
A Comparison of Taxonomy Generation Techniques
Using Bibliometric Methods:

Applied to Research Strategy Formulation

by

Steven L. Camifia

S.B., E.E.C.S. M.I.T., 2009

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

July 2010

Copyright 2010 Steven L. Camifia. All rights reserved.

ARCHIVES
MASSACHUSET TS INSTITUTE

OF TECHOLOYN

DEC 16 2010

LIBRARI ES

The author hereby grants to M.I.T. permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document in whole and in

part in any medium now known or hereafter created.

Author
Defa ent of Electrical Engineering and Computer Science

July 23, 2010

Certified by 1
i bStuart Madnick

John Norris Maguire Professor of Information Technologies and
Professor of Engineering Systems, Massachusetts Institute of Technology

1\ I Thesis Co-Supervisor

Certified by L1-I

Wei Lee Woon
Assistant Professor, Masdar Institute of Science and Technology

Thesis Co-Supervisor

Accepted by
\ U Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses





A Comparison of Taxonomy Generation Techniques
Using Bibliometric Methods:

Applied To Research Strategy Formulation
by

Steven L. Camifa

Submitted to the
Department of Electrical Engineering and Computer Science

July 23, 2010

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This paper investigates the modeling of research landscapes through the automatic
generation of hierarchical structures (taxonomies) comprised of terms related to a given
research field. Several different taxonomy generation algorithms are discussed and
analyzed within this paper, each based on the analysis of a data set of bibliometric
information obtained from a credible online publication database. Taxonomy generation
algorithms considered include the Dijsktra-Jamik-Prim's (DJP) algorithm, Kruskal's
algorithm, Edmond's algorithm, Heymann algorithm, and the Genetic algorithm.
Evaluative experiments are run that attempt to determine which taxonomy generation
algorithm would most likely output a taxonomy that is a valid representation of the
underlying research landscape.
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CHAPTER 1: Introduction

1.1 Motivations

1.1.1 Experts and the Decision Making Process

Decision making is a cognitive process resulting in the selection of a course of action
among several alternatives, usually relying on the opinions of qualified authorities and led by
subject-matter experts whose experience and internalized knowledge allow for effective decisions
to be made. Experts usually work within a given research field and are deeply immersed in their
subject of expertise. This allows them to give credible advice to researchers. However, in the end,
one expert cannot possibly know all the information that exists relating to their field at all times.
An expert may not have complete information about a field of technology or research, since the
landscape is constantly changing. Everyday, new technologies are invented, outdated research
methodologies scrapped, and research strategies altered and improved. It is difficult for an expert
to constantly keep track of all of these developments.

Experts are also human, hence decisions made by them will be partially based on their
own personal perspectives and unique experiences in the field. As a result, expert advice is still
somewhat subjective in nature.

Expert input is extremely valuable to the decision-making process. With this in mind, one
issue that motivated the work in this thesis was aiding the decision-making process by helping
experts acquire a more complete understanding of their area of expertise.

1.1.2 Research Landscapes

Every research field is composed of a set of interrelated concepts / ideas. For example,
within the research field of "renewable energy", there are several interrelated concepts such as
"solar power", "hydroelectric power" and "electricity". Going a level deeper, within "solar
power", there are also several interrelated concepts such as "photovoltaics" and "thermovoltaic".
We collectively refer to the set of interrelated concepts within a given research field as its
research landscape.

In technology-intensive sectors, decision-makers and researchers are always looking for
new, better ways to understand their field. A clear understanding of a research landscape will help
give their research direction, purpose, and can also help justify its need to investors who, at the
end of the day, provide the monetary incentive for continuing research.

A research landscape is not static, but rather changes constantly as new technologies and
concepts emerge, almost on a daily basis. Another issue that motivated the work in this thesis was
to accurately generate a robust visualization of a research landscape that provides useful
information to those that view it.



1.1.3 Analysis of Publication Databases

Text data mining refers to the process of gathering information from text through

searching for patterns / trends. Typically, the text to be analyzed is first parsed, structured, and

cleaned up, then the output is evaluated using various statistical techniques. Text data mining is

frequently applied to publication databases. A publication database refers to an organized set of

data composed of documents, articles, and entries gathered from journals, magazines, conference

proceedings, blogs, and other publicly released collections. Several publication databases exist,

many of which are readily available online. Ever since the Internet became mainstream, the

volume of useful information available online has increased exponentially. Online publication

databases have been developed to help manage the vast amounts of information, yet even with

these it is still hard to decipher which bits of information are worth examining and which are just

a waste of time.

There are several academic online publication databases that specifically review

technologically-related journals, such as Compendex and Inspec (collective called Engineering

Village), Scirus, Scopus and Web of Science. These databases contain an extraordinary amount of

information for any individual to read, comprehend and process.

Another issue that motivated the work in this thesis was methodologically extracting all

the information in these publication databases without the need of manual inspection and

presenting the information to end-users in a simple, easily-understandable medium.

1.2 Technology Forecasting Using Data Mining and Semantics

With all these motivations in mind, our team at MIT, in cooperation with a team in the

Masdar Institute of Science and Technology (MIST), have been developing an automated method

of helping technologically oriented decision makers make more informed decisions. The idea was

to solve the three problems mentioned in the previous section: aiding experts in giving credible

advice, visualizing research landscapes, and sifting through information in publication databases,
all with one tool.

MIT and Masdar have been collaborating these past two years on a project that aims to mine

science and technology databases for patterns and trends which can facilitate the formation of

research strategies [Woon et al. 2009(1)]. Examples of the types of information sources are

academic journals, patents, blogs and news articles. The proposed outputs of the project were:

1. A detailed case study of the renewable energy domain, including tentative forecasts of

future growth potential and the identification of influential researchers or research groups



2. An improved understanding of the underlying research landscape, represented in a
suitable form, like a taxonomy

3. Scholarly publications in respected and peer-reviewed journals and conferences relating
to the research

4. Software tools to automated the developed techniques.

The high-level aim of the project is to create improved methods for conducting technology
mining using bibliometric techniques. Technology mining refers to the process of gathering
information from publication databases of technological literature. Bibliometrics refers to the
statistical analysis of a document without the actual extraction of each document's fulltext.

The basic framework of the entire project is shown in Figure 1.

Figure 1: Technology Forecasting Using Data Mining and Semantics Project Framework

Notice that the figure is composed of several distinct blocks. Each block represents a

separate phase in the system. Block (a) represents data collection / aggregation and term

extraction. In this phase, bibliometric information is extracted from a publication database and a

list of key terms is collected on which the technology forecasting efforts will be focused. Block

(b) represents the identification of early growth technologies. There are two steps to this phase.

The first is to find a suitable measure for the 'prevalence' of a given technology as a function of

time, and the second is to locate technologies that, based on this measure, appear to be

Data Collection/
Aggregation

Acrtablinsgt

Taxonormy G, rowth
Gieneration

Actionable inisights

(b)



technologies in the "early growth" phase of their development. Finally, Block (c) represents the
phase where terms are visualized using a predictive taxonomy, described later.

1.3 Project Objectives

The work presented here is a subset of the work described in the previous section.
Specifically, the work here focuses on the second goal of the broad project mentioned previously:
an improved understanding of the underlying research landscape, represented in a suitable form,
like a taxonomy.

The underlying assumption to our work is that a research field can be divided into
distinct, yet interrelated terms, which are words / word phrases that embody a specific concept.
These terms make up the research landscape, as described earlier. We believe that we can find
these terms and determine their relation to each other by parsing the information contained in an
online publication database. In the succeeding chapters, we describe a process for automatically
gathering key terms related to a technological field from a publication database and organizing
these terms into a structure called a taxonomy, which is a hierarchical organization of terms
relevant to a particular domain of research, where the growth indicators of terms lower down in
the taxonomy contribute to the overall growth potential of higher-up "concepts" or categories.
The ordering of the terms in the taxonomy should reflect the inter-relationships between the terms
in the context of the research field being examined.

A taxonomy is an acyclic graph where each node has exactly one incoming edge but can
have multiple outgoing edges. For the purposes of research landscape taxonomy generation, each
node in the taxonomy is a term / concept in the research field. An example of a taxonomy
generated from a hypothetical research landscape of "renewable energy" is shown in Figure 2.

Renwabe Eerg FildRenewable Energy Taxonomy Photovoltaic
Renewable Energy FieldCel

Power Solar Power_
Power

Can be
Solar Power transformed

Hydroelectricino.
Power Hydroelectric

Wind PowerPoe

Thermal
Plants

Photovoltaic
Cells

Figure 2: Generating a Taxonomy from a Technological Field Landscape

The box on the right of Figure 2 shows a taxonomy based on the technological field
shown in the box on the left. It can be seen that there is only one unique path between each



technological concept / term. We believe that a taxonomy is a very effective representation for
visualizing research landscapes because:

1. The unique paths that can be traced between pairs of terms show clear conceptual links
amongst terms.

2. Automatically generated taxonomies reflect the information contained in thousands of
published academic papers, reflecting the opinions of many well-respected authors who
have published papers in the field.

In this thesis, we evaluated methods based on mathematically-grounded algorithms that
utilize the vast amount of information found in scientific and technological academic publication
databases to generate a sensible taxonomy representing a research field. Motivated by the issues
stated in Chapter 1.1, the overall goals of this thesis are:

1. To develop automated, publication database-independent methods.

2. To compare several taxonomy generation algorithms and evaluate the usefulness of each.

3. To generate ways of visually representing taxonomies in a manner that is easily
understandable for viewers.

4. To run a case study on "renewable energy".

1.4 Overview

The rest is structured as follows:

Chapter 2 will review the academic literature relating to taxonomy generation.

Chapter 3 will go in depth regarding the steps involved in the taxonomy generation process

Chapter 4 will discuss the methodology for evaluating taxonomy generation algorithms.

Chapter 5 will present the results of running the analyses described in Chapter 4.

Chapter 6 will wrap up the analysis and discuss where future work can be done.



CHAPTER 2: Literature Review

2.1 Technology Forecasting

Technology forecasting is of particular importance to the research presented in this thesis

because our work in research landscape visualization facilitates technology forecasting. Many

academics in the field have also investigated problems relating to tech forecasting and have tried

to address them. In proof, there is already a significant body of related research on the subject.

This rest of this subsection first presents related literature to technology forecasting, then

discusses how our work complements the existing body of research.

[Porter 1991] discussed general issues related to forecasting and management, and

introduced some basic tools for quantitative technological trend extrapolation. The book

elaborated on the planning, operation, analysis and control of complex technological systems and

new technology. The book covers the basics for long term planning, new product development

and production, and shows the factors that must come together for new technologies to be

developed and new complex products to be produced. Using exhibits, and case studies, [Porter

1991] discusses the methods for dealing with significant issues in managing technological

development.

Another book from the same author, [Porter 2005] focused specifically on the process of

technology mining, which is the process of extracting usable information from patents, business

information and research publications for the purpose of aiding the management of technology

(MOT) process which has thusfar largely been intuition-driven. Technological sources of

information are treated as the data that will eventually be "mined" in order to aid the MOT

process and generate conclusions about the field of interest. The tech mining analysis described in

[Porter 2005] looked at when was the research done, where was it patented, who were the major

organizations involved, what were the technological areas of focus, who were the leaders of the

companies involved, and what is the current state of the tech industry. It then created matrices

showing co-occurrences between these fields in the data, then looked at the change in the data

over time to finally generate some conclusions about the technological field.

[Martino 1993] is one of the most widely cited texts in technology forecasting literature.

It defined a technological forecast as a prediction of future characteristics of machines,
procedures or techniques. It then presented technological forecasting as an aid to decision-making

by presenting a comprehensive overview of forecasting methods, using numerous real-world

examples and illustrations.

The works presented in this subsection show that technology forecasting as a body of

research is indeed promising and a lot of utility can be derived from any tool or methodology that

could move this body of research forward. However, in none of the works reviewed and

presented here could we find any attempt to use technology mining methods provide a clear,

concrete set of actions for decision-makers and researchers. We believe that this is a critical gap

worth investigating and the research in this thesis seeks to address this issue. We know this is a



challenging task, but we believe that one such way to help accomplish this is the visualization of
a research landscape, which we do in the form of a taxonomy. The other research featured in this
section either simply define tech mining as a research field or present tech mining techniques for
managing technological development. None of them actually present any tech mining methods
whose outputs can be of immediate actionable impact. For researchers and decision-makers that
view the taxonomies we generate, it is immediately clear what concepts they should be focusing
on within a given technological field, which we believe could give them insights on what actions
to take especially in the early stages of decision-making, where the researchers usually have a
lesser understanding of the technological field as a whole.

2.2 Taxonomy Generation

There have been several previous studies on taxonomy creation for various purposes.
[Blaschke 2002] proposed a method that automatically generated classifications of gene-product
functions using bibliometric information, which is then compared to the well accepted GO
ontology. [Krishnapuram 2003] talked about the issues and possibilities concerning automated
taxonomy generation. In particular, the paper reviewed several taxonomy generation approaches
and provided insight into the issues involved. [Sanchez 2004] presented a methodology to extract
information from the internet and build a taxonomy of terms and web resources for a given
domain. [Schwarzkopf et al. 2007] proposed an approach for using data from a social tagging
application, like del.icio.us as a basis for user adaptation, then mining taxonomies of tags from
tag spaces. The mined taxonomy can then be used to determine how to adapt a system to a user
given the user's personal tag space. [Chuang et al. 2002] discussed automatic query clustering,
specifically, organizing query terms into a hierarchical structure, producing a query taxonomy.

We believe that the research concept proposed in this thesis is novel because unlike any
other study, we use taxonomy generation for the specific purpose of generating output that helps
facilitate decision-makers and researchers, which has not been done in any of the works of
literature mentioned in the last paragraph. In this thesis, we devise methods for automatically
generating solid, reliable taxonomies.

2.3 Bibliometric Analysis

There has been lots of work dealing with bibliometric analysis, presented in this
subchapter.

[Kostoff 2000] showcased database tomography, a bibliometric database analysis system
that extracts multi-word phrase frequencies and proximities in order to augment analysis from
experts in a research field. [Kostoff 2001] then followed up by describing an approach for
identifying pathways through which research can impact other research, technology development
/ applications, and technical / infrastructure characteristics of the user population using citation
analysis.



[Okubo 1997] presented the essential elements of bibliometrics and its application to the

analysis of research systems. It started by describing the advent of bibliometrics, continuing with

the presentation of the main bibliometric databases that existed back when the paper was written,

the bibliometric indicators, and the ways to apply these indicators.

[Small 2006] looked at using co-citation clusters to track the growth and emergence of

research areas in science. It defined a research area as a set of documents that define a research

topic and an associated group of researchers who share an interest in the topic. Then, it talked

about the methodologies of co-citation clustering, mapping, and string formation, and defined a

measure of cluster relativity based on the change in average age of highly cited papers.

In addition to the work mentioned above, there have been other works such as [van Raan

1996], [Daim 2006], [Verbeek 2002], and [Narin 1996] relating to bibliometric research.

Moreover, there is some research that talks about the need for standards in bibliometric research

[Glanzel 1996], and methods to mine text using keyword distributions [Feldman 1998]. Within

this large body of literature however, none of the works deals directly with using bibliometric

analysis in order to output something that could be used in technology forecasting and decision-

making facilitation, much like how we use bibliometric analysis to output a taxonomy that

experts can directly gather information from.

The work in [Ziegler 2009] uses bibliometric analysis intensively and served as the

springboard for the work in this thesis. Here, automated methods for bibliometric analysis using

information from online publication search engines were developed. The work in [Ziegler 2009]

took as input a word or phrase representing a research field, which is called a seed term, and

attempted to:

1. Discover related technologies / keywords to the seed term

2. Calculate a numerical value for the growth rate of a certain technology within the

research field encapsulated by the seed term, in hopes of flagging fast-growing

technologies, which could then be relayed to experts

3. Determine the relationships among technologies within the research field encapsulated by

the seed term by grouping them into "concept" clusters

4. Identify new, upcoming technologies within the research field encapsulated by the seed

term

The first stage of [Ziegler 2009]'s analysis is keyword extraction. Given an initial seed

term, online publication databases such as Compendex and Inspec' and Scirus 2 were scanned and

some/all of the keywords that come up as "related terms" were extracted. Each online publication

database presents its information in different ways, and hence unique "wrapper code" was

developed for each website. The choice of databases to query is based on two important criteria:

1 Available via www.engineeringvillage.com
2 Available via www.scirus.com



first, the database must index a large number of articles related to the technological field of
interest, and second, each database must present its results in a consistently formatted way in
order to allow keywords to be scraped in an automated fashion.

[Ziegler 2009] also attempted to refine the keywords extracted from the Scirus database
by using back-pointing and eigenvector centrality. The concepts of back-pointing and eigenvector
centrality help in ensuring that the "related terms" produced after a search are actually relevant.
Relevance fitting by back-pointing works by imposing a restriction on the terms extracted: they
must all "point back" to the original seed term. In other words, after a number of nested searches
of listed related keywords, the original seed term must be reached. If this condition is not
satisfied, then it is assumed that the term is not really related to the seed term. There are a few
variants to the back-pointing algorithm that will not be discussed within this paper. Relevance
fitting using eigenvector centrality simply means viewing all the terms in Scirus as a densely
connected network, where a link exists between terms that are related to each other. Given this,
the eigenvector centrality, which is a measure of importance / connectivity, can be calculated for
each term. The terms that have a lower centrality value are then disregarded.

[Ziegler 20091 then extracted hit counts from each online database, which represents the
number of articles related to a seed term for each year. These hit counts are then extracted and
saved, and later used to calculate the growth rates for each of the terms. The growth rates are
used to rank the list of terms. Terms with high growth rates and a relatively small number of
current hit counts are considered as potentially "high growth" terms that could well be part of
mainstream research in the future.

Finally, [Ziegler 2009] used Latent Semantic Analysis (LSA) in order to cluster terms
into manageable "concepts". Often, the output of a search produced keywords that were very
closely related, such that they could regarded as synonyms. Based on the co-occurrence of terms
in documents, the LSA algorithm produces a set of "concepts", each of which is a weighted
combination of every term in the field. LSA is based on a well-known and commonly-used
technique in linear algebra called Principal Component Analysis. An additional use of LSA is to
aid in term cleaning, where terms that do not have a strong weighting within any of the concepts
generated by LSA are discarded.

The work in this thesis is largely a continuation of the work in [Ziegler 20091. In [Ziegler
2009], bibliometric analysis and technology mining techniques were used to generate and filter
terms. The work in this thesis takes things a step further. While [Ziegler 2009] stopped at term
collection and concept creation, the work presented here takes the terms generated using the
technology presented in [Ziegler 2009] and organizes them into a taxonomy, which we believe
could be used to aid decision-makers and researchers. The work developed and presented in this
thesis both developed taxonomy generation methods and evaluated each taxonomy generation
algorithm's usefulness.



CHAPTER 3: Taxonomy Generation Process

The previous two chapters described the goals and aims of this research project. In

particular, the chapters discussed the overall goal of the MIT / MIST research group and this

thesis which is the automated creation of accurate, reliable taxonomies. However, this goal is still

quite broad and hence the specific focus of this thesis is evaluating algorithms used for taxonomy

generation. This chapter will explain the entire taxonomy generation process we have developed

and present each of the algorithms in detail.

Before the actual taxonomy generation algorithm can be run, each of the taxonomy

generation algorithms needs to be given inputs of a specific form, which in turn are based on

bibliometric information contained in a publication database. For the purposes of this thesis, we

collect the bibliometric information from an online publication database, but in theory the same

information can be collected from one that is not online.

Each taxonomy generated is centered around a particular technological concept,
summarized in a term or phrase or group of phrases called seed terms. The initial choice of initial

seed terms is necessarily made by the user. As a case study within this thesis, we used seed terms

related to "renewable energy", but these are not the only terms that can be used.

Using bibliometric information collected from online publication databases as a basis, the

taxonomy generation algorithms we developed determine which terms to logically link together

in the final taxonomy.

The choice of a suitable publications database to gather information from is critical, as

each different publication database contains a collection of articles from several different sources,

which may or may not be within the scope of the research area we are investigating. For instance,

a database like CHEMnetbase 3 that contains articles from journals relating only to "chemistry"4 is

not going to be a very good resource when searching for articles related to "renewable energy".

3.1 Chapter Overview

The general procedure for taxonomy generation will be discussed in the succeeding

sections. As mentioned previously, the taxonomy generation algorithms we've developed take a

certain type of input which is derived from publication databases. As such, this chapter will first

discuss how this input is generated before tackling the specifics of each taxonomy generation

algorithm.

The steps necessary before the taxonomy generation algorithms can be run are:

3 Available via www.chemnetbase.com
4 "Chemistry" in this context refers to the science dealing with matter and its changes



1. Bibliometric information is extracted from an publication database, which in the case of
this thesis is found online, and stored locally for quick processing.

2. From the bibliometric data, a set of terms are chosen amongst the article keywords that
are to be included in the taxonomy.

3. A similarity measure is used to compare chosen terms to be included in the taxonomy by
quantifying each pair of terms' relationship strength, collectively represented by a
distance matrix.

Once the distance matrix has been generated, taxonomy generation algorithms can be run. In
particular the taxonomy generation algorithms that we've developed and will be discussed in the
succeeding sections are:

1. Dijsktra-Jarnik-Prim's (DJP) Algorithm

2. Kruskal's Algorithm

3. Edmond's Algorithm

4. Heymann Algorithm

5. The Genetic Algorithm

Finally, the outputted taxonomy must be presented in an aesthetically pleasing manner. As such,
the way in which we visualize taxonomies is discussed at the end of the chapter.

3.2 Extracting Bibliometric Information

The first key step in taxonomy generation is the extraction of bibliometric information
from publication databases via their respective search interfaces. Bibliometric information refers
to the data pertaining to the low level statistical properties of an article, as opposed to the actual
contents; note, that the extraction of this information may still require that the text of entire
documents be parsed - however, this will only be to extract these statistics and not, for example,
to conduct higher level analyses such as natural language processing. Specifically, the
bibliometric information we analyzed were the 'title', 'abstract', and 'keywords' of an article.

To gather information from an online publication search engine, the seed term(s) of
choice were first entered into the database's search interface (this can either be done manually, or
via some automated procedure or API). Information regarding matching documents was then
retrieved, allowing the extraction of the relevant bibliometric information.

While it is unlikely that a single publication database would be able to cover all relevant
academic journals, we have found several that we believe cover topics that most closely relate to
the research landscape that we are exploring in this project, "renewable energy". While we cannot



be certain if the databases we found are necessarily the best databases for our specific purpose,

we know that these databases are very highly regarded, cover a wide scope of topics relating to

technology, and are readily available without additional cost within MIT / MIST.

3.2.1 Engineering Village

In MIT, the database of choice is Engineering Village5 . Engineering Village is a

combination of three online databases: Compendex, Inspec and NTIS. Compedex and Inspec are

both significantly larger in scope compared to NTIS (National Technical Information Service).

The latter is a database of government reports and information covering several product

categories ranging from administration/management to earth sciences. Because of NTIS's limited

scope compared to Compendex and Inspec, we focused our data gathering efforts on Compendex

and Inspec. Compendex and Inspec cover publications from 1884 up to the present and are

available free of charge to members of the MIT community, allowing our research group to query

the online publication database as often as we wanted without any overhead.

Compendex is a comprehensive bibliographic database of scientific and technical

engineering research, covering all engineering disciplines. It includes millions of bibliographic

citations and abstracts from thousands of engineering journals and conference proceedings.

Compendex covers well over 120 years of core engineering literature. Specifically, Compendex

includes over 5 million summaries of journal articles and conference proceedings and 220,000

new additions every year. Over 5,000 engineering journals and conferences are indexed and the

database is updated weekly. Coverage of Compendex includes: Mechanical Engineering, Civil

Engineering, Electrical Engineering and Electronics, Chemical Engineering and Aeronautical

Engineering. Compendex is produced by Elsevier Engineering Information Inc.

Inspec includes bibliographic citations and indexed abstracts from publications in the

fields of physics, electrical and electronic engineering, communications, computer science,

control engineering, information technology, manufacturing and mechanical engineering,
operations research, material science, oceanography, engineering mathematics, nuclear

engineering, environmental science, geophysics, nanotechnology, biomedical technology and

biophysics. Inspec contains over eight million bibliographic records taken from 3,000 scientific

and technical journals and 2,000 conference proceedings. Over 400,000 new records are added to

the database annually. Online coverage is from 1969 to the present, and records are updated

weekly. Inspec is produced by the Institution of Engineering and Technology (IET).

Compendex and Inspec are similar in a few ways. First, although they mostly cover a

different set of topics, they do have around a 20% overlap of journals between them. Also, since

they are both contained in the Engineering Village website, they both display "controlled terms"

and "uncontrolled terms" for each article. "Controlled terms" come from the controlled

vocabulary found in the El Thesaurus, which is used to index records in Compendex. El refers to

5 Available via www.engineeringvillage.com



6Engineering Information, which is a business unit of Elsevier , which is one of the leaders in
providing online information, knowledge and support to engineering researchers. The 4 h edition
of the El Thesaurus contains 18,000 terms and EI's controlled vocabulary is a list of subject terms
used to describe the content of a document in the most specific and consistent way possible.
"Uncontrolled terms" are author imposed keywords for the article. The number of "controlled
terms" and "uncontrolled terms" for each article ranges, but typically each article has around 5
controlled terms and anywhere between 5 to 20 uncontrolled terms.

Collecting Terms from Engineering Village

Given an initial seed term, Engineering Village is queried via its online interface and the
bibliometric information of all the articles produced in the search results is stored in a locally
stored database file.

The initial page in Engineering Village is shown in Figure 3. To query the database, the
search term is typed into the designated text box enclosed in double quotes to ensure that the seed
term is treated as a single phrase rather than a set of disjoint words. For example, we would type
in ["renewable energy"] as opposed to [renewable energy]. The correct checkbox is also selected
to indicate which database among Compendex, Inspec will be used.

E Engineering Village

CCEneBSE Use humalion )
lms stanard comput*retums

Scirus
Le! ei New use wildcard (?) to

..... i

Figure 3: Home page of Engineering Village

After the search is run, the results appear in a new browser page similar to the one shown
in Figure 4.

6 Elsevier provides information research tools specifically focused on the content and intelligence that engineering researchers need to
stay informed and step ahead of the competition. Elsevier is a world-leading publisher of scientific, technical and medical information
products and services. Working in partnership with the global science and health communities, Elsevier's 7,000 employees in over 70
offices worldwide publish more than 2,000 journals and 2,200 new books per year, in addition to offering a suite of innovative
electronic products, such as ScienceDirect, MD Consult, Scopus, bibliographic databases, and online reference works. (taken from
http://www.elseyier.con/wps/find/intro.cwshome/ataglance)
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Figure 5.
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Figure 5: Detailed Abstract Page for Each Article.
This page contains more detailed information about a specific article, including its Title, Author(s),-

Publication Source, Publication Date, Abstract, Controlled Terms, Uncontrolled Terms, and
Classification Code

To extract all the relevant information, the database is first queried with the seed term,
which is equivalent to typing in this lengthy URL:

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationForma
t&database= <database number: 1 for Compdendex, 2 for Inspec>
&searchWord1= <seed term/phrase separated by "+" signs instead of spaces">
sectionlI=NO-LIMIT&boolean 1=AND&searchWord2=&section2=NO-
LIMITboolean2=AND&searchWord3=&section3=NO-LIMIT&doctype=NO-
LIMITtreatmentType=NO-LIMIT&disciplinetype=NO-LIMIT&language=NO-
LIMITsort=relevance&yearselect=yearrange
&startYear= <start year to search for Publications>
&endYear= <end year to search for publications>
stringYear=CSY 18 84CST 18 84ISY1 896IST1I896NS Y1I899NST1I899updatesNo= 1&search. x=23
&search.y=1I2&search=Search

Searching for patterns, or "regular expressions", within the convoluted source code of the

results page, the URLs for the abstracts of each article are extracted. Then, each abstract UJRL is

read individually, and the "title", "abstract", "controlled terms", and "uncontrolled terms" of each

article are captured by searching for more regular expression patterns throughout the page.

After all the data from the abstracts within a specific results page are gathered, the URL

of the next page containing the next 25 articles is gathered and the process is repeated for the

articles / results within that page.

The data extraction process does not make many queries to the actual Engineering

Village website. From the website's perspective, the data collection operation functions exactly

like regular searches, where the "Next Page" button is clicked on multiple times. This is in



contrast to an earlier approach where data was gathered individually for each search term by

continually querying the site and gathering the total number of results or "hit counts" produced by

each search [Ziegler 2009]. This approach resulted in the generation of a very large number of

requests to the remote website, which meant that we not only ran the risk of having our IP address

blocked, we also could only run the taxonomy generation algorithm while connected to the

internet and from within the MIT network. The current approach downloads and collects the

relevant data from the remote website in one quick sweep, permitting all subsequent

computations to be performed offline.

The use of Python's regular expression and URLLib packages allowed for the easy

extraction of online data. There was one slight complication to the data gathering process, which

was that Engineering Village only provided up to 4,025 articles per query, despite listing much

more in its article count estimate at the top of the webpage. This meant that visiting the URL for

the page after the 4,025h article would display an error. To get around this, the whole database

was collected by conducting several incremental queries where the results of each were limited by

altering the "start year" and "end year" parameters to extract only a subset of data each time, and

then all the incremental search results were aggregated to produce one massive database. This

allowed for the collection of bibliometric information from hundreds of thousands of articles.

All the bibliometric data taken from Compendex / Inspec was then stored in a local

SQLite3 database, chosen for its lightweight and easily transferrable properties. The database has

the following schema:

" TITLE

* ABSTRACT

" CONTROLLED TERMS

* UNCONTROLLED TERMS

. JOINT TERMS

o representing the union of the controlled and uncontrolled terms

The core terms that will be used to populate the final taxonomy are gathered from either

the CONTROLLEDTERMS, UNCONTROLLEDTERMS, or JOINTTERMS.

3.2.2 Scopus

In Masdar (MIST), the database of choice is Scopus. Scopus is the largest abstract and

citation database of peer-reviewed literature and quality web sources. Updated daily, Scopus

offers nearly 18,000 titles from more than 5,000 international publishers, including coverage of

16,500 peer-reviewed journals, 600 trade publications, 350 book series and 3.6 million



conference papers. Scopus contains over 40 million records going back as far as 1823. Scopus
covers topics in science, technology, medicine, and social science. 80% of all Scopus records
have an abstract.

Scopus has a convenient feature where all the bibliometric information contained in the
search results can be downloaded with a few simple clicks. As such, the data gathering process
from Scopus was much simpler than the process for the Engineering Village databases. The
bibliometric information downloaded from Scopus comprised of the following information for
each relevant article produced by querying the site:

e AUTHORS . ABSTRACT

e TITLE

e YEAR

" AUTHORKEYWORDS

* INDEXKEYWORDS

e SOURCE_TITLE . CORRESPONDENCEADDRESS

0 VOLUME

e ISSUE

* ARTICLENUMBER

* PAGESTART

* PAGEEND

" EDITORS

* PUBLISHER

* ISSN

" ISBN

e CODEN

0 PAGECOUNT

e CITEDBY " LANGUAGEOFDOCUMENT

* ABBREVSOURCETITLEe LINK

0 AFFILIATIONS * DOCUMENTTYPE

0 AUTHORSWITHAFFILIATION 0 SOURCE

The data gathered was then stored in an SQLite3 database, similar to Engineering
Village. The core terms that are then used to populate the final taxonomy are gathered either
from the AUTHORKEYWORDS or INDEXKEYWORDS. AUTHORKEYWORDS are
similar to the "uncontrolled terms" in Compendex / Inspec, while INDEXKEYWORDS are
similar to the "controlled terms".

e DOI



For this thesis, bibliometric information pertaining to "renewable energy technologies

was collected from Scopus and stored in a local SQLite3 database. This local database, which we

refer to in all succeeding parts as the backend data set compiled for a given seed term is not fed

into the taxonomy generation algorithms just yet. An additional transformation needs to be done

to the information first. The process of converting the raw database information into a workable

form is discussed in the succeeding sections.

3.3 Quantifying Term Similarity

In order to process the data, concepts from graph theory were used. In computer science,

graphs are mathematical structures used to model pairwise relations between objects in a given

set. A graph contains a collection of 'vertices' or 'nodes' (used interchangeably in this paper) and

a collection of 'edges' or 'links' (also used interchangeably in this paper) connecting pairs of

nodes. A graph may be undirected, which means there is no distinction between the two nodes

associated with each edge, or directed, in which case each edge specifies a path from one node to

another. Several of the taxonomy generation algorithms developed and used in this paper are

based on existing graph theory algorithms.

The first step in processing the data from the data set is to convert it into a workable

graph. This graph is called a term similarity graph, where the nodes of the graph represent

individual terms and the edges between the nodes represent the strengths of their relationship with

each other. A key intuition behind our approach is that the relationship between terms in the

taxonomy can be quantified based on the frequency that these terms occur simultaneously in

academic literature. Simply put, we assume that the repeated appearance of a specific keyword

pair in several different articles implies a close relation between the terms. Building on this

premise, we calculate the 'relationship strength' between each pair of nodes based on a similarity

metric that took as primary input the frequency in which pairs of terms co-occurred within the

bibliometric information of each article in the database. A co-occurrence between a pair of terms

is defined as the co-existence of two terms within a particular article's title, abstract, or keywords.

Based on literature on the subject, we decided to use these forms of similarity: cosine

similarity, symmetric and asymmetric normalized google distance (NGD) similarity. Cosine

similarity and symmetric NGD produce a metric that is undirected between terms, whereas the

asymmetric NGD metric produces a directed term strength metric.

3.3.1 Cosine Similarity

Cosine similarity is a measure of similarity between two vectors based on the cosine of

the angle between them. This method is often used to compare documents in text mining, and

connectedness within clusters in data mining. Given two vectors A and B, cosine similarity is

defined s:



. A -B (Eq. 1)cosine similarity = A -B(.

Applied to taxonomy generation, this can be rewritten as:

cosine similarity = n_'y (Eq. 2)

where nx and ny represent the number of articles that contain terms x and y respectively, and nx,y
represents the number of articles that contain both x and y. An article is said to 'contain' a term if
the term occurs within its title, abstract, or list of keywords.

Application of the formula in Eq. 2 results in a cosine similarity value of between 0 and
1, where 0 means independent, and 1 means exactly similar. Also, note that the cosine similarity
between two terms is symmetric. This means that the similarity of term a to term b is the same as
the similarity of term b to term a. Because of this, when applied to taxonomy generation, the
cosine similarity of a pair of terms does not give a clear indication regarding which of the terms
in the pair will be the child of the other in the final generated taxonomy.

3.3.2 Symmetric Normalized Google Distance Similarity

The symmetric normalized Google7 distance (NGD) similarity between terms is based on
[Cilibrasi & Vitanyi 2007]. In their work, they described Google Distance as a method that uses
term co-occurrence frequencies to indicate how close terms are related to each other. The closed
form expression of the Normalized Google Distance is:

maxtlog n, log ny} - log n,,y (Eq. 3)

log N - minflog nx, log ny}

where nx and ny are the number of results returned by a search in an online database (e.g. Google)
for each individual term, N is a large number representing the total number of possible results,
and nx,y is the number of results returned by a joint search for both terms. The main thrust the
research in [Cilibrasi & Vitanyi 2007] was to develop a new theory of semantic distance between
a pair of objects based on a backend derived from a set of documents.

Graphically, cosine similarity and symmetric NGD can be imagined as creating
undirected edges between nodes, as shown in Figure 6, thus creating an undirected graph.

7 Although the word "Google" is used, the "Google" database is not actually used in our version of the similarity metric. The use of
"Google" in the similarity metric's name is used because the original authors of the paper where the algorithm was initially presented
[Cilibrasi & Vitanyi 2007] used Google in their analysis and accordingly named the distance metric they created.



Dijsktra-Jarnik-Prim's (DJP) algorithm, Kruskals algorithm and Heymann algorithm are all

algorithms that use undirected graphs as initial input.

Node Edge weight Node
1 2

Figure 6: Illustration of Undirected Edge

3.3.3 Asymmetric Normalized Google Distance Similarity

The asymmetric NGD metric was developed in [Woon & Madnick 2008] by analyzing

the symmetric NGD metric and noticing that the original closed form equation as seen in Eq. 3

uses the "max" and "min" functions and ultimately derives a symmetric relationship between two

terms. The use of these functions hides some information. The idea was to create a similarity

metric between a pair of terms that clearly indicates the parent-child relationship between them.

As such, an asymmetric metric was needed. It was noticed that the symmetric NGD metric could

be easily turned into an asymmetric measure by removing the "max" and "min" operators. In Eq.

3, the first term in the numerator and the last term in the denominator are picking the max and

min of the terms nx and ny respectively. Since the max and min are mutually exclusive, what this

equation really is doing is placing one of n, or ny in the numerator and the other in the

denominator, leading to two possible interpretations of the formula:

log nx - log nx,y (Eq. 4)
aNGD(?, ?)= = oN on

log N - log ny

log ny - log nx,y (Eq. 5)
aNGD(?, ?) = lg on

log N - log nx

To see which of the two equations above refers to term x being a child of term y, a simple

test case was run. Using Engineering Village, we ran a query for "power" and "hydroelectric

power". Intuitively, "hydroelectric power" should be a subset of "power", and hence should be its

child.

Running a query for ["hydroelectric power"] in Engineering Village produces 30,918

results. Running a query for ["power"] produces 2,616,414 results. Running a query for ["power"

AND "hydroelectric power"] displays 30,918 results. N was chosen to 1010, an arbitrarily large

number. From this:

aNGD(?,?) = "I "'hydroelectric power" -log nboth = 0 (Eq. 6)
log N - log npower



(Eq. 7)
aNGD(?,?) = log npower - log nboth 0.34983

log N - log n"hydroelectric power"

Since "hydroelectric power" should be a child of "power", this led to the asymmetric NGD
metric:

log n, - log nx,yaNGD(xy) 
-log N - log ny

(Eq. 8)

where aNGD(x,y) is the aNGD associated with term x being a child of term y, with NGD ranging
from 0 to 1, and the lower NGD values represent the more likely to be correct term connection. In
the example above:

aNGD("hydroelectric power", "power") < aNGD("power", "hydroelectric power")

which means that it is more likely that "hydroelectric power" is a child of "power", which makes
sense.

A key difference of the symmetric / asymmetric NGD similarity and cosine similarity is
that a link is optimal in the NGD case if it minimizes its value, whereas in cosine similarity a
larger value is seen as an indicator of a closer relationship between terms.

Graphically, the asymmetric NGD similarity can be imagined as creating directed edges
between nodes, as shown in Figure 7, producing directed graphs. Edmond's algorithm and
Heymann's algorithm are the two taxonomy generation algorithms that we use that require
directed graphs as initial input.

Figure 7: Illustration of Directed Edges

3.4 Populating the Term Similarity Matrix

With a similarity measure in place, the next step we take is encapsulate all the pairwise
term similarity values into a form which we refer to as a distance matrix. A distance matrix is



shown in Figure 8, and can be imagined as a physical representation of the directed / undirected

graph formed using one particular similarity metric as basis. The entry in row i, column j of the

distance matrix, henceforth referred to as [i,j], represents the term similarity metric value

associated for term i being a child of term j. A matrix generated using cosine similarity or

symmetric NGD similarity will be symmetric across the diagonal, whereas one generated using

asymmetric NGD similarity will not.

Visualizing this matrix as a graph makes it possible for us to use graph theory algorithms

to process the information in the matrix to produce a taxonomy.

I-------------------------------------------------
Each entry in the matrix represents the strength of the similarity between a pair of
terms, i and j, where i is the index of the entry's row and j is the index of the entry's
column. In this case, the value 0.21 is the similarity metric between term I and term 3.

oo 0.33 O.21 0..83 " ~~~~ 3

0.32 oo 0.52 0.12

0.86 0.65 00 0.18

0.76 0.29 0.05 oo e2 Ter.4

Distance Matrix Graph Representation

Figure 8: Representations of a Distance Matrix
A distance matrix is represented as a matrix of pairwise similarity values but can also be thought of
as a graph of interconnected nodes, with each node representing a term. Notice that the diagonals of
the matrix are set to oo, this is because a term cannot be related to itself. The matrix shown above is

asymmetric, indicating that the asymmetric NGD similarity metric was used.

The distance matrix is always a square matrix of fixed size dependent on the number of

terms in the taxonomy. Specifically, each distance matrix is an n x n matrix where 'n' represents

the number of terms in the taxonomy. Once the dimensions of the distance matrix are set, we

populate the matrix with similarity values based on one of the term similarity metrics discussed

earlier.

Choosing which 'n' terms to insert in the matrix is tricky. We have decided to do this by

choosing the 'n' most frequently occurring terms in the bibliometric data set we generated earlier.

Specifically, the number of terms, 'n', to be included in the taxonomy and the field in the data set

schema from which to take the terms from should first be provided. The field from the data set

schema where the terms are taken could either be the "controlled terms", "uncontrolled terms", or



'joint terms" fields in the case of an Engineering Village-collected data set, and either "author
keywords", "index keywords", or both in the case of a Scopus-collected data set.

The field of interest is then scanned, and a dictionary of terms is formed with a stemmed
version of the term as the 'key' and the number of occurrences among all the articles as its
'value'. The top terms whose stemmed versions have the highest values are then used as the terms
to be included in the taxonomy. The use of word 'stemming' is a very important step in the term
collection process. "Stemming" is the process of reducing words to their stem, base, or root form.
The stem need not be identical to the morphological root of the word, but it is important that
similar terms map to the same stem, to eliminate redundancy. For example, the terms 'energizing'
and 'energized' both stem to form the term 'energ'. Stemming the terms that appear in the field of
interest first is important so that no duplicates of terms are ever found in the final term list.
Without stemming, we could have a "renewable energy" taxonomy that contains the terms
"energy", "energized" and "energizing" all as separate interconnected nodes. While we
understand that these terms have slightly different meanings, we believe that for the most part all
these terms will belong to the same general technological concept within the technological
research field we are analyzing, hence it is acceptable to merge these terms together into a single
term concept.

After the terms are selected, each term is mapped to a row/column in the distance matrix.
Distance matrix entries can then be populated based on the term similarity metric discussed
earlier. Values along the diagonal of the distance matrix are then set to undefined values since
these values refer to the weight of term's link to itself, which is not allowable in the final
taxonomy and hence should not exist in the graph.

The distance matrix is then used as input to one of the taxonomy generating algorithms.
Each algorithm basically takes the graph representation of term similarities, as represented by the
distance matrix, and turns it into a directed spanning tree. In graph theory, a directed spanning
tree of a graph G is a graph containing all the vertices of G where every vertex has only one
parent. In other words, the graph has no cycles. Figure 9 shows a visualization of this, where an
initial graph containing 9 terms is transformed into a taxonomy by selecting edges in the graph
representation of the term's similarities.

8 'dictionary' is a computer science term referring to an abstract data type composed of a collection of unique keys/identifiers, each
associated with a collection of values. The operation of finding a value associated with a key is called a 'lookup' and happens in
constant time.



(b)

I Note that with regard to taxonomy generation, there
I should be a link connecting every pair of terms. Many
I links are not visible in this image in order to reduce
I clutter.

Figure 9: Transformation of Graph Representation of Term Similarity Relationships into Final
Taxonomy.

The example above illustrates roughly how a taxonomy is formed based on the graph representation
of its term relationships. The term relationships can be visualized as a graph like in (a) and a
spanning tree is then selected from among the edges in the graph. The spanning tree is then

transformed into a taxonomy by instantiating one term, in this case term 5, as the root node then
forming the rest of the taxonomy by staying consistent with the connections in the spanning tree, thus

creating a final taxonomy as shown in (b)

3.5 Choosing a Root Node

As a next step, many of the algorithms we use require the instantiation of a root term /
root node as part of the process. We do this either by explicitly specifying a root, or by using term
centrality measures to determine the most central, and thus 'root' term.

A root term can be specified manually. For example, if we have the terms ["energy", "solar
energy", "wind power", "hydroelectricity"], it makes sense to specify "energy" as the root term as
it is the most general concept. In practice however, term lists aren't always short enough to allow
for manual inspection. Many of the taxonomies we generate will have up to thousands of terms.
In these cases, manual instantiations of root terms is not advisable. In such cases, the root term
should be specified by choosing the most "central" term in the graph. There are two graph
centrality algorithms that we currently use: betweenness centrality and closeness centrality.

3.5.1 Betweenness Centrality

To calculate the betweenness centrality, the full list of vertex-pairs in a graph is collected
and the shortest distance between each pair is found. The centrality of a vertex is then based on
the number of shortest paths that pass through it. Vertices that occur on many shortest paths
between nodes will have a higher betweenness centrality metric than those that do not. In other



words, betweenness centrality for a given node is the fraction of the number of shortest paths that
pass through that node. The formula for betweenness centrality is:

Cbetweenness (V) =
(Eq. 9)as, t (V)

vstEV s,t

where ca,t is the number of shortest paths from node s to node t, and as,,(v) is the number of
shortest paths from node s to node t that pass through node v.

3.5.2 Closeness Centrality

In graph theory, closeness centrality looks at all the shortest paths between pairs of
vertices, and quantifies the centrality of a vertex based on the mean of all the shortest path lengths
that originate from it. Vertices that have smaller mean shortest path lengths will have a higher
closeness centrality metric that those with larger values. The formula for closeness centrality is:

(Eq. 10)
Ceioseness (v) =

Xttv d,,t
t*v

where d, is the length of the shortest distance in the graph between vertices v and t.



3.6 Taxonomy Generation Algorithms

Now that the distance matrix has been populated and a root node has been chosen, a

specific taxonomy generation algorithm can now be used to produce the final taxonomy. This

section discusses each taxonomy generation algorithm that we use in detail. The algorithms

analyzed are:

. Dijsktra-Jarnik-Prim's (DJP) Algorithm

. Kruskal's Algorithm

* Edmond's Algorithm

* Heymann Algorithm

. The Genetic Algorithm

It must be noted that with the exception of the Genetic algorithm, the other algorithms

mentioned above all run to completion in about the same amount of time. The bottleneck in our

implementation of the process lies in the bibliometric data set collection and the distance matrix

creation.

3.6.1 Dijsktra-Jamik-Prim Algorithm

The Dijsktra-Jarnik-Prim (DJP) algorithm finds an optimal spanning tree for a connected,

undirected, weighted graph. Since DJP requires an undirected graph, it uses either the cosine or

the symmetric NGD similarity distance metric. DJP is an example of a a greedy algorithm, which

means that it solves a problem by making a series of locally optimal decisions, with the hope of

converging on the global optimum (or a close approximation) within a reasonable amount of

time.

For taxonomy generation, an adapted version of the original DJP algorithm is used:

* Determine the root term of the taxonomy

" Make the root term node the starting point of the taxonomy

. Iteratively insert the terms not yet in the taxonomy by inspecting the original graph and

checking to see which term has the closest relationship with one of the nodes / terms

already in the taxonomy. Do this until all the nodes / terms are in the final taxonomy

33



Figure 10 illustrates the DJP algorithm.

The initial graph. For taxonomy generation purposes, this graph would
be represented by a distance matrix and would be much denser than

the graph on the left. The nodes in the graph represent the terms in the
distance matrix and the numbers next to the links represent the
similarity values between terms.

B C D is chosen as the root node. This means the possible next nodes to

o "s add to the taxonomy are those directly connected to D: A, B, C, E and
A 13 , G.

E

G

6 a

F

B 12 C A is chosen to be included next in the taxonomy as a child of D as it is
the best-connected node to D since it has the highest similarity value.

Including A in the taxonomy now allows the inclusion of nodes B and
E G as children of A.

6 8

B 12 C G is chosen to be included next in the taxonomy as a child of D as it is
the next best-connected node to the current nodes in the taxonomy, A
and D. Including G in the taxonomy now allows the inclusion node F

E as a child of G. Including G also prohibits the inclusion of the arc AG
6> * in the taxonomy since A and G are already in the taxonomy.

B C The algorithm continues until all the nodes are included in the
taxonomy. The visual on the left shows the spanning tree that the final
taxonomy is based on.

E

11G
6 8

F

B C The final taxonomy is produced by pulling out D as the root and

preserving the links in the graph. The visual on the left shows the final
taxonomy.

F FE

Figure 10: Illustration of DJP Algorithm for Taxonomy Generation



3.6.2 Kruskal's Algorithm

Kruskal's algorithm is another algorithm which finds the optimal spanning tree for a

connected undirected weighted graph.

The general algorithm of Kruskal's is as follows: Firstly, an edge-less graph containing all

vertices in the original graph is instantiated; the edges with the highest similarity values from the

original graph are added sequentially into this graph until it becomes a spanning tree (similar to

DJP, Kruskal's algorithm is another example of a greedy algorithm).

As Kruskal's algorithm also uses undirected graphs, the cosine similarity or symmetric NGD

metrics are used. In the context of taxonomy generation, the following customized version of the

algorithm was used:

* Create an initial set of individual, unconnected nodes, collectively called S, where each

node represents a term in the undirected distance matrix generated using either the cosine

similarity metric or the symmetric NGD similarity metric as basis

* While S is not fully connected:

o Take the edge e, with the best edge-weight value in the distance matrix

o Add edge e to S if the e does not create any cycles in S, otherwise discard the

edge.

. Transform S into a directed spanning tree by instantiating a root node and creating

directionality by staying consistent with the connections in S. This last step is the only
new step added in order to adapt Kruskal's algorithm for taxonomy generation.

Kruskal's algorithm is deterministic. This means that it only produces one result for a given

distance matrix. Figure I1 illustrates the algorithm.

B 12 The initial graph. For taxonomy generation purposes, this graph would

" " be represented by a distance matrix and would be much denser than the
A 1 13 9 graph on the left. The nodes in the graph represent the terms in the

E distance matrix and the numbers next to the links represent the

F 8 similarity values between terms.

TermClusters = []

9 A graph is fully connected when there is a traceable path between every pair of vertices in the graph



B 12 C The longest (best) arc is AD with length 15, hence it is included in the
to 7 final spanning tree.

15D

13 13TermClusters = [[A,DI]
E

G

6 8

B 12 C The next best arc is DG with length 13, hence it is included in the final
t0 i 7 spanning tree.

A

it TermClusters = [[A,D,G]]
G

6 B

F

B C The next best arc is BC with length 12, hence it is included in the final
oit 7, spanning tree. Since BC is not connected to the [A,D,G] term cluster, a

new cluster is created.
E

6 8 TermClusters = [[A,D,G],[B,C]]

B 12 ' The next best arc is BD and AG with length 11. BD is randomly
o " 'D -selected to be added to the spanning tree first between the two. Since

13 9 the BD arc connects the [B,C] and [A,D,G] clusters, these two clusters
G E are merged.

6 a

F TermClusters = [[A,B,C,D,G]]

B 2 c The next best arc is AG with length 11. However, since it connects
t it11 7 two nodes that are already in the same cluster, the edge is discarded.

E TermClusters = [[A,B,C,D,G]]

B 12 C The process continues until all the arcs are accounted for and the
t 115 7 spanning tree is connected. For taxonomy generation, the initial graph

is one where each node is connected to every other node, hence it is

E guaranteed that at the end of the algorithm's run, all the nodes will be
F 8connected and a spanning tree will be formed. The final spanning tree

is then converted to a taxonomy by instantiating a root node / term.

B The final taxonomy is generated by choosing a root node, and pulling
it out while preserving the links in the graph. The visual on the left

D A

shows the final taxonomy produced by choosing D as the root node.
E

Figure 11: Illustration of Kruskal's algorithm for Taxonomy Generation



3.6.3 Edmond's Algorithm

Edmond's algorithm is a graph theoretic algorithm for finding a minimum spanning tree.

Unlike the previous two algorithms discussed in this section, Edmond's uses a directed, weighted

graph as input, hence the asymmetric NGD (aNGD) similarity metric is used.

The algorithm is as follows:

* Create an initial graph, called S, where every node represents a term in the distance

matrix and each node only has one incoming edge, which is the incoming edge with the

minimum (and thus best) aNGD similarity value

* Choose a root node and remove its incoming edge

* For each cycle in S, remove an existing edge and add an outside edge (thus removing the

cycle) by first calculating the minimum additional cost value for each node currently in

the cycle, where the additional cost is defined as:

additionalcost(v) = mm wev (edge[w -+ v] - edge[u -+ v]) (Eq. 11)
!(w E loopNodes)
[u,v] E loopEdges

where edge[u --+ v] represents the aNGD similarity metric value (found in the distance

matrix) for the connection (u -+ v). Note since each node only has one incoming edge,

the edge (u--v) is the only edge incoming to node v in the loop.

The additional cost metric for a particular node in a cycle can be thought of as the

minimum incremental amount that will be added to the total path length of the cycle if

one if its edges is replaced by a different edge coming from outside the cycle.

* For each cycle in S, remove the edge (u->v) and add the edge (w->v) where v is the node

in S that produced the minimum additional cost, and (w->v) is the incoming edge to node

v from outside the cycle that produces node v's minumum additional cost.

A taxonomy cannot have any cycles in it. Edmond's algorithm basically analyzes the

taxonomy and breaks each cycle until a valid taxonomy is formed. Figure 12 illustrates the

process of additional cost computation and cycle fixing.



Figure 12: Cycle Fixing Process in Edmond's Algorithm.
To fix / break cycles, Edmond's algorithm analyzes each node in the cycle and computes its additional

cost by computing what is the minimum incremental addition to the total path length that brought
about by adding one of its incoming edges from nodes outside the cycle (in the figure above, w1, w2,
or w3) and removing its incoming edge from within the cycle (in the figure above, u-+v). The node

with the minimum 'additional cost' has its in-cycle incoming edge removed and its minimum-valued
outside-cycle incoming edge added.

Figure 13 illustrates the algorithm.

The initial graph. For taxonomy generation purposes, this graph would
B C be represented by a distance matrix and would be much denser than the

A D graph on the left as every node would have to be connected to every
other node. The nodes in the graph represent the terms in the distance

Smatrix.

B C Edges are removed from the graph such that there is only one

incoming edge for every node. In other words, only the most optimal

incoming edge for each node is kept in the graph.

E

B C After the root node is chosen, the incoming edge to the root node is

removed. In this case, D was chosen as the root node and hence the

D edge CD was removed from the graph, producing the visual on the left.

F>E



Cycles are detected one-by-one and fixed accordingly. In this case, the

cycle ABG is detected.

3.6.4 The Heymann Algorithm

The work in [Heymann 2006] focused on taxonomy generation originally intended for
social networks, where users annotate documents or images with keywords, a process known as
'tagging'. These collaborative tagging systems have become very popular over the past few years
with online content in websites such as CiteULike.org, Del.Icio.Us, and Flickr. However, the tags
displayed in these websites are unstructured. As such, the only way to aggregate tag data is to
show what tags occur most frequently at any given point in time. Figure 14 shows an example of
a tag cloud.

Brazil- ,

C h inr-a 'Knhaa

I ndiandones alan
Mexico

Pakistan Phihpines Russia
Jrie - ng'om

We atr-as._: - /ietnarnl

Figure 14: Example of a Tag Cloud

Here, the population of each of the world's countries is indicated based on the size of the text in the
cloud [source: Wikipedia]. As can be seen, the cloud is composed of just a series of terms and there is

no structure to the cloud.

B C The detected cycle is fixed based on the procedure described in this
section and illustrated in Figure 12. In this example, BG was removed
and DG was added to the graph.

F

E F No more cycles are detected, hence the final taxonomy can be formed

by pulling out the root node, D, and forming the rest of the taxonomy
by preserving the links in the graph. The visual on the left shows the

G A B C final taxonomy.

Figure 13: Illustration of Edmond's Algorithm for Taxonomy Generation



[Heymann 2006] proposed a simple, efficient algorithm for converting a large set of tags
into a navigable hierarchical ontology (another term for taxonomy) of tags. Each term (or tag) is
associated with a vector that contains the annotation frequencies for all documents, which can
then be compared to the vectors of the other terms using a variety of similarity measures thus
producing an ontology where tags that are very similar to each other are linked together.

The pseudocode for the algorithm, taken from [Heymann 2006] is shown in Figure 15.

Require: Lgeneranity is a list of tags ti,... t; in descending order of their centrality in the similarity
graph.

Require: Several functions are assumed: s(ti ,tj) computes the similarity (using cosine
similarity, for example) between ti and tj. getVertices(G) returns all vertices in the given
graph, G.

Require: taxThreshold is a parameter for the threshold at which a tag becomes a child of a
related parent rather than of the root.

Gtaxonomy +- {NULL, root}
for i 1 ... |Lgeneraijty| do

ti - Lgeneraiity[]
maxCandidateVal +- 0
for all tj E get Vertices(Gtaxonomy) do

if s(ti, ti) > maxCandidate Val then
maxCandidate Val +- s(ti, tj)
maxCandidate - t

end if
end for
if maxCandidate Val> taxThreshold then

Gtaxonomy - Gtaxonomy U {maxCandidate, ti}
else

Gtaxonomy <- Gtaxonomy U {root, ti}
end if

end for

Figure 15: Heymann algorithm pseudocode taken from [Heymann 2006]

The algorithm requires a list of tags in descending order of their generality. It then obeys
the order starting with the most general tag and iteratively inserts each tag into a growing
taxonomy by attaching them to either the most similar tag or the taxonomy's root. There is one
threshold used in the algorithm: taxThreshold, representing the value of the similarity measure
above which a link is permitted to be a child of a tag other than the root.

[Henschel et al. 2009] then adapted the Heymann algorithm to general taxonomy creation
by turning each of the terms in the taxonomy into a 'tag', and making several other important
changes:



First, the term generality measure was derived from the term's centrality measure,

betweenness or closeness, which is also described in section 3.5 of this paper. Second,

intermediate re-ranking of the remaining terms with respect to their centrality after inserting a

term into the taxonomy was included as an option in the algorithm. Finally, the concept of

entropy was introduced, which is an information theoretical concept that can be used to

quantitatively justify the decision of creating an edge between nodes. The entropy measures the

similarity of the node to be inserted to the other nodes that are already in the taxonomy. The

closer the entropy of each node is to zero, the more "accurate" its link to its parent is said to be.

In order to test the accuracy of the algorithm, [Henschel et al. 2009] used a benchmark

taxonomy called MeSH (Medical Subject Headings), a manually curated ontology for medical

terms. It then compared the relationships between terms in the MeSH taxonomy with the

relationships formed in a taxonomy with these same terms generated using the Heymann

algorithm. Overall, [Henschel et al. 2009] showed that:

1. Among the centrality algorithms, unweighted betweenness centrality generally performs

best but often only marginally better than the faster unweighted closeness centrality

2. The best taxonomies generated using the closeness and betweenness centrality measures

are not identical

3. Weighted similarity graphs rarely improved the performance and hence did not justify the

higher computational cost

4. Re-ranking the centrality often improves algorithm performance but increases the

computational expense

5. Entropy-based filtering creates more precise, but less complete taxonomies

The version of the Heymann algorithm used in this project is similar to the version presented

in [Henschel et al. 2009], which is based on the work in [Heymann 2006]. The algorithm is as

follows:

" Create a set of tags, each representing a term to be inserted in the taxonomy

" Sort all the tags by centrality. This is done by first modeling the problem as a graph

where the vertices are the tags and the edges are weighted by the tags' similarity (cosine,
symmetric NGD, or asymmetric NGD) relationship to each other, then applying either

betweenness or closeness centrality to rank the terms by order of centrality in the graph.

* Take the most central tag and insert it in the taxonomy.

* Iteratively sort the remaining tags not yet in the taxonomy by centrality (optional), take

the most central tag among these tags, and decide whether to insert it into the taxonomy

or throw it out completely. Do this until all the tags are accounted for.



Although the general algorithm is the same, it must be noted that the algorithm used in
this thesis is slightly different from the one presented in [Henschel et al. 2009]. The differences
are:

* In this thesis, the use of symmetric / asymmetric NGD similarity as well as cosine
similarity was allowed as a relationship metric. In [Henschel et al. 2009], only cosine
similarity was used.

" In this thesis, the overall entropy of the system was not taken into account, whereas in
[Henschel et al. 2009] it was prioritized.

* In this thesis, only taxonomies with one root were created. [Henschel et al. 2009] allowed
for the creation of taxonomies with multiple roots, which we decided against, since we
believe that a taxonomy with two root nodes is essentially two separate taxonomies. In
addition, since all the other taxonomy generation algorithms we use produce taxonomies
with only one root, we believe that staying consistent with the "one root" implementation
made the most sense.

The Heymann algorithm is unique from the other taxonomy generation algorithms
considered because it is the only one that discards terms it deems irrelevant. In our
implementation, there is a threshold that can be set, ts, that represents the similarity value beyond
which a link is not allowed to exist in a taxonomy. At each iteration of the Heymann algorithm,
the similarity value of the most central remaining term with the most closely related node in the
taxonomy must be below this threshold, otherwise it is thrown out. Figure 16 illustrates the
Heymann algorithm.
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Check to see which term cunrntly in the taxonomy in the
taxonomy target term is most similar to by inspecting the
corresponding row/column in the distance matrix, and insert the
term in the taxonomy accordingly. In this case, Term C was most
similar to Term B among all the terms currently in the taxonomy
(Terms A and B), hence it was inserted as a child of Term B.

Figure 16: Illustration of the Heymann Algorithm for Taxonomy Generation

The Heymann Algorithm inserts new terms into the taxonomy by first sorting the terms not yet
in the taxonomy by centrality, then taking the most central term not yet in the taxonomy and

comparing it to each of the terms in the taxonomy to see which one it is most similar to.

3.6.5 The Genetic Algorithm

The Genetic algorithm is a search technique used in computing to find solutions to
optimization / search problems by means of repeated iterations, mutations and crossovers. It is
typically implemented as a computer simulation in which a group of abstract representations are
optimized repeatedly, generating a better set of representations at each succeeding iteration.

The previous taxonomy generation algorithms discussed in this section have all been
deterministic, graph-theory based algorithms. The Genetic algorithm is neither deterministic nor
graph theory-grounded, but it is still directly applicable for taxonomy generation. However,
because of its non-deterministic (random) nature, it is impossible to test the validity of the
Genetic algorithm as a taxonomy generation algorithm since all its outputs are inherently
randomly generated so it is possible and highly likely that repeated runs of the algorithm even
given exactly the same parameters will yield vastly different results.

....................................................................................................................

.............



In this thesis, the general Genetic algorithm is applied for taxonomy generation as
follows:

* Choose an initial set of randomly generated taxonomies, each having the same root term.
" Iterate several times. For each iteration:

o Select random taxonomies in the set, then modify ('mutate') and recombine
('crossover') these taxonomies to create the potential new set of taxonomies for
this iteration.

o Compute the score of each potential taxonomy in the set based on the weights of
the edges contained in the taxonomy (which can be taken from the distance
matrix). There are several ways of computing the "score" for a taxonomy which
we discuss in the latter part of this thesis.

o Select the top scoring taxonomies in the set, and discard the rest.
o Duplicate the top scoring taxonomies so that the total number of taxonomies in

the set is the same as the initial condition.

The modification ('mutation') and recombination ('crossover') process in the
implementation of the GA relies on random transformations of taxonomies. A mutation of a
taxonomy moves a random subtree of a taxonomy to a new location in the same taxonomy. A
crossover of taxonomies transplants a random subtree from one taxonomy into a random location
in another. Doing this creates duplicate nodes in the transplanted taxonomy. To fix this, the
transplantation stage is immediately followed by a repair stage, where the original nodes that are
now duplicated in the transplanted taxonomy are removed and the descendants of these nodes are
promoted to the ancestor nodes of the original invalidated nodes. An illustration of the mutation
and crossover process is shown in Figure 17.



Figure 17: Mutation and Crossover Process in the Genetic Algorithm

A mutation is shown in the taxonomy on the left, where the subtree containing nodes [C,E,F] is
moved into a random location on the same tree. A crossover is shown from the taxonomy on the left
to the taxonomy on the right, where the subtree containing nodes [C,E,F] on the left is moved into a

random location in the taxonomy on the right. Moving these nodes creates duplicates of nodes
[C,E,F] in the taxonomy on the right, hence the crossover phase is followed by a repair phase where

the original nodes [C,E,F] on the right are removed from the taxonomy and their children are
promoted as children of their ancestors. In this case, D is promoted to be a child of A following the

removal of C.

Each iteration of the Genetic algorithm relied on scoring each of the randomly modified /
recombined taxonomies using a cost / scoring function. For this, we created a suite of methods
that take each term's direct / indirect link's edge weight (indicated by its corresponding value in
the distance matrix) in the taxonomy, and sum them up in a weighted fashion to produce a final
score. These methods are discussed in the next chapter of this thesis in the subsection discussing
the evaluation of individual taxonomies.

There are several customizable parameters in the Genetic algorithm, which are:

e The root node / term of the taxonomy
" Number of iterations of the algorithm
* Number of initial taxonomies

* Number of mutations
* Number of crossovers
e Number of top scoring taxonomies to keep for the next iteration
* The cost function formula to score taxonomies. The different formulas we considered are

discussed in the latter section on 'Evaluating Individual Taxonomies'

crossover-
E



The stochastic nature of Genetic algorithms means that a different final result is possible
each time the algorithm is run. Specifically, this is caused by the fact that the algorithm starts
with an initially generated set of random taxonomies, where terms are connected to other terms
randomly. After this, random changes are applied to the taxonomies to generate the new set of
taxonomies for the next iteration. At each iteration, more random transformations are then
performed until the end of the algorithm. Hence, even if given the same initial parameters, it is
rare to expect the Genetic algorithm to produce the same final taxonomy as the size of the
taxonomy gets larger as most of the process is stochastic. This random nature of the algorithm
makes it difficult to evaluate its effectiveness in relation to the other taxonomy generation
algorithms presented in this thesis, however the Genetic algorithm does provide a very flexible
framework in which a variety of different cost functions can be easily tested without having to
devise new optimization algorithms. Although the Genetic algorithm is not tested in this thesis, it
is still a usable taxonomy generation algorithm hence we devoted a section to it here.



3.7 Viewing Taxonomies

After processing a distance matrix using one of the taxonomy generation algorithms, the

result is a taxonomy. Visually, every taxonomy can be imagined as a directed spanning tree10. An

example of a taxonomy is shown in Figure 18. The taxonomies typically generated in this thesis

are large in scale, and hence the proper presentation of the taxonomy to the end-user / viewer is

essential. The viewer may simply want to see the overall shape of the taxonomy, or at other times

may want to zoom into specific sections of the taxonomy to find particular terms or links between

terms. The graphical user interface for viewing taxonomies must allow for any form of user

manipulation.

Figure 18: A cross-section of the visual representation of the 500-term "renewable energy" taxonomy
using the Heymann algorithm, cosine similarity, closeness centrality

To allow the taxonomies to be easily visualized, ZGRViewer, an open source application,
is used. The interface of ZGRViewer is very simple and learnable. A screenshot is shown in
Figure 19. ZGRViewer provides the option to the user to view the overall shape of the taxonomy,
zoom into specific sections, navigate around the taxonomy's structure, and find specific terms by
typing the term's name into a search box.

10 In graph theory, a spanning tree of a graph G is a graph composed of all of the vertices of G and a subset of its edges such that there
are no cycles in the graph.



Figure 19: The ZGRViewer Interface
ZGRViewer provides a view of the overall shape of the taxonomy in the upper righthand corner,

with a pink section highlighter indicating which section of the taxonomy is currently being viewed in
the main window on the left. In the lower righthand side, there are controls that allow the viewer to

zoom in, zoom out, move through the document, and search for specific text within it.

Every term in the taxonomy is linked to one or more other terms via a directed edge.
Every directed edge carries a corresponding edge weight whose value can be obtained by
referencing the taxonomy's distance matrix.

In our code, taxonomies are represented in two ways:

1. A sparse connection matrix. This matrix contains only '1's and '0's, with a '1'
value representing a link. If the value in index [ij] of the matrix is a '1', then
term i and term j are said to be connected in the taxonomy with term j as the
parent of term i. If the value in [ij] and [j,i] are '0's, then terms i and j are not
connected.

2. A "tree" object. A tree is represented by an organized collection of node
objects where each node represents a term in the taxonomy. Aside from the
root, every node contains a pointer to its parent node. In addition, nodes
contain pointers to each of their child nodes.

In the software developed in this thesis, the final taxonomies can be visualized by the

user in two forms:

1. As a text file
2. As an SVG (scalable vector graphics) file, which is an xml-based file format

that can represent two-dimensional vector graphics in any dimension without
loss of clarity. This is the required input to the ZGRViewer software.



3.8 Taxonomy Generation Process Summary

This chapter discussed all the steps involved in the taxonomy generation process, starting

with the online data mining process continuing to the generation and visualization of the

taxonomy. The process of taxonomy generation is by no means trivial, and generating a

taxonomy involves several user inputs within the process. After coming up with the seed term,

the user must make several choices, outlined below:

1. Choose a source for term extraction:

a. Compendex
b. Inspec

c. Scopus
2. Choose how many keywords to include in the taxonomy

3. Choose the column in the article database from which to gather terms:

a. If Compendex / Inspec:

i. Controlled Terms

ii. Uncontrolled Terms

iii. Both Controlled and Uncontrolled Terms

b. If Scopus:
i. Author Keywords

ii. Index Keywords

iii. Both Author and Index Keywords

4. Choose the basis of the term similarity metric:

a. Co-occurrence among article term / keyword lists

b. Co-occurrence among article abstracts

c. Co-occurrence among article titles

d. Any combination of (a), (b), (c)

5. Choose the root node of taxonomy via:

a. Manual input

b. Betweenness centrality

c. Closeness centrality

6. Choose the Taxonomy Generation Algorithm

a. Using Distance Matrix based on Cosine Similarity or Symmetric NGD Similarity

i. Dijsktra-Jamik-Prim's (DJP) Algorithm

ii. Kruskal's Algorithm
iii. Heymann Algorithm

1. Choose centrality algorithm (betweenness, closeness)

2. Choose ts threshold to discard irrelevant nodes

b. Using Distance Matrix based on asymmetric NGD similarity

i. Edmond's Algorithm

ii. Heymann Algorithm

1. Choose centrality algorithm (betweenness, closeness)

2. Choose t, threshold to discard irrelevant nodes



A diagram of the process is shown on Figure 20.
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Figure 20: Diagram of the User Decision Path for Taxonomy Generation

The next chapter will discuss the methodology which we used to test the taxonomy
generation algorithms described here, as well as motivate the tests by describing the underlying

assumptions behind the taxonomy generation process.



CHAPTER 4: Taxonomy Evaluation Methodology

4.1 Introduction

In the last chapter, each of the taxonomy generation algorithms and the process of

collecting and analyzing the bibliometric information contained in an online publication database

were discussed. As was seen, there are many algorithms that can be used to produce taxonomies.

All of these methods are grounded in solid mathematical theory, but the choice as to which

algorithm is best is still unclear. This chapter will discuss the methodology we used to analyze

each of the specific taxonomy generation algorithms.

As a starting point to our analysis, we made the intuitively reasonable assumption that for

a given domain of knowledge, there exists a knowledge "landscape" representing the various

concepts, relationships and subdomains which constitute the domain. Further, it can be envisaged

that, given a set of related terms, it should be possible to capture the interrelationships between

these components in a suitable form, such as a term relationship taxonomy. It must be noted

however, that while we are assuming there exists only one true landscape, capturing this as a

taxonomy is a non-unique process, and therefore there may be more than one valid, representative

taxonomy. However, for the purpose of simplicity, we will be assuming a single unique

taxonomy within the experiments described in this section.

Figure 21 illustrates our underlying model. We believe that every research area has

several concepts that are central to the field and are interrelated in some way. However, this

underlying structure is typically not observable but is manifested in the form of documents and

articles written by researchers in this area. In turn, these documents and articles are collected,

stored locally, and subsequently accessed and analyzed by our software in the form of

bibliometric indicators. Finally, our taxonomy generation algorithms analyze the information and

attempt to unearth the central ideas / terms and organize them in the form of a taxonomy that

reflects the relationships between these ideas / terms.



Figure 21: The underlying model behind the taxonomy generation process

Another important assumption that was made is that the bibliometric information thus
gathered is imperfect, where the origins of this imperfection are twofold: firstly, there could be
errors and biases in the documents, as well as non-uniform coverage of the underlying area.
Secondly, it is typically not possible to collect or analyze all relevant relevant bibliometric data as
this depends on the quality of the specific database used.

A further concern is that, even if we were to assume perfect data, inferring the underlying
taxonomy remains a difficult challenge, and is an instance of class of problems known as an
inverse problem. Solving these problems require the careful use of effective retrieval algorithms.

In view of this model of events, a set of experiments have been devised which should
allow the taxonomy generation process to be appropriately tested. These will be described in the
following section.

4.2 Taxonomy Evaluation Criteria

Manually examining a taxonomy gets increasingly difficult as more terms are introduced
since each node becomes less visible in the taxonomy's graphical representation. The standards
by which a taxonomy should be judged are also uncertain. What makes one taxonomy better than
another? What is implied when one term is linked to another in a given taxonomy? What makes a
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link correct / wrong? For a taxonomy with thousands of terms, who is the ultimate arbiter that

decides the validity of a taxonomy?

For this thesis, we attempted to evaluate the efficacy / validity of the different taxonomy

generation algorithms with the goal of deciding which algorithm works best. To automatically

evaluate taxonomies and the algorithms used to generate them, we took advantage of the

mathematically-grounded nature of the taxonomy generation process. It is intrinsically difficult to

properly evaluate a taxonomy generation approach as there are yet to be any established standards

in literature, however, based on our assumptions regarding the underlying model behind

taxonomy generation we believe that a good taxonomy-generation algorithm must be one that has

these three characteristics:

1. It must produce consistent taxonomies despite slight perturbations to its backend, or

slight changes to the terms in the taxonomy. This is necessary given the issue of

imperfect information mentioned in the previous section.

2. It must conform well to the the pairwise-relationship-strength matrix (distance matrix)

which it is based on, thus maximizing the overall similarity of terms in the taxonomy.

This is necessary because even in the hypothetical scenario where there is perfect data,

there is still the issue of solving the "inverse problem" as mentioned in the previous

section.

3. It must produce taxonomies that are valid representations of relationships between terms

in the taxonomy. This is necessary because in the end, the deliverable for our team's

project is a taxonomy that accurately represents the research landscape. Even if the first

two characteristics for a good taxonomy are met, if the final output is a taxonomy that

intuitively does not make sense, all our work is invalidated.

To test conformity to these three conditions, the following analyses were performed:

1. The consistency of each algorithm is evaluated by attempting to vary either the backend

data set or the term list used in the taxonomy. Referring back to Figure 21, this can be

seen as trying to perturb box A and seeing its effect on the outputted taxonomies.

2. Each taxonomy produced using each algorithm is scored based on its conformity to the

distance matrix. Referring back to Figure 21, this can be seen as measuring how well the

taxonomy generation algorithm can encapsulate the information in box B.

3. Synthetic data based on a predefined underlying model is generated and compared

against the taxonomy generation's output to evaluate each algorithm's effectiveness.

Referring back to Figure 21, this can be seen as creating our own documents / publication

database, much like box C.



4. The taxonomies produced by the taxonomy generation algorithms that fare well in the
first three tests are then manually analyzed to check for their intuitive validity.

4.3 Evaluating the Consistency of Taxonomy Generation Algorithms

We believe that a taxonomy generation algorithm must produce consistent taxonomies
each time. We define consistency as robustness towards noise. Taxonomy generation algorithms
that are consistent must produce similarly structured taxonomies despite slight variation to its
inputs. This is an important requirement since the underlying taxonomy clearly does not change
even if different perspectives of it may exist.

The first set of consistency tests were done by varying the bibliometric data set that is the
basis of every taxonomy generation algorithm. We believe that every good taxonomy generation
algorithm must consistently produce the same taxonomies despite slight variations to its backend
data set. As mentioned in the previous subsection, we cannot assume that the data encapsulated
by the backend bibliometric data set is perfect. Thus, a good taxonomy generation algorithm
needs to produce similar-looking taxonomies even when the backend data set is altered slightly.

To simulate the slight variation of the backend, tests were run where the data set was
varied by taking subsets of the original database. Specifically, we generated taxonomies using the
same term list but took subsets of the data set. The structure of the taxonomies generated using
the subset data sets were then compared to the taxonomy generated using the one that used the
entire backend data set. The taxonomies must, as much as possible, contain the same links.

For example, in a "renewable energy" related taxonomy, if the terms "wind energy" and
"turbines" are linked directly in the taxonomy generated using the entire backend data set, then
they should also be directly linked in a taxonomy produced using only a subset of the backend
data set, provided that the two taxonomies were generated using the same term lists.

The second set of consistency tests were done by varying the terms used. Taxonomies
were produced using the different taxonomy generation algorithms but the terms used for each
taxonomy were varied while keeping the same backend data set. Specifically, each algorithm was
run with a fixed term list using the entire bibliometric data set as backend. Then, some additional
terms were added to the term list, to simulate the "noise" that could be introduced in the
taxonomy generation process and the entire algorithm was rerun. The outputted taxonomies in
both runs were then compared to each other. The taxonomies must, as much as possible, contain
the same relative term relationships.

For example, in a "renewable energy" related taxonomy, if the terms "wind energy" and
"turbines" are linked directly, adding a few "noise" terms to the taxonomy and re-running the
algorithm should still produce a taxonomy where "wind energy" and "turbines" are linked
together, although not necessarily directly, provided that the taxonomies were generated based on
the same backend data set.



For the term list consistency test, a recurring test involved comparing a small taxonomy

to a larger taxonomy that contained a superset of the smaller taxonomy's terms. To do this, the

larger taxonomy needed to be simplified so that its links can be directly comparable to the smaller

taxonomy. This was accomplished by first creating a new root node, and instantiating it as the

root of both taxonomies. Then, the terms in the larger taxonomy were scanned and the terms that

did not exist in the smaller taxonomy were removed, promoting the children of the removed terms

as children of existing terms. Figure 22 illustrates the process.

Small Taxonomy Large Taxonomy

A

B

<c

Comparing a small taxonomy to a larger
taxonomy requires the simplification of
the larger taxonomy so that the terms in
both taxonomies are the same.

First, a dummy root node is instantiated
A as the root of both taxonomies.

B B

Then, the terms in the larger taxonomy
B B that are not in the smaller taxonomy are

O removed, promoting terms when
necessary.

~NO

A B

C

Finally, two taxonomies have the same

terms and are directly comparable. In the
example on the left, the similarity would
be 2 out of 3 links (root 4 A and A 4
B) or 67%.

Figure 22: Simplifying a Larger Taxonomy.
The figure above illustrates the process taken to simplify a larger taxonomy so that its terms are

comparable to the terms in a smaller taxonomy whose terms are a subset of the larger taxonomy's
terms.



4.4 Evaluating Individual Taxonomies

After checking to see the consistency of each taxonomy generation algorithm, the next
step was to individually analyze each of the taxonomies outputted by each algorithm. Within this
set of tests, we chose not to manually inspect the generated taxonomies as we wanted to veer
away from any sort of subjective test where results would be biased based on an individual's
opinion. As such, in order to automatically verify the validity of a taxonomy generation
algorithm, we decided to test the degree to which each taxonomy conformed to the pairwise-
relationship-strength matrix (distance matrix) that represented the backend bibliometric data set.
A numerical score was assigned to each taxonomy generated using a each different taxonomy-
generation algorithm. In order to compare the different taxonomy generation algorithms to each
other, taxonomies were generated using the same term list and backend data set, and they were
compared using a variety of scoring metrics.

Each scoring metric measured each term's direct / indirect link's edge weights in the
taxonomy (indicated by their corresponding values in the distance matrix), and aggregated them
together in a weighted fashion to produce the final score. In this thesis, all of the following
scoring schemes were used to evaluate taxonomies:

Average
This scheme calculates the score by taking the mean of all the direct edge weights in the
taxonomy.

Momentum
This scheme calculates the score by taking the sum of the means of each term node's outgoing
edges normalized by its incoming edge. A term node's incoming edge is the edge coming from its
parent and its outgoing edges are the edges leading to its direct descendants.

Mean to Root
This scheme calculates the score by taking the sum of the means of each term node's edge
weights to all its ancestors.

Mean to Grandparent
This scheme calculates the score by taking the sum of the means of each term node's edge
weights up to two levels above (to its grandparent) node.

Linear
This scheme calculates the score by taking the sum of each term node's normalized linearly
weighted distance to all its ancestors.

Exponential
This scheme calculates the score by taking the sum of each term node's normalized exponentially
weighted distance to all its ancestors.



Figure 23 shows an example of scoring a taxonomy using the different scoring metrics.

-- - - --------------------------------------------
Average: (0.1 + 0.2 + 0.5 + 0.3 + 0.4) = 0.3

5

Momentum: (Am + Bm + Cm + Dm + Em + FM)
= (0.1+0.2) + ((0.5+0.1) + (0.3+0.1)) + (0.4+ 0.2) + 0 + 0 + 0 = 0.7

2 2 2 . 2
2

Mean to Root: (Aum + BmT + CmT + DmTR + EMT + FmTh)

=0 + 0.1 + 0.2 + (0.5 + 0.1) + (0.3 + 0.1)+ (0.4 + 0.2)= 1.1
2 2 2

Mean to Grandparent: (AmTG + BmTr + Cm + DmTG + EmTG + FMT1)
=0+0.1+0.2+(0.5+0.1)+(0.3+0.1)+(0.4+0.2)=1.1

2 2 2

Linear: (AL + BL + CL + DL + EL + FL)
= 0 + 0.1 *2/3 + 0.2 * 1/3 + (0.5 * 2/3 + 0.1 * 1/3) + (0.3 * 2/3 + 0.1 * 1/3)+ (0.4 * 2/3 + 0.2 * 1/3)
= 1.067

I Exponential (with exponent 0.5): (AE + BE + CE + DE + EE + FE)
=0 + 0.1 *2/3 + 0.2 * 1/3 + (0.5 * 2/3 + 0.1 * 1/3) + (0.3 * 2/3 + 0.1 * 1/3)+ (0.4 * 2/3 + 0.2 * 1/3)
= 1.067
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Figure 23: Example of Using Scoring Metrics to Score a Taxonomy



4.5 Synthetic Data Generation

The final test after checking each algorithm's internal consistency and evaluating each
output's conformity to the distance matrix was to create a set of synthetic data, simulating a
typical database one would realistically expect to gather from an online publication databases.
The goal of this test is to see how well the taxonomy generation algorithms can reproduce
underlying taxonomies.

This test is by no means easy to construct as there is no established way of generating
synthetic data for taxonomy generation. However, there is a large body of literature relating to
topic distribution / concept generation which we can adapt for the purpose of taxonomy
generation. Specifically, our research group has looked closely into three classes of topic
distribution / concept generation algorithms: Latent Sematic Analysis (LSA), Probabilistic Latent
Semantic Analysis (PLSA), and Latent Dirichlet Allocation (LDA), all very mathematically
rigorous. All three are statistical methods that analyze relationships between a set of documents
and produce a set of topics / concepts (used interchangeably) related to the documents. LSA uses
a term-document mathematical matrix that describes the occurrences of terms in documents and
decomposes the matrix based on its singular value decomposition, in the end producing a set of
vectors where each vector is a weighted set of terms corresponding to a concept. PLSA evolved
from LSA and achieves a similar goal but in a different way. Whereas LSA's computations were
grounded in linear algebra, PLSA's analysis is based on a latent class model, a statistical model
that relates a set of variables to a set of latent variables. Finally, LDA is is similar to PLSA except
that in LDA the topic distribution is assumed to have a Dirichlet Prior, which is a probability
distribution that expresses the uncertainty about the topic distribution before the documents are
taken into account. The basic principle behind these three analysis methods is that from a set of
documents, a set of topics / concepts is generated, where each topic / concept is not composed of
just one term, but rather is a weighted sum of terms. Applying this to suit our needs in synthetic
data creation, we made it such that each topic / concept is represented by a single term, and each
term has its own weighted distribution representing the degree to which all the other terms in the
taxonomy affect it. In other words, whereas in LSA / PLSA / LDA each of the concepts are
distinct from the terms they contain, for our purposes each term is also a concept.

To generate synthetic data, a predetermined, random taxonomy is first generated using a
fixed set of terms. Each term in the taxonomy is then assigned its own probability distribution,
which is a set of probabilities for each of the terms in the taxonomy to occur in a document whose
central term is that term. As a hypothetical example, in a "renewable energy" related taxonomy, a
document whose central term is "solar photovoltaics" will most likely have a probability
distribution where "solar photovoltaics" has the highest chance of occurring in the document,
while related terms like "solar", "renewable energy" and "solar energy" should also have some
significant, nontrivial probability of occurring in the document.

For our purposes, we generated synthetic data with a fixed set of terms where each term
has a probability distribution set to one where each term gets the highest probability of occurring
in a document pertaining to itself, its ancestor terms in the taxonomy also get a significant non-



zero probability of occurring, and the rest of the nodes get a small non-zero probability of
occurring.

Assigning a distribution to each term is a two phase process. First, each term is given an

initial distribution where it is assigned a high probability p and the (1 -p) probability is split

among the rest of the terms in the distribution. Second, the individual distributions of the terms

are aggregated by adding each term's distribution to the distribution of its parent and normalizing

everything to a 0-1 scale. Figure 24 illustrates this process.
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Figure 24: Assigning probability distributions for each of the terms in a taxonomy.

Next to each of the terms in the taxonomies shown above are the probability distributions associated
to each term. The figure on the left shows the initial distribution assigned to each term, where all

terms have their own term in their distribution having a significant amount of weight (indicated by a
taller bar in the bar graph) and the other terms in the distribution having a much smaller amount.
The figure on the right shows the final distribution assigned to each term, which takes into account

the structure of the taxonomy. Notice how in each of the distributions aside from the root term,
multiple terms have non-trivial weightings.

After each term's distribution is finalized, a set of documents are generated for each term
based on the probability distributions for each term. For instance, in Figure 24 (b), a document
generated for E will have a large probability that terms E, B, and A will be included as terms in

the document. Since terms C, D and F only have a small probability within term E's distribution,
the chance of them being included in a document relating to term E is slim. For a document

generated relating to E, terms C, D and F are the noise terms. The probability of these terms being
included can be increased by increasing the overall noise within the system. We define noise as

the total probability associated to the non-related terms. For instance, if the noise was 0, then only
terms E, B and A will ever occur in a document relating to term E, however if the noise was 1,
then each of terms A, B, C, D, E and F will have an equal probability of occurring in a document
relating to term E.



An equal amount of documents relating to each term are generated, and the collection of
documents generated is used as the backend data set for the taxonomy generation algorithms.
Essentially, this collection of documents is a simulated version of the expected collection from a
real publication database.

The beauty of this process is that there is a predetermined underlying taxonomy for the
set of documents generated, which is directly comparable to the taxonomies generated using the
taxonomy generation algorithms developed in this thesis. Figure 25 illustrates a simple example
of generating synthetic data.

First, a random taxonomy is generated using 3 synthetic Suppose that a set of synthetic data is to be generated
terms-A, B and C. with these parameters:

Number of Terms (Concepts): 3
Noise: 10%
Terms (Keywords) Per Document: 1
Documents Per Term (Concept): 5

Second, an initial probability distribution is generated
taking into account the noise value of 10%.

Third, the probability distribution for the occurrence of
each term (keyword) within each term (concept) is refined
based on the structure of the taxonomy.

Fourth, 5 documents are generated pertaining to each term
(concept) each containing 1 term (keyword).

V ..........................................................................................
1: A

A= 90% A=90% 2:A
A B = 10% / 2 = 5% B= 5% 3: A 1: AD C = M0 / 2 = 5% C =5% 4: A 2: A

5: A 3: A
4: A
5: A

1: B 6: B
A = 10% /2= 5% A = (5% +90%)/2= 47.5% 2: A 7: A

S B= 90% B = (90% + 5%)/2= 47.5% 3: A 8: A
C = 10% / 2= 5% C = (5% + 5%)/2= 5% 4: B 9: B

5:B 10: B
11: C
12: C

1:C 13: C
A = 10% / 2= 5% A = (5% + 90%)/2 = 47.5% 2: C 14: A

C B= 10% / 2= 5% B = (5% + 5%)/2= 5% --- C 3: C 15: A
C = 90% C = (5% + 90%)/2= 47.5% 4: A

The generated documents now comprise the backend data
set that will be fed to taxonomy generation algorithms.

Figure 25: Synthetic Data Generation Process Example

This section explained the methodology used to analyze the taxonomy generation
algorithms we've developed. The next section will discuss the results of the tests we conducted
and give recommendations regarding which taxonomy generation algorithm(s) work best.



CHAPTER 5: Results

5.1 Introduction

In the previous chapter, the methodology for evaluating taxonomy generation algorithms

was discussed. This chapter will present the results of those tests as well as highlight some

interesting observations discovered in the process. At the end of this chapter, recommendations

will be given regarding the best taxonomy generation algorithms among the options we have.

All the tests were run using a backend data set collected from Scopus using the following

terms as the seed terms, after which duplicate articles were then removed from the database. For

the rest of this thesis, we refer to this collection as the Scopus "renewable energy" data set:

1. "renewable energy"

2. "biodesel"

3. "biofuel"

4. "photovoltaic"

5. "solar cell"

9. "embedded generation"

10. "decentralized generation"

11. "decentralized energy"

12. "distributed energy"

13. "on-site generation"

6. "distributed generation"

7. "dispersed generation"

8. "distributed resources"

14. "geothermal"

15. "wind power"

16. "wind energy"

The data set collected contains 209,080 terms with 2,326 terms occurring more than 100
times among the entries, and 201 terms occurring more than 1,000 times. The top terms in the

data set were gathered from among the INDEXKEYWORDS in the Scopus data set for
"renewable energy" as discussed in Chapter 3.2. The top 2,326 terms containing more than 100

occurrences are listed in Appendix A, however the first few are listed in Table 1 to give the

reader a basic idea of the terms used in these tests:

Table 1: List of terms in Scopus "renewable energy" data set that have more than 2,500 occurrences
in the data set.

Term Name Number of Occurrences

solar-cell 23,268 occurrences

wind powers 15,776 occurrences

renewable energy resources 15,175 occurrences

energy policies 14,989 occurrences

fuel cells 13,435 occurrences

Term Name Number of Occurrences

photovoltaic cell 11,865 occurrences

solar energy 8,847 occurrences

biomass. 8,613 occurrences

mathematic models 7,173 occurrences

computer simulator 6,860 occurrences



As mentioned in the previous sections, by changing the parameters within each
algorithms, a number of variants for each of the taxonomy generation algorithms can be created.
Changing these parameters often leads to significantly different results and as such each variant
needs to be treated as a separate algorithm. For each of the consistency tests run, all the taxonomy
generation variants listed in

Table 2 were tested. For convenience, each algorithm was given an acronym by which it
will be referred to for the rest of this section.

Table 2: List of Taxonomy Generation Variants

Algorithm Algorithm Type Similarity Metric Centrality Metric Used
Variant (used to create the (either to choose root or to decide
Acronym distance matrix) term centrality at each iteration)

D-CB DJP Cosine Betweenness

D-CC DJP Cosine Closeness

D-SB DJP Symmetric NGD Betweenness

D-SC DJP Symmetric NGD Closeness

K-CB Kruskals Cosine Betweenness

K-CC Kruskals Cosine Closeness

K-SB Kruskals Symmetric NGD Betweenness

electrical power generations 6,216 occurrences

geothermal energy. 5,958 occurrences

photovoltaic effect 5,957 occurrences

wind turbines 5,817 occurrences

energy efficiencies 5,424 occurrences

electric generations 5,397 occurrences

electrochemistry 5,338 occurrences

thin film 5,230 occurrences

electrical power system 4,814 occurrences

hydrogen 4,767 occurrences

energy resources 4,755 occurrences

energy utilities 4,549 occurrences

article 4,403 occurrences

power generation 4,339 occurrences

energy conservation 3,988 occurrences

optimizing 3,985 occurrences

biofuels 3,925 occurrences

eurasia 3,889 occurrences

electricity 3,676 occurrences

carbon dioxide 3,626 occurrences

energy conversion 3,542 occurrences

environmental impacts 3,500 occurrences

costs 3,425 occurrences

silicon solar cells 3,324 occurrences

electric utility 3,147 occurrences

electrode 3,115 occurrences

renewable resources 3,078 occurrences

electrolyte 3,040 occurrences

electrical potential 3,040 occurrences

fossil fuels 3,036 occurrences

sustainable development 2,843 occurrences

solid-oxide fuel cell 2,842 occurrences

oxidizers 2,837 occurrences

electric batteries 2,800 occurrences

energy management 2,756 occurrences

methanol 2,717 occurrences

economizers 2,589 occurrences

catalysts 2,587 occurrences

fuel 2,584 occurrences

solar radiation 2,533 occurrences



K-SC Kruskals Symmetric NGD Closeness

E-AB Edmonds Asymmetric NGD Betweenness

E-AC Edmonds Asymmetric NGD Closeness

H-AB Heymann Asymmetric NGD Betweenness
(with no rerunning of
centrality metric, and no
discarding of terms)

H-AC Heymann Asymmetric NGD Closeness
(with no rerunning of
centrality metric, and no
discarding of terms)

H-CB Heymann Cosine Betweenness
(with no rerunning of
centrality metric, and no
discarding of terms)

H-CC Heymann Cosine Closeness
(with no rerunning of
centrality metric, and no
discarding of terms)

H-SB Heymann Symmetric NGD Betweenness
(with no rerunning of
centrality metric, and no
discarding of terms)

H-SC Heymann Symmetric NGD Closeness
(with no rerunning of
centrality metric, and no
discarding of terms)

In addition, note that, as mentioned in Chapter 3, although the Genetic Algorithm is

presented, it was decided not to include any test results for the algorithm since it is non-
deterministic, which meant that every run of the algorithm generated results that varied

significantly. While some preliminary testing was conducted on this algorithm, it was decided not

to include these results since the inherent randomness of the Genetic algorithm makes the results

unreproducible even if run under the same parameters.

We also decided not to show results of tests for the Heymann algorithm where the node

centralities were recalculated after each iteration. This is because initial testing indicated that this

variation to the algorithm did not seem to have much effect on the final taxonomy generated. In

addition, allowing this modification resulted in a huge increase in the computational cost of

generating the taxonomies. We concluded that the similarity between variant outcomes is due to

the clustering of terms in the graph representation of the distance matrix. Recalculating the

centrality metric at each iteration is most useful if the graph is highly segregated, containing

several distinct central terms. In this thesis, the graphs generated are based on seed terms all



related to one central idea, "renewable energy". As such it is expected that the terms will be
highly related to each other and hence very clustered. It is not necessary to recalculate the
centralities for a highly clustered graph when using the Heymann algorithm.

Finally, we also decided not to show tests for the Heymann algorithm that allowed terms
to be discarded. As explained in chapter 3.6.4, in our implementation of the Heymann algorithm,
there is a threshold t, that can be set to allow for the discarding of terms. The choice for the best
threshold that generates the best taxonomy using the Heymann algorithm is completely dependent
on the backend data set used. Within this thesis, we wanted to run tests to evaluate taxonomy
generation algorithms that are applicable to any backend data set we may choose to use in the
future, as such it was decided not to set a threshold thus not discarding any terms.

One important thing to keep in mind here is that all the algorithm variants tested in the
succeeding sections run to completion in the same order of magnitude of time. As such, when
analyzing the algorithms, not much concern is placed on the runtimes / speeds of the algorithms.

Outlined in this section are the results of the analysis run using the tests mentioned in the
previous chapter. The first subsections list the results of the tests, then the last subsection
analyzes the results generated.

5.2 Evaluating the Consistency of Taxonomy Generation Algorithms

As described in the previous chapter, the first set of tests were aimed at evaluating the
consistency of the taxonomy generation algorithms. To do this, two sets of experiments were
conducted to gauge the consistency, or robustness against noise, of the different taxonomy
generation algorithms. The first set of experiments measured the consistency of the algorithms
with slight perturbations in the backend, while in the second set of experiments, the backend
database was fixed and perturbations were introduced to the collection of terms used to form the
taxonomy.

5.2.1 Backend Data Set Consistency

For this test, the 153,537-entry bibliometric data set is randomly divided into five
separate 100,000-entry subsets. The most popular terms from the entire Scopus "renewable
energy" bibliometric data set were then taken and each of the taxonomy generation algorithms
were run, keeping constant the term list and varying the backend data set between the five
100,000-entry sets. The percentage similarity of direct links between each of the taxonomies
generated was then calculated between each of the 100,000-entry-backend data set taxonomies
and the entire 153,537-entry-backend data set taxonomy. Table 3 summarizes the mean of the
percentage similarities for each algorithm variant.



Table 3: Backend Data Set Consistency Test Results

Algorithm 25 most 50 most 100 most 200 most 500 most Mean of
Variant frequently frequently frequently frequently frequently Percentage
Acronym occurring occurring occurring occurring occurring Similarities

terms used terms used terms used terms used terms used
as term list as term list as term list as term list as term list

D-CB 77.60% 98.00% 97.80% 95.80% 94.08% 92.66%

D-CC 94.40% 97.60% 97.60% 95.80% 94.08% 95.90%
D-SB 92.80% 96.80% 94.40% 91.70% 91.00% 93.34%

D-SC 93.60% 96.80% 94.40% 91.10% 91.00% 93.38%

K-CB 77.60% 98.00% 97.80% 95.80% 93.88% 92.62%
K-CC 94.40% 97.60% 97.60% 95.80% 93.88% 95.86%
K-SB 4.00% 2.00% 1.00% 0.50% 0.20% 1.54%

K-SC 4.00% 2.00% 1.00% 0.30% 0.20% 1.50%

E-AB 90.40% 93.20% 90.60% 88.90% 84.64% 89.55%

E-AC 93.60% 93.20% 90.60% 88.90% 84.52% 90.16%
H-AB 88.00% 92.80% 96.20% 96.30% 97.48% 94.16%

H-AC 95.20% 98.40% 98.00% 97.50% 97.68% 97.36%
H-CB 34.40% 36.80% 29.00% 33.30% 29.92% 32.68%
H-CC 96.00% 97.60% 98.60% 95.90% 94.96% 96.61%

H-SB 78.40% 73.20% 78.60% 83.90% 82.96% 79.41%

H-SC 96.80% 96.40% 94.60% 93.80% 91.56% 94.63%

Highlighted in the table above are the top performers for each test run. Based on these

results, the best performing algorithm variants (over 95% similarity on average) are:

1. Heymann algorithm, asymmetric NGD metric, closeness centrality (H-AC)

2. DJP algorithm, cosine similarity, closeness centrality for root selection (D-CC)

3. Kruskals algorithm, cosine similarity, closeness centrality for root selection (K-CC)

4. Heymann algorithm, cosine similarity, closeness centrality (H-CC)

Other notable observations are:

1. The use of Kruskals algorithm with symmetric NGD similarity is not a consistent

algorithm at all. It was barely able to create a single consistent link between the

taxonomies generated using the 100,000-entry-backends and the 153,537-entry-backend.

2. The tests for the Heymann algorithm all show that the use of closeness centrality is a

much more consistent metric than using betweenness centrality. Note that the differences

between closeness and betweenness centrality are only evident when examining the



results of the Heymann algorithm tests because Heymann is the only taxonomy

generation algorithm that uses the centrality measures for more than just picking the root

node.

5.2.2 Term Consistency

For this test, the backend was kept constant, and consisted of the entire 153,537-entry

Scopus "renewable energy" bibliometric data set. However, the term lists were varied by taking

the most popular terms in the data set and inserting "noise" terms, which are terms selected

randomly from the rest of the terms in the data set. We chose to insert an equal number of noise

terms to the terms already in the taxonomy. For instance, if a taxonomy was created using the 25

most frequently occurring terms, 25 noise terms were inserted into the taxonomy, then each

taxonomy generation algorithm was run using those 50 total terms, and percentage of the number

of links consistent in the 25-term noise-free and 50-term noisy taxonomies outputted by each

taxonomy generation algorithm was calculated. Comparing these two taxonomies required

simplifying the larger 50-term taxonomy using the method mentioned in the previous chapter.

This test was repeated three times and the mean of the three percentage link similarities for each

algorithm was taken. The results are summarized in Table 4.

Table 4: Term Consistency Test Results

Algorithm 25 most 50 most 100 most 250 most Mean of
Variant frequently frequently frequently frequently Percentage
Acronym occurring occurring occurring occurring Similarities

terms, with 25 terms, with 50 terms, with terms, with
more noise more noise 100 more 250 more
terms terms noise terms noise terms

D-CB 76.92% 97.39% 87.79% 86.06% 87.04%

D-CC 92.31% 97.39% 87.79% 86.06% 90.88%

D-SB 94.87% 88.24% 82.51% 77.69% 85.83%
D-SC 87.18% 94.12% 84.82% 81.01% 86.78%
K-CB 76.92% 97.39% 87.79% 86.06% 87.04%

K-CC 92.31% 97.39% 87.79% 86.06% 90.88%
K-SB 7.69% 31.37% 0.66% 0.00% 9.93%

K-SC 0.00% 35.29% 1.32% 0.27% 9.22%

E-AB 75.64% 95.42% 83.83% 82.20% 84.27%

E-AC 80.77% 95.42% 79.87% 80.88% 84.23%

H-AB 64.10% 86.93% 86.14% 86.59% 80.94%

H-AC 83.33% 94.77% 83.83% 87.38% 87.33%

H-CB 23.08% 37.25% 27.39% 33.33% 30.26%

H-CC 91.03% 94.12% 89.44% 88.58% 90.79%

H-SB 50.00% 54.90% 60.07% 55.78% 55.19%

H-SC 75.64% 72.55% 78.22% 76.49% 75.73%



Highlighted in the table above are the top performers for each test run. The best

performing algorithm variants (over 90% similarity) based on our tests are:

1. DJP algorithm, cosine similarity, closeness centrality for selecting the root (D-CC)

2. Kruskals algorithm, cosine similarity, closeness centrality for selecting the root (K-CC)

3. Heymann algorithm, cosine similarity, closeness centrality (H-CC)

Other notable observations from this test are:

5. The use of Kruskals algorithm with symmetric NGD similarity is not a consistent

algorithm at all. It was barely able to create a single consistent link when noise terms

were inserted.

6. The tests for the Heymann algorithm all show that the use of closeness centrality is a

much more consistent metric than using betweenness centrality.

5.2.3 Consistency Test Summary

The consistency tests were run both by varying the backend data set and term lists to test

for taxonomy generation algorithm robustness versus noise. Table 5 repackages the information

from Table 3 and Table 4 for easier viewing.

Table 5: Consistency Test Summary

Algorithm Mean of Percentage Similarities for Mean of Percentage Similarities for
Variant Backend Data Set Consistency Test Term List Consistency Test
Acronym

D-CB 92.66% 87.04%
D-CC 95.90% 90.88%

D-SB 93.34% 85.83%

D-SC 93.38% 86.78%

K-CB 92.62% 87.04%

K-CC 95.86% 90.88%

K-SB 1.54% 9.93%

K-SC 1.50% 9.22%

E-AB 89.55% 84.27%

E-AC 90.16% 84.23%

H-AB 94.16% 80.94%

H-AC 97.36% 87.33%

H-CB 32.68% 30.26%

H-CC 96.61% 90.79%



H-SB 79.41% 55.19%
H-SC 94.63% 75.73%

Based on the results shown in Table 5 above, the following is clear:

1. The use of Kruskals algorithm with symmetric NGD similarity is not a consistent
algorithm in any way.

2. Closeness centrality seems to be a much better similarity metric compared to
betweenness centrality.

3. The most consistent algorithms variants are D-CC, K-CC and H-CC, all of which use
cosine similarity and closeness centrality to generate taxonomies.

5.3 Evaluating Individual Taxonomies

Several tests were run which tested each of the taxonomy generation algorithms' outputs
individually by taking their outputs and scoring them using the different scoring metrics
described in the previous chapter. To recap, the scoring metrics used were (for more information
about each of the metrics mentioned above, see the previous chapter of this thesis):

1. Average

2. Momentum

3. Mean to Root

4. Mean to Grandparent

5. Linear

6. Exponential (0.5)

7. Exponential (0.75)

Note that the scoring algorithms measure each taxonomy's conformity to its distance
matrix and as such are only useful when comparing taxonomies generated using the same
similarity metric since only one similarity metric characterizes a distance matrix. This means that
using a given scoring metric, it is impossible to compare all the taxonomy generation algorithms
to each other, however it is possible to compare all the taxonomy generation algorithms that used
the cosine similarity metric, symmetric NGD similarity metric, or asymmetric NGD similarity
metric to each other.



The top 100, 250 and 500 frequently occurring terms in the Scopus "renewable energy"

data set were used in conjunction with the entire bibliometric data set . The results are presented

in the following subsections.

5.3.1 Using the top 100 terms

The results summarized in Table 6 are from tests run using the cosine similarity metric to

generate the distance matrix. Highlighted are the best taxonomy generation algorithms for each

scoring metric.

Table 6: Different Scoring Metrics used on Cosine Similarity based Taxonomy Generation Algorithm
Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root

D-CB 0.341 27.632 20.835 27.632 24.066 26.961 23.533
D-CC 0.341 27.912 22.701 27.912 25.375 27.884 24.994
K-CB 0.341 27.632 20.835 27.632 24.066 26.961 23.533
K-CC 0.341 27.912 22.701 27.912 25.375 27.884 24.994
H-CB 0.285 23.340 21.232 23.340 23.391 24.112 22.487
H-CC 0.337 28.272 24.805 28.272 27.305 28.587 26.460

The results summarized in Table 7 are from tests run using the symmetric NGD similarity

metric to generate the distance matrix. Highlighted are the best taxonomy generation algorithms

for each scoring metric.

Table 7: Different Scoring Metrics used on Symmetric NGD Similarity based Taxonomy Generation
Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential

Variant To Grandparent (0.5) (0.75)

Acronym Root

D-SB 0.110 13.126 20.918 13.126 18.366 14.085 16.925

D-SC 0.110 13.045 20.447 13.045 18.380 13.922 16.665

K-SB 0.323 27.662 27.662 27.662 29.214 29.214 28.327

K-SC 0.323 26.918 26.918 26.918 28.719 28.719 27.690

H-SB 0.119 14.451 17.806 14.451 15.998 14.898 16.471

H-SC 0.114 13.566 17.307 13.566 15.680 14.183 15.857



Finally, the results summarized in Table 8 are from tests run using the asymmetric
similarity metric to generate the distance matrix. Highlighted are the best taxonomy generation
algorithms for each scoring metric.

Table 8: Different Scoring Metrics used on Asymmetric NGD Similarity based Taxonomy
Generation Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root

E-AB 0.028 3.651 3.758 3.651 3.431 3.410 3.608

E-AC 0.028 3.651 3.758 3.651 3.431 3.410 3.608

H-AB 0.028 3.705 3.791 3.705 3.470 3.449 3.644

H-AC 0.028 3.651 3.758 3.651 3.431 3.410 3.608

5.3.2 Using the top 250 terms

The results summarized in Table 9 are from tests run using the cosine similarity metric to
generate the distance matrix. Highlighted are the best taxonomy generation algorithms for each
scoring metric.

Table 9: Different Scoring Metrics used on Cosine Similarity based Taxonomy Generation Algorithm
Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root

D-CB 0.333 67.507 52.780 67.507 60.950 66.572 58.883
D-CC 0.333 67.765 53.575 67.765 61.082 66.864 59.388

K-CB 0.333 67.507 52.780 67.507 60.950 66.572 58.883

K-CC 0.333 67.765 53.575 67.765 61.082 66.864 59.388

H-CB 0.286 57.262 47.932 57.262 54.345 57.773 52.211
H-CC 0.327 67.260 54.777 67.260 62.308 66.696 60.048

The results summarized in Table 10 are from tests run using the symmetric NGD
similarity metric to generate the distance matrix. Highlighted are the best taxonomy generation
algorithms for each scoring metric.



Table 10: Different Scoring Metrics used on Symmetric NGD Similarity based Taxonomy
Generation Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential

Variant To Grandparent (0.5) (0.75)

Acronym Root

D-SB 0.112 34.048 55.832 34.048 48.896 36.804 45.164

D-SC 0.112 33.882 52.860 33.882 47.140 36.515 44.071

K-SB 0.335 73.046 73.046 73.046 76.584 76.584 74.562

K-SC 0.335 72.651 72.651 72.651 76.321 76.321 74.224

H-SB 0.122 38.392 51.256 38.392 45.995 40.584 46.358

H-SC 0.117 35.266 49.411 35.266 44.013 37.741 43.784

Finally, the results summarized in Table 11 are from tests run using the asymmetric NGD

similarity metric to generate the distance matrix. Highlighted are the best taxonomy generation

algorithms for each scoring metric.

Table 11: Different Scoring Metrics used on Asymmetric NGD Similarity based Taxonomy
Generation Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential

Variant To Grandparent (0.5) (0.75)
Acronym Root

E-AB 0.013 7.233 8.579 7.233 6.917 6.578 7.719

E-AC 0.013 7.233 8.579 7.233 6.917 6.578 7.719

H-AB 0.013 7.820 8.680 7.820 7.067 6.758 7.861

H-AC 0.013 7.733 8.654 7.733 7.039 6.722 7.830

5.3.3 Using the top 500 terms

The results summarized in Table 12 are from tests run using the cosine similarity metric

to generate the distance matrix. Highlighted are the best taxonomy generation algorithms for each

scoring metric.

Table 12: Different Scoring Metrics used on Cosine Similarity based Taxonomy Generation
Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential

Variant To Grandparent (0.5) (0.75)

Acronym Root

D-CB 0.316 124.705 89.254 124.705 105.961 121.457 103.552

D-CC 0.316 124.998 90.791 124.998 106.101 122.087 104.567

K-CB 0.316 124.705 89.254 124.705 105.961 121.457 103.552

K-CC 0.316 124.998 90.791 124.998 106.101 122.087 104.567



H-CB 0.260 100.394 76.155 100.394 88.615 100.057 86.514

H-CC 0.309 124.609 95.556 124.609 111.186 122.363 107.433

The results summarized in Table 13 are from tests run using the symmetric NGD
similarity metric to generate the distance matrix. Highlighted are the best taxonomy generation
algorithms for each scoring metric.

Table 13: Different Scoring Metrics used on Symmetric NGD Similarity based Taxonomy
Generation Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root

D-SB 0.116 71.257 138.022 71.257 118.328 78.324 100.547

D-SC 0.116 71.123 115.215 71.123 103.762 77.345 94.929

K-SB 0.361 170.407 170.407 170.407 173.822 173.822 171.871

K-SC 0.361 158.177 158.177 158.177 165.669 165.669 161.388

H-SB 0.126 79.727 119.995 79.727 104.705 85.882 102.732

H-SC 0.121 74.192 105.994 74.192 93.791 79.285 92.860

Finally, the results summarized in Table 14 are from tests run using the asymmetric NGD
similarity metric to generate the distance matrix. Highlighted are the best taxonomy generation
algorithms for each scoring metric.

Table 14: Different Scoring Metrics used on Asymmetric NGD Similarity based Taxonomy
Generation Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root

E-AB 0.015 15.659 18.957 15.659 15.374 14.441 17.005
E-AC 0.015 14.375 19.668 14.375 16.034 14.428 17.373
H-AB 0.015 15.737 19.013 15.737 15.444 14.516 17.076

H-AC 0.015 14.165 19.108 14.165 15.275 14.059 16.869

5.3.4 Evaluating Individual Taxonomies Analysis

The consistently top-scoring algorithms among the 100, 250 and 500 term list tests are
summarized in Table 15. The shaded cells represent the consistently top-scoring algorithm
variants for each of the scoring metrics.



Table 15: Consistently Top Scoring Algorithm Variants

Algorithm
Variant
Acronym

D-CB

D-CC

D-SB

D-SC

K-CB

K-CC

Average Momentum Mean
Root

To 1Mean To
Grand-
parent

Linear Exponential
(0.5)

Exponential
(0.75)

K-SB

K-SC

E-AB

E-AC

H-AB

H-AC

H-CB

H-CC

H-SB

H-SC

Based on the data in the table above, the algorithm variant that performed the best is:

1. DJP algorithm, symmetric NGD similarity, cosine centrality for root selection
(D-SC)

Other notable top performing algorithm variants were:

1. Heymann algorithm, symmetric NGD similarity, closeness centrality (H-SC)

2. Heymann algorithm, cosine similarity, closeness centrality (H-CC)

Aside from the results summarized in Table 15, it is also clear through the Heymann
algorithm tests that closeness centrality seems to be a better centrality metric to use compared to
betweenness centrality. This is consistent with our observations in the previous consistency tests.
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5.4 Synthetic Data Generation

Finally, as explained in Chapter 4.5, synthetic data sets were generated to allow the
taxonomy generation algorithms to be tested on data with known characteristics. This allowed
two different sets of tests to be conducted. Firstly, the optimal range of sizes for bibliometric data
sets from which taxonomies could be accurately inferred was estimated. The second set of tests
was designed to study the performance of taxonomy generation algorithms when faced with
different noise levels.

5.4.1 Estimating the Optimal Bibliometric Data Set Size

The first challenge was to estimate the optimal size for a synthetically produced
taxonomy. This was done by creating underlying taxonomies of different sizes, then generating a
varying amount of documents for each term in the taxonomy, which were then fed as input to
each of the taxonomy generation algorithms. The outputs of each taxonomy generation algorithm
were then compared to the valid, predetermined underlying taxonomies.

For these tests, a noise level of 0.2 was assumed within the documents. As mentioned in
the previous chapter, this is defined as the probabilities of the "off-topic" terms relative to the
probability of the relevant term. 0.2 was our subjective reasonable estimate for the noise level to
be expected from a real publication database.

The two tables in the following pages summarize the results - note that all experiments
were repeated three times to take into account the variance of generating random initial synthetic
taxonomies, and the average scores reported. Table 16 lists the percentage similarity of the
synthetically produced underlying taxonomies to the taxonomies generated using algorithms that
use betweenness centrality while Table 17 lists the ones for closeness centrality. Highlighted are
the best performing data set sizes for each taxonomy generation algorithm.



Table 16: Accuracy of Taxonomy Generation Algorithms Using Betweenness Centrality's Outputs for Replicating Underlying Synthetically Generated
Taxonomies

Total Entries Number of D-CB D-SB K-CB K-SB E-AB H-AB H-CB H-SB
in Data Set Terms

1000 20 78.33% 78.33% 78.33% 21.67% 45.00% 33.33% 5.00% 35.00%
2000 20 83.33% 86.67% 83.33% 21.67% 36.67% 26.67% 5.00% 23.33%

2,500 50 92.67% 89.33% 92.67% 10.00% 76.00% 60.67% 2.00% 52.00%
5,000 50 94.67% 95.33% 94.67% 10.00% 64.67% 48.00% 2.00% 51.33%
5,000 100 95.00% 91.33% 95.00% 8.33% 77.00% 62.00% 1.00% 50.67%

10,000 100 94.67% 96.33% 94.67% 5.00% 89.67% 73.67% 1.00% 58.33%
20,000 20 81.67% 91.67% 81.67% 20.00% 35.00% 26.67% 5.00% 8.33%
50,000 50 91.33% 93.33% 91.33% 13.33% 74.67% 47.33% 2.00% 33.33%

100,000 20 80.00% 83.33% 80.00% 23.33% 48.33% 28.33% 5.00% 10.00%

100,000 100 95.67% 97.33% 95.67% 8.00% 76.67% 51.00% 1.00% 42.67%

200,000 20 85.00% 86.67% 85.00% 30.00% 40.00% 33.33% 5.00% 6.67%
250,000 50 87.33% 92.67% 87.33% 8.00% 84.00% 57.33% 2.00% 38.67%
500,000 50 92.67% 96.00% 92.67% 9.33% 74.67% 52.00% 2.00% 41.33%

500,000 100 94.33% 96.67% 94.33% 6.67% 81.00% 55.33% 1.00% 41.67%
1,000,000 100 95.00% 97.00% 95.00% 4.67% 88.00% 59.67% 1.00% 38.00%



Table 17: Accuracy of Taxonomy Generation Algorithms Using Closeness Centrality's Outputs for Replicating Underlying Synthetically Generated
Taxonomies

Total Entries Number of D-CC D-SC K-CC K-SC E-AC H-AC H-CC H-SC
in Data Set Terms

1000 20 86.67% 90.00% 86.67% 18.33% 45.00% 36.67% 73.33% 68.33%
2000 20 93.33% 95.00% 93.33% 16.67% 36.67% 35.00% 80.00% 76.67%

2,500 50 97.33% 95.33% 97.33% 8.67% 76.00% 70.67% 86.67% 72.67%
5,000 50 98.00% 96.67% 98.00% 8.67% 64.67% 66.00% 83.33% 77.33%
5,000 100 98.67% 94.67% 98.67% 7.33% 77.00% 73.67% 82.00% 61.00%

10,000 100 98.67% 99.00% 98.67% 4.00% 89.67% 88.00% 86.67% 67.00%
20,000 20 95.00% 95.00% 95.00% 16.67% 35.00% 35.00% 83.33% 81.67%
50,000 50 98.00% 98.00% 98.00% 11.33% 74.67% 71.33% 86.67% 73.33%

100,000 20 95.00% 95.00% 95.00% 18.33% 48.33% 46.67% 81.67% 80.00%
100,000 100 99.00% 99.00% 99.00% 7.33% 76.67% 75.33% 88.33% 49.00%
200,000 20 95.00% 95.00% 95.00% 26.67% 40.00% 36.67% 88.33% 81.67%
250,000 50 98.00% 98.00% 98.00% 6.00% 85.33% 82.67% 87.33% 80.67%
500,000 50 98.00% 98.00% 98.00% 8.00% 74.67% 75.33% 90.00% 72.67%
500,000 100 99.00% 99.00% 99.00% 5.67% 81.33% 82.33% 90.00% 44.33%

1,000,000 100 99.00% 99.00% 99.00% 3.67% 88.00% 90.00% 90.67% 52.33%



Based on the tables above, we note several key observations:

1. DJP and Kruskals algorithm variants have the general trend where the more terms in the

taxonomy or the more entries in the bibliometric data set exist, the more accurate the

replication of the underlying taxonomy is.

2. The algorithms that use cosine similarity perform much better than the other algorithm

variants.

3. Using the closeness centrality metric produces much more accurate results than using the

betweenness centrality. The disparity between the two is evident in the tests run using the
Heymann algorithm.

The results of the tests that used closeness similarity are summarized in Table 18.

Table 18: Average of Closeness Centrality Algorithms Accuracy Results

Total Number Average of Percentage Similarities for all Taxonomy
Entries in of Terms Generation Algorithms
Data Set

1000 20 63.13%
2000 20 65.83%

2,500 50 75.58%
5,000 50 74.08%

5,000 100 74.13%
10,000 100 78.96%
20,000 20 67.08%

50,000 50 76.42%
100,000 20 70.00%
100,000 100 74.21%

200,000 20 69.79%

250,000 50 79.50%

500,000 50 76.83%
500,000 100 75.08%

1,000,000 100 72.71%

As shown in the table above, taxonomy generation algorithms on average are most

accurate (best replicate the underlying taxonomy) when there are 50 terms and 250,000

bibliometric entries in the data set. Past this value the mean of the accuracy of the taxonomy

generation algorithms decreases. As such, for the tests in the next section where we varied the

noise, we considered the scenario where there were 250,000 total entries in the data set.



5.4.2 Measuring Algorithm Variant Consistency Using Synthetic Data

Using a predetermined, underlying taxonomy with size based on the findings in the

previous section, the "noise" values within the data set were varied to calculate the robustness vs

noise, or consistency of each taxonomy generation algorithm.

A data set was created consisting of 50 terms with 5,000 entries generated for each term,

totaling to 250,000 entries in the synthetic data set. The test was run three times and the

percentage similarity values were averaged. The results of this test are summarized in Table 19

below. Note that the percentage values represent the degree of similarity of the outputs of each

taxonomy generation algorithm to the underlying taxonomy. Highlighted values represent the best

performing algorithms for every noise value.

Table 19: Accuracy of Taxonomy Generation Algorithms for Replicating Underlying Synthetically
Generated Taxonomies with 50 Terms with Varying Noise

Algorithm Noise Noise Noise Noise Noise Std Dev (does
Variant 002 05.81 Average not count case

Acronym =0 =0.2 =0.5 =0.8 =1 where noise = 1)

D-CB 94.00% 90.00% 84.67% 13.33% 2.00% 56.80% 38.30%

D-CC 98.00% 98.00% 90.67% 11.33% 2.00% 60.00% 42.25%

D-SB 98.00% 95.33% 92.00% 89.33% 2.00% 75.33% 3.79%

D-SC 98.00% 98.00% 98.00% 96.67% 2.00% 78.53% 0.67%

K-CB 94.00% 90.00% 84.67% 13.33% 15.33% 59.47% 38.30%

K-CC 98.00% 98.00% 90.67% 11.33% 15.33% 62.67% 42.25%

K-SB 8.67% 11.33% 10.67% 8.00% 15.33% 10.80% 1.59%

K-SC 8.67% 9.33% 8.67% 6.67% 15.33% 9.73% 1.15%

E-AB 96.67% 80.67% 21.33% 8.00% 15.33% 44.40% 43.56%

E-AC 96.67% 80.67% 21.33% 6.00% 15.33% 44.00% 44.24%

H-AB 80.67% 56.67% 2.00% 2.00% 2.00% 28.67% 39.72%

H-AC 96.67% 78.67% 19.33% 6.00% 2.00% 40.53% 44.26%

H-CB 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 0.00%

H-CC 90.67% 91.33% 86.00% 9.33% 2.00% 55.87% 40.07%

H-SB 64.00% 34.00% 2.00% 2.00% 2.00% 20.80% 29.77%

H-SC 98.00% 75.33% 86.00% 89.33% 2.00% 70.13% 9.37%

Based
noise was:

on the data in the table above, the best performing and most robust algorithm vs

1. DJP algorithm, symmetric NGD similarity, closeness centrality for choosing the root

term (D-SC).

It consistently managed to replicate most of the links in the underlying taxonomy and had

a low variance in its percentage accuracy as the noise values were varied.



5.5 Analysis of Results

The tests within this section rigorously tested each taxonomy generation algorithm

variant. It was decided not to test the Genetic Algorithm (GA), since this algorithm produced

outputs that were just too different from each other, hence it was not a worthwhile taxonomy

generation algorithm to examine. The GA did use several taxonomy scoring metrics, which were

used in the succeeding tests.

The first set of tests conducted measured each algorithm variant's consistency, or

robustness vs noise. The consistency tests were further subdivided into backend data consistency

tests and term list consistency tests. From the first set of tests, it was discovered that the most

consistent algorithm variants were D-CC, K-CC and H-CC, all of which use cosine similarity and

closeness centrality to generate taxonomies. The fact that these three variants were the most

consistent seem to show that the cosine similarity metric and closeness centrality are effective

algorithm parameters as well.

The second set of tests conducted evaluated individual taxonomies based on several

scoring metrics that measured each taxonomy generation algorithm variant's conformity to its

distance matrix. Each distance matrix is built using a particular similarity metric, so one downside

of this test was that it was impossible to compare algorithms that used different similarity metrics

to generate their distance matrices. Among the algorithm variants, the consistent top performer

was D-SC, followed by H-CC and H-SC. Once again, closeness centrality was the metric all the

efficient algorithm variants used to generate their taxonomies, however this time the symmetric

NGD metric was used by the top performer to generate its distance matrix. Similar to cosine

similarity, Symmetric NGD similarity is another similarity metric that produces an undirected

graph. This seems to indicate that the most consistent and top-scoring algorithm variants use

similarity metrics that are undirected.

Finally, synthetic data sets were generated based on known, randomly generated

taxonomies and were used to measure the respective performances of each of the taxonomy

generation algorithm variants in replicating the underlying taxonomy. The first set of synthetic
data tests showed that the ideal data set size for which our algorithms can accurately produce

valid taxonomies consistently is 250,000 entries. Then, using this data set size, the noise within

the data was varied and each taxonomy generation algorithm variant's robustness vs noise was

measured. From these tests the best performing algorithm variant was found to be D-SC.

Based on all the tests conducted, there is now convincing evidence that the best algorithm

variants are H-CC and D-SC, since these were the two algorithm variants that performed well in

multiple (two out of three) tests. As a final focus for analysis, we manually inspected each well-

performing algorithm variant's outputs to determine which taxonomy generation algorithm works

best. Specifically, we inspected the taxonomies generated by H-CC and D-SC using the entire



"renewable energy" Scopus data set as backend, and used the top 500 frequently occurring terms
in the data set as term list.

The figures on the succeeding pages show the taxonomies generated by both the
algorithm variants. Specifically Figure 26 shows the H-CC taxonomy and Figure 27 shows the D-
SC taxonomy.

One main observation that is immediately clear upon inspection of the D-SC taxonomy is
that it is very deep, going as far as 25 levels in. Note that the root of the taxonomy in the figure is
on the lefthand-side and as such a deeper taxonomy would be a wider / broader figure. In contrast
to the D-SC taxonomy, the H-CC taxonomy is not very deep, though it still goes 5-9 levels in.

Upon a more granular inspection of both taxonomies, it seems that the taxonomy
generated using the H-CC algorithm makes a little more sense. Both taxonomies generated using
H-CC and D-SC used the same term list, but the taxonomy generated using D-SC did not have
any clear clustering of terms that represented the same idea, whereas the one generated using H-
CC had clear term clusters, which are indicated in Figure 26. The lack of clustering in the D-SC
taxonomy is also a by-product of its depth. Since it is very deep, it isn't very broad, hence each
term only has on average 3 children, and hence it's harder to immediately notice term clusters.

Even though the H-CC taxonomy looks more sensible than the D-SC taxonomy, it is by
no means perfect. For instance, there are clusters in the taxonomy that grouped seemingly
unrelated terms together. An example of this was a cluster of terms where the parent node was
"ph", a chemistry-related term referring to the acidity of a solution, however its children were
"solar" related like "photovoltaic", "spectrum analysis" and "photoconduction" as well as
chemistry-related terms like "solute".

On the other hand, the taxonomy generated using D-SC also had it advantages. Within
the taxonomy, certain logical paths could be traced. For instance, starting from "power
generation", we can trace the following path by going deeper in the taxonomy: "power
generation" 4 "electric powers" + "power system" - "electrical power system" - "power

transmission" 4 "electric power transmission" 4 "electric power transmission networks" +
"electric network analysis". The location of the path in the taxonomy is seen in Figure 27.

As such, we have concluded that both the H-CC and the D-SC produced taxonomies that
provide useful information in different ways. The choice of which taxonomy generation
algorithm variant to use is dependent on the viewer's preferences. If a taxonomy is desired that
separates distinct term concepts, then H-CC should be used. If on the other hand a taxonomy is
desired where long paths can be traced between related terms, then D-SC should be used.

There were a few more observations in the results section that we now offer possible
explanations for. Firstly, in all our tests, the Kruskal's algorithm taxonomy generation variants
always performed terribly. We believe that this is most likely due to Kruskal's choosing of the



root term at the end of the algorithm. The top performing algorithms (H-CC and D-SC) choose

the root terms at the beginning of the algorithm, and all the other links are added already

assuming the position of the root term at the head of the taxonomy. The choice of the root term by

Kruskal's only at the end of the algorithm allows for the inclusion of several links in the

taxonomy that otherwise would not have been included if the root term was selected first.

Hypothetically, if Kruskal's is modified such that it selects the root term first, it essentially turns

into the DJP algorithm, which is the basis of the D-SC algorithm variant.

Secondly, in all our tests, the variants that use the undirected / symmetric similarity

metric (cosine and symmetric NGD) outperform the directed / asymmetric similarity variants

(asymmetric NGD). We believe that this is likely due to the additional flexibility provided by a

symmetric similarity metric. A symmetric similarity metric allows for a pair of terms to be linked

in two ways (ex: terms X and Y can be linked either X->Y or X<-Y), whereas an asymmetric

similarity metric only allows for one direction for linking. As such, if given the choice, a

taxonomy generation algorithm that uses an asymmetric similarity metric could more likely link

two terms that are unrelated than link two related terms that have the reverse parent-child

relationship, whereas a taxonomy generation algorithm that uses a symmetric similarity metric

would go ahead and link the related terms since it has no notion of directionality or the parent-

child relationship.

Finally, in all our tests, the variants that use closeness centrality metric outperform the

variants that use betweenness centrality. We believe that this is because betweenness centrality

only takes into account the fraction of the number of shortest paths that pass through a node in a

graph, whereas closeness centrality actually looks at the shortest path lengths and takes that value

into account. As such, the comparison value used by closeness centrality is more granular than

the one used by betweenness centrality, leading to a more accurate measure of centrality.



"Solar" Cluster I

S ---- -------

"Fuel" Cluster

L --- - - - -

Figure 26: Visual Representation
of HCC-Generated Taxonomy

I "Wind" Cluster

- - - - - - - - - - - - - --- - - -



S"Powet Generation' Path

-~ ~ ~ ~ ~ ~ ~ ~ ---u ----- - -- .. --- --

Figure 27: Visual Representation of DSC-Generated Taxonomy

83



CHAPTER 6: Conclusion

6.1 Recommendations

The previous chapter presented and analyzed the results generated by testing all the
algorithm variants for taxonomy generation. In the end, we recommended the following two
algorithm variants:

1. Heymann algorithm, cosine similarity, closeness centrality (H-CC)

2. DJP algorithm, symmetric NGD similarity, closeness centrality (D-SC)

6.2 Summary of Accomplishments

The overall goals of the project were outlined in Chapter 1 of this thesis. Here, the goals
are recapped and a few quick notes are provided that outline our findings and how each goal was
achieved.

1. To develop automated, publication database-independent methods for generating
taxonomies.

The exact taxonomy generation process is introduced and discussed in detail in Chapter 3. We
have developed software that first extracts terms from an online publication database such as
Scopus or Engineering Village. The similarity between the terms chosen to be included in the
taxonomy are quantified using either cosine, symmetric NGD, or asymmetric NGD similarity.
After which the term similarities are stored in the form of a distance matrix. Finally, each
taxonomy generation algorithm then uses this given distance matrix as a starting point to generate
a taxonomy.

2. To compare several taxonomy generation algorithms and justify the usefulness of each.

The experiments conducted to test taxonomy generation algorithms are all introduced in Chapter
4 and the findings are presented in Chapter 5. Three sets of experiments were conducted. The first
set tested for each taxonomy generation algorithm variant's consistency. The second set tested for
each taxonomy generation algorithm variant's individual output's ability to conform to the
distance matrix on which it was based. Finally, the third set created synthetic data sets of
bibliometric information based on predetermined random taxonomies, attempting to simulate a
typical set of documents we would expect to gather from a real online publication database, in
order to test the ability of each taxonomy generation algorithm variant to reproduce underlying
taxonomies.



3. To generate ways of visually representing the data in a manner that is easily
understandable for viewers.

Chapter 3.6 describes the methods of visualizing the taxonomy. Specifically, the online

ZGRViewer is presented that enables zooming and scrolling for efficient navigation within the

taxonomy, allowing the user to focus on whatever parts of the taxonomy he wants to see.

4. To run a case study on "renewable energy.

All the results presented in Chapter 5 use the Scopus "renewable energy" data set, and

taxonomies generated using the H-CC and D-SC taxonomy algorithm variants are presented in

Chapter 5.5 using the most frequently occurring terms from the "renewable energy" data set.

6.3 Limitations and Suggestions for Further Research

The taxonomy generation algorithms developed and presented in this thesis have been

rigorously tested, however there still remain two main areas where more research can be done.

The reader is referred back to Figure 21 where the underlying model for taxonomy generation is

presented. Specifically, the bottom row of the figure shows a clear path from the collection of

bibliometric data from a publication database all the way to the generation of a taxonomy.

Firstly, experiments could be conducted using more publication databases. Currently,
software has been developed for collecting information from Compendex, Inspec and Scopus, but

more software can be developed for other publication databases in the future, and tests similar to

those presented in Chapter 5 can be run.

Secondly, further investigation can be done concerning other similarity metrics used to

generate distance matrices, as well as the advantages and disadvantages of each. The current

similarity metrics used are cosine similarity, symmetric NGD similarity, and asymmetric NGD
similarity.

There is a lot of ongoing work in the field of technology forecasting, and given the speed

at which technology is progressing and the abundance of information present within media, lots

of academic research is geared towards harnessing that information to aid technology forecasting.

The work described in this thesis critically analyzes the process of generating visual

representations of technology research landscapes through taxonomies. We believe that the work

shown here is critical to technology forecasting as it helps researchers and decision-makers learn

more about their field.
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APPENDIX

Appendix A: Most Frequently Occurring Terms in Scopus "renewable
energy" database

Terms with 500 or more occurrences in the database

solar-cell 23268 occurrences

wind powers 15776 occurrences

renewable energy resources 15175 occurrences

energy policies 14989 occurrences

fuel cells 13435 occurrences

photovoltaic cell 11865 occurrences

solar energy 8847 occurrences

biomass 8613 occurrences

mathematic models 7173 occurrences

computer simulator 6860 occurrences

electrical power generations 6216 occurrences

geothermal energy. 5958 occurrences

photovoltaic effect 5957 occurrences

wind turbines 5817 occurrences

energy efficiencies 5424 occurrences

electric generations 5397 occurrences

electrochemistry 5338 occurrences

thin film 5230 occurrences

electrical power system 4814 occurrences

hydrogen 4767 occurrences

energy resources 4755 occurrences

energy utilities 4549 occurrences

article 4403 occurrences

power generation 4339 occurrences

energy conservation 3988 occurrences

optimizing 3985 occurrences

biofuels 3925 occurrences

eurasia 3889 occurrences

electricity 3676 occurrences

carbon dioxide 3626 occurrences

energy conversion 3542 occurrences

environmental impacts 3500 occurrences

costs 3425 occurrences

silicon solar cells 3324 occurrences

electric utility 3147 occurrences

electrode 3115 occurrences

renewable resources 3078 occurrences

electrolyte 3040 occurrences

electrical potential 3040 occurrences

fossil fuels 3036 occurrences

sustainable development 2843 occurrences

solid-oxide fuel cell 2842 occurrences

oxidizers 2837 occurrences

electric batteries 2800 occurrences

energy management 2756 occurrences

methanol 2717 occurrences

economizers 2589 occurrences

catalysts 2587 occurrences

fuel 2584 occurrences

solar radiation 2533 occurrences

europe 2485 occurrences

carbon 2457 occurrences

environmental protection 2368 occurrences

marketing 2339 occurrences

biodiesel 2323 occurrences

ethanol 2267 occurrences

electric power distribution 2247 occurrences

catalysis 2213 occurrences

geothermal wells 2188 occurrences

oxygenates 2185 occurrences

priority journal 2171 occurrences

thermal effects 2142 occurrences

cost effectivity 2130 occurrences

electrical conductivities 2118 occurrences

silicon 2096 occurrences

nanostructured materials 2085 occurrences

polymers 2073 occurrences

semiconductive silicon 2062 occurrences

alternative energy 2060 occurrences

united states 2053 occurrences



solid-oxide fuel cell 2013 occurrences

substrate 2010 occurrences

heterojunctions 1997 occurrences

current density 1997 occurrences

gas emission 1995 occurrences

climatic change 1989 occurrences

industrial economics 1914 occurrences

technologies 1907 occurrences

proton exchange membrane 1894 occurrences

fuel cell

natural gas 1880 occurrences

turbining 1873 occurrences

investment 1873 occurrences

renewable energy 1848 occurrences

solar cell array 1845 occurrences

power plant 1838 occurrences

protonated 1834 occurrences

photovoltaic systems 1831 occurrences

geothermal field 1829 occurrences

diffusion 1826 occurrences

economic and social effects 1817 occurrences

amorphous silicon 1743 occurrences

greenhouse effects 1726 occurrences

laws and legislation 1718 occurrences

electric power plants 1677 occurrences

scanning electron microscopy 1675 occurrences

solar power plants 1617 occurrences

cathodes 1614 occurrences

current-voltage characteristics 1593 occurrences

asia 1588 occurrences

air pollutants 1587 occurrences

geothermal systems 1566 occurrences

direct energy conversion 1565 occurrences

biological materials 1561 occurrences

project managers 1552 occurrences

combustion 1539 occurrences

electric inverters 1537 occurrences

heat 1536 occurrences

electric currents 1534 occurrences

energy consumption 1533 occurrences

powerful electronics 1523 occurrences

cell membranes 1521 occurrences

heat transfer 1506 occurrences

algorithms 1499 occurrences

diesel fuel 1494 occurrences

crystalline materials 1488 occurrences

temperature 1459 occurrences

titanium dioxide 1451 occurrences

solar power generation 1447 occurrences

energy storage 1428 occurrences

vegetable oil 1422 occurrences

copper compounds 1422 occurrences

wind-farm 1414 occurrences

developing country 1410 occurrences

anodizing 1395 occurrences

solar equipment 1391 occurrences

north america 1387 occurrences

global warming 1378 occurrences

synthesis (chemical) 1376 occurrences

computer networks 1363 occurrences

ester 1354 occurrences

platinum 1340 occurrences

deposition 1336 occurrences

performance 1335 occurrences

polyelectrolytes 1325 occurrences

methanal 1313 occurrences

energy gaps 1311 occurrences

distributed generation 1302 occurrences

nonhuman 1290 occurrences

ion exchange membranes 1288 occurrences

semiconductor materials 1283 occurrences

water 1282 occurrences

strategic plan 1281 occurrences

cell 1281 occurrences

light 1279 occurrences

short circuit currents 1278 occurrences

annealing 1273 occurrences

reliable 1273 occurrences

crystals 1272 occurrences

conversion efficiencies 1253 occurrences

electric power transmission 1252 occurrences

networks

asynchronous generators 1251 occurrences

electricity industries 1251 occurrences

energy use 1245 occurrences

engine 1244 occurrences



dyeing 1218 occurrences

standards 1217 occurrences

models. 1216 occurrences

degradability 1213 occurrences

power transmission 1207 occurrences

fatty acid 1206 occurrences

semiconducting gallium 1202 occurrences

arsenide

nuclear energy 1199 occurrences

photocurrents 1195 occurrences

power converters 1186 occurrences

interfaces (materials) 1179 occurrences

chemical vapor deposition 1177 occurrences

solar-powered 1175 occurrences

electrolysis 1174 occurrences

fermenter 1170 occurrences

concentration process 1165 occurrences

membranes 1158 occurrences

controller systems 1139 occurrences

international conferences 1137 occurrences

energy market 1137 occurrences

x-ray diffraction analysis 1137 occurrences

hydrocarbons 1132 occurrences

organic compounds 1131 occurrences

thermodynamics 1128 occurrences

diesel-engine 1124 occurrences

public policy 1122 occurrences

china 1122 occurrences

electrical load 1119 occurrences

wind-energy 1118 occurrences

doping (additives) 1106 occurrences

efficient 1100 occurrences

carbon monoxide 1099 occurrences

competition 1091 occurrences

sensors 1088 occurrences

cost-benefit analysis 1087 occurrences

voltage controllers 1085 occurrences

decision-making 1077 occurrences

coal 1067 occurrences

semiconducting films 1058 occurrences

optical properties 1046 occurrences

polycrystalline materials 1036 occurrences

esterification 1030 occurrences

light--absorption 1025 occurrences

forestry 1024 occurrences

x- ray diffractions 1018 occurrences

silicon wafers 1017 occurrences

electrochemical electrodes 1000 occurrences

thin film devices 998 occurrences

open circuit voltage 981 occurrences

pyrolysis 976 occurrences

reaction kinetics 961 occurrences

societies and institutions 955 occurrences

quantum efficiency 955 occurrences

biogas 951 occurrences

biotechnology 947 occurrences

hydroelectric power 946 occurrences

cellulose 943 occurrences

semiconducting cadmium 943 occurrences
compound

electrons 939 occurrences

building 938 occurrences

emissions controls 937 occurrences

zinc oxide 932 occurrences

absorption 928 occurrences

parameters estimation 925 occurrences

semiconductor junctions 919 occurrences

synthetic fuels 919 occurrences

greenhouse gases 917 occurrences

alcoholate 917 occurrences

pump 914 occurrences

computer software 900 occurrences

metallation 900 occurrences

conservation 899 occurrences

adsorption 898 occurrences

electrical resistivity 892 occurrences

direct methanol fuel cells 890 occurrences

(dmfcs)

photovoltaic 888 occurrences

silicas 887 occurrences

hydrolysis 882 occurrences

transmission electron 881 occurrences

microscopy

heat pump systems 878 occurrences

geothermal power plants 873 occurrences

acidization 867 occurrences

plasma enhanced chemical 865 occurrences



vapor deposition

fullerenes 862 occurrences

morphology 859 occurrences

geochemistry 858 occurrences

dye sensitive solar cell 854 occurrences

wind effects 854 occurrences

energy 853 occurrences

wind speed 850 occurrences

photoelectrochemical cells 844 occurrences

nonmetal 842 occurrences

gasoline 842 occurrences

glass 841 occurrences

heat exchange 839 occurrences

soil 835 occurrences

research and development 833 occurrences

management

catalyst activations 831 occurrences

agriculture 826 occurrences

wood 826 occurrences

cytology 821 occurrences

economics--analysis 820 occurrences

far east 819 occurrences

photoluminescence 817 occurrences

glucose 817 occurrences

photonics 813 occurrences

charge transfer 812 occurrences

electric property 810 occurrences

hydrogen fueling 807 occurrences

mass transfer 806 occurrences

evaporation 806 occurrences

electric power utilization 803 occurrences

polymeric membranes 802 occurrences

passive 801 occurrences

bioenergy 797 occurrences

crude petroleum 796 occurrences

polarization 790 occurrences

desalination 786 occurrences

charge carriers 785 occurrences

photoconduction 781 occurrences

carbon emissions 780 occurrences

electric power transmission 776 occurrences

problem solving 775 occurrences

simulation results 774 occurrences

power control 772 occurrences

planning 769 occurrences

bioreactors 768 occurrences

solar concentration 768 occurrences

gas turbines 764 occurrences

wind-powered generators 760 occurrences

power system 759 occurrences

semiconductor doping 759 occurrences

semiconducting indium 758 occurrences

compounds

gasification 757 occurrences

copper 753 occurrences

winds 750 occurrences

power qualities 749 occurrences

greenhouse gas 747 occurrences

nitrogenation 744 occurrences

forecasting. 741 occurrences

cooling 739 occurrences

reduction 736 occurrences

air pollution control 724 occurrences

nuclear power plants 723 occurrences

energy planning 723 occurrences

rural areas 721 occurrences

electric energy 720 occurrences

porosity 719 occurrences

ion-exchange 719 occurrences

financing 718 occurrences

chemical reaction 713 occurrences

organic polymers 711 occurrences

simulating 710 occurrences

electric network analysis 703 occurrences

renewable-energy sources 703 occurrences

leakage (fluid) 702 occurrences

designers 701 occurrences

life-cycle 699 occurrences

alternative fuels 694 occurrences

porous materials 689 occurrences

productivity 688 occurrences

data acquisition 687 occurrences

capacitors 686 occurrences

aerodynamics 685 occurrences

distributed power generations 684 occurrences

ecology 684 occurrences



composite 683 occurrences

recycling 683 occurrences

world 678 occurrences

particulate emissions 674 occurrences

biofuel production 674 occurrences

controlled study 672 occurrences

eirev 666 occurrences

electric converters 665 occurrences

reviews 662 occurrences

enzymes 661 occurrences

western europe 659 occurrences

regulatory compliance 657 occurrences

speed 657 occurrences

india 657 occurrences

sensitivity analysis 656 occurrences

microstructure 654 occurrences

taxation 652 occurrences

geothermal prospect 652 occurrences

gases 651 occurrences

geological 651 occurrences

irradiance 650 occurrences

united kingdom 645 occurrences

single crystals 645 occurrences

geophysical 643 occurrences

humans 641 occurrences

grain boundaries 638 occurrences

x ray photoelectron 636 occurrences

spectroscopy

film growth 636 occurrences

pem-fuel cell 636 occurrences

fuel consumption 635 occurrences

nanoparticle 635 occurrences

transesterification 633 occurrences

technology transfer 627 occurrences

methodology 627 occurrences

crystals--structure 621 occurrences

risk assessment 619 occurrences

hydraulic machinery 618 occurrences

flow of fluids 617 occurrences

methanol fuel 617 occurrences

solar system 615 occurrences

surface properties 615 occurrences

volcano 614 occurrences

comparative studies 613 occurrences

satellites 612 occurrences

geothermal heating 611 occurrences

aluminum 611 occurrences

electrodeposit 610 occurrences

glycerol 610 occurrences

electric power supplies to 608 occurrences
apparatus

hydrogen productivity 607 occurrences

semiconductor devices 606 occurrences

systems analysis 604 occurrences

installation 604 occurrences

data reduction 603 occurrences

reactive power 602 occurrences

spacecraft 602 occurrences

hydraulic motor 602 occurrences

geothermal reservoir 600 occurrences

electric powers 598 occurrences

sulfur 598 occurrences

statistical methods 598 occurrences

sensor networks 597 occurrences

chemistry 594 occurrences

crops 594 occurrences

water supplies 594 occurrences

fabric 590 occurrences

electric energy storage 590 occurrences

cadmium compounds 590 occurrences

gas industry 587 occurrences

petroleum industries 584 occurrences

bioelectric energy sources 582 occurrences

groundwater 582 occurrences

spectrum analysis 579 occurrences

geophysics geothermal

deregulation 578 occurrences

geothermal gradient 578 occurrences

wastewater - treatment 578 occurrences

electric load forecasting 577 occurrences

neural networks 577 occurrences

atmospheric humidity 575 occurrences

electric supplies 574 occurrences

international trade 572 occurrences

energy sourcing 571 occurrences

wind generator 570 occurrences



synchronous generators 570 occurrences

biodegradable 570 occurrences

energy supply 569 occurrences

solar cell silicon 568 occurrences

wind velocities 567 occurrences

nanotechnologies 566 occurrences

cogeneration plants 566 occurrences

light-emitting diodes 564 occurrences

lignin 563 occurrences

ecosystems 563 occurrences

resource allocation 562 occurrences

carbon nanotube 561 occurrences

electric power factor 561 occurrences

probable 555 occurrences

technical presentations 554 occurrences

spectroscopic analysis 553 occurrences

germany 551 occurrences

electrical vehicles 550 occurrences

etch 550 occurrences

sintering 550 occurrences

wireless telecommunication 549 occurrences

systems

capacitance 547 occurrences

atomic-force microscopies 546 occurrences

rotors 546 occurrences

southern europe 545 occurrences

numerical methods 545 occurrences

zea mays 544 occurrences

fuel economy 543 occurrences

composite materials 542 occurrences

system stabilization 541 occurrences

hydroelectric power plants 540 occurrences

semiconducting silicon 539 occurrences

compounds

solute 539 occurrences

sustainable 535 occurrences

technology forecasts 534 occurrences

energy productivity 533 occurrences

nickelates 532 occurrences

potential energy 531 occurrences

wireless sensor network 530 occurrences

fourier-transform infrared 530 occurrences

spectroscopies

computation methods 527 occurrences

wastewater 526 occurrences

heating treatments 524 occurrences

carriers concentration 524 occurrences

european unions 523 occurrences

waste management 523 occurrences

grid-connected 522 occurrences

energy demand 521 occurrences

thin film solar cell 521 occurrences

numeration model 521 occurrences

computational fluid dynamics 520 occurrences

stoichiometry 520 occurrences

environmental engineering 519 occurrences

activation energies 515 occurrences

zirconia 515 occurrences

power density 515 occurrences

ph 514 occurrences

pressure effects 513 occurrences

climatology 513 occurrences

heat-flow 512 occurrences

air quality 511 occurrences

aquifer 509 occurrences

optoelectronic device 507 occurrences

metabolism 506 occurrences

solar collectors 502 occurrences

electric power systems-- 500 occurrences
interconnection



Appendix B: Masdar Initiative

This project described here is funded by the Masdar Initiative, founded in April 2006,
which is a multi-faceted framework dedicated to advancing the development, commercialization
and deployment of renewable energy solutions and clean technologies. The goal of Masdar is to
integrate the full renewable and clean technology lifecycle - from research to commercial
deployment - with the aim of creating scalable clean energy solutions. Masdar works with global
partners and institutions to integrate new research with proven technologies to produce efficient
systems and processes that can be replicated globally. [taken from www.masdar.ae] One goal is
the construction of Masdar City, a zero carbon, zero waste city being built just outside Abu
Dhabi, UAE. This site is the location of the Masdar Institute of Science and Technology. Masdar
has a very clear interest in discovering more about the "renewable energy" field. The goal of our
group's research is to provide our colleagues in Masdar with an automated way of discovering
more about "renewable energy". All the case studies and results generated within this thesis all
focus on "renewable energy" related technologies.



Appendix C: Description of Code

This section of the Appendix explains the different classes of python code used for this project.

Classes arranged alphabetically.

ANALYSIS .py

This is the file that puts all the other files together. It enables the creation of a local data set and
distancematrices, and the running of algorithms to produce a taxonomy.
No methods are included in this file.

compare . py

This file compares two taxonomies. Taxonomies are always saved in the form of a Taxonomy
object as defined in HEYMANN.py
This file has a dependency on HEYMANN.py
Methods in this file include:
compareTaxonomySameTermlist(taxonomy_filel, taxonomyfile2, scoringScheme, emphasis)
compareTaxonomyDiffTermlist(taxonomy filel, taxonomyfile2,scoringScheme, emphasis)
analyzeTaxonomy(taxonomyfile)

database .py

This file creates an SQLite3 database of bibliometric information from Compendex / Inspec,
splits an SQLite3 database from Compendex / Inspec (ev) and Scopus.
Methods in this file include:
createevdb(seedterms, dbname, numabstracts, dbnumber, nexturl)
createSqlDb(dbname)
splitdatabase (orig dbfilename, numdocs, new dbfilename, source)

f igure .py

This file generates figure given a connection matrix. It uses the pydot python package.
Methods in this file include:
generate figure(connections, keywords, filename, distmat)

keywords .py

This file creates keyword/term lists and scans them.
Methods in this file include:
stemphrase(phrase, lowercase)
get keywords(num keywords, dbfilename, source, keywords-file, keywordsFromScratchBoolean)
print keywords(keyword_file, numkeywords, limit)
compare keywords(keyword filel, keywordfile2)



distance matrix . py

This file generates all the tags in the database for a set of terms in the term list. It then uses the
tags to generate the cosine, symmetric and asymmetric NGD distance matrices.
Methods in this file include:
generate tags(termlist, dbfilename, source)
generateDistanceMatrix(termlist, dbfilename, source, distanceMatrix file)
getDistanceMatrix(distanceMatrix file, distanceMatrix type)

score . py

This file scores taxonomies that are in the form of connection matrices
Methods in this file include:
score taxonomy average(connmat, dirdistmat, roots=[])
score taxonomy momentum(connmat, dirdistmat, roots=[])
score taxonomy weighted(connmat, dirdistmat, roots=[], weighting=0)

toy_data.py

This file generates a random taxonomy and a set of documents that attempt to 'realistically' reflect
the taxonomy. The documents are saved in an SQLite3 database. The idea here is to try to
reconstruct the taxonomy by feeding the toydata .py's SQLite3 database as input and
running one of the taxonomy generation algorithms.
This file has a dependency on HEYMANN .py
Methods included in this file are:
generateDatabase(numterms, dbfilename, outputFilename, kwPerDoc, docsPerTerm,
mainTermWeight = 0.4, num-suppTerms = 5, suppTermWeight = 0.1)

KRUSKALS.py
**** ** *** *

This file uses Kruskal's algorithm to generate taxonomy
Methods included in this file are:
create taxonomy kruskals(distance matrix, root=0)

DJP.py

This file uses Dijsktra-Jarnik-Prim's (DJP) algorithm to generate taxonomy.
Methods included in this file are:
create taxonomydjp(distancematrix, root=0)

EDMONDS . py
* ** ***** *

This file uses Edmond's algorithm to generate taxonomy.
Methods included in this file are:
create taxonomy edmonds(directional distmat, root=0)



HEYMANN . py
** **** *

This file generates taxonomy using Heymann algorithm. It also constructs Taxonomy objects,
which are made up of Tag objects where each Tag represents a term in the taxonomy.
Classes included in this file are:
Tag
- Attributes: name, dmIndex, similarityList, parent, centrality, distribution
- Methods within this class:

similarity (tag)

Taxonomy
- Attributes: root, tree, vertices, vertexDict
- Methods:
children (tagname)
ancestors (tag)
addVertex(parent, vertex)
addVertex (vertex)
addEdge(parent, vertex)
findMostSimilar(tag, goal="min", nonEligibleTags=set()
hasEdge(parent, child)
hasGrandchild(parent, child, maxlevel=2, level=O)
simpleDraw(root=[], indent)
draw (filename)
treeToMatrix(termlist)
compare(taxonomy2, scoringScheme, emphasis)

HeymannAlgorithm
- Attribute: tags
- Methods:
centralityOrder(centrality="closeness", kind="directed"),
run(taxThreshold, centrality, kind, goal, rerunOnRemaining)

Other methods included in this file are:
addWeight(val, level, depth, scoringScheme, emphasis)
matrixToTree(connmat, termlist)

GENETIC.py
******** *

This file generates taxonomy using Genetic algorithm.
Methods included in this file are:
find descendants(connmat, node)
random taxonomy(num nodes, root[])
crossover taxonomy(connmatl, connmat2, root=[])
mutate taxonomy(connmat)
create taxonomy genetic(directional distmat, dummy distmat=[], root=[], num iterations,
numchromosomes, num fittest, nummutations, numcrossovers, cost function,
initial chromosomes)

GUI.py

This file creates the graphic user interface for taxonomy generation.



Appendix D: The Graphic User Interface

A simple graphic user interface was developed using python's Tkinter package.

Tkinter is a Python binding to the Tk GUI toolkit. It is the standard Python interface to
the Tk GUI toolkit and a de-facto standard GUI in general, and is included with the standard
Windows install of Python. Tk is an open source, cross-platform widget toolkit - that is, a library
of basic elements for building a graphical user interface (GUI). Tkinter is implemented as a
Python wrapper around a complete Tcl interpreter embedded in the Python interpreter. Tkinter
calls are translated into Tcl commands which are fed to this embedded interpreter, thus making it
possible to mix Python and Tcl in a single application."

This section describes the graphic user interface (GUI) developed for taxonomy
generation. A screenshot of the interface is shown below and can be accessed by opening the
GUI.py file in the source code.

STEP 1. DATA S
Seed Term:

Database to Gather Documents From:

Number of Documents (max 4025):

STEP 2. TAXONOM
The input data set file can be f

Typical filenames are named seed-d

Data Set Filename:

Select Taxonomy Generation Algorithm to Use:

Select Distance Matrix Type to Use:

Select Centrality Metric to Use:

Number of Most Frequently Occurring Terms
from Data Set to Include in Taxonomy:

Have the corresponding distance matrices
for this data set and these terms been generated?

STEP 3. TAXON

ET CREATION
Compendex

Select One... Inspec

Create Data Set

Y GENERATION
ound in the data/db folder. DP
atabase [ex: energycompendex). Kruskals

Edmonds
loHeymannSelect One... nn

Select One... - Cosine
sNGD

Select One... aNGD

----- -- -- -

Betweenness

Select One... j Closeness

Create and Vie onomy
Yes
No

OMY VIEWER
The filename for the viewer can be found in the results/svg folder.

Typical filenames are named seed databasealgorithmjfigure (ex: energycompendex DJP figure)

Taxonomy SVG Filename:

Launch Taxonomy Viewer

Graphic User Interface for Taxonomy Generation Screenshot
The Choices for each dropdown box are indicated in the figure

As can be seen, the interface is divided into three distinct subsections.

" Taken from http://en.wikipedia.org/wiki/Tkinter



The top section labeled "Step 1: Data Set Creation" generates the data set containing
relevant bibliometric information from an online publication database. It has text fields for
entering the query term (seed term) to be entered into the online publication database's search
box, and the number of documents to be collected from the database. It also has a dropdown box
indicating which online publication database to collect information from. Currently, it is only
configured to work for Compendex and Inspec, both databases under the Engineering Village
umbrella, hence there is a limitation that only up to the first 4,025 relevant documents can be
gathered. Once the "Create Data Set" button is clicked, popup alert boxes alert the user of the
data collection process' progress. If the user fails to complete all the fields / parameters
necessary, a popup alert box will appear alerting the user of this failure as well.

Before gathering any bibliometric information using this GUI, it is recommended that the
user visit http://www.engineeringvillage.com first to ensure that there are a sufficient number of
documents that can be collected from Compendex / Inspec using the inputted seed term.
Sometimes, inputting a certain seed term will produce fewer than 4,025 resulting documents, in
which case the user cannot collect the bibliometric information for that many documents.

The middle section labeled "Step 2: Taxonomy Generation" generates the actual visual
representation of the taxonomy. It contains fields for entering the name of the data set file and
number of terms to be included in the taxonomy, as well as several dropdown boxes to choose
which exact taxonomy generation algorithm to use. Clicking on the "Create and View
Taxonomy" button generates the taxonomy based on the given parameters and shows the
taxonomy viewer in the taxonomy viewer. If there are any errors in the way the fields in this
subsection were completed, popup alert boxes will appear, notifying the user.

Finally, the lowest section labeled "Step 3: Taxonomy Viewer" loads a saved taxonomy
into a taxonomy viewer, which opens in a web browser window.



Appendix E: Tests for Engineering Village

As a further test, a backend data set composed of Engineering Village-collected

documents was used and the same tests as discussed in Chapter 5 (Results) were run to further

solidify the claims stated in Chapter 5 and 6. Note however, that the collected data set from

Engineering Village was small, containing only 23,048 documents gathered from Compendex,

which is a whole order of magnitude less than the Scopus data set of 153,537 documents. As

such, the results are not as accurate as the results generated and shown in Chapter 5, but are

nevertheless presented here anyway.

Evaluating the Consistency of Taxonomy Generation Algorithms

The first set of tests were aimed at evaluating the consistency of the taxonomy generation

algorithms. To do this, two sets of experiments were conducted to gauge the consistency, or

robustness against noise, of the different taxonomy generation algorithms. The first set of

experiments measured the consistency of the algorithms with slight perturbations in the backend,

while in the second set of experiments, the backend database was fixed and perturbations were

introduced to the collection of terms used to form the taxonomy.

Backend Data Set Consistency

For this test, the 23,048-entry bibliometric data set is randomly divided into five separate

15,000-entry subsets. The most popular terms from the entire Compendex "renewable energy"

bibliometric data set were then taken and each of the taxonomy generation algorithms were run,
keeping constant the term list and varying the backend data set between the five 15,000-entry

sets. The percentage similarity of direct links between each of the taxonomies generated was then

calculated between each of the 15,000-entry-backend data set taxonomies and the entire 23,048-

entry-backend data set taxonomy. The table below summarizes the mean of the percentage

similarities for each algorithm variant.

Backend Data Set Consistency Test Results

Algorithm 25 most 50 most 100 most Mean of
Variant frequently frequently frequently Percentage
Acronym occurring occurring occurring Similarities

terms used terms used terms used
as term list as term list as term list

D-CB 92.00% 94.40% 93.40% 93.27%

D-CC 100.00% 94.40% 93.40% 95.93%

D-SB 90.40% 81.20% 86.20% 85.93%

D-SC 90.40% 86.80% 89.40% 88.87%

K-CB 92.00% 94.40% 93.40% 93.27%
K-CC 100.00% 94.40% 93.40% 95.93%

K-SB 4.00% 1.20% 0.40% 1.87%

100



K-SC 4.00% 1.60% 1.00% 2.20%

E-AB 95.20% 93.20% 94.80% 94.40%

E-AC 95.20% 93.20% 94.80% 94.40%

H-AB 97.60% 98.40% 97.40% 97.80%
H-AC 97.60% 98.80% 99.20% 98.53%

H-CB 32.80% 58.80% 53.40% 48.33%

H-CC 98.40% 93.60% 94.20% 95.40%

H-SB 67.20% 53.20% 74.80% 65.07%

H-SC 91.20% 87.20% 89.00% 89.13%

Highlighted in the table above are the top performers for each test run. Based on these

results, the best performing algorithm variants (over 95% similarity on average) are:

DJP algorithm, cosine similarity, closeness centrality for root selection (D-CC)

Kruskals algorithm, cosine similarity, closeness centrality for root selection (K-CC)

Edmonds algorithm, asymmetric NGD similarity, betweenness centrality (E-AB)

Edmonds algorithm, asymmetric NGD similarity, closeness centrality (E-AC)

Heymann algorithm, asymmetric NGD similarity, betweenness centrality (H-AB)

Heymann algorithm, asymmetric NGD similarity, closeness centrality (H-AC) - top performer!

Heymann algorithm, cosine similarity, closeness centrality (H-CC)

Term Consistency

For this test, the backend was kept constant, and consisted of the entire 23,048-entry

Compendex "renewable energy" bibliometric data set. However, the term lists were varied by

taking the most popular terms in the data set and inserting "noise" terms, which are terms selected

randomly from the rest of the terms in the data set. We chose to insert an equal number of noise

terms to the terms already in the taxonomy. For instance, if a taxonomy was created using the 25

most frequently occurring terms, 25 noise terms were inserted into the taxonomy, then each

taxonomy generation algorithm was run using those 50 total terms, and percentage of the number

of links consistent in the 25-term noise-free and 50-term noisy taxonomies outputted by each

taxonomy generation algorithm was calculated. This test was repeated three times and the mean

of the three percentage link similarities for each algorithm was taken. The results are summarized

in the table on the next page.



Term Consistency Test Results

Algorithm 25 most 50 most 100 most Mean of
Variant frequently frequently frequently Percentage
Acronym occurring occurring occurring Similarities

terms, with 25 terms, with 50 terms, with
more noise more noise 100 more
terms terms noise terms

D-CB 91.03% 94.77% 91.09% 92.30%
D-CC 96.15% 94.77% 91.09% 94.00%

D-SB 60.26% 78.43% 88.12% 75.60%
D-SC 80.77% 82.35% 88.45% 83.86%

K-CB 91.03% 94.77% 91.09% 92.30%
K-CC 96.15% 94.77% 91.09% 94.00%

K-SB 0.00% 0.65% 0.00% 0.22%

K-SC 2.56% 0.00% 0.99% 1.18%
E-AB 96.15% 94.12% 94.72% 95.00%

E-AC 96.15% 94.12% 94.72% 95.00%

H-AB 94.87% 96.73% 96.37% 95.99%
H-AC 96.15% 96.08% 97.69% 96.64%
H-CB 43.59% 59.48% 43.89% 48.99%

H-CC 93.59% 88.89% 89.44% 90.64%

H-SB 29.49% 41.83% 57.43% 42.91%

H-SC 71.79% 67.32% 68.32% 69.14%

Highlighted in the table above are the top performers for each test run. The best

performing algorithm variants (over 90% similarity) based on our tests are:

DJP algorithm, cosine similarity, betweenness centrality for root selection (D-CB)

DJP algorithm, cosine similarity, closeness centrality for root selection (D-CC)

Kruskals algorithm, cosine similarity, betweenness centrality for root selection (K-CB)

Kruskals algorithm, cosine similarity, closeness centrality for root selection (K-CC)

Edmonds algorithm, asymmetric NGD similarity, betweenness centrality (E-AB)

Edmonds algorithm, asymmetric NGD similarity, closeness centrality (E-AC)

Heymann algorithm, asymmetric NGD similarity, betweenness centrality (H-AB)

Heymann algorithm, asymmetric NGD similarity, closeness centrality (H-AC) - top performer!

Heymann algorithm, cosine similarity, closeness centrality (H-CC)
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Consistency Test Summary

The consistency tests were run both by varying the backend data set and term lists to test

for taxonomy generation algorithm robustness versus noise. The table below repackages the

information from the previous two tables for easier viewing.

Consistency Test Summary

Algorithm Mean of Percentage Similarities for Mean of Percentage Similarities for
Variant Backend Data Set Consistency Test Term List Consistency Test
Acronym
D-CB 93.27% 92.30%

D-CC 95.93% 94.00%

D-SB 85.93% 75.60%

D-SC 88.87% 83.86%

K-CB 93.27% 92.30%

K-CC 95.93% 94.00%

K-SB 1.87% 0.22%

K-SC 2.20% 1.18%

E-AB 94.40% 95.00%

E-AC 94.40% 95.00%

H-AB 97.80% 95.99%

H-AC 98.53% 96.64%

H-CB 48.33% 48.99%

H-CC 95.40% 90.64%

H-SB 65.07% 42.91%

H-SC 89.13% 69.14%

The most consistent algorithms variants are D-CC, K-CC,
and the top performer was H-AC.

E-AB, E-AC, H-AB, H-AC and H-CC,

Evaluating Individual Taxonomies

Several tests were run which tested each of the taxonomy generation algorithms' outputs

individually by taking their outputs and scoring them using the different scoring metrics

described in the previous chapter. To recap, the scoring metrics used were (for more information

about each of the metrics mentioned above, see the Chapter 4 of this thesis):

Average

Momentum

Mean to Root

Mean to Grandparent

Linear

Exponential (0.5)
Exponential (0.75)
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Note that the scoring algorithms measure each taxonomy's conformity to its distance

matrix and as such are only useful when comparing taxonomies generated using the same

similarity metric since only one similarity metric characterizes a distance matrix. This means that

using a given scoring metric, it is impossible to compare all the taxonomy generation algorithms

to each other, however it is possible to compare all the taxonomy generation algorithms that used

the cosine similarity metric, symmetric NGD similarity metric, or asymmetric NGD similarity

metric to each other.

The top 100, 250 and 500 frequently occurring terms in the Compendex "renewable

energy" data set were used in conjunction with the entire bibliometric data set .The results are

presented in the following subsections.

Using the top 100 terms

The results summarized in the table below are from tests run using the cosine similarity

metric to generate the distance matrix. Highlighted are the best taxonomy generation algorithms

for each scoring metric.

Different Scoring Metrics used on Cosine Similarity based Taxonomy Generation
Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root
D-CB 0.336 28.877 26.848 28.877 28.759 29.492 27.994
D-CC 0.336 28.877 26.848 28.877 28.759 29.492 27.994
K-CB 0.336 28.877 26.848 28.877 28.759 29.492 27.994
K-CC 0.336 28.877 26.848 28.877 28.759 29.492 27.994
H-CB 0.301 26.116 24.958 26.116 26.357 26.874 25.767
H-CC 0.330 28.800 26.733 28.800 28.608 29.275 27.838

The results summarized in the table below are from tests run using the symmetric NGD

similarity metric to generate the distance matrix. Highlighted are the best taxonomy generation

algorithms for each scoring metric.

Different Scoring Metrics used on Symmetric NGD Similarity based Taxonomy Generation
Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root
D-SB 0.097 11.790 16.611 11.790 15.017 12.371 14.381

D-SC 0.097 11.744 15.758 11.744 14.330 12.197 13.916

K-SB 0.185 19.153 19.153 19.153 18.938 18.938 19.061
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K-SC 0.185 18.461 18.461 18.461 18.477 18.477 18.468
H-SB 0.104 12.965 15.722 12.965 14.279 13.201 14.580
H-SC 0.100 11.994 14.827 11.994 13.499 12.331 13.642

Finally, the results summarized in the table below are from tests run using the
asymmetric similarity metric to generate the distance matrix. Highlighted are the best taxonomy
generation algorithms for each scoring metric.

Different Scoring Metrics used on Asymmetric NGD Similarity based Taxonomy

Generation Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root

E-AB 0.019 2.614 2.617 2.614 2.372 2.371 2.511
E-AC 0.019 2.614 2.617 2.614 2.372 2.371 2.511
H-AB 0.019 2.626 2.631 2.626 2.386 2.381 2.524
H-AC 0.019 2.619 2.628 2.619 2.384 2.378 2.521

Using the top 250 terms

The results summarized in the table below are from tests run using the cosine similarity
metric to generate the distance matrix. Highlighted are the best taxonomy generation algorithms
for each scoring metric.

Different Scoring Metrics used on Cosine Similarity based Taxonomy Generation
Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root
D-CB 0.339 69.153 54.866 69.153 61.843 68.556 60.878
D-CC 0.339 69.153 54.866 69.153 61.843 68.556 60.878
K-CB 0.339 69.153 54.866 69.153 61.843 68.556 60.878
K-CC 0.339 69.153 54.866 69.153 61.843 68.556 60.878
H-CB 0.299 59.077 51.515 59.077 57.388 60.722 55.417
H-CC 0.332 67.705 55.657 67.705 62.819 67.629 60.922
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The results summarized in the table below are from tests run using the symmetric NGD

similarity metric to generate the distance matrix. Highlighted are the best taxonomy generation

algorithms for each scoring metric.

Different Scoring Metrics used on Symmetric NGD Similarity based Taxonomy Generation
Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root
D-SB 0.103 31.854 68.249 31.854 56.021 35.180 44.958

D-SC 0.103 31.854 52.146 31.854 48.131 35.183 43.486

K-SB 0.234 73.524 73.524 73.524 68.502 68.502 71.372

K-SC 0.234 57.826 57.826 57.826 58.037 58.037 57.916

H-SB 0.111 35.591 54.145 35.591 45.898 38.444 46.156

H-SC 0.108 33.361 50.911 33.361 45.807 36.094 43.526

Finally, the results summarized in the table below are from tests run using the

asymmetric NGD similarity metric to generate the distance matrix. Highlighted are the best

taxonomy generation algorithms for each scoring metric.

Different Scoring Metrics used on Asymmetric NGD Similarity based Taxonomy
Generation Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root
E-AB 0.029 10.136 11.021 10.136 9.647 9.529 10.363
E-AC 0.029 10.136 11.021 10.136 9.647 9.529 10.363
H-AB 0.029 10.190 11.051 10.190 9.681 9.566 10.397

H-AC 0.029 10.174 11.037 10.174 9.663 9.545 10.380

Using the top 500 terms

The results summarized in the table below are from tests run using the cosine similarity

metric to generate the distance matrix. Highlighted are the best taxonomy generation algorithms

for each scoring metric.

Different Scoring Metrics used on Cosine Similarity based Taxonomy Generation
Algorithm Variants

Algorithm Average Momentum Mean
Variant To
Acronym Root
D-CB 0.351 139.653 89.393
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D-CC 0.351 139.653 89.393 139.653 105.257 135.146 111.742

K-CB 0.351 139.653 89.397 139.653 105.262 135.147 111.745

K-CC 0.351 139.653 89.397 139.653 105.262 135.147 111.745

H-CB 0.304 118.458 94.774 118.458 109.421 119.117 105.292

H-CC 0.335 135.360 102.326 135.360 119.557 132.933 116.100

The results summarized in the table below are from tests run using the symmetric NGD

similarity metric to generate the distance matrix. Highlighted are the best taxonomy generation

algorithms for each scoring metric.

Different Scoring Metrics used on Symmetric NGD Similarity based Taxonomy Generation
Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root
D-SB 0.102 64.531 174.648 64.531 145.793 74.442 103.011

D-SC 0.102 64.013 121.616 64.013 109.554 73.119 95.333
K-SB 0.259 154.430 154.430 154.430 146.130 146.130 150.873

K-SC 0.259 134.702 134.702 134.702 132.978 132.978 133.963

H-SB 0.110 73.751 124.443 73.751 102.357 82.680 103.551

H-SC 0.106 67.310 104.232 67.310 92.437 73.680 89.190

Finally, the results summarized in the table below are from tests run using the

asymmetric NGD similarity metric to generate the distance matrix. Highlighted are the best

taxonomy generation algorithms for each scoring metric.

Different Scoring Metrics used on Asymmetric NGD Similarity based Taxonomy
Generation Algorithm Variants

Algorithm Average Momentum Mean Mean To Linear Exponential Exponential
Variant To Grandparent (0.5) (0.75)
Acronym Root
E-AB 0.026 19.913 22.429 19.913 19.059 18.690 20.778
E-AC 0.026 19.913 22.429 19.913 19.059 18.690 20.778

H-AB 0.026 19.825 22.374 19.825 19.018 18.633 20.716
H-AC 0.026 19.879 22.376 19.879 19.016 18.636 20.719
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Evaluating Individual Taxonomies Analysis

The consistently top-scoring algorithms among the 100, 250 and 500 term list tests are
summarized in the table below. The shaded cells represent the consistently top-scoring algorithm
variants for each of the scoring metrics.

Consistently Top Scoring Algorithm Variants

Based on the data in the table above, the algorithm variant that performed the best is:

DJP algorithm, symmetric NGD similarity, cosine centrality for root selection (D-SC)

The top performing algorithm variants in the consistency tests and the individual
taxonomy tests using the Engineering Village backend data set are consistent with the results
presented in Chapter 5 using the Scopus backend data set. The top performing algorithm variants
using the Scopus backend also performed well using the Engineering Village backend.
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