect measures across these outcomes. The standard-

ized effect is calculated separately for lung cancer applications of PET scans and

for Parkinson's applications of deep brain stimulation, and includes the hospital

charges, days as an inpatient, and comorbidity index calculated over the previous

year. These groupings allow me to perform omnibus tests analyzing whether selec-

tion into treatment with the new technology trends towards relatively healthier or

more sick patients within a particular diagnosis, over time. I report both separate

results for each outcome variable, as well as the aggregated standardized effect. I ac-

count for the cross-equation covariance structure of the error terms when estimating

standard errors for each outcome within a domain. Standard errors remain clustered

at the state level.

The standardized effect is constructed by combining the estimated coefficients

across each outcome variable within a domain. In particular, the standardized effect

equals:

i E {1,2} (2.3)
jEJ O



where pij is estimated by e(iation 2 for outcome variable j, or similarly for a 2 and

#2j. o3 is the standard deviation of the outcome j, in the baseline year of 1998.

Dividing by the standard deviation harmonizes the units across the diverse outcome

variables. J is the total mumber of outcomes within a domain.

The evidence presented in Table 3, Panel A suggests that over time, PET scan-

ning was applied to increasingly sick lung cancer patients, i.e. patients with higher

hospital charges, more inpatient days, and higher conorbidity rates, in the year

before receiving a PET scan. Each year, patients receiving treatment were 0.035

standard deviations less healthy as measured by the standardized effect, which is

statistically significant at the 5% level. The coefficient estimate a2 suggests that pa-

tients receiving scans in the late adopting states are slightly healthier than those in

the early adopting states, putting the late adopters approximately one year behind

the early adopters in their application of the technology. However, this difference

between late and early adopters is imprecisely estimated and not statistically distin-

guishable from zero. In addition, the time trend in these patient selection variables

for late adopters is almost identical to the trend for early adopters. Table 3, Panel

B, presents an analogous set of results for patients receiving deep brain stimulation,

although the coefficient estimates are too imprecise to infer the patterns of diffusion

for these outcome variables.

Taken together, the results presented in Table 3 neither contradict nor corroborate

the pattern that emerged in the previous section, with later technology adopters

immediately applying the current practices of the more experienced adopters. Trends

in these patient characteristics are smaller in magnitude and less precisely estimated

than the trends in diagnosis mix, but are not inconsistent with the possibility of

learning.



2.4 Medical Returns to Technology Adoption

As physicians learn about the applications and value of a new technology, the medical

retirns to technology usage may evolve. The direction of the trend on inedical retturns

is theoretically ambiguous. If the first group of treated patients happens to be those

with the highest medical returns, physicians nay choose to move down the curve

and expand treatment to the next most suitable patient group, lowering the average

return. On the other hand, for a given patient receiving treatment, the treatment

may become better executed over time, as the physician learns about the optimal

delivery system for the new technology.

I test empirically how the medical returns to technology adoption evolve, con-

trasting the experience of early and late adopters. The regression framework parallels

that listed in equation 2 above, replacing patients' pre-treatment characteristics with

post-treatment outcomes as the dependent variables. The outcomes employed are

hospital charges, days spent as an inpatient, mortality, and hip fracture rate, all

calculated over one year following treatment with the new technology. As above,

I include controls for year fixed effects that differ according to a state's adoption

timing, using untreated patients to identify the trends. I also calculate standardized

effects to summarize the health outcome measures into a single index.

A challenge in estimating the health returns to technology adoption is that se-

lection into treatment is changing over time, and it is difficult to disentangle the

selection effect from the evolving returns to treatment on a given patient. The prob-

lem is particularly challenging given the coarse clinical diagnosis and health status

variables available in the claims data. In an effort to address this concern, I report

results from a second set of regressions, which are augmented with additional con-

trols for the pre-period health status of treated patients, i.e. charges, inpatient days,



and coiorbidity index. These controls are included to distinguish changes in the

medical returns to technology usage from changes in the selection into the treatment

group. Contrasting regression results with and without these controls provides some

insight into the drivers of any changes in the health returns to technology usage.

Results from this analysis are reported in Table 4. Estimated trends in the

standardized health outcome composite measure are not, statistically distinguishal)le

from zero; 1 cannot reject the hypothesis that there is no change in the medical

benefits over the course of the diffusion path. This null result holds up across both

the lung cancer popilation receiving PET scans and the Parkinson's Disease patients

receiving deep brain stimulation, and is not sensitive to the inclusion of controls for

the treated patient's pre-period health status. It should be noted, however, that the

estimates are sufficiently imprecise that I cannot rule out economically meaningful

changes in a patient's mortality rate or medical expenditures. Moreover, some of the

point estimates on individual outcomes are statistically significant at conventional

levels and suggest that there may be some limited trending.

Notably, the mortality rate of treated patients is increasing for early adopters by

1.7 percentage points per year, after controlling for observable health status, signifi-

cant at the 5% level. It is unlikely that PET scans are driving such a large increase

in patient mortality, which further highlights the difficulty of accurately controlling

for patient health status. Excluding controls for health status, the mortality rate

is declining over time amongst PET recipients in early adopting regions. The pre-

period health status of treated patients is also declining, and it would appear that

these proxies for health status understate the true decline in the pre-period health

of treated patients, driving an increase in the adjusted mortality rate. To accurately

capture the medical returns to technology adoption for a particular type of patient,

richer clinical data would be invaluable.



2.5 Conclusion

Taken as a whole, the evidence presented above suggests that. there is some scope

for the valuable transfer of information about a technology's applicability across

states in the US. In particular, it appears that late adopting states do not repeat

the process of experimentation already undertaken by early adopters to learn which

diagnoses benefit most from treatment with the new technology. There are a number

of potential mechanisms for this information transfer, from formal journal articles and

conference presentations, to informative advertising by medical device manufacturers

and informal information sharing across physician's social networks. Disentangling

these channels would be a fruitful line for future research, shedding light on effective

ways of new disseminating information about medical best practices.

A major limitation of the preceding analysis is the absence of exogenous variation

in the timing of technology adoption. Because the adoption decision is a choice

variable, it is likely to be correlated with the patients' suitability and physicians'

preferences for the technology. As a result, it is possible that the observed patterns

of the evolving diagnosis mix across early and late adopting regions are driven not

by learning but by fixed characteristics of the states. Although there is nominally

regional variation in reimbursement policy for Medicare, Agha (2011) finds that

the local coverage determinations have no measurable influence on actual services

rendered, so the Medicare program rules provide little traction. Future work could

make use of the timing and location of clinical trials or variation in the generosity of

private insurance, for example, to provide cleaner variation in the timing of adoption.

Understanding how the returns to the application of new technology evolve is crit-

ical to making normative evaluations of the learning procss. Unfortunately, claims

data is ill-suited to identifying the health benefits associated with a new technology,
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both because measures of health outcomes are limited, and because patient hetero-

geneity is not very finely observed, and thus difficult to control for. There could be

considerable economic insight gained from the analysis of richer chart data, which

imay allow much better measurement of the returns to technology adoption.

The construction of optimal reimulmursement policy for new technologies depends

on understanding both the health and financial costs associated with early experi-

inentation as well as the scope for learning across physicians and hospitals. In this

paper, I find evidence that physicians do learn from the adoption experience of peers

in other states, and apply those lessons when they begin using a new technology.

Information about. the appropriate diagnoses to be targeted by a new intervention is

costly to discover but appears easy to communicate, and late adopters of deep brain

stimulation and PET scanners apply the technology to the same nmix of patients as

earlier adopters in a given year.
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Figure 1: Map of PET Adoption.

Notes: Early adopters are shaded in blue. A state is considered an early adopter of PET scans if 0.1% of eligible patients received a
scan by 2000.
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Figure 2: Map of Deep Brain Stimulation Adoption.

Notes: Early adopters are shaded in blue. A state is considered an eariy adopter of deep brain stimulation if 0.07% ofeligible
patients received surgery by 1999.
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Figure 3: Diffusion of PET Scans

Notes: This Is a plot of state-level diffusion of PET scans as a fraction of the total number of eligible patients. The 95%
confidence interval is plotted in grey.
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Figure 4: Diffusion of Deep Brain Stimulation

Notes: This is a plot of state-level diffusion of deep brain stimulation as a fraction of the total number of eligible patients. The
95% confidence interval is plotted In grey.
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Figure 5: Diffusion of PET Scans In Normalized Time

Notes: This is a plot of state-level diffusion of PET scans as a fraction of the total number of eligible patients. The 95%
confidence interval is plotted in grey. Year 0 is the first year In which a state has at least a 0.1% diffusion rate.
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Figure 6: Diffusion of Deep Brain Stimulation In Nonnalized l1me

Notes: This is a plot of state-level diffusion of PET scans as a fraction of the total number of eligible patients. The 95%
confidence interval is plotted in grey. Year 0 Is the first year In which a state has at least a 0.07% diffusion rate.
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Table 1: Summary Statistics Contrasting Early and Late Adopting States
Early Adopters Late Adopters

(1) (2)
A. PET Scans

No. of states 31 20
No. patients with any eligible diagnosis 147,000 79,600
No. patients with cancer diagnoses 27,800 14,400
1 Year mortality of lung cancer patients 0.048 0.012
Average hospital charges of lung cancer patients $21,977 $17,682
Average hospital days of lung cancer patients 9.2 8.2

B. Deep Brain Stimulation
No. of states 27 24
No. patients with any eligible diagnosis 2845 4991
No. patients with Parkinson's diagnoses 1170 1784
1-Year hip fracture rate of Parkinson's patients 0.017 0.020
Average hospital charges of Parkinson's patients $8,605 $10,074
Average hospital days of Parkinson's patients 3.2 4.2

Notes:
All summary statistics are calculated on an annual basis for the 1998 baseline year.
Sample includes 50 states and the District of Columbia.
Eligible diagnoses include all diagnoses that may be linked to reimbursement for the technology

according to Medicare policy.
A state is considered an early adopter of PET scans if they 0.1% of eligible patients received a scan by

2000. A state is considered an early adopter of deep brain stimulation if 0.07% of eligible patients
received surgery by 1999.

All data is from 20%/6 sample of Medicare claims.
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Table 2: Case Mix of Teated Patients
Independent Variables

Year*Late Multiplicative
Year Late Adopter Adopter Model?

Dependent variable
A. PET Scan Indications

Cancer scans/Total scans 0.034 0.037 -0.006 No
(0.006)*** (0.056) (0.009)

Cancer scans/Total scans 0.175 0.263 -0.032 Yes
(0 .030 )*** (0.290) (0.046)

Heart scans/fotal scans -0.022 -0.047 0.008 No
(0.047 )*** (0.032) (0.005)

Heart scans/Total scans -0.088 -0.178 0.029 Yes
(0.020)* (0.129) (0.021)

Lymphoma scans/Cancer scans 0.019 0.011 -0.003 No
(0.003)*** (0.036) (0.007)

Lymphoma scans/Cancer scans 0.542 0.247 -0.102 Yes
(0.087)*** (0.950) (0.168)

Lung scans/cancer scans -0.015 0.026 -0.006 No
(0.007 )** (0.045) (0.008)

Lung scans/cancer scans 0.136 0.416 -0.079 Yes
(0 .076)* (0.587) (0.102)

B. Deep Brain Stimulation Indications
Parkinsons DBS/Total DBS 0.009 -0.056 0.012 No

(0.013) (0.072) (0.016)
Parkinsons DBS/Total DBS 0.024 -0.196 0.019 Yes

(0.033) (0.146) (0.034)

Essential Tremor DBS/Total DBS -0.042 -0.116 0.012 Yes
(0.011)*** (0.066) (0.012)

Essential Tremor DBS/Total DBS -0.392 -0.513 0.149 No
(0.068)*** (0.470) (0.076)

Notes:
The entries report regressions and standard errors (in parenthesis) from 12 separate regressions. The dependent
variable is indicated in the leftmost column of each row. Explanatory variables of interest include Yea; a linear time
trend, Late Adopter, an indicator for whether the state is a late adopter, and the interaction of the two. The second listed
regression for each outcome variable (the Multiplicative Model) includes a control for the indicated diagnoses as a
share of the total eligible diagnosed patients, and each included regressor is interacted with the eligible share, as
described in equation 1 of the paper.
An observation is a state-year in which at least one application of the technology was observed. Panel A includes 408

observations; Panel B has 333 observations. Standard errors are clustered at the state level.
Asterisks: *10/9 confidence, **5% confidence, *** 1% confidence level.
All data is from 20% sample of Medicare claims.
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Table 3: Pre-treatment Health Status of Patients
Independent Variables

Year*Late
Year Late Adopter Adopter

Dependent variable
A. Lung cancer patients receiving PET scans

Pre-period log(hospital charges) 0.011 0.185 -0.029
(0.012) (0.100)* (0.018)

Pre-period days as hospital inpatient 0.099 -0.755 0.124
(0.076) (0.474) (0.094)

Pre-period comorbidity index 0.026 -0.063 0.005
(0 .0123)** (0.087) (0.019)

Standardized Effect 0.035 -0.031 0.002
(0.017)** (0.116) (0.023)

B. Parkinson's patients receiving DBS
Pre-period log(hospital charges) 0.009 -0.033 -0.015

(0.033) (0.131) (0.030)
Pre-period days as hospital inpatient 0.324 2.825 -0.395

(0.338) (2.129) (0.463)
Pre-period comorbidity index 0.152 3.197 -0.267

(0.348) (1.992) (0.443)
Standardized Effect 0.008 0.122 -0.025

(0.054) (0.259) (0.057)

Notes:
The entries report regressions and standard errors (in parenthesis). The dependent variable is

indicated in the leftmost column of each row. There are two observations for each state-year- one
for eligible patients and another for patients receiving treatment with the new technology.
Explanatory variables of interest include Year a linear time trend, Late Adopter; an indicator for
whether the state is a late adopter, and the interaction of the two; each of these three variables is
equal to zero for all observations representing eligible patients who do not receive treatment with
the new technology. Regressions also include controls for year fixed effects that vary according to
the state's status as an early or late adopter, and an indicator variable for observations of patients
treated with the new technology.

Results reported in the last row of each panel combine estimates from the previous rows to
construct a standardized effect.

There are 699 observations for Panel A regressions; 567 observations for Panel B. Standard errors
are clustered at the state level.
Asterisks: *10% confidence, **5% confidence, ***1% confidence level.
All data is from 20% sample of Medicare claims.
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Table 4: Health Outcomes of Patients Treated with the New Technoloev
I. Excluding controls for patient pre-period health: H. Including controls for patient pre-period health:

Independent Variables Independent Variables
Year*Late Year*Late

Year Late Adopter Adopter year Late Adopter Adopter
Dependeni variable
A. Lung Cancer Patients Eligible for PET Scans

Post-period log(hospital charges) -0.002 0.187 -0.026 0.002 -0.005 0.005
(0.014) (.0975)* (0.021) (0.017) (0.064) (0.013)

Post-period days as hospital inpatient 0.039 0.086 0.020 -0.025 1.077 -0.156
(0.073) (0.555) (0.101) (0.072) (0.410) (0.065)*

Post-period 1 year mortality rate -0.007 -0.070 0.020 0.017 -0.018 0.007
(0.009) (0.044) (.010)* (007)** (0.057) (0.014)

Standardized Effect -0.004 0.045 0.008 0.016 0.098 -0.007
(0.015) (0.104) (0.022) (0.018) (0.100) (0.021)

B. Parkuison's Patients Eligilbfe for DBS
Post-period log(hospital charges) -0.011 I0.227 0.049 -0.008 -0.288 0.048

(0.020) (0.154) (0.031) (0.023) (0.202) (0.034)
Post-period days as hospital inpatient -0.216 -1.298 0.489 -0.182 -1.847 0.513

(0.374) (2.052) (0.542) (0.558) (2.829) (0.648)
Post-period 1 year hip fracture rate -0.006 0.006 0.003 0.002 0.032 -0.006

(0.006) (0.033) (0.007) (0.002) (0.043) (0.009)
Standardized Effect -0.024 10.193 0.055 -0.006 -0.155 0.030

(0.028) (0.173) 0.040 (0.026) (0.208) (0.039)

Notes:
The entries report regressions and standard errors (in parenthesis). The dependent vaiable is indicated in the leftmost colurm of each row. There are

two observations for each state-year: one for eligible patients and another for patients receiving treatment with the new technology.
Explanatory variables of interest include Year, a linear time trend, Late Adopter, an indicator for whether the state is a late adopter, and the interaction

of the two; each of these thre variables is equal to zero for all observations representing eligible patients who do not receive treatment with the new
technology. Regressions also include controls for year fixed effects that vary according to the state's status as an early or late adopter, and an indicator
variable for observations of patients treated with the new technology. Panl II regressions include additional controls for patients'health status over the
previous year including their inpatient hospital days, hospital spending, and Charlson co5orbidity index.
There are two observations for each state-year: one for eligible patients and another for patients receiving treatment with the new technology. There are

671 observations for Panel IA regressions; 605 observations for Panel IB; 584 observations for panel HLA; 474 observations fbr Panel LIB. Standard
errors are clustered at the state level.
Results reported in the last row of each panel combine estimates from the previous rows to construct a standardized effect.
Asterisks: *10 percent confidence, **5% confidence, *i % confidence
All data is from 20% sample of Medicare claims.



Chapter 3

Managing Medical Technology

Policy:

A Review of Current Practices

and Future Directions 1

3.1 Introduction

With 32 million Americans projected to gain insurance coverage due to recent health

care reform, growing attention is being focused on finding ways to control cost growth

II would like to thank David Autor, Amy Finkelstein, and Michael Greenstone for invaluable
guidance throughout this project. I thank Jason Abaluck, Joshua Aronson, Joseph Doyle, Jonathan
Gruber, Danielle Li, Amanda Pallais, Heidi Williams, and participants at MIT's labor lunch for
their comments. I am also grateful to Mohan Ramanujan and Jean Roth for their assistance in
obtaining and managing the data. Arindajit Dube, William Lester, and Michael Reich generously
shared data identifying contiguous county pairs. John Wang provided excellent research assistance.
This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship.
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in the health care sector. Medicare and Medicaid currently account for 19% of the

federal budget and their fiscal importance is projected to increase over the coming

decade. Healt hcare spending has been growing at a real rate of about 4.9% per year,

and the adoption of new medical technologies has accounted for approximately half

of this growth, with demand side factors driving the balance (Congressional Budget

Office 2008). As demand for health services continues to rise, the critical challenge

lies in managing the utilization of new medical technologies.

Effective technology policy must balance cost control with a recognition that the

adIoption of new medical technologies has been associated with tremendous health

and longevity gains. And yet, the fact that some technologies, including beta block-

ers, aspirin, amd improved neonatal care, have had high economic rates of returns

does not explain the growing puzzle of under- and over-use of many key technolo-

gies in the health industry. Some low cost, high value interventions, such as beta

blockers, appear persistently underutilized, while some high cost interventions, like

cardiac stenting, seem overused despite low marginal returns relative to treatment

alternatives.

In this paper, I analyze several policy initiatives that aim to manage the usage

of medical technologies and discuss key determinants of technology adoption that

may be fruitful targets for future research and policy intervention. In particular, I

discuss the process of Medicare coverage for new technologies and the role of state-

level certificate of need programs in managing technology diffusion. Together, these

constitute a patchwork of programs that are very limited in their ability to manage

resource utilization. I then discuss the impact of scientific evidence on technology

utilization and coverage policy. Through this discussion, I aim to lay out a framework

for understanding medical technology policy in the United States.

Technology adoption in the healthcare sector is distinct from adoption in other
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industries in a aunber of ways, and yet the size and scope of the industry makes

it a compelling stubject of economic research. Unlike many other technology inten-

sive sectors, e.g. the computer or automative industries, the profit incentives for

physicians and hospitals to make efficient adoption decisions are significantly attenu-

at ed. In particullar, consumers cannot easily observe the quality of the health services

and products they are being offered, and relative prices are not always responsive

to quality inprovemnents. As a market uniquely plagued by information problems

and mis-pricing, the health industry is a critical target for policy aimed to impact

technology adoption.

The paper proceeds as follows. Section 2 describes federal and state policies that,

aim to manage the adoption of new melical technologies. Section 3 describes how

scientific evidence is incorporated into medical practice and the formulation of public

policy. Section 4 concludes by suggesting directions for future research and what the

analyses may be able to say about optimal social policy designed to realize value for

healthcare spending.

3.2 Current Technology Policy

The utilization of new medical technologies is currently managed by a patchwork

of state, regional, and federal bodies. The result is a diverse but relatively weak

set of policy tools aimed at restricting or focusing the adoption of new technologies

and managing the market for health services. The progranis have some potential for

shaping technology usage, but little proven record of performance.
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3.2.1 Medicare reimbursement for new technology

As the single largest purchaser of health services in the United States, Medicare

is often cited as the indlstry leader in determining appropriate coverage for new

technologies (cf. Van de Water 2010). In principle, Medicare has trelendols power

to determine both reimbursement availability and prices for new services. There are

two primary channels through which Medicare aims to manage the utilization of new

technologies.

First, most new technology policy in Medicare is determined by a set of regional

contractors that, process claims on behalf of Medicare. Through 2005, this was done

by roughly 60 fiscal intermediaries and carriers which processed Medicare Part A and

Part B claims, respectively. Physicians were assigned to carriers by geographic re-

gions which roughly correspond to US states, and were required to process Medicare

claims through their regional contractor. Hospitals and institutional care providers

are allowed to select from a set of potential fiscal intermediaries, but in practice,

locally based Blue Cross plans dominate the market, creating regional coverage pat-

terns for Part A claims as well.

Medicare is in the midst of reforming this system of regional contractors and

reimbursement, consolidating the role of Part A and Part B contractors into Medicare

Administrative Contractors (MACs) which handle both types of claims. Medicare is

aiming to reduce the total number of contractors to 10 different MACs nationwide,

which are assigned strictly by geographic region.

MACs, fiscal intermediaries, and carriers each have significant latitude to deter-

mine "reasonable and necessary" coverage for Medicare recipients. They exercise

this judgement primarily through the publication of local coverage decisions which

create rules and guidelines designating which medical services are allowable for reini-
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bursenent for which diagnostic indications. In 2001, soon after the online coverage

determination database was first made available, 9000 local policies were posted

(Foote 2003). In addition to policy-setting, when a charge is not covered, these

contractors are also responsible for the outcome of any appeals process.

The second inechanism for technology management is National Coverage Deter-

minations issued by the Center for Medicare and Medicaid Studies. These rulings

are much less frequent, and do not comprehensively guide the set of relevant cov-

erage issues faced by clinicians and contractors. Between 2005-2008, only 13 new

policies were published per year, on average (Neumann and Tunis 2010). Even when

new policies are published, they are typically broad guidelines that do not specify

diagnosis codes or proceduire co(des, and so local carriers determine the interpretation

and implementation of these policies.

Since Medicare is relying heavily on local contractors to determine and enforce

coverage rules, it remains a critical question how effective these organizations are at

fulfilling this role. I test the impact of local coverage rules on resource utilization by

linking Medicare claims data to historical data on regional carrier coverage policies.

I investigate the coverage of two technologies, positron emission tomography (PET)

and deep brain stimulation, which were the focus of a number of local and national

coverage rule changes over the study period from 1998-2005.

Coverage policies were downloaded from the Medicare Coverage Archive Database.

For each published policy, the date implemented, covered procedure code, and per-

missible diagnosis codes are documented. Thus, I constructed a novel data set of the

evolution of coverage across regions, over time, for these two technologies.

Data on utilization comes from a 20% sample of Medicare Part B claims. These

include claims rendered for physician services delivered in both an inpatient and

outpatient context. Using this data, I construct a national panel data set on deep
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brain stimulation and PET scan usage, which is linked to the reimbursement regime

of the corresponding local Medicare carrier.

PET scanning is a nuclear imaging technique that produces a three dimensional

image of cellular metabolic activity. The technology is now widely used in clinical

oncology, and in more limited use to diagnose certain neurologic diseases and to map

heart function. PET scans were the subject of dozens of local coverage policies over

the study period, as well as a series of National Coverage Determinations. First

approved for applications to heart disease, PET became an increasingly popular

imaging tool for a variety of cancer diagnoses. In successive waves, local contractors

and eventually the national Center for Medicare & Medicaid Studies, expanded the

covered indications.

I analyze the impact of these PET coverage policies on three indications that had

a particularly high variance in the timing of coverage : esophageal cancer, nervous

system disorders, and breast cancer. For each of these indications, between 7 and

11 early-coverage carriers had provided reimbursement by 1999, and between 55

and 59 remaining carriers did not issue a ruling until after a National Coverage

Determination was made in 2001 (for esophageal and nervous system indications) or

2002 (for breast cancer).

The second technology under analysis, deep brain stimulation, is a surgical treat-

ment for neurological movement disorders. The procedure involves the implantation

of a device that sends electrical impulses to targeted areas of the brain, suppressing

involuntary movement. Deep brain stimulation was also the subject of many cover-

age policies over the study period. 19 carriers provided coverage within two years of

the 1997 FDA approval; an additional 45 carriers did not issue coverage until after

a National Coverage Determination was issued in 2003.

I test the impact of coverage policy on utilization in two ways. First, I plot diffu-
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sion curves and corresponding 95% confidence intervals for early- and late-covering

carriers, allowing a visual inspection of how diffusion evolves after a significant cov-

erage expansion. Figures 1 through 4 display these results.

In Figure 1, it appears that the application of PET scans to esophageal cancer

diffused more quickly in early coverage regions, but the difference between the two

groups becomes most striking after 2001, the year in which all carriers expanded

coverage in compliance with a National Coverage Determination.

Despite the coverage changes over this period, utilization of PET scans for dis-

orders of the nervous system remained rare amongst both early- and late-coverage

regions. As illustrated in Figure 2, the two diffusion curves are not statistically

distinguishable from each other.

In Figure 3, there is very little difference between early- and late-coverage areas

in the diffusion of PET scans for breast cancer, and no indication of a change in the

diffusion patterns in 2002, when late adopters gained reimbursement permission.

Lastly, in Figure 4, diffusion of deep brain stimulation is similar across early and

late coverage areas, and there are no differential changes in diffusion after the 2003

coverage of late adopters.

One possible explanation for the observed lack of correlation between coverage

policy and the carrier-level diffusion curves is that heterogeneity in the patient pop-

ulation or physician characteristics across regions may drive the diffusion patterns,

masking the actual impact of coverage policy. For this reason, I also implement a

strategy modeled after Dube, Lester, and Reich (2010) that compares early and late

adopters across contiguous counties, reducing the population heterogeneity of the

comparison groups.

For the border county comparisons, I limit the analysis to contiguous county

pairs that rest along state borders assigned to different contractors with disparate
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coverage policies. Regressions take the following form:

ShareTreatedipt a i 4 #pt + y CoveragePolicyit + 72Coveragelolicyit Yearit + cipt

(3.1)

Where ShareTreatedipt is the fraction of potentially eligible patients receiving the new

treatment in county i that is part of pair p at time t. The regression includes county

fixed effects ao and pair-specific year fixed effects 3 ,. The independent variables

of interest are CoveragePolicyit and CoveragePolicyitYearit. These variables indicate

whether the county has an applicable coverage policy in place and allow the time

trend for the county pair to diverge for the adopting county after the implementation

of a policy. Because each county may be paired with more than one neighbor, county-

year observations may appear multiple times in the data set, and standard errors are

clustered at the county level.

Results from these regressions are reported in Table I Panel A. There is no ev-

idence for any of the technology applications of significant increases in utilization

after a coverage expansion. In fact, the point estimates are negative in most speci-

fications, and for PET scans for nervous system disorders the decline in utilization

is statistically significant at the 5% level. This result corroborates the more aggre-

gate graphical evidence that the implementation of new coverage policies was not

associated with changes in the utilization of a new medical technology.

The findings suggests that Medicare coverage rules are not effective at constrain-

ing the utilization of new technologies. This finding is consistent with evidence from

Foote et al. (2008) which tested the impact of Medicare coverage policies for eight

technologies using contractor-level comparisons. Foote and Town (2007) argue that

Medicare contractors lack both resources and incentives to enforce the stated cover-

age policies. In several of the cases analyzed by Foote et al., contractors would be
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required to audit the patient's chart to verify if the claim was compliant with the

stated guidelines. However, even in the cases I analyze above, where the listing of

a covered diagnosis code on the claim should be a necessary condition for providing

coverage, there is no evidence that carriers were rejecting claims without the requi-

site coverage. Perhaps more critically, contractors are awarded contracts on the basis

of low overhead on a per-clain basis, not for appropriate enforcement of coverage

policy (Foote and Town 2007).

There are policy tradeoffs between the costs of auditing and the savings associ-

ated with better enforcement, but even simple computer algorithms could identify

submitted claims for broad diagnostic indications that are not covered by current

policy. Whether due to inattention or unwillingness, Medicare does not seem to en-

force effectively evidence-based policy constraints that might interfere with provider

judgement about appropriate nedical care. This is one arena in which clearer en-

forcement of existing policy could have significant potential to shape the utilization

of new medical technologies. The potential impact of policy enforcement iay even

have increased over the Past decade, as Medicare's National Coverage Determina-

tions have become more specific in citing a lack of appropriate scientific evidence as

motivation to restrict or deny coverage for a new technology (Neumann and Tinis

2010). It is possible these practice guidelines have a small and diffuse effect on med-

ical practices, but they seem to have little bite in quickly or significantly impacting

resource utilization.

3.2.2 Certificate of need programs

A second existing policy mechanism for controlling the adoption of new medical

technologies is Certificate of Need (CON) programs. These programs are intended
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to reduce the sipply of capital-intensive health services by requiring state approval

for large capital projects such as building expansions or new high-tech devices. Many

CON programs originated in response to the federal Health Planning Resources De-

velopment Act of 1974, which required each state health planning agency to have a

structure for approving large capital projects, and provided federal funding to CON

programs. The federal Iandate and funding was repealed in 1987, but as of 2008, 36

states retained some forim a CON program (National Conference of State Legislatures

2010).

CON programs aim to control utilization of medical services by restricting market

entry, rather than restricting reimbursement payment for services. Notably, the most

common political argumnent in favor of CON regulation is that "excess capacity (in the

form of facility overbuilding) directly results in health care price inflation" (National

Conference of State Legislatures 2010), contrary to basic economic inodels that would

predict falling prices as supply competition increases.

The most frequent medical technologies to full under CON jurisdiction are cardiac

catheterization (26 states), CT scanners (15), gamma knives (19), lithotripsy (21),

MRI scanners (21), and PET scanners (23). As can be seen on the map in Figure 5,

CON programs are concentrated along the Eastern seaboard and the Midwestet.

There is little recent evidence on how the presence of a CON program affects

technology investment and usage. Conover and Sloan (1998) find that CON programs

are not associated with major differences in the concentration of technology-intensive

open heart surgery or organ transplant units. To further investigate the relationship

between CON programs and the diffusion of capital-intensive new medical services,

I examine whether the diffusion of PET scans is slower in states covered by germane

CON programs. The analysis utilizes the 20% sample of Medicare claims from 1998-

2005 merged with data on CON program coverage from the National Conference of
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State Legislatures.

In Figure 6, the fraction of eligible patients receiving a PET scan is plotted

for states with and without CON programs. There is no visible evidence of slower

diffusion amongst states with applicable CON policies, suggesting another instance

of a technology utilizatioii management policy that fails to have any measurable

impact on clinical practice.

In addition to the graphical evidence described above, I estimate regressions of

the following form:

ShareTreatedat = at + #1CONState, + #2CONStateYeart 4 EA (3.2)

The dependent variable is the fraction of eligible patients treated with a PET scan in

state s in year f. Included are year fixed effects at, and the independent variables of

interest are an indicator for whether the state has a CON program and an interaction

term between the presence of a CON program and the time trend.

The findings reported in Table 1 Panel B show no evidence of slower diffusion

amongst CON program participants. The coefficient estimates on the CON policy

indicator and the interaction between CON policy and time are both positive, albeit

very small in magnitude, and not statistically distinguishable from zero. State CON

programs that covered the adoption of PET scanners appear to have had no effect

on PET scanning rates over this period.

One limitation of this analysis is that since indications for the usage of PET

scanners were continually expanding over this period, it is possible that the CON

programs assessed that their states had no excess supply of scans over this period.

If this is the case, CON may have a greater impact on more mature technologies,

although if the CON programs do not slow the entry of new providers at some point
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during the diffusion process, they would have to rely on firm exit to enforce future

reduhctions in the target Iinber of providers in an area.

A second limitation is that the above regression does not exploit panel varia-

tion in the presence of CON programs, and cannot separately identify differences

in physician preferences and patient characteristics across states from the impact of

the CON program. The regression above provides suggestive evidence that CON

(oes not lead to substantially lower levels of technology usage, bIt it cannot rule out

the possibility that CON states would have had otherwise higher levels of PET scan

utilization than their non-CON peers.

The evidence on the impact of CON programs echoes the findings that stated

Medicare coverage policies have little effect on the utilization of new technologies.

Despite the energy and attention given to these regulations, it seems that the current

set of policies do not have a substantial impact on the application of new technolo-

gies in practice. Given the growing costs and uneven value realized from technology

adoption, further attention should be given to either improving enforcement of cur-

rent policies, or improving the structures that support learning about the value and

applications of a new technology.

3.3 From Scientific Evidence to Clinical Practice

3.3.1 Impact of new research on physician behavior

The unique challenge to constructing efficient policy for managing the usage of new

technologies is that the scientific understanding of the technology's efficacy and role

relative to alternative treatment options is continuously evolving. Existing structures

for discovering and disseminating new information about a technology's value and
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applicability are limited in their ability to manage technology usage. There are two

critical issues: first, how quickly and effectively physicians can learn and incorporate

new information and services into their clinical practice; second, how policy can

facilitate or improve the efficiency of that process.

On the question of how physicians incorporate new scientific information, there is

limited existing evidence. Azoulay (2002) finds that physician prescribing patterns

do respond to new scientific evidence, and that marketing efforts to disseminate

favorable information intensify these effects, increasing the total responsiveness. This

suggests a complementarity between scientific discovery and marketing that may be

particularly valuable for innovations with close competitors in the market, and a firm

likely to profit directly from disseminating the information.

Physicians seem to react much less than would be socially optimal to the accumu-

lation of new evidence about the value of off-patent medications. For example, several

studies have documented the persistent under-prescription of antithrombotic therapy,

such as aspirin, after a stroke or heart attack despite well established evidence-based

criteria and low costs of the intervention (Gage et al. 2000, Califf et al. 2002). If

the evidence from Azoulay (2002) is applicable to other classes of drugs and types of

interventions, it, suggests there could be social gains from public investment in mar-

keting messages targeted to physicians regarding appropriate application of highly

effective but under-used treatments. For interventions where the profit incentive

to disseminate scientific information is lacking, subsidizing information acquisition

by clinicians and patients may be a worthwhile investment. Further investigation

is warranted into the relative costs and efficacy of price mechanisms that provide

direct incentives to align behavior with evidence-based recommendations and infor-

mation interventions that seek to educate plhysicians about appropriate treatment,

interventions.

133



The overuse of nedical interventions which have been shown to have low clini-

cal value also requires research and policy attention. The canonical example is the

placement of cardiac stents, and drug-eliting stents in particular (cf. Mitka 2006).

Although some patients benefit notably from this intervention, the treatment seems

to have low returns on the margin for some patients who may otherwise have re-

ceived medical management, rather than a surgical intervention. The proliferation

of treatment by stenting may be driven by a number of factors: financial incentives of

physicians to bill for the additional procedure, uncertainty about the medical returns

to intervention, or consumer demand for the treatment.

Although physician incentives in a fee for service setting is a key ingredient, it

is likely not be the sole driver of overuse. Even in a managed care setting, a Kaiser

Permanente executive argued that Kaiser must over-provide stenting services, beyond

what would be clinically optimal, to avoid losing patients to other practices. Dr.

Carl Weisberger argued "around 70% of people getting an angioplasty don't need a

stent" and yet purchasing stents for the practice is "worth it because the community

perception demands you use the item" (Pope 2006). This observation suggests a

role for market competition and consumer demand in the over-provision of medical

services. Are managed care organizations facing fewer competitive pressures better

at reducing the provision of unproductive services? Are there ways to directly inform

consumers that will reduce their demand for services that are not clinically indicated?

Marketing to both patients and physicians has shown to be effective at increasing

take-up of certain indicated drugs and interventions. Surveyed physicians report that

direct to consumer advertising helps identify previously undiagnosed conditions and

facilitates awareness and discussions of treatment options (Berndt 2005). If targeted

marketing can mitigate the problem of underuse of appropriate interventions, can

marketing also be used to target overuse? In light of the apparent difficulty or lack
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of will to enforce policies designed to prevent overuse, as discussed above, further

investigation is warranted into whether informational nud(ges, rather than direct

restrictions, can be ulsed to reduce denand for over-used services.

3.3.2 Impact of scientific evidence on coverage rules and pol-

icy setting

The formulation of public policy must also grapple with the changing landscape of

scientific information. Setting aside the enforcement issues associated with Medicare

coverage rules, the Center for Medicare and Medicaid Studies has spent an increasing

amount of resources analyzing, documenting, and discussing how coverage policy

responds to scientific evidence. Neumann and Tunis (2010) document a trend in

National Coverage Determinations, which are increasingly ruling to limit coverage

of a new technology in cases where the existing evidence has a "lack of relevant

outcomes" or "lack of applicability to the Medicare population." The authors suggest

the burden of proof is shifting for Medicare coverage to a presumption of non-coverage

unless scientific evidence of improved health outcomes has been robustly documented.

The move towards more restrictive coverage of new technologies introduces trade-

offs between physician autonomy, which may rely on a mix of scientific evidence and

experiential learning to determine a clinical course, and external rulings which rest

exclusively on scientific learning. It is possible that this could have a distributional

impact on the quality of care delivered that depends both on the quality of the physi-

cian and the disease severity or rarity of the patient's condition. Rigid rules could

cause the performance of the best physicians to deteriorate or harm the care of the

most unusual patients, while improving outcomes near the means of the distribution.

Some case study evidence on the enforcement of strict practice guidelines is avail-
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able from Interniountain Health Care, and shows generally positive impact on health

outcomes (Dean et al. 2001). If more restrictive reimbursenent rules become en-

forced in other contexts, further study on the tradeoffs between autonomy and rule-

based practices is warranted.

Relatedly, there has been a small but growing number of technologies that be-

come approved for Medicare coverage with evidence development, in cases where a

novel treatment seems promising enough to warrant coverage but there is a lack of

reliable data on the clinical performance and outcomes. The first case of coverage

with evidence development was lung volume reduction therapy. This treatment for

emphysema was first developed in the 1950s, but it exploded in popularity the mid-

1990s despite a lack of robust scientific evidence. The intervention required no new

capital investments or training, and made use of existing thoracic surgery techniques

to remove diseased lung tissue. Physicians submitted claims for the surgery using

existing billing codes, and within 18 months of the inciting clinical case study, 1200

surgeries had been performed on Medicare patients (Ramsey and Sullivan 2005).

Observing the growing volume of surgeries and lack of clinical evidence, the Center

for Medicare and Medicaid Studies developed a policy whereby it would reimburse

the surgery only for patients enrolled in a randomized controlled trial. The results

of the trial were nuanced and showed modest benefit of the surgery for only some

subgroups of potentially eligible patients. Moreover, the intervention had poor cost-

effectiveness. Despite these findings, Medicare approved coverage for a relatively

broad set of indications in 2004, although only at sites that had participated in the

clinical trial or were designated lung transplant centers. An interesting direction for

future research would be contrasting the volume of lung volume reduction therapy at

the clinical trial hospitals with other transplant centers to see how a physician's own

experience with a technology may mediate his reaction to new scientific information.
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After this experiment with lung volume re(uction therapy, Medicare developed a

new program for coverage with evidence development in 2005, and has since provided

coverage for several new technologies uider the program (Tinis and Pearson 2006).

This represents a new effort to develop reimbursement rules that are responsive

scientific measurement of a technology's value. The success of this effort may depend

on the willingness to restrict coverage if the results of the study are not favorable-

the road not takeii in providing coverage for lung volume reduction therapy-as well

as Medicare's ability to enforce its own coverage determinations.

3.4 Conclusion

This paper highlights many of the challenges inherent in developing effective public

policy for the management of new medical technologies. Existing policies have little

demonstrated capacity to shape medical practice. Medicare coverage policies for new

technology have no measurable impact on utilization rates, despite the significant

resources devoted to drafting coverage policies. Contractors that process claims for

Medicare have little incentive to devote resources to enforcing coverage rules, since

contracts are awarded primarily on the basis of the contractor's overhead costs per

claim processed. If Medicare would like to take a more active role in managing the

utilization of medical resources, it may need to start with an investigation of how to

improve compliance with its current recommendations.

Many states make use of certificate of need programs to reduce the supply of

capital-intensive medical services, with the aim of reducing health care costs. These

programs have little proven track record for reducing resource utilization, and I find

no cross-sectional correlation between the presence of a CON program that manages

PET adoption and the rate of PET scan utilization in that state. In addition, there is



relatively scant evidence Ihat oversupply of medical services raises costs or generates

inefficiencies. On the one hand, Gruber and Owings (1994) find that in areas where

obstetricians experience a drop in demand, they increase the number of cesarean

sections performed to compensate with higher revenue per patient for the drop in

total patient volume. On the ot her hand, competition in the market for medical

services may improve the quality of services offered by providing incentives for bet-

ter management practices (Bloom et al. 2010). Without a richer uniderstanding of

the tradeoffs associated with regulating the supply of medical services, it is unclear

what the optimal role of a CON program would be. Moreover, a CON program can

only influence supply of capital-intensive technologies; while this is a critical com-

ponent of new medical technology, CON programs alone are clearly cannot, provide

comprehensive solutions to resource management.

Together, the evidence on Medicare coverage and CON programs suggest that

there is significant scope for expanding the role of regulation in managing the adop-

tion of new medical technologies. However, if these policy programs were to take

a more active role in limiting access to new technology, the burden becomes much

greater to select the optimal levels of coverage and ensure that there is sufficient

evidence available to guide the formulation of coverage policy. Medicare has taken

steps in this direction, developing a new program to facilitate coverage with evidence

development that provides reimbursement for particular services only if physicians

participate in a clinical study. It will take more comprehensive reform then the

implementation of coverage with evidence development policies though, if Medicare

would like to take a more active role in resource utilization. It would need to not

only use the generated evidence to limit reimbursement for technologies that prove

to be low value, essentially taking away coverage for indications that were previously

paid for by the program, but also to reform enforcement efforts to ensure that the
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policies it sets have an imlpact on clinical practice.

Policymakers have a second set of tools available, beyond price incentives, cover-

age limitations, and supply regulation, for managing the utilization of new mnedical

technologies. Specifically, both physicians and patients have been shown to be re-

sponsive to marketing information about pharmaceutical treatments, and for physi-

cians in particular, marketing complements the publication of scientific information.

This suggests that subsidizing information acquisition through marketing efforts may

provide another avenue for encouraging desirable clinical practices. The existing ev-

idence largely consists of encouraging the use of particular pharmaceuticals; future

research could investigate whether it is possible for informational nudges to reduce

utilization of low-value services. In addition, an evaluation that contrasts the benefit

and cost of information provision with the benefit and costs of setting and enforcing

coverage policy would provide a useful point of comparison.

As more Americans gain health insurance and the costs of care continue to rise,

managing the utilization of new medical technologies is of growing importance. There

is scant evidence that, the current structures for managing the adoption of new tech-

nologies, including Medicare coverage policy and state certificate of need programs,

are efficient or even effective at enforcing their stated policy goals. Setting policy

to manage technology adoption requires a fine balance between facilitating valuable

experimentation and learning about new interventions, encouraging responsiveness

to scientific evidence, and maintaining physician autonomy when appropriate. Con-

tinued research into how physicians respond to reimbursement rules, price incentives,

and new information will be crucial to guiding policy reform that can achieve that

balance.
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Figure 1: Diffusion of PET Scans for Esophageal Cancer

Notes: This is a plot of carrier-level diffusion of PET scans as a fraction of the total
number of eligible patients. Early Policy carriers have put a coverage policy in place
by 1999; Late Policy carriers do not have a coverage policy until 2001. The 95%
confidence interval is plotted for each curve in the corresponding color.
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FIgure 2: Diffusion of PET Scans for Nervous System Disorders

Notes: This is a plot of carrier-level diffusion of PET scans as a fraction of the total
number of eligible patients. Early Policy carriers have put a coverage policy In place
by 1999; Late Policy carriers do not have a coverage policy until 2001. The 95%
confidence Interval is plotted for each curve In the corresponding color.
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Figure 3: Diffusion of PET Scans for Breast Cancer

Notes: This is a plot of carrier-level diffusion of PET scans as a fraction of the total
number of eligible patients. Early Policy carriers have put a coverage policy in place
by 1999; Late Policy carriers do not have a coverage policy until 2002. The 95%
confidence Interval is plotted for each curve in the corresponding color.
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Figure S: Map of Certificate of Need Programs Covering PET Scans

Note: States with CON programs are highlighted in blue.
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Figure 6: Diffusion of PET Scanners

Notes: This is a plot of state-level diffusion PET scanners as a fraction of the total
number of eligible patients. Diffusion curves are plotted separately for states with
and without Certificate of Need programs. The 95% confidence interval is plotted
for each curve in the corresponding color.
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Table 1: Impact of Technol
Dependent Variables

A. Impact of Medicare Coverage Policies

PET Scans for Breast Cancer

PET Scans for Central Nervous System

PET Scans for Esophogeal Cancer

Deep Brain Stimulation

B. Impact of State Certificate of Need Programs

Total PET Scans

ogn Policy on Utilization of Health Services
Independent Variables

Coverage Policy
0.00069

(0.00047)
-0.00033

(.00016)**
-0.00801
(0.00750)
-0.00052
(0.00073)

CON Policy
0.00001

(0.00014)

Year*Coverage Policy
-0.00018
(0.00028)
0.00011

(0.00007)
-0.00159
(.00083)*
-0.00016
(0.00017)

Year*CON Policy
0.00001
(0.00007)

No. of Obs.

8518

8563

6171

8081

408

Notes:
The entries report regressions and standard errors (in parenthesis). The dependent variable is indicated in the

leftmost column of each row. The dependent variables of interest are an indicator for whether the relevant policy
is in place, and an interaction of the indicator with a linear time trend.

Panel A: an observation is a county-year, and the sample includes contiguous counties that have different carrier
assignements and thus face different coverage policies. Panel B: an observation is a state-year.

Panel A: Regressions include controls for county pair specific year fixed effects. Standard errors are clustered at
the county level. Panel B: Standard errors are clustered at the state level.
Asterisks: *10% confidence, **5% confidence, ***I% confidence level.
All data is from 200/ sample of Medicare claims.
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