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We describe how a set of mobile robots can arrange themselves on any specified curve on the

plane in the presence of dynamic changes both in the underlying ad hoc network and the set of

participating robots. Our strategy is for the mobile robots to implement a self-stabilizing virtual
layer consisting of mobile client nodes, stationary Virtual Nodes (VNs), and local broadcast

communication. The VNs are associated with predetermined regions in the plane and coordinate

among themselves to distribute the client nodes relatively uniformly among the VNs’ regions.
Each VN directs its local client nodes to align themselves on the local portion of the target curve.

The resulting motion coordination protocol is self-stabilizing, in that each robot can begin the

execution in any arbitrary state and at any arbitrary location in the plane. In addition, self-
stabilization ensures that the robots can adapt to changes in the desired target formation.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of

Computation–Interactive and Reactive Computation; C.2.4 [Computer-Communication Net-

works]: Distributed Systems—Distributed applications

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: cooperative mobile robotics, distributed algorithms, pattern

formation, self-stabilization

1. INTRODUCTION

In this paper, we study the problem of coordinating the behavior of autonomous
mobile robots, even as robots join and leave the system. Consider, for example, a
system of firefighting robots deployed throughout forests and other arid wilderness
areas. Significant levels of coordination are required in order to combat the fire:
to prevent the fire from spreading, it has to be surrounded; to put out the fire,
firefighters need to create “firebreaks” and spray water; they need to direct the
actions of (potentially autonomous) helicopters carrying water. All this has to be
achieved while the set of participating agents is changing and despite unreliable
(often, wireless) communication between agents. Similar scenarios arise in a vari-
ety of contexts, including search and rescue, emergency disaster response, remote
surveillance, and military engagement, among many others. In fact, autonomous
coordination has long been a central problem in mobile robotics.
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We focus on a generic coordination problem that, we believe, captures many of the
complexities associated with coordination in real-world scenarios. We assume that
the mobile robots are deployed in a large two-dimensional plane, and that they can
coordinate their actions by local communication using wireless radios. The robots
must arrange themselves to form a particular pattern, specifically, a continuous
curve drawn in the plane. The robots must spread themselves uniformly along
this curve. In the firefighting example described above, this curve might form the
perimeter of the fire.

These types of coordination problems can be quite challenging due to the dy-
namic and unpredictable environment that is inherent to wireless ad hoc networks.
Robots may be continuously joining and leaving the system, and they may fail un-
predictably. In addition, wireless communication is notoriously unreliable due to
collisions, contention, and various wireless interference.

Virtual Infrastructure. Recently, virtual infrastructure has been proposed as a new
tool for building reliable and robust applications in unreliable and unpredictable
wireless ad hoc networks (e.g., [Dolev et al. 2003; Dolev et al. 2005; Chockler et al.
2008]). The basic principle motivating virtual infrastructure is that many of the
challenges resulting from dynamic networks could be obviated if there were reliable
network infrastructures available. We believe that coordinating mobile robots is
exactly one of those problems. Unfortunately, in many contexts, such infrastruc-
ture is unavailable. The virtual infrastructure abstraction emulates real reliable
infrastructure in ad hoc networks. Thus, it provides a programming abstraction
that assumes reliable infrastructure, and thus simplifies the problem of developing
applications. It has already been observed that virtual infrastructure simplifies
several problems in wireless ad hoc networks, including distributed shared mem-
ory implementations [Dolev et al. 2003], tracking mobile devices [Nolte and Lynch
2007b], geographic routing [Dolev et al. 2005b], and point-to-point routing [Dolev
et al. 2004].

In this paper, we rely on a virtual infrastructure known as the Virtual Stationary
Automata Layer (VSA Layer) [Dolev et al. 2005a; Nolte and Lynch 2007a]. In the
VSA Layer, each robot is modeled as a client ; clients interact with virtual station-
ary automata (VSAs) via a (virtual) communication service. VSAs are distributed
throughout the world, each assigned to its own unique region. VSAs remain always
at a known and predictable location, and they are less likely to fail than any indi-
vidual mobile robot. Notice that the VSAs do not actually exist in the real world;
they are emulated by the underlying mobile robots. It is for this reason that a VSA
is more reliable: it is as reliable as the entire collection of mobile nodes that are
participating in its emulation.

In fact, we believe that the VSA Layer is particularly suitable for solving problems
such as motion coordination due to the failure properties of VSAs. In many ways,
VSAs and mobile robots have a fate sharing relationship: a VSA responsible for
some specific region fails only when all the robots in its region fail or leave. Thus,
as long as there are robots to coordination, the VSA is guaranteed to remain alive.
Conversely, whenever the VSA is failed, there are no robots alive or nearby that
rely on the VSA. Thus from the perspective of the mobile robots, the VSAs appear
completely reliable.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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We do not address here the problem of implementing virtual infrastructure; in-
stead, we refer the reader to [Dolev et al. 2005a; Nolte and Lynch 2007a; Nolte
2008]. In these papers, we show how to emulate VSAs using mobile, wireless de-
vices much like the mobile robots discussed in this paper. The wireless devices
have access to a synchronized time service, and a localization service (such as a
GPS device), and they communicate via reliable and timely radio broadcasts. In
Section 4.2 we provide a brief overview of these requirements, and of the protocol
for implementing virtual infrastructure.

Coordinating Mobile Robots. Our main contribution is a technique for using the
VSA Layer to implement a reliable and robust protocol for coordinating mobile
robots. The key simplifying fact of the VSA Layer is that reliable VSAs are dis-
tributed evenly throughout the world. Thus, each VSA is responsible for organizing
the mobile robots in some region of the world. As the execution progresses, each
VSA directs the robots in its region as to how they should move. There are two
further technical issues that arise in our protocol: how does the VSA collect the
information that it needs (and how much information does it need), and how, given
only limited information, does the VSA direct the mobile robots in order to ensure
a good distribution of robots along the curve. In brief, we address these issues as
follows.

In order to determine where each robot should go, the VSA needs to collect
information about the current distribution of the robots. Each robot in a region
notifies the responsible VSA of its presence, and, in addition, the VSAs exchange
information with their neighboring VSAs. Thus, each VSA maintains a local view of
the number of robots it and its neighbors are responsible for. Of note, the VSA only
collects local information, i.e., the distribution of robots in its own and neighboring
regions. It does not, for example, collect information about the location of every
robot, as this would take prohibitively long (and might not even be possible, if the
network induced by the robots is initially partitioned).

Using this local information about robot distribution, the VSA decides how many
robots to keep in its own region, and how many to distribute to its neighbors. By
carefully re-allocating robots, the VSAs cause the robots to diffuse throughout the
network. The diffusion process is biased by the length of the curve in each region
to ensure that the concentration of robots reflects the needs of each VSA. Once
the robots have diffused throughout the network, each VSA assigns the robots to
locations on the curve.

Self-Stabilization. In order that the robot coordination be truly robust, our co-
ordination protocol is self-stabilizing. In general, a self-stabilizing system is one
which regains normal functionality and behavior sometime after disturbances, such
as node failures and message losses cease.

In our case, this means that each robot can begin in an arbitrary state, in an arbi-
trary location in the network, and with an arbitrary view of the world. Even so, the
distribution of the robots will still converge to the specified curve. When combined
with a self-stabilizing implementation of the VSA Layer, as is presented in [Dolev
et al. 2005a; Nolte and Lynch 2007a], we end up with entirely self-stabilizing solu-
tion for the problem of autonomous robot coordination.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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We believe that self-stabilization is particularly important in the context of wire-
less networks. Most of the time, wireless communication works reasonably well.
Most of the time, mobile robots act as expected. Our algorithms (and those for
implementing virtual infrastructure) rely on this common case behavior: commu-
nication is reliable, mobile robots move as directed, GPS devices return correct
locations, etc.

And yet, in the real world, mobile robots are not perfectly reliable. Sometimes,
they fail to move exactly as expected, due to minor errors in actuating their mo-
tors, bad sensor readings, or perhaps, due to incorrectly detecting (or not detecting)
obstacles that must be avoided1 Sometimes GPS devices return an incorrect loca-
tion, or cannot acquire a sufficient number of satellites to return good localization
information. Sometimes there is electromagnetic interference that disrupts commu-
nication. Sometimes wireless messages are lost due to too much contention, i.e., too
many different applications attempting to communicate on a limited bandwidth.
There are a wide variety of problems that can occur in a deployment of mobile
robots, and a wide variety of disruptions that can interfere with wireless commu-
nication. All of these challenges result in deviations from the common case setting
for which our algorithms are designed.

Thus, there are clearly two options available for coping with this situation. One
option is to design algorithms that can directly handle these challenges, and yet still
achieve the desired outcome. Pursuing this direction leads to algorithms that are
immensely complicated. Moreover, it requires carefully enumerating all the possible
problems that might occur; any unexpected disruption can lead to a complete
failure.

A second option, and the one that we pursue, is self-stabilization. A self-
stabilizing algorithm can recover from all types of problems, as long as the errors
are temporary. In effect, a self-stabilizing algorithm requires only that the robots
and the wireless communication work correctly most of the time. In this way, such
protocols are a classic example of the paradigm, plan for the worst, expect the
best. Despite occasional problems, the mobile robots will converge to the desired
formation.

Another advantage to self-stabilization is the capacity to cope with more dynamic
coordination problems. In real-life scenarios, the required formation of the mobile
nodes may change. In the firefighting example above, as the fire advances or re-
treats, the formation of firefighting robots must adapt. A self-stabilizing algorithm
can adapt to these changes, continually re-arranging the robots along the newly
chosen curve.

Proof Techniques. Analyzing self-stabilizing algorithm can be quite difficult, how-
ever, and another technical contribution of this paper is the exemplification of a
proof technique for showing self-stabilization of systems implemented using virtual
infrastructure. The proof technique has three parts. First, using invariant asser-
tions and standard control theory results we show that from any initial state, the

1 In fact, much of the prior work on fault-tolerant motion coordination has focused on the problems

that arise when the robots have faulty vision or a bad sense of direction. Unlike these prior papers,
we allow the robots to coordinate via radio broadcasts. Thus, problems caused by faulty vision

are limited to disrupting the expected movement of the robots.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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application protocol, in this case, the motion coordination algorithm converges to
an acceptable state. Next, we show that the algorithm always reaches a legal state
even when it starts from some arbitrary state after failures. From any legal state
the algorithm gets to an acceptable state provided there are no further failures.
Finally, using a simulation relation we show that the above set of legal states is in
fact equal to the set of reachable states of the complete system—the coordination
algorithm composed with the VSA layer. It has already been shown in [Dolev et al.
2005a; Nolte and Lynch 2007a] that the VSA layer itself is self-stabilizing. Thus,
combining the stabilization of the VSA layer and the application protocol, we are
able to conclude self-stabilization of the complete system.

Roadmap. The remainder of this paper is organized as follows:

◦ In Section 2, we discuss some of the related work.
◦ In Section 3, we introduce the underlying mathematical model used for specifying

the VSA layer. We define Timed I/O Automata (TIOA), and a formalism for
discussing their behaviors (i.e., traces and executions). We discuss how to trans-
form a TIOA designed for a reliable network into a TIOA that executes in an
unreliable system, and we define what it means for a TIOA to be self-stabilizing.

◦ In Section 4 we discuss the VSA Layer model. We present the overall VSA Layer
architecture, describing the behavior of each of the underlying components. We
also briefly describe how to emulate the VSA Layer in a wireless network.

◦ In Section 5 we begin by formally describing the motion coordination problem.
Of note, we define a parameterized curve Γ, and define the quantized length of
a segment of Γ. We then describe algorithm that solves the problem of motion
coordination. The algorithm is divided into two components. The first part
(i.e., the client code) runs on the mobile robots and simply sends updates to the
VSA, receives responses from the VSAs, and then moves as directed. The second
part (i.e., the server code) runs on the VSAs, and is responsible for planning the
motion of the mobile robots.

◦ In Section 6, we show that the algorithm is correct. For the purpose of this
section, we assume that the system begins in a good state, i.e., that the state has
not been corrupted by Byzantine failures. We show that eventually, the mobile
robots are appropriate distributed through the world, and that they arrange
themselves evenly along the curve.

◦ In Section 7, we show that the algorithm is self-stabilizing. We define two legal
sets of states, and argue that the system converges to first one, and then the
second of these legal sets. We then argue that this second set of legal states is a
“reachable” state from an initial state of the system via a simulation relation.

◦ We conclude in 8.

2. RELATED WORK

In the distributed computing literature, the idea of self-stabilization has been pro-
posed an important way of engineering fault tolerance in systems that are inherently
unreliable [Dolev 2000]. The idea of self-stabilization has been widely employed for
designing resilient distributed systems over unreliable communication and comput-
ing components (see [Herman 1996] for a comprehensive list of applications).

ACM Journal Name, Vol. V, No. N, Month 20YY.
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The problem of motion coordination has been studied in a variety of contexts, fo-
cusing on several different goals: flocking [Jadbabaie et al. 2003]; rendezvous [Ando
et al. 1999; Lin et al. 2003; Martinez et al. 2005]; aggregation [Gazi and Passino
2003]; deployment and regional coverage [Cortes et al. 2004]. Control theory lit-
erature contains several algorithms for achieving spatial patterns [Fax and Murray
2004; Clavaski et al. 2003; Blondel et al. 2005; Olfati-Saber et al. 2007]. These algo-
rithms assume that the agents process information and communicate synchronously,
and hence, they are analyzed based on differential or difference equations models of
the system. Convergence of this class of algorithms over unreliable and delay-prone
communication channels have been studied recently in [Chandy et al. 2008].

Geometric pattern formation with vision-based models for mobile robots have
been investigated in [Suzuki and Yamashita 1999; Prencipe 2001; Flocchini et al.
2001; Efrima and Peleg 2007; Prencipe 2000; Défago and Konagaya 2002]. In these
weak models, the robots are oblivious, identical, anonymous, and often without
memory of past actions. For the memoryless models, the algorithms for pattern
formation are often automatically self-stabilizing. In [Défago and Konagaya 2002;
Défago and Souissi 2008], for instance, a self-stabilizing algorithm for forming a
circle has been presented. These weak models have been used for characteriz-
ing the class of patterns that can be formed and for studying the computational
complexity of formation algorithms, under different assumptions about the level of
common knowledge amongst agents, such as, knowledge of distance, direction, and
coordinates [Suzuki and Yamashita 1999; Prencipe 2000].

We have previously presented a protocol for coordinating mobile devices using
virtual infrastructure in [Lynch et al. 2005]. The paper described how to implement
a simple asynchronous virtual infrastructure, and proposed a protocol for motion
coordination. This earlier protocol relies on a weaker (i.e., untimed) virtual layer
(see [Dolev et al. 2005a; Nolte and Lynch 2007a]), while the current relies on a
stronger (i.e., timed) virtual layer. As a result, our new coordination protocol is
somewhat simpler and more elegant than the previous version. Moreover, the new
protocol is self-stabilizing, which allows both for better fault-tolerance, and also
the ability to tolerate dynamic changes in the desired pattern of motion. Virtual
infrastructure has also been considered in [Brown 2007] for collision prevention of
airplanes.

3. PRELIMINARIES

In this paper we mathematically model the the Virtual Infrastructure and all com-
ponents of our algorithms using the Timed Input/Output Automata (TIOA) frame-
work. TIOA is a mathematical modeling framework for real-time, distributed sys-
tems that interact with the physical world. Here we present key concepts of the
framework and refer the reader to [Kaynar et al. 2005] for further details.

3.1 Timed I/O Automata

A Timed I/O Automaton is a non-deterministic state transition system in which
the state may change either (a) instantaneously, by means of a discrete transition,
or (b) continuously, over an interval of time, by following a trajectory . Let V be a
set of variables. Each variable v ∈ V is associated with a type which defines the set
of values v can take on. The set of valuations of V , that is, mappings from V to
ACM Journal Name, Vol. V, No. N, Month 20YY.
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values, is denoted by val(V ). Each variable may be discrete or continuous. Discrete
variables are used to model protocol data structures, while continuous variables are
used to model physical quantities such as time, position, and velocity.

The semi-infinite real line R≥0 is used to model time. A trajectory τ for a set V
of variables maps a left-closed interval of R≥0 with left endpoint 0 to val(V ). It
models evolution of values of the variables over a time interval. The domain of τ is
denoted by τ.dom. We define τ.fstate ∆= τ(0). A trajectory is closed if τ.dom = [0, t]
for some t ∈ R≥0, in which case we define τ.ltime ∆= t and τ.lstate ∆= τ(t).

Definition 3.1. A TIOA A = (X,Q,Θ, A,D, T ) consists of (a) A set X of vari-
ables. (b) A non-empty set Q ⊆ val(X) of states. (c) A non-empty set Θ ⊆ Q of
start states. (d) A set A of actions partitioned into input, output and internal ac-
tions I, O, and H, (e) A set D ⊆ Q×A×Q of discrete transitions. If (x, a,x′) ∈ D,
we often write vx a→ x′. An action a ∈ A is said to be enabled at x iff x a→ x′ for
some x′. (f) A set T of trajectories for X that is closed under prefix, suffix and
concatenation.2

In addition, A must be input action and input trajectory enabled.3 We assume
in this paper that the values of discrete variables do not change during trajectories.

We denote the components X,Q,D, . . . of a TIOA A by XA, QA,DA, . . ., respec-
tively. For TIOA A1, we denote the components by X1, Q1,D1, . . ..

Executions. An execution of A records the valuations of all variables and the oc-
currences of all actions over a particular run. An execution fragment of A is finite
or infinite sequence τ0a1τ1a2 · · · such that for every i, τi.lstate

ai+1→ τi+1.fstate. An
execution fragment is an execution if τ0.fstate ∈ Θ. The first state of α, which we
refer to as α.fstate, is τ0(0), and for a closed α (i.e., one that is finite and whose last
trajectory is closed), its last state, α.lstate, is the last state of its last trajectory.
The limit time of α, α.ltime, is defined to be

∑
i τi.ltime. A state x of A is said to

be reachable if there exists a closed execution α of A such that α.lstate = x. The
sets of executions and reachable states of A are denoted ExecsA and ReachA. The
set of execution fragments of A starting in states in a nonempty set L is denoted
by FragsLA

A nonempty set of states L ⊆ QA is said to be a legal set for A if it is closed
under the transitions and closed trajectories of A. That is, a legal set satisfies the
following: (1) if (x, a,x′) ∈ DA and x ∈ L, then x′ ∈ L, and (2) if τ ∈ TA, τ is
closed, and τ.fstate ∈ L then τ.lstate ∈ L.

Traces. Often we are interested in studying the externally visible behavior of a
TIOA A. We define the trace corresponding to a given execution α by removing
all internal actions, and replacing each trajectory τ with a representation of the
time that elapses in τ . Thus, the trace of an execution α, denoted by trace(α),
has information about input/output actions and the duration of time that elapses
between the occurrence of successive input/output actions. The set of traces of A
is defined as TracesA

∆= {β | ∃α ∈ ExecsA, trace(α) = β}.

2See Chapters 3 and 4 of [Kaynar et al. 2005] for formal definitions of these closure properties.
3See Chapters 64 of [Kaynar et al. 2005].

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Implementation. Our proof techniques often rely on showing that any behavior of a
given TIOA A is externally indistinguishable from some behavior of another TIOA
B. This is formalized by the notion of implementation. Two TIOAs are said to
be comparable if their external interfaces are identical, that is, they have the same
input and output actions. Given two comparable TIOAs A and B, A is said to
implement B, if TracesA ⊆ TracesB. The standard technique for proving that A
implements B is to define a simulation relation R ⊆ QA × QB which satisfies the
following: if xRy, then every one-step move of A from a state x simulates some
execution fragment of B starting from y, in such a way that: (1) the corresponding
final states are also related by R, and (2) the traces of the moves are identical
(see [Kaynar et al. 2005], Section 4.5, for the formal definition).

Composition. It is convenient to model a complex system, such as our VSA layer, as
a collection of TIOAs running in parallel and interacting through input and output
actions. A pair of TIOAs are said to be compatible if they do not share variables
or output actions, and if no internal action of either is an action of the other. The
composition of two compatible TIOAs A and B is another TIOA which is denoted
by A‖B. Binary composition is easily extended to any finite number of automata.

3.2 Failure transform for TIOAs

In this paper, we will describe algorithms that are self-stabilizing even in the face
of ongoing mobile robot failures and recoveries. In order to model failures and
recoveries, we introduce a general failure transformation of TIOAs. Thus, we can
define a TIOA A in terms of its correct behavior, and then analyze the behavior of
Fail(A), which models the behavior of A in a failure-prone system.

A TIOA A is said to be is fail-transformable if it does not have the variable
failed, and it does not have actions fail or restart. If A is fail-transformable, then
the transformed automaton Fail(A) is constructed from A by adding the discrete
state variable failed, a Boolean that indicates whether or not the machine is failed,
and two additional input actions, fail and restart. The states of Fail(A) are the
states of A, together with a valuation of failed. The start states Fail(A) are the
states in which failed is arbitrary, but if it is false, then the rest of the variables are
set to values consistent with a start state of A. The discrete transitions of Fail(A)
are derived from those of A as follows: (1) an ordinary input transition at a failed
state leaves the state unchanged, (2) an ordinary input transition at a non-failed
state is the same as in A, (3) a fail action sets failed to true, (4) if a restart action
occurs at a failed state then failed is set to false and the other state variables are
set to a start state of A; otherwise, it does not change the state.

The set of trajectories of Fail(A) is the union of two disjoint subsets, one for each
value of the failed variable. The subset for failed = false consists of trajectories
of A with the addition of the constant value for failed. That is, while Fail(A) is
not failed, its trajectories basically look like those of A with the value of the failed
variable remaining false throughout the trajectories. The subset for failed = true
consists of trajectories of all possible lengths in which all variables are constant.
That is, while Fail(A) is failed, its state remains frozen. Note that this does not
constrain time from passing, since any constant trajectory, of any length, is allowed.

Performing a failure transformation on the composition A‖B of two TIOA results
ACM Journal Name, Vol. V, No. N, Month 20YY.
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in a new TIOA whose executions projected to actions and variables of Fail(A) or
Fail(B) are in fact executions of Fail(A) or Fail(B) respectively.

3.3 Self-Stabilization of TIOAs

A self-stabilizing system is one that regains normal functionality and behavior some-
time after disturbances cease. Here we define self-stabilization for arbitrary TIOAs.

In this section, A,A1, A2, . . . are sets of actions and V is a set of variables. An
(A, V )-sequence is a (possibly infinite) alternating sequence of actions in A and
trajectories of V . (A, V )-sequences generalize both executions and traces. An
(A, V )-sequence is closed if it is finite and its final trajectory is closed.

We begin by formally defining what it means for one execution to be a “state-
matched” suffix of another:

Definition 3.2. Given (A, V )-sequences α, α′ and t ≥ 0, α′ is a t-suffix of α if
there exists a closed (A, V )-sequence α′′ of duration t such that α = α′′α′. Execution
α′ is a state-matched t-suffix of α if it is a t-suffix of α, and α′.fstate equals the
α′′.lstate.

Informally, α′ is a state-matched t suffix of α if after t time elapses in α, the system
is in the same state as the first state of α′, and the remainder of the execution α is
equivalent to α′. That is, there exists a closed fragment α′′ of duration t, with the
same last state as the first state of α′ and which when prefixed to α′ results in α.

One set S1 of (A, V )-sequences (say, the sets of executions or traces of some
system) stabilizes to another set S2 (say, desirable behavior) in time t if each state-
matched t-suffix of each behavior in set S1 is included in set S2. We can think of
the set S1 as the set of executions in which failures, message loss, and other bad
phenomena occurs; and we can think of the set S2 as the set of executions that
capture desirable behavior. By saying that S1 stabilizes to S2, we are saying that
each execution in S1, after t time, looks just like some execution of S2.

Definition 3.3. Given a set S1 of (A1, V )-sequences, a set S2 of (A2, V )-sequences,
and t ≥ 0, set S1 is said to stabilize in time t to S2 if each state-matched t-suffix
of each sequence in S1 is in S2.

The stabilizes to relation is transitive:

Lemma 3.4. Let Si be a set of (Ai, V )-sequences, for i ∈ {1, 2, 3}. If S1 stabilizes
to S2 in time t1, and S2 stabilizes to S3 in time t2, then S1 stabilizes to S3 in time
t1 + t2.

We want to design automata such that if a TIOA starts in any arbitrary state,
then eventually it stabilizes to an execution indistinguishable from a correct execu-
tion, i.e., eventually it returns to a reachable state. The following definitions help
to capture this notion.

First, for any non-empty set L, L ⊆ QA, we define Start(A, L) to be the TIOA
that is identical to A except that ΘStart(A,L) = L. That is, its set of start states
is L. We define U(A) ∆= Start(A, QA). Notice that this this new automaton can
start in any state. It is straightforward to check that for any TIOA A, the Fail
and U operators commute.
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We define R(A) ∆= Start(A,ReachA). That is, R(A) can start in any state that
is reachable from a start state of A. Thus any execution of R(A) is an execution
fragment of A. A self-stabilizing automaton A is one where executions of U(A)
eventually stabilize to R(A), i.e., to an execution fragment that is reachable from
a start state of A.

In fact, we rarely talk about a single automaton running by itself. More often,
we deal with a situation where there are multiple automata, composed together
to form a single system. Thus, for the purposes of this paper, we define self-
stabilization with respect to a system of composed TIOAs. This definition considers
the composition of two TIOAs A and B, allowing A to start in an arbitrary state
while B starts in a start state. The combination is required to stabilize to a state
in a legal set by a certain time.

Definition 3.5. Let A and B be compatible TIOAs, and L be a legal set for the
composed TIOA A‖B. A self-stabilizes in time t to L relative to B if the set of
executions of U(A)‖B, that is, ExecsU(A)‖B, stabilizes in time t to executions of
Start(A‖B, L), that is, to ExecsStart(A‖B,L) = FragsLA‖B.

4. VIRTUAL STATIONARY AUTOMATA

The Virtual Stationary Automata (VSA) infrastructure has been presented earlier
in [Dolev et al. 2005a; Nolte and Lynch 2007a]. The VSA infrastructure can be
seen as an abstract system model implemented in middleware, thus providing a
simpler and more predictable programming model for the application developer. A
VSA layer consists of a set of Virtual Stationary Automata (abstract entities that
perform computation) that interact with a set of clients (representing the mobile
nodes). This interaction occurs via a virtual broadcast service, which we model with
a V Bcast automaton (and some additional virtual buffers). For modeling purposes,
we also define an automaton that captures the behavior of the real world, and an
automaton that captures the behavior of the virtual world. Thus, the main com-
ponents of the VSA layer are (1) Virtual Stationary Automata (V SA)s, (2) Client
Nodes, (3) Real world (RW ) and Virtual World (VW ) automata, (4) V BDelay
buffers, and (5) V Bcast broadcast service. The interaction of these components
is shown in Figure 1. Each of these components is formally modeled as TIOAs,
and the complete system is the composition of the component TIOAs or the corre-
sponding fail transformed TIOAs, as the case may be. We now informally describe
the architecture of this layer and then briefly sketch its implementation.

4.1 VSA Architecture

For the remainder of this paper, we fix R, the deployment space, to be a closed,
bounded and connected subset of the plane R2. The robots all reside in the space
defined by R. We fix U to be a totally ordered index set, which we used to identify
regions of the plane (as defined in the context of a network tiling). We fix P to be
another index set, which we use to identify the participating robots.

Network tiling. A network tiling divides the deployment space R into a set of regions
{Ru}u∈U , such that: (i) for each u ∈ U , Ru is a closed, connected subset of R, and
(ii) for any u, v ∈ U , Ru and Rv may overlap only at their boundaries. For example,
ACM Journal Name, Vol. V, No. N, Month 20YY.
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V Bcast

VNu

VNv

CNp

CN q

VWRW

VBDelayu

V BDelayv

V BDelayp

V BDelayq

GPSupdatep
GPSupdateq

vcastp vcast′p

vrcvp

vcastq vcast′q

vrcvq

failp, restartp

failq, restartq

failv, restartv, timev

failu, restartu, timeu

vcastvvcast′v

vrcvv

vcastuvcast′u

vrcvu

Fig. 1. Virtual Stationary Automata layer.

R might be a large rectangle in the plane, and the network tiling might divide R
into squares of edge-length b. We refer to this tiling as the grid tiling of R.

For any u, v ∈ U , the region Ru and Rv are said to be neighbors if Ru ∩Rv 6= ∅,
i.e., if they shared a boundary. This neighborhood relation nbrs induces a graph
on the set of regions where there is an edge between every pair of neighbors. We
assume that the network tiling divides R in such a way that the resulting graph
is connected. For any u ∈ U , we denote the set of neighboring region identifiers
by nbrs(u), and nbrs+(u) ∆= nbrs(u) ∪ {u}. We define the distance between two
regions u and v, denoted by regDist(u, v), as the number of hops on the shortest
path between u and v in the graph. The diameter of the graph, i.e., the distance
between the farthest regions in the tiling, is denoted by D, and the largest Euclidean
distance between any two points in any region is denoted by r.

We return to our example of a grid tiling where R is divided into b × b square
regions, for some constant b > 0. Non-border regions in this tiling have eight
neighbors. For a grid tiling with a given b, the diagonal of the tile is of length

√
2 b,

and hence for any two neighboring tiles u and v, the maximum distance between a
point in u and a point in v is 2

√
2 b. This implies that r could be any value greater

than or equal to 2
√

2 b.

Real World (RW ) Automaton. We model the behavior of the real world via the RW
automaton. There are two key aspects of the real world: time passes in the real
world, and the robots move in the real world. Thus, the RW automaton provides
the participating robots with occasional, reliable time and location information,
notifying each robot of the current real time and of its current location. (A robot
does not learn about the location of other robots, of course.) Such updates happen
every so often; in particular, the time between two updates is at most εsample.

Formally, the RW automaton is parameterized by: (a) vmax > 0, a maximum
ACM Journal Name, Vol. V, No. N, Month 20YY.
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speed, and (b) εsample > 0, a maximum time gap between successive updates for
each robot. The RW automaton maintains three key variables: (a) A continuous
variable now representing true system time; now increases monotonically at the
same rate as real-time starting from 0. (b) An array vel[P → R ∪ {⊥}]; for p ∈ P ,
vel(p) represents the current velocity of robot p. Initially vel(p) is set to ⊥, and
it is updated by the robots when their velocity changes. (c) An array loc[P → R];
for p ∈ P , loc(p) represents the current location of robot p. Over any interval of
time, robot p may move arbitrarily in R provided its path is continuous and its
maximum speed is bounded by vmax. Automaton RW performs GPSupdate(l, t)p
actions, l ∈ R, t ∈ R≥0, p ∈ P , to inform robot p about its current location and
time. For each p, some GPSupdate(, )p action must occur every εsample time.

Virtual World (VW ) Automaton. While the mobile robots live in the real world,
the VSAs do not; they reside in a virtual world, and we model the behavior of the
virtual world separately from that of the real world. In some ways, this is redundant,
as one could define a single entity to model both the real and virtual worlds. It
is convenient, however, to model these separately, emphasizing the aspects that
are connected to the real world (and the mobile robots), and the aspects that are
connected to the virtual world (and the VSAs).

The virtual world automaton VW provides occasional, reliable time information
for VSAs. Similar to RW ’s GPSupdate action for clients, VW performs time(t)u
output actions notifying VSA u of the current time. Unlikes the RW , however, it
does not provide any location information; the virtual world is a static one, and
the VSAs do not move. The time updates occur every so often; one such update
occurs at time 0, and they are repeated at least every εsample time thereafter. The
VW nondeterministically issues failu and restartu outputs for each u ∈ U , modeling
the fact that VSAs may fail and restart. (Again, notice this is different from the
mobile robots and the real world.)

Mobile client nodes. We now discuss how the mobile robots themselves are modeled.
For each p ∈ P , the mobile client node CN p is a TIOA modeling the client-side
program executed by the robot with identifier p. CN p has a local clock variable,
clock that progresses at the rate of real-time, and is initially ⊥. CN p may have
arbitrary local variables (albeit none with the name failed).

Its external interface includes a GPSupdate input, to receive updates from the
real world. It also includes a facility for sending and receiving messages to/from
VSAs. As mentioned previously, we refer to this as the virtual broadcast service,
and thus each client has an output vcast(m)p for sending a message to a VSA, and
an input vrcv(m)p for receiving a message from a VSA. (This is discussed in more
detail below.) A client CN p may have additional arbitrary other actions (as long
as none are name fail or restart). The pseudocode in Figure 2, while a part of our
algorithm, at the same time provides an example of how to specify a program for
a client node.

As discussed in the previous section, we model the clients, ignoring their behavior
when crash failures occur. When defining the behavior of the entire VSA Layer, we
use failure transforms to model crash failures.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Virtual Stationary Automata (VSAs). We now discuss how VSAs are modeled. A
VSA is a clock-equipped abstract virtual machine. For each u ∈ U , there is a
corresponding VSA VN u which is associated with the geographic region Ru. VN u

has a local clock variable clock which progresses at the rate of real-time (it is initially
⊥). VN u has the following external interface, which provides it time updates from
the VW automaton, and provides it the capacity to send and receive messages
via the virtual broadcast service: (a) Input time(t)u, t ∈ R≥0: models a time
update at time t; it sets node VN u’s clock to t. (b) Output vcast(m)u,m ∈Msg:
models VN u broadcasting message m; (c) Input vrcv(m)u,m ∈Msg: models VN u

receiving a message m. VN u may have additional arbitrary variables (as long as
none is named failed) and arbitrary internal actions (as long as none is name fail
or restart). All such actions must be deterministic.

VBDelay Automata. When clients and VSA nodes send messages, there may be
some unpredictability in how long it takes for the messages to be delivered. In
particular, the messages may be delayed for longer than might be expected due to
the costs inherent to emulating the virtual world. We model these delays with a
VBDelay buffer that delays virtual messages for some additional non-deterministic
period of time.

For each client and each VSA node, there is a VBDelay buffer that delays mes-
sages for up to e time. This buffer intercepts messages just after they are sent.
Formally, this implies that the buffer takes as input a vcast(m) from a node. After
some interval of time at most e, the message is handed to the virtual broadcast
service. In the case of VSA nodes, the delay e = 0, meaning that the message
is passed on immediately forwarded to the VBcast service with no delay. (It is
convenient for treating both clients and VSAs in the same manner to have both
attached to VBDelay buffers, even though in the latter case they add no delay.)

VBcast Automaton. Finally, we discuss how the virtual broadcast service is mod-
eled. This service is the primary means by which the clients communicate with the
VSAs. Each client and VSA has access to the virtual broadcast communication
service VBcast. The service is parameterized by a constant d > 0 which models
the upper bound on message delays. VBcast takes each vcast′(m, f)i input from
client and virtual node delay buffers and delivers the message m via vrcv(m) at
each client or virtual node. It delivers the message to every client and VSA that is
in the same region as the initial sender, when the message was first sent, along with
those in neighboring regions. The VBcast service guarantees that in each execution
α of VBcast there is a correspondence between vrcv(m) actions and vcast′(m, f)i
actions, such that: (i) Each vrcv occurs after and within d time of the correspond-
ing vcast′. (ii) At most one vrcv at a particular process is mapped to each vcast′.
(iii) A message originating from some region u must be received by all robots that
are in Ru or its neighbors throughout the transmission period.

Layers and Algorithms.. Since our goal is to model failure-prone robots, we define
a VLayer to be the composition of the various components described above, where
each of the clients has been fail-transformed. That is, each client may fail by
crashing.

A VSA layer algorithm or a V -algorithm is an assignment of a TIOA program to
ACM Journal Name, Vol. V, No. N, Month 20YY.
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each client and VSA. (That is, it specified which program execution on each client
and VSA.) We denote the set of all V-algorithms as V Algs. Formally:

Definition 4.1. Let alg be an element of V algs. V LNodes[alg], the fail-transformed
nodes of the VSA layer parameterized by alg, is the composition of Fail(alg(i)) with
a VBDelay buffer, for all i ∈ P ∪ U . V Layer[alg], the VSA layer parameterized
by alg, is the composition of V LNodes[alg] with RW‖VW‖V Bcast.

4.2 VSA Layer Emulation

In [Dolev et al. 2005a; Nolte and Lynch 2007a], we show how mobile nodes can
emulate the VSA Layer in a wireless network in which there are no VSAs. That
is, we begin with a realistic wireless network in which mobile robots can communi-
cate via wireless broadcast; we then show how to emulate VSAs in such a way as
to implement the VSA Layer described in this section. Additional details of this
implementation are in [Nolte 2008]. Here we attempt to give some of the basic
ideas underlying the implementation. (The remainder of the paper does not de-
pend on the material presented in this section; it is presented only as background
information.)

First, the question arises as to under which conditions a VSA Layer can be im-
plemented. In [Nolte 2008], the basic system model is quite similar to the model
described in this paper, except that there are no VSAs, and the virtual broadcast
service is replaced with a more realistic broadcast service that allows for communi-
cation between the mobile nodes. More specifically, the model consists of: (i) mobile
nodes, modeled exactly as in this paper, (ii) a RW automaton that models the real
world, exactly as in this paper, and (iii) a broadcast service that allows for com-
munication between mobile nodes. The broadcast service guarantees that messages
are delivered within some radius rreal, and we assume that rreal ≥ r+ εsamplevmax.
This ensures that if a mobile node broadcasts a message, then every other mobile
node that is “within range” during the message delivery interval will receive that
message. In this case, a mobile node is within range if it is in the same region as
the mobile node performing the broadcast, or in a neighboring region. (The second
term compensates for the uncertainty in time and location.) The broadcast service
guarantees that every message is delivered within time dreal. Lastly, the broadcast
service satisfies the usual properties, i.e., integrity (a message is delivered only if it
was previously sent), and non-duplicative delivery. Given such a broadcast service,
Nolte shows how to emulate a VSA Layer satisfying the described properties.

We continue by giving a brief overview of how mobile robots can cooperate to
emulate VSAs, thus implementing a VSA Layer. The emulation algorithm is based
on a replicated-state-machine paradigm. Specifically, mobile robots in a region Ru
cooperate to implement the region u’s virtual node.

The emulation relies on a totally ordered broadcast service (TOBcast) that guar-
antees that each mobile robot in a region receives messages in the same order. (This
ordered broadcast service is itself implemented via timestamps and additing appro-
priate timing delays to ensure a uniform delivery sequence.)

All the participants in the emulation protocol for a given VSA act as replicas. Of
these replicas, every so often, one is chosen to be the leader. (The leader election
service is implemented by a competition among possible candidates.) The leader
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is responsible for two tasks. First, it broadcasts the messages that the emulated
VSA transmits via vcasts. In this way, the leader helps to emulate the virtual
broadcast service. Second, every so often, it broadcasts an up-to-date version of
the VSA state. This broadcast is used both to keep the backups synchronized (and
hence stabilizing the emulation algorithm), and also to allow new emulators to start
participating.

In order to maintain the necessary timing guarantees, the virtual machine state
is frozen while these synchronization messages are sent Then, the virtual machine
runs at an accelerated pace, simulating the VSN at faster-than-real time until the
emulation is caught up.

For further details on the emulation of VSA Layers, we refer the interested reader
to [Dolev et al. 2005a; Nolte and Lynch 2007a; Nolte 2008].

5. MOTION COORDINATION USING VIRTUAL NODES

We begin by formally stating the motion coordination problem. We then present
an algorithm for the VSA Layer (specifically, a V-algorithm) for solving the motion
coordination problem.

5.1 Problem Statement

The goal of motion coordination is to coordinate a set of mobile robots such that
they deploy themselves evenly along some curve in the deployment space R. The
first step, then, is to define the curve in the plane. Formally, we fix Γ : A → R to
be a simple, differentiable curve on R that is parameterized by arc length, where
the domain set A of parameter values is an interval in the real line. For example,
assuming that the curve is of length at least x, then Γ(x) is the point at distance
x along Γ.

We also fix a particular network tiling such that each point in Γ is in some region.
That is, for the collection of regions {Ru}u∈U , for each point p in Γ, there is some
region Ru such that the point p is in Ru.

For each region, we consider the portion of the curve that intersects that region.
Let Au

∆= {p ∈ A : region(Γ(p)) = u} be the domain of Γ in region u. We assume
that Au is convex for every region u; it may be empty for some u. The local part
of the curve Γ in region u is the restriction Γu : Au → Ru. We write |Au| for the
length of the curve Γu.

In order to more easily discuss the length of the curve, we consider a quantized
version of the curve. That is, for some constant σ, we round the length of the curve
to the nearest multiple of σ. For example, if the curve is of length 10, and if σ = 3,
then the quantized length of the curve is 12.

More formally, given some quantization constant σ > 0, we define the quantiza-
tion of a real number x as qσ(x) = d xσ eσ. We fix σ, and write qu as an abbreviation
for qσ(|Au|). Notice that, intuitively, qu is the approximate length of Γ that inter-
sects region Ru, rounded up to the nearest multiple of σ.

We define qmin to be the minimum nonzero qu, i.e., the minimum length of the
curve in any region. We define qmax as the maximum qu, i.e., the maximum length
of the curve in any region.

Our goal is to design an algorithm for mobile robots such that, once the failures
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and recoveries cease, within finite time all the robots are located on Γ and as time
progresses they eventually become equally spaced on Γ. Formally, if no fail and
restart actions occur after time t0, then:

(1) There exists a constant T , such that for each u ∈ U , within time t0+T the set of
robots located in Ru becomes fixed and its cardinality is roughly proportional
to qu; moreover, if qu 6= 0 then the robots in Ru are located on4 Γu.

(2) In the limit, as time goes to infinity, all robots in Ru are uniformly spaced5 on
Γu.

5.2 Overview of Solution: Motion Coordination Algorithm (MC )

The VSA Layer is used as a means to coordinate the movement of the mobile
robots. A VSA controls the motion of the clients in its region by setting and
broadcasting target waypoints for the clients. Each VSA VN u periodically: (i)
receives information from clients in its region Ru, (ii) exchanges information with
its neighboring VSAs, and (iii) sends out a message containing a calculated target
point for each client node “assigned” to region u.

The VSA VN u performs two tasks when setting the target points: (i) it re-assigns
some of the clients that are assigned to itself to neighboring VSAs, and (ii) it sends
a target position on Γ to each client that is assigned to itself. The objective of the
first task is to spread the mobile robots proportionally among the various regions.
By assigning some clients to neighboring regions, a VSA prevents its neighbors from
getting depleted of robots. The objective of the second task is to space the nodes
uniformly on Γ within each region.

The client algorithm, by contrast, is quite simple. Each client receives a target
waypoint from the VSA in its region. It then computes a velocity vector for reaching
this target point, and proceeds in this direction as fast as possible.

Of note, each VSA uses only local information about Γ. In particular, its decisions
are based only on the (quantized) length of the curve in its region, and in the
neighboring regions. For the sake of simplicity, however, we assume that all mobile
robots and all VSAs know the complete curve Γ, even though only local information
is actually used. (In fact, the mobile robot does not need any information about
the curve Γ, as it receives all of its motion planning from VSAs.)

5.3 Client Node Algorithm (CN )

We first describe the algorithm that runs on the mobile robots. The algorithm for
the client node CN p, for a fixed p ∈ P , is presented in Figure 2. The algorithm
follows a round structure, where rounds begin at times that are multiples of δ. We
refer to the algorithm itself as CN (δ)p.

At the beginning of each round, each mobile robot sends a cn-update message to
the VSA in whose region it is currently residing (see lines 34–38) and stops moving

4For a given point x ∈ R, if there exists p ∈ A such that Γ(p) = x, then we say that the point x

is on the curve Γ; abusing the notation, we write this as x ∈ Γ.
5A sequence x1, . . . , xn of points in R is said to be uniformly spaced on a curve Γ if there exists
a sequence of parameter values p1 < p2 . . . < pn, such that for each i, 1 ≤ i ≤ n, Γ(pi) = xi, and

for each i, 1 < i < n, pi − pi−1 = pi+1 − pi.
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(lines 40–45, when x∗ = ⊥). The cn-update message tells the local VSA the robot’s
id and its current location in R.

The local VSA then sends a response to the client, i.e., a target-update message
(see lines 47–52). Each such message describes the new target location x∗p for CN p,
and possibly includes an assignment to a different region. The robot first computes
the direction vector toward this new point based on its current position xp. That
is, it computes the (unit-length) direction vector vp = (xp−x∗p)/||xp−x∗p||. It then
proceeds to move in this direction with maximum velocity, i.e., it sets its velocity
to vmaxvp (see lines 40–45). This is then output as a velocity signal to the RW .

Formally, the stops when condition enforces the fact (i) that the robot stops
at the beginning of every round, (ii) that it updates its velocity as soon as it
receives a target waypoint, and (iii) that it necessarily stops if it does not have
enough information to calculate its waypoint. The first situation is resolved by
broadcasting a message via a vcast, while the latter two situations are resolved by
outputting a new velocity.

1 Signature:

Input GPSupdate(l, t)p, l ∈ R, t ∈ R≥0

3 Input vrcv(m)p, m ∈ {target-update} ×(P → R)
Output vcast(〈cn-update, p, l〉)p, l ∈ R

5 Output velocity(vout)p, v ∈ R2

7 State:

analog clock: R≥0∪ {⊥}, initially ⊥
9 analog x ∈ R ∪ {⊥}, location, initially ⊥

x∗ ∈ R ∪ {⊥}, target point, initially ⊥
11 v ∈ {⊥, 0} ∪ {v : R2 | |v| = 1}, initially ⊥

13 Trajectories:
evolve

15 if clock 6= ⊥
then d(clock) = 1 else d(clock) = 0

17 if v 6= ⊥
then d(x) = v · vmax else d(x) = 0

19 stop when
[x 6= ⊥ ∧ x∗ 6= ⊥ ∧ clock mod δ = 0 ∨

21 [x 6= ⊥ ∧ x∗ 6= ⊥ ∧ v||x∗ − x|| 6= x∗ − x ] ∨
[v 6= 0 ∧ (x = x∗∨ x = ⊥ ∨ x∗ = ⊥) ]

24Transitions:
Input GPSupdate(l, t)p

26Effect
if 〈x, clock〉6= 〈l, t〉 ∨

28‖x∗ − l‖ ≥ vmax(δdt/δe − t− dr) ∨
x∗ = ⊥ ∨

30t mod δ /∈ (e+ 2d+ 2ε, δ − dr)
then x, x∗ ← l; clock ← t

32v ← ⊥

34Output vcast(〈cn-update, p, x〉)p

Precondition
36x= x6= ⊥∧ clock mod δ = 0 ∧ x∗ 6= ⊥

Effect
38x∗ ← ⊥

40Output velocity(vout)p

Precondition
42vout = vmax · (x∗ − x)/||x∗ − x||

∨ (v= 0∧ [x = x∗ ∨ x∗= ⊥∨ x= ⊥ ])
44Effect

v ← vout / vmax

46

Input vrcv(〈target-update, target〉)p

48Effect
if ‖target(p)− x‖

50< vmax(δdclock/δe− clock − dr)
and if clock mod δ > e + 2d + 2ε

52then x∗ ← target(p)

Fig. 2. Client node CN (δ)p automaton.

5.4 Virtual Stationary Node Algorithm (VN )

We now describe the program for the VSAs. The pseudocode is presented in
Figure 3, and the TIOA is parameterized by three parameters: k ∈ Z+, and
ρ1, ρ2 ∈ (0, 1). The integer k describes the minimum number of robots that should
be assigned to a region. We thus refer to k as the safe number of robots. When
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1 Signature:

Input time(t)u, t ∈ R≥0

3 Input vrcv(m)u,
m ∈ ({cn-update} ×P ×R)

5 ∪ ({vn-update} ×U ×N)
Output vcast(m)u,

7 m ∈ ({vn-update} ×{u} ×N)
∪ ({target-update} ×(P → R))

9

State:

11 analog clock: R≥0∪ {⊥}, initially ⊥.
M : P → R, initially ∅.

13 V : U → N, initially ∅.

15 Trajectories:
evolve

17 if clock 6= t
then d(clock) = 1 else d(clock) = 0

19 stop when Any precondition is satisfied.

Transitions:
22Input time(t)u

Effect
24if clock 6= t ∨ t mod δ /∈ (0, e + 2d + 2ε ]

then M, V ← ∅; clock ← t
26

Output vcast(〈vn-update, u, n〉)u

28Precondition
clock mod δ = d+ε

30n = |M | 6= 0 ∧V 6= {〈u, n〉}
Effect

32V ← {〈u, n〉}

34Output vcast(〈target-update, x∗〉)u

Precondition
36clock mod δ = e + 2d + 2ε

M 6= ∅
38x∗ = calctarget(assign(M, V), M)

Effect
40M, V ← ∅

42Input vrcv(〈cn-update, p, x〉)u

Effect
44if u = region(x) ∧ clock mod δ ∈ (0, d ]

then M(p) ← x; V ← ∅
46

Input vrcv(〈vn-update, p, n〉)u

48Effect
if p ∈ nbrs(u) then V(p) ← n

Fig. 3. VN (k, ρ1, ρ2)u TIOA, with parameters: safety k, and damping ρ1, ρ2.

k is larger, it is less likely that a VSA will fail as all k robots must fail before the
VSA fails. When k is smaller, the robots are spread more evenly along the curve
(i.e., fewer are “wasted” on regions not on the curve). The parameters ρ1 and ρ2

effect the rate of convergence. We refer to the algorithm executing in region Ru as
VN (k, ρ1, ρ2)u, u ∈ U .

At the beginning of each round, VN u collects cn-update messages sent from
robots located in region Ru (see lines 42–45). It then aggregates the location and
round information in a table M . When d + ε time has passed from the beginning
of the round, we can be certain that all the cn-update have been delivered. At this
point, VN u computes the number of client nodes that are currently assigned to
region Ru, and sends this information in a vn-update message to all of its neighbors
(lines 27–32).

When VN u receives a vn-update message from a neighboring VN , it stores the
population information in a table V . When e+d+ε time has elapsed from the point
at which it sent its own vn-update passes, we can be sure that VN u has received
vn-update messages from all of its active neighbors. At this point, it calculates
how many robots to assign to neighboring regions, and how many to assign to
itself. This calculation is performed by the assign function, and the assignments
are then used to calculate new target points for local robots via the calctarget
function (see Figure 4). These target updates are then broadcast to the client via
target-update messages (see lines 34–40).
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function assign(assignedM : P → R, y : nbrs+(u) → N) =
2assign : P → U , initially {〈i, u〉} for each i : assignedM(i) ∈ Ru

n : N, initially y(u);
4ra : N, initially 0

if y(u) > k then
6if qu 6= 0 then

let lower = {g ∈ nbrs(u) : (qg/qu)y(u) > y(g)}
8for each g ∈ lower

ra ← min(bρ2 · [(qg/qu)(y(u)− y(g))]/2(|lower|+ 1)c, n− k)
10update assign by reassigning ra nodes from u to g

n ← n− ra
12else if {v ∈ nbrs(u): qv 6= 0} = ∅ then

let lower = {g ∈ nbrs(u) : y(u) > y(g)}
14for each g ∈ lower

ra ← min(bρ2 · [y(u)− y(g)]/2(|lower|+ 1)c, n− k)
16update assign by reassigning ra nodes from u to g

n ← n− ra
18else ra ← b(y(u)− k)/|{v ∈ nbrs(u) : qv 6= 0}|c

for each g ∈ {v ∈ nbrs(u) : qv 6= 0}
20update assign by reassigning ra nodes from u to g

return assign
22

function calctarget(assign: P → U , locM: P → R) =
24seq, indexed list of pairs in A× P , initially the list,

for each i ∈ P : assign(i)= u ∧ locM(i) ∈ Γu, of 〈p, i〉
26where p= Γ−1

u (locM(i)), sorted by p, then i
for each i ∈ P : assign(i) 6= null

28if assign(i) = g 6= u then locM(i) ← og

else if locM(i) /∈ Γu then locM(i) ← choose {minx∈Γu{dist(x, locM(i))}}
30else let p = Γ−1

u (locM(i)), seq(k) = 〈p, i〉
if k = first(seq) then locM(i) ← Γu(inf(Au))

32else if k = last(seq) then locM(i) ← Γu(sup(Au))
else let seq(k − 1) = 〈pk−1, ik−1〉,

34seq(k + 1) = 〈pk+1, ik+1〉
locM(i) ← Γu(p + ρ1 · (

pk−1+pk+1
2 − p))

36return locM

Fig. 4. VN (k, ρ1, ρ2)u TIOA functions.

More specifically, the calculation is performed as follows. Consider some specific
round, and let y(u) denote the number of robots in region Ru that VSA VN u reports
to its neighbors. (Notice that some of the robots in the region at the beginning of
the round may have failed before reporting their presence to VN u.) Recall that
all of u’s neighbors receive the value of y(u) via vn-update messages. Also, since
every robot knows the location of the curve Γ in its own region, as well as in the
neighboring regions, we can assume that the VSA in region Ru knows the value of
qu, as well as qv for every v ∈ nbrs(u).

First, if the number of robots assigned to VN u does not exceed the minimum
safe number k, then no robots are re-assigned from Ru (see line 5). That is, if
y(u) ≤ k, then there is no change in the assignment.

Next, the change in assignment depends on whether the curve runs through region
Ru. If the curve runs through Ru, i.e., if qu 6= 0, then we assign robots based on
the length of the curve in Ru and its neighbors (see lines 6–11). Let loweru denote
the subset of nbrs(u) that the curve runs through and have fewer robots than Ru,
after normalizing with qg/qu. Notice that this normalization factor ensures that
the number of robots in each region will be proportional to the length of the curve
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running through each region. For each g ∈ loweru, the VSA VN u reassigns a
number of robots to Rg based on the following. First, we calculate a value ra′ that
represents the ideal number of robots to transfer:

ra′
∆= ρ2 ·

qg
qu
· y(u)− y(g)

2(|loweru|+ 1)
(1)

where ρ2 < 1 is a damping factor . Then, the VSA VN u transfers either ra′ robots,
or the remaining number of robots over k assigned to VN u. That is, it transfers:

ra
∆= min(ra′, n− k) (2)

robots to region Rg. This ensures that at least k robots are left in region Ru.
Next, if the curve does not run the region Ru, i.e., qu = 0, then the transfer

of robots depends on whether Ru has any neighbors on the curve. If Ru has
no neighbors on the curve, i.e., qg = 0 for all g ∈ nbrs(u), then the robots are
distributed among neighbors that have fewer robots (lines 12–17). Let loweru
denote the subset of nbrs(u) with fewer robots than Ru. In this case, for each
g ∈ loweru, we define ra′ as follows:

ra′
∆= ρ2 ·

y(u)− y(g)
2(|loweru|+ 1)

(3)

The VSA VN u reassigns ra = min(ra′, n− k) robots to Rk.
The last case is when VN u is on the boundary of the curve, meaning that the

curve does not run through Ru, but it does run through one of the neighbors of
Ru, i.e., there is a g ∈ nbrs(u) with qg 6= 0 (see lines 18–20). In this case, y(u)− k
of VN u’s CN s are assigned equally to neighbors that are on the curve. That is, we
calculate ra as follows:

ra
∆=
⌊

y(u)− k
|{v ∈ nbrs(u) : qv 6= 0}

⌋
(4)

Again, notice that in each of these cases, at least k robots are left assigned to region
Ru.

The calctarget function assigns a target waypoint to every non-failed robot in
region Ru. This target point locMu(p) is in region Rg, where g = u or one of
u’s neighbors. The target point locMu(p) is computed as follows: If a robot p
is assigned to region Rg, g 6= u, then its target is set to the center of region Rg
(line 28); if the robot is assigned to Ru but is not located on the curve Γu then
its target is set to the nearest point on the curve, nondeterministically choosing
one if there are several (line 29); if the robot is either the first or last robot on Γu
then its target is set to the corresponding endpoint of Γu (lines 31–32); if the robot
is on the curve but is not the first or last client node then its target is moved to
the mid-point of the locations of the preceding and succeeding robots on the curve
(line 35). For the last two computations a sequence seq of nodes on the curve sorted
by curve location is used (line 26).

5.5 Complete System

The complete algorithm, MC, is the instantiation of each component in Figure 1
with fail-transformed CN and VN algorithms. Formally, it is the parallel composi-
tion of the following TIOAs: (a) RW , (b) VW , (c) VBcast , (d) Fail(V BDelayp‖CNp),
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one for each p ∈ P , and (e) Fail(V BDelayu‖V Nu). Recall that Fail(A) denotes
the fail-transformed version of TIOA A.

Round length. Given the maximum Euclidean distance, r, between points in neigh-
boring regions, it can take up to r/vmax time for a client to reach its target. Also,
after the client arrives in the region it was assigned to, it could find the local VN
has failed. Let dr be the time it takes a VN to startup, once a new node enters the
region. To ensure a round is long enough for a client node to send the cn-update,
allow VN s to exchange information, allow clients to receive a target-update mes-
sage and arrive at new assigned target locations, and be sure virtual nodes are alive
in their region before a new round begins, we require that δ, the CN parameter,
satisfy δ > 2e+ 3d+ 2ε+ r/vmax + dr.

6. CORRECTNESS OF ALGORITHM

In this section, we show that starting from an initial state the system described
in Section 5.2, satisfies the requirements specified in Section 5.1. In the following
section we show self-stabilization. The proofs of the results in this section parallel
those presented in [Lynch et al. 2005], albeit the semantics of the Virtual Layers
used here is different.

We define round t as the interval of time [δ(t−1), δ ·t). That is, round t begins at
time δ(t− 1) and is completed by time δ · t. We say CN p, p ∈ P , is active in round
t if node p is not failed throughout round t. A VN u, u ∈ U , is active in round t if
there is some active CN p such that region(xp) = u for the duration of rounds t− 1
and t. Thus, by definition, none of the VN s is active in the first round. We also
define the following notation:

- In(t) ⊆ U is the subset of VN ids that are is active in round t and qu 6= 0;
- Out(t) ⊆ U is the subset of VN s that are active in round t and qu = 0;
- C(t) ⊆ P is the subset of active CN s at round t;
- Cin(t) ⊆ P is the set of active CN s located in regions with id in In(t) at the

beginning of round t;
- Cout(t) ⊆ P is subset of active CN s located in regions with id in Out(t) at the

beginning of round t.

For every pair of regions u,w and for every round t, we define y(w, t)u to be
the value of V (w)u (i.e., the number of clients u believes are available in region w)
immediately prior to VN u performing a vcastu in round t, i.e., at time e+ 2d+ 2ε
after the beginning of round t. If there are no new client failures or recoveries
in round t, then for every pair of regions u,w ∈ nbrs+(v), we can conclude that
y(v, t)u = y(v, t)w, which we denote simply as y(v, t).

We define ρ3
∆= q2

max/(1− ρ2)σ. The rate ρ3 effects the rate of convergence, and
will be used in the analysis. Notice that ρ3 > 1.

6.1 Approximately Proportional Distribution

For the rest of this section we fix a particular round number t0 and assume that,
for all p ∈ P , no failp or recoverp events occur at or after round t0. The first lemma
states some basic facts about the assign function.
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Lemma 6.1. In every round t ≥ t0: (1) If y(u, t) ≥ k for some u ∈ U , then
y(u, t+ 1) ≥ k; (2) In(t) ⊆ In(t+ 1); (3) Out(t) ⊆ Out(t+ 1).

Proof. We fix round t ≥ t0.

(1) From line 5 of the assign function (Figure 4) it is clear that VN u, u ∈ U ,
reassigns some of its CN s in round t. However, it never reassigns more than
n − k, where n is the number of CN s initially in region Ru. Thus, at least
k CN s are not reassigned, and if a CN is not reassigned and does not fail, it
remains active in the same region.

(2) For any VN u, u ∈ In(t), if y(u, t) < k then VN u does not reassign CN s,
and y(u, t + 1) = y(u, t). Otherwise, from line 9 of Figure 4 it follows that
y(u, t+ 1) ≥ k. In both cases u ∈ In(t+ 1).

(3) For any VN u, u ∈ Out(t), if y(u, t) < k then VN u does not reassign CN s, and
y(u, t+ 1) = y(u, t). Otherwise, from line 15 and line 18 of Figure 4 it follows
that y(u, t+ 1) ≥ k. In both cases u ∈ Out(t+ 1).

We now identify a round t1 ≥ t0 after which the set of regions In(t) and Out(t)
remain fixed.

Lemma 6.2. There exists a round t1 ≥ t0 such that for every round t ∈ [t1, t1+(1+
ρ3)m2n2]: (1) In(t) = In(t1); (2) Out(t) = Out(t1); (3) Cin(t) ⊆ Cin(t + 1); and
(4) Cout(t+1) ⊆ Cout(t). Round t1 occurs no later than time t0+2m2 ·(1+ρ3)m2n2.

Proof. By Lemma 6.1, Part 2, we know that the set In(t) ⊆ U is non-decreasing
as t increases. From Part 3, we know that set Out(t) ⊆ U is non-decreasing as t
increase. Since U is finite, we conclude from this that there is some round t1 after
which no new regions u ∈ U are added to either In(t) or Out(t). Thus we have
satisfied Parts 1 and 2. Notice that this occurs no later than round t0 + 2m2 · (1 +
ρ3)m2n2: in each interval of time (1 + ρ3)m2n2 either a new region is added to
In(t) or Out(t), or the claim is satisfied; there are at most m2 such regions to add.

For Part 3, consider a client CN p, p ∈ Cin(t), that is currently assigned in round
t to VN u, u ∈ In(t). From lines 6–10 of Figure 4 we see that CN p is assigned to
some VNw, w ∈ nbrs+(u) where qw 6= 0. If VNw is inactive in round t + 1, then
client CN p remains in VNw until it becomes active, resulting in VNw being added
to In(t), thus contradicting the fact that for every round t′ ≥ t1, In(t′) = In(t1).
We conclude that VNw is active in round t, and hence round t+ 1, from which the
claim follows.

For Part 4, notice that since there are no failures and recoveries of CN s, C(t) =
C(t+ 1). By definition, Cin(t) ∪ Cout(t) = C(t), Cin(t) ∩ Cout(t) = ∅, and Cin(t+
1) ∪ Cout(t + 1) = C(t + 1), Cin(t + 1) ∩ Cout(t + 1) = ∅. The result follows from
Part (3).

Fix t1 for the rest of this section such that it satisfies Lemma 6.2. The next lemma
states that eventually, regions bordering on the curve stop assigning clients to
regions that are on the curve. That is, assume that u is a region where qu = 0, but
that u has a neighbor v where qv 6= 0; then, eventually, from some round onwards,
u never again assigns clients to v.
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Lemma 6.3. There exists some round t2 ∈ [t1, t1 + (1 + ρ3)m2n2] such that for
every round t ∈ [t2, t2 + (1 + ρ3)m2n]: if u ∈ Out(t) and v ∈ In(t) and if u and v
are neighboring regions, then u does not assign any clients to v in round t.

Proof. Notice that if u assigns a client to v, then Cout decreases by one. Dur-
ing the interval [t1, t1 + (1 + ρ3)m2n2], we know that Cout is non-increasing by
Lemma 6.2. Thus, eventually, there is some round t2 after which either Cout = ∅ or
after which no further clients are assigned from a region Out(·) to a region In(·).
Since there are at most n clients, we can conclude that this occurs at latest by
round t1 + n · [(1 + ρ3)m2n].

Fix t2 for the rest of this section such that it satisfies Lemma 6.3. Lemma 6.2
implies that in every round t ≥ t1, In(t) = In(t1) and Out(t) = Out(t1); we denote
these simply as In and Out . The next lemma states a key property of the assign
function after round t1. For a round t ≥ t1, consider some VN u, u ∈ Out(t), and
assume that VNw is the neighbor of VN u assigned the most clients in round t.
Then we can conclude that VN u is assigned no more clients in round t + 1 than
VNw is assigned in round t. A similar claim holds for regions in In(t), but in this
case with respect to the density of clients with respect to the quantized length of
the curve. The proof of this lemma is based on careful analysis of the behavior of
the assign function.

Lemma 6.4. In every round t ∈ [t2, t2+(1+ρ3)m2n], for u, v ∈ U and u ∈ nbrs(v):

(1 ) If u, v ∈ Out(t) and y(v, t) = maxw∈nbrs(u)∩Out(t) y(w, t) and y(u, t) < y(v, t),
then y(u, t+ 1) < y(v, t).

(2 ) If u, v ∈ In(t) and y(v, t)/qv = maxw∈nbrs(u)∩In(t) [y(w, t)/qw] and y(u, t)/qu <
y(v, t)/qv, then:

y(u, t+ 1)
qu

≤ y(v, t)
qv

− (1− ρ2)
σ

q2
max

.

Proof. For Part 1, fix u, v and t, as in the statement of the lemma. Consider
some region w that is a neighbor of u and that assigns clients to u in round t+ 1.
Since qu = 0, notice that w assigns clients to u only if the conditions of lines 12–17
in Figure 4 are met. This implies that w ∈ Out(t), and hence y(w, t) ≤ y(v, t), by
assumption. We can also conclude that lowerw ≥ 1, as w assigns clients to u only
if u ∈ lowerw. Finally, from line 15 of Figure 4, we observe that the number of
clients that are assigned to u by w in round t is at most:

ρ2 [y(w, t)− y(u, t)]
2(|lowerw(t)|+ 1)

≤ ρ2 [y(v, t)− y(u, t)]
4

Since u has at most four neighbors, we conclude that it is assigned at most ρ2 [y(v, t)− y(u, t)]
clients. Since ρ2 < 1 and y(u, t) < y(v, t), this implies that:

y(u, t+ 1) ≤ y(u, t) + ρ2 [y(v, t)− y(u, t)]
≤ ρ2 · y(v, t) + (1− ρ2)y(u, t)
< ρ2 · y(v, t) + (1− ρ2)y(v, t)
< y(v, t) .
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For Part 2, as in Part 1, fix u, v and t as in the lemma statement. Recall we
have assumed that y(u, t)/qu < y(v, t)/qv. We begin by showing that, due to the
manner in which the curve is quantized, y(u, t)/qu ≤ y(v, t)/qv − σ/q2

max . Since
qu is defined as dPu/σeσ, and since qv is defined as dPv/σeσ, we notice that, by
assumption:

y(u, t)
⌈
Pv
σ

⌉
σ < y(v, t)

⌈
Pu
σ

⌉
We divide both sides by σ, and since both sides are integral, we exchange the ‘<’
with a ‘≤’:

y(u, t)
⌈
Pv
σ

⌉
≤ y(v, t)

⌈
Pu
σ

⌉
− 1

From this we conclude:
y(u, t)⌈
Pu

σ

⌉ ≤ y(v, t)⌈
Pv

σ

⌉ − σ2

quqv

Dividing everything by σ, and bounding qu and qv by qmax, we achieve the desired
calculation.

Now, consider some region w that is a neighbor of u and that assigns clients to
u in round t+ 1. First, notice that w /∈ Out(t), since by Lemma 6.3, no clients are
assigned from an Out region to an In region after round t2 (prior to t2+(1+ρ3)m2n).
Thus, w assigns clients to u only if the conditions of lines 6–11 in Figure 4 are met.
This implies that w ∈ In(t), and hence y(w, t)/qw ≤ y(v, t)/qv, by assumption. We
can also conclude that lowerw ≥ 1, as w assigns clients to u only if u ∈ lowerw.
Finally, from line 9 of Figure 4, we observe that the number of clients that are
assigned to u by w in round t is at most:

ρ2

[(
qu

qw

)
y(w, t)− y(u, t)

]
2(|lowerw(t)|+ 1)

≤
ρ2

[(
qu

qv

)
y(v, t)− y(u, t)

]
4

Since u has at most four neighbors, we conclude that it is assigned at most ρ2 [(qu/qv)y(v, t)− y(u, t)]
clients. This implies that:

y(u, t+ 1) ≤ y(u, t) + ρ2

[(
qu
qv

)
y(v, t)− y(u, t)

]
≤ ρ2

(
qu
qv

)
· y(v, t) + (1− ρ2) y(u, t)

Thus, dividing everything by qu, and recalling that y(u, t)/qu ≤ y(v, t)/qv−σ/q2
max:

y(u, t+ 1)
qu

≤ ρ2

(
y(v, t)
qv

)
+ (1− ρ2) ·

(
y(u, t)
qu

)
≤ ρ2

(
y(v, t)
qv

)
+ (1− ρ2) ·

(
y(v, t)
qv

− σ

q2
max

)
≤ y(v, t)

qv
− (1− ρ2)

σ

q2
max
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The next lemma states that there exists a round Tout such that in every round
t ≥ Tout, the set of CN s assigned to region u ∈ Out(t) does not change.

Lemma 6.5. There exists a round Tout ∈ [t2, t2 + m2n such that in any round
t ≥ Tout, the set of CN s assigned to VN u, u ∈ Out(t), is unchanged.

Proof. First, we show that there exists some round Tout such that the aggregate
number of CN s assigned to VN u remains the same in both Tout and Tout+1 for all
u ∈ Out(t2). We then show that the actual assignment of individual clients remains
the same in Tout and Tout + 1.

We consider a vector E(t) that represents the distribution of clients among regions
in Out(t). That is, the first element in E(t) represents the largest number of clients
in any region; the second element in E(t) represents the second largest number of
clients in any region; and so forth. We then argue that, compared lexicographically,
E(t + 1) ≤ E(t). Since the elements in E(t) are integers, we conclude from this
that eventually the distribution of clients becomes stables and ceases to change.

We proceed to define E(t) as follows for t ≥ t2. (We use the notation 〈. . .〉 to
indicate a vector of elements.) Let Nout = |Out |. Let Π(t) be a permutation of Out
that orders the regions by the number of assigned clients, i.e., if u precedes v in
Π(t), then y(u, t) ≤ y(v, t). When we say that some region u has index j, we mean
that Π(t)j = u. Define E(t) as follows:

E(t) = 〈y(Π(t)Nout
, t), y(Π(t)Nout−1, t), . . . , y(Π(t)1, t)〉 .

We use the notation E(t)` to refer to the `th component of E(t) counting from the
right, i.e., it refers to Π(t)`. Any two vectors E(t) and E(t + 1) can be compared
lexicographically, examining each of the elements in turn from left to right, i.e.,
largest to smallest.

We now consider some round t ∈ [t2, t2 +m2n], and show that E(t) ≥ E(t+ 1).
Consider the case where E(t) 6= E(t + 1), and let u be the region with maximum
index that assigns clients to another region. Let j be the index of region u.

First, we argue that for every region v with index ≤ j, we can conclude that
y(v, t + 1) < y(u, t). Consider some particular region v. Notice that v has no
neighbors in Out that are assigned more than y(u, t) clients in round t; otherwise,
such a neighbor would assign clients to v, contradicting our choice of u. Thus,
by Lemma 6.4, Part 1, we can conclude that y(v, t + 1) < y(u, t) (as long as
t ∈ [t2, t2 + 2m2n], which we will see to be sufficient).

Since this implies that there are at least j regions assigned fewer than y(u, t) =
E(t)j clients in round t+1, we can conclude that E(t+1)j < E(t)j . In order to show
that E(t+ 1) < E(t), it remains to show that for every j′ > j, E(t)j′ = E(t+ 1)j′ .

Consider some region v with index > j. By our choice of u, it is clear that v is not
assigned any clients by a region with index > j. It is also easy to see that v is not
assigned any clients by a region w with index ≤ j, since y(v, t) ≥ y(u, t) ≥ y(w, t);
as per line 13, region w does not assign any clients to a region with ≥ y(w, t) clients.
Thus no new clients are assigned to region v. Moreover, by choice of u, region v
assigns none of its clients elsewhere. Finally, since t ≥ t0, none of the clients fail.
Thus, y(v, t) = y(v, t+ 1).

Since the preceding logic holds for all Nout − j + 1 regions with index > j, and
all have more than y(u, t) > y(u, t + 1) clients, we conclude that for every j′ > j,
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E(t)j′ = E(t+ 1)j′ , implying that E(t) > E(t+ 1), as desired.
Since E(·) is non-increasing, and since it is bounded from below by the zero

vector, we conclude that eventually there is a round Tout such that for all t ≥ Tout,
E(t) = E(t+ 1).

Now suppose the set of clients assigned to region u changes in some round t ≥
Tout. The only way the set of clients assigned to region u could change, without
changing y(u, t) and the set Cout, is if there existed a cyclic sequence of VN s with
ids in Out in which each VN gives up c > 0 CN s to its successor VN in the
sequence, and receives c CN s from its predecessor. However, such a cycle of VN s
cannot exist because the lower set imposes a strict partial ordering on the VN s.

Finally, we observe that if E(t) = E(t + 1) for any t, then the assignment of
clients does not change from that point onwards: since all the clients remained in
the same regions in E(t) and E(t + 1), we can conclude that the assign function
produced the same assignment in E(t + 1) as in E(t). Since the vector E(·) has
at most m2 elements, each with at most n values, we can conclude that Tout is at
most m2n rounds after t2.

For the rest of the section we fix Tout to be the first round after t0, at which the
property stated by Lemma 6.5 holds. Lemma 6.5, together with Lemmas 6.1, 6.2,
and 6.3, imply that in every round t ≥ Tout, CIn(t) = CIn(t1) and COut(t) =
COut(t1); we denote these simply as CIn and COut . The next lemma states a
property similar to that of Lemma 6.5 for VN u, u ∈ In, and the argument is
similar to the proof of Lemma 6.5, and uses Part (2) of Lemma 6.4.

Lemma 6.6. There exists a round Tstab ∈ [Tout, Tout + ρ3m
2n] such that in every

round t ≥ Tstab, the set of CN s assigned to VN u, u ∈ In, is unchanged.

Proof. We proceed to define E(t) as follows for t ≥ Tout. Let Nin = |In|. Let
Π(t) be a permutation of In that orders the regions by the density of assigned
clients, i.e., if u precedes v in Π(t), then y(u, t)/qu ≤ y(v, t)/qv. When we say that
some region u has index j, we mean that Π(t)j = u. Define E(t) as follows:

E(t) =

〈
y(Π(t)Nin

, t)
qΠ(t)Nin

,
y(Π(t)Nin−1, t)
qΠ(t)Nin−1

, . . . ,
y(Π(t)1, t)
qΠ(t)1

〉
.

We use the notation E(t)` to refer to the `th component of E(t) counting from the
right, i.e., it refers to Π(t)`. Any two vectors E(t) and E(t + 1) can be compared
lexicographically, examining each of the elements in turn from left to right, i.e.,
largest to smallest.

We now consider some round t ≥ Tout, and show that E(t) ≥ E(t+ 1). Consider
the case where E(t) 6= E(t+ 1), and let u be the region with maximum index that
assigns clients to another region. Let j be the index of region u.

First, we argue that for every region v with index ≤ j, we can conclude that
y(v, t+ 1)/qv ≤ y(u, t)/qu− ζ for some constant ζ. Consider some particular region
v. Notice that v has no neighbors in In that have density greater than y(u, t)/qu
in round t; otherwise, such a neighbor would assign clients to v, contradicting our
choice of u. Thus, by Lemma 6.4, Part 2, we can conclude that y(v, t + 1)/qv ≤
y(u, t)/qu − ζ where ζ = (1− ρ2) σ

q2
max

(as long as t ∈ [t2, t2 + (1 + ρ3)m2n], which
we will see to be sufficient).
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Since this implies that there are at least j regions assigned fewer than y(u, t) =
E(t)j clients in round t + 1, we can conclude that E(t + 1)j ≤ E(t)j − ζ. In
order to show that E(t + 1) < E(t), it remains to show that for every j′ > j,
E(t)j′ = E(t+ 1)j′ .

Consider some region v with index > j. By our choice of u, it is clear that v is not
assigned any clients by a region with index > j. It is also easy to see that v is not
assigned any clients by a region w with index ≤ j, since y(v, t)/qv ≥ y(u, t)/qu ≥
y(w, t)/qw; as per line 7, region w does not assign any clients to a region with a
density ≥ y(w, t)/qw. Thus no new clients are assigned to region v. Moreover, by
choice of u, region v assigns none of its clients elsewhere. Finally, since t ≥ t0, none
of the clients fail. Thus, y(v, t)/qv = y(v, t+ 1)/qv.

Since the preceding logic holds for all Nin − j + 1 regions with index > j, and
all have more than y(u, t)/qu clients, we conclude that for every j′ > j, E(t)j′ =
E(t+ 1)j′ , implying that E(t) > E(t+ 1), as desired.

Since E(·) is non-increasing, and since it decreases by at least a constant ζ in
every round in which it decreases, and since it is bounded from below by the zero
vector, we conclude that eventually there is a round Tstab such that for all t ≥ Tstab,
E(t) = E(t+ 1).

Now suppose the set of clients assigned to region u changes in some round t ≥
Tstab. The only way the set of clients assigned to region u could change, without
changing y(u, t)/qu and the set Cin, is if there existed a cyclic sequence of VN s
with ids in In in which each VN gives up c > 0 CN s to its successor VN in the
sequence, and receives c CN s from its predecessor. However, such a cycle of VN s
cannot exist because the lower set imposes a strict partial ordering on the VN s.

Finally, we observe that if E(t) = E(t + 1) for any t, then the assignment of
clients does not change from that point onwards: since all the clients remained in
the same regions in E(t) and E(t + 1), we can conclude that the assign function
produced the same assignment in E(t+ 1) as in E(t). Since the vector E(·) has at
most m2 elements, each with at most n q2

max

(1−ρ)σ values, we can conclude that Tstab is
at most ρ3m

2n rounds after Tout, and hence at most (1 + ρ3)m2n rounds after t2,
as needed.

The following bounds the total number of clients located in regions with ids in Out
to be O(m3).

Lemma 6.7. In every round t ≥ Tout, |Cout(t)| = O(m3).

Proof. From Lemma 6.5, the set of CN s assigned to each VN u, u ∈ Out(t),
is unchanged in every round t ≥ Tout. This implies that in any round t ≥ Tout,
the number of CN s assigned by VN u to any of its neighbors is 0. Therefore, from
line 18 of Figure 4, for any boundary VN v, (y(v, t) − k)/|Inv| < 1. Recall that
Inv is the (constant) set of neighbors of v with quantized curve length 6= 0. Since
|Inv| ≤ 4, y(v, t) < 4 + k.

From line 15 of Figure 4, for any non-boundary VN v, v ∈ Out(t), if v is 1-hop
away from a boundary region u, then ρ2(y(v,t)−y(u,t))

2(|lowerv(t)|+1) < 1. Since |lowerv(t)| ≤ 4,
y(v, t) ≤ 10

ρ2
+ 4 + k. Inducting on the number of hops, the maximum number of

clients assigned to a VN v, v ∈ Out(t), at ` hops from the boundary is at most
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10`
ρ2

+ k + 4. Since for any `, 1 ≤ ` ≤ 2m − 1, there can be at most m VN s at
`-hop distance from the boundary, summing gives |Cout| ≤ (k + 4)(2m − 1)m +
10m2(2m−1)

ρ2
= O(m3).

For the rest of the section we fix Tstab to be the first round after Tout, at which the
property stated by Lemma 6.6 holds. Lemma 6.8 states that the number of clients
assigned to each VN u, u ∈ In, in the stable assignment after Tstab is proportional to
qu within a constant additive term. The proof follows by induction on the number
of hops from between any pair of VN s.

Lemma 6.8. In every round t ≥ Tstab, for u, v ∈ In(t):∣∣∣∣y(u, t)
qu

− y(v, t)
qv

∣∣∣∣ ≤ [10(2m− 1)
qminρ2

]
.

Proof. Consider a pair of VN s for neighboring regions u and v, u, v ∈ In. As-
sume w.l.o.g. y(u, t) ≥ y(v, t). From line 9 of Figure 4, it follows that ρ2( qv

qu
y(u, t)−

y(v, t)) ≤ 2(|loweru(t)|+ 1). Since |loweru(t)| ≤ 4, |y(u,t)
qu
− y(v,t)

qv
| ≤ 10

qvρ2
≤ 10

qminρ2
.

By induction on the number of hops from 1 to 2m− 1 between any two VN s, the
result follows.

6.2 Uniform Spacing

From line 29 of Figure 4, it follows that by the beginning of round Tstab + 2, all
CN s in Cin are located on the curve Γ. Thus, the algorithm satisfies our first goal.
The next lemma states that the locations of the CN s in each region u, u ∈ In, are
uniformly spaced on Γu in the limit, and it is proved by analyzing the behavior of
calctarget as a discrete time dynamical system.

Lemma 6.9. Consider a sequence of rounds t1 = Tstab, . . . , tn. As n → ∞, the
locations of CN s in u, u ∈ In, are uniformly spaced on Γu.

Proof. From Lemma 6.6 we know that the set of CN s assigned to each VN u,
u ∈ In, remains unchanged. Then, at the beginning of round t2, every CN assigned
to VN u is located in region u and is on the curve Γu. Assume w.l.o.g. that VN u is
assigned at least two CN s. Then, at the beginning of round t3, one CN is positioned
at each endpoint of Γu, namely at Γu(inf(Pu)) and Γu(sup(Pu)). From lines 31–32
of Figure 4, we see that the target points for these endpoint CN s are not changed
in successive rounds.

Let sequ(t2) = 〈p0, i(0)〉, . . . , 〈pn+1, i(n+1)〉, where yu = n+ 2, p0 = inf(Pu), and
pn+1 = sup(Pu). From line 35 of Figure 4, for any i, 1 < i < n, the ith element in
sequ at round tj , j > 2, is given by:

pi(tj+1) = pi(tj) + ρ1

(
pi−1(tj) + pi+1(tj)

2
− pi(tj)

)
.

For the endpoints, pi(tj+1) = pi(tj). Let the ith uniformly spaced point on the
curve Γu between the two endpoints be xi. The parameter value p̄i corresponding
to xi is given by p̄i = p0 + i

n+1 (pn+1 − p0). In what follows, we show that as
n→∞, the pi converge to p̄i for every i, 0 < i < n+ 1, that is, the location of the
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non-endpoint CN s are uniformly spaced on Γu. The rest of this proof is exactly the
same as the proof of Theorem 3 in [Goldenberg et al. 2004] in which the authors
prove convergence of points on a straight line with uniform spacing.

Observe that p̄i = 1
2 (p̄i−1 + p̄i+1) = (1− ρ1)p̄i + ρ1

2 (p̄i−1 + p̄i+1). Define error at
step j, j > 2, as ei(j) = pi(tj)− p̄i. Therefore, for each i, 2 ≤ i ≤ n− 1, ei(j+ 1) =
pi(tj+1)−p̄i = (1−ρ1)ei(j)+ ρ1

2 (ei−1(j)+ei+1(j)), e1(j+1) = (1−ρ1)e1(j)+ ρ1
2 e2(j),

and en(j + 1) = (1− ρ1)en(j) + ρ1
2 en−1(j). The matrix for this can be written as:

e(j + 1) = Te(j), where T is an n× n matrix:
1− ρ1 ρ1/2 0 0 . . . 0
ρ1/2 1− ρ1 ρ1/2 0 . . . 0
· · · · · ·
0 . . . 0 ρ1/2 1− ρ1 ρ1/2
0 . . . 0 0 1− ρ1 ρ1/2

 .
Using symmetry of T , ρ1 ≤ 1, and some standard theorems from control theory, it
follows that the largest eigenvalue of T is less than 1. This implies limj→∞T

j = 0,
which implies limj→∞e(j) = 0.

Thus we conclude by summarizing the results in this section:

Theorem 6.10. If there are no fail or restart actions for robots at or after some
round t0, then within a finite number of rounds after t0:

(1 ) The set of CN s assigned to each VN u, u ∈ U , becomes fixed, and the size of
the set is proportional to the quantized length qu, within a constant additive
term 10(2m−1)

qminρ2
.

(2 ) All client nodes in a region u ∈ U for which qu 6= 0 are located on Γu and
uniformly spaced on Γu in the limit.

7. SELF-STABILIZATION OF ALGORITHM

In this section we show that the VSA-based motion coordination scheme is self-
stabilizing. Specifically, we show that when the VSA and client components in the
VSA layer start out in some arbitrary state owing to failures and restarts, they
eventually return to a reachable state. Thus, the traces of V Layer[MC] running
with some reachable state of V bcast‖RW‖VW , eventually, becomes indistinguish-
able from a reachable trace of V Layer[MC]. Recall Definition 4.1 and note that
the virtual layer algorithm alg is instantiated here with the motion coordination
algorithm MC of Section 5.

We first show that our motion coordination algorithm V LNodes[MC] is self-
stabilizing to some set of legal states LMC . Then, we show that these legal states
correspond to reachable states of V Layer[MC]; hence, the traces of our motion co-
ordination algorithm, where clients and VSAs start in an arbitrary state, eventually
look like reachable traces of the correct motion coordination algorithm.

An emulation is a kind of implementation relationship between two sets of TIOAs.
A VSA layer emulation algorithm is a mapping that takes a VSA layer algorithm,
alg, and produces TIOA programs for an underlying system consisting of emulator
physical nodes (corresponding to clients), such that when those programs are run
with external oracles such as RW , the resulting system has traces that are closely
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related to the traces of a VSA layer. In particular, the traces restricted to non-
broadcast actions at the client nodes are the same.

In [Dolev et al. 2005a; Nolte and Lynch 2007a] we have shown how to implement
a self-stabilizing VSA Layer. In particular, that implementation guarantees that (1)
each algorithm alg ∈ V Algs stabilizes in some tV stab time to traces of executions
of U(V LNodes[alg])‖R(RW‖VW‖V bcast), and (2) for any u ∈ U , if there exists
a client that has been in region u and alive for dr time and no alive clients in the
region failed or left the region in that time, then VSA Vu is not failed. Thus, if
the coordination algorithm MC is such that V LNodes[MC] self-stabilizes in some
time t to LMC relative to R(RW‖VW‖V bcast), then we can conclude that physical
node traces of the emulation algorithm on MC stabilize in time tV stab + t to client
traces of executions of the VSA layer started in legal set LMC and that satisfy the
above failure-related properties.

7.1 Legal Sets

First we describe two legal sets for V Layer[MC], L1
MC and LMC . The first legal

set L1
MC describes a set of states that result after the first GPSupdate occurs at

each client node and the first timer occurs at each virtual node.

Definition 7.1. A state x of V Layer[MC] is in L1
MC iff the following hold:

(1 ) xdXV bcast‖RW‖VW ∈ ReachV bcast‖RW‖VW .
(2 ) ∀u ∈ U : ¬failedu : clocku ∈ {RW.now,⊥} ∧ (Mu 6= ∅ ⇒ clocku mod δ ∈

(0, e+ 2d+ 2ε]).
(3 ) ∀p ∈ P : ¬failedp ⇒ vp ∈ {RW.vel(p)/vmax,⊥}.
(4 ) ∀p ∈ P : ¬failedp ∧ xp 6= ⊥:

(a) xp = RW.loc(p) ∧ clockp = RW.now.
(b) x∗p ∈ {xp,⊥} ∨ ||x∗p − xp|| < vmax(δdclockp/δe − clockp − dr).
(c) V bcast.reg(p) = region(xp)∨ clock mod δ ∈ (e+2d+2ε, δ−dr + εsample).

Part (1) requires that x restricted to the state of V bcast‖RW‖VW to be a
reachable state of V bcast‖RW‖VW . Part (2) states that nonfailed VSAs have
clocks that are either equal to real-time or ⊥, and have nonempty M only after the
beginning of a round and up to e+ 2d+ 2ε time into a round. Part (3) states that
nonfailed clients have velocity vectors that are equal either to ⊥ or equal to the
client’s velocity vector in RW , scaled down by vmax. Finally, Part (4) states that
nonfailed clients with non-⊥ positions have: (4a) positions equal to their actual
location and local clocks equal to the real-time, (4b) targets that are one of ⊥, the
location, or a point reachable from the current location within dr before the end
of the round, and (4c) V bcast last region updates that match the current region
or the time is within a certain time window in a round. It is routine to check that
L1
MC is indeed a legal set for VLayer[MC].
Now we describe the main legal set LMC for our algorithm. First we describe a

set of reset states, states corresponding to states of V Layer[MC] at the start of a
round. Then, LMC is defined as the set of states reachable from these reset states.

Definition 7.2. A state x of V Layer[MC] is in ResetMC iff:

(1 ) x ∈ L1
MC .
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(2 ) ∀p ∈ P : ¬failedp ⇒
[to send−p = to send+

p = λ ∧ (xp = ⊥ ∨ (x∗p 6= ⊥ ∧ vp = 0))].
(3 ) ∀u ∈ U : ¬failedu ⇒ to sendu = λ.
(4 ) ∀〈m,u, t, P ′〉 ∈ vbcastq : P ′ = ∅.
(5 ) RW.now mod δ = 0 ∧ ∀p ∈ P : ∀〈l, t〉 ∈ RW.updates(p) : t < RW.now.

LMC is the set of reachable states of Start(V Layer[MC], ResetMC).

ResetMC consists of states in which (1) in L1
MC , (2) nonfailed clients have empty

queues in its V BDelay and either has a position variable equal to ⊥ or has both
a non-⊥ target and 0 velocity, (3) nonfailed VSA’s have an empty queue in its
V BDelay, (4) there are no still-processing messages in V bcast, and (5) the time
is the starting time for a round and that no GPSupdates have yet occurred at this
time. Once again, it is routine to check that that LMC is a legal set for VLayer[MC].

7.2 Stabilization to LMC

First, we state the following result related to stabilization.

Lemma 7.3. V LNodes[MC] is self-stabilizing to L1
MC in time t > εsample relative

to the automaton R(V bcast‖RW‖VW ).

To see this, consider the moment after each client has received a GPSupdate and
each virtual node has received a time update, which takes at most εsample time.

Next we show that starting from a state in L1
MC , we eventually arrive at a state

in ResetMC , and hence, a state in LMC .

Lemma 7.4. Executions of V Layer[MC] started in states in L1
MC stabilize in time

δ + d+ e to executions started in states in LMC .

Proof. It suffices to show that for any length-δ+ d+ e prefix α of an execution
fragment of V Layer[MC] starting from L1

MC , α.lstate ∈ LMC . By the definition
of LMC , it suffices to show that there is at least one state in ResetMC that occurs
in α.

Let t0 be equal to α.fstate(RW.now), the time of the first state in α. We consider
all the “bad” messages that are about to be delivered after α.fstate. (1) There
may be messages in V bcast.vbcastq that can take up to d time to be dropped
or delivered at each process. (2) There may be messages in to send− or to send+

queues at clients that can submitted to V bcast and take up to d time to be dropped
or delivered at each process. And (3), there may be messages in to send queues at
VSAs that can take up to e time to be submitted to V bcast and an additional d
time to be dropped or delivered at each process. We know that all “bad” messages
will be processed (dropped or delivered at each process) by some state x in α such
that x(RW.now) = t1 = t0 + d+ e.

Consider the state x∗ at the start of the first round after state x. Since x∗(RW.now) =
δ(bt1/δc+1), we have that x∗(RW.now)−t0 = x∗(RW.now)−t1 +e+d ≤ δ+e+d.
The only thing remaining to show is that x∗ is in ResetMC . It’s obvious that x∗

satisfies (1) and (5) of Definition 7.2. Code inspection tells us that for any state in
L1
MC , and hence, for any state in α, any new vcast transmissions of messages will

fall into one of three categories:
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(1) Transmission of cn-update by a client at a time t such that t mod δ = 0. Such
a message is delivered by time t+ d.

(2) Transmission of vn-update by a virtual node at a time t such that t mod δ =
d+ ε. Such a message is delivered by time t+ d+ e.

(3) Transmission of target-update by a virtual node at a time t such that t mod δ =
2d+ e+ 2ε. Such a message is delivered by time t+ d+ e.

In each of these cases, any vcast transmission is processed before the start of the
next round. Thus, x∗ satisfies properties (2), (3), and (4) of Definition 7.2. To
check (2), we just need to verify that for all nonfailed clients if xp is not ⊥ then x∗p
is not ⊥ and vp is 0. It suffices to show that at least one GPSupdate occurs at each
client between state x and state x∗. (Such an update at a nonfailed client would
update x∗p to be xp for clients with x∗p = ⊥ or x∗p too far away from xp to arrive
at x∗p before x∗. Any subsequent receipts of target-update messages will only result
in an update to x∗p if the client will be able to arrive at x∗p before x∗. This implies
that vp can only be ⊥ or 0, and since no GPSupdates could have occurred at the
same time as x∗, stopping conditions ensure that vp 6= ⊥.)

To see that at least one GPSupdate occurs at each client between state x′ and
state x∗, we need that x∗(RW.now)−x′(RW.now) > εsample. Since x∗(RW.now)−
x′(RW.now) = δ − (x′(RW.now) mod δ) ≥ δ − e− 2d− 2ε, δ > e+ 2d+ 2ε+ dr,
and dr > εsample it follows that δ > e+ 2d+ 2ε+ εsample.

Combining our stabilization results we conclude that V LNodes[MC] started in
an arbitrary state and run with R(V bcast‖RW‖VW ) stabilizes to LMC in time
δ + d + e + εsample. From transitivity of stabilization and 7.4, the next result
follows.

Theorem 7.5. V LNodes[MC] is self-stabilizing to LMC in time δ+d+e+εsample
relative to R(V bcast‖RW‖VW ).

7.3 Relationship between LMC and reachable states

In the previous section we showed that V LNodes[MC] is self-stabilizing to LMC

relative to R(V bcast‖RW‖VW ). In order to conclude anything about the traces of
V Layer[MC] after stabilization, however, we need to show that traces of V Layer[MC]
starting in a state in LMC are reachable traces of V Layer[MC]. This is accom-
plished by first defining a simulation relation RMC on the states of V Layer[MC],
and then proving that for each state x ∈ LMC , there exists a state y ∈ ReachV Layer[MC]

such that x and y are related by RMC . This implies that the trace of any execu-
tion fragment starting with x is the trace of an execution fragment starting with y,
which is a reachable trace of V Layer[MC]. We define the candidate relation RMC
and prove that it is indeed a simulation relation.

Definition 7.6. RMC is a relation between states of V Layer[MC] such for any
states x and y of V Layer[MC], xRMCy iff the following conditions are satisfied:

(1 ) x(RW.now) = y(RW.now) ∧ x(RW.loc) = y(RW.loc).
(2 ) For all p ∈ P , y(vel(p)) ∈ {x(vel(p)),⊥} ∧
{t ∈ R≥0 | ∃l ∈ R : 〈l, t〉 ∈ x(RW.updates(p))}
= {t ∈ R≥0 | ∃l ∈ R : 〈l, t〉 ∈ y(RW.updates(p))}.
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(3 ) x(VW ) = y(VW ) ∧ x(V bcast.now) = y(V bcast.now).
(4 ) x(V bcast.reg) = y(V bcast.reg) ∧
{〈m,u, t, P ′〉 ∈ x(V bcast.vbcastq) | P ′ 6= ∅}
= {〈m,u, t, P ′〉 ∈ y(V bcast.vbcastq) | P ′ 6= ∅}.

(5 ) For all i ∈ P ∪ U , x(failedi) = y(failedi).
(6 ) For all u ∈ U : ¬x(failedu):

(a) x(clocku) = y(clocku) ∧ x(Mu) = y(Mu)
∧ [x(Mu) 6= ∅ ⇒ ∀v ∈ nbrs+(u) : x(Vu(v)) = y(Vu(v))].

(b) |x(to sendu)| = |y(to sendu)|∧∀i ∈ [1, |x(to sendu)|] : ∀〈m, t〉 = x(to sendu[i]) :
y(to sendu[i]) = 〈m, t+ y(rtimeru)− x(rtimeru)〉.

(7 ) For all p ∈ P : ¬x(failedp):
(a) x(CNp) = y(CNp) ∨ [x(xp) = y(xp) = ⊥ ∧ x(vp) = y(vp)].
(b) x(V BDelayp) = y(V BDelayp).
(c) x(to send−p ) 6= λ⇒ x(V bcast.oldreg(p)) = y(V bcast.oldreg(p)).

We describe the various conditions two related states x and y must satisfy.
Part (1) requires that they share the same real-time and locations for CN s. Part (2)
requires that for each client, the velocity at RW is equal or the velocity in y is ⊥,
and GPSupdate records in the two states are for the same times. Part (3) requires
that VW ’s state and V bcast.now are the same in x and y. Part (4) requires that
the unprocessed message tuples are the same and that the last recorded regions in
V bcast for clients are the same in both states. Part (5) says that failure status of
each CN and VN is the same in both states. Part (6a) requires that for a nonfailed
VSA, local time and the set M are equal in x and y, and further, if M is nonempty
then V is equal for local regions in both states. Part (6b) says that the to send
queues for a nonfailed VSA are the same, except with the timestamps for messages
in y adjusted up by the difference between rtimeru in state y and x. Part (7a)
requires that the algorithm state of a nonfailed CN is either the same, or both
states share the same local v and have locations equal to ⊥. Part (7b) says that the
V BDelay state is the same for each nonfailed CN in x and y. Finally, Part (7b)
requires that if the to send−p buffer is nonempty in state x for a nonfailed client,
then V bcast.oldreg(p) is the same in both states.

The proof of the following lemma is also routine and it breaks-down into a large
case analysis. Say that x and y are states in QV Layer[MC] such that xRMCy.
For any action or closed trajectory σ of V Layer[MC], suppose x′ is the state
reached from x, then, we have to show there exists a closed execution fragment β
of V Layer[MC] with β.fstate = y, trace(β) = trace(σ), and x′RMCβ.lstate.

Lemma 7.7. RMC is a simulation relation for V Layer[MC].

To show that each state in LMC is related to a reachable state of V Layer[MC],
it is enough to show that each state in ResetMC is related to a reachable state of
V Layer[MC]. The proof proceeds by providing a construction of an execution of
V Layer[MC] for each state in LMC .

Lemma 7.8. For each state x ∈ ResetMC , there exists a state y ∈ ReachV Layer[MC]

such that xRMCy.
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Proof. Let x be a state in ResetMC . We construct an execution α based on
state x such that xRMCα.lstate. The construction of α is in three phases. Each
phase is constructed by modifying the execution constructed in the prior phase to
produce a new valid execution of VLayer[MC]. After Phase 1, the final state of
the constructed execution shares client locations and real-time values with state
x. Phase 2 adds client restarts and velocity actions for nonfailed clients in state x,
making the final state of clients consistent with state x. Phase 3 adds VSA restart
actions to make the final state of VSAs consistent with state x.

1. Let α1 be an execution of VLayer[MC] where each client and VSA starts out
failed, no restart or fail events occur, and α1.ltime = x(RW.now). For each failed
p ∈ P , there exists some history of movement that never violates a maximum
speed of vmax, is consistent with stored updates for p, and that lead to the
current location of p. We move each failed p in just such a way and add a
GPSupdate(〈l, t〉)p at time t for each 〈l, t〉∈ x(RW.updates(p)).
For each nonfailed p ∈ P and each state in α1, we set RW.loc(p) = x(RW.loc(p))
(meaning the client does not move). For each nonfailed p ∈ P , add a GPSupdate(x(RW.loc(p)), t)p
action for each t such that ∃〈l, t〉 ∈ x(RW.updates(p)).
For each u ∈ U , if x(last(u)) 6= ⊥ then add a timer(t)u output at time t in α1 for
each t in the set {t∗ | t∗ = x(last(u))∨ (t∗ < x(last(u))∧ t∗ mod εsample = 0)}.

Validity. It is obvious that the resulting execution is a valid execution of VLayer[MC].

Relation between x and α1.lstate. They satisfy (1)-(4) of Definition 7.6.

2. In order to construct α2, we modify α1 in the following way for each p ∈ P such
that ¬x(failedp): If x(xp) 6= ⊥, we add a restartp event immediately before and
a velocity(0)p immediately after the last GPSupdatep event in α1. If x(xp) = ⊥
and x(vp) = 0, then we add a restartp and velocity(0)p event immediately after
the last GPSupdatep event in α1. If x(xp) = ⊥ and x(vp) = ⊥, then we add a
restartp event at time x(RW.now) in α1.

Validity. Since restart actions are inputs they are always enabled, and a velocityp
action is always enabled at client CNp. Also, there can be no trajectory viola-
tions since any alive clients receive their first GPSupdate within εsample time of
x(RW.now) in α2, meaning that since δ is larger than εsample and x(RW.now) is
a round boundary, there is no time before x(RW.now) in α2 where a cn-update
should have been sent. It is obvious that this is a valid execution of VLayer[MC].

Relation between x and α2.lstate. They satisfy (1)-(4) and (7) of Definition 7.6.

3. To construct α, we modify α2 in the following way for each u ∈ U such that
¬x(failedu): If x(clocku) = ⊥, we add a restartu event after any timeu actions.
If x(clocku) 6= ⊥, we add a restartu event immediately before the last timeu
action.

Validity. A restart action is always enabled. Also, there can be no trajectory
violations since no outputs at a VSA are enabled until its local M is nonempty.
Since M is empty, we can conclude that this is a valid execution of VLayer[MC].

Relation between x and α.lstate. xRMCα.lstate.
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We conclude that α is an execution of VLayer[MC] such that if we take y =
α.lstate, then y ∈ ReachV Layer[MC] and xRMCy.

From Lemmas 7.8 and 7.7 it follows that the set of trace fragments of V Layer[MC]
corresponding to execution fragments starting from ResetMC is contained in the
set of traces of R(V Layer[MC]). Bringing our results together we arrive at the
main theorem:

Theorem 7.9. The traces of V LNodes[MC], starting in an arbitrary state and
executed with automaton R(V bcast‖RW‖VW ), stabilize in time δ+ d+ e+ εsample
to reachable traces of R(V Layer[MC]).

Thus, despite starting from an arbitrary configuration of the VSA and client com-
ponents in the VSA layer, if there are no failures or restart of client nodes (robots)
at or after some round t0, then within a finite number of rounds after t0, the clients
are located on the curve and are uniformly spaced in the limit.

8. CONCLUSION

We have described how we can use the Virtual Stationary Automaton infrastructure
to design protocols that are resilient to failure of participating agents. In partic-
ular, we presented a protocol by which the participating robots can be uniformly
spaced on an arbitrary curve. The VSA layer implementation and the coordination
protocol are both self-stabilizing. Thus, each robot can begin in an arbitrary state,
in an arbitrary location in the network, and the distribution of the robots will still
converge to the specified curve. The proposed coordination protocol uses only local
information, and hence, should adapt well to flocking or tracking problems where
the target formation is dynamically changing.

List of Symbols and Functions

δ Duration of each round of CN algorithm, page 16

εsample Maximum duration between two successive GPS updates, page 11

ExecsA Set of executions of TIOA A, page 7

FragsL
A Set of execution fragments of TIOA A starting from L, page 7

Γ Target curve; a (fixed) simple differentiable curve on R, page 15

Γu Γ restricted to Ru, page 15

Fail(A) The TIOA obtained by fail-transforming TIOA A, page 8

CN p Client node automaton, page 12

RW Real world automaton, page 12

VBcast Automaton model for virtual layer local broadcast service, page 13

VN u Virtual node automaton, page 13

VW Virtual world automaton, page 12

ReachA Reachable states of TIOA A, page 7

ΘA Set of start states of TIOA A, page 7

TracesA Set of traces of TIOA A, page 7

d Maximum message delay incurred by VBcast service, page 13

e Maximum delay introduced by VBDelay buffer, page 13

QA Set of states of TIOA A, page 7
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R Deployment space for the mobile robots, page 15

R(A) The TIOA obtained replacing starting states of A by ReachA, page 10

Ru A region in R corresponding to VN u according to some fixed tiling, page 15

Start(A, S) The TIOA obtained replacing starting states of A by S, page 10

U(A) The TIOA obtained replacing starting states of A by QA, page 10
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