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Abstract—This paper presents a scalable information theoretic
approach to infer the state of an environment by distributively
controlling robots equipped with sensors. The robots iteratively
estimate the environment state using a recursive Bayesian filter,
while continuously moving to improve the quality of the estimate
by following the gradient of mutual information. Both the filter
and the controller use a novel algorithm for approximating
the robots’ joint measurement probabilities, which combines
consensus (for decentralization) and sampling (for scalability).
The approximations are shown to approach the true joint
measurement probabilities as the size of the consensus rounds
grows or as the network becomes complete. The resulting
gradient controller runs in constant time with respect to the
number of robots, and linear time with respect to the number
of sensor measurements and environment discretization cells,
while traditional mutual information methods are exponential
in all of these quantities. Furthermore, the controller is proven
to be convergent between consensus rounds and, under certain
conditions, is locally optimal. The complete distributed inference
and coordination algorithm is demonstrated in experiments with
five quad-rotor flying robots and simulations with 100 robots.

PREFACE

Due to space limitations, the proofs for three theorems and
one corollary were not included in [12]. This technical report
contains the content of the aforementioned paper with an
added appendix containing all proofs.

I. INTRODUCTION

Robots are increasingly acting as our eyes and ears, extending
human perception to remotely sense relevant aspects of an
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Fig. 1. This snapshot of a hardware experiment shows five quad-rotor flying
robots inferring the state of an environment. The hexagon cells overlaying the
snapshot illustrate the state and location of the discretized environment. The
green lines between robots represent network connectivity, and the embedded
schematic illustrates the state of the inference enabled by the simulated
sensors drawn in red dashed circles.

environment of interest. Especially when deployed in large
numbers, robots are capable of rapidly gathering information
by sharing their workload in a distributed fashion. While their
operation may in general be more cost efficient than a human
workforce, or even be the only option in situations that would
otherwise endanger humans, it is highly desirable to use the
robots and their sensors as effectively as possible in order
to minimize operational cost or maximize the rate of infor-
mation acquired. For this aim, we describe a novel approach
for inferring the state of an environment and distributively
controlling a multi-robot system. The approach significantly
relaxes networking requirements of current state-of-the-art
methods, is computationally efficient, and provably conver-
gent. In the following, we lay out the underlying model and
theory, based on an information theoretic foundation, and
build a distributed inference and coordination algorithm. We
then present empirical results of hardware experiments and
numerical simulations.

Bayesian approaches for estimation have a rich history in
robotics, and mutual information has recently emerged as a
powerful tool for controlling robots to improve the quality
of the Bayesian estimation, particularly in multi-robot sys-
tems. As an early example, Cameron and Durrant-Whyte [3]
used mutual information as a metric for sensor placement
without explicitly considering mobility of the sensors. Later
Grocholsky et al. [7], [8] proposed controlling multiple



robot platforms so as to increase the mutual information
between the robots’ sensors and the position of a target in
tracking applications. Bourgault et al. [1] also used a similar
method for exploring and mapping uncertain environments.
In addition, the difficult problem of planning paths through
an environment to optimize mutual information has been
recently investigated, for example in [4], [15], [19]. In a
multi-robot context, the main challenges in using mutual
information as a control metric are computational complexity
and network communication constraints. Mutual informa-
tion and its gradient are exponential with respect to the
number of robots, sensor measurements, and environment
discretization cells, making their computation intractable in
realistic applications. Furthermore, the computation of these
quantities requires that every robot have current knowledge
of every other robot’s position and sensor measurements.
Thus, most of the mutual information methods mentioned
above are restricted to small groups of robots with all-to-all
communication.

With respect to Bayesian estimation, methods based on
Kalman filters, which are Bayesian filters for linear Gaus-
sian systems, have commonly been used to estimate the
state of an environment. For example, Lynch et al. [14]
proposed a distributed Kalman filtering approach in which
the robots use consensus algorithms to share information
while controlling their positions to decrease the error variance
of the state estimate. In addition, Cortés [6] developed a
distributed filtering algorithm based on the Kalman filter for
estimating environmental fields. The algorithm also estimated
the gradient of the field, which is then used for multi-robot
control. There have been similar Kalman filter approaches
for tracking multiple targets, such as Chung et al. in [5].

Similar to mutual information, traditional Bayesian ap-
proaches are not scalable with respect to the number of
robots, sensor measurements, and environment discretization
cells, but recent work has tried to address this issue. Notably,
Hoffmann and Tomlin [10] proposed a particle filter to
propagate a Bayesian estimate, and used greedy and pair-wise
approximations to calculate mutual information. To relax
the requirement for all-to-all communication, Olfati-Saber
et al. [16] developed a consensus algorithm for Bayesian
distributed hypothesis testing in a static sensor network con-
text. In our work, we use a consensus algorithm inspired by
[16] to compute the joint measurement probabilities needed
for mutual information and Bayesian filter calculations. We
then overcome the problem of scalability by judiciously
sampling from the complete set of measurement probabilities
to compute an approximate mutual information gradient.

The paper is organized as follows. In Section II we formulate
the problem of inferring the state of an environment using a
single robot equipped with sensors, then expand this concept
to multiple robots. In Section III we formalize a communica-
tion model and construct a consensus algorithm that distribu-
tively approximates the joint measurement probabilities of

the robots’ observations given the state of the environment. In
Section IV we introduce principled approximations that allow
for mutual information calculations that run in constant time
with respect to the number of robots, and linear time with re-
spect to the number of sensor measurements and environment
discretization cells. In Section V we implement the findings
of all previous sections to develop a distributed controller
that is convergent between consensus rounds and, under
certain conditions, is locally optimal. Finally, we demonstrate
our complete approach in Section VI first through hardware
experiments with five quad-rotor flying robots, then through
numerical simulations with 100 robots.

II. PROBLEM FORMULATION

We motivate our approach with an information theoretic
justification of a utility function, then develop the problem
formally for a single robot followed by the multi-robot case.

A. Utility in Information

We wish to infer the state of an environment from measure-
ments obtained by a number of robots equipped with sensors.
We model the potentially time varying state as a continuous-
time random variable, X(t), taking values from an alphabet,
X . The robots cannot measure X(t) directly but instead
receive from their sensors an observation, which is also
modeled as a random variable, Y (t), taking values from an
alphabet, Y . The relationship between the true state and the
noisy observation is described by measurement probabilities,
pY (t)|X(t). The sensors may be interpreted as a noisy channel,
and since they are attached to the robots, pY (t)|X(t) is a
function of the robots’ configuration, c(t).

From Bayes’ Rule, we can use an observation, y ∈ Y , and
the system’s prior, pX(t), to compute the posterior,

pX(t)|Y (t) (x|y) = pX(t)(x)pY (t)|X(t)(y|x:c)∫
x′∈X

pX(t)(x′)pY (t)|X(t)(y|x′:c)dx′ (1)

where c is shorthand representing c(t) and the notation
pY (t)|X(t)(· : c) emphasizes that the measurement probabil-
ities depend on c. Since our objective is to best infer X(t),
we are motivated to move the robots into a configuration
that minimizes the expected uncertainty of the inference after
receiving the next observation. Our optimization objective is
equivalent to minimizing conditional entropy,

H(X(t)|Y (t)) = H(X(t))− I(X(t), Y (t))

where H(X(t)) is the entropy of the inference and
I(X(t), Y (t)) is the mutual information between the infer-
ence and the observation. Since H(X(t)) is independent of
c, minimizing H(X(t)|Y (t)) is equivalent to maximizing
I(X(t), Y (t)). Thus, we define the utility function for the
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system to be

U := I(X(t), Y (t)) =
∫

y∈Y

∫
x∈X

pY (t)|X(t)(y|x : c)×

pX(t)(x) log
(
pX(t)|Y (t)(x|y)

pX(t)(x)

)
dx dy (2)

where log represents the natural logarithm (i.e. unit nat). We
are particularly interested in a class of controllers that use
a gradient ascent approach with respect to U , leading to the
following theorem.

Theorem 1. The gradient of the utility function (2) with
respect to a single robot’s configuration, ci, is given by

∂U
∂ci

=
∫

y∈Y

∫
x∈X

∂pY (t)|X(t)(y|x:c)
∂ci

×

pX(t)(x) log
(
pX(t)|Y (t)(x|y)

pX(t)(x)

)
dx dy (3)

Proof. Please refer to the appendix for a proof.

B. Single Robot Case

Consider an environment, Q ⊂ Rrq × Ssq , where Rrq
and Ssq represent the rq-dimensional Euclidean space and
the sq-dimensional sphere, respectively. Although X(t) is
continuous-time in general, the digital inference calculations
occur at discrete-time instances. Thus, we represent X(t) as
a discrete-time random variable, X[k], with samples taken at
constant time intervals, kTs. In order to properly represent
the temporal evolution of X(t) and avoid aliasing, we need
to apply the Nyquist-Shannon sampling theorem and have
the sampling frequency, fs = 1/Ts, be at least 2fmax, where
fmax is the highest temporal frequency component of interest.
We then defineW to be an nw cell partition1 of Q where for
each cell, Wm, the state is modeled as a random variable,
Xm[k], that takes a value from an alphabet, Xm. Analogous
to discretizing X(t) in the temporal domain, we need to apply
the Nyquist-Shannon theorem in the spatial domain and have
sufficient sampling frequencies in all dimensions. Without
loss of generality we have

∏nw
m=1 Xm = X .

For both the temporal and spatial domains the maximum
frequency component of interest may itself be temporally
and spatially varying, but for this paper we assume they are
constant over all time and space. In addition, we recognize
that X(t) may not be bandlimited, so our approach cannot in
general be considered lossless, but instead we are preserving
the ability to perfectly reconstruct X(t) within a predefined
temporal and spatial frequency band. Finally, note that we are
not making any assumptions on whether the random variables
are continuous, discrete, or even numerical in value.

Now consider a single robot, denoted i, that has a prior,
piX[k]. Based on the sampling methodology described above,

1The partitionW is defined as a collection of closed connected subsets of
Q satisfying

∏nw
m=1Wm =W ,

⋃nw
m=1Wm = Q and

⋂nw
m=1 int(Wm) =

∅, where int(·) denotes the subset of interior points.

the robot should receive sensor observations at a frequency
of at least fs. Let these observations occur simultaneously
with X[k], where the discrete-time random variable Yi[k] is
characterized by pYi[k]|X[k]. Between observations, the robot
is able to compute from (1) the posterior, pX[k]|Yi[k], and
form a new prior based on a state transition distribution,
piX[k+1]|X[k]. Thus, the prior at time (k + 1)Ts is given by

piX[k+1](x) = piX[k+1]|X(x)pX|Yi(x|yi) (4)

for all x ∈ X and yi ∈ Yi, where X and Yi are shorthand
representing X[k] and Yi[k], respectively. Equations (1) and
(4) form the well-known duet of prediction and update in
sequential Bayesian estimation.

C. Multi-Robot Case

With respect to a centralized system, the nr robot case is a
simple extension of the single robot case with piX = pX and
piX[k+1]|X = pX[k+1]|X for all i ∈ {1, . . . , nr}. Let the sys-
tem be synchronous in that observations are simultaneously
received at time intervals of Ts. These observations are mod-
eled as an nr-tuple random variable, Y = (Y1, . . . , Ynr ), that
takes a value from an alphabet, Y =

∏nr
i=1 Yi. We assume

conditional independence of Yi for all i ∈ {1, . . . , nr}, giving
joint measurement probabilities of

pY |X(y|x : c) =
nr∏
i=1

pYi|X(yi|x : ci) (5)

for all x ∈ X and y = (y1, . . . , ynr ) ∈ Y , where
c = (c1, . . . , cnr ) is an nr-tuple denoting the configuration
of all the robots. Thus, the posterior from (1) becomes

pX|Y (x|y) =

nr∏
i=1

pYi|X(yi|x:ci)pX(x)∫
x′∈X

nr∏
i=1

pYi|X(yi|x′:ci)pX(x′)dx′
(6)

and the prior update from (4) becomes

pX[k+1](x) = pX[k+1]|X(x)pX|Y (x|y) (7)

Note that there is one system prior and posterior for the
centralized system. For the decentralized system, we use
superscript ti to denote distributions for a particular robot.

III. DECENTRALIZED SYSTEM

We formalize a communication model and introduce a con-
sensus algorithm to distributively approximate the system’s
joint measurement probabilities, which we use for the con-
troller in Section V-C.
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A. Communication Model

We use graph theory to represent communication connectivity
among the nr robots. Between observations, the robots
simultaneously transmit and receive communication data at
a much shorter time interval, Tc � Ts, according to an
undirected communication graph, G. Let G = (V, E ,A)
consist of a vertex set, V = {1, . . . , nr}, an unordered edge
set, E ⊂ V × V , and a symmetric unweighted adjacency
matrix, A ∈ {0, 1}nr×nr , where

[A]iv = aiv =
{

1, if (i, v) or (v, i) ∈ E
0, otherwise (8)

We denote Ni as the set of neighbors of robot i, who has an
in/out degree of |Ni| =

∑nr
v=1 aiv .

Given the volatile nature of mobile networks, we expect G
to be incomplete, time-vary, and stochastic. The algorithms
presented in this paper work in practice even when properties
of G cannot be formalized. However, to allow for meaningful
analysis from a theoretical perspective, we assume that G re-
mains connected and is time-invariant between observations.
Connectivity allows the system to be analyzed as a single unit
instead of separate independent subsystems. The property of
graph time-invariance between observations is more strict,
however, this assumption is used to formalize the rate of
convergence of our consensus algorithm. Thus, G is modeled
as a discrete-time dynamic system with time step Ts.

B. Consensus of the Joint Measurement Probabilities

Consider a robot that calculates an expectation involving the
joint measurement probabilities, such as (2) or (3). Normally
the robot would need to know the current configuration,
observation, and sensor channel model for all robots. We
instead introduce a consensus algorithm that approximates
the joint measurement probabilities and in the limit converges
to pY |X(y|x : c). To simplify the formulation, we consider
X and Y to be discrete-value random variables. Extensions
to the continuous domain will be highlighted in future work.

Let the belief matrix πik′ [k] ∈ {[0, 1]}|X |×|Y| be a ma-
trix representation of the approximated nrth root of the
joint measurement probabilities known by robot i at time
kTs + k′Tc ≤ (k + 1)Ts, and set πi0[k] to be[

πi0
]
j`

= pYi|X(y`i |xj : ci)

for all xj ∈ X and y`i ∈ Yi, where πik′ is shorthand
representing πik′ [k], xj denotes the jth element of X , and
y`i denotes the ith element of the `th tuple of Y . In words,
the belief matrix is initialized to robot i’s contribution to
pY |X(y|x : c) in (5). Before time (k+1)Ts, the robot is able
to transmit its belief matrix and receive its neighbors’ ones
a total of nπ ≤ bTs/Tcc times. Let the evolution of each

robot’s belief matrix with each communication time step be
described by the discrete-time dynamical system

πik′+1 = πik′
∏
v∈Ni

(
πv
k′
πi
k′

) 1
1+∆i[k]

(9)

where ∆i[k] is any value less than or equal to nr − 1 and
greater than or equal to the maximum in/out degree of all
robots participating in the consensus of πinπ (see Remark 2).

Theorem 2. For the communication model described in
Section III-A, the belief matrix πi converges to π̄[k] for all
i ∈ {1, . . . , nr} in the limit as nπ →∞, where[

π̄
]nr
j`

=
nr∏
i=1

pYi|X
(
y`i |xj : ci

)∣∣∣
t=kTs

(10)

with πi and π̄ being shorthand for πinπ and π̄[k], respectively.

Proof. Please refer to the appendix for a proof.

Olfati-Saber et al. showed in [16] that such an algorithm
could be used for distributed hypothesis testing. Here we
can use the consensus algorithm to, in theory, calculate
pY |X(y|x : c) for all x ∈ X and y ∈ Y . However,
since the belief matrix is of size maximO(|Yi|nr |Xm|nw)
and convergence may only be an asymptotic result, we use
the consensus algorithm to distributively approximate these
probabilities. Techniques to reduce the size of the belief
matrix are described in Section IV, but here we discuss how
to account for the fact that πi may be used before it actually
converges to π̄.

The proof for Theorem 2 considers (9) in logarithmic form,
which at time step k is a linear time-invariant system with
state matrix Aβ [k], where

[Aβ ]im =
{

1− |Ni|/(1 + ∆i), if i = m
aim/(1 + ∆i), otherwise

with Aβ and ∆i being shorthand for Aβ [k] and ∆i[k],
respectively. We then define

βi[k] =
(

max
v

[
Anπβ

]
iv

)−1

to be an exponential factor that describes how fast πi

converges to π̄ as nπ increases. Consider the following
approximation for the joint measurement probabilities,

p̂iY |X(y`|xj) = [πi]βij` (11)

for all xj ∈ X and y` ∈ Y , where βi is shorthand
representing βi[k], and y` denotes the `th element of Y . The
logarithm of [πi]j` can be thought of as a weighted mean of
the logarithms of pYi|X(y`i |xj : ci) for all i ∈ {1, . . . , nr}.
In words, βi is the inverse of the largest weight, which in
the approximation of (5) ensures that no entry in the right
hand side product is raised to a power greater than 1. We can
also approximate in a purely distributed manner the posterior
from (6),

p̂iX|Y (x|y) =
piX(x)p̂iY |X(y|x)∑

x′∈X
piX(x′)p̂i

Y |X(y|x′) (12)
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and the utility gradient from (3),

∂̂U
∂ci

=
∑
y∈Y

∑
x∈X

∂pYi|X(yi|x:ci)
∂ci

p̂iY |X(y|x)
pYi|X(yi|x:ci)|

t=kTs

×

piX(x) log
(
p̂iX|Y (x|y)
piX(x)

)
(13)

For the gradient approximation to be well defined, we must
have pYi|X(yi|x : ci) ∈ {(0, 1)} for all x ∈ X , yi ∈ Yi,
and ci ∈ Ci. This requirement is equivalent to saying that all
observations have some finite amount of uncertainty.

Remark 1. To build intuition on how βi affects (11) and
(12), we can easily verify that for all i ∈ {1, . . . , nr},

(i) βi = 1 when nπ = 0, implying that with no com-
munication each robot acts as an isolated system with
p̂iY |X(y|x) = pYi|X(yi|x : ci);

(ii) βi converges to nr in the limit as nπ → ∞, implying
that with ideal communication the system behaves as if
there exists a central fusion center that provides each
robot with the true joint measurement probabilities.

Remark 2. The posterior approximation does not require
knowledge of robot configurations or observations. In fact,
the only non-local information needed by a robot is a
subsection of the adjacency matrix used to calculate βi and
select ∆i. In words, these parameters are dependent only on
the entries of A that contribute to the consensus averaging
of πi. This implies that the system would naturally be able to
acquire this information as part of the consensus algorithm.

Lemma 1. For a complete network graph with nπ ≥ 1,
βi = nr and thus πi = π̄ for all i ∈ {1, . . . , nr}.

IV. PRINCIPLED APPROXIMATIONS FOR SCALABILITY

We formulated a consensus algorithm to distributively ap-
proximate the joint measurement probabilities, however, the
size of the belief matrix remained exponential with respect to
the number of robots, sensor measurements, and environment
discretization cells. We now introduce a sampling technique
to approximate distributions over likely observations, then
consider a special class of robots that allows for the lossless
compression of the belief matrix. The resulting size is con-
stant with respect to the number of robots and linear with
respect to the number of sensor measurements and environ-
ment discretization cells. This reduction enables systems of
more than 100 robots when traditional information theoretic
methods are limited to 10 or less.

A. State and Observation Sample Sets

Let each robot draw nx samples of equal weight, 1/nx,
from piX to generate a state sample set, Xi. These samples
form an approximation of piX , from which samples of likely
observations for robot i can be drawn using pYi|X . Let
ny be a multiple of nx representing the number of drawn

sample observations. For each x̃ ∈ Xi[k], the robot draws
ny/nx sample observations from pYi|X(·|x̃ : ci) to generate
a temporary observation sample set. The final observation
sample set, Yi[k], is formed by taking a random permutation
of the temporary set, and the corresponding measurement
probabilities become

pYi|X(ỹi|x : ci) = pYi|X(ỹi|x:ci)∑
ỹ′
i
∈Yi

pYi|X(ỹ′i|x:ci)

for all x ∈ X and ỹi ∈ Yi, where Yi is shorthand
representing Yi[k].

With these sample sets each robot can form a belief matrix,
π̃ik′ [k] ∈ {[0, 1]}|X |×ny , that is of constant size with respect
to the number of robots and sensor measurements. Setting[
π̃i0
]
j`

to be pYi|X(ỹ`i |xj : ci) for all xj ∈ X and ỹ`i ∈ Yi,
where π̃ik′ is shorthand representing π̃ik′ [k] , and ỹ`i denotes
the `th element of Yi, we can use the consensus algorithm
to have π̃inπ converge to

∏nr
i=1 pYi|X

(
ỹ`i |xj : ci

)|t=kTs in
the limit as nπ → ∞. Since Yi is randomly ordered for all
robots, π̃inπ can be used to form a sampled approximation
for the joint measurement probabilities,

p̃iY|X(ỹ`|xj) = [π̃i]βij`
/ ny∑
m=1

[π̃i]βijm (14)

for all xj ∈ X and ỹ` ∈ Y, where π̃i and Y are shorthand
representing π̃inπ and Y[k], respectively, and ỹ` denotes the
`th element of the joint observation sample set Y. Note
that it is not necessary for the robots to actually know the
entries of Y, but instead what is important is that p̃iY|X
was formed from samples representing Y . In addition, the
posterior approximation with respect to the robot’s sampled
state set becomes

p̃iXi|Y(x̃|ỹ) =
p̃iY|X(ỹ|x̃)∑

x̃′∈Xi
p̃iY|X(ỹ|x̃′) (15)

for all x̃ ∈ Xi and ỹ ∈ Y, where Xi is shorthand representing
Xi[k].

B. Scalability with Respect to Environment Size

The above sampling technique reduces the column dimension
of the measurement probability matrix from exponential to
constant with respect to the number of robots and sensor mea-
surements. Unfortunately, since the priors are being repre-
sented in full, π̃i has a row dimension of maxmO(|Xm|nw).
We are currently investigating approximations (e.g. particle
filters) to reduce the row dimension, but for this paper we
consider a special class of robots that allows for the lossless
compression of π̃i.

Let each robot receive an observation that is modeled as an
nw-tuple random variable, Yi = (Yi1, . . . , Yinw). In addition,
the measurement probabilities of Yim given X are only
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dependent on Xm and conditionally independent from all
other Yim′ with m′ 6= m, such that

pYi|X(yi|x : ci) =
nw∏
m=1

pYim|Xm(yim|xm : ci) (16)

for all x ∈ X and yi ∈ Yi, where xm and yim are the mth
element of the nw-tuples x and yi, respectively. In words,
each robot’s observation is composed of nw conditionally
independent observations, where each observation element
concerns a specific environment partition cell. Due to this
conditional independence, π̃i does not need a designated row
for every x ∈ X . Instead, each row can represent a single
xm for all xm ∈ Xm and m ∈ {1, . . . , nw}. From (16), we
can restructure π̃ik′ to form π̆ik′ [k] such that[

π̃ik′
]
j`

=
∏

m∈M(xj)

[
π̆ik′
]
m`

(17)

for all k′ ∈ {0, . . . , nπ}, where π̆ik′ is shorthand representing
π̆ik′ [k] andM(xj) denotes the nw element set of row indices
of π̆i0 that were set to pYim|Xj (yim|xm : ci) for all xj ∈ X ,
yi ∈ Yi and m ∈ {1, . . . , nw}.
Note that this technique is not an approximation, as we can
perfectly reconstruct π̃i from π̆i. However, it has a significant
impact by reducing the size of the measurement probability
matrix from exponential to maxmO(|Xm|nw) (i.e. linear)
with respect to the number of environment discretization
cells, which directly affects memory and network bandwidth
requirements.

V. DISTRIBUTED COORDINATION

We first formalize a dynamic model for the robots then
describe the two consensus rounds performed between ob-
servations. Finally, we introduce a distributed controller that,
under certain conditions, moves the robots to a locally
optimal configuration with respect to the utility function.

A. Dynamic Model

Let a robot of configuration ci move in a configuration space,
Ci ⊂ Rri × Ssi . This space describes both the position of
the robot and the orientation of its sensors, and does not
need to be the same as Q. For example, if we have a planar
environment within R2, we could have ground point robots
with omnidirectional sensors moving in R2 or flying robots
with a gimbaled sensor moving in R3×S3. Let C =

∏nr
i=1 Ci

denote the configuration space for all robots.

At any given time, the robot can choose a control action
ui(t) ∈ Ui ⊂ Rri × Ssi . We model the robot as having
continuous-time integrator dynamics,

dci
dt = ui(t) (18)

which is a common assumption in the multi-robot coordi-
nation literature. In our applications using quad-rotor flying

robots, we found that generating position commands at a
relatively slow rate (e.g. 1 Hz) and feeding these inputs into
a relatively fast (e.g. 40 Hz) low-level position controller suf-
ficiently approximates the integrator dynamics assumption.

B. The Two Consensus Rounds

We introduced the consensus algorithm in Section III-B as
consisting of a single consensus round2 performed between
observations. For the complete distributed inference and
coordination algorithm, we perform two consensus rounds
between observations; the first round is to calculate the
posterior based on the received observation, and the second to
calculate the utility gradient to generate control inputs (18).

Consider the time of kTs when each robot receives an obser-
vation, y`i . Let each robot form a belief vector, π̆i,y0 , which is
the `th column of π̆i0. Using the consensus algorithm, each
robot can transmit its belief vector and receive its neighbors’
ones a total of nπ = nyπ times. Since only a single observation
is considered, we have[

πik′
]
j`

=
∏

m∈M(xj)

[
π̆i,yk′

]
m

(19)

Thus, the robots can use (11), (12), and (7) to cal-
culate piX[k+1]. Note that the belief vector is of size
maxmO(|Xm|nw), which is much smaller than a belief
matrix representing the sampled observation set. In addition,
knowledge of what actual observations other robots received
are not needed for the Bayesian estimation since [πi]j`
naturally converges to pY |X(y`|xj : c) for all xj ∈ X in
the limit as nyπ →∞.

Revisiting our control objective from Section II, we wish
to move the robots into a configuration that minimizes the
expected uncertainty of the inference after receiving the next
observation. With respect to the utility function, our objective
is equivalent to solving the constrained optimization problem
maxc∈C U . One technique to find a locally optimal solution
is to have the robots calculate their utility gradient and move
in a valid direction of increasing utility. We now use a second
consensus round to allow for a distributed approximation of
this gradient.

Let each robot form a belief matrix, π̆i,u0 = π̆i0[k + 1].
Note that since the observation at time kTs has already been
received and the prior updated, the belief matrix represents
the one-step look ahead measurement probabilities. Again
using the consensus algorithm with nπ = nuπ , each robot can
calculate its sampled utility gradient from (13) by

∂̃U
∂ci

= 1
nx

∑̃
y∈Y

∑
x̃∈Xi

∂pYi|X(ỹi|x̃:ci)
∂ci

×
p̃iY|X(ỹ|x̃)

pYi|X(ỹi|x̃:ci)|
t=kTs

log
(
p̃iX|Y(x̃|ỹ)nx

)
(20)

2A consensus round is the averaging of the belief matrix over nπTc time,
where nπ is the size of the consensus round.
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where the measurement probabilities (14) and (15) are ap-
proximated using π̆i,u with (17).

C. Distributed Controller

We presented a fully distributed algorithm that enables each
robot to calculate its utility gradient in O(nxny) time. In
other words, a calculation that normally requires global
knowledge and maximO(|Yi|nr |Xm|nw) time can now be
performed locally on a non-complete communication graph
with computational complexity remaining constant as the
number of robots grows. Using this algorithm, we can
formulate distributed controllers with provable convergence
for special classes of systems, such as the following.

Theorem 3. Consider a system of nr robots moving in the
same configuration space, Ci = Rrq × Ssq , and sensing a
bounded environment Q that is a subset of Ci. Let the robots
have dynamics (18) and communications described in Section
III-A. Consider the class of systems where for all robots
∂pYi|X
∂ci

is continuous on Ci and equal to zero for all c′i ∈ Ci
such that di(c′i, q) ≥ D, where D is some constant, q is
any element in Q, and di : Ci ×Q → R is a valid distance
function. Then for the controller ui(t) = γi

∂̃U
∂ci

, where γi > 0,

we have that between the consensus updates of ∂̃U
∂ci

, ui(t) is
convergent to 0 for all i ∈ {1, . . . , nr}.
Proof. Please refer to the appendix for a proof.

Remark 3. In words, the assumption on ∂pYi|X/∂ci says
that the measurement probabilities of the observation do not
change when the robot is more than a certain distance away
from the environment (e.g. sensors of limited range), and
within this distance the change in measurement probabilities
are continuous with robot position.

Corollary 1. Consider the aforementioned system in the limit
as nuπ → ∞, or when nuπ ≥ 1 with a complete network
graph. Let there exist a time after which no observations
are received, and let the robots share a common prior. If
the robots believe the environment to be static and use the
unsampled controller u∗i (t) = γi

∂̂U
∂ci

, where γi > 0, then we
have that if the robots converge to a configuration that is
Lyapunov stable, then the configuration must also be locally
optimal for the constrained optimization problem maxc∈C U .

Proof. Please refer to the appendix for a proof.

We now present with Algorithm 1 our complete algorithm
for distributed inference and coordination.

VI. EXPERIMENTS AND SIMULATIONS

The objective for our hardware experiments and numerical
simulations was to infer the state of a bounded, planar
environment by deploying omnidirectional robots belonging
to the class of systems described in Theorem 3. The environ-
ment (see Figure 2) was discretized into nw = 10 hexagon

Algorithm 1 Distributed Inference and Coordination
Require: Robot i knows its configuration ci, its distribution
pYi|X(yi|x : ci), and the extent of the environment Q.
loop

Receive observation and create π̆i,y0 from (17).
Run consensus (9) with nπ = nyπ to form π̆i,y .
Run Bayesian estimation from (11), (12), and (7).
Draw state and observation sample sets to create π̆i,u0 .
Run consensus (9) with nπ = nuπ to form π̆i,u.
Calculate gradient (20) for the controller u(t) = γi

∂̃U
∂ci

.
end loop

cells, each being of width 2 m and having a static state
of xm ∈ {0, 1}. In addition, the robots’ observations took
values of yim ∈ {0, 1}, and an ideal disk model was used to
determine network connectivity.

Fig. 2. The three illustrations show the beginning, middle, and end
configuration of a five robot experiment over a 10 cell environment, where
the state of each cell is either 0 (black) or 1 (white). The robots are
represented by the gray circles, within which their prior distributions can be
visualized. The green lines represent network connectivity, and the dashed
red circles represent simulated sensor ranges. The plot shows the decrease
in entropy of the inferences averaged over 10 consecutive runs.

Our hardware experiments used nr = 5 Ascending Technol-
ogy Hummingbird quad-rotor flying robots in a laboratory
equipped with a Vicon motion capture system. The realtime
software for each robot ran in distributed fashion on a single
computer and included a low level linear-quadratic regulator
position controller that accepted waypoint inputs from (18)
and sent low level control commands to the robots via 2.4
Ghz Xbee-Pro wireless modules. Five heterogeneous sensors
were simulated with measurement probabilities pYim|Xm that
were a maximum value of (0.95, 0.90, 0.85, 0.80, 0.75) and
decreased quadratically (e.g. power decay of light) to 0.5 at
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a sensor radius of (2.0, 2.1, 2.2, 2.3, 2.4) m. We emphasized
these properties by setting the hovering heights proportional
to the sensor radii. In words, robots hovering closer to the
environment had more accurate observations, but also had
smaller fields of view. For all robots, we used a control
policy set of Ui = {[−0.2 m/s, 0.2 m/s]}2, control gain of
γi = 1000, and a network radius that was continuously
adjusted to be the smallest value such that the graph remained
connected. In addition, a safety radius of 1 m was enforced
between neighboring robots, meaning the gradient projection
of ui(t) would be taken to prevent two directly communi-
cating robots from moving closer than 1 m from each other.
Sample sizes of nx = 200 and ny = 800 were used with
consensus round sizes of nyπ = nuπ = 3, which allowed for a
sampling interval of Ts = 1 s.

We recorded 10 consecutive runs deploying the five robots
from the bottom of the environment, including one robot that
started on the environment boundary and another outside.
Figure 2 shows the beginning, middle, and end configura-
tion of a typical 50 s run, along with a plot showing the
decrease in average entropy (i.e. uncertainty) of the robots’
inferences compared to a centralized one. The centralized
inference considered observations from all robots, and can
be interpreted as a baseline. On average the entropy of the
robots’ inferences were within 0.8 bits of the centralized
one over the 50 s. To date, we have over 50 successful
runs with various starting positions and algorithm parameters,
compared to one unsuccessful run caused by the motion
capture system losing track of one robot. Even during this
run, the distributed inference and coordination algorithm
continued to run properly for the other robots, showing the
approach’s robustness to individual robot failures.

Fig. 3. This plot shows the average entropy of the robots’ inferences for
the 100 robot simulations. The top four curves illustrate how the consensus
round sizes affect overall uncertainty within the system, and the bottom curve
is an estimate representing the entropy in the limit as nyπ , nuπ → ∞. The
illustration to the right shows the location where all robots were deployed
(red ×) and the final robot configurations after a typical run (green ◦).

To demonstrate the scalability of our approach with respect to
the number of robots, we simulated a nr = 100 robot system
using different values of nyπ and nuπ . For each run, the het-
erogeneous sensors were randomly selected from the sensor

set used in the hardware experiments, and the robots were
deployed from a single location outside the environment (see
Figure 3). To emulate a physically larger environment for the
simulation, no safety radius was used and the network radius
was fixed to 2.0 m - roughly half the average value seen to
keep the network connected in the hardware experiments.

Using the same software developed for the hardware experi-
ments, we verified that the increase in runtime for the simula-
tion scaled appropriately. Figure 3 shows the decrease in the
average entropy of the robots’ inferences over 100 Monte-
Carlo simulations. As expected, larger consensus round sizes
resulted in lower overall uncertainty within the system. In
addition, the simulations highlight the importance of the net-
work topology; even though many more robots are deployed
in comparison to the hardware experiments, the propagation
of information throughout the system is hindered by the
sparsity of the network when using small consensus round
sizes. This result gives insight into fundamental limitations
that cannot be overcome by simply deploying more robots.

VII. CONCLUSION

We presented an information theoretic approach to distributed
robot coordination that scales well with respect to the
number of robots, sensor measurements, and environment
discretization cells. The resulting controller is proven to be
convergent for a special class of systems, and its performance
is demonstrated in a five quad-rotor flying robot experiment
and 100 robot numerical simulation. Due to the generality
of our problem formulation, we are pursuing many exten-
sions to address problems in distributed robotics concerning
inference tasks. We have begun investigating more efficient
sequential Monte-Carlo methods, and are currently equipping
our robots with on-board computers to physically realize the
decentralized algorithms.

VIII. APPENDIX

Proof (Theorem 1). This proof was derived in collaboration
with Schwager et al. [18]. A similar result in the context
of channel coding was proved by Palomar and Verdú [17].
Concerning the partial derivative of (2) with respect to ci,
we can move the differentiation inside the integrals since they
do not depend on ci. Applying the chain rule to the integrand
and separating the two resulting terms, we have

∂U
∂ci

=
∫
y

∫
x

∂pX(t)|Y (t)(x|y)
∂ci

pY (t)(y) dx dy+∫
y

∫
x

∂pY (t)|X(t)(y|x:c)
∂c pX(t)(x) log

(
pX(t)|Y (t)(x|y)

pX(t)(x)

)
dx dy(21)

where

pY (t)(y) =
∫
x′
pY (t)|X(t)(y|x′ : c)pX(t)(x′)dx′
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from the law of total probability. We will now show that the
first integration term on the right hand side of (21) is equal to
zero. First using the chain rule to take the partial derivative
of (1) with respect to ci, we have

∂pX(t)|Y (t)(x|y)
∂ci

= ∂pY (t)|X(t)(y|x:c)
∂ci

pX(t)(x)

pY (t)(y)
−

∂pY (t)(y)

∂ci

pY (t)|X(t)(y|x:c)pX(t)(x)

pY (t)(y)2
(22)

Substituting (22) back into the first integration term on the
right hand side of (21) and considering the two resulting
integrals separately, we have∫

y

∫
x

∂pY (t)|X(t)(y|x:c)
∂ci

pX(t)(x) dx dy =

∂
∂ci

∫
y

∫
x

pY (t)|X(t)(y|x : c)pX(t)(x) dx dy = ∂
∂ci

1 = 0

and∫
y

∫
x

∂pY (t)(y)

∂ci

pY (t)|X(t)(y|x:c)pX(t)(x)

pY (t)(y)
dx dy =∫

y

∂pY (t)(y)

∂ci

∫
x

pY (t)|X(t)(y|x:c)pX(t)(x)

pY (t)(y)
dx dy =∫

y

∂pY (t)(y)

∂ci
dy = ∂

∂ci

∫
y

pY (t)(y) dy = ∂
∂ci

1 = 0

Proof (Theorem 2). Consider the discrete dynamic model (9)
written in logarithmic form

log
([
πk′+1

]
j`

)
= Aβ log

([
πk′
]
j`

)
where [πk′ ]j` = ([π1

k′ ]j`, . . . , [π
nr
k′ ]j`)T and

[Aβ ]im =
{

1− |Ni|/(1 + ∆i), if i = m
aim/(1 + ∆i), otherwise

Note that 1 + ∆i converges to nr in the limit as nπ → ∞.
Thus, we have that Aβ is an irreducible, row stochastic matrix
with non-negative entries. Since G is connected, there exists
a positive integer ζ such that Aζβ is element-wise positive,
implying that Aβ is also primitive [2]. From properties of
stochastic matrices, the largest eigenvalue of Aβ is λ1 = 1,
for which 1nr is the left eigenvector.

From the Perron-Frobenius Theorem with respect to primitive
matrices, λ1 is simple and strictly larger than the magni-
tude of any other eigenvalue [11]. Therefore, Aβ is semi-
convergent since one eigenvalue lies on the unit circle and
the rest inside, and in the limit we have

lim
nπ→∞

log
([
πnπ

]
j`

)
=

lim
nπ→∞

Anπβ log
([
π0

]
j`

)
= α1nr (23)

for some scalar α, implying that the terms [πinπ ]j` converge
to the same value for all i ∈ {1, . . . , nr}. To determine this
value, we multiply (23) by the left eigenvector 1nr and have

lim
nπ→∞

1Tnr log
[
πnπ

]
j`

= α1Tnr1nr = αnr

Solving for α, we conclude that log
[
πinπ

]
j`

converges to
1Tnr log

[
π0

]
j`
/nr for all i ∈ {1, . . . , nr} in the limit as

nπ →∞. Considering the exponential function of this result
leads to (10).

Proof (Theorem 3). Let

V = −
nr∑
i=1

1
nx

∑̃
y∈Y

∑
x̃∈Xi

pYi|X(ỹi|x̃ : ci)×
p̃iY|X(ỹ|x̃)

pYi|X(ỹi|x̃:ci)|
t=kTs

log
(
p̃iX|Y(x̃|ỹ)nx

)
(24)

be a Lypanov-type function candidate whose partial deriva-
tive with respect to ci is the negative of ∂̃U

∂ci
from (20). The

closed loop dynamics dci
dt = −γi ∂V∂ci are autonomous, and

since
∂pYi|X
∂ci

is continuous on Ci for all i ∈ {1, . . . , nr},
∂V
∂c is continuous on C. Therefore, the dynamics are locally

Lipschitz, and V is continuously differentiable. Taking the Lie
derivative of V along the trajectories of the system, we have

LtV =
nr∑
i=1

∂V
∂ci

dci
dt = −

nr∑
i=1

γi

(
∂V
∂ci

)2

≤ 0 (25)

Now consider robots “far” enough away from Q such that
di(ci, q) ≥ D for all i ∈ {1, . . . , nr}. Then

∂pYi|X
∂ci

= 0 for
all i ∈ {1, . . . , nr}, implying that dc

dt = 0nr for all time, so
all evolutions of the system are bounded. Finally, consider
the set of all c ∈ C such that ∂V∂c = 0nr . This set is invariant
since it implies ∂̃U

∂ci
= 0 for all i ∈ {1, . . . , nr}. Thus, all

conditions of LaSalle’s Invariance Principle are satisfied and
the trajectories will converge to this invariant set [13], [2].

Proof (Corollary 1). Let k0 represent the first time step after
receiving the final observation. Since all robot priors are
initially equal and the environment is believed to be static,
we have

piX = pX (26)

for all i ∈ {1, . . . , nr} and k ≥ k0. In addition, from
Theorem 2 and Lemma 1, the belief matrix πi,u converges
to π̄ for all i ∈ {1, . . . , nr} and k ≥ k0. Thus, we have

p̂iY |X(y|x) = pY |X(y|x : c)
∣∣
t=kTs

(27)

and

p̂iX|Y (x|y) = pX|Y (x|y) (28)

for all x ∈ X , y ∈ Y , i ∈ {1, . . . , nr} and k ≥ k0.

Now assume that the robots converge to some configuration
c∗, which implies ∂̂U

∂ci
= 0 in the limit as t → ∞ for all

i ∈ {1, . . . , nr}. For this system, we have

pYi|X(yi|x : ci)
∣∣
t≥kTs = pYi|X(yi|x : ci)

∣∣
t=kTs

(29)

9



in the limit as k →∞ for all i ∈ {1, . . . , nr}. By considering
the utility gradient (3) with the property of conditional
independence of the measurement probabilities (5), we have

∂U
∂ci

=
∑
y∈Y

∑
x∈X

∂pYi|X(yi|x:ci)
∂ci

pY |X(y|x:c)
pYi|X(yi|x:ci) ×

pX(x) log
(
pX|Y (x|y)
pX(x)

)
(30)

Substituting (26), (27), (28), and (29) into the gradient
approximation (13) and comparing it to (30), we see that
∂̂U
∂ci

= 0 implies ∂U
∂ci

= 0 in the limit as t → ∞ for all
i ∈ {1, . . . , nr}. Thus, we have that c∗ is either a local
minimum, maximum, or saddle point for the constrained
optimization problem maxc∈C U . However, for a gradient
system of this type, we know that this configuration is a
Lyapunov stable equilibrium if and only if it is a local
maximum, and thus locally optimal [9].
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