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ABSTRACT

Recent trends in OS research have shown evidence that there

are performance benefits to running OS services on different

cores than the user applications that rely on them. We quan-

titatively evaluate this claim in terms of one of the most sig-

nificant architectural constraints: memory performance. To

this end, we have created CachEMU, an open-source mem-

ory trace generator and cache simulator built as an extension

to QEMU for working with system traces. Using CachEMU,

we determined that for five common Linux test workloads,

it was best to run the OS close, but not too close — on the

same package, but not on the same core.

1. INTRODUCTION

The number of cores per package has been growing dra-

matically in recent years, with as many as 16 cores in AMD’s

recently announced ”Bulldozer” processor, 48 cores in In-

tel Lab’s ”Single-chip Cloud Computer” [9], and 64 cores

in Tilera’s TilePro64. Multicore chips commonly allocate

increasing transistor budgets from Moore’s Law to increas-

ing the number of cores, while keeping the sizes of per-core

caches more or less constant. In this environment, one is-

sue that is especially pressing is the conservation of off-chip

bandwidth [7]. Utilizing the bountiful multicore resources in

the face of new cache tradeoffs and memory-bandwidth con-

straints will require changing the way we create our software

systems. Specifically, we challenge the traditional notion

that an OS should run on the same core as the application

that invokes its services, and instead posit that cache effects

in modern multicores justify moving the OS to a separate

core.

We show that competition between the OS and the appli-

cation for limited cache resources is a significant source of

cache misses and does not efficiently make use of on-chip

resources. We further demonstrate that the benefits of data

sharing, or cooperation, between the application and the OS

is not sufficient to mitigate the ill-effects of cache interfer-

ence.

Emerging work in operating system scalability [5, 14, 2]

has suggested that OSes should be restructured so that some

or all OS services run on dedicated cores rather than multi-

plexing with the application. FlexSC [13] further confirms

this notion and generalizes it to conventional monolithic OSes

by showing that the asynchronous rerouting of Linux sys-

tem calls to a different core than the application that invoked

them can improve overall performance.

However, it has been difficult to isolate quantitatively the

advantages of dedicating cores to OS services since prior

studies tend to provide full system measurements that en-

compass several factors such as competition, cooperation,

concurrency and contention, many of which are unrelated to

our central question of whether dedicating OS cores makes

sense from the perspective of cache effects. Although one

might make the engineering argument that in the final anal-

ysis the user only cares about ultimate performance without

regard to where that performance comes from, we do be-

lieve it is important from a science viewpoint to understand

the contributions of each of the factors.

The chief factors which determine whether OS services

should be run on dedicated cores include competition, co-

operation, concurrency, and contention, and are discussed

below.

• Competition: When the OS and the application run

on the same core, they are fighting over the processor’s

tightly constrained architectural resources. This in-

cludes multiple layers of memory cache, TLBs, branch

prediction state, write back buffers, register state, and

CPU execution engine state.

• Cooperation: When the OS and the application share

data, e.g., common memory buffers, they can share

more efficiently if they run on the same core because

such data is likely to be hot in a nearby cache level.

Although sharing is less efficient on different cores, it

is still more efficient than if the OS service ran on a

different chip.

• Concurrency: When the application can do work that

does not depend on the result of a pending system call

on a different core, the OS and the application can

make forward progress in parallel.

• Contention: Running the OS on a single core or on a

small number of cores can reduce OS lock contention

and OS data sharing costs compared to running the OS



on a large number of cores. For highly parallel applica-

tions, when the OS runs on the same core as the calling

application, the number of cores on which the OS runs

can be large and independent of the number of cores

optimally suited to the OS.

In the past, concurrency (or the lack of it) has tended

to overwhelm other benefits of running the OS and appli-

cation on separate cores. However, we note that concur-

rency is only applicable to certain workloads and that con-

temporary programming techniques have effectively miti-

gated contention in Linux for at least 48 cores [6]. Simi-

larly, new OS designs such as Corey [5], BarrelFish [2] and

fos [14], are built with scalability as a key goal and take great

pains to reduce contention. Given these considerations, com-

petition and cooperation have the potential to be universally

relevant and could determine whether the OS should run on

a different core in the general case. We decided to study

the effects of memory and cache performance in particu-

lar because of the high latency and bandwidth limitations of

off-chip memory and the changing nature of on-chip caches.

Additional architectural resources could be modeled in the

future, and would likely show even greater competition ef-

fects.

To this end, we built CachEMU, a full-system memory

trace generator and cache simulator. CachEMU is being re-

leased as open-source and is built as an extension to QEMU’s

binary translation layer, enabling it to support multiple guest

operating systems and processor architectures.

CPU 

L1 $ 

L2 $ 

L3 $ 

DRAM 

OS App 

(a)

CPU 

L1 $ 

L2 $ 

L3 $ 

DRAM 

OS App 

CPU 

L1 $

L2 $

A

(b)

Figure 1: In figure (a) the OS and the Application share

a core and caches, where as in figure (b) the OS and the

Application run on separate cores but share an L3 cache.

Figure 1(a) shows the traditional OS and application place-

ment of a monolithic OS. We suggest the alternative place-

ment strategy shown in figure 1(b) — Never run the OS on

same core as the application, but always run it on a nearby

core. Using CachEMU to evaluate five common Linux work-

loads on an architectural model of Intel’s Nehalem proces-

sor, we show that this placement strategy tends to be optimal

for OS intensive workloads.

2. RESULTS

Using CachEMU, we present a variety of experiments that

examine the effects of competition and cooperation in the

context of OS and application workload placement strate-

gies.

2.1 CachEMU

CachEMU is a memory reference trace generator and cache

simulator based on the QEMU [3] processor emulator. Through

modifications to QEMU’s dynamic binary translator, CachEMU

interposes on data and instruction memory access. This is

achieved by injecting additional micro-operations at the be-

ginning of each guest instruction and data lookup. This work

is the first publication describing CachEMU or using its re-

sults. CachEMU’s cache model has fully configurable cache

size, associativity, block size, and type (instruction, data, or

unified). Raw memory tracing, however, could easily be di-

rected to additional purposes in the future, such as write-

back buffer modeling or simulating TLB costs. Like SimOS [12],

CachEMU’s modeling can be enabled or disabled dynami-

cally, allowing system boot-up or any other operations that

are not relevant to an experiment to run without added over-

head.

Several of QEMU’s advantages are preserved in CachEMU,

including the ability to perform full-system emulation across

multiple processor ISA’s with realistic hardware interfaces.

Although our study is currently limited to Linux on x86-64,

full-system emulation makes CachEMU a powerful tool for

studying the effects of OS interference on a variety of po-

tential platforms (e.g. Android mobile phones and Windows

desktops.) Simics provides similar full-system and mem-

ory trace capabilities to CachEMU but is currently propri-

etary [10].

CachEMU builds upon the work of past memory reference

tracers. For example, ATUM used modifications to proces-

sor microcode to record memory traces to a part of main

memory [1]. Previous studies have established that OS in-

terference can have a significant effect on memory caches [1,

8].

CachEMU brings the ability to study OS interference to

new machines and allows for the study of new kinds of ap-

plications. We feel that such an effort is now even more

relevant than ever because of the dramatic increase in cores

on a chip, each with dedicated cache resources, changes in

the scale of applications, and the rise in complexity of cache

topologies. We plan to release CachEMU as an open source

tool for other OS and architecture researchers to utilize and

extend.

2.2 Methodology

We used CachEMU to evaluate the effects of competition

and cooperation, counting kernel instructions toward the OS

and user instructions toward the application. Each applica-

tion was run in a separate virtual machine (for isolation pur-

poses) with a 64-bit version of Debian Lenny installed and

a single virtual CPU. Instruction-based timekeeping, where
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each guest instruction is counted as a clock tick, was used

with QEMU in order to mask the disparity between host time

and virtual time. For cases where the user and the OS were

using separate caches, a basic cache coherency protocol sim-

ulated shared memory contention by having writes in one

cache trigger evictions in the other cache. Evictions were

performed only for unshared caches. For example, a mem-

ory reference could cause an eviction in a separate L2 cache

while leaving the entry present in a shared L3 cache. All

cache accesses were modeled with physical addresses and

each cache line used a standard 64 byte block size.

We chose five common Linux workloads with heavy us-

age of OS services. They are as follows:

• Apache: The Apache Web Server, running an Apache

Bench test over localhost.

• Find: The Unix search tool, walking the entire filesys-

tem.

• Make: The Unix build tool, compiling the standard

library ’fontconfig’ (includes gcc invocations and other

scripts.)

• Psearchy: A parallel search indexer included withMos-

bench [6], indexing the entire Linux Kernel source tree.

• Zip: The standard compressed archive tool, packing

the entire Linux Kernel source tree into a zip archive.

2.3 Cache Behavior

In order to gain a better understanding of the effects of ca-

pacity on competition and cooperation, we tested a spectrum

of single-level 8-way associative cache sizes ranging from

4KB to 16MB. For each test, we compared the number of

misses occurring under separate OS and application caches

with the number of misses occurring in a shared application

and OS cache. In general, we observed that competition was

a dominant factor that discouraged sharing for small cache

sizes, while cooperation was a dominant factor that encour-

aged sharing for larger cache sizes.

For example, figure 2 shows the cache behavior of the zip

workload when the OS and the application share a cache.

For this test, competition effects were dominant until the

cache size reached 1 MB. Then from 1 MB to 16 MB the

reduction in misses because of cooperation — shared data

between the application and the OS — overtook the num-

ber of cache misses caused by competition. Although the

number of misses avoided as a result of cooperation is rel-

atively small, the performance impact is still great because

for larger cache and memory sizes (i.e. where cooperation

is a dominant effect) there tends to be much greater access

latencies. We also note that the zip workload generally had

a higher proportion of misses caused by the OS, a common

trend observed in our tests.

Figure 3 includes all five test applications and shows the

effect of cache size from a different perspective; We calcu-
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OS and Application alone as well as the Competition be-
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Figure 3: The percentage decrease in misses caused by

splitting the application and OS into separate caches.

lated the percentage decrease in total misses caused by hav-

ing separate caches. This normalizes the cache effects to

the baseline miss rate of each cache size. For small cache

sizes (usually less than 256 KB,) we saw advantages to hav-

ing separate OS and application caches because of the re-

duction in cache competition. For large cache sizes (1 MB

and above,) data transfers between the OS and application

became a dominant factor, and we saw a net advantage to

having a shared OS and application cache. The behavior of

caches between 256 KB and 1 MB was application specific

and depended on working set size.

2.4 Performance Impact

We studied the performance impact of OS placement on

contemporary processors by building a three-level Intel Ne-

halem cache model. The model includes separate L1 data (8-

3



Workload

Apache Find Make Psearchy Zip

M
e

m
o

ry
 S

y
s
te

m
 C

P
I

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Same Core Different Core(Shared L3) Different Core(Unshared L3)

Figure 4: Memory related Clocks per Instruction (CPI)

when executing OS and Application on same core, differ-

ent cores but same chip, and different cores and different

chip. This utilizes a model of the Nehalem cache archi-

tecture.

way associative) and instruction (4-way associative) caches,

each with 32 KB capacity. For L2 and L3 we modeled a

256 KB 8-way associative cache and a 8 MB 16-way asso-

ciative cache respectively. We assume cache latencies of 10

cycles for L2 access, 38 cycles for L3 access, and 191 cycles

for local memory access [11]. Using these parameters, we

show in Figure 4 the additional cycles-per-instruction (CPI)

when compared to a perfect L1 cache hit rate for the follow-

ing OS placements: all three cache layers shared, separate

L1 and L2 but shared L3, and all three cache layers separate.

Contention misses caused by shared state were modeled by

adding the equivalent latency of the next higher shared cache

level. This included using local memory latency when all

higher cache levels were unshared. In practice, communi-

cation between processors on different dies can be slightly

more expensive than local memory accesses [11], but we

nonetheless feel that this is a reasonable approximation.

We then used the CPI calculations to estimate overall ap-

plication speed up. Since actual non-memory CPI is work-

load dependent, and cannot be estimated by our simulator,

we conservatively assume it to be 1.0, the median total CPI

for the Pentium Pro [4]. Figure 5 shows projected perfor-

mance improvements for each of the five workloads. Run-

ning the OS on a different core with a shared L3 cache was

always better than running the OS on the same core, except

for the Psearchy workload where it was equivalent.

3. RECOMMENDATIONS

Through utilizing CachEMU to study the effects of OS

and application cache interference and cooperation, we have

come up with some recommendations for future OS and hard-

ware designs as follows.

RUN YOUR OS ON A DIFFERENT CORE THAN THE APPLI-

CATION

Across all of our benchmarks, we found that when the OS

and application utilize the same cache for sizes as would
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Figure 5: Overall percentage improvement in the CPI

due to memory effects when the OS is run on a differ-

ent core. The non-memory CPI of each workload is not

known, so a conservative value of 1.0 is assumed.

be found in typical L1 caches, the working sets of the OS

and application fight and lead to lower performance than if

they were executed on separate cores. We also found that for

most applications, it was higher performance to not have the

OS and application share an L2 cache. In the cases where

it was beneficial to share an L2 cache, it was still a perfor-

mance win to run the OS and application on differing cores

because the loss of performance due to sharing the L1 cache

outweighed the performance gain of sharing the L2. There-

fore, we recommend that future OSes execute the OS on a

different core than the application.

One hardware modification which we feel would be ben-

eficial to OSes which execute the OS on a different core

than the application is to have faster hardware communica-

tion and messaging primitives. We modeled the communi-

cation costs between separate cores as the cost of a cache

miss as seen though the cache coherence system. We feel

that by adding communication hardware which minimizes

communication cost between different caches or hardware

messaging primitives, system calls can be accelerated and

even larger performance gains can be achieved when mov-

ing the OS to a different core than where the application is

executing.

This result assumes that there are idle (spare) cores to

move the OS onto. If there are not spare cores, then the op-

portunity cost of losing a core to the OS, may outweigh the

benefits found in our study. We feel that there is high proba-

bility that there will be spare cores on future high-core-count

chips. Also, the OS can be aggregated onto a small number

of such that the total OS footprint is less than 1:1, OS to ap-

plication. Last, as Corey [5], Barrelfish [2] and fos [14] have

found, through the use of end-to-end tests, dedicating cores

to the OS can have both parallelism and working set wins

even when the opportunity cost of dedicating cores is taken

into account.

RUN YOUR OS ON SAME CHIP AS THE APPLICATION

For all of our benchmarks, we found that it was beneficial to

share an L3 cache between the OS and application. There-
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Figure 6: Processor where the OS and Application share

a core, but have different low level caches.

fore, we recommend that the OS and application execute on

the same chip and not across multiple chips which severely

hurts communication costs. It makes sense to share the L3

cache because for the applications which we have tested,

standard L3 cache sizes for modern microprocessors are able

to hold the working set of both the OS and application. Com-

munication between the OS and application is able to hap-

pen quicker when on-chip instead of off-chip. If the working

sets were so large to cause large amounts of interference in

the L3 it may make sense to run the OS and application on

differing chips, but this is not what we found.

BUILD DEDICATED LOW-LEVEL CACHES

One idea which our results motivate is modifying chip ar-

chitecture to have a single core with two private L1 and L2

caches, one for the OS and one for the application. A hard-

ware design such as shown in Figure 6 can save the cost of

implementing two complete cores, thereby amortizing the

cost of the non-memory portion of a core while still enabling

the benefit of segregating the OS and application’s working

sets.

MAKE CACHES HETEROGENEOUS

There has been much discussion of heterogeneous cores in

the multicore computer architecture community. Our results

have found that the OS typically has a larger working set size

than the application. This suggests that on a heterogeneous

multicore, it would be wise to schedule the OS on the cores

with larger caches and application on the core with smaller

caches. Also, we believe that the OS should compute a real-

time estimate of OS and application working set size and

schedule components to the appropriately sized caches.

4. CONCLUSION

We presented a study on the cache effects of different OS

placements for OS intensive workloads. Results were gath-

ered using a new open source tool called CachEMU. We

found that contention makes a strong case for running the

OS on a different core than its application in order to better

accommodate each workload’s working set. Contrarily, we

found that cooperation tends to benefit from a shared cache

between the OS and the application, allowing for more effi-

cient exchange of data. Thus, a reasonable compromise is to

place the OS and the application on separate cores with ded-

icated caches while still sharing a higher-level on-die cache.

This compromise in placement policy was optimal for the

five Linux test workloads that we simulated on an Intel Ne-

halemmodel, suggesting that contention effects can be a suf-

ficient reason to justify running the OS on a different core

than the application.
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bandwidth limitations of future microprocessors. In

Proceedings of the 23rd annual international

symposium on Computer architecture, ISCA ’96,

pages 78–89, New York, NY, USA, 1996. ACM.

[8] J. B. Chen and B. N. Bershad. The impact of operating

system structure on memory system performance. In

Proceedings of the fourteenth ACM symposium on

Operating systems principles, SOSP ’93, pages

120–133, 1993.

[9] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,

G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom,

F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,

5



P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,

G. Droege, J. Lindemann, M. Gries, T. Apel,

K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar,

V. De, R. Van Der Wijngaart, and T. Mattson. A

48-core ia-32 message-passing processor with dvfs in

45nm cmos. In Solid-State Circuits Conference Digest

of Technical Papers (ISSCC), 2010 IEEE

International, pages 108 –109, feb. 2010.

[10] P. S. Magnusson, M. Christensson, J. Eskilson,

D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,

A. Moestedt, and B. Werner. Simics: A Full System

Simulation Platform. Computer, 35(2):50–58, 2002.

[11] D. Molka, D. Hackenberg, R. Schone, and M. Muller.

Memory performance and cache coherency effects on

an intel nehalem multiprocessor system. In Parallel

Architectures and Compilation Techniques, 2009.

PACT ’09. 18th International Conference on, pages

261 –270, 2009.

[12] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.

Complete computer system simulation: the simos

approach. Parallel Distributed Technology: Systems

Applications, IEEE, 3(4):34 –43, 1995.

[13] L. Soares and M. Stumm. FlexSC: Flexible System

Call Scheduling with Exception-Less System Calls. In

9th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 2010). ACM.

[14] D. Wentzlaff and A. Agarwal. Factored operating

systems (fos): the case for a scalable operating system

for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85,

2009.

6




