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ABSTRACT 
 
The development of a domestic biofuel industry has been a major policy thrust of the United 
States federal government in the first decade of the 21st century. Cellulosic biofuels have been 
identified as the primary candidate for meeting long term sustainability and energy security 
goals. In this thesis potential cellulosic biofuels produced via thermochemical processing are 
analyzed. Thermochemical processing utilizes well established chemical synthesis technology 
and allows for both feedstock and product flexibility relative to traditional enzymatic biofuel 
production routes. In this thesis both Spark Ignition Engine fuels (Methanol, Ethanol, Mixed 
Alcohols, and Methanol-to-Gasoline Synthetic Gasoline) and Compression Ignition Engine fuels 
(Dimethyl Ether and Fischer-Tröpsch Diesel). 
The abovementioned fuels are analyzed on a lifecycle basis with respect to identified criteria 
affecting each fuels adoptability including: (1) energy efficiency, (2) cost of production and 
shipping, (3) integrability into the current distribution infrastructure and (4) compatibility with 
regulatory and policy landscape. A primary conclusion from this analysis is that no one fuel is 
optimal with respect to all metrics. Instead, it is likely that a variety of fuels should be employed 
for different applications.  
The US biofuel policy landscape is also analyzed in this thesis. It is found that the criteria above 
are not currently weighed in fuel adoption policies and instead parochial interests have carried 
more weight in the development of the US biofuel industry in which ethanol is the de facto fuel of 
choice. Therefore, it is likely to be difficult for a non-ethanol cellulosic biofuel industry to 
develop without major policy changes. 
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CHAPTER 1: INTRODUCTION 

On January 23rd, 2007 former President George W. Bush called for the United States (US) 

Congress to enact legislation requiring the United States of America to decrease its consumption 

of gasoline by 20 percent within ten years (Bush 2007). In December 2007, the Congress passed 

the Energy Independence and Security Act (EISA) requiring an annual production of 36 billion 

gallons of renewable fuel in 2022, with production ramping up to this level over the interim 

years (Rahall 2007, 110-140). At this time, the average daily consumption of gasoline in the US 

was 390 million gallons, totaling to more than 142 billion gallons per year (EIA 2009, 1-1). The 

yearly production of alternative fuels (approximately 98% ethanol) was estimated to be a little 

more than 9 billion gallons in 2008 (Dinneen 2008), which displaced only 6 billion gallons of 

gasoline (approximately 4% of yearly gasoline consumption) due to ethanol’s lower energy 

density. For this 4% displacement of gasoline consumption, more than 4 billion bushels of corn 

is required to produce the requisite ethanol. With a total production of 14 billion bushels of corn 

in 2008; this is nearly 30% of US corn production. 

If all 14 billion bushels of annual corn production were used to produce ethanol with today’s 

conversion technology, only 32 billion gallons of ethanol (22 billion gallons of gasoline 

equivalent (GGE)) could be produced annually. This would only displace 14% of today’s 

gasoline consumption, and not meet the 36 billion gallon annual production goal set forth by the 

EISA. Due to the limited amount of corn available for alternative fuel production, and the 

concern of increasing food costs, the need for alternative feedstocks is apparent. In order to 

address these concerns, Congress mandated in the EISA that in 2022, 21 billion gallons of the 

mandated 36 billion gallons of biofuel production must come from non-corn feedstocks, and of 

this amount, 16 billion gallons must come from ligno-cellulosic feedstocks. In order to meet this 

production goal, cellulosic biofuel production must begin in the near term and ramp up to the 

2022 goal. 

It is important to note that meeting this goal is not limited by the availability of biomass. If we 

use the USDA/DOE “Billion Ton Study” (Perlack et al. 2005) and take 1 billion tons dry as a 

reasonable estimate of the biomass resource in the US, then we can estimate the volumetric 

production of a fuel using the following formula.  
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 biomassbiomass

fuelfuel

production

fuel mLHV
LHV

V ××≈
ρ

η
 Eq. (1) 

Where fuelV  is the total volume of annual fuel production, productionη  is the thermodynamic 

efficiency of fuel production, fuelLHV  is the lower heating value of the fuel, fuelρ  is the density 

of the fuel, biomassLHV  is the lower heating value of the biomass, and biomassm  is the total mass of 

the annual biomass harvest. Using an estimate of 1 billion tons of biomass with a lower heating 

value of approximately 18MJ/kg, overall estimates of scope can be estimated for different fuels. 

If we assume a conversion efficiency of approximately 45% to ethanol (density of 0.785 kg/L, 

and LHV of ~27) via thermochemical production we find that the scope of potential production 

is 92 billion gallons of ethanol per year, much larger than the target level of 36 billion gallons 

per year. The efficiency of production for fuels is considered in depth in Chapter 4. 

Even though there has been much focus on the development and deployment of biologically 

produced cellulosic biofuels, as shown in Figure 1, there is little hope that the US will meet the 

Renewable Fuel Standard (RFS) mandate put forth in the EISA for cellulosic biofuel production. 

Figure 1 shows the mandated cellulosic biofuel production goal plotted against time. 

Additionally the current pilot production and (ambitiously) projected full scale-up potential of 

production between the years 2015 and 2016 still show that the industry will fall short of the 

mandate in the coming decade (McAulay 2009). 
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Figure 1 - Planned Cellulosic Biofuel Production Capacity compared to the RFS mandate in EISA 

adapted from (McAulay 2009). 

 

Currently, the United State’s alternative fuel industry is dominated by ethanol. This is due, in no 

small part, to the ethanol industries successful procurement of advantageous policies which not 

only prop up its economic viability but also create barriers to entry for other non-ethanol fuels. 

The incentives driving ethanol production, largely the Volumetric Ethanol Excise Tax Credit 

(VEETC) also known as the Blenders’ Tax Credit, have also created additional incentive for 

Research and Development (R&D) into ways to produce ethanol from cellulosic materials 

instead of more general R&D into other possible fuels such as Fischer-Tröpsch Diesel which do 

not enjoy the same governmental policy support. 

The largest and most noticeable effort to produce cellulosic fuels is currently in the realm of 

biological processing. Under this paradigm, it is envisioned that specialized microbes will be 

developed to break down each of the specific plant materials that make up ligno-cellulosic 

feedstocks (cellulose, hemicellulose, and lignin). This, however, is proving to be challenging and 

limited by what specialized microbes can digest (Brown 2007, 947-956). Currently, there are no 

microbes or enzymes which efficiently break down lignin, thus the lignin cannot be processed 

into useable products. Further, the use of this production method could ultimately depress the 
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economic viability of biofuel producers because they would be limited to certain feedstocks for 

which a specific biological process is designed.  

Another approach being considered for biofuel production is based on thermochemical 

processing methods. In this approach, gasification technology is used to produce a homogenous 

intermediate ‘syn-gas’ (a mixture of carbon monoxide (CO) and hydrogen (H2)) which is then 

used to produce a range of chemicals via catalytic conversions. This method offers the distinct 

advantage of being indiscriminant to feedstock; in particular lignin, which cannot be utilized by 

biological conversion methods, can be converted into fuels greatly increasing the amount of 

usable biomass energy. Though the ratio of CO to H2 may vary depending on feedstock, there is 

a well defined technology (the water-gas shift) commonly used to adjust this ratio in downstream 

processing steps. 

There is work currently devoted to the development of ethanol production in this manner. The 

Department of Energy, through the National Renewable Energy Laboratory (NREL), has 

performed a study of the feasibility of thermochemical ethanol production (Phillips et al. 2007). 

Range Fuels, a private company, announced in 2008, plans to build a large scale thermochemical 

ethanol plant in Georgia, USA using woody biomass wastes. 

In order to produce ethanol from syngas, a modified Fischer-Tröpsch (FT) catalyst is used to 

produce a mixture of strait-chain aliphatic alcohols (C1-C5+; i.e. methanol, ethanol, propanol, 

butanol, pentanol, etc.). This product is then separated; the methanol is recycled into the reactor 

in order to boost higher alcohol production, ethanol is sold into a fuel market, and the higher 

alcohols are sold as byproducts. In the NREL model, ethanol only accounts for approximately 

70% by weight of the product stream. Thus, due to the need of separation and processing steps, 

and the existence of byproducts, a significant fraction of the available energy content of the 

biomass is not utilized as a fuel.   

There are other fuels, however, each with different physical and chemical properties that may be 

taken advantage of. Two such fuels are methanol and dimethyl ether. Due to their molecular 

simplicity, their production is much simpler than that of ethanol, and involves fewer byproducts 

and higher selectivity. Other possible fuels are higher mixed alcohols, Fischer-Tröpsch Diesel 
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(FTD), and synthetic gasoline as typified by Mobil methanol-to-gasoline (MTG) fuel, also 

known as Mobile-M product.   

As will be further discussed in this thesis, it is largely the technology specific biofuel policies in 

the US which are driving over-investment and R&D into ethanol production routes and under-

investment into alternatives. An illustration of this is the comparison of the two most advanced 

and promising thermochemical biofuel production facilities Range Fuels, based in the US, and 

Choren, based in Germany. Range Fuels is attempting to produce ethanol via mixed alcohol 

production, and Choren is planning to produce Fischer-Tröpsch Diesel (Osterreichische 

BauernZeitung 2009). It is likely that the choice of fuel at each of these facilities is dictated more 

by the energy policies and tax incentives in each of the countries and less by the systemic 

performance characteristics of each fuel. 

Ideally, the choice of alternative transportation fuels would be made by consideration of the 

technological aspects along with the other systemic performance characteristics, and the 

economics would be made viable by taxing lesser desired petroleum derived fuel. In this thesis a 

life cycle system analysis methodology is developed and applied to consider thermochemical 

biofuel production and utilization. In Chapter 2 the methodology used to analyze potential 

thermochemically produced biofuels is introduced along with the criteria which will be used to 

compare their systematic characteristics. In Chapter 3 the potential fuels are described along with 

the characteristics of their production, distribution and end use. In Chapter 4 the fuel systems are 

analyzed per the methodology introduced in Chapter 2. The results are summarized and 

discussed in Chapter 5 along with the major policy challenges which new fuels face. Finally in 

Chapter 6 conclusions are summarized and policy recommendations are drawn. 
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CHAPTER 2: METHODOLOGY 

For an alternative fuel to be accepted into the current transportation fuel infrastructure, it must 

meet a number of criteria including 1) high energy conversion efficiencies, 2) integrability into 

the current fuel distribution infrastructure, 3) economic competitiveness, and 4) compatibility 

with current regulation and policy. As such, each of the criteria must be weighed in determining 

the likely-hood of an alternative fuel being adopted. The analytical approaches used in this thesis 

to assess each of these criteria are detailed in this chapter. 

Life Cycle Energy Efficiency Analyses 

In order to evaluate the relative energetic efficiencies of potential fuels, this thesis employs a 

thermodynamic life cycle analysis. The first law of thermodynamics is the formalization of the 

principle of conservation of energy stating that energy cannot be created or destroyed. This 

principle can be applied to individual energy conversion steps to account for energy flows and to 

determine the efficiency of an energy conversion. Additionally, the first law can be generalized 

and applied to a system of multiple energy conversion steps to yield the overall system 

efficiency. The first law efficiency of an energy conversion is defined as the ratio of energy in 

the desired product over the energy input into the conversion. The life cycle analysis is 

performed by treating each of the major steps (fuel production, fuel distribution, automotive end 

use) as individual energy conversion steps and integrating the first law efficiencies of each.  The 

first law analyses for each step of a given fuel’s life are drawn from data for the major energy 

conversion steps such as gasification, fuel synthesis, and use in an internal combustion engine. In 

order to best capture the efficiency of each step in the fuel chain, the analysis will consider useful 

energy out to include only the targeted product (i.e. in the case of fuel production, the energetic 

content of byproducts will not be considered as an energetic output, but as a loss). The energy in, 

however, encompasses all of the energy inputs (i.e. for fuel production, in addition to the 

biomass feedstock being processed, additional heat and electricity inputs purchased from local 

utilities are considered). The ancillary energetic costs of constructing the plant and other 

peripheral activities are not included since these activities are required regardless of the fuel 
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considered. Below is a generalized flow diagram of the fuel cycles considered (see Figure 2). 

The methods for the analysis of each of these energy conversion steps are discussed below.  

 

Figure 2 - Flow diagram of the transportation fuels consisting of three main energy conversion steps: 
(1)Fuel Production, (2) Fuel Distribution and (3) End-Use. 

 

Energetic Analysis of Fuel Production 

The major energy inputs for industrial fuel production via biomass gasification are the biomass 

feedstock, heat (in the form of steam) and electricity. The major energy outputs are the fuel being 

produced, heat-loss due to inefficiencies and the enthalpy content of by-products. Upon 

application of an energy balance to determine the first law efficiency of the production step a 

formulation for the first law conversion efficiency is derived. 

 
( )

insteaminbiomassin

productfuelout

productionfuelI
QElecLHVm

LHVm

_

_,
++

=η  Eq. (2) 

Where ( )
productfuelout LHVm  is the energy content of the fuel produced, biomassinLHVm  is the energy 

content of the biomass processed, inElec  is the electric energy consumed in production, and 

insteamQ _  is the energy content consumed  as steam.  The first law conversion efficiencies for fuel 
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production along with material and energy balances have been made available for a number of 

fuel production technologies. 

Energetic Analysis of Fuel Distribution 

The transport of a given quantity of fuel from some geographic location to another can be 

considered to be an energy conversion, even though there is no chemical change. The physical 

state of the fuel, its geographic location, is converted. The first law analysis for this conversion is 

simple. The first law efficiency is given to be: 

 
( )

( ) inshippedfuelfuel

deliveredfuelfuel

ondistributiI
WLHVm

LHVm

+
=_η  Eq. (3) 

Where ( )
deliveredfuelfuel LHVm  is the energy content of the fuel delivered, ( )

shippedfuelfuelLHVm  is the 

energy content of the fuel shipped, and  inW  is the work expended to ship the fuel. Research has 

been conducted on the requisite energy to ship fuels along with the percent fuel loss over a given 

distance (Morrow, Griffin, and Matthews 2006, 2877-2886; Takeshita, Yamaji, and Fujii 2006, 

285; Takeshita and Yamaji 2008, 2773-2784). Research has indicated that the requisite energy 

along with the fuel loss are primarily functions of the fuels state (gaseous or liquid), density, and 

miscibility with water.  

Energetic Analysis of Automotive End Use 

The final energy conversion step in the fuel’s life-cycle is its combustion in an engine. The first 

law analysis of this process is well understood and has been widely utilized. This first law 

efficiency is given to be: 

 
fuelfuel

drivetrainout

I
LHVm

P

&

_
=η  Eq. (4) 
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Where drivetrainoutP _  is the power delivered to the drive-train, fuelm&  is the mass-flow rate of the 

fuel, and fuelLHV  is the energy content of the fuel. While this efficiency is largely a function of 

the mechanical efficiency inherent to the engine design, efficiencies have been shown to be 

functions of the fuel utilized (Heywood 1988). Additionally, much research has shown that the 

first law efficiency of internal combustion engines can be optimized to different fuels by 

harnessing their different physical and chemical characteristics. 

Computation of Lifecycle Efficiency 

While the relative conversion efficiency of each of the individual energy conversion steps are 

important in order to compare different transportation fuels the overall lifecycle efficiency of the 

fuels must be considered. This is the case because while a certain fuel might have a high 

efficiency of production it might have a poor end-use conversion efficiency making its overall 

conversion lower than its production efficiency would lead one to believe.  

A Monte Carlo Analysis (MCA) method is used to calculate the overall lifecycle efficiencies in 

order to propagate uncertainty in each of the conversion steps into an overall uncertainty of the 

life cycle efficiency. The majority of reported production efficiencies are given as ranges. 

Additionally, there is uncertainty in the average distance that an amount of fuel must be shipped 

in order to arrive at the pump. In order to utilize MCA, a probability distribution function is 

prescribed to describe the distribution of values. Since there is no information about the 

functional form of these distributions, this thesis utilizes a triangle distribution, which is the 

norm for such distributions. The MCA then generates a distribution of values for the system 

efficiency from which the expected (average) value and standard deviation of the efficiency are 

calculated. 

Integrability of Fuels into Distribution Infrastructure 

The evaluation of integrability of fuels into the current fuel distribution infrastructure is 

determined primarily by their miscibility with water, their compatibility with materials employed 

in the distribution infrastructure and the physical state at standard conditions (either liquid or 

gaseous). Additionally, industrial preference and inertia have a major influence on the 
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acceptance of fuels into the infrastructure. These properties, along with the volumetric energy 

density (e.g. MJ/L) dictate the cost of distribution for a given fuel.  

Life Cycle Economic Assessment 

An economic metric is also used to characterize the fuels analyzed in this thesis. In order to 

assess the economics of a fuel, this thesis considers both the cost of production and the cost of 

shipping/distribution of each fuel. This data then gives an indication on the overall attractiveness 

of a specific fuel with regards to its ability to compete with its petroleum derived counterpart in a 

free, unregulated fuel market.  

The costs of production of fuels are taken from literature values and self reported technology 

assessments of pilot plants and previous full scale deployments of similar fossil technologies. 

Distribution cost data is well documented for different modes of transport on a volumetric basis 

in the yearly Transportation Energy Data Book from the Oakridge National Laboratory (Davis 

and Diegel 2007).  These data can then be used to estimate the cost of shipping different fuels on 

an energy basis utilizing their volumetric energy density.  

Compatibility with Regulatory and Policy Landscape 

A fourth dimension of this analysis, which has implications for each of the major steps in the life 

cycle, is the determination of the compatibility of the potential fuels with the current regulatory 

and policy landscape. Two of the most pertinent areas where policy influences dominate are the 

Clean Air Act’s (CAA) regulation of vehicular emissions, and the VEETC for ethanol (Baucus 

1990, 549). A fuels chemical make-up and combustion characteristics influence its ability to 

comply with the CAA, and therefore influence how it can be implemented. Whether a fuel is 

eligible for the VEETC may influence its economic viability.  

Other Systemic Considerations 

Beyond the abovementioned criteria there are other aspects which greatly influence the 

adaptability of a transportation fuel at scale, and in some cases can totally trump the criteria 
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discussed hitherto. Of these the primary issues are a given fuels health and environmental 

characteristics. Furthermore the public perception of these characteristics, which is not 

necessarily reflective of fact, can play an even stronger role in a fuels adoption. In this thesis, 

health concerns are compared by analyzing the LD50 values of these fuels, along with other 

measures of morbidity risks. The LD50 value of a chemical is the standard measure used to assess 

mortality risk due to exposure to the given chemical, and will be described in further detail in 

Chapter 4. 

The risk of environmental damage due to fuel spillage on the every order from small scale 

pipeline leakage to a catastrophe such as the Exxon Valdez spill is a concern. Each fuel 

considered in this thesis has different chemical and physical properties which dictate its ability to 

cause environmental damage, naturally decay, or persist in the environment. 

Summary 

The integration of an alternative transportation fuel at scale is a challenge wrought with 

complexity, and as such there is no single metric to assess the viability of a specific fuel. Each of 

the criteria introduced above must, to some extent, be satisfied (or at the very least, not severely 

violated) for a fuel to be adopted at scale. Even if all of the criteria are satisfied a fuel could still 

not be adopted due to another unforeseen challenge, or more likely due to perverse policy 

incentives created by legislation to protect sub-optimal fuels which may be parochial interests to 

legislatures. In Chapter 4, each of the fuels considered in this thesis are analyzed through the 

lenses of each of these criteria and further systemic and policy challenges are discussed. 
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CHAPTER 3: BIOMASS GASIFICATION FUEL SYSTEM DESCRIPTION 

The lifecycles of each of the fuels analyzed in this thesis are qualitatively very similar. Each fuel, 

for example, is produced utilizing similar production steps. Also the fuels analyzed in this thesis 

can be transported using current fuel distribution infrastructures, though some are better suited 

than others. For example, Fischer-Tröpsch Diesel can be distributed in today’s diesel 

infrastructure, while Dimethyl Ether (DME) must be distributed in a manner similar to liquefied 

propane gas (LPG).  Each of the fuels considered in this thesis can be used in the existing 

automotive fleet with minimal adjustments such as improved onboard storage technology and 

optimized engine timing. In this chapter, the general systematic characteristics of 

thermochemical biofuel production, distribution and utilization are introduced and discussed. 

First, each of the fuels which are analyzed are introduced and their general properties and 

historical use as a transportation fuel is discussed. The fuels considered in this thesis fall under 

two general classes, spark ignition engine (SI) fuels and compression ignition engine (CI) fuels; 

these general classifications are derived from the engine technology with which the fuel is 

utilized. Also, the general characteristics of thermochemical biofuel production utilizing biomass 

gasification are discussed. Most of the process steps are shared by each of the fuels, while the 

differences manifest themselves in varying production efficiencies and production costs. These 

differences will be further explored and analyzed in Chapter 4.  

Next, the fuel distribution infrastructure is introduced. In this thesis three modes of transportation 

are analyzed- truck, train and rail. Depending on the chemical and physical properties of a 

specific fuel there exists a certain amount of either industrial push-back or acceptance as to 

whether the fuel will be shipped via a certain method.  

Lastly, the engine technologies utilized for each fuel are considered. As with each of the other 

steps, the resultant efficiency and economics of utilization are functions of the type of fuel 

utilized along with the technology employed for its combustion. Additionally, this step is where 

external regulatory structures have the strongest influence on the choice of fuel through the 

Clean Air Act’s emissions regulations.  
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Spark Ignition Engine Fuels 

There are two broad classes of fuels used for transportation depending on the engine technology 

that is used. The first of these is Spark Ignition Engine Fuels, or gasoline-like fuels. These fuels 

are characterized by their ability to resist auto ignition. Auto ignition occurs in engines when 

temperatures and pressures reach a level at which there is enough thermal energy contained in 

the fuel-air mixture to overcome the chemical activation energy and thus sustain combustion. In 

a spark ignition engine this auto ignition is commonly referred to as knock and is known to cause 

damage to the engine hardware. A fuels ability to resist auto ignition is traditionally measured by 

its Anti Knock Index (AKI) or Octane Number (ON). There exist two standard measures of this 

property, the Research Octane Number (RON) and the Motor Octane Number (MON).1 When a 

driver goes to a pump to refill, the octane number she/he is traditionally confronted with is the 

Road Octane Number (RdON), which is commonly defined as the arithmetic mean of the RON 

and MON.  

In this section the major candidates for use as alternative SI fuels are introduced and discussed. 

The SI fuels considered in this thesis are methanol, ethanol and synthetic gasoline. There are 

other fuels being studied for use as alternative spark ignition fuels such as higher alcohols like 

butanol. However as will be discussed later in this chapter, the route to producing these fuels- via 

thermochemical means- is characterized by the production of a large fraction of co-products 

which must be dealt with in order for the fuel to be marketable under the clean air act regulatory 

regime.  

Methanol 

Methanol, like other aliphatic alcohols, has many properties that make it an ideal fuel for spark 

ignition (SI) engines. Methanol has a high latent heat of vaporization, which can be leveraged as 

a knock suppressing characteristic in spark ignition engines (Bromberg and Cohn 2008). 

Additionally, methanol is an oxygenated fuel (it contains an oxygen molecule), and has been 

used as a gasoline additive to decrease carbon monoxide (CO) emissions and improve local air 

                                                 
1 The experimental parameters of each of these measurements are well defined and are described in detail in 
(Heywood 1988). 
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quality (NSTC 1997). As apparent in the above properties, methanol’s physical and chemical 

characteristics make it more desirable than gasoline as a spark ignition engine fuel. Additionally, 

these characteristics make methanol an ideal alcoholic transportation fuel. Methanol’s latent heat 

of vaporization is 1.16 MJ/kg compared to ethanol and gasoline’s 0.91 and 0.30 MJ/kg 

respectively. Thus, at stoichiometric operation it has been determined that the charge in the 

cylinder experiences a temperature change of -246K for methanol, -138K for ethanol, and -28K 

for gasoline (Hunwartzen 1982, 1-6). A lower initial charge temperature has a positive effect on 

the overall engine efficiency through two mechanisms. First, with a decrease in temperature the 

charge density is increased and more fuel and air can be introduced per cycle thus increasing the 

volumetric efficiency (Heywood 1988). Secondly, because of the decreased initial temperature 

there is a lower temperature after compression, thus a higher compression ratio can be utilized 

without experiencing knock increasing the efficiency. This increased knock limit is also a 

product of the higher RdON of methanol, 119, versus that experienced with retail gasoline which 

is on the order of 90. The effective octane number of methanol is both a product of its high latent 

heat of vaporization and its thermochemical properties, and when both of these properties are 

taken advantage of a higher octane is experienced (Bromberg and Cohn 2008).  Finally, due to 

methanol’s higher oxygen to carbon ratio (1:1 versus ethanol’s 1:2); a smaller amount of 

methanol needs to be used to achieve the equivalent amount of CO emission reduction benefit in 

a blended fuel. Because of these superior qualities, methanol has been previously heralded as the 

transportation fuel of the future (Marsden 1983, 333-354; Sperling and DeLuchi 1989, 469-482). 

Despite its appreciable qualities, methanol has been rejected as a transportation fuel. Concern 

about methanol’s safety is often cited as leading to the public’s reluctance to accept the 

ubiquitous chemical as a transportation fuel. The predominant concern is with methanol’s 

morbidity risks - its ability to cause non-fatal health damages. These issues will be further 

discussed in Chapter 4. The assessment in Chapter 4 indicates that the overall health and 

environmental risks of methanol are similar to gasoline. In fact, methanol offers a great decrease 

in the risks of fuel fire deaths compared to gasoline. For M100 a 90 percent reduction in fuel 

related automotive fires is projected, while a smaller reduction of 40 percent is projected for M85 

(Machiele 1990).  
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Another set of concerns having to do with the wide scale application of methanol is its poor cold 

start properties and low energy density. Methanol’s poor cold start ability is due to its low vapor 

pressure and its high latent heat of vaporization (Hu et al. 2007, 171-175). Cold start is an issue 

which can be addressed with the addition of hydrocarbon fuels and is not an issue for blended 

fuels like M85. As is seen with ethanol fuel, using blended fuels is the norm rather than the 

exception when employing alcoholic fuels. Methanol, which has a Lower Heating Value (LHV) 

of 20.0MJ/kg (15.84 MJ/l), has the lowest energy density of the liquid fuels considered in this 

study. Because of this, larger onboard storage would be required to maintain comparable range 

and therefore design constraints would be put on the automobiles design. This drawback is 

partially negated by the increased end use efficiency achievable with ethanol hence, decreasing 

the total amount of fuel needed to travel a specific distance.  

Ethanol 

Ethanol currently makes up more than 95% of the total biofuel use in the United States and the 

majority of the alternative transportation fuel market, totaling more than 5 billion gallons 

produced in 2006. Even at this production level, however, 25% of US corn production displaces 

little more than 2% of total petroleum demand. The USDA has recently released projections 

demonstrating that the US is reaching capacity for corn production and room for growth in the 

corn ethanol industry will be limited. While the growth for corn ethanol production may be 

limited, the production of cellulosic ethanol is seen as a promising, and indeed necessary, fuel 

production route by the policy and scientific community.  

Ethanol, like methanol, possesses many properties that make it a good candidate for adoption as 

an alternative SI fuel. As discussed in the section on methanol, ethanol has a high latent heat of 

vaporization and is an oxygenated fuel. Thus, the use of ethanol as a spark ignition engine fuel 

leads to reduced emissions and the possibility of increased efficiency.  While each of these 

characteristics is less prevalent in ethanol than methanol, ethanol has other characteristics which 

when used as the sole metric make it more appealing for use as a fuel than methanol. First, 

ethanol has a higher volumetric energy density than methanol, however it is still the case that 

ethanol’s energy density is lower than that of gasoline. Additionally, while it is less oxygenated 

than methanol, this also leads to it being less corrosive than methanol. Therefore, there exists less 
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concern of major material damage with ethanol than with methanol. In practice however, ethanol 

is viewed as a corrosive fuel and there still exists major regulatory and industrial pushback 

against the integration of ethanol into the current infrastructure because of this, along with other, 

properties.  

One particularly important property that ethanol has is the public (miss) perception of its 

toxicity. While ethanol’s measured LD50 values are slightly lower than those of methanol, it is 

generally regarded as a much safer chemical. This is most likely due to the customary 

consumption of ethanol in the form of fermented beverages. However in today’s fuel industry, in 

order for ethanol to be used excise tax-free it must be denatured with gasoline (usually blended 

to E85) which effectively increases its toxicity substantially. Thus, while methanol may be less 

likely to lead to mortality than fuel ethanol, public perception will continue to play a very large 

role in their respective adoption.   

Higher and Mixed-Alcohols 

Like methanol and ethanol, the following short-chain aliphatic alcohols have similar properties 

which make them attractive candidates for adoption as alternative spark ignition fuels. The fuel 

most often discussed is butanol. Butanol is being considered as an alternative fuel due to the 

confluence of its desirable properties as a co-blending agent for ethanol along with the fact that it 

can be biologically co-produced with ethanol. Via a thermochemical route no alcohol, other than 

methanol, can be produced purely. This is due to the fact that higher alcohol synthesis takes 

place over a modified Fischer-Tröpsch catalyst and is therefore based on a polymerization 

mechanism, and the chain length cannot be directly controlled. Because of this major production 

limitation, it is convenient to consider mixed alcohols as a possible alternative fuel, not neat 

higher alcohols. 

Mixed alcohols do not have concrete physical and chemical properties since, like gasoline, is the 

product of a number of constituents. This, however, means that mixed alcohols could be quite 

advantageous when used as a gasoline substitute. When alcohols are mixed, one can benefit from 

the high octane of methanol and ethanol while capitalizing on the higher energy densities and 

lower water miscibilities of the longer chain alcohols. In order for these properties to be fully 
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utilized, more work needs to be done in order to understand the dependence of a mixed fuel’s 

properties on the specific fractions of individual components and how to optimize component 

ratios.  

Propanol is the first of the aliphatic alcohols to have structural isomers, propan-1-ol (n-propanol) 

and propan-2-ol (isopropanol). Of the short chain aliphatic alcohols, propanol has been 

considered the least as an alternative transportation fuel. This is due to the fact that propanol is 

not a major constituent of any metabolic pathway, and therefore there is no efficient natural way 

to produce propanol in a biological manner. Propanol can be produced through thermochemical 

methods, however catalytic production of propanol is not very selective and separation from 

other aliphatic alcohols is necessary if a neat product is desired. Propanol’s energy density is 

higher than methanol and ethanol; additionally it is less miscible with water and less corrosive. 

However, due to its lower oxygen to carbon ratio it has a lower effective octane number. 

Additionally, it is more toxic than shorter alcohols. 

Butanol is a four carbon alcohol. It is currently being investigated by a number of companies and 

independent groups for use as an alternative transportation fuel. Butanol has been cited as having 

a number of advantages over the short aliphatic alcohols methanol and ethanol: it has a lower 

vapor pressure, it is much less miscible with water and will not separate from gasoline; therefore 

it is expected to allow for a higher blending limit in contemporary SI engines. However, butanol 

is more toxic than methanol and ethanol, and is currently more expensive to produce. Much 

attention is being paid to biological conversions coupled with current ethanol production because 

butanol and ethanol can be produced from the same feedstocks utilizing one common microbe. 

Butanol is more toxic than the shorter alcohols, and has a lower octane number. It does, however, 

have a much better energy density and is less corrosive.  

Methanol-to-Gasoline (MTG) Product 

Synthetic hydrocarbons are fuels produced from non-petroleum feedstocks which are designed to 

have similar chemical and physical properties to hydrocarbons derived from petroleum. The 

production of synthetic hydrocarbons could be very important in the short term due to the fact 

that the country’s automotive transportation infrastructure has been designed around 
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hydrocarbon fuels. Today, the most prevalent commercial synthetic hydrocarbons are produced 

via the Fischer-Tröpsch method and are primarily used as compression ignition engine fuels due 

to their chemical and physical properties. Another possible route to synthetic gasoline is via the 

Mobile-M, Methanol-to-Gasoline route. This production method was utilized (at an economic 

loss) at the commercial scale from natural gas in the 1970s in New Zealand (Sugiyama 1994). 

The MTG product consists of highly unsaturated hydrocarbons and a large fraction of aromatic 

compounds. Due to the high degree of saturation this fuel exhibits properties very similar to that 

of gasoline. Unlike petroleum derived gasoline MTG doesn’t contain sulfur or other 

contaminants, thus while it is unoxygenated, it exhibits marginally better emissions 

characteristics as compared to petroleum derived gasoline. Recently, there has been a rebirth in 

interest in MTG for new coal-to-liquids (CTL) projects. DKRW Advanced Fuels has planned 

major CTL plant capable of producing 20,000 barrels per day of MTG product in Medicine Bow, 

Wyoming using the ExxonMobil MTG process (Green Car Congress 2007a). Further, there are a 

number of MTG projects being considered in China.  

Summary of Spark Ignition Fuel Properties 

In the below table a selection of relevant chemical and physical properties of fuels considered in 

this thesis are compiled. These are the chemical formula, the molecular weight (given in grams 

per mol), the density, the lower heating value and the heat of vaporization.  

Fuel Formula 
Molecular 

Weight 
Density 
(g/cm

3
) 

Lower Heating 
Value (MJ/kg) 

Heat of 
Vaporization 

(KJ/kg) 

Methanol CH3OH 32.04 0.792 20 1103 

Ethanol CH3CH2OH 46.07 0.785 26.9 840 

Propanol CH3(CH2)2OH 60.1 0.8 30.5 790 

Butanol CH3(CH2)3OH 74.14 0.81 33 580 

MTG Gasoline CH1.85 ~110 0.75 44 350 

Table 1 - Physical and chemical properties of spark ignition engine fuels analyzed in this thesis. 

 
 
Compression Ignition Engine Fuels 

Where spark ignition engine fuels are valued for their ability to resist auto ignition, compression 

ignition engine fuels are characterized by their ability to auto-ignite. Compression ignition 
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engines are designed to combust fuels by compressing the fuel-air mixture to a sufficiently high 

temperature and pressure for the mixture to ignite at a specified timing. This automotive design 

has certain properties which allow for, in general, higher energy conversion efficiency over spark 

ignition engines (Heywood 1988). Additionally, CI engines can be designed at a much larger 

scale, allowing for more power intensive applications such as semis, stationary power generation 

and ship engines.  

A CI fuel’s ability to auto-ignite is measured by its Cetane Number (CN). Like the octane 

number measure used for spark ignition engines this is a purely empirical number that is 

experimentally derived. See Heywood for a more detailed discussion of the experimental method 

utilized to determine a fuels cetane number (Heywood 1988). 

Below the major candidates being considered as substitute fuels for compression ignition engines 

are introduced: Fischer-Tröpsch Diesel and dimethyl ether. As with the spark ignition fuels each 

of these fuels have certain characteristics which make them promising candidates, while each 

also have their own drawbacks. 

Dimethyl Ether (DME) 

Dimethyl ether is the simplest ether with two methyl groups connected by an oxygen atom. 

DME, unlike the other fuels being considered, is gaseous at ambient conditions. DME’s physical 

properties are much like that of propane and n-butane (Table 2), thus dimethyl ether can easily 

conform to the current liquid propane gas (LPG) and compressed natural gas (CNG) 

infrastructures. 

Critical 
Constants Tc (K) 

Pc 
(MPa) 

Vc (cubic 
meters/Kmol) Zc 

Acentric 
Factor 

Dimethyl 
Ether 400.1 5.27 0.171 0.271 0.192 

Propane 369.83 4.21 0.2 0.273 0.149 
n-Butane 425.12 3.77 0.255 0.272 0.197 

Table 2 - Critical Constants of Dimethyl Ether, Propane, and n-Butane (adapted from Perry’s Handbook 
7th Edition 2007) 
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Beyond its adaptability to today’s LPG and CNG infrastructure, dimethyl ether also exhibits 

properties which make it an excellent candidate for use as an alternative compression ignition 

fuel. Whereas alcohols, such as methanol, offer superior properties for use in spark ignition 

engines, ethers are optimal for use in compression ignition engines. Dimethyl ether has a low 

auto ignition temperature and a high cetane number on the order of 55-60, compared to diesel’s 

which is on the order of 40-55 making it an excellent substitute for diesel (Semelsberger, Borup, 

and Greene 2006, 497-511). Due to dimethyl ether’s simple molecular structure devoid of C-C 

bonds, and high oxygen content, as well as its latent heat of vaporization dimethyl ether exhibits 

low NOx and particulate matter emissions (Wang et al. 2000, 101-106). 

The biggest limitation to large scale implementation of dimethyl ether is the fact that dimethyl 

ether is a gas at room temperature; thus pressurized storage and a special injection system needs 

to be employed. Further, DME has an energy density which is significantly less than that of 

diesel fuel (28.4 vs. 43 MJ/kg), this coupled with the fact that DME’s liquid phase density is less 

than that of diesel (0.668 vs. 0.84 g/cm3) means that significantly more onboard storage is 

required for the same range of travel. 

Fischer-Tröpsch Diesel 

Of all of the possible alternative fuels considered in this thesis, Fischer-Tröpsch Diesel (FTD) 

has the longest history of being utilized on a commercial scale. FTD synthesis has been known 

since the early 20th century. During World War II, Nazi Germany employed this technology to 

produce diesel fuel from coal since they had little access to petroleum derived fuels. 

Additionally, during the Apartheid, South Africa further developed this technology due to 

limited availability of petroleum resources and large domestic reserves of coal. Even today, 

South Africa is able to supply a large portion of their domestic transportation fuel need via FTD 

production from coal.  

Fischer-Tröpsch Diesel is a mixture of synthetic hydrocarbons. It consists primarily of straight 

chain saturated hydrocarbons. And, like MTG, has certain characteristics that make it superior to 

its petroleum derived equivalent. One important characteristic of FTD is the absence of sulfur in 

the fuel, this leads to major reductions in particulate matter emissions. Additionally, there are 
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virtually no aromatic/unsaturated compounds produced, thus decreasing NOx and particulate 

emissions as well. Fischer-Tröpsch Diesel’s energy density is nearly equivalent to that of 

petroleum derived diesel and does not face any serious challenges in order to be introduced at a 

large scale.  

Summary of Compression Ignition Fuel Properties 

As above for spark ignition fuels, a selection of relevant physical and chemical properties are 

tabulated below for the compression ignition fuels.  

Fuel Formula 
Molecular 

Weight 
Density 
(g/cm

3
) 

Lower Heating 
Value (MJ/kg) 

Heat of 
Vaporization 

(KJ/kg) 

DME CH3OCH3 46.07 0.668 28.7 467 
Fischer-

Tröpsch Diesel 
CH1.8 170 0.8 43 270 

Table 3 - Summary of physical and chemical properties of compression ignition engine fuels considered 
in this thesis. 

 
 
Biomass to Liquid Fuel Production System 

The production of fuels via biomass gasification consists of a few major steps which are shared 

by each of the fuels’ production schemes. In order to produce a fuel the biomass must undergo 

preprocessing steps (drying and mechanical pulverization), gasification and gas clean-up/ 

conditioning. After these steps each fuel is synthesized in one step (with one notable exception, 

MTG which requires a second synthesis step after methanol is produced). The crude product then 

undergoes clean-up and separation in order to be made into a marketable fuel. 
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Figure 3 - A generalized flow diagram of thermochemical biofuel production, each of the process steps 

are part of three main steps 1) Pre-prossessing 2)syn-gas production, and 3)Fuel Production. 

 

Below the general characteristics of the production steps are introduced and discussed. 

Additionally, the specifics for each fuel are explored.  

Feedstock Handling/Drying 

As is the case for current biofuel production facilities based on cereal grain and oil seed, there is 

a need for short term on-site storage to allow for continuous operation of the plant. This is due to 

the fact that biomass is produced seasonally in the US. Depending on the feedstocks energy 

density per volume this would need to be sized differently to allow for a sufficient feedstock 

stockpile. 

When the feedstock is processed it is moved from the stockpile by conveyer. This feedstock is 

sent through a magnetic separator in order to remove any metal contaminants and is screened in 

order to separate large biomass particles from the smaller ready-to-process feedstock. These 

large particles are then reprocessed to an acceptable size. This biomass is then transported to the 

dryers. In their studies on biomass to hydrogen and biomass to ethanol processes, NREL 

proposed that the biomass can be dried with a flow of hot flue gas from the char combustor as a 
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way to utilize otherwise unused heat (Phillips et al. 2007; Spath et al. 2005). After the moisture 

content of the feedstock is reduced to approximately 5%wt the feedstock is then conveyed to the 

gasifier. 

Gasification 

Gasification is the process that converts a mixture of feedstock and an oxidizing agent into 

syngas, a mixture of carbon monoxide (CO) and hydrogen (H2) along with other contaminants 

such as carbon dioxide (CO2), water (H2O) and short chain alkanes (predominantly methane 

CH4). This conversion is achieved by controlling the amount of oxidizing agent present so the 

overall oxidation is incomplete. There are three main categories of gasification technologies 

being considered for biomass gasification: fixed-bed gasification, fluidized-bed gasification, and 

entrained-flow gasification. While gasification has found application for coal utilization, biomass 

gasification offers the challenge of increased slaging due to higher ash content, as such the 

technology must be able to minimize slaging (Higman and van der Burgt 2003). For their 

analysis, NREL chose to use a low-pressure indirectly-heated fluidized-bed gasifier. In the 

fluidized-bed reactor, the ash that begins to agglomerate will defluidize and fall to the bottom, 

making it easy to remove; it is because of this that fluidized bed gasifiers are being strongly 

considered for application to biomass feedstocks whereas direct oxidation is the technology 

generally employed in coal gasification.  

In the gasification step, not all of the organic matter is gasified; the remainder is converted to a 

solid fuel mass called char. After the gasification step, often there is a char combustor, where the 

resultant char (mostly carbon) is combusted completely (to CO2 and H2O) in order to supply heat 

to the system. The char combustor can supply heat to the gasifier, the plant’s steam system, as 

well as the feedstock driers. The char combustor is a necessary piece for an energy self-sufficient 

plant. Otherwise there plant would need to purchase natural gas, coal, or steam to power the 

heat/steam system (Phillips et al. 2007). 

The gasification technology which will ultimately be employed for biomass gasification is 

uncertain. One characteristic of current pilot thermochemical biofuel systems is that each 

company trying to develop a system uses a different, often patented, gasification technology. 
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Choren, a German company who is attempting to produce Fischer-Tröpsch Diesel from various 

biomass feedstocks, employs a dual gasification system in which the biomass is first pyrolized, 

and then the pyrolysis gas is gasified in their so-called Carbo-V-Gasifier, which is directly 

heated with the char from the initial pyrolysis (Kiener 2008). Range Fuels, an American 

company whose goal is to thermochemically produce ethanol from cellulosic feedstocks, is using 

a single step gasification technology (Range Fuels 2008). Addressing the challenges associated 

with biomass gasification will be one of the major challenges that must be overcome in order for 

thermochemical biofuel production to be adopted and yet, it is unclear which gasification 

technology will emerge as the technological winner.  

Gas Cleanup 

In order to be used in fuel synthesis, the syngas produced via gasification first needs to be in a 

condition sufficient for catalytic conversion. Contaminants must be removed, the hydrogen to 

carbon monoxide ratio must be adjusted, and the syngas must be compressed to the synthesis 

reactors operating condition. The primary contaminants contained in raw syngas are tars, acid 

gases and particulates.  

The term tar is used to generally describe any hydrocarbon contaminants (methane, ethane, 

benzene, etc) and ammonia. The removal of these contaminants is critical because they can 

deactivate the catalyst and decrease the fuel production efficiency over the remaining life of the 

catalyst. A catalytic tar reformer is used to convert these compounds into carbon dioxide, 

nitrogen and hydrogen. The tar reformer is based on a nickel catalyst and operated at a 

temperature of 900°C (Patel 2004). 

Acid gases refer to the compounds hydrogen sulfide (H2S) and CO2. Depending on the synthesis 

catalysts being used there are different thresholds below which these gases must be in order to 

avoid deactivating the catalyst. These contaminants are removed in an acid gas scrubber where 

an amine solution selectively absorbs H2S and CO2. The acid gases are then stripped from the 

amine into a separate unit where elemental sulfur and CO2 are produced. This technology is 

already in widespread use in power plant applications to remove sulfur from the exhaust stacks. 
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Particulates must also be removed to avoid decreasing available catalyst area. The cooled syngas 

undergoes water scrubbing to remove particulates and to further cool the syngas prior to the 

synthesis reactor. 

Gas Preparation 

To perform an efficient conversion process, the hydrogen to carbon monoxide ratio must be 

adjusted to the proper ratio depending on the desired product. For this a water-gas shift reactor is 

used. To illustrate, the optimum hydrogen to carbon monoxide ratio is 2:1 for methanol 

production, whereas for direct dimethyl ether synthesis a ratio of 1:1 is best. For biomass 

gasification it has been found that the resultant hydrogen to carbon monoxide ratio is on average 

1:1 (Melgar et al. 2007, 59-67). Thus, a shift reaction is required for methanol production; 

whereas it may not be needed for dimethyl ether synthesis. Each neat-fuel production system has 

its own optimal carbon monoxide to hydrogen ratio. For mixed-fuel production, the ratio will 

influence the resulting ratios of products. The shift reaction from carbon monoxide to hydrogen 

is slightly exothermic, thus some enthalpy of the syngas mixture is lost as heat and the overall 

first law efficiency of the plant is reduced. Also, the added reaction step increases the capital cost 

and required operation and maintenance. 

Product Synthesis 

The synthesis step is where the majority of differences between each fuel production system is 

manifest. However, there are similarities between some fuel syntheses, such as methanol and 

dimethyl ether, where dimethyl ether is a byproduct of methanol synthesis. Additionally, ethanol 

and Fischer-Tröpsch synthesis are similar due to fact that ethanol is produced via a mixed-

alcohol synthesis which is based on a modified Fischer-Tröpsch reaction. The differences 

between each of these production systems are discussed below.  

Crude Product Separation and Clean-up 

In all cases, the product stream is contaminated with a number of substances, primarily water 

with small amounts of oxygenated and unoxygenated hydrocarbons. In order for the products to 

be fuel grade their makeup must meet EPA fuel standards and these contaminants must be 
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removed. Due to the physical properties of short chain aliphatic alcohols compared to dimethyl 

ether and synthetic hydrocarbons additional separation is required. This is primarily because of 

the fact that at ambient conditions alcohols are hydrophilic liquids, whereas dimethyl ether and 

hydrocarbons are hydrophobic. Therefore, alcohols have to be separated via a many step 

distillation followed by molecular sieves, as is the case for fuel ethanol production today, 

whereas a simple flash distillation separation would allow the gaseous dimethyl ether to separate 

easily, additionally synthetic hydrocarbons would naturally separate as well. 

Production System Discussion 

Though the production systems share many common steps and characteristics, it is the 

differences which dominate the relative thermal efficiencies of the respective biomass 

conversions. The main differences are the required hydrogen to carbon monoxide ratio and the 

product separation and clean-up requirements. 

Hydrogen to Carbon Monoxide Ratio 

One important difference between syntheses is the required hydrogen to carbon monoxide ratio. 

This is significant due to the fact that different feedstocks provide different H2:CO ratios. For 

stoichiometric methane reformation the resultant H2:CO ratio is 2:1 so is ideally suited for 

methanol production (LeBlanc, Schneider, and Strait 1994, 51). However, via biomass 

gasification the H2:CO ratio is on the order of 1:1, so a water-gas shift reactor is required for a 

biomass to methanol system. The addition of this step to production is detrimental to the overall 

system efficiency. The water-gas shift is exothermic and chemical energy stored in the syngas is 

lost as heat, and cannot be transferred to the resulting liquid fuel. Also since the unit cannot 

operate ideally the additional step increases second law loses. Finally, with another added step to 

the production system the overall capital costs are increased which increases the overall cost of 

production. 

The 1:1 ratio from biomass gasification is suited to direct DME synthesis, and as such, a water-

gas shift reactor is not likely needed. Therefore, given a biomass feedstock dimethyl ether may 

be an ideal product to produce in order to minimize the syngas processing steps. 
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The product mixtures of Fischer-Tröpsch synthesis along with mixed alcohol synthesis are 

dependent on a number of operating conditions including the H2:CO ratio. This relation is rather 

complex and is discussed in the sections on their production. However, it is clear that a hydrogen 

to carbon monoxide ratio less than 1 is desirable since a fuel with an ultimate carbon to hydrogen 

ratio of ~1:1.8 is produced. In reality a hydrogen/carbon monoxide ratio of 2 is often used due to 

the high amount of water rejection in the process (Probstein and Hicks 1982).  MTG synthesis is 

uninfluenced by the H2:CO ratio since it is a synthesis that takes place in a secondary step where 

methanol is converted to MTG. Thus, the optimal ratio here is 2:1 since methanol must first be 

produced. 

Fuel 
Theoretically 

Optimum 
H2:CO ratio 

Alcohols 2 

MTG 2 

DME-2 step production 2 

DME-1 step production 1 

Fischer Tröpsch <1 

Table 4 - Theoretic optimum H2:CO ratios for synthesis. 

 
 
Product Separation and Clean-up Requirements 

The separation of a mixture of compounds is heavily dependent on what compounds are 

contained in the mixture. Separating methanol from water is a very energy and capital intensive 

process because both compounds are polar and contribute to hydrogen bonding. Additionally, 

alcohols form azeotropes with water and cannot be completely separated via distillation. 

Molecular sieves must be used to dehydrate alcohols, which increase the overall processing cost. 

Dimethyl ether on the other hand is gaseous at standard conditions and does not form an 

azeotrope with water, hence a simple low temperature distillation is all that is needed to separate 

dimethyl ether from water and other liquid contaminants. Thus, dimethyl ether is an ideal 

product in order to minimize the required product separation and clean-up steps. Similarly 

synthetic hydrocarbons have physical properties which make their separation and clean-up easier 

than alcohols. Synthetic hydrocarbons are generally hydrophobic compounds and can be 

separated with minimal energetic input.   
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Methanol Production 

Currently, the catalytic conversion of syngas from natural gas accounts for 90% of the world 

methanol production of 32 million tons (9.7 billion gallons, 4.82 billion GGE) (Olah, Goeppert, 

and Prakash 2006). Where natural gas is not available, other feedstocks are used for methanol 

production such as coal and light petroleum products. The same processing principles used for 

natural gas derived syngas can be applied to syngas from biomass, coal or any other primary 

carbon and hydrogen source. The process is dictated by the following chemical reactions: 

OHCHHCO 322 ↔+
 mol

kJH K 3.90298 −=∆
 Eq. (5) 

OHOHCHHCO 2322 3 +↔+
 mol

kJH K 66.53298 −=∆
 Eq. (6) 

OHCOHCO 222 +↔+  mol
kJH K 9.36298 +=∆

 Eq. (7) 
 

The yield and selectivity of methanol is dependent on the H2/(CO + CO2) ratio as well as the 

CO/CO2 ratio as shown by Yin et al. (Yin et al. 2005, 305-310). Theoretically, the most 

efficient/complete conversion will happen when the syngas ratios are at H2/(CO + CO2) = 2 and 

CO/CO2 = ¶. This is due to the fact that with CO2 in the mix equation two will compete with 

equation 4 for space on the catalyst decreasing yield while equations 5 and 6 will create water 

which both decreases the selectivity as well as deactivates the catalyst decreasing per pass yields.  

As demonstrated by Melgar et al., syngas produced from biomass generally has a H2/(CO + CO2) 

ratio nearer to one, and often contains a large amount of CO2. Though it is theoretically possible 

to adjust gasification parameters to produce an optimal syngas, it may not be economically 

optimal for commercial production. Therefore, downstream syngas conditioning may be 

attractive to increase methanol yield and selectivity by performing equation 6, the water-gas shift 

reaction with excess water removal in order to increase the H2/(CO + CO2) ratio as well as 

decrease the CO/CO2 ratio. 

In methanol synthesis, contaminant substances are produced such as methyl formate, dimethyl 

ether, glycerine and dimethyl carbonate (Kumabe et al. 2008, 1422-1427). Also, the one pass 

conversion efficiency is often low and dominated by the volumetric amount of catalyst used. As 
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a result, methanol producers must strike a balance between desired one pass efficiency and the 

cost of a larger, and more expensive, catalytic reactor. A synthesis recycling loop is usually used 

in which part of the product stream is recycled into the reactor vessel. In this way, an overall 

methanol conversion efficiency on the order of 95% on a carbon basis is achieved (Kumabe et al. 

2008, 1422-1427; Katofsky 1993). 

Methanol Catalyst 

Methanol was first produced at an industrial scale over a zinc oxide-chromium oxide (ZnO-

Cr2O3) catalyst at high pressures and temperatures, 35 MPa and 450°C, respectively (LeBlanc, 

Schneider, and Strait 1994, 51). There were three major problems with this catalyst. First, this 

catalyst tended to promote a methanation reaction which led to overheating of the reactor. 

Second, the cost of syngas compression to 35 MPa is quite high. Finally, high pressure synthesis 

led to lower selectivity.   

With the development of low-pressure synthesis catalyst technology plants utilizing the high-

pressure ZnO-Cr2O3 catalyst were driven out of the market because they were rendered 

economically uncompetitive. This new low-pressure synthesis was based on a copper oxide-zinc 

oxide-alumina (Cu/Zn/Al2O3) catalyst technology developed by ICI of England. This new 

catalyst was extremely active and since it ran at lower pressures and temperatures, more 

selective. The catalyst system operates from 5-10 MPa and 200-280°C, with modern applications 

on the lower end of these operating conditions. 

Generally these catalysts are prepared in tablet form with cylinder sizes ranging between 5.5 x 

3.5 to 6 x 6 mm. They are shipped in their fully oxidized form and must be activated/reduced in 

situ by passing H2/N2 (1 mol% H2) over the catalyst bed. This must be carefully controlled at 

low temperature to preserve crystalline structure and physical integrity to ensure optimal 

performance. 

The copper based catalyst system is a much less robust system and is susceptible to poisoning 

and deactivation. The catalyst is particularly sensitive to chlorine and sulfur. With sulfur levels 

below 0.025 ppmv and chlorine levels below 0.0125 ppmv a catalyst life of two to four years can 
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be expected. Cleanup to this level is not uncommon or difficult. Methanol yields of 99.5% 

(relative to other organic byproducts when water production is not accounted for) of converted 

CO + CO2 can be expected. 

Ethanol Production 

The National Renewable Energy Laboratory (NREL) has performed a comprehensive technology 

survey of ethanol production via gasification of ligno-cellulosic biomass (Phillips et al. 2007). 

This report concludes that production via this method is both economically and technically 

feasible. Thermochemical production of ethanol from ligno-cellulosic feedstock offers a number 

of advantages over enzymatic conversion. First, gasification technology has been proven for 

many carbon containing feedstocks including coal, natural gas, oil and biomass. Enzymatic 

conversion of ligno-cellulosic materials is still in a research and development phase, and faces 

significant hurdles. Further, many of the catalytic processing steps for the gasification product 

(syngas) are well understood and have been applied to fuel production in the past. This is the 

primary production method of industrial methanol from natural gas. Lastly, gasification will 

allow for the complete utilization of ligno-cellulosic materials, whereas enzymatic processing is 

unable to digest the lignin in the biomass. 

The primary disadvantage of this technology is the fact that it cannot produce ethanol without a 

significant byproduct stream. The product stream is composed of mixed methanol, ethanol, 

propanol, butanol and other higher alcohols. In the scheme proposed by the study, the higher 

alcohols (propanol and up) are to be separated off and sold as commodity chemicals and 

methanol is to be recycled along with unreacted syngas into the synthesis unit to be reprocessed 

into higher alcohols. This injection of methanol is to shift the equilibrium towards ethanol 

production. 

Hybrid Thermochemical/Enzymatic Ethanol Production, Syngas Fermentation 

Another promising route to ethanol from ligno-cellulosic biomass is via biomass gasification 

followed by the enzymatic conversion of syngas to ethanol. This cellulosic ethanol production 

method has garnered interest because it avoids the currently inefficient pretreatment and 

cellulase production steps necessary for biological processing (Lynd 1996, 403-465).  
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This production method has a number of potential advantages over catalytic ethanol production. 

First, whereas most catalysts used in the petrochemical industry are easily poisoned by sulfur 

containing gases, syngas-consuming anaerobes have been found to be sulfur tolerant (Brown 

2007, 947-956).  Second, the conversion performance is not adversely affected by variable 

CO/H2 ratios as well as CO2 levels, whereas the conversion efficiency of catalytic systems are 

highly dependent on these ratios (Huber, Iborra, and Corma 2006, 4044-4098). Finally, unlike 

catalytic conversions where high temperatures and pressures are required, biological conversion 

takes place at near ambient conditions. 

There are major shortcomings that must be addressed for this nascent technology to become 

commercially viable. This process utilizes anaerobic fermentation which is traditionally difficult 

to maintain at an industrial scale (Brown 2007, 947-956). Additionally, one of the leading 

microorganism considered for this purpose, Clostridium ljungdahlii has a relatively low rate of 

growth and production. Despite the challenges associated with this approach, there are pilot scale 

plants currently attempting this method as a viable ethanol production route (McAulay 2009). 

Mixed Alcohol Production 

For the production of any alcohol longer than methanol, mixed alcohols must first be produced, 

then if a neat fuel is desired it must be separated. Here the synthesis characteristics of mixed 

alcohols are discussed, along with schemes being explored to boost production of specific 

products.  

The production of mixed alcohols is achieved by the use of a modified Fischer-Tröpsch catalyst 

in either a modified Fischer-Tröpsch reactor or a methanol synthesis reactor. The catalyst is a 

molybdenum-disulfide-based (MoS2) catalyst, such as that supplied by Dow/United Catalyst 

Company (UCC). This catalyst is a high surface area MoS2 with alkali metal salt and cobalt 

sulfide promoters. The promoters are used to shift the products from Fischer-Tröpsch 

hydrocarbons to alcohols. The active parts are supported on alumina or activated carbon. 

With the current state of technology, as reported by NREL, the operating conditions are as 

follows: Temperature approximately 300C, Pressure 1500-2000 psia, H2/CO ratio 1.0-1.2, CO2 
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concentration 0-7 mol%, and Sulfur concentration 500-1000 ppmv. The following system of 

reactions, along with equations (5)-(7), describe the synthetic route for production of alcohols 

synthetically: 

OHCHHOHCH 2423 +↔+
 mol

kJH K 4.115298 −=∆
 Eq. (8) 

OHOHHCCOHOHCH 25223 2 +↔++
 mol

kJH K 1.165298 −=∆
 Eq. (9) 

OHHCHOHHC 262252 +↔+
 mol

kJH K 0.91298 −=∆
 Eq. (10) 

OHOHHCCOHOHHC 273252 2 +↔++
 mol

kJH K 9.152298 −=∆
 Eq. (11) 

OHHCHOHHC 283273 +↔+
 mol

kJH K 2.89298 −=∆
 Eq. (12) 

OHOHHCCOHOHHC nnnn 2)1(21212 2 +↔++ +++  mol
kJnfH K )(298 =∆

 Eq. (13) 

OHHCHOHHC nnnn 222212 +↔+ ++  mol
kJnffH K )(298 =∆

 Eq. (14) 
 

Equations (13) and (14) are the general equations that can be continued with n→¶, however it 

impractical to model past an n of 8. 

The state of the technology, as reported by NREL gives the following parameters for reaction 

performance: Total CO Conversion (per pass) 10%-40%, Total Alcohol Selectivity 70-80%, Gas 

Space Velocity (hr-1) 1600-12000, Catalyst Alcohol Productivity (g/(kg-catalyst hr)) 150-350.2 

Figure 4 shows the weight percent distribution of the alcohols in the product stream. Note that 

the NREL result includes recycling methanol with unreacted syngas in order to increase the 

output of ethanol.  

Unlike the production of neat fuels, there would be no need for complicated separations at the 

end of the production (except for the removal of water, acetates, and other contaminants) which 

should increase the conversion efficiency. 

                                                 
2 This is based on an assumed catalyst density of 64 lb/ft3. 
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Figure 4  - Mixed alcohol product distribution of different production schemes. The data is adapted from 

(Phillips et al. 2007). 

 

In Figure 4, the distribution of products is plotted as weight percent for three production 

schemes. The Dow process distribution is representative of the one-pass conversion, where 

unreacted syngas is separated from the product stream and recycled. In this process, methanol is 

the dominant product with the percentage of higher alcohols decreasing with length. This is 

resultant from kinetic limits. The reaction rate for the general reaction defined by equation nine 

is: 

 ][]][[
][

2

212

)1(21
COHOHHCk

dt

OHHCd
nn

nn

+

++
=  Eq. (15) 

The amount of an n-alcohol produced during a period of time is proportional to the amount of the 

(n-1)-alcohol produced in the same period of time. In order for propanol to be produced in a one 

pass reactor there must first be an appreciable amount of ethanol produced, before which an 

appreciable amount of methanol must first be produced. This trend is more starkly apparent in 
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Figure 5, where the molar basis is used to illustrate the distribution, these are the numbers that 

are related to the process kinetics.  

Mixed Alcohol Product Distribution (Molar Basis)
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Figure 5 - Mixed alcohol product distribution of different production schemes (molar basis), adapted from 

(Phillips et al. 2007). 

 

Since the relative production is related to the chemical kinetics, this can be shifted by increasing 

or decreasing the residence time of the reacting mixture in the catalytic reactor. For their results 

SRI assumed that the reaction was allowed to continue long enough to have a resultant mass 

percentage of 30.70% methanol. This lengthened residence time both increased the mean alcohol 

length (from 1.43 carbons to 1.75 carbons in a molar basis) but also increased the variance of the 

products (from σ2 = 0.464 to 0.65). 

NREL, however, incorporated methanol recycling into their techno-economic study of the 

system. In this manner instead of increasing the residence of the entire reacting mixture, which 

increases the overall variance and the proportion of higher alcohols (propanol+), they increased 

the residence of methanol relative to the other products, as a result increasing the proportion of 
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ethanol produced (mean carbon length of 2.03)  while decreasing the overall variance of products 

to 0.217 (See Figure 6). 

Probability Distribution of product molecules

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

CH3(CH2)x-1OH

Dow

SRI

NREL

 
Figure 6 - Weibull distributions fit to the molar product distributions. 

 

Since the resulting product is a fuel, another useful way to visualize this product distribution is 

by using an energy basis. In Figure 7, the lower heating value (LHV) of these fuels are used to 

show in which chemicals the useful energy is stored. It can be seen, for example, that with the 

NREL system that if ethanol is the only desired product only 82% of the maximum conversion 

efficiency is utilized; the rest of the energy is diverted into the side products which are not 

currently used to an appreciable amount as fuels. 
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Product distribution in an Energy Basis (LHV)
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Figure 7 - Mixed alcohol product distribution in an energy basis. 

 
 
Dimethyl Ether Production 

Dimethyl ether is the dehydrated product of two molecules of methanol. 

OHOCHCHOHCH 23332 +↔  
mol

kJH K 23298 −=∆  Eq. (16) 

Industrially, DME can be produced directly from syngas to avoid the cost of an additional 

dehydration reactor. The reactions that govern this process are a combination of equations (5), 

(6), and (16). Today most DME is produced via the combination of equations (5) and (16) 

yielding the overall reaction: 

OHOCHCHHCO 233242 +↔+  
mol

kJH K 205298 −=∆  Eq. (17) 

A group in Japan (JFE Co. formerly NKK) has been developing a one-step process which in 

addition to reactions (5) and (16), reaction (6) occurs concurrently, yielding the overall reaction: 
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233233 COOCHCHHCO +↔+  
mol

kJH K 246298 −=∆  Eq. (18) 

It is evident from the stoichiometries of reactions (17) and (18) that a H2/CO ratio of 2 and 1 is 

desirable respectively (Ogawa et al. 2003, 219). The latter H2/CO ratio, is better suited for use 

with syngas from biomass. 

Dimethyl Ether Catalyst 

In a linear production scheme, where methanol is first produced then used as the feedstock for 

DME production, the catalyst system used for dehydration is a γ-Al2O3 based catalyst which is 

modified with phosphates or titanates. The latter two materials are used as promoters. Additional 

research has been done on the use of zeolites, silica aluminas, mixed metal oxides, as well as 

palladium based catalysts (Kung and Smith , 175). The alumina based catalyst system requires 

the reaction temperature to be below 300°C to maintain high catalyst activity.  

Systems such as that of JFE/NKK are aimed at creating a ‘direct DME’ synthesis from syngas. In 

these cases dehydration promoting catalysts are mixed with the methanol promoting catalysts in 

the same reaction vessel. This reaction scheme is favored by the thermodynamic equilibrium, 

because the dehydration creates more water which can be used to shift excess carbon monoxide 

to hydrogen to create more methanol, which then via Le Chatelier’s principle promotes increased 

dimethyl ether production.  

Fischer-Tröpsch Synthesis 

Fischer-Tröpsch synthesis (FTS) was the first process used to convert syngas into liquid fuels on 

an industrial scale and is currently one of the biggest consumers of syngas, after the production 

of industrial hydrogen and methanol (Wender 1996, 189-297). Today’s largest commercial FTS 

plants, SASOL I, II & III, are designed to produce more than 17.25 million liters (4.5 million 

gallons) of FT products daily (Probstein and Hicks 1982). 

The first work describing the catalytic hydrogenation of carbon monoxide to methane was 

performed by Sabatier and Senderens in 1902. In 1913, BASF was issued patents on the 

synthesis of hydrocarbons and oxygenates via carbon monoxide oxygenation over oxide 
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catalysts. In 1923, Fischer and Tröpsch produced synthol (Wender 1996, 189-297). The 

production of synthol, composed mainly of straight chain alkanes from C1 to C50, takes place 

over cobalt, iron or ruthenium based catalysts. The distribution of products is governed by the 

Anderson-Schulz-Flory (ASF) polymerization model (Huber, Iborra, and Corma 2006, 4044-

4098): 

 12)1( −−= n

n nW αα  Eq. (19) 

Where Wn is the selectivity of the n-carbon chain and α is the probability of chain growth. The 

probability of chain growth cannot be directly controlled. It must be indirectly controlled by 

changing the temperature, pressure, and most importantly, the species residence time in the 

reactor. In Figure 6, the ASF model is used to plot the selectivities of alkane product groups of 

interest, methane (C1), ethane through butane (C2-C4, LPG), gasoline/light distillates (C5-C10), 

diesel fuel (C11-C22) and higher waxes (C23+). It is apparent from this distribution that FT 

synthesis has a low selectivity of desired products. If the residence time is too short, the products 

are dominated by methane and LPG. If the residence time is too long, the products are quickly 

dominated by long waxes. In order to combat this problem, SASOL employs short chain gas 

(C1-C4) recycling which boosts the overall conversion efficiency to gasoline/diesel ranged 

hydrocarbons, however it decreases the overall production efficiency since the production of 

syngas from methane is only 70% efficient due to the exothermic nature of the reaction and 

second law losses (Probstein and Hicks 1982). 
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Anderson-Schulz-Flory Model of FT Synthesis Products
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Figure 8 - ASF Model of FT Synthesis Products, adapted from (Probstein and Hicks 1982). 

 

SASOL achieves an overall conversion efficiency of approximately 40% for the production of 

motor fuels from coal (Wender 1996, 189-297). It has been argued that if gas recycling was 

abandoned and synthetic natural gas and LPG were instead sold as co-products an overall 

efficiency as high as 58% could be achieved (Probstein and Hicks 1982). This is more feasible in 

FT plants in the US where there already exists dedicated natural gas and LPG infrastructure, 

which was not the case in South Africa when SASOL was built in the 1950s.  

Beyond using coal as a feedstock natural gas has been used extensively in so called Gas-to-

Liquids (GTL) applications where one of the primary products is Fischer-Tröpsch Diesel is one 

of the primary products (Fleisch, Sills, and Briscoe 2002, 1-14). The primary advantage of using 

natural gas as a feedstock is the improved gasification efficiency and ease of processing. As of 

2002, there was only about 35,000 barrels per day of GTL production; however more than 1 

million barrels per day of GTL capacity was in the pipeline or under construction(Fleisch, Sills, 

and Briscoe 2002, 1-14).  
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Though Fischer-Tröpsch fuel production is a well established fuel production technology dating 

back to the turn of the 20th century, there is a renewed interest in improving the technology with 

modern engineering methods. A US based company, Velosys, is working on advanced 

technology development to improve the heat and mass transfer characteristics of the catalytic FT 

production step (and thus the conversion efficiency) by using a micro-channel technology 

(Kratochwill, Glatzer, and Farrell 2008; Tonkovich et al. 2008). 

Mobile Methanol-to-Gasoline (MTG) Synthesis 

The Mobile Methanol-to-Gasoline (MTG) process (also known as the Mobile-M process) is a 

catalytic synthesis route to produce high octane gasoline from methanol over a zeolite catalyst 

ZSM-5. The reaction is highly exothermic with a heat of reaction of approximately 1.74 MJ per 

kg of methanol reacted. The reaction takes place nearly stoichiometrically producing gasoline 

and water (Dwyer, Hanson, and Schwartz ; Keil 1999, 49-66). Because of the high heat of 

reaction, a large amount of enthalpy is lost in the fuel decreasing the overall energy conversion 

efficiency.  

The gasoline produces is a high octane product, with a RON ranging from 93-96.8. Its 

components have been reported to be 60-67% paraffins, 6-8% Olefins and 27-32% aromatics 

(Csicsery 1986, 841). The product of the New Zealand test plant was 40% aromatics (Huber et 

al. 2006). This high fraction of aromatics could cause for low acceptance in the United States due 

to its possible non-compliance with the Clean Air Act which stipulates that the aromatic 

hydrocarbon content of reformulated gasoline shall not exceed 25% by volume (Baucus 1990, 

549). This fuel would have to be mixed with non-aromatic gasoline, such as short chain FT 

products in order to be marketable in the US. This fuel production method had been employed 

commercially in New Zealand from 1985 to the mid nineties. A test plant ran from 1981 to 1984 

producing 14500 bbl/day at an efficiency of approximately 36% (Huber, Iborra, and Corma 

2006, 4044-4098; Keil 1999, 49-66).  

The conversion of methanol to MTG is nearly complete (~93% carbon conversion efficiency) 

(Fleisch 2006). With continued work towards integrated heat management in an integrated coal 
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(or biomass) to methanol to MTG facility it is estimated that efficiencies could be improved to 

higher than 40% for coal to liquids facilities (Heinritz-Adrian et al. 2007).   

Distribution 

One of the major challenges that must be overcome for any alternative fuel to have a meaningful 

impact on current petroleum based technologies is the fuels adaptability to the current 

distribution infrastructure. Today’s fuel distribution infrastructure is truly global, spanning all of 

the inhabited continents from remote energy producing locals to densely populated energy 

consuming centers. This fuel distribution system employs water based transport (barges and 

trans-oceanic super tankers), land transport (trucks and rail), as well as pipelines. Because of the 

vastness of this system and the variety of modes of transportation used, determining which 

alternative fuel best can integrate into our current infrastructure is challenging. In this thesis the 

three methods of transport considered are truck, rail and pipeline. The analysis performed in this 

thesis considers strictly domestic production and consumption3, as such there is no need for 

tanker utilization. 

Due to their high energy density, and physical similarity to the current fuels of choice (oil, diesel 

and gasoline) liquid fuels would be most easily integrated into the current fuel distribution 

infrastructure. Further, on a volumetric basis, the cost of shipping any fuel grade liquid would be 

comparable to that of crude oil (Short 1994, 215). Unlike shifting to a gaseous fuel, which would 

require a major overhaul of refueling stations, shifting to liquid fuels would be more easily 

accepted by consumers, since they are familiar with handling liquid fuels at the pump (Olah, 

Goeppert, and Prakash 2006).  

The two characteristics of a given fuel which are of interest when considering integrability of 

fuels into a distribution system are miscibility with water and the energy density in a volumetric 

basis due to the reasons cited above. These are tabulated below. 

                                                 
3 This thesis considers only domestic production because energy security, and as such domestic production, is one of 
the primary thrusts in much of the recent (and proposed) federal energy policies. Additionally, even without 
provisions for domestic production in federal policy, it would likely be the case that increased economically 
competitive biofuel production in the US would be used for domestic consumption since we are largely an energy 
importing nation. 



 
51 

 

Fuel 
Miscibility with water 

(mL/mL) LHV (MJ/L) 

Methanol 1 15.7861 

Ethanol 1 22.7745 

Propanol 1 24.6483 

Butanol 0.091 26.7841 

Diesel 0 36.12 

Gasoline 0 33 

Table 5 - Miscibility and heating value of fuels (Perry and Green 1997). 

 

Traditionally, gaseous fuels have not been used to power the transportation sector, and their 

distribution infrastructure does not integrate all the points necessary for the full distribution of 

fuels for transport. Because of this, the integration of gaseous fuels into the transportation fuel 

infrastructure has more hurdles to overcome.  

Because of these fuels’ physical properties, different handling and refueling systems must be 

employed at refueling stations. Thus, a transition to gaseous fuels may meet more public 

resistance, as well as industry resistance. 

End Use 

The last major energy conversion step in the current transportation fuel life cycle is the 

combustion of the fuel in an Internal Combustion Engine (ICE). Even though the ICE has been 

the dominant automotive propulsion technology for nearly a century, it is a rather inefficient step 

in the transportation fuel life cycle. The two dominant technologies today are Spark Ignition (SI) 

engine technology and Compression Ignition (SI) engine technology. In general, CI engines are 

more energy efficient than SI engines (Heywood 1988). Each of these technologies are optimized 

for certain fuel characteristics.  
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Vehicular Emissions 

Just as each fuel’s physical and chemical properties influence their energy conversion 

characteristics in an internal combustion engine, so too do these properties influence the 

emissions characteristics of a given fuel. 

Emissions of automobiles are measured by a standardized metric, specific emissions, which is the 

mass flow rate of the pollutant per unit power output: 

 )/( hkWg
P

m
sX X ⋅=

&
 Eq. (20) 

Where X is the chemical species of interest (nitrogen oxides (NOx), carbon monoxide (CO), 

hydrocarbons (HC) or particulate matter (PM)); m& is the mass flow rate of the given species, and 

P is the output power of the engine. The US government exercises its ability to regulate fuels 

primarily through the Clean Air Act (CAA), which spells out the allowed emissions for 

automotive transportation technology. Additionally, the CAA dictates the chemical make-up of 

fuels, such as limits on aromatic compounds, and limits on the amount of ethanol that can be 

mixed with fuels. Because of this existing regulatory framework, care must be taken to 

characterize an alternative fuels emissions characteristics and chemical make-up as compared to 

the fuel it is proposed to replace.  
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CHAPTER 4: BIOMASS GASIFICATION FUEL SYSTEM ANALYSIS 

In this chapter, each fuel is analyzed using the criteria introduced in Chapter 2. Each fuel’s 

lifecycle consist of three major steps: fuel production, product distribution and automotive end-

use. The analytic criteria, as outlined in Chapter 2, are used to assess each of these major steps of 

the fuel lifecycle. Additionally, other system wide challenges, such as health and environmental 

hazards, are discussed in broader context. The results from these analyses are summarized and 

further discussed in Chapter 5, along with the policy challenges that thermochemically produced 

biofuels must overcome. 

Production Efficiency 

The first law efficiency of the conversion process is defined as the ratio of the usable energy out 

to the total amount of energy put into the process: 

 
feedstock

producedfuel

I
Energy

Energy _
=η  Eq. (21) 

In a normal control volume system, such as a gasifier or chemical reaction vessel, the first law 

Energy Balance is written as: 
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Where im&  is the mass flow into the control volume, om&  is the mass flow out of the control 

volume, iQ  is the heat transfer into the control volume, oQ  is the heat transfer out of the control 

volume, iW  is the work done to the control volume, and oW  is the work done by the control 

volume. The terms iÊ  and oÊ  refer to the total energy carried by one unit mass of the material in 

the control volume; generally this is defined as the sum of the individual forms of energy: 

 +++++= ...ˆˆ
iiiii ElecKEPEHE  Eq. (23) 
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Where iĤ  is the enthalpy per unit mass of the material, iPE  is the potential energy, iKE  is the 

kinetic energy, and iElec  is the electrical energy. The ellipsis indicates that this list could contain 

many more terms. Depending on the energy conversion system being evaluated, different terms 

will dominate where the others turn out to be insignificant. For example, in the conversion of 

wind energy to electricity the only energetic term of concern is the kinetic energy whereas for 

hydropower, potential energy is the most important.  

For alternative fuel systems, the energy form which must be accounted for is the thermal energy 

contained in the chemical bonds of the fuel(s) being used and fuel(s) being produced. This form 

of energy is contained in the enthalpy term. This term, however, does not only account for 

chemical energy (measured by the standard enthalpy of formation, o

fĤ ), it also accounts for 

thermal energy of the material as well, or the sensible enthalpy, sĤ . While the use of the 

standard enthalpy of formation for energy accounting in this system would be sufficient, it is not 

convenient. Since all of the fuels considered for automotive transportation are combusted in 

oxygen to release their energy, the more commonly used energy measure heat of combustion is 

used. The heat of combustion is defined as the enthalpy of reaction of the complete oxidation of 

any hydrocarbon fuel to carbon dioxide and water at standard temperature and pressure. There 

are two common measurements for this, the higher heating value (HHV) and the lower heating 

value (LHV), where for the former the water produced is assumed to be liquid and for the later 

the water is assumed to be gaseous. In this study the majority of reactions take place at high 

temperatures above 100°C and, when possible, LHV will be used as a more realistic measure of 

chemical energy. Equations 23-24 illustrate the general chemical reactions from which LHV and 

HHV are derived.  
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For different systems, authors will often use different accounting methods to track different 

energy streams. For example, in the production of fuels, there is often a need to use electricity in 

the process either bought from the grid or produced on-site. In the case that the electricity is 
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produced on-site from the combustion of some portion of the biomass used for fuel production, 

then the energy would be accounted for by the LHV of the biomass used for electricity 

production. In the case where no electricity is produced onsite, the electricity bought from the 

grid would either be accounted for in the work in term Wi. The more general statement of the 

first law efficiency of the systems of interest is thus: 
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where the numerator of the fraction accounts for the total energy of the desired product, and the 

denominator accounts for the energy put into the system. In this formulation, the energy content 

of by-products is neglected. Take for example a plant which is designed to produce ethanol 

thermochemically via mixed alcohol production. While methanol, propanol, butanol and other 

higher alcohols make up a substantial amount of byproducts, these co-products may not be 

produced in substantial enough numbers to justify the sale of these fuels into fuel markets as 

well. Additionally, this formulation neglects work out, Wo, and heat transferred out Qo. This is 

justified by the same reasoning as above. Additionally for heat transferred out, this heat is very 

difficult to harness into usable form due to entropic losses. 

In this thesis, it is assumed that all the requisite work and heat is produced from the feedstock 

input for the process. In the case of fuel production, it is assumed that a part of the cellulosic 

feedstock is used to produce the requisite shaft work, heat and electricity. For fuel distribution it 

is assumed that the fuel itself is used to power the pipeline infrastructure, the trains, and the 

trucks. This later assumption is probably further from realistic than the assumption on production 

because in the event that a new fuel is introduced it would not make up a significant percentage 

of the national fuel mix, however since this same approximation is used for each fuel it should 

provide a neutral metric to compare each fuel. 

For linear production systems, the process efficiencies are the product of the efficiencies of their 

parts. The main parts of a fuel production system based on biomass gasification are the 
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gasification, gas clean-up and preparation, product synthesis, and product separation/clean-up. 

Thus the process efficiency, processI ,η , can be defined as follows: 

 sepsyncpgprocessI ηηηηη =,  Eq. (27) 

Where gη  is the gasification efficiency, cpη  is the gas clean-up and preparation efficiency, synη  

is the product synthesis efficiency, and sepη  is the efficiency of product separation and clean-up. 

In the literature, the efficiency most often published is the overall process efficiency and the 

gasification efficiency. In the systems being analyzed, the step which is common to each is the 

gasification step. Each of the processes differ for their requirements of gas clean-up, synthesis, 

and product separation. Thus, the above equation can be simplified to: 

 iprodgprocessI ,, ηηη =  Eq. (28) 

where 

 sepsyncpiprod ηηηη =,  Eq. (29) 

Where the subscript i denotes the different produced fuels: methanol, ethanol, et cetera. Since the 

process efficiency and the gasification efficiencies are often known for the processes, iprod ,η can 

be calculated for each of the fuels. This can then be used with a common gasification efficiency 

to estimate the relative overall process efficiencies of fuel production for each of the fuels. 

Gasification 

Gasification is the first major energy conversion performed in the production of transportation 

fuels and, as such, dictates the maximum achievable conversion efficiency for the overall 

process.  As such, there is currently much research being performed on gasification systems in 

order to achieve higher energy efficiencies and more robust operation. There are two major 

classifications of gasifiers: directly-heated and indirectly-heated. Directly heated gasifiers derive 

their necessary energy from combustion inside the gasifier itself, whereas indirectly heated 
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gasifiers derive their energy from external sources, either from heated steam or an inert heated 

substrate such as sand. Indirect gasifiers generally operate at lower temperatures and pressures 

compared to directly heated gasifiers. While this may be ideal for applications employing syngas 

fermentation, it may prove disadvantageous for catalytic chemical synthesis applications where 

high temperatures and pressures are needed for the synthesis step which would require additional 

gas compression and heating.  

In their study of methanol and hydrogen production via biomass gasification, Williams et al. 

investigated a number of gasifiers - two directly heated gasifiers, the Institute of Gas Technology 

(IGT) bubbling fluid-bed gasifier and the entrained-bed gasifier from Shell, and two indirectly 

heated gasifiers, the fluid bed gasifier by Manufacturing and Technology Conversions 

International (MTCI) and the fluidized bed developed for the Battelle-Columbus Laboratory 

(BCL). The relevant operating characteristics of the gasifiers are tabulated in Table 6. 

Additional studies have been performed on biomass gasification which also report cold gas 

efficiencies which range from the mid seventieth percentiles to the mid eighties. In their 

thermochemical equilibrium study of entrained flow biomass gasification of pine bark, Melgar et 

al. established a cold gas efficiency ranging from 79-85% in the typical operating conditions 

(Melgar et al. 2007, 59-67). 
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Gasifier Design 
Bubbling 
Fluid Bed 

(IGT) 

Indirectly-
heated Fluid 
Bed (MTCI) 

Indirect-Heat 
Fast Fluidized-

Bed (BCL) 

Entrained-Bed 
(Shell) 

Entrained Bed 
(Shell) COAL 

Feedstock 
composition 

CH1.52O0.68 CH1.63O0.66 CH1.54O0.65 CH1.52O0.68 CH0.91O0.11 

Feedstock HHV 
(GJ/dry ton) 

19.28 19.40 19.46 19.28 29.69 

Gasifier Steam 
(kg/ kg dry feed) 

0.3 1.37 0.019 0.03 0.03 

Gasifier Oxygen 
(kg/kg dry feed) 

0.3 0 0 0.45 0.8 

Combustor air 
(kg/kg dry feed) 

0 2.52 2.06 0 0 

Exit Temp (°C ) 982 697 863 1085 1371 

Pressure (Bar) 34.5 1.01 1.01 24.3 24.3 

Yield (kmol/tonne 
dry feed) 

82.0 146.8 45.8 79.3 92.4 

SynGas Molecular 
Weight (kg/kmol) 

22.27 17.65 21.64 20.08 20.49 

HHV Syngas 
(MJ/kg raw gas) 

8.68 9.55 15.73 10.32 12.61 

H2O 31.8 49.5 19.9 18.4 2.1 

H2 20.8 25.3 16.7 30.7 31.8 

CO 15.0 11.2 37.1 39.0 64.3 

CO2 23.9 9.9 8.90 11.8 1.7 

CH4 8.2 4.0 12.6 0.1 0 

C2+ 0.3 0.2 4.8 0 0 

Net Carbon 
Efficiency 

96.2 67.2 75.2 100 99 

Cold Gas 
Efficiency 

82.1 90.0 80.1 85.2 80.3 

Table 6 - Characteristics of biomass gasifiers adapted from (Williams et al. 1995, 18). 

 

For gasification, the efficiency most often reported is the Cold Gas Efficiency (CGE) which is 

the measure of the ratio of purely chemical energy contained in the exit and entrance. This is 

achieved by assuming no temperature change, therefore no purely thermal energy term. 

Therefore, the CGE is defined as 
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Gasification of Natural Gas: Steam Reforming 

As with biomass and coal gasification technologies, there are also a number of approaches to 

producing syngas from natural gas. 
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One process of gasifying natural gas is known as steam methane reforming (SMR). It is a much 

less complex process than the gasification of a solid fuel due to the molecular simplicity of 

methane. Steam reforming can be described by the following set of chemical reactions: 

 224 3HCOOHCH +→+  Eq. (31) 

 222 HCOCOOH +↔+  Eq. (32) 

The steam-methane reformation, coupled with the water gas reaction. These reactions yield an 

higher hydrogen to carbon monoxide ratio than the gasification of solid fuels (3:1 versus 1:1). 

This makes methane an optimal feedstock for the production of hydrogen and other fuels which 

require higher hydrogen to carbon monoxide ratios (such as methanol which requires slightly 

above a 2:1 ratio). Steam reforming relies on the injection of superheated steam to provide the 

necessary activation energy to complete the reaction, and so is an indirect gasification method. 

Beyond offering higher hydrogen to carbon monoxide ratios, steam reforming of methane is also 

a more efficient process than solid gasification. This is due to the fact that the process is 

dominated by two optimizable reactions (above) whereas the gasification of solid fuels 

undergoes a number of surface and chemical reactions which cannot be simultaneously 

optimized. The CGE of steam reforming of methane has been reported to be 89.9% (Simpson 

and Lutz 2007, 4811-4820). 

Partial Oxidation (POX) reactors are also occasionally used to produce syngas. This is a non-

catalytic process in which the fuel is combusted in a sub-stoichiometric amount of oxygen 

yielding a mixture of carbon monoxide, hydrogen, water and carbon dioxide (which is dictated 

by the reaction temperature via the water gas shift reaction). For natural gas the chemical 

reaction which describes this process is: 

 OHCOHCOOCH 22224 +++→+  Eq. (33) 
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The final ratios are dictated by the reactor temperature, residence time and the water-gas shift 

kinetics (Rice and Mann 2007, 1-50). 

Autothermal reformation (ATR) uses a mixture of oxygen, carbon dioxide and/or oxygen and 

steam to produce a syngas with variable hydrogen to carbon monoxide ratio (Rice and Mann 

2007, 1-50). Since both partial oxidation and steam reformation is occurring simultaneously and 

can be controlled which is the dominant reaction a large range of hydrogen/carbon monoxide 

ratios can be achieved allowing for more flexibility in downstream use (Rice and Mann 2007, 1-

50).  

Methanol 

Modern natural gas to methanol facilities are characterized by methanol selectivities above 99% 

and first law process efficiencies above 70% (Olah, Goeppert, and Prakash 2006). The use of 

biomass and coal as the feedstock decreases the overall efficiency to the range of 50-60%. This 

is due, in part, to the lower hydrogen to carbon ratio of biomass and coal, which requires 

additional syngas conditioning prior to methanol synthesis, along with the added gasification 

complications due to ash content of these feedstocks.  

In a 1993 report by the Organization for Economic Co-Operation and Development (OECD), a 

conversion efficiency of 56.5% from woody biomass was reported. This value is in contrast with 

efficiencies of 64.9% from natural gas and 55.5% from coal reported in the same study (OECD 

1993). Incorporating this production efficiency from woody biomass an overall well-to-station 

efficiency of 52% has been estimated (Ofner, Gill, and Krotscheck 1998).  

More recently woody biomass to methanol conversion efficiencies have been estimated to be on 

the order of 60% (Azar, Lindgren, and Andersson 2003, 961-976). These estimates are based 

largely on the work of Williams et al. where an in-depth techno-economic study of methanol and 

hydrogen from biomass was performed. In the study, the group calculated thermal efficiencies of 

53.9%, 56.8%, 57.6% and 61.0% with IGT, MTCI, BCL and Shell biomass gasifiers 

respectively, for further details see Table 7.  
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Gasifier 
Design 

Bubbling 
Fluidized 
Bed (IGT) 

Indirectly-
heated fluid 
bed (MTCI) 

Indirectly-
heated fast 
fluidized-
bed (BCL) 

Entrained 
bed (Shell) 

Entrained-
Bed (Shell) 

Coal 

Dry, ash free 
composition 

CH1.52O0.68 CH1.63O0.66 CH1.54O0.65 CH1.52O0.68 CH0.91O0.11 

HHV 
(GJ/dry ton) 

19.28 19.4 19.46 19.28 29.69 

Initial 
moisture (%) 

45 45 45 45 5 

Moisture 
after Drying 

15 20 10 11 5 

Energy 
Ratio 

.566 .615 .606 .677 .649 

Thermal 
Efficiency 

53.9% 56.8% 57.6% 61.0% 61.3% 

Prod Eff 
(ηprod,i) 

65.7% 63.1% 71.9% 71.5% 76.3% 

Table 7 – Biomass to methanol production characteristics, adapted from (Williams et al. 1995, 18). 

 

Additionally, there has been work to estimate future conversion efficiencies using the 

assumption that technological innovation will continue to make the processes more efficient as 

the technology becomes more widely adapted. Using averages from contemporary studies, a 

short term conversion efficiency of 55% was assumed, increasing to 57-60% in the future (Faaij 

2006, 335-367; Hamelinck and Faaij 2006, 3268-3283). 

The production of methanol from natural gas experiences higher production efficiencies on 

average compared to conversion from biomass. Low estimates of 64% for first law efficiency 

have been made by Methanex Corporation, with high estimates on the order of 72% for an 

overall conversion efficiency (Allard 2000). Taken directly from operational data, Berggren 

calculated a first law efficiency of 69.3% (Berggren 1997). From these numbers syngas to 

methanol conversion efficiencies of 71.2%, 80.1% and 77.1% are obtained respectively.  
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Ethanol 

Enzymatic Corn Ethanol Production 

The conversion efficiency of enzymatic ethanol production from corn has been estimated by the 

USDA. Modern wet mill plants have been found to require approximately 23.3 lb of corn, 35,150 

Btu of thermal energy and 2.134 kwh of electricity per gallon of ethanol produced. These values, 

once converted to a common energy basis, can then be used in the above equation and an 

efficiency of approximately 35.8% is found. Dry mill plants require 37,000 Btu of thermal 

energy, 1.2 kwh of electricity, and a similar amount of corn, yielding a conversion efficiency of 

36% (Shapouri, Duffield, and Graboski 1995). 

Thermochemical Production 

Thermochemically, ethanol can be produced in two ways. First, ethanol can be produced by first 

making a mixed alcohol product and then separating the constituents to yield ethanol and other 

alcoholic byproducts, such as the system being studied by NREL and that which Range fuels is 

attempting to commercialize. Second, ethanol can be produced via syngas fermentation. In this 

process, specially engineered microbes are used to ferment syngas in much the same way that 

sugars are fermented to produce ethanol today. Ethanol produced via thermochemical mixed 

alcohol production from biomass has been reported to be 46% efficient (Phillips et al. 2007). 

This techno-economic assessment employed an indirect biomass gasification with methanol 

recycling in order to boost higher alcohol (predominately ethanol) production in a mixed alcohol 

synthesis unit. The gasifier unit was taken to have a 76.1% cold gas efficiency in an LHV basis 

and a 76.6% efficiency in an HHV basis. The syngas composition had a H2:CO ratio of 0.60 and 

a CO:CO2 ratio of 3.4. Given the overall efficiency of 46% in an LHV basis and a gasifier 

efficiency of 76.1% this implies that   %4.60_, =thermalEtOHprodη . 

There have been some studies of theoretical conversion efficiency for a hybrid 

thermochemical/enzymatic ethanol production facility. Assuming an overall gasification 

efficiency of 75%, Huber et al. proposed overall conversion efficiency on the order of 35% from 

biomass to ethanol. In a ballpark estimate of the technology performed by NREL, an overall 

conversion efficiency of approximately 40% was found assuming a cold gas efficiency for 

gasification of 70% (Spath and Dayton 2003). Using these two numbers a ballpark estimate of 
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fermsynEtOHprod __,η  can be found to be 46.7% - 57.1%. Due to the unproven nature of this 

conversion technology, these numbers have a high degree of uncertainty. 

Mixed alcohol production 

From the NREL analysis of thermochemical ethanol production one can get a first order estimate 

on the overall conversion efficiency for mixed alcohol production. In Phillips et al. the overall 

efficiency of ethanol production is 46% with approximately 9.6% of the energy contained in the 

higher alcohol co-products. Thus, an overall conversion efficiency of approximately 55.6% 

would be attainable if the mixture was marketed as a fuel. From this mixedOHprod ,η  can be estimated 

to be approximately 73% efficient (Phillips et al. 2007). The approximate composition of this 

mixed alcohol product is 5.7% MeOH, 81% EtOH, 11.5% PrOH, 1.4% BuOH, and 0.1% PeOH. 

Dimethyl Ether 

Dimethyl ether, being the dehydrated product of methanol, follows a similar chemical conversion 

process. As such, the conversion efficiency of this process is found to be on the same order as 

methanol. In older systems which employed a linear process where methanol was first produced 

then dehydrated in a separate unit operation, efficiencies were lower than that to methanol 

because of the additional inefficiency inherent to adding an additional unit operation. Modern 

production methods, however, employ a combined methanol synthesis and dimethyl ether 

reaction in one step. This method enjoys a boost in efficiency due to the synergy created by 

having dehydration and synthesis in the same step. Ogawa et al. reports a system efficiency of 

66.3% from natural gas for the production of DME which is increased to 71.4% if the 

coproduced methanol is included as a product (Ogawa et al. 2003, 219). Natural gas steam 

reforming is a much more efficient process than biomass gasification with cold gas efficiencies 

on the order of 90%. Thus DMEprod ,η  from this study can be estimated to be approximately 73%.  

Additionally, DME production from natural gas has been calculated by Wang and Huang, along 

with Hansen et al. to be 68.8% efficient excluding electricity co-product and 71.7% efficient 

including electricity production (Wang and Huang 1999; Hansen et al. 1995). This yields 



 
64 

DMEprod ,η  equal to 76.5% where a first law efficiency of 89.9 is assumed for the steam 

reformation of methane. 

Fischer-Tröpsch Diesel 

An efficiency of conversion for biomass to Fischer-Tröpsch (FT) liquids has been estimated to 

be 40%, similar to that of coal, assuming a cold gas efficiency of approximately 70% for biomass 

gasification (Wender 1996, 189-297). The efficiency of production, FTprod ,η , can be estimated 

from these numbers to be approximately 57.1%. Additional studies have put the efficiency at 

45%, with future efficiency of 55% to be attainable where 10% is electricity coproduced and sold 

on the market (Faaij 2006, 335-367; Hamelinck and Faaij 2006, 3268-3283). These studies, 

however, appear to be overly optimistic in their future efficiency gains for such an old 

technology. 

The production of FT diesel from natural gas has also been studied. In a study performed by 

Argonne National Laboratory conversion efficiencies of 49% for syntroleum conversion 

technology and 57% for shell technology were calculated resulting in conversion efficiencies 

from syngas to FTD of 54.5% and 63.4% respectively (Wang and Huang 1999). Additionally, 

further study of the shell design has been performed for both small and large implementation 

showing increased efficiencies with increased scale from 46% efficiency in a plant processing 

100 million scf/d, to 57% for a plant processing 410 million scf/d (Choi et al. 1997, 667; Choi et 

al. 1997). These studies yield efficiencies of conversion from syngas to FTD of 51.1% and 

63.4% respectively.  

MTG Product 

The Mobil-M fuel production method has been employed commercially in New Zealand in the 

1980’s. A test plant ran from 1981 to 1984 producing 14500 bbl/day at an efficiency of 

approximately 36% (Huber, Iborra, and Corma 2006, 4044-4098; Keil 1999, 49-66). This yields 

a 60% process efficiency, MTGprod ,η , for methanol to gasoline. From this, the conversion 

efficiency from syngas to MTG product can be estimated to be 39.6 – 43.2%.  It has been 

estimated that this process could yield overall system efficiencies as high as 48% for coal to 
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gasoline (Probstein and Hicks 1982). This estimate seems overly optimistic when compared to 

the achieved efficiency where natural gas is the feedstock. 

Production Efficiency Summary  

While fuel production systems are often non-linear and many steps are connected together with 

in non-sequential ways, a good estimate of unit process efficiencies can be made as shown 

above. From the estimates made above one can more easily compare the efficiencies of 

production for different fuels from the gasification of a common feedstock. These syngas to fuel 

production efficiencies are tabulated below. 

Fuel 
Biomass/Coal 

Feedstock 

Natural 
Gas 

Feedstock 

Methanol 63-72% 71-80% 

Ethanol via syngas fermentation 46-57% - 
Ethanol via catalytic mixed alcohol 

production 
60% - 

Mixed alcohol production 70-73% - 

DME - 73-76.5% 

FT Diesel 57% 51-63.4% 

MTG Gasoline - 40-43% 

Table 8 - Summary of syngas to fuel production efficiencies of different fuels as taken from literature. 

 

The first law conversion efficiencies of syngas to fuel step are summarized in Table 8. The 

majority of losses take place in this step of fuel production. This is primarily due to 

irreversibilities created from heat loss across the reactor boundaries due to the need for multiple 

passes of the reaction gases over the catalysts. Likely, there exists room for improvement in this 

synthesis step and there is work being done to improve heat management and conversion 

efficiencies of syngas to fuels. By avoiding excess heat loss in these processes, for example by 

using waste heat to dry the biomass, overall systemic conversion efficiency can be improved.  

 In Table 9, the overall biomass to fuel conversion efficiency is calculated assuming a biomass to 

syngas cold gas efficiency of 80%. Since there is only one data point for catalytic ethanol 

production it is assumed that this is a ‘best case’ estimate and as such no low end efficiency can 

be estimated for the process. 
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 Methanol 
Ethanol, 
syngas 

fermentation 

Ethanol, 
catalytic 

Mixed 
alcohol 

DME FTD MTG 

Syngas to Fuel 
Efficiency 

       

High 72 57 60 73 73 63.4 43.2 

Low 63 46 ? 70 64 51 39.6 
Overall 

Efficiency 
       

High 60 43.6 48.3 58.4 58.4 50.7 34.5 

Low 50 36.8 ? 56 51.2 40.8 31.6 

Table 9- Biomass to fuel conversion efficiencies, assuming a biomass gasification efficiency of 80%. 

 

As above, Table 10 summarizes the conversion efficiency of natural gas to fuel assuming a 

natural gas to syngas cold gas efficiency of 90%. Again, no lower bound is estimated for the 

catalytic ethanol production. 

 Methanol 
Ethanol, 
syngas 

fermentation 

Ethanol, 
catalytic 

Mixed 
alcohol 

DME FTD MTG 

Syngas to Fuel 
Efficiency 

      

High 80 57 60 73 76.5 63.4 43.2 

Low 71 46 ? 70 73 51 39.6 
Overall 

Efficiency 
      

High 72 51 54.3 65.7 69 57 38.8 

Low 64 41.4 ? 63 65.7 45.9 35.6 

Table 10 - Natural gas to fuel conversion efficiency assuming a natural gas gasification efficiency of 
90%. 

 
 
Production Economics 

In order to decide between alternative fuels, one of the most important parameters is the cost of 

production. There are many variables that affect the cost of production for a given fuel including 

the overall conversion efficiency, the capital investment required for the process equipment, and 

the investors required rate of return. Since syngas production from biomass gasification has not 

been implemented at large scale, many of the reported costs published in studies have been first 

order estimates with errors of ±30%. Therefore, while these costs may offer a loose guideline of 
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the economic viability of these fuels, more data is needed from pilot scale plants in the 

production of these fuels. In this thesis all monetary values have been converted to 2007 US 

dollars and are listed by the original value from the literature source to allow for easier 

comparison. At the end of this section is a summary which has all prices quoted in 2007 dollars 

using a common energy and volume measurement. 

Methanol 

Methanol synthesis from syngas is the most energy efficient conversion to a liquid fuel. 

Additionally, the synthesis of methanol from syngas is one of the most well established industrial 

chemical processes, as such its production costs are relatively well known for processes which 

use natural gas and coal as a feedstock. The production of methanol from biomass is more cost 

intensive due to complications with biomass gasification which leads to lower energy conversion 

efficiency and the need for further gas cleanup and reactor slag controls increasing the capital 

intensity of a biomass to methanol plant. These problems are shared by all biomass to fuel plants 

which employ gasification. 

Many techno-economic studies have been performed on the biomass to methanol conversion 

process yielding different estimates of the cost of production. In one of the first techno-economic 

assessments of this technology performed in the 1990s, the minimum selling price for methanol 

from biomass was estimated to be 1991$12-14.5 (2007$18.05-21.81) per gigajoule of methanol 

where a cost of 1991$2.5 (2007$3.76) per gigajoule of delivered biomass was assumed (Williams et 

al. 1995, 18). 

In 2003, further assessment of this system was performed by the National Renewable Energy 

Laboratory (NREL). A minimum selling price of 2003$13-14 (2007$14.63-15.76) per gigajoule 

methanol was estimated where the cost per metric ton of delivered biomass was taken to be 

2003$33 (2007$37.14) (Spath and Dayton 2003). 

Most recently, an estimate of the minimum selling price for methanol from biomass in Europe 

was estimated to be 10-15€2006 (2007$10.28-15.42) per gigajoule in the short term evolving to 6-
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8€2006 (2007$6.17-8.22) in the long term due to improved technology as more production facilities 

employing biomass gasification are built and operated (Faaij 2006, 335-367). 

Ethanol 

Due to ethanol’s favored status among policymakers and its favorable economic subsidies, there 

has been much more work dedicated to the production of ethanol from ligno-cellulosic 

feedstocks. As such, the current estimates of ethanol produced via biomass gasification appear to 

be more optimistic in part both to techno-optimism of policymakers and engineers, and due to 

the advanced development of these systems due to larger amounts of research moneys that have 

been dedicated to their study.  

In the same techno-economic study which NREL performed on methanol production via biomass 

gasification (see above), an estimate was also made of the minimum selling price for ethanol 

produced via syngas fermentation. This estimate was 2003$14 (2007$15.76) per gigajoule again 

assuming 2003$33 (2007$37.14) per dry metric ton of biomass (Spath and Dayton 2003). The 

authors acknowledge, however, that this is a rough ballpark estimate based on predictions from 

scientists on the conversion efficiencies which could be achievable with the technology in the 

future. In my opinion, this estimate suffers from a heavy dose of techno-optimism for ethanol 

production to replace imported oil.  

In a later techno-economic study exclusively focused on catalytic ethanol production via biomass 

gasification a minimum selling price of 2005$1.01 (2007$1.07) per gallon of ethanol was estimated 

(2007$11.55 per gigajoule). This estimate assumes that all of the produced co-products propanol 

and butanol can be sold into commodity chemical markets at 60% their current market prices. 

Additionally, this study assumes a price of 2005$35 (2007$36.88) per delivered dry US-ton biomass 

as based on recent target prices published by the Idaho National Laboratory (Phillips et al. 2007). 

A techno-economic study of ethanol produced via enzymatic conversion of ligno-cellulosic 

biomass put the minimum selling price at 1996$1.18 per gallon (or 2007$16.76 per gigajoule) (Lynd 

1996, 403-465). 
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Dimethyl Ether 

There have been no techno-economic estimates of the cost of production of dimethyl ether from 

biomass, however the cost of production from natural gas has been established. From these 

determined costs, a cost for the production from biomass can be estimated by looking at the 

percentage change in production costs for other fuels for which biomass has been used instead of 

natural gas as a feedstock. 

The minimum gate selling price for dimethyl ether produced from natural gas has been 

established to be 2003$4 per MMBtu (2007$4.50 per gigajoule) with a natural gas price assumed to 

be 2003$1.5 per MMBtu (2007$1.60 per GJ) (Ogawa et al. 2003, 219). In the study on methanol 

production from biomass performed by Williams et al. the increase in minimum selling price of 

methanol from biomass versus natural gas is 240% higher when normalized against feedstock 

cost. As such, if the cost per MMBtu delivered dry biomass was taken to be 2003$2 (2007$2.13 per 

MMBtu), then the minimum selling price of dimethyl ether would be on the order of 2007$14.63 

per GJ. 

Fischer-Tröpsch Diesel 

Fischer-Tröpsch products have been employed commercially over the past century and as such 

their cost of production has been well established for natural gas and coal as feedstocks. Due to 

their complete compatibility with today’s compression ignition engine technology there has been 

increasing interest in developing production routes from biomass as well in order to produce high 

volume amounts of bio-derived diesel products. 

The minimum selling price of Fischer-Tröpsch products produced from biomass has been 

estimated to be 2003$19-25 per gigajoule (2007$21.38-28.13) (Huber, Iborra, and Corma 2006, 

4044-4098; Spath and Dayton 2003) While much higher than other synthetic fuels, this price is 

competitive with today’s diesel prices in a per gallon basis. 

The minimum selling price of Fischer-Tröpsch products has also been estimated in Europe where 

an estimate of 12-17€2006 per gigajoule (2007$12.34-17.48) in the short term evolving to 7-9€2006 

per gigajoule (2007$7.20-9.25) in the long term (Hamelinck and Faaij 2006, 3268-3283).  



 
70 

MTG Gasoline 

Recently there has been much renewed interest in the Mobile-M methanol-to-gasoline process. 

There have not been any techno-economic studies of this fuel produced from biomass, however 

there has been analysis of data collected from the application of this technology in New Zealand 

in the early 1980’s employing natural gas as a feedstock. 

A minimum selling price of 1990$1.55 per gallon (2007$18.44 per GJ) of MTG gasoline has been 

reported assuming a full investment return of 10% and natural gas price of 1990$1.25 per 

gigajoule (2007$2 per GJ Natural Gas) (Sugiyama 1994). If the same first order estimate technique 

employed for dimethyl ether is used here (see above) the cost per gallon of MTG gasoline from 

biomass would be 2007$43.90 assuming $1.25 per gigajoule of delivered dry biomass. 

Production Economics Summary 

The production costs summarized above come from a variety of studies conducted assuming 

different base years and costs of inputs. In order for these numbers to be used today they have 

been normalized to a base year of 2007 dollars, and all of the prices have been set to an energy 

basis of one gigajoule of fuel.  

 
Low 

($/GJ) 
High 

($/GJ) 

cost of 
biomass 

($/GJ) 

Year of 
study 

biomass unit 
in study 

methanol $18.05 $21.81 $3.76 1991 Gigajoule 

 $14.63 $15.76 $37.14 2003 metric ton 

 $10.28 $15.42  2006 N/A 

Ethanol $15.76 ? $37.15 2003 metric ton 

 $11.55 ? $36.88 2005 US-ton 

 $16.76 ?  1996 N/A 

MTG $18.44 ? $1.96 1990 gigajoule(NG) 

 $43.90 ? $1.96 1990 Gigajoule 

FTD $21.38 $28.13 $37.13 2003 metric ton 

 $12.34 $17.48  2006 N/A 

DME $4.50 ? $1.60 2003 MMBtu (NG) 

 $14.63 ? $2.13 2003 MMBtu 

Table 11 - Summary of costs of production in 2007 dollars. 
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Distribution Integrability 

In order for a fuel to be adopted at scale, it must be able to be shipped via the current fuel 

distribution infrastructure. The current fuel shipping infrastructure consists of pipelines, rail 

shipment and truck transport. The fuel pipeline infrastructure in the United States was designed 

to ship hydrocarbon fuels (petroleum derived and natural gas) which are hydrophobic and 

generally non-corrosive. As such, pipeline operators have been reluctant to ship quantities of 

alcohols or other hydrophilic/corrosive fuels for fear that they could damage the pipelines or 

render delivered fuels unsellable due to increased water content. Rail and truck shipment, on the 

other hand, has been utilized by the growing ethanol industry to ship product nationwide though 

at a higher energetic and monetary cost. Due to the different physical and chemical properties of 

the fuels analyzed in this thesis, the optimal shipment method for each of these fuels is 

constrained both by physical limitations and also reluctance on behalf of a large industry.  In the 

following sections the integration of each of the fuels into the current distribution infrastructure 

is analyzed. 

Alcohol Distribution Infrastructure 

Methanol is corrosive (as is the case for short chain aliphatic alcohols) and completely miscible 

in water; because of these characteristics many pipeline operators are reluctant to ship methanol 

in the established petro-fuel infrastructure. Taking necessary precautions, however, Celanese 

Canada successfully moved 4000 tons of methanol 750 miles from Edmonton to Vancouver in 

the mid 1980s (Mills and Ecklund 1987, 47-80). This shipment was deemed to be very 

successful with only minor changes in the shipments composition from Edmonton to Vancouver 

(see Table 12). 

 
Leaving Edmonton, 

Alberta 
Arriving Burnaby, British 

Columbia 

Methanol Content % 99.99 99.68 

Hydrocarbon Content% 0 0.29 

Water Content% 0.01 0.02 

Non-volatiles % 0 0.01 

Table 12 - Celanese Canada methanol shipment analysis, adapted from (Short 1994, 215). 
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The current growth of the ethanol industry has allowed for a large scale ‘proof of concept’ for 

alcohol fuel distribution and utilization. Currently much of the fuel grade ethanol is shipped by 

truck and rail, however, more petrol companies are accepting shipments of ethanol in their 

pipeline infrastructure (Dinneen 2008). Additionally, the 2007 Energy Independence and 

Security Act has extended and expanded tax credits for fueling stations to install alcohol ready 

fuel tanks and pumps (Rahall 2007, 110-140). In the late 1980s, a network of approximately 100 

methanol refueling stations were built in California (Olah, Goeppert, and Prakash 2006). 

Currently there are 1,646 E85 retailers in 42 states in the United States, with calls to increase this 

number 10 times (NEVC 2008). For ¼ of the nearly 180,000 refueling stations in the US to 

install an alcohol refueling pump, the cost has estimated to be less than $3 billion dollars one 

fourth of the $12 billion dollars spent to introduce reformulated gasoline to US stations (Olah, 

Goeppert, and Prakash 2006). This continued expansion of alcoholic fuels should allow for an 

easier introduction of fuel alcohols into the mix. 

Another major challenge for the integration of alcohol fuels is economics. As cited above, the 

cost of shipping liquid fuels is roughly the same on a volumetric basis (Short 1994, 215). 

However, on a volumetric basis alcoholic fuels contain less energy than the more energy dense 

hydrocarbons. Therefore, the cost of shipping alcoholic fuels would be more expensive than 

shipping an energy equivalent amount of hydrocarbon fuel. 

The integration of higher alcohols into the current distribution infrastructure faces the same 

challenges that the integration of methanol and ethanol do. The challenges for higher alcohols 

are somewhat lessened, however, due to the decreasing miscibility with water and increasing 

energy density as the aliphatic chain is increased.  

Synthetic Hydrocarbon Distribution Infrastructure 

Whereas alcoholic fuels have faced hurdles in being accepted into the fuel distribution 

infrastructure, Fischer-Tröpsch products should garner little resistance. Compared to other 

synthetic fuels, Fischer-Tröpsch products have a high energy density, on par with oil, leading to 

a lower cost of distribution (Takeshita and Yamaji 2008, 2773-2784). Further, because of their 

chemical similarity to currently used hydrocarbon fuels, they can be easily integrated into the 
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current fuel distribution system, thus avoiding the so-called “chicken-or-egg problem” faced by 

more radical fuel technology shifts to gases and even alcohols. 

As with FT Diesel, MTG Gasoline faces few challenges compared to alcohols when it comes to 

integrability in the current fuel distribution infrastructure.  

Dimethyl Ether and Hydrogen 

Hydrogen, due to its extremely low density, incurs very high shipping and storage costs. In order 

to increase the energy density per volume, one must either pressurize, or liquefy hydrogen. 

However this consumes a great amount of both energy and capital, greatly increasing shipping 

costs. As such, it is assumed that in a future transition to a hydrogen based transportation sector, 

local generation of hydrogen would be required. Further, because of the small size of hydrogen 

molecules, a much greater occurrence of fuel leakage occurs. For gaseous hydrogen shipped via 

pipeline a loss of approximately 3.5% occurs per 1000 km compared to 2.3% for liquid fuels 

over the same distance (Takeshita, Yamaji, and Fujii 2006, 285). 

Unlike hydrogen, dimethyl ether is easily liquefied, allowing for better integration. Dimethyl 

ether, because of the similarities between its physical properties and LPG, can be easily 

integrated into the current LPG fuel distribution system. With minor modifications to valves, 

pumps and gaskets, all of the LPG distribution technologies including ocean tankers, receiving 

stations, train tankers and trucks can easily accommodate dimethyl ether (Semelsberger, Borup, 

and Greene 2006, 497-511). This distribution infrastructure, however is dedicated primarily to 

LPG fuel for domestic heating and cooking use. LPG refueling systems would have to be built at 

automotive refueling stations across the nation. 

For large scale implementation of dimethyl ether fuel, the capital investment for production 

plants and infrastructure upgrade was estimated to be US$4 billion, compared to US$18 billion 

for hydrogen, US$4 billion for methanol and US$5 billion for ethanol (Semelsberger, Borup, and 

Greene 2006, 497-511). 
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Distribution Efficiency 

The US fuel distribution system employs three primary modes of transport: truck, train and 

pipeline. As previously discussed, due to their varying chemical and physical properties each 

certain fuels have met resistance to being transported by certain means. As such, each of these 

distribution methods are analyzed in this thesis to get the best estimate of distribution efficiencies 

and costs for each fuel.  

In order to assess the efficiency of transport via each method, it is assumed that all of the energy 

to transport the fuel comes from the fuel itself, thus the equation for the efficiency of transport is: 

( )
( )

( ) ( )
( )
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Figure 9 - Energy efficiency of transporting fuel 1000km by mode. 
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In Figure 9, the resultant efficiencies of each of the transportation modes are reported for 

shipping each fuel 1000km. The truck and rail transportation numbers were calculated using data 

reported for average energetic cost of shipping per mode in the Transportation Energy Data Book 

(Davis and Diegel 2007). The efficiency of pipeline transport was calculated assuming both plug 

and turbulent flow regimes and very little sensitivity relative to differing Reynolds numbers was 

observed (Perry and Green 1997). In Table 13, these efficiencies of distribution are tabulated. 

 
 

  Truck Train Pipeline (Plug) Pipeline (Turbulent) 

Methanol  97.2% 98.9% 100.0% 99.90% 

Ethanol  98.0% 99.3% 100.0% 99.92% 

Propanol  98.2% 99.3% 100.0% 99.92% 

Butanol  98.3% 99.3% 100.0% 99.93% 

MTG  98.6% 99.5% 100.0% 99.98% 

FT Diesel  98.7% 99.5% 100.0% 99.98% 

DME  97.7% 99.2% 100.0% 99.90% 

Table 13 - Energy efficiency of transportation per 1000km 
 

The efficiencies reported above are given per 1000km of shipping distance, however there is 

uncertainty as to exactly how far the average biofuel will travel when it is deployed at scale. In 

their 2006 study, Morrow et al. reported a probable range for the average distance a cellulosic 

fuel will travel as 980 to 1040 km (Morrow, Griffin, and Matthews 2006, 2877-2886). In this 

study a symmetric triangle distribution is prescribed to this range in order to perform the MCA to 

compute the likely system efficiency.  

The overall efficiency of distribution for a given distance is thus:  

 ( ) 1000/

,1000,

x

fuelAkmfuelAxkm ηη =  Eq. (34) 

where x is the distance the unit of fuel is shipped. This is not an obvious formulation, however it 

can be deduced by considering the shipment of a fuel as a series of n 1000km shipments plus one 

fractional shipment. Consider a shipment of 2351km, then this would be equivalent to shipping a 

fuel 1000km twice in a row then 351km; and since the efficiency of serial energy conversion 

steps multiply we get: 
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fuelAkmfuelAkmfuelAkmfuelAkm ,351,1000,1000,2351 ηηηη =  

 ( ) 1000/351

,1000,1000,1000 fuelAkmfuelAkmfuelAkm ηηη=  Eq. (35) 

 ( ) 1000/2351

,1000 fuelAkmη=  

and the general case can be easily deduced.  

Distribution Economics 

The cost of distribution contributes a small fraction of the cost of a fuel at the pump, but it is 

variable between the fuels considered in this study. The cost of shipping liquid fuels is 

proportional to the volume which is shipped, i.e.  

 VPTotalCost ondistributi ×=  Eq. (36) 

Where P is the price in dollars per volume, and V is the volume. Since each of the fuels analyzed 

in this study have different volumetric densities and energy densities, the price of shipping fuels 

is not equal on an energy basis. The price of shipping a certain energetic amount of fuel is 

inversely proportional to the volumetric and energy density 

 11$ −−∝







densityE

E
P ρ  Eq. (37) 

Where ρ is the density in units mass over volume, and Edensity is the energy density in units 

energy over mass. Thus, the cost of shipping an energetically equivalent amount of a fuel which 

is not very dense (i.e. small ρ) such as hydrogen, which has a high energy density (by mass), 

costs more than the equivalent amount of diesel fuel, which is both energetically and massively 

dense. Due to this proportionality, on an energy basis, it is more expensive to ship alcohols and 

ethers as compared to synthetic hydrocarbons. Further, shorter chain alcohols are more expensive 

yet due to their even smaller energy density. In Figure 10, the cost of shipping a number of fuels 



 
77 

is plotted as 2007 dollars per gigajoule versus the distance in kilometers. The influence of the 

above proportionality is immediate in terms of the relative cost of shipping different fuels.  

 

Fuel Shipping Cost v Distance (US$2007/GJ v km)
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Figure 10 - Distribution costs adapted from (Takeshita, Yamaji, and Fujii 2006, 285; Takeshita and 

Yamaji 2008, 2773-2784; Vallentin 2008, 3198-3211). 

 

In their study of likely distribution infrastructure for a cellulosic ethanol industry, Morrow et al. 

also estimated the cost of shipping cellulosic ethanol via rail and truck as well. In this thesis the 

reported shipping costs are extrapolated using the proportionality derived above to estimate the 

cost of shipping other alcohols and DME via truck and rail. Morrow et al. have reported a cost of 

~$0.05 per liter for a fuel shipped 1000km outside of the pipeline infrastructure. Additionally, 

the cost of shipping hydrocarbons via pipeline is reported by Morrow et al. as $0.003 per liter 

shipped 1000km; this number is used to estimate the costs of MTG and FTD shipments. 
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End Use Efficiency 

The most common measure of the efficiency of fuel use in an engine is the Brake Specific Fuel 

Consumption (BSFC) which is given by the equation: 

 
P

m
BSFC

f
&

=  Eq. (38) 

where fm&  is the mass-flow rate of fuel delivered to the engine and P is the power output to the 

drive train. This measure of fuel efficiency does not take into account the difference in energy 

content of fuels, and in order to evaluate the first law conversion efficiency, one must include the 

energy density of the fuel. It is standard to use the lower heating value (LHV) fuel. The overall 

tank-to-crank first law energy efficiency is then given by the expression: 
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η  Eq. (39) 

where  

 mtcmfKtoTI ηηηηηη ==−−,  Eq. (40) 

where fη  is the fuel conversion efficiency, cη  is the combustion efficiency, tη  is the thermal 

conversion efficiency, and mη  is the mechanical efficiency. The fuel conversion efficiency is the 

overall thermodynamic efficiency of power delivered to the piston per amount of fuel consumed. 

The combustion efficiency is defined as the fraction of the energy contained in the fuel which is 

released in the combustion process, the remainder of the energy is released as unburned hydro-

carbon emissions and carbon monoxide/hydrogen emissions. The thermal conversion efficiency 

is the ratio of actual power delivered to the piston to the energy released in the combustion 

process. Finally, the mechanical efficiency is the ratio of the power delivered to the crank-shaft 

to the power delivered to the piston, this measure of efficiency accounts for friction losses 

inherent in engines. 
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Each of the fuels examined in this study have their own specific chemical and physical properties 

which affect the combustion characteristics of the fuel and in-turn influence the BSFC and 

overall first law conversion efficiency. These characteristics are examined below and their 

influences on conversion efficiencies are discussed.  

Methanol Use in a Spark Ignition Engine 

Due to the fact that methanol is a liquid at standard conditions, current onboard fuel system can 

be adapted to accept methanol with minimal material changes to avoid corrosion. Also, the great 

increase in flexible fuel vehicles for ethanol usage has increased interest in vehicles which can 

accept alcohol fuels. Though these vehicles are specified for ethanol and gasoline, the 

technology is applicable to methanol-gasoline blends as well as methanol-ethanol-gasoline 

blends requiring only minimal storage and fuel delivery modification (Nichols 2003, 97).  

Because of its superb chemical and physical properties, methanol has been used as a high 

performance spark ignition engine fuel. Methanol was the official fuel of the Indy-Car series 

from 1964 until 2006, when a consortium of ethanol producers influenced the series to change to 

an E98 blend (Green Car Congress 2007b). Neat methanol’s use in spark ignition (SI) engines 

offers a higher knock limit allowing for the use of a higher compression ratio which in turn 

increases the energy conversion efficiency and power density of the engine. Additionally, 

methanol’s high latent heat of vaporization provides for a large amount of charge cooling; thus, 

allowing for further compression. Because of methanol’s charge cooling property the combustion 

temperature in the cylinder is lower than with gasoline, as such NOx formation is lower due to its 

high temperature dependence (Heywood 1988). This favorable property somewhat relaxes the 

efficiency-NOx tradeoff inherent in SI engines allowing methanol engines to operate at 

conditions not available to gasoline engines. 

Methanol can be used as both a blending agent with gasoline or as a neat fuel. Often when short 

chain aliphatic alcohols are considered as transportation fuels there are seen as performance 

enhancing blending components for gasoline rather than as neat fuels; and indeed this is the most 

likely way that alcohols will be used in the near term. As a blending agent, methanol increases 
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the overall fuel mixtures octane rating as well as increases the oxygen content of the fuel, thus 

helping to decreasing the subsequent CO emissions.    

There has been work into radically different alcohol fuel use, as a ‘booster’ for gasoline engines 

(Cohn, Bromberg, and Heywood 2005; Bromberg, Cohn, and Heywood 2006). In this scheme 

the engine regularly runs with a standard gasoline based fuel, which could be blended (E10, 

M10, etc), while methanol or ethanol is supplied via a separate fuel delivery system and a small 

amount is directly injected into the engine under high torque conditions to prevent knock. This 

allows for an increased fuel and carbon efficiency while decreasing the amount of alcohol 

needed. 

Ethanol Use in a Spark Ignition Engine 

Ethanol is a high performance fuel like methanol, due to its high octane number, high latent heat 

of vaporization and good combustion characteristics (Brusstar and Bakenhus 2005). While these 

characteristics are not as pronounced as that of methanol, ethanol has gained the lion’s share of 

the alternative fuel market for reasons other than its favorable physical and chemical properties. 

Ethanol is currently used as a one-to-one gasoline substitute in engines optimized for gasoline 

combustion; and as such, its full potential as an automotive fuel is not being fully realized. 

There is currently much interest in utilizing ethanol more efficiently by taking advantage of its 

unique physical properties. When ethanol is utilized in a port injection spark ignition engine, 

ethanol’s RON and MON have been recorded to be 108.6 and 89.7 respectively, yielding an 

octane number of 99.2 (Hunwartzen 1982, 1-6). Because of this high octane number, the 

compression ratio of an engine using ethanol can be increased, thus improving the energy 

conversion efficiency. This has been confirmed by a number of studies in particular by Brusstar 

and Bakenhus (Brusstar and Bakenhus 2005). In their study, Brusstar and Bakenhus find that by 

utilizing through the increase of compression ratio, the higher octane number of ethanol (and 

methanol) one can achieve thermal efficiencies of 40% using high blends of alcohol with 

gasoline in a port injected engine. 
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The beneficial properties of ethanol are better utilized by injecting the fuel directly into the 

engine. By using direct injection the high latent heat of vaporization allows for a large drop in 

the initial temperature, thus decreasing the peak pressure and temperature allowing for increased 

compression ratio and increased thermal efficiency. This effect has been demonstrated by 

Marriott et al. on a spark ignition direct injection (SIDI) engine using ethanol/gasoline mixtures 

from 0%-85% ethanol. Their findings suggest that 3-6% thermal efficiency improvements are 

possible over the optimized gasoline baseline, along with a 13% – 15% increase in specific 

output (Power/Volume of displacement) (Marriott et al. 2008). 

As with methanol, the concept of using a boosted engine can also be achieved with ethanol. 

Cohn et al., has reported efficiency gains of 30% over a gasoline fueled engine using a direct 

injected engine with ethanol boosting capability (Cohn, Bromberg, and Heywood 2005). 

Additionally, utilizing a singly fuel turbo-charged direct injection engine fuel with methanol or 

ethanol, an overall efficiency gain of 30-35% has been reported by Bromberg et al. over a port 

injected gasoline engine. Further, it was reported that with the on-board reformation of methanol 

to hydrogen an additional efficiency gain of 10% is possible at low load operation (Bromberg 

and Cohn 2008). 

Mixed Alcohol Use in a Spark Ignition Engine 

Higher alcohols also have high octane numbers and heats of vaporization; however these 

properties decrease as the size of the alcohol grows. This trend has been demonstrated in a study 

by Gautam and Martin (Gautam and Martin II 2000, 497-511). In their study, Gautam and Martin 

assessed the octane number of different alcohol gasoline blends. For 10% mixed-

alcohol/gasoline blends, the ratios of alcohols were adjusted and the combustion properties and 

octane numbers were determined.  
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Dependence of Antiknock Index on Oxygen content in fuel (from mixed alcohol blend of 10% 

volume)
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Figure 11 - Dependence of AKI (Octane Number) on the oxygen content of 10% mixed-alcohol/gasoline 

blended fuel adapted from (Gautam and Martin II 2000, 497-511). 

 

It can be seen in Figure 11 and Figure 12 that the octane number of the fuels depends on the total 

oxygen content. As such, it is a function of both the total amount of alcohol and the oxygen 

content of the mixed-alcohol blended with the fuel. From the second figure, it is apparent that as 

the average size of the blending alcohol decreases toward methanol the octane number increases, 

as expected. 
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RON+MON/2 vs. Average Carbon Chain Length of 10%Vol Alcohol Blend with UTG 96 
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Figure 12 - Dependence of AKI (ON) on average alcohol carbon chain length of mixed alcohol in a 10% 

mixed-alcohol/gasoline blended fuel adapted from (Gautam and Martin II 2000, 497-511). 

 
 

While the favorable characteristics inherent in short chain alcohols decrease as the size increases 

(to propanol, butanol, pentanol, et cetera); other favorable properties emerge which shed a more 

favorable light on the use of higher alcohols for transportation. Unlike methanol and ethanol 

which are totally miscible with water and are highly corrosive relative to petroleum products, 

higher alcohols are less miscible with water and are less polar, therefore decreasing their 

corrosive nature. Thus, higher alcohol fuels (propanol and higher) could be easily adapted for 

onboard storage and use with little or no modification. Additionally, higher alcohols act as a co-

solvent decreasing the likelihood of phase separation of the shorter alcohols from hydrocarbons 

in wet conditions. Thus, while the combustion characteristics of higher alcohols are more 

comparable to that of gasoline, their use can enable further adaptation of methanol and ethanol in 

engines allowing for further capitalization on their positive properties.  
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MTG Gasoline Use in a Spark Ignition Engine 

MTG gasoline can be considered a one-to-one substitute for today’s high-grade unleaded 

gasoline. The MTG synthetic gasoline product can be blended at any proportion with petroleum 

derived gasoline with no need effect on engine performance. The thermal efficiency of MTG 

utilization has been shown to be equivalent to that of unleaded gasoline in a port injected engine 

(Freeman, Roby, and Chui 1982, 89-100; Fitch and Lee 1981, 341-355). Because of its high 

octane number of >92, it could more efficiently be utilized in a direct injected turbo-charged 

engine as described for the use of ethanol and methanol (Heinritz-Adrian et al. 2007).  

Fischer-Tröpsch Diesel Use in a Compression Ignition Engine 

Fischer-Tröpsch Diesel is perhaps the most studied and fully developed alternative fuel because 

of the number of properties which make it an excellent fuel for compression ignition engines. 

Fischer-Tröpsch diesel, due to its synthesis method, is composed primarily of strait-chain alkanes 

and contains virtually no sulfur. As such, it is a clean burning fuel that is optimal for 

compression ignition. Fischer-Tröpsch diesel’s cetane number depends on the method of 

production, but ranges from 64-75 compared to 40-48 for that of EPA 2-D certification Diesel 

fuel (Stavinoha et al. 2000). Due to the low sulfur and aromatic content Fischer-Tröpsch diesel is 

a cleaner burning fuel than petroleum derived diesel’s which allows for a more efficient 

utilization of the fuel because less energy is required to run after-treatment of the fuel.  

In engine testing, Fischer-Tröpsch Diesel has been shown to allow for modest thermal efficiency 

gains. In a one cylinder CFR compression ignition engine operating under high load conditions 

Cowart et al. found that Fischer-Tröpsch Diesel showed modest efficiency gains at early 

injection timing (25 deg BTC) however at normal injection timing the efficiency gain was 

nominal (Cowart et al. 2008). Huang et al., on the other hand found an average thermal 

efficiency increase of 4.5 over diesel fuel at all of their test conditions (Huang, Wang, and Zhou 

2008, 261-267). Huang et al. explained their results as resulting from the improved combustion 

process inherent to Fischer-Tröpsch Diesel due to its composition and lower boiling point. The 

discrepancy between these two results can probably be explained by the fact that Cowart et al. 

were testing only high-load conditions, while Huang et al. considered many mid to low load 

conditions.  
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Dimethyl Ether Use in a Compression Ignition Engine 

Currently, there is not a large fleet of vehicles able to absorb DME fuel into the market. Due to 

dimethyl ether’s physical properties on board high pressure storage technology and advanced 

engine technology is required. This technology currently exists and is used in fleet applications 

for CNG, LPG and LNG vehicles. These vehicles do not have widespread use, however. In the 

fiscal year 2006, of the 348,959 thousand GGE of fuel consumed by federal government fleets, 

CNG, LPG and LNG accounted for only 807, 105 and 90 thousand GGE respectively (Davis and 

Diegel 2007). 

Dimethyl ether has been studied as an alternative fuel for use in compression ignition engines 

due to its excellent auto-combustion properties. Dimethyl ether has a higher cetane number than 

diesel which has been found to result in a faster ignition, thus allowing for retarded injection 

timing. Also, dimethyl ether fueled engines have been found to have a higher indicated mean 

effective pressure (IMEP) than diesel signifying higher thermal efficiency (Kim et al. 2008, 

2779-2786).  

Dimethyl ether/biodiesel blends have also been investigated. It has been found that increased 

biodiesel proportion increases the power density of the engine. Additionally, a high proportion of 

dimethyl ether allows for better cold start characteristics in a compression ignition engine (Ying 

and Longbao 2007, 1454-1458). 

The combustion of dimethyl ether in compression ignition engines has been found to provide a 

moderate thermal efficiency gain over petroleum derived diesel fuel. In a single cylinder 11 kW 

engine with a compression ratio of 18.4, Wang et al. demonstrated that DME provided a 3% 

higher thermal efficiency than that of diesel fuel under comparable conditions (Wang et al. 2000, 

101-106). Also, Longbao et al. showed a 3% thermal efficiency increase over that of diesel fuel 

in their study of DME use in a direct-injection light-duty compression ignition engine (Longbao 

et al. 1999). 
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Summary of Spark Ignition Versus Compression Ignition Fuels 

Using today’s fuels and engine technology, Compression Ignition engines offer an efficiency 

improvement of 15-30 percent over Spark Ignition engines (Heywood 1988). However, using 

advanced engine technologies, with alcohol fuels, spark ignition engines can approach diesel 

engine efficiencies (Bromberg and Cohn 2009). Further, these engines can be operated at 

stoichiometric, thus allowing the use of the 3-way catalyst, eliminating the need for expensive 

after treatment technologies. 

End Use Economics 

Each of the fuels considered in this thesis can utilize today’s automotive technology with only 

minor adjustments being required. In order for alcoholic fuels to be accommodated for use in an 

automobile, only minor material changes are required to prevent corrosive degradation due to the 

presence of alcohol in the fuel system. Today, the marginal cost of producing a flex-fuel capable 

vehicle is on the order of $100 per vehicle. Additionally further efficiency optimization, such as 

increasing the compression ratio, can be performed at minimal cost.  

End Use Regulation and Policy 

Perhaps the point at which policy most strongly influences the adoption of a new fuel is through 

the regulation of local air pollutants via the Clean Air Act. The Clean Air Act influences both 

automotive pollution control technologies and the make-up of transportation fuels sold in the US. 

If an alternative transportation fuel being considered performs worse than the petroleum derived 

fuel which it is proposed to displace, then its adoption is highly unlikely since there already exist 

many technological challenges to bringing petroleum derived fuels into compliance.  In this 

section the emissions characteristics of each of the fuels considered in this thesis are analyzed 

through the lens of their performance with regards to the criteria pollutants: NOx, CO2, and 

particulates.  
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Methanol and Ethanol Emissions 

One of the reasons methanol and ethanol have been considered as an alternative transportation 

fuel are their low emissions of criteria pollutants compared to gasoline. Early studies indicated 

that due to methanol’s charge cooling properties, simple structure and high oxygen content its 

emissions of CO and NOx were much lower than gasoline, as well as nearly nonexistent aromatic 

emissions for neat methanol (Yanju et al. 2008, 1254-1259). These studies, however, raised the 

concern of other hazardous emissions in the form of unburned methanol (UBM) and 

formaldehyde. It has been found that these emissions are controlled by kinetic factors and are 

readily reduced by running the engine on the lean side (which is possible due to methanol’s 

decreased NOx formation) (Sperling and DeLuchi 1989, 469-482; Okada, Koda, and Akita 

1985). Similarly, ethanol also decreases CO and NOx emissions drastically as compared to 

gasoline yet there are concerns about unburned ethanol (UBE) and acetaldehyde emissions (He 

et al. 2003, 949-957). 

The effect of methanol’s use as a blend component has also been studied recently. It has been 

found that blending methanol in gasoline decreased CO emissions proportionally with methanol 

ratio reaching a 30% reduction at and 85% methanol blend (M85) where the air to fuel ratio was 

constant. Also NOx emissions were reduced by 80% with M85, while showing no significant 

reduction for lower blends (M10, M20) (Yanju et al. 2008, 1254-1259). Since this experiment 

did not adjust the air to fuel ratio to maintain a stoichiometric combustion the NOx emissions 

reductions are probably less than they would be in an engine optimized for the blended fuel 

combustion. As a blending component, ethanol also has been shown to reduce CO emissions by 

~30% and NOx emissions by 33%; however other unregulated emissions such as acetaldehyde 

have been shown to be increased by more than 3 times at a 30% ethanol blend by volume (He et 

al. 2003, 949-957).  

Mixed Alcohol Emissions 

Similarly to the decreasing performance and efficiency effects of alcohols as their chain length is 

increased, the emissions characteristics similarly fall off as chain length is increased. As such, 

low NOx reductions that characterize methanol and ethanol use are much less apparent with 

higher alcohols since there is less charge cooling and therefore less of a reduction of peak 



 
88 

pressure and temperature. Also, higher carbon monoxide emissions occur, since higher alcohols 

have lower oxygen content by mass. Therefore, in mixed alcohols the emissions reductions will 

be characterized primarily by the methanol and ethanol content of the fuel, while the content of 

propanol+ will be marginal (Gautam and Martin II 2000, 497-511).  

The one major exception to this trend is the decrease in volatile organic compound emissions due 

to the lower vapor pressure of higher alcohols dissolved in gasoline. As such the use of higher 

alcohols as a co-solvent for the short chain methanol and ethanol can help to decrease the 

unwanted emissions associated with methanol and ethanol.  

MTG Gasoline Emissions 

MTG gasoline has been engineered to perform nearly equivalently to petroleum derived 

gasoline. As such, its chemical and physical properties are such that its emissions are nearly 

equivalent to that of petroleum derived gasoline with marginal differences. The one major 

difference between MTG gasoline and petroleum derived gasoline is the higher volumetric 

aromatic content of MTG gasoline of 25% - 35% (Fitch and Lee 1981, 341-355). While this 

content leads to increased octane number and improved combustion properties, it also allows for 

increased unburned hydrocarbon emissions along with marginally higher NOx emissions 

(Freeman, Roby, and Chui 1982, 89-100). However, for all practical purposes the tank-to-crank 

performance and emissions of MTG are nearly equivalent to that of petroleum derived gasoline.  

Fischer-Tröpsch Diesel Emissions 

Due to its chemical and physical properties Fischer-Tröpsch Diesel is a clean burning substitute 

for petroleum derived diesel fuel. The three properties which are of primary benefit are: (1) near 

zero sulfur content, (2) near zero aromatic content, (3) high cetane number. 

The catalysts used to produce Fischer-Tröpsch Diesel are susceptible to poisoning and 

degradation due to the sulfur content of feedstocks used for the production of syngas. As such, 

the sulfur is necessarily removed from the syngas before the catalytic fuel production (Probstein 

and Hicks 1982). Because of this requirement the sulfur content of Fischer-Tröpsch Diesel is 

virtually zero (Stavinoha et al. 2000). A number of studies have correlated the presence of sulfur 
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in diesel fuel with increased particulate emissions overall operating conditions. In a compression 

ignition engine fueled with Fischer-Tröpsch Diesel, specific emissions of particulate matter have 

been found to be reduced by 30% - 60% at low and medium load utilizing stock timing and EGR 

(Acar 2005). By optimizing timing, the specific emission of particulate matter has been shown to 

be 60% - 90% less than that of EPA 2-D certification diesel (Cowart et al. 2008).  

The second beneficial artifact of the nature of the Fischer-Tröpsch Catalyst is the fact that the 

fuel produced is mostly highly saturated alkanes with no aromatic content. The presence of 

aromatics has been shown to lead to increased NOx emissions and a decreased H/C ratio which 

increases the tank-to-crank CO2 emissions (Cowart et al. 2008). It has been argued that the 

primary reason for aromatic content influence on NOx emissions is the decreased local adiabatic 

temperature during combustion (Huang, Wang, and Zhou 2008, 261-267).  At low load utilizing 

stock timing and EGR NOx emissions were reduced by approximately 20% by using Fischer-

Tröpsch Diesel (Acar 2005). At high-load conditions Cowart et al. recorded Nox reduction on the 

order of 50% - 60% of EPA 2-D certification diesel (Cowart et al. 2008).  

Finally, because of Fischer-Tröpsch Diesel’s chemical make-up, its cetane number has been 

demonstrated to be much higher than that of petroleum-derived diesel fuel. The cetane number of 

Fischer-Tröpsch Diesel is on the order of 64-65 versus 40-48 for EPA 2-D certification diesel. 

High cetane numbers have been shown to lead to lower NOx emissions (Heywood 1988). 

In addition to PM and NOx emission reductions, the emission of carbon monoxide (CO) and 

carbon dioxide (CO2) have also been demonstrated to be less on a tank-to-crank basis for engines 

utilizing Fischer-Tröpsch Diesel. These reductions are due to the highly-saturated nature of the 

Fischer-Tröpsch fuel which minimizes carbon-carbon bonds and maximizes the H/C ratio. Thus, 

there is less carbon consumed per unit of energy produced thus decreasing the overall carbon-

based emissions. Huang et al. recorded CO emissions reductions of 40% - 60% at high load 

conditions, while marginal improvements at all other operation conditions were observed 

(Huang, Wang, and Zhou 2008, 261-267). Specific CO2 emissions have been found to be 10% - 

20% less than that of EPA 2-D certification diesel (Cowart et al. 2008). 
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DME Emissions 

Due to dimethyl ether’s simple molecular structure it exhibits no particulate matter and low 

carbon monoxide emissions. Additionally, dimethyl ether can achieve lower overall NOx 

emissions compared to diesel due to its shorter ignition delay (Kim et al. 2008, 2779-2786). 

Unburned dimethyl ether emissions are of little concern, because dimethyl ether is easily broken 

down in the environment (Semelsberger, Borup, and Greene 2006, 497-511).  

Dimethyl ether/biodiesel blends have been found to have reduced emissions compared to neat 

biodiesel. With blends of less than 6% biodiesel, virtually no smoke emission is recorded. 

Additionally, the blended dimethyl ether has been shown to decrease CO and NOx emissions. 

Systemic Environmental and Toxicological Considerations 

Beyond the efficiency, integrability, economics and end-use emissions of the fuels there also 

exists other concerns associated with each of the fuels discussed. One issue which can influence 

the adoption of a fuel is the toxicological properties of the fuel along with the risk associated 

with a catastrophic spill into the environment. Below these issues are summarized and the further 

challenge of public perception of these risks is discussed. 

Toxicological Concerns 

When considering the acceptability of an alternative transportation fuel, toxicity is a primary 

criterion that the fuel must meet in order to be considered for large scale use (Short 1994, 215). 

Since gasoline and diesel are currently used worldwide as the standard transportation fuel, 

alternative fuels should have toxicity comparable to or better than these two fuels.  

The most common measurement of toxicity is the median lethal dose, LD50. The median lethal 

dose is defined as the dose at which 50% of the test population is killed. For most substances 

there are three primary methods of dosing: oral consumption, inhalation and dermal application. 

In oral testing, populations of test animals (commonly mice and rats) ingest the chemical and are 

observed over the subsequent days for physiological effects. To investigate the inhalation effects 

populations of test animals (again mice and rats) are exposed to mixed air and vapor of the 



 
91 

compound over a specific time period. Similarly for dermal effects, the animal, most commonly 

a rabbit, is exposed to a certain concentration of the compound over a specific time period. Often 

different times of exposures are often used by different research groups; however, according to 

Haber’s Law, if C1t1=C2t2, where t is the time of exposure and C is the concentration then the 

two dose schemes are equivalent. Haber’s Law can be used to normalize different results for 

different fuels tested at different concentrations and times. 

It can be inferred from Figure 13 that the oral toxicity of methanol and ethanol and propanol are 

comparable to gasoline and diesel with methanol and ethanol being less toxic. Only butanol is 

found to be more toxic. Another metric to compare these fuels to is NaCl (table salt), which the 

FDA has labeled as a safe food additive, along with sugar. Note that all of the alcoholic fuels as 

well as gasoline and diesel are at parity with, or less toxic than, table salt.  

Methanol has hit major resistance, more than most fuels, due to claims that it is unsafe for public 

utilization due to toxicological concerns. The issue of toxicity is often overstated, however, since 

methanol’s toxicity is on the same order as other fuels being considered as gasoline and diesel 

substitutes. Further, methanol has been widely used as windshield wiper fluid without any major 

concern. One must be careful, however, to note the difference between mortality effects and 

morbidity effects of fuels. The morbidity effects of a compound are the non-lethal negative 

health effects caused by exposure, inhalation or injection of the compound. The LD50 values of 

fuels measure the mortality effects, while morbidity is harder to quantify in a standardized way 

since morbidity is not an absolute like mortality. Methanol, for example, can cause blindness 

when a relatively small amount is ingested, while much more is needed to cause death. There are 

also high morbidity risks associated with gasoline and its components due to the carcinogenic 

nature of aromatic hydrocarbons, however, due to the long latency periods associated with 

cancer the public perception is somewhat lessened. 



 
92 

Oral LD50 Values

0

2000

4000

6000

8000

10000

12000

14000

16000

MeOH EtOH PrOH BuOH DME Gasoline Diesel NaCl

Compounds

D
o

s
e

: 
m

g
 c

o
m

p
o

u
n

d
 p

e
r 

k
g

 b
o

d
y

 

w
e

ig
h

t
Rat

Mouse

Rabbit

man

 
Figure 13 - Oral LD50 values of fuels and common substances. 

One of the major safety concerns with fuels is the possibility of consumers inhaling vapors that 

are released during refueling. Methanol, ethanol and propanol all have a much higher inhalation 

LD50 than gasoline (see Figure 14). DME is at parity with gasoline. 
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Figure 14 - Inhalation LD50 values of fuels and common substances. 
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Dermal absorption of a fuel is a concern because of the chance of people spilling fuel onto one’s 

person while refueling. Again, the alternative fuels are at parity with, or less toxic than, gasoline 

and diesel fuel, with DME this would not be a concern due to its gaseous state.  
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Figure 15 - Dermal LD50 values of fuels and common substances. 

 

The toxicological hazards associated with synthetic hydrocarbons are very similar to their 

petroleum derived counterparts due to the fact that the goal of producing these fuels is to make a 

similar compound to what is currently used. MTG is slightly more toxic than its petroleum 

derived counterpart due to its increased aromatic content (Fitch and Lee 1981, 341-355; Chang 

1994, 133). Additionally, the toxicity of Fischer-Tröpsch Diesel is somewhat less as compared to 

petrol-diesel due to its lower amount of aromatic content. (Probstein and Hicks 1982; Hunt 

1983). 

Ecological Effects 

One reason that alcoholic fuels like methanol and ethanol are much more environmentally 

benign than gasoline is because of the lifetimes of the fuels in the environment. Unlike the 

alcohols which are easily used as growth substrate by micro organisms, gasoline is composed of 
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a whole host of compounds including some highly-toxic long-lived compounds such as benzene, 

toluene and trimethylbenzene. 

In Table 14 the half lives of some common fuel components are tabulated. These are adapted 

from the “Handbook of Environmental Degradation Rates” where the half lives are estimated 

from predominant reaction rates in different media, from bio-degradation in the soil to photo-

degradation in the air (Howard 1991). In Figure 16 the average half lives of the fuels are plotted 

by medium. 

 Methanol Ethanol 1-Butanol Benzene Toluene 
Trimethyl-
benzene 

Soil 1-7 days 2.6-24 hrs 1-7 days 5-16 days 4-22 days 7-28 days 

Air 3-30 days .5-5.1 days .4-3.7 days 2-21 days 0.4-4.3 days 1.6-16 hrs 
Surface 
Water 

1-7 days 6.5-26 hrs 1-7 days 5-16 days 4-22 days 7-28 days 

Ground 
Water 

1-7 days .5-2.2 days 2-54 days 10-720 days 7-28 days 14-56 day 

Table 14 - Half lives of common fuel components, adapted from (Howard 1991). 

 

Compared to crude oil and gasoline methanol is much more ecologically benign and is unlikely 

to cause a major environmental catastrophe in the event of a large scale spill; this is due to 

methanol’s miscibility with water and many micro organisms’ ability to metabolize methanol. 

Since methanol is totally miscible in water it will quickly dissipate when spilled and reach a 

concentration where organisms can begin to naturally digest the fuel. Models indicate that if 

10,000 tons of methanol were spilled into open sea it would take just one hour for the methanol 

concentration to drop below 0.36%, at which point biodegradation can occur (Olah, Goeppert, 

and Prakash 2006).  
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Figure 16 - Half lives of common fuel components in certain media. 

 

Currently, the EPA regulates methanol through its inclusion in the Community Right to Know 

list and the TSCA Inventory. It is recommended that fuel methanol, as with all other fuels, 

should be stored in double walled underground tanks in order to avoid spillage into the 

environment or drinking water sources.  

Compared to gasoline, methanol is of relatively low toxicity to aquatic and terrestrial organisms 

and environmental exposure is not likely to be of serious consequence under normal 

circumstances (Olah, Goeppert, and Prakash 2006). According to the International Programme 

on Chemical Safety of the World Health Organization (WHO) the LC50 values in aquatic 

organisms range from 1300 to 15900 mg/liter for invertebrates (over 48 and 96 hr exposures), 

and 13000 to 29000 mg/liter for fish (over 96 hour exposure) (WHO 1997). Even in the event of 

a large scale spill these times of exposure are unlikely to occur due to the rate at which methanol 

dissipates. 
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Methanol, due to its simple molecular structure and high energy content, is readily used by 

microorganisms as a growth substrate in both aerobic and anaerobic conditions, and is used as a 

process accelerator for anaerobic bacteria in waste water treatment. In the event of a major 

methanol spill, the micro organisms in the immediate area would be greatly affected due to a 

spike in concentration of the alcohol. However within a very short time span bacteria and fungi 

would return in order to degrade the residual alcohol with higher organisms following shortly 

thereafter (Mills and Ecklund 1987, 47-80). 

When MTBE was banned as a fuel additive, concerns for both the environment and public health 

effects were cited as reasons (EIA 2006). The main concern with MTBE is its ability to infiltrate 

ground water sources used for drinking. In a 1997 interagency governmental study, it was 

reported that of 1,516 drinking water wells in 33 states 5% contained a detectable amount of 

MTBE (NSTC 1997).Of the 76 wells in which MTBE was detected, only 7 had concentrations 

that exceeded 10 µg/L. The draft drinking-water lifetime health advisory range for MTBE is 20 

µg/L - 200 µg/L. Even though MTBE is rarely found in concentrations which can cause a 

significant health risk, there is large public awareness and opposition to it due its strong odor and 

taste, which falls in the lifetime health advisory range. Odor thresholds of 95 µg/L and 45 µg/L 

for MTBE have been reported by Ventrano, 1993 and TRC Environmental Corporation, 1994 

respectively. Taste thresholds for MTBE of 30 µg/L and 134 µg/L were reported as well (TRC 

Environmental Corporation 1994; Ventrano 1993).  

Due to MTBE’s physical and chemical characteristics, it persists in the environment much longer 

than alcohols, and travels much further from spill sites than long lived species in gasoline such as 

benzene. MTBE travels further than benzene because it is much more soluble in water and can 

easily travel in this manner. Additionally, because of MTBE’s solubility and inability to 

biodegrade it is much harder and more costly to clean up after a spill. 

 MTBE 

Soil 4 weeks - 6 months 

Air 20.7 hours - 11 days 

Surface Water 4 weeks - 6 months 

Ground Water 8 weeks - 12 months 

Table 15 - Half-life of MTBE in various environmental media. 
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Unlike Methanol, which is highly miscible with water and is in the liquid phase at standard 

conditions, dimethyl ether quickly dissipates into the atmosphere when introduced into the 

environment. Thus, there is little concern for adverse ecological effects in the event of a large 

scale DME spill. Further, whereas in the event of a CNG spill where again there would be little 

immediate ecological effects due to quick dissipation into the atmosphere, because of methane’s 

high greenhouse gas equivalence to CO2 could pose a greater ecological effect than DME 

released into the atmosphere. Where releasing 10,000 GGE of CNG would be equivalent 

releasing 625 metric tons of CO2 into the environment, releasing the equivalent amount of DME 

would result in only of 84 metric tons of CO2. This is due to the fact that methane is a more 

potent greenhouse gas than carbon dioxide by a factor of 25 over a 100 year time and has a 

lifespan of 8.4 year life in the atmosphere before decaying into carbon dioxide and water (IPCC 

2001). Dimethyl ether, on the other hand is not a greenhouse gas and decays quickly into carbon 

dioxide and water.  

Vapor Pressure and Volatile Organic Compounds 

When the environmental impacts of oxygenated fuels are discussed, often concern about 

increased vapor pressure and volatile organic compound release at the pump and from fuel tanks 

is cited as a concern. While this is true for low concentration mixtures of alcohols in 

reformulated gasoline such as M10 or E20, higher alcohol concentrations actually decrease the 

overall volatility of the mixture. In binary gasoline/alcohol mixtures, the addition of a small 

amount of short chain aliphatic alcohols (i.e. methanol and ethanol) greatly increases the 

volatility of the mixture, which can increase the amount of organic compounds released at the 

pump on hot days. The vapor pressure reaches a maximum, for these systems, and actually 

decreases below the vapor pressure of the pure reformulated gasoline at a certain concentration 

of alcohol. Thus, for fuels such as E85 or M100, there is actually less concern for VOC release 

from fueling stations.  

The vapor pressure behavior of the binary gasoline/alcohol mixtures have been verified 

theoretically and experimentally. It has been found that the maximum vapor pressure increase 

occurred at 10% volume for each methanol, ethanol and propanol with vapor pressure increases 

of 22.1, 7, and 3.7 kPa respectively. The corresponding mole fractions are listed in table 3. The 
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point at which the mixtures vapor pressure was equivalent to that of pure gasoline varied for each 

fuel, 82.4% for methanol, 46.5% for ethanol and 29.3% for propanol. Butanol was measured in a 

mass basis because it is solid at room temperature, and thus neat fuel could not be analyzed 

(Pumphrey, Brand, and Scheller 2000, 1405-1411). 

Fuel   Vapor Pressure change from gasoline (kPa) Alcohol Concentration Mol % 

  Maximum 22.07 27.37 

Methanol Equivalence 0.00 94.06 

  Neat -28.21 100.00 

  Maximum 6.97 20.61 

Ethanol Equivalence 0.00 66.92 

  Neat -44.35 100.00 

  Maximum 3.72 16.53 

i-Propanol Equivalence 0.00 42.44 

  Neat -43.32 100.00 

  Maximum 1.59 11.63 

t-Butanol Equivalence 0.00 23.60 

  Neat N/A N/A 

Table 16 - Vapor pressure change from pure gasoline for alcohol-gasoline mixtures. Adapted from 
(Pumphrey, Brand, and Scheller 2000, 1405-1411). 

 

One option for decreasing the vapor pressure of gasoline-methanol and gasoline-ethanol 

mixtures is the use of a cosolvent such as butanol. Butanol (and other longer alcohols) has the 

distinct advantage of having a larger non-polar chain attached to an alcohol group. Thus, it can 

emulate an emulsifier by giving methanol and ethanol a more polar medium (the alcohol group) 

as a solvent, while the non-polar chain blends with the non-polar gasoline components. Beyond 

decreasing the vapor pressure of the mixture, the use of a cosolvent also decreases the likelihood 

of phase separation and thus decreasing the amount of water leeching due to polar fuels like 

methanol and ethanol. 
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CHAPTER 5: RESULTS AND DISCUSSION 

In Chapter 4 the systematic analysis of thermo-chemically processed cellulosic biofuels was 

detailed. In this chapter the results are summarized and discussed. Additionally, the current 

policy landscape affecting the introduction of alternative transportation fuels is analyzed. 

Summary of System Analysis 

The system analysis performed in Chapter 4 consisted of primarily of a first law analysis of the 

energy conversion steps along with an evaluation of the economics of production and 

distribution of these fuels. Further, other systemic considerations where analyzed including the 

integrability of the fuels into the current distribution infrastructure, the end-use emissions 

characteristics of the fuels, and the toxicity and environmental risk associated with their 

adoption. Below these results are summarized and discussed. 

It is immediately noticeable that no fuel is the top performer when each criterion is considered, 

thus thermochemical biofuel production does not have a clear “silver bullet” fuel. As such, there 

exist many technical and political trade-offs associated with the large scale adoption of one fuel 

over another. However it is clear that the adoption of thermochemical production of biofuels 

provides more fuel options and potential trade-offs versus the current trajectory in the biofuel 

industry where enzymatic production of biofuels is given preference both explicitly and 

implicitly through governmental policies.  

System Efficiency 

In Chapter 4 the first law thermodynamic efficiency of each of the predominant energy 

conversion steps for thermochemical cellulosic biofuel utilization were analyzed. Additionally, 

Monte Carlo analysis has been used to arrive at an estimate of both Biomass-to-Wheels (BtW) 

and Biomass-to-Tank (BtT) utilization efficiencies.  In Table 17 the resulting BtW utilization 

efficiencies are summarized for each fuel utilizing different distribution methods.   
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 Truck Rail Pipeline 

Methanol 19.6 ± 1.8% 19.9 ± 1.8% 20.1 ± 1.8% 

Ethanol 14.6 ± 3.3% 14.8 ± 1.4% 14.9 ± 3.3% 

Mixed Alcohol 17.4 ± 0.6% 17.6 ± 0.6% 17.7 ± 0.6% 

MTG 9.8 ± 0.5% 9.8 ± 0.5% 9.9 ± 0.6% 

DME 23.0 ± 1.8% 23.4 ± 1.8% 23.5 ± 1.8% 

FT Diesel 18.0 ± 2.4% 18.2 ± 2.4% 18.3 ± 2.4% 

Table 17 – Biomass-to-Wheel utilization efficiency of fuels plus or minus 3 standard deviations utilizing 
different distribution systems. These efficiencies are resultant from the consideration of current end-use 
technology. The highlighted efficiency values indicate that these values are unattainable due to current 

integrability limitations.  

 

In Table 17 each of the average system efficiency is given plus or minus three times the resultant 

standard deviation (i.e. σ3±x ). While it is apparent that for each of the fuels the most efficient 

way to transport them is via pipeline, it is not feasible to do so as will be discussed in the section 

on integrability below.  

Biomass-to-Wheel Efficiency utilizing best possible distribution method for each fuel
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Figure 17 - Plot of the Biomass-to-Wheel results in Table 17. The averages and standard deviations 

resultant from Monte Carlo analyses are used to generate normal distributions for plotting. 

 

In Figure 17 the BtW efficiencies are plotted using normal distributions generated from the 

resultant averages and standard deviations from the Monte Carlo Analyses. It is apparent in this 
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plot that, while each fuel has a distinct average efficiency, due to the uncertainty inherent in this 

assessment (due to the fact that there are currently no full scale plants selling fuels into the 

market) one cannot generate a definitive ranking of these fuel’s likely system efficiencies. For 

example, it cannot be determined whether mixed alcohols will be more or less efficiently utilized 

than Fischer-Tröpsch diesel, nor can one say for certain whether methanol will be more 

efficiently used than both of these. From this plot we can derive the more general ranking that 

DME is most likely to be the most efficiently utilized fuel followed by Fischer-Tröpsch Diesel, 

methanol, and mixed alcohols, then ethanol, and finally MTG synthetic gasoline.  

 Truck Rail Pipeline 

Methanol 54.4 ± 4.8% 55.4 ± 4.9% 55.9 ± 4.9% 

Ethanol 44.3 ± 10.2% 44.9 ± 10.2% 45.1 ± 10.3% 

Mixed Alcohol 56.1 ± 1.5% 56.8 ± 1.5% 57.2 ± 1.5% 

MTG 32.6 ± 1.8% 32.9 ± 1.8% 33.1 ± 1.8% 

DME 53.5 ± 4.2% 54.4 ± 4.5% 54.8 ± 4.5% 

FT Diesel 45.1 ± 6.0% 45.5 ± 6.0% 45.7 ± 6.1% 

Table 18 – Biomass-to-Tank utilization efficiency of fuels plus or minus 3 standard deviations. The 
highlighted efficiency values indicate that these values are unattainable due to current integrability 

limitations. 

 

In Table 18 the BtT utilization efficiency of each of the fuels is summarized as in Table 17. Here 

only the production and distribution efficiencies are taken into consideration. The most 

noticeable difference in results is the downward shift in the system efficiencies of the CI fuels 

relative to the SI fuels. This happens because the end-use efficiency, for which CI fuels have an 

advantage, is not included in the system efficiency calculation. While this system calculation is 

incomplete since it doesn’t include the end-use efficiency, the ‘end’ of this system calculation 

more accurately reflects the information used in today’s transportation fuel market. This system 

efficiency reflects the efficiency that is implicitly used to calculate the at-the-pump price for 

fuels, and as such is what is used by consumers to decide what fuel to purchase. Transportation 

fuels are sold today to consumers who make their purchase under imperfect information, 

consumers over-value the at-the-pump price of the fuel and generally don’t calculate the impact 

that the end-use efficiency will have on their total fuel-costs. As such, the BtT utilization 

efficiency is a valuable metric to use to compare fuels since currently it is their at-the-pump price 

which matters most to consumers. 
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Biomass-to-Tank Efficiency utilizing best distribution method for each fuel
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Figure 18 - The Biomass to Tank utilization efficiencies are plotted as normal distributions utilizing the 

averages and standard deviations derived from Monte Carlo analysis. 

 

In Figure 18 the BtT efficiencies of the fuels are plotted as normal distributions. As above with 

the BtW utilization efficiencies, it is readily noticeable in this plot that, due to uncertainty, we 

cannot accurately predict whether certain fuels will be produced and distributed more efficiently 

than others. For example the higher average efficiency of DME versus methanol is statistically 

insignificant. Whether DME would be more efficiently brought to the pump than methanol is 

unknown until plants are actually built. A general trend that can be drawn from this plot, 

however is that Mixed Alcohols, DME and Methanol are most likely to be the most efficient, 

followed by Ethanol and Fischer-Tröpsch Diesel, and lastly MTG is the least efficient.  

 

Economics 

Under the current policy scenario the most important metric by which a fuel’s viability is 

decided is by its economics. In the case of transportation fuels, the costs of greatest importance 

are the cost of production and delivery to the pump. This is the case since these are the costs that 

directly influence the price at the pump, and hence the fuels ability to compete with petroleum 
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derived fuels. The cost of production is by far the larger component of the total cost of delivered 

fuel, and as such, is the key to a fuel’s viability. In Table 19 estimates of the cost of production 

of fuels on an energy basis are summarized from a number of studies that have been performed 

over the past two decades of fuels produced via gasification. Each of the prices quoted are given 

in 2007 dollars (2007$). While many of the studies provided a range for their cost estimates there 

were an equal number that merely gave point estimates, these are quoted below with a question 

mark in the high column. Likely it is the case that these point estimates are low ball estimates 

since many persons working on such studies may have a bias for the particular fuel that they are 

studying. 

Cost of Production ($/GJ)  

fuel low High Year 

$18.05 $21.81 1991
1
 

$14.63 $15.76 2003
2
 methanol 

$10.28 $15.42 2006
3
 

$16.76 ? 1996
5 

$15.76 ? 2003
3
 ethanol 

$11.55 ? 2005
4 

MTG >$30.00 ? 1990
6 

$21.38 $28.13 2003
2 

FTD 
$12.34 $17.48 2006

7 

DME $14.63 ? 2003
2 

Table 19 - The cost of production for fuels given in 2007 dollars per gigajoule. 1Katofsky 1993, 2Spath 
and Dayton 2003, 3Kumabe et al. 2008, 4Phillips et al. 2007, 5Lynd 1996, 6estimated from Sugiyama 

1994, 7Hamelinck and Faaij 2008. 
 

Due to the uncertainty inherent in these estimates one cannot definitively conclude which fuel is 

most cost effective on an energy basis. However general trends can be noticed that alcohols, 

particularly methanol, are most likely to be produced cheaply. On the other end MTG synthetic 

gasoline, appears to be prohibitively expensive as compared to the other fuels. While the cost of 

production utilizing a per energy basis is of academic interest, it is not the way that consumers 

price and compare fuels; instead fuels are priced per volume at the pump. As such, the costs of 

production on a per volume basis is a more important metric to use in assessing these fuels. 

Table 20 lists the costs of production of these fuels when they are converted to a dollars per liter 

basis. Additionally, in Table 21 the costs of production are given in a dollar per gallon basis, the 

price most relevant in the US.  
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Cost of Production ($/liter)  
fuel Low high Year 

$0.29 $0.35 1991
1 

$0.23 $0.25 2003
2
 methanol 

$0.16 $0.25 2006
3 

$0.38 ? 1996
5 

$0.36 ? 2003
3 ethanol 

$0.26 ? 2005
4
 

MTG >$1.25 ? 1990
6 

$0.75 $0.99 2003
2 

FTD 
$0.43 $0.62 2006

7 

DME $0.28 ? 2003
2 

Table 20 - The cost of production for fuels given in 2007 dollars per liter. 1Katofsky 1993, 2Spath and 
Dayton 2003, 3Kumabe et al. 2008, 4Phillips et al. 2007, 5Lynd 1996, 6estimated from Sugiyama 1994, 

7Hamelinck and Faaij 2008. 

 

These per volume production costs more accurately reflect the ordering of prices that consumers 

will face at the pump. Note, however, that the relative cost of production on an energy basis and 

the relative cost of production on an energy basis are not proportional. For example the cost of 

production of methanol on a volumetric basis is lower than that of ethanol, while using an 

energetic basis they are comparable. The relatively high cost of MTG production is further 

exacerbated on a volumetric basis versus alcohols since MTG has a higher energy density.  

Cost of Production ($/gallon)  
fuel Low high Year 

$1.09 $1.31 1991
1 

$0.88 $0.95 2003
2 methanol 

$0.62 $0.93 2006
3 

$1.45 ? 1996
5 

$1.37 ? 2003
3 ethanol 

$1.00 ? 2005
4 

MTG >$4.00 ? 1990
6 

$2.85 $3.75 2003
2 

FTD 
$1.64 $2.33 2006

7
 

DME $1.06 ? 2003
2 

Table 21 - The cost of production for fuels given in 2007 dollars per gallon. 1Katofsky 1993, 2Spath and 
Dayton 2003, 3Kumabe et al. 2008, 4Phillips et al. 2007, 5Lynd 1996, 6estimated from Sugiyama 1994, 

7Hamelinck and Faaij 2008. 
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In Table 22 the cost of shipping fuels 1000km is given in a volumetric (liter) and energy (GJ) 

basis. These costs are computed for the most economically and viable method. So for alcohols 

and DME this reflects train shipment, and for synthetic hydrocarbons this pricing is based on 

pipeline utilization. It is immediately noticeable that in both an energy and volumetric basis the 

cost of shipping a fuel via pipeline is cheaper by an order of magnitude. While this comparative 

advantage is large for synthetic hydrocarbon fuels it its effect is dampened by the fact that 

shipping costs are a minor factor in the delivered fuel cost as compared to production cost.  

 

 
cost of 

shipping per 
liter 1000km 

cost of 
shipping per 
GJ 1000km 

methanol $0.050 $3.141 

ethanol $0.050 $2.185 

MTG $0.003 $0.101 

FTD $0.003 $0.095 

DME $0.060 $3.130 

Table 22 - Cost of shipping fuel 1000km via the most economically viable method. Alcohols and DME 
are calculated using rail; MTG and FTD are calculated for pipeline. These data are extrapolated from 

(Morrow, Griffin, and Matthews 2006, 2877-2886) 

 
 
Other Systemic Considerations 

While energy efficiency and economics are two important metrics with which to judge a 

potential transportation fuel, they are by no means the only important factor. Further these other 

factors influence the efficiency and cost of delivered fuels. For example, the integrability of a 

fuel into certain distribution infrastructures greatly dictates the delivered cost of the fuel and to a 

lesser extent its achievable system efficiency. Here these other systemic issues, fuel integrability, 

end-use emissions characteristics, and toxicity and environmental safety, are summarized and 

discussed. 

Fuel Distribution Integrability 

In Table 23 the modes by which different fuels can be shipped are summarized. As is discussed 

in Chapter 4, pipeline operators are reluctant to ship alcohols due to their corrosivity and 

hydrophilic nature. Pipeline operators are concerned that their infrastructure, which was designed 

for hydrocarbons, would be damaged by alcohols and the delivered product would be damaged 
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as well due to water accumulation. The integrability of a fuel into existing distribution 

infrastructure influences its overall acceptability through a number of factors. 

Fuel Truck Rail Pipeline 

Methanol Y Y N 

Ethanol Y Y N 

Mixed Alcohol Y Y N 

MTG Synthetic Gasoline Y Y Y 

FT Diesel Y Y Y 

DME Y Y Y/N 

Table 23 – Summary of fuel integrability for different distribution infrastructures. Y indicates it is, N 
indicates that the fuel is not, and Y/N indicates ambiguity. 

 

Firstly, and perhaps most importantly, it influences a fuels ability to be delivered to the market 

place. If a fuel is restricted in the means that it can be transported it is less likely to reach each of 

the sale points utilized for transportation fuels. This issue has been manifested in the challenge of 

bringing sufficient amounts of ethanol to the east and west coasts to meet the mandated demand 

for oxygenates in reformulated gasoline (Dinneen 2008). Since pipeline operators do not 

currently accept alcohols in their pipeline infrastructure ethanol must be shipped via train and 

truck to the coasts which has limited its integration into retail fuel. 

Secondly, the integrability of a fuel influences its delivered cost. As was shown above the cost of 

delivery for a fuel is an order of magnitude lower when pipeline is utilized as compared to train 

or truck. For alcohols, since they are not currently accepted in the pipeline infrastructure, this 

exclusion implies higher costs making them less competitive at the pump than they could be. 

Finally, integrability of a fuel influences its overall achievable thermodynamic efficiency. Much 

like the cost of shipment, the efficiency of shipping a fuel is the best when pipeline infrastructure 

is utilized and worst when trucks are utilized. As such, if a fuel is excluded from the pipeline 

infrastructure it cannot achieve its best possible lifecycle efficiency. 

End-Use Emissions 

One way in which current regulation influences alternative fuel adoption is through end-use 

emissions regulation. Today there exist regulations limiting the amount of three major local 

pollutants (Carbon Monoxide (CO), Nitrogen Oxides (NOx) and particulates) which will also 
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regulate any alternative fuel which is adapted as a substitute for today’s petroleum derived fuels. 

In SI engines the primary concern is with CO and NOx since particulates are not produced as 

readily as with CI engines. In Table 24 the emissions characteristics of the fuels being analyzed 

are tabulated relative to their petroleum derived counterpart (gasoline and diesel fuel). 

 CO NOx Particulates 

methanol Slight reduction Significant reduction N/A 

ethanol Slight reduction Significant reduction N/A 

mixed alcohol Slight reduction Slight reduction N/A 

MTG synthetic gasoline No change Slight increase N/A 

FT Diesel Moderate reduction Moderate reduction Moderate reduction 

DME No change Moderate reduction Significant Reduction 

Table 24 - Summary of emissions properties relative to petroleum derived counterpart (gasoline or 
diesel). 

 

It is apparent that these alternative fuels perform better than petroleum derived fuels with respect 

to emissions - with the notable exception of MTG synthetic gasoline. This under performance is 

due to the fuels increased aromatic content which is resultant form the method of synthesis. In 

the United States and Europe there continues to be a trend of increasingly stricter limits on these 

pollutants, and the poor performance of MTG gasoline could seriously hamper its deployment. 

On the other hand, the improvement in emissions characteristics of the other fuels creates an 

incentive for their adoption in states striving to achieve stricter emission limiting goals. Indeed 

the superior emissions characteristics of alcohols have been major drivers for their previous 

adoption through mandatory oxygenate requirements in reformulated gasoline. 

Both Europe and the United States (in particular California) are moving towards ever stricter 

emissions regulation which is becoming increasingly difficult for current CI engine technology 

to meet without the utilization of expensive after treatment systems (Teng and McCandless 

2006). While alternative fuels have been utilized to address emissions concerns with SI engines 

there has been no mandate imposed on CI fuels. However, due to their improved emissions 

characteristics both FT Diesel and DME could potentially be used to meet heightened regulation. 

In particular DME produces practically no particulate matter, completely avoiding the tradeoff 

which exists for today’s diesel combustion between particulate matter and NOx production.  
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Toxicity and Environmental Safety 

On average, the synthetic fuels analyzed in this thesis are less hazardous to human and 

environmental health than their petroleum derived counterparts. In Table 25 the results from the 

toxicity analysis in Chapter 4 are summarized. Methanol and ethanol both have lower mortality 

and morbidity risks as compared to gasoline, and both would pose little threat to the environment 

in the event of spillage. Higher alcohols on the other hand do have higher health risks associated 

with them. Butanol, for example, has a lower oral LD50 value than gasoline.  Higher alcohols are, 

however more environmentally benign than gasoline and can be naturally metabolized by 

microbes. DME, the one ether considered, is in general of lower risk than the other compounds 

due to the fact that it is a vapor and the risk of concentrated exposure to it is low. Additionally, 

DME can decay quickly in the environment due to its sensitivity to solar irradiation and thus 

poses little threat in the event of leakage. 

 Toxicity Environmental Safety Other 

Methanol 
low relative mortality risk, 
moderate morbidity risk 

low environmental hazard 
risk 

public perception 
of risk is high 

Ethanol 
low relative mortality risk, low 

morbidity risk 
low environmental hazard 

risk 
public perception 

of risk is low 

Mixed 
Alcohol 

moderate mortality risk with 
higher alcohols, moderate 

morbidity risk 

increased environmental 
hazard with increased higher 

alcohols 
low vapor pressure 

MTG 
moderate mortality risk, high 

morbidity risk (aromatics) 
high environmental hazard 

(aromatics) 
comparable to 

today’s fuel 

FTD low risk relative to petrol-diesel 
lower risk due lower aromatic 

content 
 

DME 
low mortality risk, low morbidity 

risk 
low environmental hazard 

risk 

high vapor 
pressure, quickly 

disperses 

Table 25 - Tabulation of health and environmental risks associated with fuels considered in this thesis. 

 

MTG synthetic gasoline, on the other hand, may pose increased health risks as compared to its 

petroleum derived counterpart due to the higher aromatic content in this fuel. Also because of the 

long life of aromatic compounds in the environment, and their immiscibility with water, the 

environmental risk associated with MTG is high. Finally, Fischer-Tröpsch diesel has lower 
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health and environmental risk relative to its petroleum derived counterpart due to its lower 

aromatic content. 

Policy Challenges: The Entrenchment of Ethanol 

In order for alternative fuels to be adopted a favorable (or minimally, non-negative) policy 

climate is essential. In the United States there currently exists a strong policy and regulatory 

regime designed to foster and support the domestic biofuel industry, which is focused primarily 

on ethanol production. Ironically, it is these policies which may have erected the greatest barriers 

to entry for other non-ethanol biofuels into the transportation fuel market. In this section these 

historic policies are discussed and the challenge which they mount against further innovation in 

transportation fuels is analyzed. 

The ethanol industry of today is a product of more than 25 years of Stiglerian regulatory capture 

on behalf of the special interests of the firms that make up the ethanol industry. Regulatory 

capture refers to a situation where a government agency, instead of acting on behalf of the public 

good, creates regulations favorable to the industry it is supposed to regulate. The theory states 

that this is due to the industries’ ability to focus resources towards lobbying the agency whereas 

the disinterested public does not organize to oppose such action (Stigler 1971, 3-21). 

There are four principal cases where the ethanol industry successfully procured favorable 

subsidies and regulations which dominate the market landscape today. The first case is the use of 

a historically subsidized feedstock, corn, to produce fuel ethanol. The second case is the 

successful creation of the federal Volumetric Ethanol Excise Tax Credit (VEETC) commonly 

called the Blender Tax Credit. Through effective lobbying, the ethanol industry was able to 

increase their market share of the alternative transportation fuel market by ushering through 

federal Renewable Oxygenate Requirements (ROR). Finally, with the passage of the 2007 

Energy Independence and Security Act the biofuel industry procured guaranteed demand through 

federal mandates on the amount of biofuels which must be included in the national fuel mix. 
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Proactive Agricultural Policy 

The US biofuel industry consists primarily of ethanol produced enzymatically from starchy 

feedstocks (primarily corn along with other cereal grains) as has been done for thousands of 

years for the production of fermented alcoholic beverages. As such the ethanol industry 

positioned itself to reap the benefits of a long history of national agricultural policy directed at 

price stabilization of corn (along with other commodity crops) via proactive agricultural policies 

(Kennedy and Visser 1990, 27-46).  

The first major agricultural policy employed by the United States was a strategy of limiting 

production of commodity crops in order to avoid surpluses and prop up prices at the market. This 

was achieved through voluntary reductions in land production for which the government would 

partially reimburse the farmer. This policy was enacted in 1933 via passage of the Agricultural 

Adjustment Act (Bowers, Rasmussen, and Baker 1985). Besides times of ramped up agricultural 

production to meet national need in time of war, the strategy of supply management became the 

major thrust of national agricultural policy through the early seventies (Gardner 2002). In 1973, 

national agricultural policy changed from a policy of supply control to surplus creation paired 

with direct subsidies and guaranteed prices in response to global grain shortages. In order to keep 

prices competitive for farmers the federal government would buy excess grain in order to keep 

grain prices at an inflation adjusted goal price and donate the grain to famished markets (Bowers, 

Rasmussen, and Baker 1985).  

It was during the late seventies when the corn ethanol industry first began to develop. During this 

time global shortages were becoming less severe and in turn national surpluses were beginning to 

depress grain prices. To address this challenge, federal agricultural policy makers sought to 

create additional non-food markets to absorb record breaking corn production levels (Gardner 

2002). Because of these conditions, the ethanol industry was able to build upon a feedstock 

which through a long history of proactive agricultural policy, was being produced at levels 

higher than traditional demand could meet and was being supported through direct subsidy to 

farmers; thus, guaranteeing sub-optimal selling prices at the grain terminal (Schmitz, Furtan, and 

Baylis 2002). This subsidy structure continues to result in an economic transfer from tax-payers 

to the corn consuming ethanol industry. 
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Volumetric Ethanol Excise Tax Credit 

While the use of a subsidized feedstock sweetened the economics of fuel ethanol production 

from corn, ethanol was not yet cost competitive with petroleum derived gasoline during the mid 

1970s.  In 1978, the longtime CEO of Archer Daniels Midland (ADM), Dwayne Orville Andreas 

used his influence with influential law makers, including then Senate Majority Leader Bob Dole 

(R-KS), to usher through the federal VEETC legislation (Barrionuevo 2007). This legislation 

provided an effective 51¢ per gallon subsidy for fuel ethanol. This was achieved through the 

exemption of the volumetric amount of ethanol blended with fuel gasoline from the federal 

gasoline excise tax. This subsidy, still in existence today, is equivalent to approximately $30 per 

barrel of oil equivalent (boe) of ethanol.4 

This achievement appears to be due, in part, to ADM’s success in capitalizing on the political 

will and public sentiment towards combating high oil prices and dependence on volatile energy 

sources in the aftermath of the first energy crisis. With the passage of this act, the ethanol 

industry was now not only able to capitalize on a subsidized feedstock, but now their primary 

product stream was subsidized as well. Through the late seventies the ethanol industry 

experienced its first major boom due to the second energy crisis and ethanol’s new found ability 

to compete economically with petroleum derived fuels.  

Renewable Oxygenate Requirement and the Banning of MTBE 

With the enactment of the blender tax credits in 1978 and the fuel market conditions due to the 

two energy crises, the market for fuel ethanol seemed assured. However, due to the 1980 

recession triggered in response to the high inflation in the wake of these two energy crises, the 

demand for oil dropped dramatically, and the real price of oil dropped to the point at which 

ethanol could no longer be assumed economically competitive in the long run. Therefore, it was 

no longer possible to justify great capital expenditures on the deployment of large scale ethanol 

plants. After economic conditions returned to normal, OPEC had agreed to increase petroleum 

production, and thus maintain low oil prices for the foreseeable future, which continued to render 

                                                 
4 This subsidy has been somewhat variable over the years ranging from upper 40’s to lower 50’s cents per gallon. In 
2009 the credit was 45 cents per gallon. 
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ethanol uncompetitive. These unfavorable conditions were faced by the ethanol industry through 

the late 1980s (Weiss 1990).  

In 1990, the US Congress passed a major set of amendments to the Clean Air Act (Baucus 1990, 

549). One of the major amendments contained in this act established the Reformulated Gasoline 

(RFG) program, which was aimed to combat air pollution in the nine worst affected metropolitan 

areas. One major aim of this program was to decrease the overall automotive emission of toxic 

Carbon Monoxide (CO), by requiring the addition of oxygenates which facilitate a more 

complete combustion to Carbon Dioxide (CO2) (NSTC 1997). In this implementation of this 

oxygenate requirement, there was further stipulation by the Environmental Protection Agency’s 

rule making that 30% of the requisite oxygenates must be derived from a renewable source. This 

ruling turned out to be a very controversial decision. Many interest groups questioned the 

scientific basis on which the requirement of the use of oxygenates was based and whether or not 

their use did improve local air quality (Barrionuevo 2007). The renewable oxygenate 

requirement turned out to be even more controversial (Brown 1997, 1299-1328). This rule was 

controversial due to the fact that at the time the EPA had no statutory authority to establish and 

enforce a requirement to use renewable fuels. Since the EPA’s stated authority is to protect 

human health, and in the case of combustible fuels this would be done by mandating fuels which 

decrease harmful pollution. While it has been shown that the use of oxygenates decrease the 

emissions of carbon monoxide, the existence of further benefits from the use of renewable 

oxygenates (ethanol and ETBE over MTBE) is questionable and in some cases has been shown 

to produce more dangerous emissions such as increased volatile organic compounds (VOCs) 

(NSTC 1997). The primary fuel oxygenates used at the time of this rule making were three 

chemicals; methyl-tertiary butyl ether (MTBE), ethyl-tertiary butyl ether (ETBE) and ethanol. 

Because of the EPA’s renewable oxygenate mandate 30% of the oxygenates must have then been 

either ethanol or ETBE which is derived from ethanol, MTBE, which was derived primarily from 

natural gas, could not be used to meet this mandate. As is detailed in Brown, this case is a clear 

example of the government giving into the concentrated interests of the ethanol and farmers 

lobbies. In the published history of EPA’s rule making on renewable oxygenate requirements, it 

was even cited that the use of ethanol caused more emissions than that of MTBE. Although the 
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renewable oxygenate requirement was eventually struck down in the Court of Appeals for the 

D.C. Circuit (Brown 1997, 1299-1328), the oxygenate requirement remained. 

Not long after the rejection of the renewable oxygenate requirements MTBE, which was used in 

reformulated gasoline outside of the Midwest, began showing up in drinking water aquifers in 

California and was soon banned in several states due to the possible public health risks 

associated with its use. Because of this, along with a concentrated effort on behalf of the EPA 

under the Clinton/Gore administration in 2000 to support the ethanol industry, ethanol was once 

again a mandated additive in reformulated gasoline (though now in an indirect manner) (EPA 

2000). 

Renewable Fuel Standards 

Between 2000 and 2007, the ethanol industry underwent a massive expansionary period due to 

the confluence of the above mentioned agricultural and energy policies along with high oil prices 

and low corn prices. Not only did this situation create increased demand for ethanol, it also 

created an atmosphere on Capitol Hill ripe for policies directed at foster ‘energy independence’. 

As oil prices continued to climb through 2007 the Congress passed the 2007 Energy 

Independence and Security Act which contained many energy provisions, however most notably 

it created an explicit mandate for biofuel production in the US. 
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CHAPTER 6: CONCLUSIONS AND POLICY RECOMMENDATIONS 

In this thesis six potential thermochemical biofuels were analyzed: Methanol, Ethanol, Mixed 

Alcohols, Mobile-M synthetic gasoline (MTG), Fischer-Tröpsch Diesel and Dimethyl Ether 

(DME). This analysis considered each of these fuels systematically from delivered biomass to 

wheel. Their performance with respect to different criteria, including lifecycle energy efficiency, 

cost of production and distribution, integrability into infrastructure, and health and 

environmental risks, was considered as well. In this chapter, conclusions drawn from these 

results are discussed and policy recommendations are offered. 

Conclusions from System Analysis 

The analysis detailed in Chapter 4 produced a great amount of results, but these data alone do not 

say much beyond how each fuel performs relative to one another with respect to each criterion. 

However, when these results are taken in context of the policy landscape and how the US biofuel 

industry is developing certain conclusions can be drawn. Here five main conclusions are 

enumerated and discussed; in the next section, policy recommendations are provided to address 

the limitations of the US biofuel industry. 

1. No one fuel analyzed in this thesis stands out as a so-called “silver bullet” solution. 

Upon considering the relative performance of each of the fuels considered in this thesis one finds 

quickly that no single fuel is the best choice with respect to each criterion. Dimethyl ether, for 

example, has the potential to be produced relatively cheaply and utilized most efficiently, 

however because of integrability limitations and its physical properties it is unlikely to be 

adapted outside of small fleet deployment.  

Of course, one should not necessarily expect that it would be possible to find a clear technology 

winner in such a complex system as that of transportation fuels. Instead, outside of the influence 

of technology specific policy, one would find that a number of firms would attempt to enter the 

market with any number of possible fuels and the market would theoretically sort out the viable 

technologies. This is not likely to be the case in the transportation fuel sector, however, due to 

the necessarily high capital expenditures and resultant financial risk of a failed technology 
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deployment (see hydrogen in California). Governmental support and favorable policies will be 

necessary for the adoption of alternative fuels. Additionally, centralized investment in a modern 

distribution infrastructure which can accept non-hydrocarbon fuels will be essential.  

2.  Technology specific support policies have a poor track record at efficiently addressing 

energy dependence, and do not necessarily allow the most effective technology to 

prevail.  

Although governmental support is crucial to the adoption of alternative fuels, government’s 

records in this arena has suffered due to the utilization of technology specific policies which are 

often used to support the favorite parochial industries of the day. The most notorious example of 

this is corn ethanol in the United States. Through policy interventions (detailed in Chapter 5), the 

US government has created an incredibly well supported industry based on one technology 

whose merits have been called into question. These policies have not only created a large 

incentive for the continued expansion of corn ethanol, but has also created an incentive for 

expanded R&D into the production of ethanol from other feedstocks instead of considering other 

potential fuels. Another example of government ineffectually picking a technology winner in the 

realm of transportation fuels is the governmental support of MTG production in New Zealand 

from natural gas. This program ended up costing the government large sums of money over 

many years due to the high cost of the MTG fuels. 

Since there is no clear ‘silver-bullet’ cellulosic fuel as this thesis has shown, it is difficult for a 

technology based policy to be used to support the adoption of cellulosic biofuels. Instead, 

policies should be designed which are technology neutral, such as taxing petroleum-derived fuels 

if it is the goal of a government to displace their use or at the very least providing level playing 

field subsidies to all replacement options that meet certain basic criteria. Such a policy puts each 

potential replacement technology on the same footing without incentivizing a specific 

technology and running the risk of a large governmental technology-welfare program.  

3. While all of the fuels considered in this thesis have health risks comparable to or less 

than their petroleum derived counterparts, the public misconception of a fuels toxicity 

may disqualify an otherwise promising fuel. 
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The health risks associated with a fuel do not directly influence its economic bottom line, but 

rather indirectly. If the fuel is regarded to be hazardous it is unlikely to be adopted at scale. 

While it is important for each consumer to be fully aware of the risks associated with fuels, a 

misunderstanding of a fuels risk could have an unnecessarily harmful effect on its potential 

adoption, further the public’s sensitivity to health risks could be potentially exploited by rival 

technologies to create a public misconception of a rival technology. This was the case in the 

battle between ethanol and other oxygenating fuels during the 1990’s where a strong campaign 

was mounted against MTBE and to associate methanol with MTBE in order to make ethanol the 

default oxygenate additive (Brown 1997, 1299-1328; Libecap 2003, 89-106). 

Methanol for example could be utilized as a superior gasoline substitute were it not for the public 

misconception of the health risks associated with its use. Further, it is highly probable that the 

public underestimates the health risks associated with fuel ethanol relative to other replacement 

fuels.  

Outside of potential fuels which are listed by the EPA as being significant risks to public health, 

all other fuels should be considered equally as potential replacements for their petroleum derived 

counterparts which, in most cases, is the most hazardous option. 

4. Under the current biofuel policies, it is unlikely that any non-ethanol biofuel will gain 

market share in the US. 

Because of the ethanol-friendly transportation fuel policies in the US, it is unlikely that other 

fuels will be able to gain a significant hold in the US market. In the analysis performed in this 

thesis ethanol was not the highest ranked fuel when any criterion was considered. However 

because of the parochial interest of supporting farmers ethanol has found its way into being the 

alternative fuel of choice in America. While the policies to support ethanol were designed to 

support ethanol derived from corn versus petroleum derived fuels, now such policies are creating 

incentives for firms to focus their R&D expenditures on producing cellulosic ethanol, without 

seriously considering other fuels derived from cellulose.  
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Technology neutral fuel policies must be adopted in order for other transportation fuels to be 

considered seriously when compared to ethanol, otherwise another inefficient ethanol market 

(based on cellulose instead of corn) will be created. 

5. Due to the complex interdependencies of the thermochemical biofuel value-chain, system 

analysis and thinking is necessary in order to approach an optimal outcome.  

As with any complex system with many influences up- and downstream, using a siloed approach 

in which each step is optimized independently from one another will not yield a globally optimal 

solution. For example, by considering this problem solely with regards to the systematic energy 

efficiency, one would conclude that DME is the best fuel to be produced and used, however this 

fuel is not a good fit to the current distribution infrastructure in the US. Indeed, analyzing the 

problem from the distribution lens alone would lead to the identification of synthetic 

hydrocarbons as optimal solutions, where these fuels are more expensive to produce than the 

other options.  

Even when fuels are considered through just one lens, a global optimum may not be reached if 

the different steps are considered independently. If just the energy efficiency is considered, one 

studying the production side might decide that mixed alcohols would be the best fuel to produce 

and ship based solely on the Biomass-to-Tank efficiency, however one studying the end use of 

the fuels may conclude that using dimethyl ether in a compression ignition engine would be the 

optimal choice. Though dimethyl ether has the highest average biomass to wheel efficiency, it is 

clear that by just analyzing the production side the global optimum was not identified. 

Instead it is necessary to consider such large interconnected systems in a more holistic manner, 

as this thesis has done. A choice made at any one point in the system has consequences with 

regards to the overall system performance. Of course this result does not need to be seen as a 

limitation, but rather an invitation for innovation in both the technical and policy spheres. 
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Policy Recommendations 

Today the ethanol industry is thriving as it has never been able to do before, and it is ironically 

the policies which were put in place to support ethanol’s growth which may most likely impede 

the adoption of other non-ethanol biofuels. The ethanol industry has successfully erected barriers 

to entry into the alternative fuel industry through the procurement of subsidies on its product 

(blender tax credits), through the benefit of subsidies aimed at corn and through the capture of 

federal environmental regulation in the form of oxygenate standards for reformulated gasoline 

and the banning of MTBE. The ethanol industry achieved these results through the influence of 

ADM’s long time chief executive Dwayne O. Andreas and strategic partnership with the very 

influential Farmer’s Lobby (Weiss 1990). The result of this is a lack of innovation in the United 

States in the realm of alternative transportation fuels. While there is research being undertaken 

towards the development of advanced biofuels, the vast majority of research in towards new 

ways to make ethanol from a broader array of feedstocks. This drive is dictated by many firms’ 

beliefs that the only way to be economically competitive they must 1) be able to sell into the 

already established and propped up ethanol market, and 2) be able to qualify for the VEETC by 

producing ethanol. Therefore, there is very little R&D taking place on other fuels which 

experience better production energy efficiencies (e.g. methanol & dimethyl ether), better 

integrability into the current fuel distribution structure (e.g. Fischer-Tröpsch Diesel & MTG 

synthetic gasoline), or some other yet to be discovered synthetic transportation fuel. 

In order to address these market failures which has resulted due to ethanol’s self erected 

boundaries to entry into the alternative fuel market and to support increased innovation in the 

alternative transportation fuel sector, policies must be employed which are explicitly technology 

and product neutral which still are aimed at making alternative transportation fuels cost-

competitive with petroleum based fuels. Additionally the market structure which the ethanol 

industry benefits from in the form of a subsidized feedstock must also be addressed.  

Supporting Innovation without Picking Winners 

One major policy thrust of any attempt at resolving this market failure must be to avoid 

employing policies which specifically support a certain technology or fuel. So, in order to 
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incentivize investment in alternative non-petroleum transportation fuels, instead of directing tax 

credits at specific fuels, an equivalent tax should be levied against fuels derived from petroleum. 

In this way there is no incentive created to direct future research on fuels which have been shown 

to historically receive the tax credit, and thus stifle innovation and research towards fuels which 

may not have yet been deployed. Therefore, a better alternative policy to the per-gallon VEETC, 

would be the enactment of a per gallon tax on fuels derived from petroleum. This policy would 

have the additional benefit of being indifferent of the alternative fuel’s energy density since this 

incentivization structure does not rely on subsidization on a volumetric basis, which in effect 

incentivizes the use of fuels which have a lower energy density and which will not offset as 

much petroleum derived fuel5. 

While the aforementioned policy proposal would most efficiently address the need to remove 

incentive to invest in a small set of specific fuels, and instead to incentivize investment in all 

non-petrol based fuels, the feasibility of passing such legislation is unlikely. Another approach to 

addressing this policy goal has been advocated for by Sen. Richard Lugar of Indiana. In this 

approach instead of a volumetric tax levied against oil, a price floor of $35-45 per barrel would 

be applied to petroleum in order to decrease the future risk that alternative fuels could be priced 

out of the market by petroleum derived fuels (Lugar 2006a; Lugar 2006b). By applying a price 

floor to petroleum as long as petroleum prices remain above the floor there would not be a tax 

applied to consumers and this in turn would have a negligible effect on gasoline prices 

(especially at current petroleum prices). Because the tax would likely not be felt by consumers, 

the political feasibility of this approach is greater than a volumetric tax which is levied at all 

prices. 

The second approach, while more feasible politically, could lead to further market failure in the 

case that the global market price for oil is priced below the floor price. When oil is priced below 

the United States’ floor price oil purchasers will be facing a price equal to the floor price and are 

                                                 
5 This benefit can be easily understood by considering the alternative approach of, instead of taxing petroleum based 
fuels, providing the 51¢ per gallon tax credit to all alternative transportation fuels. In this case ethanol which has an 
approximate energy density of 76,100 BTUs per gallon would receive a tax credit of $6.70 per million BTUs of 
petroleum based fuels displaced, whereas synthetic gasoline derived from biomass with an energy density equivalent 
to regular gasoline of 114,100 BTUs per gallon would receive a tax credit of only $4.47 per million BTUs of 
petroleum based fuels displaced.  
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indifferent to whether it goes to the Federal Coffers or the oil importers. In this case oil exporting 

countries and companies would be incentivized to sell oil at the floor price above the market 

price (Donohoo et al. 2008). 

While this second approach is more politically feasible than the approach of taxing petroleum at 

all price levels taxes as policy tools find much less support in America than directed subsidies as 

policy tools. Of course utilizing a policy of direct subsidies to non-petroleum based fuels has 

drawbacks. Firstly, unlike taxing petroleum subsidizing alternatives will cost the federal 

government substantial amounts of money and would not be a revenue neutral policy less a 

revenue stream is matched with it. Secondly, the design of such a system of subsidies would run 

the risk of being a set of technology specific policies, and as reasoned above technology specific 

policies have a poor track record. Subsidies would have to be designed to be based on energy 

content not volumetric as to avoid the perverse incentives created by the VEETC to move 

towards fuels with low relative energy density.   

Addressing Oxygenate Standards 

As the federally mandated oxygenate requirement in reformulated gasoline now stands it is an 

indirect mandate for the use of ethanol in reformulated gasoline. As such this policy is in effect 

picking a certain technical approach in addressing carbon monoxide emissions, thus this policy is 

unlikely to yield the most cost effective solution to carbon monoxide pollution. A first order 

approach to achieve the same end in a more technology neutral manner would be for the federal 

government to mandate a cap on carbon monoxide emissions. This would allow for the most cost 

effective solution to emerge whether it is an improvement in automotive technology, improved 

exhaust clean-up, or continuation of the use of oxygenates in fuels. Since the oxygenate standard 

is a policy specifically designed to address air quality issues in very explicit geographic 

locations, solutions which are achieved through automotive technology may not completely 

address the goal since automotive sales cannot be targeted toward specific locations. As such a 

modified approach to oxygenate standards may be the only approach to address local carbon 

monoxide standards. 
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Oxygenate standards could still continue to be employed under the scenario where ethanol is no 

longer subject to the per-gallon VEETC tax exemption, but instead petroleum derived fuels are 

levied an additional per gallon tax of the same magnitude as the VEETC (see above section). In 

this case EPA reformulated gasoline regulations should be rewritten to reflect no favoritism to 

any possible oxygenates to be employed. Under these conditions there would be no specific 

incentivization towards the use of ethanol since all non-petroleum based oxygenate fuels (e.g. 

methanol, ethanol, ETBE, butanol, etc) would face the same economic landscape. Therefore, 

current oxygenate standards could continue to be employed in specific geographic locations so 

long as the requirements do not impose any favoritism toward specific fuels. 

Addressing Ethanol’s Subsidized Feedstock 

One of the most important (and certainly most difficult) policy fixes required is to address the 

subsidized feedstock on which today’s ethanol production depends. It is important not to 

incentivize any certain feedstock over another when searching for alternative transportation fuels 

since this will limit the different solutions and technologies considered significantly. However 

the removal of corn’s governmental support will be no easy feat. The primary aim of the United 

States’ national agricultural policy over the last 75 years has been aimed primarily at 

guaranteeing profitable markets and decrease financial risks for farmers in order to guarantee 

continued agricultural production in the long run. This had been achieved originally through 

supply control, however now it is achieved through a combined approach of price supports, 

guaranteed loans, and federal crop insurance which has been shown to support over-production 

and sub-optimal prices at the market. Attempting to remove the long standing subsidy structures 

from the American agricultural sector would be beyond the scope of addressing the boundaries to 

entry to the alternative transportation fuel market, and would probably be revealed as being 

politically unviable.  

One way in address this issue of subsidization of agricultural products favoring certain 

production methods is providing a subsidy for non-grain production such as providing a 

guaranteed market price for cellulosic material in the short to mid-term (5-15 years) such that 

switchgrass or woody biomass is price-competitive with corn on an acre-planted basis. This type 
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of program allows for the development of a cellulosic fuel production industry. Once this market 

has been established then such a policy could be phased out as farmers are then able to achieve a 

guaranteed revenue stream for this new energy crop. While this approach does allow for rent 

collection on behalf of the concentrated interest (farmers) if it is passed with a clear sunset 

clause, it could be more a politically viable way addressing corn-ethanol’s capitalization on a 

subsidized feedstock. Additionally, if such a program is designed to be only temporary, when the 

program phases out farmers would necessarily resort comparing growing an unsubsidized 

cellulosic feedstock versus a subsidized commodity grain. Thus in parallel to such a program 

either a continued subsidy structure would be needed to support cellulosic feedstock producers, 

or (ideally and more unlikely) grain subsidies would be phased out concurrently.   

In the 2008 Farm Bill, the Biomass Crop Assistance Program was created which a very similar 

type of policy to the one is proposed above, however this policy does not phase out the 

subsidization of cereal grains. Further legislative action is needed in order to fully level the 

playing field in the biofuel feedstock market. 
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Appendix A: Acronyms 

 

Acronym Phrase or Name 

2D (D2) EPA test diesel 

AKI Anti Knock Index 

ASF Anderson-Schulz-Flory 

BSFC Brake Specific Fuel Consumption 

CI Compression Ignition 

CNG Compressed Natural Gas 

DME Dimethyl Ether 

E## Gasoline Ethanol Blend ##% Ethanol 

EISA Energy Independence and Security Act 

EPA Environmental Protection Agency 

FTD Fischer-Tröpsch Diesel 

FTS Fischer-Tröpsch Synthesis 

GGE Gallon Gasoline Equivalent 

HC Hydrocarbon 

HHV Higher Heating Value 

ICE Internal Combustion Engine 

IMEP Indicated Mean Effective Pressure 

LHV Lower Heating Value 

LNG Liquefied Natural Gas 

LPG Liquefied Petroleum Gas 

M## Gasoline Methanol Blend ##% Methanol 

MON Motor Octane Number 

MTG Methanol-to-Gasoline 

NREL National Renewable Energy Laboratory 

PM Particulate Matter 

RdON Road Octane Number 

RON Research Octane Number 

SASOL South African Synthetic Fuel Company 

SI Spark Ignition 

SIDI Spark Ignition Direct Injection 

UBM Unburned Methanol 
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Appendix B: Tag cloud 

 

From www.tagcrowd.com 


