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The Canonical Model of a Singular Curve

STEVEN LAWRENCE KLEIMAN AND RENATO VIDAL MARTINS

Abstract. We give refined statements and modern proofs of Rosenlicht’s re-

sults about the canonical model C′ of an arbitrary complete integral curve C.
Notably, we prove that C and C′ are birationally equivalent if and only if C
is nonhyperelliptic, and that, if C is nonhyperelliptic, then C′ is equal to the
blowup of C with respect to the canonical sheaf ω. We also prove some new

results: we determine just when C′ is rational normal, arithmetically normal,
projectively normal, and linearly normal.

1. Introduction

Let C be a complete integral curve of arithmetic genus g ≥ 2 defined over an
algebraically closed field of arbitrary characteristic. Its canonical model C ′ was
introduced by Rosenlicht at the end of his paper [19] (based on his 1950 Harvard
thesis under Zariski) where he introduced the dualizing sheaf ω. Here, we give
modern proofs of Rosenlicht’s results about C ′; also, we determine just when C ′ is
rational normal, arithmetically normal, projectively normal, and linearly normal.

Rosenlicht constructed the canonical model C ′ as follows. He [19, p. 188 top]
proved that H0(ω) defines a base-point-free linear series on the normalization C of
C. He formed the corresponding map κ : C → Pg−1, and took its image to be C ′.

Rosenlicht [19, p. 188 top] called C “quasihyperelliptic” if κ is not birational onto
C ′. He [19, Thm. 15, p. 188] proved that C is quasihyperelliptic iff there is some map
λ : C → P1 of degree 2. Nowadays, it is more common to call C hyperelliptic if such
a map λ exists; so Rosenlicht’s result is just our Proposition 2.13. Furthermore, it is
implicit in Rosenlicht’s work, and it is easy to prove, see Stöhr’s discussion [23, p. 96,
top] or our Proposition 2.6, that if λ exists, then it is unique. In fact, then λ is
induced by the canonical map κ : C → Pg−1, and its image C ′ is equal to the
rational normal curve Ng−1 of degree g − 1; furthermore, ω ≃ λ∗OP1(g − 1).

Suppose C is hyperelliptic. Then ω ≃ λ∗OP1(g − 1); whence, ω is invertible,
so C is Gorenstein. Rosenlicht [19, p. 188 top] reasoned in essentially this way, as
did Stöhr [23, p. 96, top] and as do we in proving Proposition 2.6. On the other
hand, Homma [12, Cor. 3.3, p. 31] reproved that C is Gorenstein, but he proceeded
differently; he obtained and used an explicit equation for a plane model of C.

As to a nonhyperelliptic C, first Rosenlicht [19, Cor. and Thm. 17, p. 189] proved
these three statements: (1) if C is nonhyperelliptic and Gorenstein, then κ induces
an isomorphism κ : C ∼−→ C ′; (2) furthermore, then C ′ is extremal ; that is, its
genus is maximal for its degree, which is 2g− 2; and (3) conversely, every extremal
curve of degree 2g− 2 in Pg−1 is nonhyperelliptic and Gorenstein of genus g, and is
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2 S. L. Kleiman and R. V. Martins

its own canonical model. Rosenlicht’s proofs involve relating global invariants. We
give similar proofs of these statements in our Theorem 4.3.

Unaware of Rosenlicht’s work, several authors have reproved various form of (1).
The first proofs were given by Deligne and Mumford in 1969, by Sakai in 1977, and
by Catanese in 1982, according to Catanese [4, p. 51]. Their work was motivated
by the study of families of curves, and they allowed C to be reducible, but required
it to be connected in a strong sense, and to have only mild Gorenstein singularities.

In 1973, Mumford and Saint-Donat proved (1) for a smooth C, using the Jacobian
of C. In 1983, Fujita [9, p. 39] asserted their proof works virtually without change
for any Gorenstein C. Then Fujita [9, Thm. (A1), p. 39] gave another proof for any
Gorenstein C, involving ideas from Mumford’s version of Castelnuovo Theory.

In Remark 5.6, we explain a variant of the latter proof, involving ideas from the
version of Castelnuovo Theory developed by Arbarello et al. [1, pp. 114–117]. In
this way, both Fujita, in his Theorem (A1), and we, in our Proposition 5.5, obtain
more: namely, C ′ is projectively normal ; that is, for every n ≥ 1, the hypersurfaces
of degree n cut out a complete linear series. In particular, C ′ is linearly normal ;
that is, the hyperplanes cut out a complete series. In fact, the converse holds in
general; indeed, using Castelnuovo Theory, we prove Lemma 5.4, which asserts that,
whether C is Gorenstein or not, C ′ is linearly normal iff it is projectively normal.

In 1986, Hartshorne [13, Thm. 1.6, p. 379] gave yet another proof of (1); he
showed that the complete linear series of canonical divisors of C “separates points
and tangent vectors.” We give a somewhat similar proof in Section 4, and obtain a
stronger statement, Theorem 4.13, which is virtually in Rosenlicht’s paper; namely,
κ : C → Pg−1 induces an open embedding κ : G ↪→ C ′ where G is the Gorenstein
locus of C, the largest open set on which ω is invertible.

Rosenlicht’s last result [19, Thm. 17, p. 189] is his main theorem about C ′; it
asserts that, if C is nonhyperelliptic, then the birational map between C and C ′ is
regular on C ′. In fact, Rosenlicht’s proof nearly yields a more refined result, which

is our Theorem 6.4. It asserts that κ induces an isomorphism κ̂ : Ĉ ∼−→ C ′ where

Ĉ is the blowup of C with respect to ω in the sense of Definition 4.4. Instead,
Rosenlicht [19, p. 191, last line] worked with the subsheaf ω′ ⊂ ω generated by
H0(ω), but apparently, he was unaware that ω′ = ω, a fundamental discovery
made by Eisenbud, Harris, Koh, and Stillman [7, p. 536, mid].

Rosenlicht’s proof of his main theorem involves some hard local algebra, which
reduces the general statement to (1) above. We give a similar proof. We can have
no purely local proof until we find a purely local condition equivalent to the nonhy-
perellipticity of C. A sufficient condition is that C have a point of multiplicity at
least 3 by our Proposition 2.6(1), but this multiplicity condition is hardly necessary.

Rosenlicht’s proof of (1)–(3) involves his version of Clifford’s Theorem [19,
Thm. 16, p. 188], the first version for a singular curve. It concerns an invertible
sheaf F on C such that h0(F) ≥ 1 and h1(F) ≥ 1; it asserts Clifford’s Inequality

h0(F) + h1(F) ≤ g + 1,

and it describes when equality holds.
Correspondingly, we prove a version of Clifford’s Theorem, Theorem 3.1. It is

more general, as we prove the above inequality for any torsion-free sheaf F of rank 1
on C. The added generality is due to Kempf [14, pp. 25, 32], and we present his
proof, which is short and has not fully appeared in print before.

If equality holds, then H0(F) generates F. This result is due to Eisenbud et
cmsc.tex: December 4, 2008



The Canonical Model of a Singular Curve 3

al. [7, p. 536, mid]. They derived it in a few lines from the above inequality for the
subsheaf F′ ⊂ F generated by H0(F). We reproduce their proof, as the result is
fundamental. Stöhr [22, Thm. 3.2, p. 123] rediscovered the case F = ω; his proof is
different, and we discuss it in Remark 6.2.

If equality holds and if F is invertible, but not isomorphic to either OC or ω,
then C is hyperelliptic. This statement was proved by Rosenlicht, and we reprove
it by modifying the standard proof in the case where C is smooth [13, pp. 344–345].
In this case, F is isomorphic to the pullback of O(n) under the map λ : C → P1

with n := h0(F)− 1. Conversely, if C is hyperelliptic and if 0 ≤ n ≤ g− 1, then for
F := λ∗O(n), equality holds in Clifford’s Inequality.

Surprisingly, equality can hold in Clifford’s Inequality, yet F is neither invert-
ible nor isomorphic to ω. Cases were discovered and classified by Eisenbud et
al. [7, Thm.A(c), p. 533]. Namely, C is rational, and F is isomorphic to the sheaf
generated over OC by H0(P1,O(n)) inside the pushout of O(n) under the normal-
ization map ν : P1 → C with n := h0(F) − 1. Moreover, C is not hyperelliptic;
in fact, the canonical map κ : P1 → Pg−1 is the Veronese embedding, so that C
and C ′ are birational, and C ′ is the rational normal curve Ng−1 of degree g − 1.
Furthermore, C is nearly normal; that is, C has a unique multiple point P , and its
maximal ideal sheaf M{P} is equal to the conductor C.

In addition, Eisenbud et al. [7, Rmk. p. 533] observed that this C is isomorphic to
a curve of degree 2g+1 in Pg+1 that lies on the cone S over the rational normal curve
Ng of degree g in Pg and that has a unique multiple point at the vertex; moreover,
the canonical map corresponds to the projection from a ruling. Conversely, if C
is isomorphic to a curve of degree 2g + 1 on S with a unique multiple point at
the vertex, then C is as described in the preceding paragraph; this converse was
discovered by the second author [17, Thm. 2.1, p. 461], and we reprove it differently
and in a stronger form as part of Theorem 3.4.

Thus we obtain three characterizations of a C whose canonical model C ′ is the
rational normal curve Ng−1: (1) a C with an F, other than OC or ω, for which
equality holds in Clifford’s Inequality; (2) a C isomorphic to a curve of degree
2n+ 1 in Pn+1 lying on the cone S over the rational normal curve Nn of degree n
in Pn for some n ≥ 2; a posteriori, n = g; and (3) a C that is either hyperelliptic
or else rational and nearly normal.

If C is nearly normal with unique multiple point P , then the local ring of C at P
is of an interesting sort, which was introduced and studied by Barucci and Fröberg.
Namely, they [3, p. 418] termed a 1-dimensional local Cohen–Macaulay ring with
finite integral closure almost Gorenstein if its Cohen–Macaulay type satisfies a
certain relation, recalled below in Definition 5.7. So, in Definition 5.7, we term
C nearly Gorenstein if the non-Gorenstein locus C − G consists of a single point
whose local ring is almost Gorenstein. Theorem 5.10 asserts, in particular, that if
C is nearly normal, but non-Gorenstein, then it is nearly Gorenstein.

More generally, Theorem 5.10 characterizes a non-Gorenstein C, rational or not,
whose canonical model C ′ is arithmetically normal ; that is, its homogeneous coor-
dinate ring is normal. Namely, if C is non-Gorenstein, then these seven conditions
are equivalent: (a) C ′ is arithmetically normal; (b) C ′ is smooth and projectively
normal; (c) C ′ is smooth and linearly normal; (d) C ′ is smooth and extremal; (e)
C ′ is of degree g + g − 1 where g is the genus of C, the normalization; (f) C is
nearly normal; and (g) C is nearly Gorenstein, and Ĉ is smooth, where Ĉ is the
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4 S. L. Kleiman and R. V. Martins

blowup with respect to ω. Furthermore, if these conditions hold, then, at its unique
multiple point, C is of multiplicity g− g+1 and of embedding dimension g− g+1;
thus C is of maximal embedding dimension, as the embedding is always bounded by
the multiplicity according to Lipman’s Corollary 1.10 [16, p. 657]. In order to prove
our theorem, we use Castelnuovo Theory and some propositions due to Barucci and
Fröberg [3].

Our final result, Theorem 6.5 applies to even more C. Namely, it asserts that,
if C is non-Gorenstein, then these six conditions are equivalent: (a) C ′ is pro-
jectively normal; (b) C ′ is linearly normal; (c) C ′ is extremal; (d) C ′ is of de-
gree g + g′ − 1 where g′ is the genus of C ′; (e) C is nearly Gorenstein; and (f)
C ′ = Spec

(
Hom(M{P}, M{P})

)
where M{P} is the maximal ideal sheaf of some

point P off the Gorenstein locus. Furthermore, if (f) holds, then C is of maximal
embedding dimension at P iff C ′ is Gorenstein. In order to prove this theorem,
we use Rosenlicht’s Main Theorem, that if C is nonhyperelliptic, then there is a

canonical isomorphism κ̂ : Ĉ ∼−→ C ′.
In short, Section 2 develops the preliminary theory of the canonical model C ′,

including the basic theory of hyperellipticity and some results about the degree d′

of C ′. Section 3 proves Clifford’s theorem, and applies it to characterize the case
where C ′ is the rational normal curve Ng−1. Section 4 characterizes the nonhyper-
elliptic and Gorenstein C, and proves that, for an arbitrary nonhyperelliptic C, the
canonical map induces an open embedding κ : G ↪→ C ′, where G is the Gorenstein
locus of C. Section 5 develops Castelnuovo Theory, and applies it to characterize
the case where C ′ is arithmetically normal. Finally, Section 6 proves Rosenlicht’s
Main Theorem, and applies it to characterize the case where C ′ is projectively
normal, or equivalently, linearly normal.

2. The canonical model

Let C be an arbitrary complete integral curve over an algebraically closed base
field k of arbitrary characteristic. Let g denote its arithmetic genus, and assume
g ≥ 2. Let ωC , or simply ω, denote the canonical sheaf (dualizing sheaf).

Recall that H0(ω) generates ω. In full generality, this fundamental result was
discovered and proved by Eisenbud, Harris, Koh, and Stillman [7, p. 536 mid] in
1988. Their argument is recalled in the proof of Lemma 3.1; in fact, with F := ω,
the lemma yields the result. The result was rediscovered, by Stöhr [22, Thm. 3.2,
p. 123] in 1993, and proved in a different way, which is described in Remark 6.2.

In the special case that C is Gorenstein (that is, ω is invertible), this result was
obtained by a number of authors. The first was Rosenlicht [19, p. 187 bot]; in fact,
he proved only that H0(ω) generates the pullback of ω to the normalization of
C; however, it follows immediately, via Nakayama’s lemma, that H0(ω) generates
ω, because ω is invertible. Catanese [4, Thm.D, p. 75] rediscovered the result in
1982; in fact, he worked with a reducible C, and found conditions guaranteeing
that H0(ω) generates ω.

Fujita [9, Thm. (A1), p. 39] rediscovered the Gorenstein case in 1983. In fact, he
claimed that Mumford and Saint-Donat’s 1973 proof [20, Prp. (1.5), p. 160] works
virtually without change, although they assumed C to be smooth. Then Fujita gave
his own proof. Finally, Hartshorne [13, Thm. 1.6, p. 379] gave yet another proof in
1986; furthermore, he [13, Rmk. 1.6.2, p. 380] cited Fujita’s work and Catanese’s
work.

cmsc.tex: December 4, 2008



The Canonical Model of a Singular Curve 5

Definition 2.1. As a matter of notation, given any integral scheme A and any
coherent sheaf F on A, let Torsion(F) denote its torsion subsheaf. And given any
map α : A → C and any sheaf G on C, set

OAG := α∗G
/
Torsion(α∗G).

Definition 2.2. Let ν : C → C denote the normalization map. Then OCω is
invertible, and is generated by H0(ω); hence, there is a natural nondegenerate map

κ : C → Pg−1.

If C is Gorenstein, then ω is invertible and generated by H0(ω). So then κ
factors uniquely:

κ = κν where κ : C → Pg−1.

Call the above maps κ and κ the canonical maps of C. Call their common image
the canonical model of C, and denote it by C ′. Set d′ := degC ′.

When appropriate, let κ and κ also denote the induced maps:

κ : C → C ′ and κ : C → C ′

Furthermore, denote the arithmetic genus of C ′ by g′, and that of C by g.

Remark 2.3. Under the conditions of Definition 2.2, if conversely κ = κν, then ω
and κ∗OC′(1) are equal, because both are equal to the subsheaf of ν∗OCω generated
by H0(ω); whence, then C is Gorenstein.

Definition 2.4. As usual, call C hyperelliptic if there is some map of degree 2

λ : C → P1.

Otherwise, call C nonhyperelliptic.

Example 2.5. Suppose C is a plane quartic. Then ω = OC(1). Hence C ′ = C and
κ = 1C . Furthermore, C is nonhyperelliptic by Proposition 2.6 (1) below.

Suppose also that C is 3-nodal. Then C = P1 and OCω = OC(4). Yet C depends
on three moduli. Thus the position of H0(ω) in H0(OCω) is crucial for κ and C ′.

Proposition 2.6. Assume C is hyperelliptic.
(1) Then there is an isomorphism ω ≃ λ∗OP1(g − 1).
(2) Then C is Gorenstein with double points at worst, and deg κ = deg κ = 2.
(3) Then κ = ελ where ε : P1 → Pg−1 is isomorphic to the Veronese embedding.
(4) Then λ is uniquely determined, up to an automorphism of P1.

Proof. Given a (closed) point P ∈ C, let u be a uniforming parameter at λ(P ) on
P1. Then dim(OP /⟨u⟩) ≤ 2 since deg λ = 2. Hence P is of multiplicity at most 2.

Set L := λ∗OP1(g − 1). Then (a) degL = 2g − 2 because deg λ = 2, and (b)
h0(L) ≥ g since the natural map OP1(g − 1) → λ∗L is plainly injective. Now, (a)
implies χ(L) = g − 1. So (b) implies h1(L) ≥ 1; whence, by duality, there is a
nonzero map w : L → ω. Since C is integral, w is injective; whence, Cok(w) = 0
since χ(L) = χ(ω). Thus w is bijective; so (1) holds.

The remaining assertions hold just because ω ≃ λ∗OP1(g−1) and deg λ = 2. �

Definition 2.7. As a further matter of notation, set

O := OC and O := ν∗OC .
cmsc.tex: December 4, 2008



6 S. L. Kleiman and R. V. Martins

Let C denote the conductor of O into O. Given a point P ∈ C, set

δP := dim(OP /OP ) and ηp := δP − dim(OP /CP ).

Furthermore, set

δ :=
∑

P∈C δp = h0(O/O) and η :=
∑

P∈C ηP = h0(O/C).

Finally, set

ω := ν∗ωC and Oω := ν∗(OCω).

In the next lemma, the main assertion is the equation Cω = ω. It was proved
implicitly by Rosenlicht [19, pp. 177–180 bot] and Serre [21, § 11, p. 80], and was
proved explicitly by Stöhr [22, Prp. 2.2, p. 113]. It is proved here a bit differently.

Lemma 2.8. We have Cω = COω = ω ⊂ ω ⊂ Oω. Furthermore, given P ∈ C,
there is an x ∈ ωP such that OPx = (Oω)P ; any such x satisfies CPx = ωP .

Proof. Plainly ω ⊂ Oω. Now, ω = Hom(O, ω) by general principles [11, Ex. 7.2(a),
p. 249]; so Cω ⊂ ω ⊂ ω. Given P ∈ C and y ∈ ωP , we have to prove y ∈ CPωP .

Since OP is a semilocal Dedekind domain, it’s a UFD; so there is an x ∈ ωP

such that OPx = (Oω)P . Fix such an x. Then y = ax for some a ∈ OP . We have

to prove a ∈ CP , for then y ∈ CPx ⊂ CPωP . So, given b ∈ OP , we have to prove
ab ∈ OP .

By general principles, O ∼−→ Hom(ω, ω); indeed, the natural map is injective,
whence bijective since source and target have the same Euler characteristic by
duality. So, given z ∈ ωP , we have abz ∈ (Oω)P since (Oω)P is an OP -module, and
we have to prove abz ∈ ωP .

Say z = cx where c ∈ OP . Now, y ∈ ωP , and ωP is an OP -module. So bcy ∈ ωP .
But bcy = abcx = abz. Thus abz ∈ ωP ⊂ ωP , as desired. �

In the next lemma, the first assertion is well known. It was proved by Rosenlicht
[19, Thm. 10, p. 179] first, and his proof was repeated by Serre [21, § 11, p. 80]. The
proof is repeated here, because, with one additional line, it yields Formula (2.9.1).
Alternatively, this formula holds because, as observed by Eisenbud et al. [7, p. 535

mid], the residue map induces a perfect pairing on OP /CP × (Oω)P /ωP .

Lemma 2.9. Fix P ∈ C. Then ηP ≥ 0, with equality iff OP is Gorenstein. Also,

ηp = δP − dim((Oω)P /ωP ). (2.9.1)

Proof. By Lemma 2.8, there is an x ∈ ωP such that CPx = ωP . The latter equation
is plainly equivalent to the injectivity of following map:

OP /CP → ωP /ωP defined by f 7→ fx.

The image is OPx/ωP . By duality, dim(ωP /ωP ) = δ. Hence,

ηP = dim(ωP /OPx). (2.9.2)

Therefore, ηP ≥ 0, and if equality holds, then OP is Gorenstein. Conversely, if
OP is Gorenstein, then there is a y ∈ ωP such that OP y = ωP , and so OP y = (Oω)P ;
whence, by Lemma 2.8, we may take x := y, and so η = 0.

Finally, dim((Oω)P /OPx) = δP as (Oω)P = OPx. So (2.9.2) yields (2.9.1). �

The following lemma is essentially Eisenbud et al.’s [7, Lem. 2, p. 534], and their
proof is essentially the alternative proof here.
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The Canonical Model of a Singular Curve 7

Lemma 2.10. We have degOCω = 2g − 2− η.

Proof. The Riemann–Roch Theorem and the birational invariance of χ(•) yield

degOCω = χ(OCω)− χ(OC) = χ(Oω)− χ(O).

But Formula (2.9.1) and Definition 2.7 yield χ(Oω/ω) = δ− η and χ(O/O) = δ. So
the additivity of χ(•) and the duality equation χ(ω) = −χ(O) yield the assertion:

degOCω = (χ(ω) + δ − η)− (χ(O) + δ) = 2g − 2− η.

Alternatively, for each P ∈ C, there is an xP ∈ ωP such that OPxP = (Oω)P by
Lemma 2.8. Plainly, the various OPxP are the stalks of an invertible sheaf L ⊂ ω
such that ν∗L ∼−→ OCω. Then degL = degω −

∑
P∈C dim(ωP /OPxP ), and also,

degL = deg ν∗L = degOCω; whence, (2.9.2) yields the asserted formula. �

Lemma 2.11. We have degOCω ≤ 2g − 2, with equality iff C is Gorenstein.

Proof. The assertion follows immediately from Lemma 2.10 and Lemma 2.9. �

Lemma 2.12. We have d′ ≤ (2g − 2)/(deg κ), with equality iff C is Gorenstein.

Proof. As d′ = (degOCω)/(deg κ), Lemma 2.11 yields the assertion. �

Proposition 2.13. If deg κ = 1, then C is nonhyperelliptic, and conversely.

Proof. If deg κ = 1, then C is nonhyperelliptic by Proposition 2.6(1). Conversely,
suppose deg κ ≥ 2. Then d′ ≤ g− 1 by Lemma 2.12. But C ′ spans Pg−1. Hence C ′

is the rational normal curve of degree g− 1 by a well-known old theorem [2, p. 18].
So Lemma 2.12 implies deg κ = 2 and C is Gorenstein. Hence κ : C → C ′ exists
and is of degree 2. So C is hyperelliptic with λ := κ since C ′ ≃ P1. �

Proposition 2.14. If C is nonhyperelliptic, then d′ = 2g − 2− η.

Proof. As d′ = (degOCω)/(deg κ), Proposition 2.13 and Lemma 2.10 yield the
assertion. �

Definition 2.15. Call C nearly normal if h0(O/C) = 1, that is, if C is has a unique
multiple point P and its maximal ideal sheaf M{P} is equal to the conductor C.

Proposition 2.16. Suppose that C is nonhyperelliptic. If C is smooth, then g = g
and d′ = 2g − 2. If C is singular, then d′ ≥ g + g − 1, with equality iff C is nearly
normal.

Proof. Proposition 2.13 yields deg κ = 1. Hence d′ = degOCω. So Lemma 2.10
yields d′ = 2g − 2− η. But clearly, η = δ − h0(O/C) and δ = g − g. Hence

d′ = g + g − 2 + h0(O/C).

If C is smooth, then C = C; whence, g = g and h0(O/C) = 0. If C is singular, then
h0(O/C) ≥ 1, with equality iff C is nearly normal. �
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8 S. L. Kleiman and R. V. Martins

3. Rational normal models

Preserve the setup introduced at the beginning of Section 2 and after Proposi-
tion 2.6. In this section, the main result is Theorem 3.4, which characterizes the
case in which the canonical model C ′ is equal to the rational normal curve.

Rosenlicht [19, Thm. 16, p. 188] was the first to prove the next lemma, Clifford’s
theorem, for any C, but for an invertible F. For an arbitrary F, Kempf [14, p. 32]
was the first to prove the bound in (1). Eisenbud, Harris, Koh, and Stillman [7,
Thm.A, p. 532] used Kempf’s argument (credited via [5, p. 544]) and Eisenbud’s
study of determinantal varieties [7, Thm.B, p. 537] to prove (1)–(5) and to gener-
alize (5) to an arbitrary F, thereby discovering a surprising new case; more about
this case is said in Remark 3.5. Here, (5) is proved for any C by adapting the proof
in [13, pp. 344–345], or what is virtually the same, that in [20, §1].

Lemma 3.1 (Clifford’s Theorem). Let F be torsion-free sheaf of rank 1 on C such
that h0(F) ≥ 1 and h1(F) ≥ 1.

(1) Then h0(F) + h1(F) ≤ g + 1. If equality holds, then H0(F) generates F.
(2) Equality holds in (1) and h0(F) = 1 iff F ≃ OC .
(3) Equality holds in (1) and h1(F) = 1 iff F ≃ ω.
(4) Assume C is hyperelliptic. Then equality holds in (1) iff F ≃ λ∗OP1(n) with

0 ≤ n ≤ g − 1; if so, then h0(F) = n+ 1.
(5) Assume equality holds in (1) and F is invertible. Assume either h0(F) = 2

or else h0(F) ≥ 3 and h1(F) ≥ 2. Then C is hyperelliptic.

Proof. In (1), let us prove the bound following Kempf [14, pp. 25, 32]. Observe
that the pairing

H0(F)×Hom(F, ω) → H0(ω)

is nondegenerate; that is, if (f, u) 7→ 0, then f = 0 or u = 0. But, given any three
k-vector spaces A, B, and C of dimensions a, b, and c and given any nondegenerate
pairing A×B → C, then a+ b ≤ c+1; indeed, A×B may be viewed canonically as
the set of k-points on a cone in the affine space whose k-points are A⊗B, and this
cone meets, only at the origin, the affine space whose k-points form the kernel of the
induced map A ⊗ B → C. (This part of Kempf’s proof has not appeared in print
before. However, according to Arbarello et al. [1, p. 135], the bound a+ b ≤ c+ 1
itself was “used” by H. Hopf in 1940/41.) Thus the bound holds.

In (1), assume equality holds. Following Eisenbud et al. [7, p. 536, mid], form
the subsheaf G ⊂ F generated by H0(F). Consider the induced sequence

H0(G)
u−→ H0(F) → H0(F/G) → H1(G)

v−→ H1(F) → H1(F/G).

By construction, u is an isomorphism; so h0(G) = h0(F). Now, h0(F) ≥ 1 and F is
torsion-free sheaf of rank 1; hence, F/G has finite support. So H1(F/G) = 0. Hence
v is surjective, and so h1(G) ≥ h1(F). Hence

h0(G) + h1(G) ≥ h0(F) + h1(F).

The left side is at most g+1 by the bound with G for F. The right side is equal to
g+1 by assumption. Hence h1(G) = h1(F). Hence v is an isomorphism. Therefore,
H0(F/G) = 0. Hence G = F. Thus H0(F) generates F.

To prove (2) and (3), assume equality holds in (1). If h0(F) = 1, then there is
a nonzero map OC → F; it is plainly injective, so bijective as χ(OC) = χ(F). If
h1(F) = 1, then similarly, there is a bijection F ∼−→ ω. The converses plainly hold.
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The Canonical Model of a Singular Curve 9

To prove (4), assume C is hyperelliptic. First, also assume equality holds in
(1). Set n := h0(F) − 1. Then h1(F) = g − n. So, by hypothesis, g − n ≥ 1.
So OP1(g − n − 1) has a section that vanishes nowhere on the image under λ of
the singular locus Σ of C. Let D be the section’s divisor of zeros, and form the
corresponding sequence

0 → OP1 → OP1(g − n− 1) → OD → 0. (3.1.1)

Set G := F⊗λ∗OP1(g−n−1). Pull (3.1.1) back to C, and then tensor with F. The
result is an exact sequence

0 → F → G → Oλ−1D → 0,

because F is invertible along λ−1D since λ(Σ) ∩D = ∅. Hence

χ(G) = χ(F) + deg(λ) · deg(D) = n+ 1− (g − n) + 2(g − n− 1) = g − 1. (3.1.2)

Consider the natural pairing

H0(F)×H0(OP1(g − n) → H0(G).

Plainly, it is nondegenerate. So h0(G) ≥ (n+1)+ (g−n)− 1 = g. Hence h1(G) ≥ 1
owing to (3.1.2). So

h0(G) + h1(G) ≥ g + 1.

But the opposite inequality holds by (1) for G. Hence equality holds, and h1(G) = 1.
Therefore, G ≃ ω by (3). But ω = λ∗OP1(g − 1) by Proposition 2.6(2). Thus
F ≃ λ∗OP1(n), and plainly 0 ≤ n ≤ g − 1.

Conversely, also assume F ≃ λ∗OP1(n) with 0 ≤ n ≤ g − 1. Then

h0(F) ≥ h0(OP1(n)) = n+ 1.

Now, ω ≃ λ∗OP1(g − 1) by Proposition 2.6(2). So Hom(F, ω) ≃ λ∗OP1(g − 1− n).
Therefore, Hom(F, ω) ⊃ H0(OP1(g − 1− n)); whence, h1(F) ≥ g − n. So

h0(F) + h1(F) ≥ g + 1,

But the opposite inequality holds by (1). So equality holds in (1). Thus (4) holds.
To prove (5), assume equality holds in (1) and F is invertible. Then H0(F)

generates F by (1). Set n := h0(F)− 1. Then there is a map ρ : C → Pn such that
F = ρ∗OPn(1) and ρC spans Pn. Moreover, the equality in (1) yields h1(F) = g−n.

First, also assume h0(F) = 2. Then n = 1 and h1(F) = g − 1. So the Riemann–
Roch theorem yields degF = 2. So ρ : C → P1 has degree 2. Thus C is hyperelliptic.

Finally, also assume h0(F) ≥ 3 and h1(F) ≥ 2. Let Σ be the singular locus of C.
Fix a point P of C off ρ−1ρΣ. Since h1(F) ≥ 2, there is a nonzero map u : F → ω
that vanishes at P . Now, n ≥ 2 and ρC spans Pn; so ρC is not a line. So there is a
point Q of C such that (1) ρQ does not lie on the line through ρP and ρS for any
S ∈ Σ and such that (2) u is not bijective at Q. Then the line through ρP and ρQ
does not contain ρS for any S ∈ Σ. So there is a hyperplane H containing ρP and
ρQ, but not ρS for any S ∈ Σ.

Set D := ρ−1H. Then D is an effective divisor, which contains P and Q, but no
point of Σ; furthermore, OC(D) = F. Fix a map f : OC → F whose locus of zeros
is D. Then f induces a map h : Hom(F, ω) → ω. Form the map

(u,−h) : F
⊕

Hom(F, ω) → ω.

Denote its kernel and image by F′ and G, and form the short exact sequence

0 → F′ → F
⊕

Hom(F, ω) → G → 0. (3.1.3)
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10 S. L. Kleiman and R. V. Martins

Plainly, F′ and G are torsion-free sheaf of rank 1.
Let R ∈ Σ be arbitrary. Then R /∈ D. So f : OC → F is bijective at R. Hence

h : Hom(F, ω) → ω is bijective at R. Therefore, F′ → F is bijective at R. It follows
that F′ is invertible and that F′ → F is injective. Furthermore, F′ → F is not
bijective at Q because u is not bijective at Q. Therefore, h1(F′) ≥ h1(F) ≥ 2 and
degF′ < degF.

The map u : F → ω induces a map v : OC → Hom(F, ω). With it, form the map(
f
v

)
: OC → F

⊕
Hom(F, ω).

It is injective as f is (or as v is). Plainly, the composition (u,−h)
(
f
v

)
vanishes.

Hence
(
f
v

)
factors through F′, so induces a section of F′. This section is nonzero,

and it vanishes at P since both f and v do. Hence F′ is nontrivial and h0(F′) ≥ 1.
On the category of torsion-free OC-modules M, the functor Hom(M, ω) is dual-

izing; see, for example, from [6, Thm. 21.21]. Now, by definition, h = Hom(f, ω)
and v = Hom(u, ω). Hence there are canonical isomorphisms f = Hom(h, ω) and

u = Hom(v, ω). Therefore, the functor turns the map
(
f
v

)
into the map

(u, h) : F
⊕

Hom(F, ω) → ω.

Plainly, the image of (u, h) is equal to that of (u,−h), namely, G.

Since
(
f
v

)
factors through F′, dually (u, h) factors through Hom(F′, ω). The

map into Hom(F′, ω) is surjective, because the dual of Sequence (3.1.3) is exact,
as G is torsion free. The map out of Hom(F′, ω) is injective, as this sheaf is
torsion free. Hence Hom(F′, ω) is equal to the image of (u, h), so to G. Therefore,
h1(F′) = h0(G).

Since the sequence (3.1.3) is exact, we therefore have

h0(F) + h1(F) ≤ h0(F′) + h1(F′).

By hypothesis, the left-hand side is equal to g + 1. By (1), the right-hand side is
at most g + 1. Hence the right-hand side is equal to g + 1. But F′ is nontrivial
and h0(F′) ≥ 1. Hence (2) implies h0(F′) ≥ 2. But h1(F′) ≥ 2 and F′ is invertible.
Thus the hypotheses of (5) are fulfilled with F′ in place of F. But degF′ < degF.
Therefore, by induction on degF, we may conclude that C is hyperelliptic. Thus
(5) holds. �
Proposition 3.2. Assume g = 2. Then C is hyperelliptic iff C is Gorenstein.

Proof. If C is Gorenstein, then Clifford’s Theorem 3.1(5) with F := ω implies that
C is hyperelliptic. The converse holds by Proposition 2.6(1). �
Lemma 3.3. Let S ⊂ Pn+1 be the cone, say with vertex P , over the rational normal
curve Nn of degree n in Pn with n ≥ 2. Let D be a curve on S of degree 2n + 1.
Then D contains P , and has arithmetic genus n; furthermore, the canonical map
of D is isomorphic to the projection from a ruling of S. If P is simple on D, then
D is hyperelliptic. If P is multiple, then its multiplicity is n + 1, it is resolved by
blowing up, and it is the only multiple point of D; moreover, then the maximal ideal
sheaf of P is equal to the conductor of D, and D is rational, but not Gorenstein.

Proof. Let Ŝ be the blowup of S at P , and E the exceptional divisor. Then Ŝ is a
rational ruled surface, and E is a section with E2 = −n, according to [11, Ch.V,
Sec. 2]. Let f be a ruling. Let H be the pullback of a hyperplane section. Then
H ≡ E+nf ; indeed, H · f = 1 as f maps isomorphically onto a line, and H ·E = 0
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The Canonical Model of a Singular Curve 11

as E contracts to P . Let D̂ be the strict transform of D. Say D̂ ≡ aE + bf . Then

b = 2n+ 1 since D̂ ·H = degD. But b ≥ an by [11, Cor. 2.18(b)]; hence, a = 1, 2.

Suppose a = 2. Then D̂ ·E = 1; hence, the map D̂ → D is an isomorphism, and

P ∈ D is simple. And D̂ ·f = 2; hence, the projection of Ŝ onto the base P1 induces

a map D̂ → P1 of degree 2. So D is hyperelliptic, with the projection from P as the
map λ : D → P1 of degree 2. But the projection of D from a ruling is equal to λ
followed by the projection of the rational normal curve Nn from a point; hence, the
projection from a ruling is isomorphic to the canonical map by Proposition 2.6(2).
Furthermore, the arithmetic genus of D is equal to 1+ (D+K) ·D/2 where K is a

canonical divisor on Ŝ. But K ≡ −2E − (2 + n)f by [11, Cor.V, 2.11]. Therefore,
D is of genus n.

Finally, suppose a = 1. Then D̂ · E = n + 1; hence, the multiplicity of P on D

is n + 1. And D̂ · f = 1; hence, the projection of Ŝ onto the base P1 induces an

isomorphism D̂ ∼−→ P1, and so P is resolved by blowing up, P is the only multiple
point of D, and D is rational.

Denote by A the local ring of D at P , by M its maximal ideal, and by A its
normalization. Then dim(A/MA) is equal to the multiplicity of A, so to n + 1.
Denote by n† the arithmetic genus of D. Then dim(A/M) = n† + 1 since D is
rational and P is its only multiple point. Hence n† ≥ n, with equality iff M = MA.

Set hi := hi(OD(1)). Then h0 ≥ n + 2 because D lies in no hyperplane H
of Pn+1; else, D lies in H ∩ S, so is a union of lines. Hence the Riemann–Roch
Theorem yields the inequality: n + 2 ≤ (2n + 1) + 1 − n† + h1, or n† ≤ n + h1.
If h1 > 0, then Clifford’s Inequality, Lemma 3.1(1), yields the opposite inequality:
n+ 2 + h1 ≤ n† + 1, or n+ h1 < n†. Thus h1 = 0 and so n† ≤ n.

Combined, the above two paragraphs yield the equations: n† = n and M = MA.
Therefore, M is an ideal in A, so is the conductor of A into A. As P is the only
multiple point, the maximal ideal sheaf of P is equal to the conductor of D.

The definition of η now yields η = n− 1. But n ≥ 2. So η ≥ 1. Hence D is not
Gorenstein by Lemma 2.9. Therefore, D is nonhyperelliptic by Proposition 2.6(1).
Denote by D′ the canonical model of D. Then degD′ = n− 1 by Proposition 2.16
since D is rational and nonhyperelliptic. But D′ spans Pn−1. Hence D′ is the
rational normal curve Nn−1 by a well-known old theorem [2, p. 18]. Since the
projection of D from a ruling of S is also birational onto the the rational normal
curve Nn−1, the projection is isomorphic to the canonical map. �

Theorem 3.4. The following three conditions are equivalent:

(a) either C is hyperelliptic, or C is rational and nearly normal;
(b) C is isomorphic to a curve of degree 2n+ 1 in Pn+1 that lies on the cone S

over the rational normal curve Nn of degree n in Pn for some n at least 2;
(c) C ′ is equal to the rational normal curve Ng−1 of degree g − 1 in Pg−1.

If (b) holds, then n = g, and the canonical map corresponds to the projection from
a ruling.

Proof. Condition (b) implies (a) and (c) and the final assertion by Lemma 3.3.
Assume that (c) holds and that C is nonhyperelliptic. Then deg κ = 1 by

Lemma 2.13. Hence κ : C → C ′ is an isomorphism since C ′ is smooth. So g = 0.
But d′ = g − 1. So (a) holds by Proposition 2.16. Thus (c) implies (a).

Finally, assume (a), and let’s prove (b). First, suppose C is hyperelliptic, and
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12 S. L. Kleiman and R. V. Martins

let λ : C → P1 be the map of degree 2. Pick a simple point P ∈ C, and set
L := λ∗OP1(g)⊗OC(P ). Then deg(L) = 2g+1. So L is very ample and h1(L) = 0
by Lemma 5.1. The Riemann–Roch Theorem yields h0(L) = g+2. So L provides an
embedding γ : C ↪→ Pg+1 with deg(γ(C)) = 2g + 1. Since L := λ∗OP1(g)⊗ OC(P ),
projection from γ(P ) is the map provided by λ∗OP1(g). So its image is the rational
normal curve Ng. Hence γ(C) lies on the cone over Ng with vertex at γ(P ).

Second, suppose C is rational, C has a unique multiple point P , and M{P} = C.

Then C ≃ P1. Take a coordinate function x on C that is finite on ν−1P . Set
A := k[x]. Let A be the ring of ν(Spec(A)) ⊂ C. Form the conductor of A into A,
say it’s the principal ideal fA. Then fA is equal to the maximal ideal of P in A
since M{P} = C. Hence A = k + fA. Further, deg(f) = g + 1 since dim(A/A) = g

as C is rational of genus g. Say f = xg+1+a1x
g+ · · · . Then xg+1 = f−a1x

g−· · · .
It follows that A is generated as a k-algebra by f, xf, . . . , xgf .

Consider the map γ : C → Pg+1 given by

γ(x) := (f, xf, . . . , xgf, 1).

Then γ factors through a map γ : C → Pg+1 because xif ∈ A. Further, γ is an
embedding on Spec(A) because A is generated as a k-algebra by f, xf, . . . , xgf ,
and γ is an embedding at infinity because f/xf = 1/x. Clearly, γ(P ) = (0, . . . , 0, 1)
and projection from γ(P ) maps γ(C) birationally onto Ng. Hence γ(C) lies on the
cone over Ng with vertex at γ(P ). Thus (b) holds with n := g. �

Remark 3.5. Part of Theorem 3.4 was known already. Eisenbud et al. [7, Rmk.
p. 533] noted that, if C is rational, if C has a unique multiple point P , and if
M{P} = C, then C is isomorphic to a curve of degree 2g+1 in Pg+1 that lies on the
cone S over the rational normal curve Ng of degree g in Pg and C is multiple at the
vertex. The converse was discovered by the second author [17, Thm. 2.1, p. 461],
who sketched an elementary computational proof.

Interest stems from Clifford’s Theorem. Indeed, Eisenbud et al. proved that
these C are just the curves that possess a noninvertible torsion-free sheaf F of rank
1 such that h0(F) ≥ 2 and h1(F) ≥ 2 and h0(F) + h1(F) = g + 1. Further, as in
the hyperelliptic case, for each integer n with 1 ≤ n ≤ g− 1, there is a unique such
F with h0(F) = n + 1; namely, in terms of the normalization map ν : C → C, the
OC-module F is isomorphic to the submodule of ν∗OC(n) generated by the vector
space H0(OC(n)).

4. The Gorenstein locus

Preserve the general setup introduced at the beginning of Section 2 and after
Proposition 2.6. In this section, the main result is Theorem 4.13, which asserts
that, if C is nonhyperelliptic, then its canonical map κ : C → Pg−1 induces an open
embedding of its Gorenstein locus G ⊂ C into its canonical model C ′. The proof

involves the blowup Ĉ of C with respect to ω, which is introduced in Definition 4.4.
First, Theorem 4.3 treats the special case in which C is nonhyperelliptic and

Gorenstein; in this case, κ induces an isomorphism, κ : C ∼−→ C ′. This result was
proved by Rosenlicht [19, Thm. 17, p. 189], who used the Riemann–Roch Theorem
and Clifford’s Theorem on C ′ much as here. In addition, Theorem 4.3 gives three
necessary and sufficient numerical conditions for this case to occur.

Furthermore, Theorem 4.3 asserts that, in this case, C ′ is extremal ; that is,
its genus is maximal for its degree, which is 2g − 2. The theorem also asserts the
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converse: every extremal curve of degree 2g−2 in Pg−1 is Gorenstein of genus g, and
is its own canonical model. These statements too were discovered by Rosenlicht [19,
Cor., p. 189], and proved much as here.

Neither Theorem 4.3 nor Theorem 4.13 depends logically on the other, and their
proofs are rather different in nature; the first is global, the second local.

Lemma 4.1. Assume that there is a nondegenerate embedding of C in Pr with
degree d. Set hi := hi(OC(1)). If d < 2r, then g ≤ d − r and h1 = 0. If d = 2r,
then either h1 = 0 and g ≤ r, or else h1 = 1 and g = r + 1 = h0 and OC(1) ≃ ω.

Proof. Since C ⊂ Pr is nondegenerate, r ≤ h0−1. By the Riemann–Roch Theorem,
h0 − 1 = d− g + h1. Hence g ≤ d− r + h1. And so g < r + h1 if d < 2r.

If h1 > 0, then Clifford’s Theorem 3.1(1) yields h0 +h1 ≤ g+1. But r ≤ h0 − 1.
So if h1 > 0, then r + h1 ≤ g. Thus if d < 2r, then h1 = 0 and so g ≤ d− r.

Assume therefore d = 2r. Then r ≤ h0 − 1 = 2r − g + h1. So g ≤ r + h1. Thus
g ≤ r if h1 = 0. Assume therefore h1 ≥ 1 also. Then r+ h1 ≤ g. Hence g = r+ h1.
So h0 − 1 = 2r − (r + h1) + h1 = r and h0 + h1 = g + 1.

Thus, if h1 = 1, then g = r + 1 = h0, and by Lemma 3.1(3), then OC(1)) ≃ ω.
Finally, if h1 ≥ 2, then the proof of Lemma 3.1(5) implies H0(OC(1)) defines a

map C → Pr of degree 2, contrary to hypothesis. Thus this case does not occur. �

Definition 4.2. A nondegenerate (reduced and irreducible) curve in Pr is said to
be extremal if its (arithmetic) genus is maximal among all curves of its degree.

Theorem 4.3. The following six conditions are equivalent:

(a) C is nonhyperelliptic and Gorenstein;
(b) d′ = 2g − 2;
(c) g′ = g.
(d) d′ = g′ + g − 2;
(e) κ : C → C ′ exists, and is an isomorphism.
(f) C is isomorphic to a curve C† ⊂ Pr that is nondegenerate, of degree 2r, and

extremal, for some r ≥ 2.

If (f) holds, then the isomorphism is equal to κ; in particular, C† = C ′ and r = g−1.

Proof. Lemma 2.11 implies d′ = 2g − 2 iff deg κ = 1 and C is Gorenstein. So
Proposition 2.13 implies (a) and (b) are equivalent.

Set hi := hi(OC′(1)). Then g ≤ h0 because C ′ is nondegenerate in Pg−1 by
construction.

Suppose (a) and (b) hold. Apply the Riemann–Roch Theorem to OC′(1), getting

g ≤ (2g − 2) + (1− g′) + h1, or g′ + 1 ≤ g + h1.

Now, (a) implies κ : C → C ′ exists, and by Proposition 2.13, is birational; whence,
g ≤ g′. Hence h1 ≥ 1. So h0 + h1 ≤ g′ + 1 by Clifford’s Theorem, 3.1(1). Thus

g′ + 1 ≤ g + h1 ≤ h0 + h1 ≤ g′ + 1;

whence, g = h0 and h0+h1 = g′+1. But g ≥ 2, so h0 ≥ 2. So, if h1 ≥ 2, then C ′ is
hyperelliptic by Clifford’s Theorem, 3.1(5); hence, C is hyperelliptic too, contrary
to (a). Hence h1 = 1. Thus (c) holds.

Conversely, suppose (c) holds. By hypothesis, g ≥ 2. So g′ ̸= 0. Hence C
is nonhyperelliptic by Proposition 2.6(3). So deg κ = 1 by Proposition 2.13. So
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d′ ≤ 2g− 2, with equality iff C is Gorenstein by Lemma 2.11. Apply the Riemann–
Roch Theorem to OC′(1): since g ≤ h0, and since g′ = g by (c), we get

g ≤ (2g − 2) + (1− g) + h1, or 1 ≤ h1,

with equality only if C is Gorenstein. Hence, g+h1 ≤ g′+1 by Clifford’s Theorem,
3.1(1). But g′ = g. Hence h1 = 1, and so C is Gorenstein. Thus (a) holds.

Plainly, (b) and (c) imply (d). Conversely, suppose (d) holds. Then C is nonhy-
perelliptic; otherwise, Proposition 2.6(3) implies g′ = 0 and d′ = g−1, contradicting
(d). So deg κ = 1 by Proposition 2.13. So d′ ≤ 2g− 2, with equality iff C is Goren-
stein by Lemma 2.11; whence, (d) implies g′ ≤ g, with equality iff C is Gorenstein.
Apply the Riemann–Roch Theorem to OC′(1): since g ≤ h0, we get

g ≤ (g′ + g − 2) + (1− g′) + h1, or 1 ≤ h1.

Hence g + h1 ≤ g′ + 1 by Clifford’s Theorem 3.1(1), and so g ≤ g′. Hence g = g′,
and so C is Gorenstein. Thus (a) and (c) hold.

Suppose (a) and (c) hold. Then, as noted above, κ : C → C ′ exists and is bira-
tional. But g′ = g by (c); hence, κ is an isomorphism. Thus (e) holds. Conversely,
(e) trivially implies (c). Thus (a)–(e) are equivalent.

Suppose (a)–(e) hold, and set r := g − 1. Then C is isomorphic to C ′ ⊂ Pr by
(e). Also, C ′ is nondegenerate by construction, and C ′ is of degree 2r by (b). If
r = 1, then C ′ is equal to P1, and so C ′ is of degree 1; hence, r ≥ 2. Furthermore,
C ′ is of genus r+1 by (c); hence, C ′ is extremal, because any nondegenerate curve
of degree 2r in Pr is of genus at most r + 1 by Lemma 4.1. Thus (f) holds.

Finally, suppose (f) holds; that is, C† ⊂ Pr is extremal of degree 2r. But, we just
proved that, given any Gorenstein curve of genus r + 1, its canonical model is an
extremal curve of degree 2r and of genus r+1 in Pr. So C† is of genus r+1. Hence
OC†(1) ≃ ω by Lemma 4.1. Hence the given isomorphism C ∼−→ C† is defined by
H0(ω), so coincides with κ. Thus the final assertion holds, and it implies (e). The
proof is now complete. �
Definition 4.4. For each integer n ≥ 0, set

ωn := (Symn ω)
/
Torsion(Symn ω).

Plainly,
⊕

ωn is a quasi-coherent sheaf of finitely generated OC-domains. Form

Ĉ := Proj(
⊕

ωn) and β : Ĉ → C,

with β the structure map. In keeping with the notation O := OC and O := ν∗OC

and with the notation ω := ν∗ωC and Oω := ν∗(OCω), set

Ô := β∗OĈ and ω̂ := β∗(ωĈ) and Ôω := β∗(OĈω).

Call Ĉ the blowup of C with respect to ω, and β the blowup map.

Proposition 4.5. The blowup Ĉ is an integral curve, the blowup map β : Ĉ → C is
birational, and the sheaf OĈω is invertible and generated by H0(ω). Furthermore,
given any integral scheme A and any nonconstant map α : A → C, the sheaf OAω is

invertible iff there is a map a : A → Ĉ such that α = βa; if so, then OAω = a∗OĈω.

Proof. Plainly, Ĉ is an integral scheme, and β : Ĉ → C is of finite type. Now, the
smooth locus of C is a nonempty open set U on which ω is invertible. Fix any U on
which ω is invertible. On U , the sum

⊕
ωn is locally isomorphic to the polynomial

algebra in one variable over OC ; whence, β restricts to an isomorphism over U .
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Thus β : Ĉ → C is birational, and so Ĉ is an integral curve.

Since Ĉ is integral and OĈ(1) is invertible, OĈ(1) is torsion free. Now, ω is

invertible on U ; so, on β−1U , the tautological surjection β∗ω � OĈ(1) is an iso-
morphism. Hence, this surjection induces a global isomorphism OĈω

∼−→ OĈ(1).

Thus OĈω is invertible. And it is generated by H0(ω) because ω is.
Suppose α = βa. Then α∗ω = a∗β∗ω. Now, the surjection β∗ω � OĈω is an

isomorphism on β−1U . Hence it induces a surjection α∗ω � a∗OĈω, which is an

isomorphism on α−1U ; and α−1U is nonempty since α is nonconstant. Since OĈω is
invertible, so is a∗OĈω. Hence a

∗OĈω is torsion free since A is integral. Therefore,
there is an induced isomorphism OAω ∼−→ a∗OĈω. Thus OAω is invertible.

Conversely, assume OAω is invertible. Then the surjection α∗ω � OAω defines a
C-map p : A → P(ω) by general principles [10, Prp. (4.2.3), p. 73]. Plainly, p factors

through Ĉ ⊂ P(ω) if, for each n ≥ 0, the induced map wn : α
∗ Symn ω → (OAω)

⊗n

factors through α∗ωn. But wn does factor because, on the one hand, the surjection
α∗ Symn ω � α∗ωn is an isomorphism on α−1U , so its kernel is torsion, and on the
other hand, (OAω)

⊗n is torsion free since OAω is invertible and A is integral. �

Definition 4.6. Denote by G the largest open subset of C where ω is invertible—
that is, where the local rings of C are Gorenstein—and call G the Gorenstein locus.

Corollary 4.7. The Gorenstein locus G of C is the largest open subset A such that
the blowup map β restricts to an isomorphism β−1A ∼−→ A.

Proof. Taking U := G in the first paragraph of the proof of Proposition 4.5, we
find that β restricts to an isomorphism β−1G ∼−→ G. On the other hand, given an
A such that β restricts to an isomorphism β−1A ∼−→ A, plainly ω is invertible on

A as OĈω is invertible on Ĉ by Proposition 4.5; whence, A lies in G. �

Definition 4.8. Owing to Proposition 4.5, the normalization map ν : C → C and
the canonical map κ : C → C ′, both factor uniquely through normalization map

ν̂ : C → Ĉ; that is,

ν = βν̂ and κ = κ̂ν̂.

In view of Corollary 4.7, it is natural to set κ := κ̂ ◦ (β|G)−1, thereby extending
the definition of κ for a Gorenstein C to an arbitrary C. In addition to κ : C → C ′,

call κ̂ : Ĉ → C ′ and κ : G → C ′ the canonical maps of C.

Corollary 4.9. The invertible sheaf OĈω is of degree 2g − 2− η.

Proof. Proposition 4.5 implies ν̂∗OĈω = OCω; so OĈω and OCω are of the same
degree. Hence Lemma 2.10 yields the assertion. �

Lemma 4.10. Let F be a coherent sheaf on C. Let P ∈ C be a (closed) point at
which F is invertible and generated by H0(F). Assume either

(a) there exists a (closed) point Q ∈ C such that Q ̸= P , such that F is invertible
at Q too, and such that H0(M{Q}M{P}F) = H0(M{Q}F), or

(b) the natural map v : H0(M{P}F) → H0(M{P}F/M
2
{P}F) is not surjective.

Then there exists a coherent subsheaf G ⊂ F such that

h0(G) = h0(F)− 1 and h1(G) = h1(F) + 1

and such that Supp(F/G) is {P} ∪ {Q} if (a) holds or is {P} if (b) holds.
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Proof. Suppose (a) holds. Take G := M{Q}M{P}F. Then Supp(F/G) consists

of P ∪ Q. And h0(F/G) = 2 since F is invertible at both P and Q; whence,
χ(G) = χ(F)− 2. So it remains to prove h0(G) = h0(F)− 1.

As F is invertible at Q, we have h0(F/M{Q}F) = 1. So the inclusionM{Q}F ↪→ F

yields h0(M{Q}F) ≥ h0(F) − 1. By hypothesis, H0(M{Q}M{P}F) = H0(M{Q}F).

Hence h0(M{Q}M{P}F) ≥ h0(F) − 1. But H0(M{Q}M{P}F) ⊂ H0(M{P}F).

And H0(M{P}F) $ H0(F) because F is generated by H0(F) at P . Therefore,

h0(M{P}M{Q}F) ≤ h0(F)− 1. Thus h0(G) = h0(F)− 1, and the proof is complete
when (a) holds.

Suppose (b) holds. Take a vector subspace V ofH0(M{P}F/M
2
{P}F) such that V

contains the image of H0(M{P}F) and V is of codimension 1. Then take a subsheaf

H of M{P}F/M
2
{P}F such that H0(H) = V . Let G be the preimage of H in M{P}F.

Then Supp(F/G) = {P}. Now, h0(F/G) = h0(F/M{P}F) + h0(M{P}F/G). But

h0(F/M{P}F) = 1 as F is invertible at P , and h0(M{P}F/G) = 1 by construction.

So h0(F/G) = 2; whence, χ(G) = χ(F)−2. So it remains to prove h0(G) = h0(F)−1.
Form this natural commutative diagram with exact rows:

0 −−−−→ H0(G) −−−−−−−→ H0(M{P}F)
w−−−−→ H0(M{P}F/G)y v

y ∥∥∥
0 −→ H0(G/M2

{P}F)
u−→ H0(M{P}F/M

2
{P}F) −→ H0(M{P}F/G)

By construction, G/M2
{P}F = H. Hence Im(u) = V . By construction, V ⊃ Im(v).

Therefore, w = 0. Hence H0(G) ∼−→ H0(M{P}F). However, h0(F/M{P}F) = 1.

And H0(M{P}F) $ H0(F) because F is generated by H0(F) at P . Therefore, the

inclusion M{P}F ↪→ F gives h0(M{P}F) = h0(F)− 1. Thus h0(G) = h0(F)− 1, and
the proof is complete. �

Lemma 4.11. Let G ⊂ ω be a coherent subsheaf. Assume that Supp(ω/G) lies
in the Gorenstein locus G and that h0(G) = g − 1 and h1(G) = 2. Then C is
hyperelliptic.

Proof. Set L := Hom(G, ω). Then h0(L) = 2 by duality. So there is an f in H0(L)
that is not a multiple of the inclusion h : G ↪→ ω. Set H := G + fG ⊂ ω. Then
H0(G) ⊆ H0(H).

For a moment, suppose H0(G) = H0(H). Then f induces a k-linear endomor-
phism of H0(G). View f as multiplication by an element of the function field of C.
Then, by the Cayley–Hamilton theorem, f is integral over k, so lies in k, since k is
algebraically closed. Therefore, f is a multiple of h : G ↪→ ω, contrary to the choice
of f . Thus H0(G) $ H0(H).

By hypothesis, h0(G) = g − 1. So h0(H) = g. Hence H0(H) = H0(ω). But
H0(ω) generates ω. Hence H = ω.

Set S := Supp(ω/G). By hypothesis, S ⊂ G. So ω is invertible along S. It
follows that fG = ω along S, since G+ fG =: H and H = ω. Hence G is invertible
along S. But G is equal to ω off S. Therefore, L is invertible. Furthermore, L is
generated by its two global sections f and h.

By duality, h0(L) = 2 and h1(L) = g−1. Hence, by the Riemann–Roch Theorem,
deg(L) = 2. Therefore, the pair (L, H0(L)) defines a map C → P1 of degree 2.
Thus C is hyperelliptic, as asserted. �
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Lemma 4.12. (1) Let P ∈ C be a (closed) point. Then h1(M{P}ω) = 1.
(2) Let P, Q ∈ C be distinct (closed) points, with Q multiple. Then

(a) h1(M{P}M{Q}ω) = 1, and

(b) h0(M{P}M{Q}ω) < min{h0(M{P}ω), h
0(M{Q}ω) }.

Proof. Consider (1). First, suppose P is simple. Then ω is invertible at P . Hence
the inclusion M{P}ω ↪→ ω yields this long exact sequence:

H0(M{P}ω)
u−→ H0(ω) → k → H1(M{P}ω) → H1(ω) → 0.

Now, H0(ω) generates ω. Hence u isn’t surjective. So H1(M{P}ω)
∼−→ H1(ω). But

h1(ω) = 1. Thus (1) holds when P is simple.
Suppose P is multiple. Then C ⊂ M{P}. Hence Cω ⊂ M{P}ω ⊂ ω. But

Cω = ν∗(ωC) by Lemma 2.8; whence, h1(Cω) = 1. Therefore,

1 = h1(Cω) ≥ h1(M{P}ω) ≥ h1(ω) = 1.

Thus (1) also holds when P is multiple, and so (1) always holds.
Consider (2). Again, first suppose P is simple. Then the normalization map

ν : C → C is an isomorphism over P . Set P := ν−1P , and let M{P} denote its

maximal ideal sheaf. Then h1(M{P}ωC) = 1 by (1) applied to P ∈ C. However,

ν∗
(
M{P}ωC

)
= M{P}ω, and ω = Cω by Lemma 2.8. Hence h1(M{P}Cω) = 1.

Since Q is multiple, C ⊂ M{Q}. Hence M{P}Cω ⊂ M{P}M{Q}ω ⊂ ω. Therefore,

1 = h1(M{P}Cω) ≥ h1(M{P}M{Q}ω) ≥ h1(ω) = 1.

Thus (2)(a) holds when P is simple.
Suppose that P is multiple. Then C ⊂ M{P}M{Q} since P and Q are distinct.

So Cω ⊂ M{P}M{Q}ω. But Cω = ν∗(ωC) by Lemma 2.8, and M{P}M{Q}ω ⊂ ω.
Therefore,

1 = h1(Cω) ≥ h1(M{P}M{Q}ω) ≥ h1(ω) = 1.

Thus (2)(a) also holds when P is multiple, and so (2)(a) always holds.
Finally, the inclusion M{P}M{Q}ω ↪→ M{P}ω yields this long exact sequence:

0 → H0(M{P}M{Q}ω) → H0(M{P}ω) → H0(M{P}ω/M{P}M{Q}ω)

→ H1(M{P}M{Q}ω) → H1(M{P}ω) → 0.

Hence (1) and (2)(a) imply h0(M{P}M{Q}ω) < h0(M{P}ω). Similarly, the inclusion

M{P}M{Q}ω ↪→ M{P}ω yields h0(M{P}M{Q}ω) < h0(M{Q}ω) as h1(M{Q}ω) = 1
by (1) with P := Q. Thus (2)(b) holds, and the proof is complete. �

Theorem 4.13. If C is nonhyperelliptic, then κ : G → C ′ is an open embedding.

Proof. Set Ĝ := β−1G. Then β restricts to an isomorphism β−1G ∼−→ G by

Corollary 4.7. So it suffices to prove κ̂ restricts to an isomorphism Ĝ ∼−→ κ̂Ĝ.

Let P̂ ∈ Ĝ be an arbitrary (closed) point. For a moment, assume (a) that H0(ω)

separates P̂ from every other point Q̂ ∈ Ĉ and (b) that H0(ω) separates tangent

vectors at P̂ . More precisely, (a) means that there is an f ∈ H0(ω) whose image in
H0(OĈω) lies in H0(M{Q̂}OĈω), but not in H0(M{P̂}OĈω). And (b) means that

H0(M{P̂}OĈω) maps onto H0(M{P̂}OĈω
/
M2

{P̂}
OĈω).

Condition (a) implies that κ̂Q̂ ̸= κ̂P̂ , because f defines a hyperplane in Pg−1
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that contains κ̂Q̂, but not κ̂P̂ . Taking Q̂ ∈ Ĝ shows that the restriction Ĝ → C ′ is

injective. Taking Q̂ /∈ Ĝ shows that Ĝ = κ̂−1κ̂Ĝ; whence, Ĝ → κ̂Ĝ is finite since

κ̂ : Ĉ → C ′ is finite. Condition (b) now implies that Ĝ → κ̂Ĝ is an isomorphism
owing to a simple lemma of Commutative Algebra [11, Lem. II-7.4, p. 153]. Thus
it remains to prove (a) and (b).

Set P := βP̂ and Q := βQ̂. To prove (a), it suffices to prove the inequality

h0(M{P}M{Q}ω) < h0(M{Q}ω). (4.13.1)

Indeed, (4.13.1) implies that there is an f in H0(M{Q}ω) not in H0(M{P}ω). But

M{Q}OĈ ⊂ M{Q̂}, and β : Ĉ → C is an isomorphism at P̂ by Corollary 4.7. Hence

(a) holds. Now, (4.13.1) holds if Q is multiple by Lemma 4.12(2), and if Q is simple
by Lemma 4.10 with F := ω and by Lemma 4.11.

Finally, H0(M{P}ω) maps onto H0(M{P}ω
/
M2

{P}ω) owing to Lemma 4.10 with

F := ω and to Lemma 4.11. But β : Ĉ → C is an isomorphism at P̂ by Proposi-
tion 4.7. Thus (b) holds, and the proof is complete. �

5. Arithmetically normal models

Preserve the general setup introduced at the beginning of Section 2, after Propo-
sition 2.6, and before Definition 4.4 and Definition 4.8. In this section, the main
result is Theorem 5.10, which gives necessary and sufficient conditions for the canon-
ical model C ′ to be arithmetically normal. The main new tool is Castelnuovo The-
ory. It also yields a third proof, given in Remark 5.6, that, if C is nonhyperelliptic
and Gorenstein, then the canonical map yields an isomorphism κ : C ∼−→ C ′.

Lemma 5.1. Let F be a torsion-free sheaf of rank 1 on C, and P ∈ C.
(1) If χ(F) ≥ g, then h1(F) = 0.
(2) If χ(F) ≥ g + h0(F/M{P}F), then H0(F) generates F at P .

(3) If F is invertible and deg(F) ≥ 2g + 1, then F is very ample and h1(F) = 0.

Proof. To prove (1), suppose h1(F) ̸= 0. Then, by duality, there is a nonzero map
F → ω. It is injective as F is torsion-free of rank 1. Hence χ(F) ≤ χ(ω), contrary
to hypothesis. Thus (1) holds.

To prove (2), note that χ(M{P}F) = χ(F) − h0(F/M{P}F) ≥ g; so (1) implies

that h1(M{P}F) = 0. Hence H0(F) → H0(F/M{P}F) is surjective. Thus (2) holds.
To prove (3), note that χ(F) ≥ g + 2 by the Riemann–Roch theorem. Hence

(1) implies that h1(F) = 0, and (2) implies that H0(F) generates F at every point.
Suppose F is not very ample. Then either H0(F) does not separate points or it
does not separate tangent directions; either way, Lemma 4.10 implies that there is
a coherent subsheaf G ⊂ F such that h0(G) = h0(F) − 1 and h1(G) = h1(F) + 1.
Then h1(G) ≥ 1, and χ(G) = χ(F) − 2 ≥ g, contrary to (1) applied with F := G.
Thus (3) holds, and the proof is complete. �
Proposition 5.2. Assume C is not Gorenstein. Then OĈω is very ample, and

h1
(
OĈω

⊗n
)
= 0 for n ≥ 1.

Proof. Fix a (closed) point P ∈ C. Set ξP := dim(ÔP /OP ). Recall Ôω := β∗(OĈω).

Set µP := dim((Ôω)P /ωP ). Lemma 2.8 yields an x ∈ ωP so that OPx = (Oω)P .

Then ÔPx = (Ôω)P since OĈω is invertible. Hence dim((Ôω)P /OPx) = ξP . Hence

ξP = ηP + µP
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owing to Equation 2.9.2. If C is not Gorenstein at P , then ηP ≥ 1 by Lemma 2.9,
and µP ≥ 1 by the proof of Proposition 28 in [3, p. 438].

Let ĝ denote the arithmetic genus of Ĉ. Then ĝ = g−
∑

P∈C ξP . Set µ :=
∑

µP .
Then ĝ = g − η − µ. However, degOĈω = 2g − 2− η by Corollary 4.9. Therefore,
degOĈω = 2ĝ− 2+ η+2µ. But η ≥ 1 and µ ≥ 1 since C is not Gorenstein. Hence

deg
(
OĈω

⊗n
)
≥ 2ĝ + 1 for n ≥ 1. So Lemma 5.1(3) yields the assertion. �

Definition 5.3. Call the canonical model C ′ ⊂ Pg−1 linearly normal if the linear
series of hyperplane sections is complete, in other words, if h0(OC′(1)) = g.

Call C ′ projectively normal if the linear series of hypersurface sections of degree
n is complete for every n ≥ 1, in other words, if the natural map

Symn H0(ω) → H0(OC′(n))

is surjective for every n ≥ 1.

Lemma 5.4. (1) The model C ′ is linearly normal iff it is projectively normal.

(2) If C is Gorenstein, then C ′ is linearly normal.

(3) If C is not Gorenstein, then h1(OC′(l)) = 0 for l ≥ 1; furthermore, then C ′

is linearly normal iff d′ = g + g′ − 1.

Proof. Trivially, C ′ is linearly normal if it is projectively normal. In other words,
sufficiency holds in (1).

If C is Gorenstein, then κ : C → C ′ exists and κ∗OC′(1) = ω. Hence, then
h0(OC′(1)) ≤ h0(ω) = g. But h0(OC′(1)) ≥ g always. Thus (2) holds.

Assume C is hyperelliptic. Then C ′ is equal to the rational normal curve of
degree g − 1 in Pg−1 by Theorem 3.4 or by Proposition 2.6(3). So g′ = 0 and
h1(OC′(1)) = 0; furthermore, C ′ is linearly normal and projectively normal. Thus
(1) and (2) hold in this case. And (3) does not apply, since C is Gorenstein by
Proposition 2.6(2). So from now on, assume C is nonhyperelliptic.

To prove necessity in (1) and to prove (3), let’s apply Castelnuovo Theory as
presented in [1, pp. 114–117]. First, note that, by the General Position Theorem [1,
p. 109], a general hyperplane H meets C ′ in a set Γ of d′ distinct points any g − 1
of which are linearly independent. Second, for l ≥ 1, form the linear series of
hypersurfaces of degree l in H containing Γ, and note that, by the lemma on p. 115
in [1], the series has (projective) dimension at least min{d′ − 1, l(g − 2)}.

Consider the following standard left exact sequence:

0 → H0(OC′(l − 1))
u−→ H0(OC′(l))

v−→ H0(OΓ(l)). (5.4.1)

Let Vl denote the image of H0(OPg−1(l)) in H0(OC′(l)), and set Wl := v(Vl). Then
dim(Wl) ≥ min{d′, l(g − 2) + 1} by the second note above. Hence

h0(OC′(l))− h0(OC′(l − 1)) ≥ min{d′, l(g − 2) + 1}. (5.4.2)

Also, if equality holds in (5.4.2), then v
(
H0(OC′(l))

)
= Wl since both sides have

the same dimension. So H0(OC′(l)) is spanned by Vl and Im(u). But u(Vl−1) ⊂ Vl.
And, if C ′ is linearly normal, then V1 = H0(OC′(1)). Hence, if in addition, equality
holds in (5.4.2) for l ≥ 2, then induction on l yields Vl = H0(OC′(l)) for l ≥ 1; in
other words, then C ′ is projectively normal. Thus to complete the proof of (1), we
have to prove that equality holds in (5.4.2) for l ≥ 2.
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Set h(l) := h1(OC′(l)). Then h0(OC′(l)) = ld′ + 1 − g′ + h(l) by the Riemann–
Roch Theorem. Hence the bound (5.4.2) is equivalent to this bound:

d′ − (h(l − 1)− h(l)) ≥ min{d′, l(g − 2) + 1}. (5.4.3)

Here h(l − 1)− h(l) ≥ 0 because the sequence (5.4.1) continues, ending with

H1(OC′(l − 1)) → H1(OC′(l)) → 0.

Since C is nonhyperelliptic, d′ = 2g − 2− η by Proposition 2.14. So

(l(g − 2) + 1)− d′ = (l − 2)(g − 2)− 1 + η.

For l ≥ 2, the right side is nonnegative unless η = 0 and either l = 2 or g = 2. But
Lemma 2.9 implies η = 0 iff C is Gorenstein. So, since C is nonhyperelliptic, by
Proposition 3.2, the right side of (5.4.3) is nonnegative unless η = 0 and l = 2.

Hence, for l ≥ 3, the right side of (5.4.3) is equal to d′. But h(l − 1)− h(l) ≥ 0.
Therefore, equality holds in (5.4.3), and h(l − 1) = h(l). But, by Lemma 5.1(1) or
by Serre’s Theorem, h(l) = 0 for l ≫ 0. So h(l) = 0 for l ≥ 2.

Suppose η > 0. Then similarly, equality holds in (5.4.3) for l = 2 too, and
h(1) = 0. So equality holds in (5.4.2) for l ≥ 2, as desired. Thus (1) holds. And
h0(OC′(1)) = d′ + 1− g′ by the Riemann–Roch Theorem. Thus (3) holds.

Finally, instead suppose η = 0. Then d′ = 2g − 2. And h0(OC′(1)) = g by (2).
So the Riemann–Roch Theorem yields g = (2g − 2) + 1− g′ + h(1). But g′ ≥ g as
κ : C → C ′ exists. Hence h(1) ≥ 1. Now, take l = 2 in (5.4.3), getting 2g−2−h(1)
on the left as h(2) = 0, and 2g−3 on the right. Hence, h(1) = 1 and equality holds
in (5.4.3) for l = 2. So equality holds in (5.4.2) for l ≥ 2, as desired. Thus (1)
always holds. The proof is now complete. �

Proposition 5.5. If C is Gorenstein, then C ′ is projectively normal.

Proof. The assertion is immediate from Lemma 5.4(1), (2). �

Remark 5.6. Assume C is nonhyperelliptic and Gorenstein. Then Castelnuovo
Theory yields a third proof that κ : C → C ′ is an isomorphism (the other two are the
proof of Theorem 4.3 by computing global invariants and the proof of Theorem 4.13
by separating points and tangent directions.

Indeed, take a nonzero section in H0(ω), and use it to form, for each l ≥ 2, the
rows in the following commutative diagram:

0 −−→ H0(ω⊗(l−1)) −−−→ H0(ω⊗l)

wl−1

x wl

x
0 −→ H0(OC′(l − 1)) −→ H0(OC′(l))

The w’s are induced by κ, so are injective. We have to prove they are bijective, as
C = Proj

(⊕
H0(ω⊗l)

)
since ω is ample, and as C ′ = Proj

(⊕
H0(OC′(l))

)
.

Let’s proceed by induction on l. First off, w1 is bijective because C ′ is linearly
normal by Lemma 5.4(2). Suppose wl−1 is bijective. Then wl is bijective iff

h0(ω⊗l)− h0(ω⊗(l−1)) = h0(OC′(l))− h0(OC′(l − 1)). (5.6.1)

Now, Proposition 2.13 implies deg κ = 1; whence, deg(ω⊗l) = deg(OC′(l)). Hence,
owing to the Riemann–Roch Theorem, Equation 5.6.1 holds iff

h1(ω⊗l)− h1(ω⊗(l−1)) = h1(OC′(l))− h1(OC′(l − 1)). (5.6.2)
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But h1(ω⊗l) = 0 for l ≥ 2 by Lemma 5.1, and h1(ω) = 1 by duality. Furthermore,
it was shown in the course of the proof of Lemma 5.4 that h1(OC′(l)) = 0 for l ≥ 2
and that h1(OC′(1)) = 1. Thus Equation 5.6.2 holds, and the proof is complete.

Definition 5.7. Call C nearly Gorenstein if the complement of the Gorenstein
locus consists of a single point P and if the local ring OP is almost Gorenstein in
the sense of Barucci and Fröberg [3, p. 418], namely, if

ηP := dim(OP /OP )− dim(OP /CP ) = dim(Ext1(k,OP ))− 1

where k is the algebraically closed ground field.

Lemma 5.8. Assume C is not Gorenstein. Then these conditions are equivalent:

(a) h0(OĈω) = g;

(b) H0(ω) = H0(OĈω);
(c) C is nearly Gorenstein.

If (a)–(c) hold, then κ̂ : Ĉ → C ′ is an isomorphism, and C ′ is linearly normal.

Proof. Note that h0(ω) = g and H0(ω) ⊂ H0(OĈω). So (a) and (b) are equivalent.
Preserve the notation of the proof of Proposition 5.2. Form the exact sequence

0 → ω → Ôω → Ôω/ω → 0.

It yields g − 1 + µ = h0(OĈω) since h1(OĈω) = 0 by that proposition. Hence

h0(OĈω) = g iff µ = 1. But µ :=
∑

µP and µP ≥ 0. Hence µ = 1 iff there is one
and only one P such that µP = 1. But µP = 1 iff OP is almost Gorenstein, but not
Gorenstein, by Proposition 28 in [3, p. 438]. Thus (a) holds iff (c) holds.

The sheaf OĈω is very ample by Proposition 5.2; so H0(OĈω) defines an embed-

ding of Ĉ into projective space. Assume also that H0(ω) = H0(OĈω). Then this

embedding is essentially the canonical map κ̂ : Ĉ → C ′.
Alternatively, we can prove that κ̂ is an isomorphism via Castelnuovo Theory

proceeding as in Remark 5.6, but with Ĉ and OĈω in place of C and ω. This time,

h1
(
OĈω

⊗l
)
= 0 for l ≥ 1 by Proposition 5.2; furthermore, it was shown in the

course of the proof of Lemma 5.4 that now h1(OC′(l)) = 0 for l ≥ 1.
Since H0(ω) = H0(OĈω) and since κ̂ is an isomorphism, h0(OC′(1)) = g; in

other words, C ′ is linearly normal, and the proof is complete. �

Definition 5.9. Say that C ′ is arithmetically normal if its homogeneous coordinate
ring is normal.

Theorem 5.10. If C is not Gorenstein, then these seven conditions are equivalent:

(a) C ′ is arithmetically normal;
(b) C ′ is smooth and projectively normal;
(c) C ′ is smooth and linearly normal;
(d) C ′ is smooth and extremal;
(e) d′ = g + g − 1;
(f) C is nearly normal;
(g) C is nearly Gorenstein, and Ĉ is smooth.

If these conditions hold, then at its unique multiple point, C is of multiplicity g−g+1
and of (maximal) embedding dimension g − g + 1.
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Proof. Let A be the homogeneous coordinate ring of C ′. Then A is normal iff C ′

is smooth and A is of depth 2 at the irrelevant ideal by Serre’s criterion. But this
depth condition holds iff C ′ is projectively normal by a well-known theorem due to
Grothendieck [15, (2.2.4)]. Thus (a) and (b) are equivalent.

Conditions (b) and (c) are equivalent by Lemma 5.4.

Suppose (c) holds. Then C ′ is linearly normal and C is not Gorenstein; hence,
Lemma 5.4(3) yields d′ = g + g′ − 1. In addition, C ′ is smooth. Hence κ : C → C ′

is an isomorphism. So g′ = g. Thus (e) holds.

Conversely, suppose (e) holds. Then the Riemann–Roch Theorem yields

h0(OC′(1)) = (g + g − 1) + 1− g′ + h1(OC′(1)).

Since C is not Gorenstein, h1(OC′(1)) = 0 by Lemma 5.4(3). And g ≤ h0(OC′(1))
as C ′ ⊂ Pg−1 is nondegenerate. Therefore, g ≤ g + g − g′, so g′ ≤ g; whence,
κ : C → C ′ is an isomorphism. So C ′ is smooth, and g′ = g. The latter yields
d′ = g + g′ − 1; so C ′ is linearly normal by Lemma 5.4(3). Thus (c) holds.

Conditions (e) and (f) are equivalent by Proposition 2.16. Thus (a)–(c) and
(e)–(f) are equivalent.

Again, suppose (c) holds. Then C ′ is smooth. Hence κ̂ : Ĉ → C ′ is an isomor-

phism. So Ĉ is smooth. In addition, C ′ is linearly normal, or h0(OC′(1)) = g.
But κ̂∗OC′(1) = OĈω. So h0(OĈω) = g. By hypothesis, C is not Gorenstein. By
Lemma 5.8, therefore, C is nearly Gorenstein. Thus (g) holds.

Conversely, suppose (g) holds. Then C is nearly Gorenstein. By Lemma 5.8,

therefore, κ̂ : Ĉ → C ′ is an isomorphism, and C ′ is linearly normal. In addition, Ĉ
is smooth. So C ′ is smooth. Thus (c) holds. Thus (a)–(c), (e)–(g) are equivalent.

The last assertion concerns the unique multiple point P ∈ C. Denote its maximal
ideal in its local ring OP by m. Then by general principles, the multiplicity of P
is just h0

(
OP /mOP

)
; moreover, h0

(
OP /OP

)
= g − g. But M{P} = C by (f); so

mOP = m. Thus the multiplicity is g − g + 1 at P .

By (f) and (g), the ring OP is almost Gorenstein, but not Gorenstein. Hence the

endomorphism ring of M{P} is equal to ÔP by Proposition 28 in [3, p. 438]. But

ÔP is smooth, so Gorenstein. Hence OP is of maximal embedding dimension by
Proposition 25 in [3, p. 436].

It remains to prove that (d) is equivalent to the other conditions. Clearly, we
may assume C ′ is smooth. Then κ : C → C ′ is an isomorphism, and so g′ = g.
Hence (e) holds if and only if g′ = d′ − r with r := g − 1.

Since C is not Gorenstein, Lemma 2.11 yields d′ < 2r. Hence, by Lemma 4.1,
any curve of degree d′ in Pr is of genus at most d′ − r. But there exist curves in Pr

of degree d′ and genus exactly d′ − r; see Example 5.11 below. Hence any extremal
curve of degree d′ in Pr is of genus d′ − r. Therefore, C ′ is extremal if and only if
(e) holds. The proof is now complete. �

Example 5.11. In Theorem 5.10, if (a)–(g) hold, then the preimage of the unique
multiple point is an effective divisor on C of degree g−g+1. Conversely, Serre [21,
Chap. IV, no4, p. 70] explains how to construct such a C: start with any smooth
curve C of genus g and with any effective divisor D on C of degree g − g + 1 and
then contract D.
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6. Projectively normal models

Preserve the general setup introduced at the beginning of Section 2, after Propo-
sition 2.6, and before Definition 4.4 and Definition 4.8. In this section, we prove
Rosenlicht’s Main Theorem, [19, Thm. 17, p. 189], which essentially asserts that, if

C is nonhyperelliptic, then the canonical map κ̂ : Ĉ ∼−→ C ′ is an isomorphism. We
then apply this result to characterize the non-Gorenstein curves C whose canonical
model C ′ is projectively normal. We begin by proving two lemmas.

Lemma 6.1. Given an x ∈ H0(ω), set Wx := { f ∈ k(C) | fx ∈ H0(ω) }. Then,
given a point P ∈ C, there exists an x ∈ H0(ω) with these four properties:

(a) (Ôω)P = ÔPx;

(b) ÔP = OP [Wx];
(c) k[Wx] is the ring of an affine open subset of C ′, which contains κ̂β−1P ;
(d) OP ⊂ Wx + CP .

Proof. By Proposition 4.5, the sheaf OĈω is invertible and generated by H0(ω).

So, as the base field k is infinite, there exists an x ∈ H0(ω) with Property (a).
Let’s now prove that any x ∈ H0(ω) having (a) also has (b)–(d). First, let’s

prove that any y ∈ ωP can be expressed as a sum y = y′ + y′′ with y′ ∈ H0(ω) and
y′′ ∈ CPx. Indeed, form the long exact sequence

H0(ω)
u−→ H0(ω/ω) → H1(ω) → H1(ω) → 0. (6.1.1)

Plainly, h1(ω) = 1 and h1(ω) = 1. Hence u is surjective. But it is clear that
H0(ω/ω) =

⊕
Q(ωQ/ωQ). So there is a y′′ ∈ ωP such that y − y′′ ∈ H0(ω). But

ωP = CPx by Lemma 2.8 as OPx = (Oω)P owing to (a). So y′′ ∈ CPx.
To prove (b), set

Vx := { f ∈ k(C) | fx ∈ ωP }.
Then ÔP = OP [Vx] owing to the construction of Ĉ and to (a). Now, given f ∈ Vx,
take y := fx above. Say y = y′+y′′ with y′ ∈ H0(ω) and y′′ ∈ CPx. Then y′ = f ′x
with f ′ ∈ Wx, and y′′ = f ′′x with f ′′ ∈ CP ⊂ OP . And f = f ′ + f ′′. Therefore,
OP [Vx] = OP [Wx]. Thus (b) holds.

To prove (c), note that, by construction, C ′ =
∪

v∈H0(ω) Spec
(
k[Wv]

)
. Now, x

vanishes nowhere on β−1P owing to (a). Hence (c) holds.
Finally, to prove (d), let f ∈ OP . Then f ∈ Vx. So the proof of (b) yields a

decomposition f = f ′ + f ′′ with f ′ ∈ Wx, and f ′′ ∈ CP . Thus (d) holds. �
Remark 6.2. Stöhr [22, Thm. 3.2, p. 123] proved that H0(ω) generates ω by intro-
ducing the ideas used in the proof of Lemma 6.1 and developing them essentially as
follows. Consider the map u in the sequence (6.1.1). It is surjective, and its target is
equal to

⊕
Q(ωQ/CQωQ) as ω = Cω by Lemma 2.8. Hence, by Nakayama’s lemma,

H0(ω) generates ωQ when Q is multiple.
Finally, when Q is simple, then H0(ω) generates ωQ by the usual argument.

Namely, h0(OC(Q)) = 1 since g > 0. So h1(ω(−Q)) = 1 by duality. Hence
H0(ω) → H0(ω/ω(−Q)) is surjective, as desired.

Lemma 6.3. Let F be a nonzero proper ideal of O. View H0(Hom(F, ω)) and
H0(ω) as subsets of H0(Hom(F∩O, ω)) via the injections induced by the inclusions
of F ∩ O into F and into O. Then the first subset lies in the second iff F ∩ O is
equal to the maximal ideal sheaf M{P} of some point P ∈ C.
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Proof. In any Abelian category, consider two subobjects A and B of an object C;
their intersection is characterized as the kernel of the sum map A⊕B → C. Thus,
as F and O are subsheaves of O, there is a short exact sequence

0 → F ∩ O → F ⊕ O → F + O → 0.

To it, apply the left exact functor H0(Hom(•, ω)). Thus we obtain the equation

H0(Hom(F, ω))
∩

H0(ω) = H0(Hom(F + O, ω)),

relating the three subsets of H0(Hom(F ∩ O, ω)).

Therefore, H0(Hom(F, ω)) ⊂ H0(ω) iff H0(Hom(F, ω)) = H0(Hom(F+O, ω)).
But H0(Hom(F, ω)) ⊃ H0(Hom(F + O, ω)). So to complete the proof, it suffices
to prove that h0(Hom(F, ω)) = h0(Hom(F + O, ω)), or h1(F) = h1(F + O).

Consider the following exact cohomology sequence:

H0(F) → H0(F + O) → H0((F + O)/F) → H1(F) → H1(F + O) → 0.

By hypothesis, F is a nonzero proper ideal; so H0(F) = 0. Plainly, O ⊂ F+O ⊂ O,
so h0(F+O) = 1. Hence h1(F) = h1(F+O) iff h0((F+O)/F) = 1. But (F+O)/F is
equal to O/(F ∩O). And h0(O/(F ∩O)) = 1 iff F ∩O = M{P} for some P ∈ C. �

Theorem 6.4 (Rosenlicht’s Main Theorem). Assume C is nonhyperelliptic. Then

the canonical map is an isomorphism, κ̂ : Ĉ ∼−→ C ′.

Proof. Fix P̂ ∈ Ĉ, and set P ′ := κ̂P̂ . Then κ̂ provides an inclusion OC′, P ′ ⊂ OĈ, P̂ ,

and we have to prove equality holds. Now, β : Ĉ → C is an isomorphism over the
Gorenstein locus G ⊂ C by Corollary 4.7, and κ induces an open embedding of G

into C ′ by Theorem 4.13. Hence, setting P := βP̂ , we may assume P /∈ G.

For convenience, let A denote the local ring of P ∈ C, and A′ the semilocal ring
of κ̂β−1P . Lemma 6.1 provides an x ∈ H0(ω) with the listed properties (a)–(d).
Property (b) implies that OĈ,P̂ is a localization of A[Wx]. Property (c) implies

that A′ is a localization of k[Wx]. Therefore, to prove the assertion, it suffices to
prove that A ⊂ A′, as then OĈ,P̂ ⊂ OC′, P ′ . Property (d) asserts, however, that

A ⊂ Wx + CP . Since Wx ⊂ A′, therefore

A ⊂ A′ + CP (6.4.1)

Thus it suffices to prove that CP ⊂ A′.

Let m ⊂ A be the maximal ideal, and set A := OP , which is the integral closure
of A. Let’s first find an element m0 ∈ A′ such that m0A = mA.

Since A is a semilocal Dedekind domain, it’s a UFD; hence, there is an m1 ∈ m
such that Am1 = Am. Let P1, . . . , Ps ∈ C be the points of ν−1P , and v1, . . . , vs
the corresponding valuations. Take n ∈ CP such that An = CP . For 1 ≤ i ≤ s, set
ai := vi(n) and bi := vi(m1); then ai ≥ bi ≥ 1. Owing to Equation (6.4.1), there
exist m2 ∈ A′ and n1 ∈ CP such that m1 = m2 + n1. Then, for each i, we have
vi(m2) ≥ bi with equality if ai > bi.

We have δP = ηP + h0(OP /CP ) by definition of ηP . But P /∈ G. So ηP ≥ 1 by
Lemma 2.9, and h0(OP /CP ) ≥ 1 as P is multiple. Hence δP ≥ 2.

Set b := h0(OP /M{P}). Then b ≥ δP +1. So b ≥ 3. Moreover, plainly, b =
∑

bi.

Set B :=
∑

biPi, which is a divisor on C. Fix i, and set B := ωC(B−Pi). Then
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for all j, we have deg(Pj + Pi −B) < 0 since b ≥ 3. So H0(OC(Pj + Pi −B)) = 0.
HenceH1(B(−Pj)) = 0 by duality. So the long exact cohomology sequence becomes

0 → H0(B(−Pj)) → H0(B) → k → 0.

So for each j, there is an xi in H0(B), not in H0(B(−Pj)). Since k is infinite, some
linear combination of those xi is a single xi that works simultaneously for all j.

Set F := ν∗OC(Pi−B). Then Hom(F, COω) = ν∗B. So xi ∈ H0(Hom(F, COω)).
But F ⊃ ν∗OC(−B), so F ⊃ M{P}. Plainly, 1 /∈ F. Hence F∩O = M{P}. Therefore,

Lemma 6.3 yields xi ∈ H0(ω).

But xi ∈ H0(Hom(F, COω)) as COω = ω by Lemma 2.8. And Lemma 6.1(a)

implies (Oω)P = OPx. So xi ∈ Hom(FP ,CPx). So there is an fi ∈ Hom(FP , CP )
such that xi = fix. Then fi ∈ Wx as xi ∈ H0(ω). Hence fi ∈ A′.

Since F := ν∗OC(Pi −B), plainly

vj(fi) ≥

{
ai − bi + 1 if j = i,

aj − bj if j ̸= i.
(6.4.2)

In fact, equality holds since xi /∈ H0(B(−Pj)) for all j.
Set m3 := fa1

1 · · · fas
s . Then vj(m3) =

∑
i ai(aj − bj) + aj as equality holds in

(6.4.2). Hence vj(m3) ≥ aj , with equality iff aj = bj .
Take a ∈ k, and set m0 := m2 + am3. Given j, if aj > bj , then vj(m2) = bj

and vj(m3) ≥ aj ; so then vj(m0) = bj for any a. If aj = bj , then vj(m2) ≥ bj and

vj(m3) = aj = bj ; so then vj(m0) = bj for most a. Thus m0A = mA as desired.

Second, set Ĉ := Hom(O, Ô) and Â := ÔP . Then ĈP is the conductor of A

into Â. Let’s prove that CP ( ĈP . Indeed, ν∗ωC = Cω by Lemma 2.8. Similarly,

ν̂∗ωC = ĈωĈ . By way of contradiction, suppose CP = ĈP . Both sides are free

A-modules as A is a UFD. Hence AωP = Aω̂P . Take f ∈ ω̂P so that Af = Aω̂P .

Then f ∈ ωP and Af = AωP . Hence Âf = ÂωP as ÂωP is free. Therefore,

Âf ⊂ ω̂P ⊂ ωP ⊂ ÂωP = Âf.

Hence ω̂P = ωP . But ω̂ = Hom(Ô, ω). So, by duality, OP = ÔP . Hence P ∈ G,

contrary to assumption. Thus CP ( ĈP , as desired.

Third, fix ϕ0 ∈ ĈP \ CP . Since CP is an A-module, vi(ϕ0) < ai for some i.
Reordering, we may assume i = 1. Replacing ϕ0 by ϕ0t for a suitable t ∈ A, we
may assume

v1(ϕ0) = a1 − 1 and vj(ϕ0) ≥ ai for j ≥ 2. (6.4.3)

Fix a k-basis y1, . . . , yg of H0(ω), and set ϕj := yj/x for all j. Then ϕ1, . . . , ϕg

form a k-basis of Wx. Now, ϕ0 ∈ ĈP , so ϕ0 ∈ Â. Hence ϕ0 is a polynomial in
ϕ1, . . . , ϕg with coefficients in A by Lemma 6.1(b). Say ϕ0 =

∑
clMl where the

cl belong to A and the Ml are monomials in ϕ1, . . . , ϕg. Fix l. Then Ml ∈ A′ by
Lemma 6.1(c). Further, cl = c′l + c′′l with c′l ∈ Wx and c′′l ∈ CP by Lemma 6.1(d).
So c′l ∈ A′ by Lemma 6.1(c). So c′lMl ∈ A′. Further, c′′l Ml ∈ CP as CP is an

A-module, so an A′-module. Set ϕ′
0 :=

∑
c′lMl and ϕ′′

0 :=
∑

c′′l Ml. Then ϕ′
0 ∈ A′

and ϕ′′
0 ∈ CP . So ϕ′

0 ∈ ĈP \ CP . Replace ϕ0 by ϕ′
0. Then ϕ0 ∈ A′.

Set G := ν∗OC(−B). Then Hom(G, ω) = ν∗ωC(B). Plainly, G ⊃ M{P} and

1 /∈ G; hence, G∩O = M{P}. Therefore, H
0(ωC(B)) ⊂ H0(ω) owing to Lemma 6.3.

So we may take y1, . . . , yg and β ≤ g so that y1, . . . , yβ belong to H0(ωC(B)), and
yield a basis modulo H0(ωC).

cmsc.tex: December 4, 2008



26 S. L. Kleiman and R. V. Martins

To compute β, form the long exact cohomology sequence

0 → H0(ωC) → H0(ωC(B)) → H0(ωC(B)/ωC) → H1(ωC) → H1(ωC(B)).

Now, h1(ωC(B)) = 0 because deg(B) ≥ 1. Furthermore, plainly, h1(ωC) = 1 and
h0(ωC(B)/ωC) = b. Hence β = b− 1.

As noted above, ω = COω by Lemma 2.8. And (Oω)P = OPx by Lemma 6.1(a).
Hence ϕi ∈ Hom(GP , CP ) for 1 ≤ i ≤ β. So vj(ϕi) ≥ aj − bj for all j. But
vj(m0) = bj , so vj(m0ϕi) ≥ aj for all j. Therefore, m0ϕi ∈ CP ∩A′ for 1 ≤ i ≤ β.

Recall that b1 ≥ 1. So (6.4.3) yields vj(m0ϕ0) ≥ aj for all j. So m0ϕ0 ∈ CP ∩A′.
Furthermore, ϕ0x /∈ H0(ωC(B)). Else ϕ0x has no pole outside of the Pi. But

equality holds in (6.4.2). So ϕ0x has a pole of order 1 at P1 and no other pole.
But no such differential exists. Indeed, consider the exact sequence

0 → H0(ωC) → H0(ωC(P1)) → H0(ωC(P1)/ωC) → H1(ωC) → H1(ωC(P1)).

Here h1(ωC(P1)) = 0, and h1(ωC) = 1 and h0(ωC(P1)/ωC) = 1. Hence H0(ωC) is
equal to H0(ωC(P1)). So no such differential exists. Thus ϕ0x /∈ H0(ωC(B)).

Therefore, ϕ0x, ϕ1x, . . . , ϕβx are linearly independent modulo H0(ωC). Hence
ϕ0, ϕ1, . . . , ϕβ are linearly independent modulo CP . Hence m0ϕ0,m0ϕ1, . . . ,m0ϕβ

belong to CP∩A′, and are linearly independent modulo CPm0. But CP /CPm0 is iso-
morphic to A/Am0, so is of dimension b. And b = β+1. So m0ϕ0,m0ϕ1, . . . ,m0ϕβ

yield a basis for CP

/
CPm0.

For each n ≥ 1, form the products mi
0ϕj for 1 ≤ i ≤ n and 0 ≤ j ≤ β. These

products, therefore, yield a basis for CP /CPm
n
0 . But for n ≫ 0, the ideal CPm

n
0 is

contained in the conductor of A into A′ since m0A = mA and the conductor is an
ideal in A. But this conductor is also an ideal in A′; so CPm

n
0 ⊂ A′. But mi

0ϕj ∈ A′

for all i, j. Thus CP ⊂ A′, as desired, and the proof is finally complete. �

Theorem 6.5. If C is not Gorenstein, then these six conditions are equivalent:

(a) C ′ is projectively normal;
(b) C ′ is linearly normal;
(c) C ′ is extremal;
(d) d′ = g′ + g − 1;
(e) C is nearly Gorenstein;
(f) C ′ = Spec

(
Hom(M{P}, M{P})

)
for some point P off the Gorenstein locus.

If (e)–(f) hold, then C is of maximal embedding dimension at P iff C ′ is Gorenstein.
Furthermore, if (e)–(f) hold, then C ′ is cut out by quadrics and cubics; quadrics
suffice if η ≥ 2, where η is the invariant of Definition 2.7.

Proof. Conditions (a), (b), and (d) are equivalent by Lemma 5.4(1), (3).
Suppose (b) holds. Now, κ̂ is an isomorphism by Rosenlicht’s Main Theo-

rem, Theorem 6.4; also κ̂∗OC′(1) = OĈω. Hence h0(OĈω) = g. So (e) holds
by Lemma 5.8. Conversely, by the same proposition, (e) implies (b). Thus (a), (b),
(d), and (e) are equivalent.

To prove that (c) and (d) are equivalent, repeat the argument at the end of the
proof of Theorem 5.10, mutatis mutandis.

Given P ∈ C, let B denote the endomorphism ring of its maximal ideal. Then OP

is almost Gorenstein, but not Gorenstein, iffB = ÔP by Proposition 28 in [3, p. 438].

And if so, then ÔP is also Gorenstein iff OP is also of maximal embedding dimension
by Proposition 25 in [3, p. 436].
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Since β : Ĉ → C is finite, Ĉ = Spec(Ô). Furthermore, β is an isomorphism
precisely over the Gorenstein locus G ⊂ C by Corollary 4.7. Moreover, κ̂ is an
isomorphism by Theorem 6.4. Hence (e) implies (f) and the next-to-last assertion.
Conversely, assume (f) holds. Then β is an isomorphism off P . So P is the unique
point off G. Furthermore, OP is almost Gorenstein. So (e) holds.

To prove the last assertion, note that d′ = 2g′ + η because of (d) and Propo-
sition 2.14. Hence, if η ≥ 2, then C ′ is cut out by quadrics owing to Fujita’s
Corollary 1.14 on p. 168 in [9].

Let I be the ideal of C ′ in Pg−1; fix l, q ≥ 0; and form the long exact sequence

Hq−1(OPg−1(l)) → Hq−1(OC′(l)) → Hq(I(l)) → Hq(OPg−1(l)).

For q = 1, the first map is surjective by (a). For q = 2, the second term vanishes
for l ≥ 1 by Lemma 5.4(3) (but not for l = 0 since g ≥ 2); for q ≥ 3, this term
vanishes as C ′ is a curve. For q ≥ 1, the last term vanishes by Serre’s Theorem.
Hence Hq(I(3− q)) = 0 for q ≥ 1. Therefore, C ′ is cut out by quadrics and cubics
by Castelnuovo–Mumford Theory [18, Prp., p. 99]. The proof is now complete. �

Example 6.6. Cubics may be needed to cut out C ′. For example, there is a nearly
Gorenstein curve C with g = 4, with C ′ smooth, and with g′ = 2; see Example 5.11.
Then d′ = 5. So C ′ cannot lie on two distinct quadrics, since their intersection is
of degree 4 by Bezout’s Theorem.
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