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Abstract

Parallelism coupled with voltage scaling is an effective approach to achieve high processing
performance with low power consumption. This thesis presents parallel architectures and
algorithms designed to deliver the power and performance required for current and next
generation video coding. Coding efficiency, area cost and scalability are also addressed.

First, a low power video decoder is presented for the current state-of-the-art video coding
standard H.264/AVC. Parallel architectures are used along with voltage scaling to deliver
high definition (HD) decoding at low power levels. Additional architectural optimizations
such as reducing memory accesses and multiple frequency/voltage domains are also described.
An H.264/AVC Baseline decoder test chip was fabricated in 65-nm CMOS. It can operate
at 0.7 V for HD (720p, 30 fps) video decoding and with a measured power of 1.8 mW. The
highly scalable decoder can tradeoff power and performance across >100x range.

Second, this thesis demonstrates how serial algorithms, such as Context-based Adaptive
Binary Arithmetic Coding (CABAC), can be redesigned for parallel architectures to enable
high throughput with low coding efficiency cost. A parallel algorithm called the Massively
Parallel CABAC (MP-CABAC) is presented that uses syntax element partitions and in-
terleaved entropy slices to achieve better throughput-coding efficiency and throughput-area
tradeoffs than H.264/AVC. The parallel algorithm also improves scalability by providing a
third dimension to tradeoff coding efficiency for power and performance.

Finally, joint algorithm-architecture optimizations are used to increase performance and
reduce area with almost no coding penalty. The MP-CABAC is mapped to a highly parallel
architecture with 80 parallel engines, which together delivers >10x higher throughput than
existing H.264/AVC CABAC implementations. A MP-CABAC test chip was fabricated in
65-nm CMOS to demonstrate the power-performance-coding efficiency tradeoff.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
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Chapter 1

Introduction

Four decades of semiconductor process scaling driven by Moore’s law [1] has enabled the
integration of more than a billion transistors on a single chip [2]. A key challenge is how
to link this technology to the market. In other words, how can we best use these billions
of transistors to meet the needs of tomorrow? Parallelism is an effective method of leverag-
ing these transistors to deliver the power and performance required for current and future
applications. Given the growing pervasiveness of multimedia in recent years, one important
application that merits study is next generation video coding (i.e. video compression).
Video codecs (i.e. coder and decoder), used to compress and decompress video data, can
be loosely classified into two categories, low power and high performance, both of which can
benefit from parallelism. In this thesis, we will show that by exposing parallelism in both
architecture and algorithm design we can meet these power and performance requirements
and establish efficient tradeoffs across these metrics. Furthermore, we will demonstrate how
accounting for architecture implementation during algorithm design can also result in low
area and complexity cost. This chapter begins by establishing the requirements for next
generation video coding in Section 1.1. Section 1.2 describes how parallel architectures
and algorithms can be used to increase throughput to meet performance requirements.!

Section 1.3 discusses how this increased throughput can be translated to power savings

1Tn this thesis, throughput will refer to operations per cycle, while performance will refer to operations
per second.
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using voltage scaling. Section 1.4 motivates the importance of scalability in video decoding.

1.1 Next Generation Video Coding

Video anytime, anywhere. In recent years, video has become widely available through many
different sources, from broadcast to the web, across wired and wireless channels. Accordingly,
devices that can receive and playback video have expanded beyond television sets to include
personal computers and cellphones. In fact, the use of video is becoming ever more pervasive
on battery-operated handheld devices such as camera phones, digital still cameras, personal
media players, etc. Annual shipment of such devices already exceeds a hundred million units
and continues to grow [3].

The amount of video content available on-line has grown substantially thanks to websites
like YouTube [4] and Hulu [5}. As WiFi becomes increasingly ubiquitous along with 3G
cellular networks and upcoming 4G LTE, portable devices will be increasingly used to access
video content. Furthermore, there is a strong demand for these devices to support higher
resolutions up to high definition (HD) [6]; HD implies 720p resolution (1280x720 pixels
per frame) and beyond, which is well over twice as many pixels per frame than standard
definition (SD). The battery operated iPad, released by Apple in 2010, can already support
up to 720p video decoding, and YouTube and Hulu have recently begun offering video content
in HD 720p. However, the iPad display resolution is only XGA (1024x768) [7]. New display
technologies such as the pico projector [8], which enable display sizes to extend beyond the
limited form factor of handheld devices, will further drive the demand for portable HD video
in the future.

Video coding is required to overcome the limitations and costs of transmission bandwidth
and data storage. The advancement of video coding technology has played a key role in
enabling video anytime, anywhere. Traditionally, the focus of video codec design has been
to improve coding efficiency (i.e. higher video fidelity with fewer bits). However, for mobile
devices, power consumption is a key consideration and must be minimized to reduce the

device’s size, weight and cost. Therefore, the need to support portable HD video makes
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power efficiency a key requirement in next generation video codec design.

From a power perspective, HD video on battery-operated devices has several implications
for the video codec. First, the algorithms that are used in the codec need to provide high
coding efficiency to substantially reduce the size of the video streams. This implies the use
of state-of-the-art video coding standards such as H.264/AVC. The high coding efficiency
usually comes at a cost of increased complexity in the algorithm. The complexity is typically
evaluated based on the number of operations and memory accesses. For instance, while
H.264/AVC has a 50% improvement in coding efficiency as compared to MPEG-2 (currently
used for high definition television (HDTV)), it increases complexity by 4x at the decoder
[9]. This increase in complexity translates into increase in power consumption which is

problematic for battery-operated devices.

Second, HD videos have high resolution, which implies that many pixels need to be pro-
cessed per second (e.g. 27.6 Mpixels/s for 720p at 30 frames per second (fps)). For real-time
compression and playback, the codec must operate at a speed that can meet the perfor-
mance requirement. Consequently, not only does HD video coding require more operations
per frame, but each operation must be done at a faster rate, both of which pose a significant

challenge when there is a limitation on power as in the case of battery-operated devices.

Video codec performance challenges also exist for non-battery powered devices. Displays
reaching cinema quality resolutions of 4kx2k (4096x2160 pixels per frame - 25.6x more pixels
than SD) have been showcased at the Consumer Electronics Show in recent years and will
soon be coming to the market [10-12]. Furthermore, frame rates up to 120 fps are targeted
for high action sports. Thus, even in devices without stringent power constraints, such as
set-top boxes, next generation video codecs will face challenges in achieving the performance
required to deliver 4kx2k resolution at frame rates up to 120 fps. Researchers have already
begun looking into developing 8kx4k (7680x4320 pixels per frame) video cameras [13]. In
the future, portables devices with pico projectors may also be required to support these high

resolutions and frame rates.

In summary, next generation video codecs will support higher resolution and frame rates
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which require high processing performance. At the same time, many of these codecs will
be located on battery-operated devices which require low power consumption. High coding
efficiency will also be required to reduce storage and transmission costs. Finally, scalability
is also desired given the many different use cases that exist for video coding. This thesis will

show that these requirements can be addressed through the effective use of parallelism.

1.2 Enabling Parallelism

Increasing performance can be achieved by increasing throughput (i.e. number of operations
per cycle) and/or operating frequency (i.e. number of cycles per second). However, high
operating frequency comes at the cost of power consumption and heat dissipation. Further-
more, the maximum frequency is limited by the critical path of the hardware, and therefore
cannot always be increased to meet a desired performance. Parallelism provides a good
alternative by enabling more concurrent operations to increase processing throughput.

Parallelism can be enabled at various stages of the design. During architecture definition,
hardware modules are replicated so that they can operate at the same time. The granularity
of the parallelism can vary. For instance, the entire processor core is replicated in multi-
and many-core solutions. Today’s processors can contain two to four cores, while road maps
point to hundreds and thousands of cores per chip in the future [14]. Graphics Processing
Units (GPUs) are another variant of this form of parallelism. For hardwired solutions (i.e.
application specific integrated circuits (ASIC)), parallelism is often exposed at the micro-
architecture level; this involves replicating logic (e.g. adders, multipliers) in datapaths. To
reduce area cost, parallel architectures should be mostly applied to the bottlenecks of the
design (Fig. 1-1b). Furthermore, when selecting datapaths to parallelize, it is important
to consider the impact on the control. In this thesis, we will demonstrate how parallel
architectures can be used to increase the throughput of an H.264/AVC video decoder ASIC
with little cost to area and control complexity.

However, replicating hardware is not enough to guarantee improved throughput. The

throughput increase (speed up) that can be achieved with parallelism is limited by the
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Figure 1-1: Relationship between throughput, parallelism and area cost. Increasing the
throughput improvement per degree of parallelism (Fig 1-1a) also reduces the area cost
(Fig. 1-1b).

algorithm. Amdahl’s law states that the speed up of a program using multiple processors in
parallel computing is limited by the sequential portion of the program [15] (Fig. 1-1a). The
speed up limit is shown in equation 1.1, where S is the fraction of serial operations, (1 —S)

is the fraction of parallel operations and N is the number of processors,

Speed up = %LNS) (1.1)
Therefore, algorithms must also be designed with reduced serial operations (S) such that
they can fully utilize the available parallel hardware (i.e. ” Amdahl-friendly” algorithms). For
instance, the entropy coding in video coding is inherently serial and often poses a challenge
for parallel processing. Consequently, these modules typically need to operate at very high
frequencies in order to achieve the performance necessary for HD video. In H.264/AVC,
two forms of entropy coding are used: Context-based Adaptive Variable Length Coding
(CAVLC) and Context-based Adaptive Binary Arithmetic Coding (CABAC). CABAC has
better coding efficiency, but at a cost of higher complexity and increased serial dependencies.

CABAC is a key bottleneck in the H.264/AVC decoder. This thesis presents an entropy
coding algorithm called the Massively Parallel CABAC (MP-CABAC) that was designed

25



with parallelization in mind and thus can easily be mapped to parallel hardware in an
effective manner. Furthermore, this parallel algorithm offers an additional dimension of
scalability, and enables a tradeoff between throughput and coding efficiency which will be
discussed in Séction 1.4. CABAC parallelism eliminates a key bottleneck and enables a fully

parallel video decoder.

1.3 Voltage Scaling

Parallelism can be combined with voltage scaling to achieve an efficient power-performance
tradeoff [16]. In traditional digital CMOS circuits, power consumption is composed of a

dynamic and a leakage component as shown in equation 1.2.
Ptotal = den + Pleak (12)

Dynamic energy is consumed whenever a capacitor is charged and is proportional to the
capacitance that is switched and the supply voltage to which the capacitor is charged.?
The switching activity describes the frequency with which the capacitor is charged and is
the product of the probability that the capacitor will be charged in a cycle (@) and the
number of cycles per second (i.e. the operating frequency (f)). Thus, the dynamic power
consumption (Py,) is proportional to the switching activity (a X f), capacitance (Cz), and

supply voltage (Vpp):
Pyn=ax fxCpx Vi, (1.3)

Leakage power consumption is the power that is consumed in the absence of switching
activity. The leakage power is due to leakage currents through the channel, substrate and gate
[17]. These leakage currents scale with supply voltage (Vpp). For instance, the subthreshold

current through the channel that dominates the leakage power reduces exponentially with

2We assume that the capacitor is charged to the supply voltage (i.e. full rail switching).
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| Vpp as shown in equation 1.4, where Vgs (< Vpp) is the gate-source voltage, Vpg (equal to
Vpp) is the drain-source voltage, I, is from the leakage current model, V; is the threshold
voltage, n is the sub-threshold slope factor,® 7 is the drain induced barrier lowering factor,

and V;, is the thermal voltage.

(Vgs=Ve+nVpg) Y
Lo = Le WV (1—¢ T%Zi) (1.4)

The leakage power consumption (Pjeqr) is proportional to the leakage current (Ijeqx) and the

supply voltage from which the current is drawn (Vpp).
Pleak = Ileak X VDD ‘ (15)

Based on the above relationships, the power consumption can be reduced by lowering the
supply voltage (Fig. 1-2a). Voltage scaling on the order of 0.1 to 0.2 V below nominal
supply is used in commercial mobile processors as a means to reduce power consumption [19)].
Aggressive voltage scaling well below half the nominal supply, and even below the threshold
voltage of the devices, has been demonstrated in various test chips. Some examples include
a subthreshold FFT processor that can operate down to 180-mV, a tenth of the nominal
supply [20], a subthreshold microcontroller with on-chip SRAM and integrated DC-DC power
converter that can operate down to 300-mV [21], and subthreshold sensor processors that
can operate down to 200-mV [22,23].

Reducing the supply voltage reduces the speed of the circuit. Specifically, decreasing
the supply voltage reduces the switching current (Ip), which increases the time it takes
(tp) to charge a capacitor. The propagation delay of a characteristic inverter with output

capacitance Cy, is shown in equation 1.6, where x is the delay fitting parameter.

_ K,CL X VDD

ty=""F (1.6)

The behavior of the switching current relative to supply voltage (Vpp), and consequently

3n is also known as the sub-threshold swing parameter in the BSIM4 model [18]
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Figure 1-2: Relationship between voltage, power and delay. Parallelism can be used to
mitigate delay to enable lower voltage and consequently lower power consumption.

the delay ¢,, changes depending on whether Vpp is above or below the threshold voltage
(V;) of the device. When Vpp is above V,, the delay increases approximately linearly with
decreasing Vpp. When Vpp is below V; (subthreshold), the delay to increases exponentially
with decreasing Vpp. Fig. 1-2b illustrates the relationship between delay and supply voltage.

In performance constrained applications, parallelism can be used to mitigate the increase
in delay by enabling more operations to be done concurrently (i.e. increasing the throughput).
As a result, the same overall performance can be achieved at a lower supply voltage and
consequently lower power (Fig. 1-2). An example of this approach can be found in [24],
where 620 parallel correlators are used to deliver 100-Mbps ultra-wideband demodulation at
400-mV.

The power consumption can be further reduced by over-designing for throughput, and
then scaling it back to the target performance with voltage scaling. In this thesis, we will
demonstrate how parallel architectures can improve the power-performance tradeoff for an

H.264/AVC video decoder.

1.4 Scalability

In video decoding, the frame rate and resolution of the playback video dictates the perfor-

mance requirement of the video decoder hardware. Over the past years, video has become
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Figure 1-3: Performance requirements for various applications based on frame rate and
resolution [25]. Yellow dashed line shows limit of H.264/AVC standard. The next generation
standard "H.265’ could potentially reach above this line.

increasingly ubiquitous due to the reduction in storage and transmission costs. The num-
ber of different types of video content has been growing rapidly ranging from professional
cinema to news reports to, most recently, user-generated content. In addition, the numer-
ous modes of transmission of the video have also expanded from broadcast and playback
of local storage material (e.g. DVD), to streaming across the internet and cellular network.
Both of these factors cause the frame rate and resolution of today’s video content to vary
widely. Fig. 1-3 shows the resolutions and frame rates for different applications and their
corresponding performance requirement (in terms of pixels/s). For instance, high definition
(e.g. T20HD(1280x720) or 1080HD(1920x1080)) is used for playback movies and broadcast
television on a high resolution monitor. A higher frame rate (e.g. 60 or 120 fps) is used for
high-action sports. Video conferencing and streaming media can be done at lower resolutions
(e.g. CIF(352x288) or VGA(640x480)) and frame rates (e.g. 15 or 30 fps) for display on a
phone.

Accordingly, H.264/AVC [26] was designed to support a wide range of resolutions and
frame rates as seen in Fig. 1-3. H.264/AVC supports videos from QCIF (176x144) at 15
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fps [380 kpixels/s] up to 4kx2k (4096x2160) at 30 fps [265 Mpixels/s]; the performance
requirement for 4kx2k at 30 fps is 698x greater than QCIF at 15 fps. It is likely that in
the next generation standard [27,28], both the lower and upper bound of this range will be
increased, supporting QVGA (320x240) at 24 fps [1.92 Mpixels/s] up to 4kx2k (4096x2160)
at 120 fps [1 Gpixels/s|, which covers a performance range of more than 500x. A highly
scalable video decoder is needed to support the wide variety of encoded sequences.

The use of video playback on handheld battery-operated devices is increasingly common.
It is expected that a video decoder on a cellphone can playback different types of video
under various use cases. For instance, it should be able to playback low to medium res-
olution/frame rate videos locally on the phone that perhaps were transmitted over a low
bandwidth network; with the growing popularity of video capture on a cellphone, it may
also be convenient to be able to connect the phone to a monitor, or use a pico projector
on the phone, and playback high resolution and fast frame rate sequences. Having a single
video decoder ASIC that is scalable and can be used for all these applications is convenient
and cost effective. Consequently, it is important to minimize and scale the power across
this wide range. Ultra-dynamic voltage scaling (UDVS), which involves voltage scaling from
nominal down to subthreshold, is an effective method to support the more than 100x work-
load variation due to video content in an energy efficient manner [29]. In this thesis, we will
describe how exposing parallelism in both the architecture and algorithm can improve the
power-performance tradeoff (Fig. 1-4a) for video decoding. Furthermore, the parallel algo-
rithm enables a third dimension of scalability with coding efficiency as shown in Fig. 1-4b.
This approach can also be applied to the video encoding hardware where rather than having
the video dictate the performance requirement for video decoding, the user has the ability to

select the power-performance-coding efficiency point depending on the desired application.

1.5 Thesis Contributions

This thesis describes the use of parallel architectures and algorithms to meet the low power,

high performance, and high coding efficiency requirements outlined in Section 1.1 for next
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Figure 1-4: Tradeoff enabled with parallel architectures and algorithms.

generation video coding. It also explores how efficient tradeoffs can be established across
these metrics. In addition, while architecture and algorithms were optimized separately in
previous work, this thesis demonstrates how architectures and algorithms can be jointly
optimized to deliver improved power and performance at reduced area and coding efficiency
cost.

The main contributions in this thesis include

1. Parallel Architectures. In Chapter 2, this thesis exposes parallel architectures
within the constraints of the H.264/AVC algorithm to reduce the power of an HD
video decoder. Other architecture optimizations such as pipelining with first-in-first-
out queues (FIFOs), multiple voltage/frequency domains, and voltage-scalable de-
sign are also explored. Caching strategies are used to reduce off-chip memory band-
width. The proposed techniques are demonstrated through the implementation of an

H.264/AVC video decoder test chip in 65-nm CMOS [30].

Three graduate students were involved in the design of the H.264/AVC video de-
coder. The main architects of the decoder were myself and Daniel Finchelstein. The
deblocking filter (DB) unit was my own design, while the inverse transform (IT),

intra-prediction (INTRA) and entropy decoding (ED) units were designed by Daniel
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Finchelstein. The motion compensation (MC) unit and the system level architecture

were a joint effort. The low voltage SRAMs were designed by Mahmut Ersin Sinangil.

. Parallel Algorithms. Entropy coding, in particular, Context-based Adaptive Bi-
nary Arithmetic Coding (CABAC), is known to be a highly serial process and a key
throughput bottleneck in video coding. In Chapter 3, this thesis presents a Massively
Parallel CABAC (MP-CABAC) algorithm to enable real-time low power HD video
coding. It leverages a combination of several forms of parallelism [31-33] to enable
better coding efficiency-throughput tradeoff and area cost-throughput tradeoff than
H.264/AVC. The MP-CABAC is evaluated under common conditions [34] recom-
mended by the Video Coding Experts Group (VCEG) standards body to demonstrate
its throughput improvement and coding penalty reduction compared with H.264/AVC
CABAC as well as other parallel CABAC approaches. The MP-CABAC has been pro-
posed to VCEG for the next generation video coding standard "H.265 [35].

Daniel Finchelstein was involved in the initial conception of interleaved entropy slices
(IES) discussed in Section 3.3.3; he integrated the IES approach into the RTL of our
H.264/AVC video decoder (i.e. IES for CAVLC) to demonstrate multi-core process-
ing, and performed simulations to evaluate its impact on power and performance at

the decoder system level.

. Joint Algorithm/Architecture Optimizations. In Chapter 4, this thesis de-
scribes how the MP-CABAC algorithm is mapped to a highly parallel architecture
which can support up to 4kx2k. Various architectural optimizations are performed
to reduce its critical path delay. Joint algorithm/architecture optimizations enable
additional critical path and area reduction with zero and negligible cost in coding
efficiency, respectively. Configurability and clock gating strategies are applied to en-

able scalability with low power cost. The tradeoffs between power, performance and
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coding efficiency of the MP-CABAC are demonstrated on a highly scalable test chip
in 65-nm CMOS in Chapter 5.

Details on all video sequences used in this thesis can be found in Appendix E.
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Chapter 2

Low Power Architecture for

H.264/AVC Video Decoder

This chapter describes the design of an H.264/AVC video decoder that uses parallel architec-
tures to enable low voltage operation for reduced power consumption [36]. In order to achieve
the performance required for real-time HD video decoding (i.e. maintain a target frame rate),
architectural optimizations such as parallelism and pipelining were used to reduce the num-
ber of cycles required per frame and enable low voltage operation. Additional power savings
were achieved by dividing the decoder into multiple voltage/frequency domains and applying
dynamic voltage and frequency scaling (DVFS) on each domain to efficiently adapt to the

varying workloads.

2.1 Overview of Video Coding Standard H.264/AVC

Video compression is achieved by removing redundant information in the video sequence.
In May 2003, ISO/IEC Moving Picture Experts Group (MPEG) and the ITU-T VCEG
introduced a video coding standard called H.264/AVC. It is the latest standard in a series of
video coding standards (MPEG-1, MPEG-2, MPEG-4) and (H.261, H.263) released by each

group respectively. Fig. 2-1 shows the video encoding and decoding structure.
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2.1.1 Partitioning the Video Sequence

Each pixel in the video stream is composed of one luma and two chroma components. This
format is often referred to as YUV or YCbCr. Luma represents the brightness of the image,
while chroma provides the color information. These three components can be transformed
into Red Green Blue (RGB) components that are used for display. Since the human visual
system is less sensitive to color than brightness, the chroma components can be down-sampled
by 2 in both the vertical and horizontal direction; this is known as the 4:2:0 scheme.

In H.264/AVC, each frame of the video can be broken into several slices. Slices are
self-contained such that they can be decoded without knowledge of other slices (enables
resynchronization). The slices are then divided into blocks of 16x16 pixels called macroblocks,

which can then be further divided into blocks of 8x16, 16x8, 8x8, 4x8, 8x4 down to 4x4 pixels.

2.1.2 Prediction

Video coding algorithms exploit temporal and spatial redundancy in order to reduce the size
of the video stream (Fig. 2-2). Motion compensation (also known as inter-prediction) exploits
temporal redundancy by predicting a macroblock in the current frame from previous (and/or
future) frames. At the encoder, motion estimation is performed to determine the vertical and
horizontal translation (motion vector) of a given macroblock, or block, relative to a previous
frame. The previous frames are stored in a frame buffer. The intra-prediction exploits spatial
redundancy by predicting a macroblock in the current frame from surrounding pixels in the
same frame. The encoder must decide which surrounding pixels to use and the prediction
direction (e.g. vertical, horizontal, diagonal, etc.); there are 9 possible prediction modes
(directions) in H.264/AVC [26].

Each frame can be classified as an I-frame for intra-prediction, P-frame for motion com-
pensation (with only previous frames), and B-frame for bi-directional motion compensation
(with both previous and future frames). While I frames contain only intra-predicted mac-
roblocks, P-frames can contain both intra- and inter- predicted macroblocks, and B-frames

can contain intra-, inter-, and bi-directional inter-predicted macroblocks. Intra-prediction
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Figure 2-2: Spatial and temporal prediction.

typically has poorer coding efficiency than motion compensation.

Rather than transmitting a 16x16 block of pixels for every macroblock, motion vectors
and the index of the previous frame (also known as reference index) are sent for the motion
compensated macroblocks, and the intra-prediction modes are sent for the intra-predicted
macroblocks. Using this information, the decoder can generate the macroblock prediction.

At the encoder, the coder control determines whether inter- or intra- prediction is used

by performing rate-distortion optimization.

2.1.3 Transform and Quani;ization

Note that the error of the predicted macroblock relative to the original macroblock, called
the residual, must also be transmitted. The residual can be compressed by transforming it
into a different domain (e.g. frequency domain) that has good energy compaction properties,
where the majority of the energy lies in a few coefficients. These coefficients are quantized
to provide the desired encoded bit-rate. Quantization results in lossy video compression.
Following quantization, the number of non-zero coefficients is much lower than the number
of pixels, which means that fewer bits need to be transmitted to represent the residual.
Fig. 2-3 illustrates this process. At the decoder, an inverse transform is performed on the
coefficients to recover the quantized residual, which is then added to the prediction to form

a reconstructed macroblock.
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At the encoder, the coder control selects the desired amount of quantization for a target

bit-rate using rate-control.

2.1.4 Entropy Coding

The data to be transmitted (e.g. motion vectors, reference indexes, intra-prediction modes,
residual coefficients) is referred to as the syntax elements. The syntax elements undergo
entropy coding, which leverages their probabilistic distribution to deliver additional loss-
less compression. The two forms of entropy coding used in H.264/AVC are Context-based
Adaptive Variable Length Coding (CAVLC) and Context-based Adaptive Binary Arithmetic
Coding (CABAC). CABAC is highly adaptive which enables it to provide better coding effi-
ciency at the cost of increased complexity. CABAC will be discussed in detail in Chapter 3.

2.1.5 Deblocking

Deblocking is necessary to remove blocking artifacts that can arise between the reconstructed
blocks as a result of the lossy block-based processing done by the H.264/AVC encoder.
The challenge for the deblocking filter is that it needs to remove blocking artifacts due to
quantization, while retaining true edges in the video. Consequently, an adaptive filter is
used and the strength of the filter across boundary edges depends on macroblock and pixel

information.
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2.1.6 GOP and Prediction Structure

A series of frames (pictures) are grouped together and referred to as a group of pictures
(GOP). The prediction structure indicates the type of prediction used between the frames
in a GOP as shown in Fig. 2-4. For instance, H.264/AVC uses

e Ionly: Only I-frames.

e IPPP: An I-frame followed by a series of P-frames. The first P-frame is predicted
from the I-frame, while the subsequent P-frames are predicted by the previous P-frame
within the GOP.

e IBBP: An I-frame followed by a series of B- and P-frames. The P-frame is predicted

from the I-frame. The B-frames are predicted from the I- and P-frame.

A GOP always begins with an I-frame. The GOP size refers to the number of frames in
the GOP.

2.1.7 Profiles and Levels

H.264/AVC has various profiles and levels settings so that it can cover a wide range of
applications and performance needs. The profiles (Baseline, Main, High, and Extended)
define a set of coding tools: Baseline uses the simplest tools with the lowest coding efﬁciency
and Extended uses the most complex tools with the highest coding efficiency. Currently,
consumer products have been using the Baseline and High profiles. The levels describe the

resolution and frame rate of the video that can be supported.

In this chapter, the focus will be on the design of an H.264/AVC Baseline decoder sup-
porting up to level 3.2, which includes 720p (1280x720 pixels) decoding at 30 fps. The
CABAC engine used in the H.264/AVC High Profile will be investigated in the latter half of
the thesis.
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Figure 2-4: Different group of pictures (GOP) structures.
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2.2 Related Work

State-of-the-art ASIC H.264/AVC decoders [38-41] have used various micro-architecture
techniques to reduce the number of operations, which lowers the operating frequency and
consequently power consumption. In this work, additional architecture optimizations are
introduced that enable aggressive voltage scaling to lower the energy per operation, which
further reduces the power consumption of HD decoding [36].

In [40,41], the cycle count required for motion compensation and deblocking filtering
is reduced by optimizing the processing order to eliminate redundant memory accesses. In
this work, the cycle count is further reduced by identifying inputs to these units, as well as
others, that can be processed in parallel. A hybrid 4x4-block/macroblock pipeline scheme
is adopted in [38-41]. In this work, a 4x4 block pipelining scheme with optimally sized
FIFOs between stages is used to adapt for workload variability and consequently increase
the decoder throughput. Finally, [38-41] as well as this work reduce external (off-chip) mem-
ory bandwidth by maximizing data reuse and exploiting various different caching schemes.
Internal memories consume a significant portion of the core power [40]. In this work, the
caches are implemented with custom voltage scalable SRAMs to further minimize memory

access power.

2.3 Decoder Pipeline Architecture

We will now discuss our low power H.264/AVC Baseline decoder. The top-level architecture
of the decoder is shown in Fig. 2-5. At the system level of the decoder, FIFOs of varying
depths connect the major processing units: entropy decoding (ED),! inverse transform (IT),
motion compensation (MC), intra-prediction (INTRA), deblocking filter (DB), memory
controller (MEM) and frame buffer (FB). The pipelined architecture allows the decoder
to process several 4x4 blocks of pixels simultaneously, requiring fewer cycles to decode each

frame.

INote that in this section, CAVLC is used for ED as a Baseline profile H.264/AVC decoder was imple-
mented. The next section will discuss the case where CABAC is used for ED in High profile.
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Figure 2-5: H.264/AVC decoder architecture.

The number of cycles required to process each 4x4 block varies for each unit as shown in
Table 2.1. The table describes the pipeline performance for decoding P-frames (temporal
prediction). Most of the optimization efforts were focused on P-frame performance, since
they occur more frequently than I-frames (spatial prediction) in highly compressed videos.

The luma and chroma components have separate pipelines that share minimal hardware
and are mostly decoupled from each other. In most cases, the luma and chroma components
of each 4x4 block are processed at the same time which enables further cycle count reduction.
However, the two pipelines do have dependencies on each other, which sometimes prevents
them from running at the same time. For example, both pipelines use the same ED at
the start, since this operation is inherently serial and produces syntax elements for both
pipelines. To reduce hardware costs, the luma and chroma pipelines also share the IT unit,
since this unit has a low cycle count per block relative to the rest of the units as shown in

Table 2.1.

The workload of each unit varies depending on the prediction mode as well as the content

of the video sequence. To adapt for the workload variation of each unit, FIFOs were inserted

43



Table 2.1: Cycles per 4x4 block for each unit in P-frame pipeline of Fig. 2-5 assuming no
stalling. The values were measured for 300 frames of the mobcal sequence. Each 4x4 block
include a single 4x4 luma block and two 2x2 chroma blocks. [ ] is performance after Section
2.4 optimizations.

Pipeline Min Max Avg
Unit Cycles | Cycles | Cycles
ED 0 33 4.6
IT 0 4 1.6

MC | 4[2] | 945 |46 23
Luma DB 8 [2] 12 6} [8.9][2.9
MEM 8 31 18
MC 8 [2] 8 [2] 8 2]
Chroma | DB | 5[25] | 8][4 |[6.6[3.3]
MEM 10 10 10

between each unit. The FIFO issues full and empty signals to the units connected to its
input and output respectively, to prevent overflow and underflow. These units will stall until
the full or empty signal is lowered. These FIFOs also distribute the pipeline control and
allow the units to operate out of lockstep to adapt to the variable latency of the units [42].
The FIFOs help to average out the cycle variations which increases the throughput of the
decoder by reducing the number of stalls, as described in [43}. Increasing the depth of the
FIFOs enables more averaging and higher throughput. Fig. 2-6 shows that the pipeline
performance can be improved by up to 45% by increasing the depths of the 4x4 block FIFOs
in Fig. 2-5. For very large FIFO depths, all variation-related stalls are eliminated and the
pipeline performance approaches the rate of the unit with the largest average cycle count.
This performance improvement must be traded off against the additional area and power
overhead introduced by larger FIFOs.

In the simulation results presented in Fig. 2-6, all FIFOs were set to equal depths. How-
ever, deeper FIFOs should ideally be used only when they provide a significant performance
improvement. For example, placing a deeper FIFO between the ED and IT unit reduces
many stalls, but a minimum-sized FIFO between the DB and MEM units is sufficient. In
the decoder test chip, FIFO depths between 1 and 4 were chosen in order to reduce FIFO

44



Normalized ' %
System 1.4
Throughput
1.3 /
1.2 /
1.1

1

1 2 4 8 16 32 256
FIFO Depths

[ Sizes on this chip|

Figure 2-6: Longer FIFOs average out workload variations to minimize pipeline stalls. Per-
formance simulated for mobcal sequence.

area while still reducing pipeline stalls.

2.4 Parallelism

Parallelism can be used within each processing unit to reduce the number of cycles required
to process each 4x4 block and balance out the cycles in each stage of the pipeline. This is
particularly applicable to the MC and DB units, which were found to be key bottlenecks in
the system pipeline. This is not surprising as they were identified as the units of greatest

complexity in the Baseline profile of H.264/AVC [44].

2.4.1 Motion Compensation (MC)

Given a motion vector, the MC unit predicts a 4x4 block in the current frame from pixels in
the previous frames to exploit temporal redundancy. The previous frames are stored in the
frame buffer. When the motion vector is integer-valued (full—pel),. the predicted 4x4 block can
be found in its entirety in a previous frame, as shown in the left part of Fig. 2-7. For increased
coding efficiency, motion vectors in H.264/AVC can have up to quarter-pel resolution. When
either the X or Y component of the motion vector is fractional, the predicted 4x4 block
must be interpolated from pixels at full-pel locations in previous frames, as shown in the

right part of Fig. 2-7. Accordingly, the main operation in motion compensation involves
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Figure 2-7: Integer and fractional motion vectors.

interpolation and filtering. The luma and chroma components are interpolated differently.
Luma interpolation involves using a 1-D 6-tap filter to generate the half-pel locations. A 1-D
bilinear filter is then used to generate the quarter-pel locations [26]. Thus, a 4x4 luma block
is predicted from an area of at most 9x9 pixels in a previous frame. Chroma interpolation
involves the use of a 2-D bilinear filter and each 2x2 chroma block is predicted from an area
of 3x3 pixels.

The luma interpolator architecture is shown in Fig. 2-8 and is similar to the design in [45].
The datapath of the luma interpolator is made up of (6x5) 8-bit registers (full-pel), (6x4)
15-bit registers (half-pel), (449) 6-tap filters, and four bilinear filters. The interpolator uses
a 6-stage pipeline. At the input of the pipeline, for vertical interpolation, a column of 9
pixels is read from the frame buffer and used to interpolate a column of 4 pixels. A total of 9
pixels, representing the full and half-pel locations, are stored at every stage of the interpolator
pipeline; specifically, the 4 interpolated half-pel pixels and the 5 center (positions 3 to 7)
full-pel pixels of the 9 pixels from the frame buffer are stored. The 9 registers from the 6
stages are fed to 9 horizontal interpolators. Finally, 9:2 muxes are used to select two pixels
located at full or half-pixel locations as inputs to the bilinear interpolator for quarter-pel
resolution.

To improve the throughput of MC, a second identical interpolator is added in parallel as
shown in Fig. 2-9. The first interpolator predicts 4x4 blocks on the even rows of a macroblock,
while second predicts 4x4 blocks on the odd rows. This parallel structure can double the
throughput of the MC unit if during each cycle, both motion vectors are available and two
new columns of 9 pixels from the frame buffer are available at the inputs of both interpolators.

The chroma interpolator is also replicated four times such that it can predict a 2x2 block
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Figure 2-9: Parallel MC interpolators. Note: the numbered 4x4 blocks reflect the processing
order within a macroblock defined by the H.264/AVC standard.

every cycle. Additional interpolators can be used in parallel as discussed in [46], where the
use of four luma interpolators is shown to be optimal. However, for this decoder, Table 2.1

shows that using two luma interpolators is sufficient for alleviating the MC bottleneck.

2.4.2 Deblocking Filter (DB)

The deblocking filter is applied using four pixels on either side of an edge, as shown in
Fig. 2-10. The strength of the adaptive deblocking filter depends on both slice, block and

pixel (sample) level information [47]. At a slice level, the filter can be enabled/disabled for
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Figure 2-10: The four pixels on either side of the edge are used as inputs to the deblocking
filter.

all macroblocks. At the block level, a boundary strength (Bs) is computed for an edge on a
4x4 block basis. Bs is assigned a value from 4(strong) to 0(none) based on whether the edge
is a macroblock edge, intra prediction is used, non-zero coding residual exists, and whether
the motion vectors and reference frames are different. Finally, at a pixel level, if Bs is not 0,
the pixels around the edges are compared to various thresholds (« and (), which depend on
QP, to determine whether the edge is likely an artifact due to quantization or a true edge.

Different filters are used for each pixel. Fig. 2-11 shows the architecture of one such filter.

The boundary strength (Bs) of the adaptive filter is the same for all edges on a given
side of a 4x4 block. Accordingly, the DB is designed to have 4 luma and 2 chroma filters
running in parallel, which share the same boundary strength calculation, and filter an edge
of a 4x4 block every cycle. The luma architecture is shown in Fig. 2-12. For additional cycle
reduction, the luma and chroma filters operate at the same time, assuming the input data

and configuration parameters are available.

A luma macroblock (16 4x4 blocks) has 128 pixel edges that need to be filtered, so with 4
luma filters a macroblock takes 32 clock cycles to complete. Unlike previous implementations
[48], filtering on 4x4 blocks begins before the entire macroblock is reconstructed. To minimize
stalls, the edge filtering order, shown in Fig. 2-13, was carefully chosen to account for the

4x4 block processing order (shown in Fig. 2-9b) while adhering to the left-right-top-bottom
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Figure 2-11: Architecture of luma filter for pixel py (go uses a similar filter). Different filters
are used for pixels p1, q1, p2, and go. Filters are defined in [26]. Pixels ps and g3 are not
modified.

edge order specified in H.264/AVC [26].

A single-port on-chip SRAM cache with 4x4x8-bit data-width is used to store pixels
from the top and left macroblocks. Due to the 4x4 block processing order and the edge
order constraints, certain 4x4 blocks need to be stored temporarily before all four of its
edges are filtered and it can be written out. These partially filtered blocks are either stored
in the on-chip cache or a ’scratch pad’ made of flip-flops that can hold up to four 4x4 blocks.
This ’scratch pad’ along with the chosen edge filtering order minimize the number of stalls
from read/write conflicts to the on-chip cache. The on-chip cache has a 2-cycle read latency
resulting in a few extra stall cycles when prefetching is not possible. Taking into account
this overhead, the average number of cycles required by DB for a luma 4x4 block is about

2.9.

Each of the two chroma components of a macroblock has 32 pixel edges to be filtered.

Using 2 filters per cycle results in slightly more than 32 clock cycles per macroblock. When
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accounting for stalls, the number of cycles per macroblock is about the same as luma. Overall,
the number of cycles required by DB is 52 cycles per macroblock, which is less than other

deblocking filter implementations that take between 204 to 6144 cycles per macroblock [48].

2.5 Multiple Voltage/Frequency Domains

The decoder interfaces with two 32-bit off-chip SRAMs which serve as the frame buffer (FB).
To avoid increasing the number of 1/O pads, the MEM unit requires approximately 3x more
cycles per 4x4 block than the other processing units, as shown in Table 2.1. In a single
domain design, MEM would be the bottleneck of the pipeline and cause many stalls, requiring
the whole system to operate at a high frequency in order to maintain performance. This
section describes how the architecture can be partitioned into multiple frequency and voltage
domains.

Partitioning the decoder into two domains (memory controller and core domain) enables
the frequency and voltage to be independently tailored for each domain. Consequently, the
core domain, which can be highly parallelized, fully benefits from the reduced frequency and
is not restricted by the memory controller with limited parallelism (due to limitations in the
number of I/0O pads).

The two domains are completely independent and are separated by asynchronous FIFOs
as shown in Fig. 2-14. Voltage level-shifters are used for signals going from a low to high
voltage. Table 2.1 shows that there could be further benefit to also placing the ED unit on
a separate third domain. The ED is difficult to speed up with parallelism because it uses
variable length coding which is inherently serial.2

Table 2.2, shows a comparison of the eétimated power consumed by the single domain
design versus a multiple (two and three) domain design. The frequency ratios are derived
from Table 2.1 and assume no stalls. For a single domain design, the voltage and frequency
must be set at the maximum dictated by the worst case processing unit in the system. It

can be seen that the power is significantly reduced when moving from one to two domains.

2We will be addressing this challenge at the algorithm level in Chapter 3.

o1



D Q \read,
Al )
metastability |
Core . . Memory
Domain “—Controller
‘ empty,
A\ _ B ?,j _?—/
Asynchronous FIFO A
CLK CLKfast

slow

Figure 2-14: Independent voltage/frequency domains are separated by asynchronous FIFOs
and level-converters.

The additional reduction for moving to three domains is less; thus, for our design we chose
to use two domains.

In summary, several approaches are used to increase the performance of the video de-
coder. First, pipelining is used to enabled multiple blocks of pixels to be simultaneously
processed by different units. Second, FIFOs are used to average out workload variation
across different units to increase the average throughput. Third, the throughput of bottle-
neck units is increased using parallelism. Finally, if the throughput is still not enough to meet
the performance requirements, or the unit cannot be parallelized, then the unit is placed on

a separate voltage/frequency domain, where it runs at a higher operating frequency.

2.6 Dynamic Voltage and Frequency Scaling (DVFS)

The video decoder has a highly variable workload due to the varying prediction modes that
enable high coding efficiency. While FIFOs are used in Section 2.3 to address workload

52



Table 2.2: Estimated impact of multiple domains on power for decoding a P-frame.

720p 1080p
Frequency Ratio Voltage Power Voltage Power
Domains | ED | Core | MEM | ED | Core | MEM | [%] | ED | Core | MEM | [% ]
One 1.00 | 1.00 1.00 |0.81| 0.81 0.81 100 | 0.98 | 0.98 0.98 100
Two 0.26 | 0.26 1.00 | 0.66 | 0.66 0.78 75 0.73 | 0.73 0.94 67
Three 0.26 | 0.18 1.00 | 0.66 | 0.63 0.78 71 0.73 | 0.69 0.94 63

variation at the 4x4 block level, DVFS and frame averaging allow the decoder to address the

varying workload at the frame level in a power efficient manner [49].

DVFS involves adjusting the voltage and frequency based on the varying workload to
minimize power. This is done under the constraint that the decoder must meet the deadline
of one frame every 33 ms to achieve real-time decoding at 30 fps. The two requirements for
effective DVFS include accurate workload prediction and the voltage/frequency scalability
of the decoder. Several techniques are proposed in [50-53] to predict the varying workload

during video decoding.

DVFS can be performed independently on the core domain and memory controller as
their workloads vary widely and differently depending on whether the decoder is working on
I-frames or P-frames as shown in Fig. 2-16. For example, the memory controller requires
a higher frequency for P-frames versus I-frames. Conversely, the core domain requires a
higher frequency during I-frames since more residual coefficients are present and they are
processed by the ED unit. Note that the workload variation between I-frame and P-frame is
much larger than the variation across different P-frames and different I-frames as shown in
Fig. 2-16; thus, we investigate the impact of DVFS when changing between an I-frame and
P-frame but not across P-frames or I-frames (i.e. for our analysis, we assume all I-frames,
and all P-frames, have the same workload). Table 2.3 shows the required frequencies and

voltages of each domain for an I-frame and P-frame of the mobcal sequence.?

3In this work, the frequency and voltage are manually determined for each sequence. Workload prediction
techniques are needed to close the loop and automatically determine (estimate) the workload of a sequence,
which can then be mapped to a frequency and voltage.
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Figure 2-15: Measured frequency versus voltage for core domain and memory controller. Use
this plot to determine maximum frequency for given voltage.

Fig. 2-15 shows the frequency and voltage range of the two domains in the decoder.
Once the desired frequency is determined for a given workload, the minimum voltage can be

selected from this graph.

If latency can be tolerated, frame averaging can also reduce the frequency requirement
and consequently power consumption [49]. Frame averaging does not have the overhead
switching power that is consumed during DVFS. Table 2.4 shows the impact of DVFS and
frame averaging for a GOP size of 2 with a GOP structure of IPPP (i.e. I-frame followed by

Table 2.3: Measured voltage/frequency for each domain for I-frame and P-frame for 720p
sequence.

Core Memory Controller

Frame Type | Frequency | Voltage | Frequency | Voltage
MHz | [V] | [MHZ | [V]
P 14 0.70 50 0.84
I 53 0.90 25 0.76
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Figure 2-16: Workload variation across 250 frames of mobcal sequence.
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Table 2.4: Estimated impact of DVFS and frame averaging (FA) for GOP structure of IPPP
and size 2.

Core Memory Controller | Relative
Method Frequency | Voltage | Frequency | Voltage Power
[MHz] [V] [MHz] [V] [% ]
No DVFS/FA 53 0.90 50 0.84 100
DVFS 140ord53 | 0700r090| 250r50 | 0.76 or 0.84 85
FA 33.5 0.82 37.5 0.79 84

a series of P-frames; the GOP size is the period of I-frames). As the GOP size increases, the
power savings of DVF'S approaches that of frame averaging. For DVFS, the total power is
computed as the average of the I-frame and P-frame decoding powers based on the I/P ratio
in the GOP; for frame averaging, the total power is computed using the average frequency
for I-frame and P-frame decoding based on the I/P ratio in the GOP. DVFS is done at the
frame level, and the frame averaging is done across the entire GOP. DVFS can be done in
combination with frame averaging for improved workload prediction and additional power

savings [53, 54].

2.7 Memory Optimization

Video processing involves movement of a large amount of data. For high definition, each
frame is on the order of megabytes (MB), which is too large to place on-chip (e.g. 1.4
MB/frame for 720p and 2.1 MB/frame for 1080p). Consequently, the frame buffer (FB)
used to store the previous frames required for motion compensation is located off-chip. It
is important to minimize the off-chip memory bandwidth in order to reduce overall system
power.

Two key techniques are used to reduce this memory bandwidth. The first reduces both
reads and writes such that only the DB unit writes to the frame buffer and only the MC
unit reads from it. The second reduces the number of reads by the MC unit. The impact of

the two approaches on the overall off-chip memory bandwidth can be seen in Fig. 2-17.
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Figure 2-17: Reduction in overall memory bandwidth from caching and reuse MC data.

2.7.1 On Chip Caching

To leverage spatial correlation, decoding a block/macroblock often requires information
about its left and top neighboring blocks/macroblocks. Data about the most recently de-
coded row (line) must be stored in order to satisfy the top dependencies. This includes data
such as motion vectors and the last four lines of pixels that are required by the deblocking
filter. To minimize off-chip memory bandwidth, this data is stored in several separate on-
chip caches as shown in Fig. 2-18. These caches are often referred to as the last line buffer.
For a P-frame, this caching scheme reduces total off-chip bandwidth by 26% relative to the
case where no caches are used. The memory bandwidth and size of each cache is shown in

Table 2.5.

Since conventional 6-transistor SRAMs cannot operate at low voltages, custom low-
voltage 8-transistor SRAMs based on [55] were designed to operate at the desired core

voltage and frequency.
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Figure 2-18: On-chip caches to reduce off-chip memory bandwidth.

2.7.2 Reducing MC Redundant Reads

The off-chip frame buffer used in the system implementation has a 32-bit data interface.
Decoded pixels are written out in columns of 4, so writing out a 4x4 block requires 4 writes
to consecutive addresses. When interpolating pixels for motion compensation, a column of
9 pixels is required during each MC cycle. This requires three 32-bit reads from the off-chip
frame buffer.

During MC, some of the redundant reads are recognized and avoided. This happens when
there is an overlap in the vertical or horizontal direction and the neighboring 4x4 blocks
(within the same macroblock) have motion vectors with identical integer components [41].
As discussed in Section 2.4.1, the MC interpolators have a 6-stage pipeline architecture which
inherently takes advantage of the horizontal overlap. The reuse of data that overlap in the
horizontal direction helps to reduce the cycle count of the MC unit since those pixels do not
have to be re-interpolated.

The two MC interpolators are synchronized to take advantage of the vertical overlap.
Specifically, any redundant reads in the vertical overlap between rows 0 and 1 and between
rows 2 and 3 (in Fig. 2-9b) are avoided. As a result, the total off-chip memory bandwidth is
reduced by an additional 19%, as shown in Fig. 2-17.

In future implementations, a more general caching scheme can be used to further reduce

redundant reads if it takes into account:
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Table 2.5: Memory bandwidth of caches for 720p at 30 fps.

Cache Size Dimensions I-frame P-frame
[kb] | address x word | Bandwidth | Bandwidth
[Mbps] [Mbps]
Deblocking 104 324x158 (luma) 510 510
(Last 4 lines + Left 4 columns) 324x158 (chroma) 297 297
Intra prediction 01 324x32 (luma) 61.7 324
(Last line + Left column) 162x32 (chroma x2) 57 35.4
Motion Vector 9 80x118 0 25.5
Total Coeflicient Count 3 80x40 8.5 7.8
Macroblock Parameters 1 8(8)2},;7(332221) g; g;
Intra Prediction Mode 1 80x16 3.1 1.7
Total 138 n/a 579 922

1. adjacent 4x4 blocks with slightly different motion vectors

2. overlap in read areas between nearby macroblocks on the same macroblock row

3. overlap in read areas between nearby macroblocks on two consecutive macroblock

TOWS

A small cache of 512-Bytes can reduce the read bandwidth by another 33% by taking advan-
tage of the first two types of redundancies in the above list. A larger cache of 32-kBytes is
required to address the third redundancy on the list to achieve a read bandwidth reduction
of 56% with close to no repeated reads. Finally, a cache on the order of several hundred
kBytes can be used to reduce not only the redundant reads, but the majority of all MC reads
‘from the off-chip frame buffer using either a last frame or direct forwarding caching schemes

during frame parallel multi-core processing [33].

2.8 Test Setup

A real-time system was implemented in order to verify and characterize the H.264/AVC
decoder test chip. Fig. 2-19 shows the key blocks in the system. The off-chip frame buffer
was implemented using two 32-bit-wide 4AMB SRAMs [56]. Separate SRAMs are used for
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Figure 2-19: Connections in test setup for H.264/AVC decoder.

luma and chroma components. The FPGA and VGA driver on the 6.111 lab kit [57] were
used to interface the ASIC to the display. Level converters [58] were required to connect
the 1.8V ASIC I/0 to the 3.3V FPGA I/O. The test chip, frame buffer and level converter
were connected on a custom PCB shown in Fig. 2-20. A photo of the test setup is shown in
Fig. 2-21.

The key steps in the system were
Send compressed video to the decoder
Decode video

Read the decompressed video from the test chip

Ll O

Display the video

The encoded H.264/AVC bitstream was stored in a flash memory on the 6.111 lab kit
and read into a FIFO on the FPGA. The FPGA then sends the encoded bitstream to the
test chip in 8-bit words. During decoding, the test chip simultaneously writes the decoded
YUV pixels to the off-chip frame buffer as well as input FIFOs on the FPGA in 32-bits
words (4 pixels per word). The Virtex-2 FPGA reorders the YUV pixels, from the vertical

4x1 columns (luma) and 2x2 blocks (chroma) used in MC, to raster scan order and writes
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Figure 2-20: Photo of custom PCB designed to connect the H.264/AVC decoder test chip
with the rest of the system.

Figure 2-21: Photo of real-time system demo. Voltage and current measurements of the core
domain can be seen in the upper right corner.
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Figure 2-22: Die photo of H.264/AVC video decoder (domains and caches are highlighted).

them into the display buffer. The display buffer is implemented using 32-bit 16MB SRAM,
which allows them to store up to 8 frames. The YUYV pixels are read from the display buffer,
converted to RGB and sent to the display using the VGA driver. Additional details on the
FPGA code can be found in [46].

2.9 Results and Measurements

The H.264/AVC Baseline level 3.2 decoder, shown in Fig. 2-22, was implemented in 65-
nm CMOS and the power was measured when performing real-time decoding of several 720p
video streams at 30 frames per second (fps) (Table 2.7) [36]. The video streams were encoded
with x264 software [59] with a GOP size of 150 (P-frames dominate). Fig. 2-23a shows a
comparison of our ASIC with other decoders [38-41,60]. To obtain the power measurements
of the decoder at various performance points, the frame rate of the video sequence was
adjusted to achieve the equivalent Mpixels/s of the various resolutions.

At 720p, the decoder also has lower power and frequency relative to D1 of [38]. Fig. 2-23a
shows that the decoder can operate down to 0.5 V for QCIF at 15 fps and achieves up to
1080p at 30fps at a core voltage of 0.85 V. The power scales accordingly ranging from 29
uW to 8 mW, a 280x range, to cover the 164x workload range. The power of the I/O pads
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Table 2.6: Summary of H.264/AVC decoder chip implementation.

Video Coding Standard

H.264/AVC Baseline level 3.2

Technology 65-nm
Core Area 2.76 mm x 2.76 mm
Logic Gate Count (NAND-2) 314.8k
Package 176-pin QFP
On-Chip Memory (SRAM) 17 kB
0.7 V (core)
Supply Voltage (720p at 30fps) | 0.84 V (memory controller)
1.8 V (I/0)

Operating Frequency
(720p at 30fps)

14 MHz (core)
50 MHz (memory controller)

Core Power Consumption

1.8 mW

Table 2.7: Measured performance numbers for 720p at 30 fps.

Video mobcal | shields | parkrun
# of Frames 300 300 144

| Bitrate [Mbps] 5.4 7.0 26
Off-chip Bandwidth [Gbps] 1.2 1.1 1.2
Core Frequency [MHz] 14 14 25
‘Memory Controller Frequency [MHz] 50 50 50
Core Supply [V] 0.7 0.7 0.8
Memory Controller Supply [V] 0.84 0.84 0.84
Power (mW] 1.8 1.8 3.2

dies operate at 0.7 V for 720p at 30fps decoding.
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was not included in the measurement comparisons. The reduction in power over the other
reported decoders can be attributed to a combination of using the low-power techniques
described in this chapter and a more advanced process.

A comparison of the energy per pixel is shown in Fig. 2-23b. The decoder has a minimum
energy per pixel of 53 pJ at 0.55 V for CIF decoding; for 720p, the energy per pixel is 69 pJ
at 0.7 V. The concurrency in the decoder enables it to process 1.84 pixels per cycle, which
is over 80% higher than the throughput of previously published decoders [38-41,60].

The variation in performance across 15 dies is shown in Fig. 2-24. The majority of the
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Figure 2-23: Comparison with other H.264/AVC decoders [38-41,60].
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Figure 2-24: Variation of minimum core voltage supply for 720p decoding across test chips.

2.9.1 Power Breakdown and Switching Activity

This section shows the simulated power breakdown during P-frame decoding in the mobcal
sequence. The power of P-frames is dominated by MC (42%) and DB (26%), as seen on the
left chart of Fig. 2-25.

About 75% of the MC power (32% of total power) is consumed by the MEM read logic,
as illustrated by the pie chart on the right of the same figure. The memory controller is
the largest power consumer since it runs at a higher voltage than the core domain, its clock
tree runs at a higher frequency, and the MC read bandwidth is large (approximately 2 luma
pixels are read for every decoded pixel). At 0.7 V, the on-chip caches consume 0.15 mW.

The leakage breakdown across each module is shown in Fig. 2-26. The total leakage
of our chip at 0.7 V is 25 uW which is approximately 1% of the 1.8 mW total power for
decoding 720p at 30 fps. At 0.5 V, the leakage is 8.6 yW which is approximately 28% of
the 29 uW total power for decoding QCIF at 15 fps. 64% of the total leakage power is due
to the caches. The leakage of the caches could have been reduced by power gating unused

banks during QCIF decoding for additional power savings.

The switching activity measures the probability that the average net will toggle during
a given clock cycle. Fig. 2-27 shows the switching activity for each module for P-frame and

I-frame with and without clock buffers. The clock buffers account for 5% and 19% of the
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Figure 2-25: Simulated (post-layout) power breakdown during P-frame decoding.
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Figure 2-26: Post-layout simulated leakage power breakdown.
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Figure 2-27: The switching activity of each module in the decoder, simulated with the mobcal
sequence. Note: these switching activity numbers are for logic only; the SRAM caches are
not included.

switching in the P-frame and I-frame respectively. These values were obtained through gate
level simulations of the mobcal sequence over a time interval of 71,532 ns (5,946 MEM cycles
and 991 CORE cycles) for the P-frame and 79,040 ns (3,293 MEM cycles and 4,960 CORE
cycles) for the I-frame. The total toggle counts (number of 0 to 1 transitions) for these time
intervals were obtained with PrimePower for each module, and then divided by the number
of nets in the module along with the number of clock cycles within the time interval. The
toggle counts do not include the switching in the on-chip SRAM caches. Ignoring the clock
buffers, there is no switching activity in MC during an I-frame which reflects the fact that
only spatial prediction is used in I-frames. Accordingly, the switching activity in INTRA is
higher for I-frames than P-frames. Note that the switching activity in IT is less for P-frames
than I-frames, which is consistent with the fact that P-frames typically have less residual
and consequently fewer coefficients to process. The low switching activity can be attributed
to the idle cycles where there is no switching, only 0 to 1 transitions are counted towards

switching activity, and data dependencies that cause only a subset of nets to toggle.
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Figure 2-28: Post-layout area breakdown (includes logic and memory).

2.9.2 Area Breakdown

Fig. 2-28 shows the post-layout area breakdown by decoder unit. The pre-layout logic gate
count from synthesis along with area of the memory in each decoder unit is reported in
Table 2.8. The area is dominated by DB due the SRAM caches which occupy 91% of the
DB area.

The cost of parallelism is primarily an increase in area. The parallelism in the MC and
DB units described in Section 2.4 increases the area by about 12%. When compared to the

entire decoder area (including on-chip memory) the area overhead is less than 3%.

2.9.3 System Level Issues

It is important to consider the impact of this work at the system level. As voltage scaling
techniques can reduce the decoder power below 10 mW for HD decoding, the system power
is then dominated by the off-chip frame buffer memory. In [40], the memory power using
an off-the-shelf DRAM is on the order of 30 mW for QCIF at 15fps which would scale to
hundreds of milliwatts for high definition. However, new low power DRAMs such as [61],
can deliver 51.2 Gbps at 39 mW. For 720p decoding, the required bandwidth is 1.25 Gbps
after memory optimizations in Section 2.7, which corresponds to a frame buffer power of 1

mW (a linear estimate from [61]). Furthermore, off-chip interconnect power can be reduced
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Table 2.8: Logic gate count (pre-layout) and memory area for each decoder unit. Note
that the area of each unit also includes the pipeline FIFO control for the unit. MISC
includes the top level control, pipeline FIFOs, slice/NAL header parsing logic, and adders
for reconstruction.

Decoder Gate Count SRAM area
Unit | [kgates (2-input NAND)] [mm?]
ED 23.7 0
INTRA 25.2 0.35
MC 102.5 0.17
IT 41.3 0.07
DB 78.3 1.01
MEM 6.5 0
MISC 37.4 0
Total 314.8 1.6

by using embedded DRAM or system in package (i.e. stacking the DRAM die on top of
the decoder die within a package) [62]. Alternatively, the entire frame buffer can be cached
on-chip in low voltage SRAM for low power consumption, as proposed in [33]; however, this
would result in significant area cost.

The display typically consumes around a third of the power on a mobile platform [63].
Upcoming technologies such as organic light-emitting device (OLED) and quantum dot-
organic light-emitting device (QD-OLED) can significantly reduce the display power. OLED
displays do not require a backlight, which accounts for a considerable amount of the liquid

crystal display (LCD) power consumption [64].

2.10 Summary and Conclusions

A full video decoder system was implemented that demonstrates high definition real-time
decoding while operating at 0.7 V and consuming 1.8 mW. Several techniques, summa-
rized in Table 2.9, were leveraged to make this low power decoder possible. The decoder
processing units were pipelined and isolated by FIFOs to increase concurrency. Luma and

chroma components were mostly processed in parallel. The MC interpolators and DB fil-
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Table 2.9: Summary of Low Power Techniques

Section(s) Technique(s) Impact
53 9.4 Increased concurrency with | Enable Low Voltage (0.7 V) and
D pipelining and parallelism Frequency (14 MHz)

Multiple Voltage/ 25% Power Reduction

2.5 .
Frequency Domains on P-frame

2.6 Frame level DVFS 25% Power Reduction

2.7 Memory Optimization Reduce Bandwidth by 40%

ters were replicated for increased throughput. The decoder was partitioned into multiple
voltage/frequency domains to enable lower voltage/frequency operation for some of the pro-
cessing blocks. The wide operating voltage range of the decoder allowed for effective use of
DVF'S for additional power reduction. Finally, voltage-scalable on-chip caches helped reduce
both on-chip and off-chip memory power. The decoder is highly scalable and can tradeoff
up to 164x in performance for a 280x reduction in power.

In this chapter, we demonstrated that parallel architectures combined with voltage scaling
is effective in reducing the power of a H.264/AVC Baseline profile decoder. It was also
highlighted that the entropy decoding (ED) unit is inherently serial, and thus it is difficult to
reduce its cycle count. Fortunately, the ED cycle count was not much larger than that of the
other decoder units, as shown in Table 2.1. In the Baseline profile of H.264/AVC, the ED was
done using CAVLC. For increased coding efficiency, the High profile of H.264/AVC includes
CABAC for entropy coding. Unfortunately, CABAC has much stronger serial dependencies
than CAVLC, which consequently leads to much higher cycle counts than the other units.

This challenge will be addressed in the remaining chapters of the thesis.
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Chapter 3

Massively Parallel CABAC Algorithm

Low power and high frame rate/resolution requirements for future video coding applications
make the need for parallelism in the video ever more important [65]. The CABAC entropy
coding engine has been identified as a key bottleneck in the H.264/AVC video decoder [66).
Parallelism is difficult to achieve with the existing H.264/AVC CABAC due to its inherent
serial nature.

This chapter describes the development of a new CABAC algorithm that demonstrates
how enabling parallelism in algorithms can lead to increased throughput with minimal coding
efficiency cost. This new algorithm is not H.264/AVC standard compliant and is intended
for the next generation video coding standard ’H.265’. It should be noted that the serial
dependencies are more severe at the decoder, and thus CABAC decoding will be the focus

of this work.

3.1 Overview of CABAC

Arithmetic coding is a form of entropy coding found in many compression algorithms due
to its high coding efficiency. For instance, in H.264/AVC, the CABAC provides a 9-14%
improvement over the Huffman-based CAVLC for standard definition (720x480 and 720x576)

sequences [67]. For HD sequences, simulations show an average improvement of 16% (see

71



Section B.1). Arithmetic coding is used for a wide variety of applications, and is found in
standards such as H.264/AVC, H.263 and China AVS for video; JPEG-2000 and JPEG-LS
for image; and MPEG-4 SNHC for 3D animation.

3.1.1 Entropy Coding

Entropy coding is a form of lossless compression that attempts to represent data with a
number of bits équal to the entropy of the data, a bound set by Shannon’s source coding
theorem. It is used at the last stage of video encoding (and first stage of video decoding), after
the video has been reduced to a series of syntax elements (e.g. motion vectors, prediction
modes, coefficients, etc.). Arithmetic coding performs better than Huffman coding, as it can
compress closer to the entropy of a sequence by effectively mapping the syntax elements to
codewords with non-integer number of bits; this is important when probabilities are greater
than 0.5 and the entropy is a fraction of a bit. In fact, arithmetic coding can potentially
achieve near optimal compression efficiency [68].

The CABAC involves three main functions: binarization, arithmetic coding, probability
(context) modeling and estimation. Fig. 3-1 illustrates the connections between these func-
tions in a block diagram of the CABAC encoder. Table 3.1 summarizes CABAC terms that

are defined in this section.

3.1.2 Binarization

During binarization, any non-binary valued syntax elements are mapped to binary symbols
referred to as bins. There are several forms of binarization used in CABAC: unary, truncated
unary, exp-golomb, and fixed length. The type of binarization to use for each syntax element
depends on its statistics and is dictated by the H.264/AVC standard [26]. This mapping is
done in a similar fashion as variable-length-coding. These bins, as well as any binary valued
syntax elements, are fed to the arithmetic coding engine for additional compression.

Note that CAVLC is serial at the syntax element level and the ED unit can typically

process a syntax element per cycle. On the other hand, CABAC is serial on the bin level
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Table 3.1: Summary of CABAC terms.

syntax element

Describes how to decode a compressed macroblock (e.g. pre-
diction mode, motion vector, coefficients, etc.)

bins (binary symbols)

Syntax elements are mapped to bins that are fed to the arith-
metic coding engine for compression.

context

Probability model of bins. Bins can have a different context
depending on the syntax element, prediction, etc. Over 400
contexts are used in H.264/AVC. The context may be up-
dated after every bin is encoded or decoded for to achieve an
accurate probability estimate.

range

Size of current interval that is divided into subintervals based
on the probability of the bins. It is updated after every bin is
encoded or decoded and requires renormalization to prevent
underflow.

offset

A binary fraction described by the encoded bits received at
the decoder. A bin is decoded by comparing the offset to the
subintervals. It requires renormalization to prevent under-
flow.

regular coding

Arithmetic coding using contexts (estimated probabilities).

bypass coding

Arithmetic coding using a uniform distribution. It has lower
coding efficiency than regular coding, but also lower complex-
ity since interval division and renormalization only requires a
single left shift.

terminate coding

Arithmetic coding using highly skewed probability. It is only
performed on last bin in a macroblock. It is used to flush
range bits at the end of a slice.
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Figure 3-1: Block diagram of CABAC encoder [67]. Non-binary syntax elements pass through
the binarizer to be mapped to binary symbols (bins). The majority of the bins are compressed
with two forms of arithmetic coding: bypass and regular. Bypass coding assumes a uniform
distribution for bins, while regular coding requires context modeling to estimate the bin
distribution.

and the ED unit can typically process a bin per cycle. Since each syntax element can be
mapped to a large number of bins (up to 33 in the worst case), the CABAC requires many
more cycles than the CAVLC. This is one of the main reasons for the limited throughput of
the CABAC engine.

3.1.3 Binary Arithmetic Coding

Arithmetic coding is based on recursive interval division. Binary arithmetic coding refers to
the case where the alphabet of the symbol is restricted to zero and one (i.e. bins). The sizes
of the intervals are determined by multiplying the current interval by the probabilities of the
bin. At the encoder, a subinterval is selected based on the value of the bin. The range and
lower bound of the interval are updated after every selection. At the decoder, the value of
the bin depends on which subinterval the offset is located. The range and lower bound of the
current interval have limited bit-precision, so renormalization is required whenever the range
falls below a certain value to prevent underflow. There are two main forms of arithmetic
coding used in the CABAC engine: regular and bypass. Regular uses the probabilities of

the bin to divide the interval, while bypass assumes that the bin has uniform distribution.
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Bypass results in simpler encoding and decoding than regular, since the interval division
and renormalization is implemented with a single left shift; however this comes at a cost of
poorer coding efficiency. A third form called terminate assumes a very skewed probability,
and is primarily used at the end of every macroblock to check if it is the last macroblock in
a slice.

The CABAC engine used in H.264/AVC leverages a modulo coder (M coder) to calculate
the subinterval based on the product of the current range and the probability of the symbol.
The M coder involves using a look up table (LUT) rather than a true multiplier to reduce
implementation complexity [69].

The flowchart of the arithmetic coding engine is shown in Fig. 3-2. The arithmetic coding
engine typically contains the critical path in H.264/AVC CABAC. Section 4.2.2 will discuss

various optimizations that can be used to reduce the delay of this critical path.

3.1.4 Probability (Context) Modeling and Estimation

In order to achieve optimal compression efficiency, the ’correct’ probabilities must be used to
code each bin. For High profile in H.264/AVC, 468 different probability models are required
to achieve the significant coding gains over CAVLC. All bins of the same type (i.e. with the
same probability distribution and characteristics) are grouped together and use the same
model known as a context. Accordingly, the context of a bin dictates the probability with
which it is coded.

For each bin, the context is selected based on:

e the syntax element that bin belongs to, since syntax elements have different distribu-
tions

e the bin’s position within the syntax element (e.g. the least significant bit (LSB) and
most significant bit (MSB) are typically coded with different contexts)

e properties of the macroblock that the bin belongs to, since I, P and B macroblocks
have different statistics

e the value of the syntax elements of the macroblocks (or blocks) located to the top and
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Figure 3-2: Data flow of the arithmetic coding engine.
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left, since distributions in neighbouring macroblocks are correlated

For instance, all bins that are located at the MSB of a vertical motion vector difference
(mvd) syntax element, and have neighbors with large mvds, use the same context.
Consequently, context switching can occur at every bin. A context selection finite state
machine (FSM) is required to determine which context to use for each bin. The proba-
bilities used for each context must be accurately modeled; this process of determining the
probability of a bin is called source modeling. Since the bins have non-stationary distribu-
tions, the probabilities are continuously updated by the context modeler making the engine
adaptive. The context can take on one of 64 possible probabilities (states). Updating the
probabilities involve a state transition. For each context, the CABAC engine must store the
state as well as the value of the most probable symbol (MPS). An example of the CABAC

encoding/decoding process can be found in the next section.

3.1.5 CABAC Example

We will now walk through an example of encoding and decoding with CABAC.

Encoding

To encode the syntax element coeff_abs_level minusl (coefficient level) with the value 3:

Step 1 - Binarize the value using truncated unary! from 2 to '110°. Let bino=1, bin;=1
and biny=0.

Step 2 - Look up the probability state for each context (Table 3.2). The first bin uses a
different context (context A) than the second and third bins (context B). Pre, 4 is applied to
bing and Prg.p is applied to bin; and biny. For simplicity, this example omits the probability
state update.

Step 3 - Arithmetic encoding is performed on the binary symbols (bins) (Fig. 3-3),

which generates the encoded bits. During this process, the encoder keeps track of the range

1For unsigned integer value r, unary coding maps to a string of = ones plus a terminating zero (e.g. =5
maps to 111110). Truncated unary limits z < .S and when z = S the terminating zero is neglected (e.g. =5
g g g
and S=5 maps to 11111).
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Bin Probability Bin Probability
0 Pre,4(0) =0.3 0 Pry,5(0) =0.6
1 | Preza(l) = (1 — Prega(0)) = 0.7 1 | Prags(l) = (1 — Pry,(0)) = 0.4
(a) Context A. MPS is "1’ (b) Context B. MPS is '0’

Table 3.2: Probability tables for binary arithmetic coding for context A and B.

and lower bound. Note that the larger (i.e. MPS) interval is always on the lower half
of the range. Renormalization can occur after encoding each bin if the range falls below
0.5. For simplicity, we have omitted this step in our numerical calculations. The effect of
renormalization is illustrated by zooming in on the selected interval in Fig. 3-3.

The range is initialized to 1, and low to 0. First, to encode bing, the range is divided
into two intervals based on Prg;4. In practice, this is done using an LUT. The intervals
are: 0to 0.7 for '1’, and 0.7 to 1 for ’0’. bine=1, so range is updated to 0.7 and low remains
unchanged at 0.

Next, to encode bin,, the range is divided into two intervals based on Prnzg. The
intervals are: 0 to 0.42 for '0’, and 0.42 to 0.7 for '1’. bin;=1, so range and low are updated
to 0.28 and 0.42, respectively.

Finally, to encode bing, the range is divided into two intervals based on Prg,p. The
intervals are: 0.42 to 0.588 for ’0’, and 0.588 to 0.7 for ’1’. biny=0, so range and low are
updated to 0.168 and 0.42, respectively.

Any value between 0.42 and 0.588 can be used for the encoded bits to represent the bins
’110°. For the decoder to make the correct decision when comparing to 0.588, the encoded
bits must contain at least 2 digits of the binary fraction.? Thus, 0.5 is transmitted as .10.

Note that we only require 2 bits to represent 3 bins.

Decoding

The decoder receives the encoded bits '10’. This binary fraction maps to 0.5 in decimal form.

2Note: 0.588 in the encoder is equivalent to 0.168 in the decoder, which can be seen by comparing Fig. 3-3
and Fig. 3-4. The offset is compared to 0.168.
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Range | Low
0 v 0.7 il 1 0

0 042 ‘1 0.7 0.7 0
0.42 ‘0’ 0.588 0.7 0.28 | 0.42

0.5 = 1x2"1+0x2"2 (Binary Fraction)
Encoded Bits=10

Figure 3-3: Example of arithmetic coding of sequence "110°.

Step 1 - The context selection FSM determines that it should decode
coeff_abs_level minusl. This information is useful in two ways. First, coeff_abs_level minusl
uses truncated unary for binarization, so a zero indicates that all bins in the syntax element
have been decoded. Second, it indicates which context models should be used to decode the

next bin.

Step 2 - Look up the probability state for each context. In this example, the probabilities

are Prega and Preg,p. Their values are given in Table 3.2.

" Step 3 - Arithmetic decoding is performed on the encoded bits (Fig. 3-4) to resolve
the binary symbols (bins). At the same time, the decoder keeps track of the range and
offset. Note that the larger interval is always on the lower half of the range. In the decoder,
the lower bound is always fixed at 0; thus whenever the smaller upper interval is selected
(i.e. least probable symbol (LPS)), the width of the larger interval must be subtracted from
range and offset. Renormalization can occur after decoding each bin if the range falls below
0.5. For simplicity, we have omitted this step in our numerical calculations. The effect of

renormalization is illustrated by zooming in on the selected interval in Fig. 3-4.

The range is initialized to 1, and the offset is set to 0.5 (the value of the encoded bits).

To decode bing, the range is divided into two intervals based on Prggza. The intervals are:
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Encoded Bits (10) = 0.5

[Initial Offset] - Range | Offset
51! l

0 0.7 1 1 0.5
0 0.42 “1’° 0.7 0.7 0.5

Subtract 0.42 from // ‘

Range and Offset 0 ‘0’ 0.168 0.28 0.28 0.08
f — @ ; i

Figure 3-4: Example of arithmetic decoding of sequence ’110’.

0 to 0.7 for '1’, and 0.7 to 1 for ’0’. The offset is less than 0.7, so biny=1, and range is
updated to 0.7 while offset remains unchanged. Since bing is not zero, we continue decoding

the another bin for the syntax element.

To decode bin,, the range is divided into two intervals based on Pr.,p. The intervals
are: 0 to 0.42 for '0’, and 0.42 to 0.7 for '1’.> The offset is greater than 0.42, so bin;=1, and
0.42 is subtracted from range and offset. Range and offset are updated to 0.28 and 0.08,

respectively. Since bin; is not zero, we continue decoding the another bin.

To decode bing, the range is divided into two intervals based on Pr.,g. The intervals
are: 0 to 0.168 for 07, and 0.168 to 0.28 for '1’. The offset is less than 0.168, so bin,=0,
and range is updated to 0.168 while offset remains unchanged. As bin, is a zero, we have

reached the end of the syntax element.

Step 4 - De-binarization for truncated unary works by counting the number of decoded
bins. We decoded three bins ('110’) for this syntax element, so the value of

coeff_abs_level minusl is 2.

30.42=rangex probability=0.7x0.6
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Table 3.3: Peak bin-rate requirements for real-time decoding of worst case frame at various
high definition levels.

Level Max Max Bins Max Peak
Frame Rate | per picture | Bit-rate | Bin-rate
[fps] [Mbins] [Mbits/s] | [Mbins/s]
4.0 30 9.2 25 275
5.1 26.7 17.6 300 2107

3.1.6 Performance Requirements

It is important to understand the performance requirements for real-timing decoding appli-
cations such as video conferencing. To achieve real-time low-delay decoding, the processing
deadline is dictated by the time required to decode each frame to achieve a certain fps

performance.

It is important to note that the interval division and context modeling are tied to the bins,
not the bits. Thus, the number of cycles required to process a given sequence is proportional
to the number of bins rather than bits. While a highly compressed sequence may have a low
bit-rate, its bin-rate may be quite high since each bit can represent multiple bins resulting
in a high cycle count. Accordingly, the performance of CABAC is dictated by the bin-rate

rather than bit-rate.

Table 3.3 shows the peak bin-rate requirements for a frame to be decoded instantaneously
based on the specifications of the H.264/AVC standard [26]. They are calculated by multi-
plying the maximum number of bins per frame by the frame rate for the largest frame size.
Details on the calculations can be found in Appendix A.1. For Level 5.1, the highest level
defined for H.264/AVC, the peak bin-rate is in the Gbins/s; without concurrency, decoding
1 bin/cycle requires multi-GHz frequencies, which leads to high power consumption and is
difficult to achieve even in an ASIC. Existing H.264/AVC CABAC hardware implementa-
tions such as [60] are in the 200 MHz range; the maximum frequency is limited by the critical

path, and thus parallelism is necessary to meet next generation performance requirements.
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3.2 Related Work

There are several methods of either reducing the peak performance requirement or increasing
the performance of CABAC; however, they come at the cost of decreased coding efficiency, in-
creased power consumption and/or increased delay. This section will discuss the approaches

that are both standard compliant and non-compliant.

3.2.1 Frame Workload Averaging (Buffering)

Buffering allows for averaging which can be used to reduce the peak performance require-
ments at the cost of increased latency. Specifically, averaging the workload of several frames
(i.e. on the order of one second as used in the hypothetical reference decoder (HRD) for rate
control [70] defined in H.264/AVC) can decrease the peak bin-rate requirements to be within
the range of the maximum bit-rate. Table 3.3 shows that the bit-rate requirement is much
lower thén the peak bin-rate requirement. However, buffering results in increased delay and
storage costs. For low-delay applications such as video conferencing, where the maximum
end-to-end delay (including network) is around 200-ms, an additional delay of several frames
may not be tolerated. The buffer also has implications on the memory bandwidth. The
location of the buffer within the CABAC engine can impact the required memory size and

bandwidth [42].

3.2.2 Bin Parallel Processing

Due to the strong data dependencies from bin to bin, speculative computation is required
for bin parallelism. This approach has been proposed in papers for both H.264/AVC com-
pliant [71,72] and non-compliant [73] high throughput CABAC solutions. During our initial
investigation on parallelizing CABAC, we also developed a bin parallel algorithm for a high
throughput CABAC for the next generation standard [31,74]; this algorithm is outlined in
detail in Appendix A.3. Speculation requires additional computations which may increase

power consumption. Furthermore, the critical path delay increases with each additional bin,
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since all computations cannot be done entirely in parallel (e.g. each bin needs to wait for
updated range from the previous bin, which at the very minimum requires a subtraction
and a shift; this can increase the critical path by approximately 30%, depending on the
architecture). This reduces the overall performance improvement that can be achieved. The
reported bin-rates for these approaches are in the low hundreds of Mbins/s. Additional dis-
cussion about the architecture of previously published bin parallel approaches can be found

in Appendix A.2

3.2.3 Frame and/or Slice Parallel Processing

In H.264/AVC, frames can be broken into slices that can be encoded and decoded completely
independently for each other. H.264/AVC slices contain contiguous groups of macroblocks as
shown in Fig. 3-5. Accordingly, CABAC parameters such as range, offset and context states
are reset every slice and slices can be processed in parallel. Each frame has a minimum of one
slice so, at the very least, parallelism can be achieved across several frames. The complete
CABAC engine would have to be replicated based on the desired degree of parallelism and
additional control would be necessary to synchronize the engines.

Unfortunately, frame parallelism requires additional buffering, as inter-frame prediction
prevents several frames from being fully decoded in parallel. The decoded bins would have
to be stored before being processed by the rest of the decoder. Since we are dealing with
frames worth of data, it would require a significant amount of memory and would have to
be stored off-chip.

The storage costs could be reduced if there are several slices per frame as the amount
of additional storage needed per increasing degree of parallelism is reduced. However, this
cannot be guaranteed since the H.264/AVC standard does not have a minimum number
of slices per frame constraint. Increasing the number of slices per frame also reduces the
coding efficiency since it limits the number of macroblocks that can be used for prediction (i.e.
redundancy cannot be leveraged across slices), reduces the training period for the probability

estimation, and increases the number of slice headers and start code prefixes. Fig. 3-6 shows
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macroblock (16x16 pixels)

Slice 0

Slicel

Slice 2

Figure 3-5: Example of three H.264/AVC slices in a frame. H.264/AVC slices are contiguous
groups of macroblocks that can be encoded/decoded independently from each other. This
enables parallelism, but reduces coding efficiency since redundancy across slices cannot be
leveraged for prediction.

how the coding efficiency penalty increases with more H.264/AVC slices per frame.

3.2.4 Entropy Slices

As shown in the previous sections, increasing the performance of the CABAC is challenging
when constrained by the H.264/AVC standard. An alternative is to modify the algorithm
itself. In recent years, Sharp [75,76] and MediaTek [77] have proposed new CABAC algo-
rithms for the next generation standard that seek to address this critical problem. These
contributions looked at various ways of using a new approach called entropy slices to increase
parallel processing for CABAC. Entropy slices are similar to H.264/AVC slices in that con-
tiguous macroblocks are allocated to different slices [75, 76] as shown in Fig. 3-5. However,
unlike H.264/AVC slices, which are completely independent of one another, some depen-
dency is allowed for entropy slices. While entropy slices do not share information for entropy
(de)coding (to enable parallel processing), motion vector reconstruction and intra prediction
are allowed across entropy slices, resulting in better coding efficiency than H.264/AVC slices
(Fig. 3-6). However, entropy slices still suffer coding efficiency penalty versus H.264/AVC

with single slice per frame. A significant portion of the coding penalty can be attributed to
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Figure 3-6: Coding penalty versus slices per frame. Sequence bigships, QP=27, under
common conditions [34].

the reduction in context training.

As described in Section 3.1.4, one of the features that gives CABAC its high coding
efficiency is that the contexts are adaptive. While encoding/decoding, the contexts undergo
training to achieve an accurate estimate of the syntax element probabilities. A better es-
timate of the probabilities results in better coding efficiency. A drawback of breaking up
a picture into several entropy slices is that there are fewer macroblocks, and consequently
fewer syntax elements, per slice. Since the entropy engine is reset every entropy slice, the

context undergoes less training and can results in a poorer estimate of the probabilities.

Ordered entropy slices propose processing in macroblocks in zig-zag order within a slice
to minimize memory bandwidth costs from syntax element buffering [77]. Furthermore,
it allows for context selection dependencies across entropy slices which improves coding
efficiency. However, the zig-zag order results in increased latency and does not provide a

favorable memory access pattern necessary for effective caching.
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3.3 Massively Parallel CABAC (MP-CABAC)

In this section, we propose a parallel algorithm called Massively Parallel CABAC (MP-
CABAC) which has an improved tradeoff between coding efficiency and throughput. It can
also be easily implemented in hardware and with low area cost. The MP-CABAC leverages a
combination of two forms of parallelism. First, it uses syntax element parallelism, presented
in Section 3.3.2, by simultaneously processing different syntax element partitions, allowing
the context training to be performed across all instances of the elements, thus improving
the coding efficiency. Second, macroblock/slice parallelism is achieved by simultaneously
processing interleaved entropy slices, presented in Section 3.3.3, with simple synchronization
and minimal impact on coding efficiency. Note that the MP-CABAC can also be combined

with bin parallelism techniques previously described in Section 3.2.2.

3.3.1 Improving Tradeoffs

The goal of this work is to increase the throughput of the CABAC at minimal cost to
coding efficiency and area. Thus, the various parallel CABAC approaches (H.264/AVC
Slices, Entropy Slices, Ordered Entropy Slices, MP-CABAC) are evaluated and compared
across two important metrics/tradeoffs:

e Coding Efficiency vs. Throughput

e Area Cost vs. Throughput
It should be noted that while throughput is correlated with degree of parallelism, the two are
not equal. It depends strongly on the workload balance between the parallel engines. If the
workload is not equally distributed, some engines will be idle, and the throughput is reduced.

Thus, we chose throughput as the target objective rather than degree of parallelism.

3.3.2 Syntax Element Partitions (SEP)

Syntax element partitions is a different method distributing the bins across parallel entropy

engines. To avoid reducing the training, rather than processing various macroblocks/slices in
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Figure 3-7: Concurrency with syntax element partitioning.

parallel, syntax elements are processed in parallel [32]. In other words, rather than grouping
bins by macroblock and placing them in different slices, bins are grouped based on syntax
element and placed in different partitions which are then processed in parallel (Fig. 3-7). As
a result, each partition contains all the bins of a given syntax element, and the context can
then undergo the maximum amount of training (i.e. across all occurrences of the element
in the frame) to achieve the best possible probability estimate and eliminate the coding
efficiency penalty from reduced training. Table 3.4 shows the five different groups of syntax
elements. The syntax elements were assigned to groups based on the bin distribution in
order to achieve a balanced workload. Each group of elements can be assigned to a different
partition. A start code prefix for demarcation is required at the beginning of each partition.

This syntax element partitions scheme is similar to slice data partitions in the extended
profile of H.264/AVC. However, slice data partitions in H.264/AVC is limited to CAVLC and
is done primarily for error resilience purposes. Syntax element partitions for CABAC can

also benefit in terms of error resilience, however, it is done primarily to increase throughput
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Figure 3-8: Dependencies between syntax element groups.
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Figure 3-9: Partitions are processed in a pipelined manner such that different macroblocks
from each partition are processed in parallel.

and the partitions are assigned accordingly.

Dependencies between each group are shown in Fig. 3-8. For instance, the MBINFO
group for a given macroblock (MB0) must be decoded before the PRED group for the same
macroblock (MBO0). However, the MBINFO group of the next macroblock (MB1) can be
decoded in parallel with the PRED group of MBO as shown in Fig. 3-9. Thus, the processing
of each partition must be synchronized. Synchronization can be done using data driven

FIFOs between engines, similar to the ones used in [36] between processing units.

Coding Efficiency and Throughput

The syntax element partitions approach was evaluated using JM12.0 reference software pro-
vided by the standards body, under common conditions [34]. The coding efficiency and
throughput were compared against H.264/AVC slices and entropy slices (Table 3.5). The
coding efficiency is measured with the Bjontegaard ABitrate (BD-rate) as described in Ap-

pendix B. To account for any workload imbalance, the partition with the largest number
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Table 3.4: Syntax Element Groups.

Group Syntax Element
mb_skip_flag, mb_type, sub_mb_type,
MBINFO mb_field_decoded _flag, end_of slice_flag
prev_intradx4_pred_mode_flag,
rem_intradx4_pred_mode,
PRED prev_intra8x8_pred_mode_flag,
rem_intra8x8_pred_mode,
intra_chroma_pred_mode,
ref_idx_10, ref_idx_11, mvd_l10, mvd_l1
transform_size_8x8_flag, mb_qp_delta
coded_block_pattern, coded_block_flag
SIGMAP | significant_coeff_flag, last_significant_coeff_flag
COEFF coeff_abs_level_minusl, coeff_sign _flag

CBP

Table 3.5: Comparison of various parallel processing techniques. The coding efficiency was
computed by evaluating the Bjsntegaard ABitrate (BD-rate) [78] against H.264/AVC with
single slice per frame. The speed up was computed relative to serial 1 bin/cycle decoding.
Results are averaged across bigships, city, crew, night, and shuttle. The area cost was
computed based on the increased gate count relative to a serial 1 bin/cycle CABAC.

H.264/AVC Entropy Syntax Element

Slices Slices Partitions
Area Cost 3x 3x 1.7x
Prediction | BD- | speed | BD- | speed | BD- speed
Structure | rate up rate up rate up

Ionly 087 | 243 | 025 | 243 | 0.06 2.60
IPPP 1.44 | 242 [ 055 | 2.44 | 0.32 2.72
IBBP 1.71 | 246 | 0.69 | 2.47 | 0.37 2.76
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of bins in a frame was used to compute the throughput. An average throughput speed up
of ~2.7x can be achieved with negligible impact (0.06% to 0.37%) on coding efficiency. To
achieve similar throughput requires at least three H.264/AVC or entropy slices per frame
which have coding penalty of 0.87% to 1.71% and 0.25% to 0.69% respectively. Thus, syn-
tax element partitions provides 2 to 4x reduction in coding penalty relative to these other

approaches.

Area Cost

Implementations for parallel H.264/AVC slices and entropy slices processing require that the
entire CABAC be replicated which can lead to significant area cost. An important benefit to
syntax element parallelism is that the area cost is quite low since the FSM used for context
selection, and the context memory do not need to be replicated. Only the arithmetic coding
engine needs to be replicated, which accounts for a small percentage of the total area. Syntax
Element Partitions (SEP) FIFOs need to be included to synchronize the partitions.# Overall
the SEP engine area is approximately 70% larger than the estimated® H.264/AVC CABAC
area as shown in Fig. 3-10. To achieve the throughput in Table 3.5, H.264/AVC slices and
entropy slices require a 3x replication of the CABAC area, whereas syntax element partitions
only increase the area by 70%.

Note that the area cost for SEP may be even less than 70% if we account for storage
of the last line data. If the last line data is stored in an on-chip cache, then it also needs
to be replicated for the H.264/AVC and entropy slices approach which results in significant

additional area cost. Alternatively, the last line data can be stored off-chip but this will

4The architecture of SEP will be presented in Section 4.3.

5The H.264/AVC CABAC was not implemented. Its area was estimated from the synthesis results of the
syntax element partitions implementation. We assume that the area of the control and context selection
remain the same for both implementations. The areas of the arithmetic decoder and read bitstream control
are divided by 5 for the H.264/AVC CABAC. SEP FIFOs area is not included for H.264/AVC CABAC.
Finally, we assume that the combinational logic in the context memory is primarily due to the muxes for
the read address port. To scale this area, we take the ratio of port-widths of H.264/AVC CABAC and SEP,
1092307 /(l0og239 + l0g259 + log237 + 10g220 + log2146)=0.27, and multiply it by the combinational logic area
of the SEP context memory. The non-combinational logic area (registers) remain the same for both - we
assume that both have 307 contexts (no interlace).
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Table 3.6: Group allocation to partitions.

Mode | MBINFO | PRED | CBP | SIGMAP | COEFF
Low QP 0 0 0 1 2
High QP 0 1 2 2 2

increase the off-chip memory bandwidth. SEP does not require this cache to be replicated,

which either reduces area cost or off-chip memory bandwidth.

Adaptive Bin Allocation for Varying Quantization

There is a fixed overhead of approximately 50 bits per partition that can be attributed to
additional start code prefix, flushing/termination of the partition, and byte alignment bits.
In the previous analysis, each syntax element group was assigned to a different partition.
Certain syntax element groups can be allocated to the same partition, such that only three
partitions are used instead of five. This reduces the fixed overhead per partition and the
number of arithmetic decoding engines (i.e. area cost).

The overall throughput depends on how well the number of bins per partition are bal-
anced. The distribution of the bins per syntax element group changes depending on the
quantization parameter (QP) as shown in Fig. 3-11. To maximize throughput for varying
QP, the allocation of groups to each partition should be adaptive.

A threshold QP is used to distinguish the two QP modes of bin allocation. Table 3.6
shows which partition (0,1,2) each group is allocated to for a given QP mode. Adaptive QP
is only necessary for B and P frames. In I frames, SIGMAP and COEFF tend to dominate
regardless of QP, and thus the low QP mode is always used. The QP threshold can be
different for each sequence or frame and transmitted in the sequence parameter set (SPS)
or picture parameter set (PPS). Smart encoder algorithms can be developed to determine
the threshold that would provide balanced partitions for high throughput. For instance, a

threshold can be set based on the number of non-zero coefficients.

Fig. 3-12 shows the throughput impact of adaptive syntax element partitioning over
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Figure 3-11: Average bin distribution per frame.

serial H.264/AVC CABAC determined from simulations under common conditions [34] using
modified JM12.0 software. The average throughput is increased from 1.72x to 2.41x with
adaptive QP. For most of the sequences, the QP threshold should be set somewhere between
27 and 32. However, for the shuttle sequence, the QP threshold should be between 22 and
27.

Achieving Additional Parallelism

To reach bin-rate in the Gbins/s range, syntax element partitions can be combined with the
other approaches presented in Section 3.2 to achieve additional throughput at lower cost. For
instance, a 6x throughput increase can be achieved by combining syntax element partitions
with 4 entropy slices, which results in better coding efficiency and lower area costs than just
using 8 entropy slices or 8 H.264/AVC slices as shown in Fig. 3-13. The slice and/or partition
that has the most number of bins in a frame dictates the number of cycles required to decode
that frame. Thus, the throughput improvement in Fig. 3-13 is determined by comparing the
total number of bins in the frame with the slice and/or partition that has the most number

of bins in that frame.
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Figure 3-12: High QP (blue); Low QP (orange). Sequences (left to right): bigships, city,
crew, night, and shuttle
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Figure 3-13: Coding efficiency vs. throughput for (1) H.264/AVC slices, (2) entropy slices
and (3) entropy slices with syntax element partitions. Sequence bigships (QP=27) [34].
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3.3.3 Interleaved Entropy Slices (IES)

To achieve additional throughput improvement, the previous approach (as well as bin par-
allelism) can be combined with slice parallelism such as entropy slices. As mentioned in
Section 3.2.4, entropy slices can undergo independent entropy decoding in the ’front-end’ of
the decoder [33]. However, to achieve better coding efficiency than fully independent slices
(i.e. H.264/AVC slices), there remains dependencies between the entropy slices for spatial
and motion vector prediction in the 'back-end’ of the decoder.

In the entropy slice proposals [75-77], the spatial location of the macroblocks allocated
to each entropy slice is the same as in H.264/AVC (Fig. 3-14), i.e. contiguous groups of
macroblocks. Due to the existing dependencies between entropy slices, back-end processing
of slice 1 in Fig. 3-14 cannot begin until the last line of slice 0 has been fully decoded when
using regular entropy slices. As a result, the decoded syntax elements of slice 1 need to be
buffered as shown in Fig. 3-15, which adds to memory costs - on the order of several hundred
megabytes per second for HD. In this work, we propose the use of interleaved entropy slices
where macroblocks are allocated as shown in Fig. 3-16, i.e. for two slices, even rows are
assigned to one slice, while odd rows are assigned to the other. Within each slice, the raster

scan order processing is retained. Benefits of interleaved entropy slices include

. cross slice context selection
. simple synchronization

1
2
3. reduction in memory bandwidth
4. low latency

5

. improved workload balance

In interleaved entropy slices, as long as the slice 0 is one macroblock ahead of slice
1, the top-macroblock dependency is retained, which enables cross slice context selection
during parallel processing (i.e. spatial correlation can be utilized for better context selection)
resulting in improved coding efficiency. This is not possible with regular entropy slices.

Synchronization between entropy slices can easily be implemented through the use of

FIFOs between the slices (Fig. 3-17). Furthermore, both the front-end entropy processing
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Figure 3-14: Macroblock allocation for entropy slices [75-77].
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slice 0 x.P_eﬂf.f,.a syntax (prediction, decoded
r—— ;
encoded Entropy elements mc\lf. Erlaniforr)n, macroblocks
i 1 eblocking
slice 1 Decoder )

Figure 3-15: Decoded syntax elements need to be buffered.

Figure 3-16: Macroblock allocation for interleaved entropy slices.
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Figure 3-17: Interleaved Entropy Slices architecture example for 2x parallel decoding. Note
that the entire decode path can be parallelized.

and the back-end prediction processing can be done in this order (i.e. the entire decoder path
is parallelized), which allows the decoded syntax elements to be immediately processed by the
back-end. Consequently, no buffering is required to store the decoded syntax elements, which
reduces memory costs. This can have benefits in terms of reducing system power and possibly
improving performance (by avoiding read conflicts in shared memory). In Appendix C, we
examine how using interleaved entropy slices to parallelize the entire decoder path impacts

the overall throughput and power of the entire video decoder.

The number of accesses to the large last line buffer is reduced for interleaved entropy
slices. In Fig. 3-16, the last line buffer (which stores an entire macroblock row) is only
accessed by slice 0. Since slice 0 is only several macroblocks ahead of slice 1, slice 1 only
needs to access a small cache, which stores only a few macroblocks, for its last line (top)
data. Thus out of N slices, N-1 will access small FIFOs for the last line data, and only
one will access the large last line buffer. If the last line buffer is stored on-chip, interleaved
entropy slices reduces area cost since it does not need to be replicated for every slice as with
H.264/AVC and entropy slices. Alternatively, if the last line buffer is stored off-chip, the
off-chip memory bandwidth for last line access is reduced by 1/N.

Unlike ordered entropy slices, interleaved entropy slices retains raster scan order process-

ing within each entropy slice which provides a favorable memory access pattern for caching
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techniques that enable further bandwidth reduction. Finally, in interleaved entropy slices
the number of bins per slice tends to be more equally balanced; consequently, a higher

throughput can be achieved for the same amount of parallelism.

At the limit, when the number of entropy slices equals the number of macroblock rows
in a frame, interleaved entropy slices process macroblocks in the same order as regular
entropy slices. In this case, a minimum latency in macroblocks of D=2 (as defined in [77]) is
achieved. Another benefit of interleaved entropy slices is that its latency D is always equal to
2 regardless of the number of slices per frame. Thus, interleaved entropy slices are suitable

for low latency applications (e.g. video conferencing).

Coding Efficiency and Throughput

We measured the throughput of interleaved entropy slice alone as well as in combination
with syntax element partitions, which we call the MP-CABAC. Note that syntax element
partitions can also be combined with any of the other entropy slice proposals. Fig. 3-18
compares their coding efficiency and throughput against regular and ordered entropy slices
as well as H.264/AVC slices. Table 3.7 shows the coding efficiency across various sequences
and prediction structures for throughput increase (speed up) of around 10x over serial 1
bin/cycle H.264/AVC CABAC. MP-CABAC offers an overall average 1.2x, 3.0x, and 4.1x
coding penalty (BD-rate) reduction compared with ordered entropy slices, entropy slices,
and H.264/AVC respectively. Data was obtained across different degrees of parallelism and
plotted in Fig. 3-18. The throughput provided in Fig. 3-18 is averaged across five sequences,
prediction structures (Ionly, IPPP, IBBP) and QP (22, 27, 32, 37). Note that the coding
penalty should not exceed 16% since there would not longer be any coding advantage of
CABAC over CAVLC.

To account for any workload imbalance, the slice with the largest number of bins in a
frame was used to compute the throughput. The BD-rates for entropy slices and ordered
entropy slices are taken directly from [77]. Since the macroblock allocation for these proposals

are the same, the workload imbalance should also be the same. The workload imbalance was
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measured based on simulations with JM12.0. The number of bins for each macroblock and
consequently each entropy slice was determined and the throughput was calculated from
the entropy slice in each frame with the greatest number of bins. Total number of bins
processed by MP-CABAC, interleaved entropy slices, entropy slices and ordered entropy
slices are the same; however, the number of bins for the H.264/AVC slices increases since the
prediction modes and consequently syntax elements are different; this impact is included in
the throughput calculations.

It should bve noted that the coding efficiency for entropy slices and ordered entropy slices
was obtained from implementations on top of the KTA2.1 software, which includes next
generation video coding tools, while their throughput and the coding efficiency/throughput
of interleaved entropy slices and MP-CABAC were obtained from implementations on top
of the JM12.0 software, which contains only H.264/AVC tools. This accounts for the slight
discrepancy in coding efficiency between the ordered entropy slices and interleaved entropy
slices at 45x parallelism. In theory, they should be an exact match in terms of both coding

efficiency and throughput.

Area Cost

As in the case of the entropy slices and ordered entropy slices, the area of the entire CABAC
(including the context memory) must be replicated for Interleaved Entropy Slices (IES).
Thus the total CABAC area increases linearly with parallelism as shown in Fig. 3-19. For
the same throughput, interleaved entropy slices require less area increase since it needs fewer
parallel engines due to its better workload balance. Table 3.8 shows that for a 10x throughput
increase over serial 1 bin/cycle CABAC, interleaved entropy slices reduced area cost by
20%, while MP-CABAC reduces area cost by 60%. Furthermore, no buffering is required
to store syntax elements and easy synchronization can be performed with FIFOs between
the interleaved entropy slices. The simplicity of this approach allows the whole decoder
to be parallelized. Note that a significant area cost reduction is achieved for MP-CABAC,

when interleaved entropy slices are combined with syntax element partitions. As mentioned

99



Table 3.7: A comparison of the coding efficiency penalty (BD-rate) versus throughput for
Parallel CABAC proposals. Speed up and BD-rates are measured against serial 1 bin/cycle
one slice per frame H.264/AVC CABAC.

H.264/AVC Entropy Ordered IES only MP-CABAC
slices Slices Entropy (IES + syntax

Slices element

partitioning)

Video BD- | Speed | BD- | Speed | BD- | Speed | BD- | Speed | BD- | Speed
Sequence | rate up rate up rate up rate up rate up

Ionly | bigships | 3.29 | 849 | 1.21 | 861 | 0.38 | 861 | 1.04 | 10.73 | 0.51 9.03
city 3.02 | 11.89 | 0.63 | 12.12 [ -0.01 | 12.12 | 0.81 | 10.28 | 0.43 8.88

crew 847 | 929 | 2.05 | 948 | 0.24 | 948 | 1.80 | 9.32 | 0.97 | 10.24

night 410 | 9.66 | 0.68 | 9.83 |-0.09| 9.83 | 0.62 | 10.65 | 0.37 9.62

shuttle | 7.55 | 880 | 1.97 | 9.17 | 0.84 | 9.17 | 3.34 | 9.58 | 1.81 | 11.42
Average | 5.29 | 9.62 | 1.31 | 9.84 | 0.27 | 9.84 | 1.52 [ 10.11 | 0.82 | 9.85

IPPP | bigships | 5.65 | 9.95 | 569 | 10.31 | 2.01 | 10.31 | 2.37 | 9.91 | 1.91 9.77
city 9.01 | 10.67 | 4.86 | 11.69 | 1.27 | 11.69 | 2.19 | 9.93 [ 1.99 9.73

crew 10.00 | 10.01 | 12.96 | 10.63 | 8.49 | 10.63 | 2.34 | 9.91 | 1.90 | 10.07

night 4.87 | 827 | 2.14 | 850 | 0.56 | 850 | 1.67 | 10.02 [ 1.30 | 10.44

shuttle 195 | 847 | 963 | 884 | 293 | 884 | 5.06 { 996 | 3.99 | 10.70
Average | 8.09 | 9.48 | 7.06 | 9.99 | 3.05 | 9.99 | 2.72 | 9.95 | 2.22 | 10.14

IBBP | bigships | 7.50 | 10.32 | 2.88 | 10.59 | 3.30 | 10.59 | 2.76 | 9.89 | 2.15 9.79
city 11.31 | 11.53 | 5.69 | 12.20 | 1.67 | 12.20 | 2.73 | 10.16 | 2.40 9.83

crew 11.01 | 10.28 | 4.86 | 10.79 | 6.00 | 10.79 | 2.58 | 10.13 | 1.99 | 10.49

night 5,50 | 851 [1296 | 872 | 1.91 | 872 | 227 | 10.13 | 1.61 | 11.14

shuttle | 13.36 | 899 |[13.41| 9.23 | 594 | 9.23 | 568 | 10.09 | 4.68 | 10.39
Average | 9.73 | 9.93 | 8.75 | 10.30 | 3.76 | 10.30 | 3.21 | 10.08 | 2.57 | 10.33
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Figure 3-18: Tradeoff between coding efficiency and throughput for various parallel CABAC
approaches. Coding efficiency and throughput are averaged across prediction structures,
sequences and quantization. Note that the area cost versus throughput tradeoff for the
entropy slices and ordered entropy slices are the same since they have the same throughput.
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Table 3.8: A comparison of features of Parallel CABAC proposals

H.264/AVC | Entropy Ordered IES only MP-CABAC
slices Slices Entropy (IES + syntax
Slices element
partitioning)
Contribution Anchor [76] [77] [35] [35]
Software JM12.0 KTA2.1 KTA2.1 JM12.0 JM12.0
Average BD-rate 7.7% 5.71% 2.36% 2.48% 1.87%
Area Cost 15x 15x 15x 12x 6x
Context Selection No No Yes Yes Yes
across Entropy Slices
Latency (for last 0 0 126 22 6
slice to begin) macroblocks macroblocks | macroblocks
Syntax Element No Yes No No No
Memory BW Cost
MC cache size same same | increase(zig-zag) same same
Minimum Number 1 1 15 1 1
of Slices

earlier, if the last line buffer is stored on-chip, interleaved entropy slices provides additional

area savings since the buffer does not need to be replicated for every slice.

3.4 Standardization Effort

The video standards are required to enable compatibility between encoder and decoders.
The VCEG standards body, which developed H.264/AVC, is currently investigating tools for
the next generation video coding standard, unofficially termed "H.265’. Proposals with tools
which the body identifies as promising are incorporated into their working software known as
KTA. The MP-CABAC was proposed to VCEG in July 2009 [35], and after cross-verification
was adopted into the software in November 2009. The software was released to the public
in March 2010 as KTA2.7 [79]. As part of this effort, the MP-CABAC had to demonstrate
compatibility with other tools deemed promising for the next generation standard. This

includes tools such as

102



~@=-H.264 SLICES =#~ENTROPY =#=ORDERED ENTROPY =»=|ES =e=MP-CABAC
50

45

40

35

30

25

Area Cost

20

15

10

0 5 10 15 20 25 30 35
Throughput

Figure 3-19: Area cost versus throughput tradeoff for the various parallel CABAC ap-
proaches.
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3.5

enhanced adaptive interpolation filter

mode-dependent transform customization for intra coding
high precision filter

extended macroblock size

rate-distortion optimized quantization

new offset for weighted prediction

quadtree-based adaptive loop filtering

competition for motion vector prediction

Summary and Conclusions

In this chapter, the Massively Parallel CABAC (MP-CABAC) algorithm was presented which

leverages both syntax element and slice parallelism. MP-CABAC involved reorganizing the

data (syntax elements) in an encoded bitstream such that the bins (workload) can be dis-

tributed across different parallel processors and multiple bins can be decoded simultaneously

without significant increase in coding penalty and implementation cost.

Benefits of the MP-CABAC include

. high throughput
. low area cost

. good coding efficiency

1
2
3
4.
5
6
7

reduced memory bandwidth

. simple synchronization and implementation
. low latency

. enables full decoder parallelism

For a 2.7x increase in throughput, syntax element partitions were shown to provide

between 2 to 4x reduction in coding penalty when compared to slice parallel approaches,

and close to 2x reduction in area cost. The reduction in coding penalty can be attributed to

the fact that, unlike slice parallelism, the probability estimate of the contexts is not degraded

by breaking the frame into syntax element partitions. The reduction in area costs is due to
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the fact that, unlike slice parallelism, the context memory and context selection do not have
to be replicated for syntax element partitions. When combined with interleaved entropy
slices to form the MP-CABAC, additional throughput improvement can be achieved with
low coding penalty and area cost. For a 10x increase in throughput, the coding penalty
was reduced by 1.2x, 3x and 4x relative to ordered entropy, entropy and H.264/AVC slices
respectively. Over a 2x reduction in area cost was achieved. The impact of IES on the overall
decoder power and performance was also presented. Finally, the MP-CABAC was adopted
into the KTA software, where it showed compatibility with other tools being considered for

"H.265’.

105



106



Chapter 4

Architecture of Massively Parallel

CABAC

This chapter describes the architecture of the MP-CABAC and demonstrates how joint opti-
mization of algorithm and architecture can improve performance and reduce area with little
to no coding penalty. The use of data and clock gating techniques to reduce power consump-
tion will be described. In cases where algorithm changes are required, coding efficiency costs
are evaluated.

Note that while both syntax element partitions and interleaved entropy slices are sup-
ported in the architecture, bin parallelism and adaptive bin allocation are not included in

the implementation.

4.1 Data Structure

Fig. 4-1 shows the structure of the encoded data which describes the frames in the video
sequence. The encoded bitstream is generated using the MP-CABAC algorithm described in
Chapter 3. General information pertaining to the video sequence and frame are transmitted
at the beginning of the bitstream, before any macroblock specific information is sent, as in

the case of H.264/AVC [26]. Specifically, the SPS is transmitted which describes sequence
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Figure 4-1: Data structure of the encoded bitstream with MP-CABAC. In this example,
four IES are used per frame.

related information, such as dimension of the frame in macroblocks, the chroma format (e.g.
4:2:0), etc. The SPS is followed by PPS which describes the properties of the different frames
(pictures) in the sequence, such as the number of slices per frame, the entropy coding mode
of the frame, etc. Rather than transmitting this information in every slice, the slice header
will simply contain an index that points to the stored PPS, and each PPS points to a stored
SPS.

For the MP-CABAC, each frame is composed of several IES and each IES is composed of
five SEP. A 32-bit startcode is inserted at the beginning of each partition to enable the parser
to access any partition within the bitstream. The slice header information, such as slice type
(I, P, B), slice quantization, etc., is inserted at the beginning of the MBINFO partition. The

partitions can then be distributed across several engines to be processed in parallel. Fig. 4-2
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Figure 4-2: Top level architecture of MP-CABAC. Joint architecture/algorithm optimiza-
tions were performed to speed up the AD and reduce the area of the last line FIFO.

shows the top level MP-CABAC architecture used to decode the data structure in Fig. 4-1.
The following sections will discuss how several arithmetic decoders (AD) were connected
through FIFOs to form a slice engine, and how these slice engines were connected through
FIFOs to form the MP-CABAC. Joint architecture/algorithm optimizations were performed
to speed up the AD and reduce the area of the last line FIFO.

4.2 CABAC Engine

The CABAC engine is used to decode bins from encoded bits and map the bins to syntax
elements which describe how to reconstruct the video sequence. The main steps in the
CABAC engine can be grouped into two modules: context selection! and binary arithmetic
decoder. Fig. 4-3 shows the connections between these two modules.

To decode a bin, the CABAC engine uses its context selection module to determine the

appropriate context model, and sends its probability to the binary arithmetic decoder. A

1We have included de-binarization in the context selection module.
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Figure 4-3: Main steps in CABAC decoding
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total of 307 context models are used in the MP-CABAC.?2 The context model is identified

by its context index, which is computed based on several factors:

1. slice type (I, P, B)

2. syntax element (e.g. coefficient, motion vector, mb_type, etc.)

3. bin position (binldx) within the syntax element codeword

4. properties of neighboring left and top macroblocks (e.g. type of prediction - in-
tra/inter)

5. block type (e.g. luma/chroma, AC/DC, 4x4/8x8/16x16)

These properties enable bins with correlated probabilities to be grouped together and share

the same context model.

The current probabilities of the context models are stored in memory. The probabilities
are represented by a 7-bit value (6-bits for the state, and 1-bit for the MPS). Once the
context model has been selected, its probability is read from the context memory using the

context index as the address.

The arithmetic decoder uses the probability to divide the range into two intervals (the
range of LPS, rLPS, and the range of MPS, 7MPS) compares the offset to the intervals, and
makes a decision about the decoded bin. It then updates and renormalizes the range and

sends the updated context probability back to the context memory.

The decoded bin is fed back to the context selection module, where the de-binarizer maps
the decoded bin to the syntax element which is then used to determine which context model
should be used next. The offset is updated with new bits from the encoded bitstream based
on the number of bits shifted during the range renormalization.

Various architecture and algorithm optimizations were applied within each of the two
modules. In the cases where the optimizations requires modifications to the algorithm,
simulations were performed under common conditions to measure the impact on coding

efficiency.

2For the MP-CABAGC, the number of contexts is reduced from 468 to 307 since interlaced is unlikely to
be supported in the next generation standard.
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4.2.1 Context Selection

An FSM is used to select the appropriate context model for each bin based on properties
such as slice type, syntax element, etc. The FSM keeps track of the state information such as
current syntax element, binldx, number of decoded syntax elements in current macroblock,
etc. It also performs de-binarization to map the bins to a syntax element. Based on the
state of the FSM, the address of the context (i.e. context index) is computed and its current

state (and MPS) is read from the context memory.

Pipelining

Pipelining is a popular technique used to increase performance by reducing the critical path
delay and increasing concurrency. It involves breaking up the datapath into several stages
that can operate concurrently at a higher frequency [17]. The feedback loop in the CABAC
engine makes it challenging to pipeline.

In this work, we propose pipelining the CABAC engine as shown in Fig. 4-3, such that
context selection for the nert bin can be performed at the same time as the arithmetic
decoding of the current bin. However, the context index of the next bin depends on the value
of the current bin being decoded. To address this data dependency, while the arithmetic
decoder (stage 2) is decoding the current bin, the two context candidates for the next bin
are computed by the context selection module (stage 1). The power overhead of computing
the additional context candidate is around 14%.2 Once the current bin is decoded, it is used
to select between the two context candidates for the next bin. The context index of the next
bin is compared with the context index of the current bin. If they are the same, then the
updated context state is used for the next bin. Otherwise, the context state is read from
the memory; renormalization and de-binarization are performed at the same time. Fig. 4-4
shows the interaction between the two pipeline stages that is required due to the feedback

loop.

3Post-synthesis simulations show that 24% of the total power goes towards the context calculation for
two candidates. We assume that this power is reduced by half if only one context is calculated. Thus the
total overhead of the additional context calculation is 1-100/(100-24*0.5)=13.6%.
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Figure 4-4: Pipelining CABAC engine to speed up performance. Connections between the
two pipeline stages required due to feedback loop are highlighted in red.

Pipelining the CABAC in this manner reduces its critical path by approximately 40%.
The area costs for the additional context candidate computation logic is only around 1.5

kgates, which is less than 3% of the total CABAC engine area.

Modified mvd Context Selection

To make use of the spatial correlation of neighboring pixels, context selection can depend on
the values of the top and left blocks. A last line buffer is required in the CABAC engine to
store information pertaining to the previously decoded row. The depth of this buffer depends
on the width of the frame being decoded which can be quite large for high resolution (e.g.
4kx2k) sequences. The bit-width of the buffer depends on the type of information that needs
to be stored per block or macroblock in the previous row. We propose reducing the bit-width
of this data to reduce the overall last line buffer size.

Specifically, we propose modifying the context selection for motion vector difference
(mvd). mvd is used to reduce the number of bits required to represent motion informa-
tion. Rather than transmitting the motion vector, the motion vector is predicted from its
neighboring 4x4 blocks and only the difference between motion vector prediction (mvp) and

motion vector (mv), referred to as mvd, is transmitted.
mvd = mv - mvp
A separate mvd is transmitted for the vertical and horizontal components. The context
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Figure 4-5: Last line dependencies for mvd.

selection for mvd depends on its left (A) and top (B) 4x4 neighbors as shown in Fig. 4-5.

Consequently, a last line buffer is used to store the mvds of the previous line.

In H.264/AVC, neighboring information is incorporated into the context selection by
adding a context index increment (typically between 0 to 3) to the calculation of the context
index. The mvd context index increment, Xmuq, is computed by taking the sum of the

neighboring mvd and comparing it to thresholds of 3 and 32 as shown below [67].

0, if e(A,B,cmp)<3
Xmva § 1, if 3<e(A,B,cmp)<32
2, if e(A,B,cmp)>32

where e(A,B,cmp)=|mvd(A,cmp)|+|mvd(B,cmp)|; A and B represent the left and top neigh-
bor and cmp indicates whether it is a vertical or horizontal component. Fig. 4-6a illustrates
how the above equation maps the mvd of A and B to different x.q. In a given slice, all
blocks surrounded by large mvds will use the same probability model (xmwa=2). Blocks

surrounded by small mvds will use another probability model (Xmwa=0 or Xmwi=1)-

With the upper threshold set to 32, a minimum of 6-bits of the mvd has to be stored per
component per 4x4 block in the last line buffer. For 4kx2k, there are 1024 4x4 blocks per

row, which implies 12,228 bits are required for mvd storage.

To reduce the memory size, rather than summing the components and then comparing
to a threshold, each component can be separately compared to a threshold and their results

can be summed.
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Figure 4-6: Context increments xm.q for different mvd in top (A) and left (B) neighboring
4x4 blocks.

i.e. Xmed = (|mvd(A,cmp)| >16) + (Jmvd(B,cmp)| >16) or equivalently,

’ 0, if |mvd(A,cmp)| <16 AND |mvd(B,cmp)| <16

1, if (jmvd(A,cmp)| <16 AND |mvd(B,cmp)| >16) OR
(jmvd(A,cmp)| >16 AND |mvd(B,cmp)| <16)

| 2, if |mvd(A,cmp)| >16 AND |mvd(B,cmp)| >16

Xmud S

Fig. 4-6b illustrates how the above equation maps the mvd of A and B to different x,,,4-
A single threshold of 16 is used. Consequently, only a single bit is required to be stored
per component per 4x4 block; the size of the last line buffer for mvd is reduced to 2,048
bits. This reduces the overall last line buffer size of the CABAC by 50%, from 20,480 bits
to 10,240 bits. The coding penalty of this approach was verified across common conditions

to be 0.02%.
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4.2.2 Binary Arithmetic Decoder

Fig. 4-7 shows the architecture of the binary arithmetic decoder. The inputs to the arithmetic
decoder include current context state (and MPS), next bits, number of next bits (previous
shift), and decoding mode. The outputs include updated context state (and MPS), decoded
bin and number of shifted bits due to renormalization. The range and offset are stored as
internal states. CABAC uses three arithmetic coding modes: regular, bypass, and terminate.

Data gating is a well known technique used to reduce switching activity when there are
multiple modes. It involves inserting registers at the inputs to some combinational logic such
that the inputs only switch when the outputs of the combinational logic will be used. It was
used in the binary arithmetic decoder to reduce switching in the regular mode logic when
either the bypass or terminate mode was being used. While the switching in the regular mode
logic decreased by 12%, the control for the additional registers caused additional switching
and the registers themselves increased the number of nets being switched on the clock path.
As a result, the overall reduction in switching activity was less than 7%.

Bypass and terminate do not require context models and thus have a simpler data flow.
Their architectures are shown in Fig. 4-8 and Fig. 4-9. The critical path lies in the regular
mode as it uses the context models. Fig. 4-10 shows the architecture for the regular mode
in the binary arithmetic decoder. This architecture was mapped directly from the data flow
diagram, shown in Fig. 4-11, taken from the H.264/AVC standards document [26]. Four
optimizations were performed on the architecture to increase concurrency and shorten the
critical path as shown in Fig. 4-12. The aggregate impact of these optimizations was a 22%

reduction in the critical path delay. We will now discuss each of these optimizations in detail.

(1) Range Comparison Reordering

In H.264/AVC, the rMPS is compared to the offset to determine whether the bin is MPS or
LPS. The rMPS interval is computed by first obtaining rLPS from a 64x4 LUT (using bits
[7:6] of the current 9-bit range and the 6-bit probability state from the context) and then

subtracting it from the current range. The LUT contains constant values and is implemented
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Figure 4-10: Binary arithmetic decoding architecture mapped directly from data flow in
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Figure 4-11: Data flow in binary arithmetic decoder.
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Figure 4-12: Binary arithmetic decoding architecture optimized for reduced critical path
delay. Highlighted optimizations include (1) Range Comparison Reordering (2) Leading
Zero LUT (3) Early Range Shifting (4) Next Cycle Offset Renormalization

with muxes. Depending on whether an LPS or MPS is decoded, the range is updated with
their respective intervals. To summarize, the range division steps in the arithmetic decoder

are

obtain rLPS from the 64x4 LUT
compute rMPS by subtracting rLPS from current range

compare rMPS with offset to make bin decoding decision

- W b=

update range based on bin decision.

If the offset was compared to rLPS rather than rMPS, then the comparison and subtrac-
tion to compute rMPS can occur at the same time. Fig. 4-13 shows the difference between
the range order of H.246/AVC CABAC and MP-CABAC. The two orderings of the intervals
(i.e. which interval begins at zero, as illustrated in Fig. 4-13a and Fig. 4-13b) are mathemat-
ically equivalent in arithmetic coding and thus changing the order has no impact on coding
efficiency. With this change, the updated offset is computed by subtracting rLPS from offset

rather than rMPS. Since rLPS is available before rMPS, this subtraction can also be done in
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Figure 4-13: Range comparison reordering for critical path reduction.

parallel with range-offset comparison. Changing the order of rLPS and rMPS requires the
algorithm to be modified and is not H.264/AVC standard-compliant (i.e. it is a proposed
modification for the next generation standard). It was verified through simulation that there
is no coding penalty for this change. This optimization accounts for half of the overall 22%

critical path reduction.

(2) Leading Zero LUT

After the range is updated based on the bin decision, renormalization may be necessary
for the range and offset due to the use of finite bit precision. Renormalization involves
determining the number of leading zeros (LZ) in the updated range and shifting the range
accordingly (Fig. 4-14). LZ can be determined through the use of muxes in the form of a

priority encoder. However, using a serial search for the first non-zero can increase the critical

path.
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Figure 4-14: Range renormalization flow.

If an LPS is decoded, the updated range is rLPS and renormalization must occur. Recall
that rLLPS is stored in a 64x4 LUT implemented with muxes, indexed by the probability
state and bits [7:6] of the original range. Since every rLPS can be mapped to a given LZ, an
LZ LUT can be generated that is also indexed by the probability state and original range.
This enables LZ to be determined in parallel with rLPS and reduces the critical path by

avoiding the serial priority encoder.

If an MPS is decoded, LZ can only be determined after the rMPS subtraction. However,
LZ can be quickly determined from the MSB of the updated range rMPS and thus has little

impact on the critical path.

(3) Early Range Shifting

After a decision is made on the decoded bin, and LZ is determined, the range is shifted to

the left based on LZ.

The shifting can be implemented using shift registers; however, this approach of moving
one bit per cycle results in up to 7 clock cycles per renormalization (for the minimum range
value is 2). Alternatively, the shifting can be done through the use of a 9:1 mux which can

be done in a single cycle, but may increase the critical path.

To mitigate this, the shifting can be done before the decoded bin is resolved. Specifically,
rLPS is shifted in parallel with the range-offset comparison and rMPS subtraction described
earlier. TMPS is shifted by a maximum of one, which can be done quickly after the rMPS
subtraction. Once the decoded bin is resolved, the range can be immediately updated with

the renormalized rLPS or rMPS.
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Figure 4-15: The slices engines architecture used to decode SEP in parallel.

(4) Next Cycle Offset Renormalization

Offset renormalization involves a left shift by the same amount based on the LZ of the range,
and new bits are appended to the right. The offset is not used until after rLPS is determined.
Therefore, rather than performing this shift in the current cycle after the bin is resolved, the
shifting operation can be moved to the next cycle where it is done in parallel with the rLPS

look up.

4.3 Syntax Element Partitions Processing

The CABAC engines are mapped to partition engines which are used to decode the bins of the
five different SEP in parallel. This section describes how the CABAC engine is decomposed
into five partition engines, and how these partition engines are connected with FIFOs to

form a slice engine as shown in Fig. 4-15.
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Figure 4-16: Context selection FSM.

4.3.1 Division of the Context Selection FSM

The context selection FSM is broken up into five different partition FSMs, one for each SEP.
Each partition FSM is assigned to a different partition engine. Fig. 4-16 and Fig. 4-17 show
how the FSM is divided amongst the five partitions. In Fig. 4-17, the states of the FSM are
color-coded to indicate how they are mapped to the different partition engines in Fig. 4-15
(MBINFO - red, PRED - purple, CBP - orange, SIGMAP - green, COEFF - blue). The
remaining connections between the partition FSMs were highlighted in the previous chapter
in Fig. 3-8. These dependencies can be managed using SEP FIFOs between each of the
partition FSM. Note that the partition FSMs can be recombined in a hierarchal manner
resulting in an architecture that can easily be reconfigured to be backward compatible to

support H.264/AVC CABAC.

124



mb_skip_flag
E

¥
| transform_8x8_flag |

¥
| refidx 10 |
[ ] )
([ pred_lntra4x4_pred_mode_ﬂag(D pred_intra8x8_pred_mode_flag D r e
! [__refidx 11 ]
| rem_intradx4_pred_mode | rem_intra8x8_pred_mode |

5 i

| intra_chroma_pre_mode ]

A

¥
| coded_block_pattern |

| mb_qp_delta }
¥
coded_block_flag D

. N
1 significant_coeff_flag )
-1 last_significant_coeff_flag

| coeff_level p
=
sign_flaj
SHF B

[ end_of slice_flag |}

Figure 4-17: FSM for SEP. The states of the FSM in Fig. 4-17 are color-coded to map to
the different partition engines in Fig. 4-15 (MBINFO - red, PRED - purple, CBP - orange,
SIGMAP - green, COEFF - blue).
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Table 4.1: Context memory Sizes

Partition Number of Contexts
MBINFO 37
PRED (inter) 20
PRED (intra) 6
CBP 39
SIGMAP 146
COEFF 59
total 307

4.3.2 Distributed Context Memory

The context memory is broken up into smaller memories for each partition as shown in
Table 4.1. Each of these memories is allocated to one of the five partition engines. Due to
the small size of the distributed memories, registers instead of SRAMs were used to store
the context states, and muxes were used to implement the ports. This increased the overall
context memory area by approximately 2x. The smaller memories reduce the read access
time (the worst case is a mux of 146:1 rather than 307:1). However, the area increases by
around 30% due to the additional ports. This difference in area cost was factored into the

estimated context memory area of the H.264/AVC CABAC engine in Fig. 3-10.

4.3.3 SEP FIFOs

As mentioned earlier, the different partitions have dependencies and can be synchronized
using FIFOs. We refer to the group of FIFOs at the input of each partition as their
SEP FIFO. For instance, the SEP FIFO for the COEFF partition transfers the neces-
sary information from SIGMAP (e.g. number of coefficients), such that it can decode
coeff_abs_level minusl and coeff_sign flag. Table 4.2 lists the memory size and num-
ber of read/write ports of each SEP FIFO. The data stored in these FIFOs is described in
more detail in Appendix D. Each SEP FIFO can store up to 4 macroblocks worth of data.
Increasing the FIFO depth can improve the throughput of the slice engine by up to 10% at
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Table 4.2: SEP FIFO sizes

Partition | Size (bits) | Number of ports
MBINFO 28 1
PRED 2276 13
CBP 60 9
SIGMAP 20 3
COEFF 48 3
total 2432 29
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Figure 4-18: Tradeoffs between depth of SEP FIFOs in macroblocks versus improvement in
slice engine throughput and memory size. Throughput results are averaged across parkrun
and bigships sequences with various QP and prediction structures.

the cost of increased memory size. Fig. 4-18 shows the simulated results of this tradeoff.

When a partition’s SEP FIFO is empty, its engine will stall. Custom clock gating was

used to reduce clock power in the stalled engine.

4.4 Interleaved Entropy Slices Processing

The slice engines can be combined to process several IES in a given frame. Fig. 4-19 shows

how the slice engines are connected using FIFOs.
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Figure 4-19: The slices engines are connected using FIFOs to process IES in parallel.

4.4.1 1IES FIFOs

The slice engines are used to process the IES shown in Fig. 4-20. Due to the last line
dependencies, slice 0 must always be one or two macroblocks ahead of slice 1. Similarly,
slice 1 must be ahead of slice 2, and slice 2 must be ahead of slice 3. The slice engines are
synchronized using IES FIFOs with depths of only a few macroblocks. The last line buffer
needs to be inserted between slice engine 0 and 3, such that slice engine 0 can access the
row above after wrapping to the next line as shown in Fig. 4-20. The last line buffer can be
implemented using a FIFO since macroblocks are processed in a sequential order within a

slice.

Three separate FIFOs are used for each slice engine to support the last line dependencies
of partitions MBINFO, PRED and CBP. As a result, each partition engine within the slice
engine can process a different macroblock. Table 4.3 shows the data and bit-width of each

of the IES FIFOs. The bit-width was reduced by half using the mvd context selection
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Figure 4-20: Last line buffer is inserted between slice engine 0 and 3, so that slice engine 0
can access the row above, which was decoded by slice engine 3, after wrapping to the next
line.
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Figure 4-21: Tradeoff between depth of IES FIFOs in macroblocks versus improvement in
throughput based on simulation of bigships QP=27, IBBP, IES=8.

optimization described in Section 4.2.1. When a FIFO is empty, the slice engine will stall.

Custom clock gating was used to reduce clock power in the stalled slice engines.

All IES FIFOs have a depth of 8 macroblocks. The throughput of the connected slice
engines can be improved by increasing the FIFO depth as shown in Fig. 4-21. A depth
of 8 provides a 10% throughput increase over a depth of 4. A throughput increase of an
additional 13% can be achieved by increasing the depth to 64. Each additional macroblock
requires 40-bits. Note that increasing the FIFO depth also increases the critical path since

the delay through the read mux increases as well.
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Table 4.3: IES FIFO sizes

partition
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4.4.2 Row Balancing

The throughput depends strongly on how well the workload is balanced. As mentioned
in Section 3.3.3, one of the benefits of IES is that it offers better workload balance than
entropy slices. However, IES can still have imbalanced workload when the total number of
macroblock rows in a frame is not a multiple of the number of IES. This causes some slice
engines to be idle when the last few rows of the frame are being processed.

To address this, the row assigned to each IES rotates for every frame as shown in Fig. 4-22.

The theoretical throughput improvement can be calculated as follows:

R’ rame
max rows per IES = [f—l (4.1)
Nies :
Nize = Rfame % Nigs (4.2)
. . Nidle

tential 1 th hput = 4.

potential loss in throughpu max Tows per TES X Noms (4.3)
1

throughput improvement = 1 (4.4)

~ potential loss in throughput

where Nigg is the number of IES, Njqy is the number of idle slice engines during processing of
last rows without row balancing, and Rgame is the number of macroblock rows in the frame.
From the above equations, we can see that the throughput improvement of row balancing
depends on the resolution of the frame (i.e. Rgame)-

Table 4.4 shows the calculated throughput improvement for different HD resolutions and
number of IES per frame. Up to a 17% improvement can be achieved using the row balancing

technique.

4.5 Simulation Results

The MP-CABAC architecture was implemented in RTL with 16 slice engines for a total of
80 partition engines. Each slice engine contains a distributed FSM for context selection and

five performance optimized binary arithmetic decoders. A depth of 4 was used for the SEP
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Figure 4-22: Rotate slice engine that process first row in frame to prevent idle slice engines
when the number of rows in frame is not a multiple of the number of IES.

Table 4.4: Throughput improvement from row balancing.

Number Throughput Improvement (%)
of IES | 720p[1280x720] | 1080p[1920x1088] | 4kx2k[4096x2160]
2 2.22 0 0.74
4 6.67 0 0.74
8 6.67 5.88 0.74
16 6.67 17.65 6.67

FIFOs, while a depth of 8 was used for IES FIFOs.

4.5.1 Throughput

Fig. 4-23 shows how the number of decoded bins changes from cycle to cycle. The number
of decoded bins per cycle varies based on the workload balance and dependencies across the
engines.

The workload distribution across partitions is affected by the sequence, QP and prediction
structures. Fig. 4-24 shows the bin per cycle distribution across different sequences, QP and
prediction structures. The average bin per cycle ranges between 2.12 to 2.52 across different
sequences (Table 4.5), 2.13 to 2.58 across prediction structures (Table 4.6) and 2.08 to 2.60
across QP (Table 4.7).

The throughput can be increased by using more IES. As we increase the number of IES
from 1 to 16, the number of bins per cycle increases from 2.52 to 23.72 and 2.16 to 24.50 for
bigships and rally respectively, as shown in Table 4.8 and Table 4.9. For 16 IES per frame,
IBBP and QP=27, MP-CABAC decodes an average of 24.11 bins per cycle. This drops to
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Figure 4-23: Bins per cycle variation for first 20,000 decoding cycles of bigships, QP=27,
IES=16.
Table 4.5: Bins per cycle for different sequences
Sequence | Resolution | Prediction | Bit-rate | QP | Number | Number | Average
Structure | for 30fps of IES | of frames | bins/cycle
[Mbits/s]
bigships 1280% 720 IBBP 0.42 27 1 297 2.52
parkrun 1280x 720 IBBP 1.76 27 1 69 2.12
rally 4096 x 2160 IBBP 9.04 27 1 234 2.16
Table 4.6: Bins per cycle for different prediction modes
Sequence | Resolution | Prediction | Bit-rate | QP | Number | Number Average
Structure | for 30fps of IES | of frames | bins/cycle
[Mbits/s]
bigships 1280x720 Ionly 2.26 27 1 99 2.13
bigships 1280720 IPPP 0.40 27 1 99 2.44
bigships 1280x720 IBBP 0.28 27 1 99 2.58
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Figure 4-24: Bins per cycle distributions for different sequences, QP and prediction struc-
tures.
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Table 4.7: Bins per cycle for different QP

Sequence | Resolution | Prediction | Bit-rate | QP | Number | Number | Average
Structure | for 30fps of IES | of frames | bins/cycle
[Mbits/s]
bigships 1280720 IBBP 1.16 22 1 297 2.08
bigships 1280720 IBBP 0.42 27 1 297 2.52
bigships 1280x720 IBBP 0.18 32 1 297 2.60
bigships 1280x720 IBBP 0.09 37 1 297 2.35
Table 4.8: Bins per cycle for different number of IES for bigships
Sequence | Resolution | Prediction | Bit-rate | QP | number | number average
Mode for 30fps of IES | of frames | bins/cycle
bigships 1280720 IBBP 0.42 27 1 297 2.52
bigships 1280720 IBBP 0.43 27 2 297 4.44
bigships 1280720 IBBP 0.43 27 4 297 7.78
bigships 1280720 IBBP 0.44 27 8 297 13.81
bigships 1280720 IBBP 0.45 27 16 297 23.72

21.28 bins per cycle in the worst case frame of the sequence(i.e. the frame that takes the
maximum number of cycles to decode). The distribution of the bins per cycle are shown for

bigships and rally in Fig. 4-25.

4.5.2 Area Breakdown

The MP-CABAC with 16 slice engines has a gate count of 2,502 kgates after synthesis.
This includes the interface logic and input/output FIFOs that will be discussed in the next
chapter. The context memory and last line FIFO account for 499 and 104 kgates respectively.
Each slice engine has a gate count of 101 kgates. The area breakdown of the MP-CABAC
is shown in Fig. 4-26. Fig. 4-26a shows the area breakdown between the slice engines, the
last line and IES FIFOs, the interface logic and input/output FIFOs. Fig. 4-26b shows the
area breakdown within the slice engine. The data flow control includes logic that computes

the macroblock position of the partitions, determines when to read and write from the SEP

135



80000

70000

60000 -

40000 -
30000

unod apd

>

J

30 35 40 45 50 55 60 65 70 75 80

520 2

0 5 10

bins per cycle

16 (average 23.72 bins per

27, IES=

(a) sequence bigships, 720p, QP

cycle)

2000000

1800000

1600000

1400000 -

1200000 -
1000000 -
800000 -

Junod 3PA

600000

30 35 40 45 50 55 60 65 70 75 80

0

0 5 10

bins per cycle

24.50 bins per cy-

16 (average

27, IES=

(b) sequence rally, 4kx2k, QP=

cle)

Figure 4-25: Bins per cycle distributions for 16 IES per frame.
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Table 4.9: Bins per cycle for different number of IES for rally

Sequence | Resolution | Prediction | Bit-rate | QP | number | number average
Mode for 30fps of IES | of frames | bins/cycle
rally 4096 %2160 IBBP 9.04 27 1 234 2.16
rally 4096 %2160 IBBP 9.04 27 2 234 4.03
rally 4096 % 2160 IBBP 9.05 27 4 234 7.42
rally 4096 x 2160 IBBP 9.07 27 8 - 234 13.52
rally 40962160 IBBP 9.10 27 16 234 24.50

and IES FIFOs and when engines should stall. Fig. 4-26¢ shows the area breakdown across
different partitions. The PRED and SIGMAP partitions consume a significant portion of
the area. The SIGMAP engine area is dominated by the 146 entry context memory. The

PRED engine is dominates by the context selection logic.

4.5.3 Comparison

Table 4.10 shows a comparison of the MP-CABAC with previously published results for
H.264/AVC CABAC. With the exception of [60] which was measured, all results were
reported based on synthesis. Accordingly, the maximum frequency from synthesis as well as
after place and route are reported for the MP-CABAC. Results were simulated at 1.2V in the
nominal process corner. The MP-CABAC provides well over an order of magnitude increase
in bin-rate. The majority of these H.264/AVC CABAC engines exploit bin parallelism,
which typically has a lower area overhead than slice parallelism. To compare this overhead,
or measure how efficiently we use the additional gates, we divide the area by by the bin-
rate. The area efficiency for the H.264/AVC CABAC implementations ranges from 0.09 to
1.42 kgates per Mbins/s . The area increase of the MP-CABAC relative to the increase in
bin-rate is within the same order of magnitude as bin parallelism with an area efficiency of
0.36 kgates per Mbins/s using synthesis result. Note that the reported MP-CABAC area
in Table 4.10 includes the interface logic and FIFOs. If only the slice engine area is used,

then the MP-CABAC has an area efficiency of 0.11 kgates per Mbins/s. The MP-CABAC
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Figure 4-26: Post layout area breakdown of MP-CABAC.
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can be combined with the bin parallelism approaches used in the other H.264/AVC CABAC
implementations for additional throughput improvement. To a first order, the resulting

throughput will be the product of their average bins per cycle.

4.6 Summary and Conclusions

This chapter presents performance, area and power optimizations in the MP-CABAC ar-
chitecture. To increase the performance, we pipelined the CABAC engine to reduce the
critical path by 40%. Several optimizations in the binary arithmetic decoder including range
comparison reordering, leading zero LUT, early range shifting and next cycle offset renor-
malization resulted in an additional 22% critical path reduction. A row balancing technique
was used avoid idle slice engines regardless of the number of rows in a frame.

To reduce area costs, we modified the context index computation for mvd such that the
size of the last line buffer was reduced by 50%. SEP and IES FIFOs were used to manage
dependencies and synchronize the parallel engines. Tradeoffs between area and throughput
for these FIFOs were evaluated. Custom clock gating was used to reduce the clock power of
engines that stalled when their input SEP or IES FIFO was empty.

Finally, this chapter concludes by presenting the RTL simulation and synthesis results for
the MP-CABAC architecture. The performance of the architecture was characterized across
different sequences, prediction structures, QP and number of IES. It was shown that the
MP-CABAC can deliver over 10x increase in performance when compared with H.264/AVC
CABAC implementations when 16 IES are used, which results in a coding penalty of 4.9% at
QP=27 for the bigships sequence. The area breakdown and area efficiency of the MP-CABAC
was also discussed.

The range comparison reordering and modified mvd context selection are key examples
of how minor changes identified during co-optimization of architecture and algorithm can

make a significant impact in increasing performance and reducing area cost.
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Table 4.10: Comparison of results with other published H.264/AVC CABAC implementations. Most results were obtained

from synthesis. LL=last line buffer. *calculated based on values given in the paper. **measured result.

Publication Peak Avg. | Maximum | Bin-rate | Gate Count Memory Proc.
bins/ | bins/ | Frequency | (Mbins/s) (kgates) (bytes) (nm)
cycle | cycle (MHz) [w/ memory]

Yu, TCE, 2005 [71] 2(reg)+ | N/A 149 N/A 39.9% 420 180

1(bypass)

Kim, ISCAS, 2006 [30] (reg) | 0.41 303 124 N/A N/A 180

Yang, ICME, 2006 [81] S(reg) | L24 120 149 37.0[83.2] 504 180

Yi, TCSVT, 2007 [82] 0.25 0.25 225 a7 81.2 662+ 180

11,520 (LL)
Shi, ICCSC, 2008 [83] 1(reg) or | 1.27 200 254 29.0 10,810 180
2(bypass) (includes LL)

Yang, TCSVT, 2009 [84] 2(reg) or | 0.86 105 90 35.0[76.3] 141 180

4(bypass)

Zhang, TVLSI, 2009 [85] 16(reg) 2.27* 45 102 42.0 349 180

Chen, TCE, 2009 [36] S(reg) | 132 233 314 136 1,033 180

Liao, ISCAS, 2010 [87] S(reg) | L.83% 267 483 124 N/A 90

Chuang, 1SSCC, 2010%* [60] | 2(reg) | 1.95 210 410 N/A N/A 90

This Work 80(reg) | 24.11 | 307 (syn) 7,398 1,900.1 4,298+ 65

200 (PR) | 4,822 [2,502.5] | 10,240 (LL)
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Chapter 5

Massively Parallel CABAC Test Chip

This chapter describes the implementation of the test chip used to evaluate the power trade-
offs of the MP-CABAC algorithm and architecture described in the previous two chapters.
In particular, it will address the challenges faced with getting data on- and off-chip for
highly parallel architectures. The test setup will be discussed and the measured results of

the MP-CABAC test chip will be presented.

5.1 Functionality

The top level architecture of the MP-CABAC test chip is shown in Fig. 5-1. The MP-CABAC
test chip supports 5 syntax element partitions with up to 16 interleaved entropy slices;
accordingly, the test chip contains a total of 80 partition engines. Bin parallelism and
adaptive QP allocation were not implemented in the test chip. The partition engines are
based on the 1 bin per cycle CABAC engine described in the previous chapter. Thus, the
test chip can achieve a peak bins per cycle of 80. The last line buffer is sized to support up
to 4kx2k resolution (4096 horizontal pixels).

The key functions in the MP-CABAC test chip include reading encoded bits, distributing
these bits to the parallel engines, decoding the bits to bins, and writing out the decoded

bins. Note that the bitstream parser is not included on the test chip. There are several

141



Test Chip

Input Interface MP-CABAC Output Interface
P R, TR Emm— ~ . i pui = SUNEE TS E WS -~ - 7’ WD I TSI S B N
80 FIFOs
vV J

arrel Shifter

v
A A A
":

Write i 81FIFOs

YVYY VY
Mask

Request

I

y w—

ority Encoder

|
|
|
|
1
Barrel Shifter l 1
1
1
I
I
]

Figure 5-1: Top level architecture of MP-CABAC test chip. MP-CABAC is implemented
with 16 slice engines.

practical issues that must be addressed in the test chip implementation. First, interface logic
is required to share the limited 1/O across the 80 parallel engines. Second, this interface
logic should be placed on a separate voltage/frequency domain to limit its impact on the
power and performance characterization of the MP-CABAC. Finally, the test chip needs to
be reconﬁgurable in order to support a variable number of IES. These challenges as well as

other implementations consideration will be addressed in the following sections.

5.2 Off-chip Interface

This section describes the interface logic used to move the data in and out of the test chip
to feed all 80 partition engines. The number of I/O pads on the test chip is limited by the
perimeter, and consequently area, of the chip. As a result, each engine cannot be directly
connected to the I/O of the chip. The I/O can be shared amongst the engines using a round
robin strategy. Round robin involves checking whether the engines are ready to read encoded
bits (or write decoded bins) in a sequential manner. If engine N receives (or transmits) data

in the current cycle, then in the next cycle we start checking beginning with engine N+1. In
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other words, the engine that most recently made a transfer has the lowest priority. Separate
round robins are used for reading encoded bits and writing decoded bins. Since the engines
need to wait to transfer data to and from the I/O pads, FIFOs are used to buffer their inputs
and outputs. Both input and output FIFOs have a depth of 4.

Fig. 5-2 shows the architecture of the output interface. Its goal is to prevent the output
FIFOs from becoming full. As soon as there is any data in any of the FIFOs, it should try

to write it off-chip. This is achieved using the following steps:

1. The empty signals of the output FIFOs in all 80 engines are monitored.

2. A barrel shifter shifts the empty signals by ptr. ptr indicates which position to start
checking from.

3. The priority encoder searches for the next not empty. incr_ptr indicates its position
relative to ptr.

4. nezt_ptr is computed for the next cycle. The ptr is wrapped in the range of 0 to 79.

5. The FIFO’s index is computed. A read enable signal is sent to that FIFO and its

output is muxed to the test chip’s output FIFO.

Fig. 5-3 shows the architecture of the input interface. The round robin scheme is the
same as the output interface except for several key differences. First, its goal is to prevent
the input FIFOs from becoming empty by monitoring their full signals. This is done for the
input FIFOs to all 80 engines as well as the slice info FIFO. When a FIFO is not full, the
FIFO’s index is sent off-chip to request for data to feed that FIFO. The full signal remains
low during the several cycles needed for the requested data to reach the chip. However, if
several requests are made for the same FIFO and that FIFO only has one available slot,
then deadlock will occur since the FIFO cannot hold any additional requested data, and
this additional data blocks other requested data from reaching their destination. To prevent
deadlock from occurring, each FIFO is limited to one request at a time. The FIFO’s index
is placed in a queue when it issues a request; when the requested data returns to the chip,
the index is removed from the queue. This enables the chip to keep track of which FIFOs

have issued requests that have already gone out, and ignore any subsequent requests from
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Figure 5-2: Round robin control for output of MP-CABAC.

those FIFOs until the requested data has returned.

The input logic steps are summarized as follows:

1.

The full signals of the input FIFOs in all 80 engines as well as the shared slice info
FIFO are monitored.

Check which input FIFOs are in the request queue and ignore (mask) their full signals.
A barrel shifter shifts the full signals by ptr. ptr indicates which position to start
checking from.

The priority encoder searches for the next not full. incr_ptr indicates its position
relative to ptr.

next_ptr is computed for the next cycle. The ptr is wrapped in the range of 0 to 80.
The FIFQO’s index is computed and sent to the request queue. The requested index
is also sent off-chip.

The requested data (encoded bits) is written to the input FIFO with the matching

index. The index is removed from the request queue.
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Figure 5-3: Round robin control for input of MP-CABAC.

Based on the number of I/O pads that can fit on the perimeter of the chip‘, both input
and output FIFOs use a bit-width of 64. 7-bits are required for the FIFO index. Including
reset, clocks, test control and status signals, the test chip has a total of 172 signal I/Os.

The round robin strategy only checks if a FIFO is full or empty. An alternative approach
is to take the fullness (or emptiness) of the FIFOs into account and assign priority based on
remaining available space. This can result in higher throughput, as the FIFOs are less likely
to become full (empty). However, processing multiple bits per FIFO to assign priority would

increase the complexity of the priority encoder, which may increase power consumption.

5.3 Bitstream Control

The arithmetic decoder reads in new bits during offset renormalization. A sliding window
approach, shown in Fig. 5-4a, is used to read these bits from the input FIFO. To account

for the case where the window straddles two entries, the input FIFO allows read access to
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two entries at a time. During normal operation the number of new bits range from 0 to 7
per cycle. When a new slice occurs, the window byte aligns itself and reads in 9 new bits for

the offset. The bitstream control architecture is shown in Fig. 5-4b.

5.4 Configurability

For scalability, the architecture needs to be configurable to support different numbers of IES.
This involves muxing the input to the last line FIFOs as shown in Fig. 5-5. Custom clock

gating was used to reduce the clock power of disabled slice engines.

5.5 Global Signals

Global signals are routed to all slice engines in the test chip (Fig. 5-6). During initializa-
tion the SPS bits are loaded including chroma format_idc, direct_8x8_inference_flag,
width_in mbs, and height_in mbs. The number_of_slice_engines is also sent. The other
global signals are loaded from the slice info FIFO. These signals include context ini-
tialization parameters (cabac_init_idc, sliceQP and slice_type), and slice header info
(transform 8x8_mode_flag, slice_type, num_ref_idx_10_active_minusi and
num ref_idx 11 _active minusl) used by the MBINFO engine. Whenever a frame is com-
pleted, new data is read from the slice info FIFO. At each new frame, the slice info FIFO
sends a new set of parameters to the context initialization table where the initialization

values of all 307 contexts are computed and sent to the slice engines.

5.6 Separate Voltage/Frequency Domains

Certain portions of the interface logic, particularly the movement of data off-chip (i.e. output
interface logic), would not be required if the MP-CABAC was integrated into a full decoder
chip. Consequently, separate voltage domains are used for the slice engines (i.e. core domain)

and the interface logic (i.e. interface domain) for power measurements. Furthermore, the core
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Figure 5-7: A illustration of how bins per cycle and bin-rate changes when core frequency is
increased. The idle time remains the same regardless of core frequency since it is dictated
by the interface bottleneck. However, active time is reduced by 4x since the time per cycle
is reduced. Thus, at higher frequency the proportion of idle cycles to total cycles increases,
which reduced the bins per cycle. However, the time to decode all bins decreases, so the
overall bin-rate increases.

and interface domains are driven by separate clocks to prevent the off-chip interface from
limiting the slice engine frequency. The interface frequency may be limited by the I/O pads
and off-chip components (e.g. FPGA).

Fig. 5-7 illustrates how bins per cycle and bin-rate changes when core frequency is in-
creased. Running the slice engines (core domain) at a higher frequency than the interface
reduces the average decoded bins per core domain cycles. This is due to the fact that more
idle cycles will occur when the input/output interface FIFOs become empty/full. For in-
stance, when both domains run at the same frequency, if the input FIFOs are empty for
one interface cycle, the engines are idle for one core cycle. If the core clock runs at 4x the
frequency of the interface clock, then the engines are idle for four core cycles. Thus, total
number of idle cycles increases. However, the time for each core cycle is shorter due to the
high frequency. When the engines are not idle, they decode the bins at a faster rate, and
thus the overall bin-rate still increases. The overall impact on bit-rate depending on the ratio
between idle and active cycles in the original one frequency scenario. Simulation results in
Fig. 5-8 show that the slice engines can run at a 4x higher frequency than the interface and

achieve a 2.6x increase in bin-rate compared to the case where they use the same frequency.

Asynchronous FIFOs, described in [88], are used to connect the interface and core do-
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Figure 5-8: Impact of increasing the core frequency above the interface frequency on bin-rate
and bins per cycle. (Simulated on bigships, IES=16, IBBP, QP=27)

mains. Fig. 5-9 shows the architecture of the asynchronous FIFO and how it is divided across
voltage domains. Note that the FIFO memory is placed on the voltage domain of the write
clock to prevent setup/hold time violations to the registers. Accordingly, the input FIFO
memory is on the interface domain while the output FIFO memory is on the core domain.
The input and output interface logic also run on separate clocks; however, since there is no
direct connection between the input and output logic, no additional asynchronous FIFOs
are required.

There are a total of 10,304 signals crossing the two voltage domains. Due to routing issues,
it was decided that level converters would not be used between the domains. Consequently,

the difference between the supply voltages should remain in the range of 100 to 200 mV.

5.7 Floorplan

The floorplan of the MP-CABAC is shown in Fig. 5-10. Three levels of hierarchy were used

to place and route the design; going from bottom to top, the levels are slice engine, core
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Figure 5-9: Asynchronous FIFO used between interface and core domain. This figure is
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domain and interface domain. Several steps were taken to ease routing congestion in the
design. Routing in the slice engine was restricted to a subset of metal layers, such that an
entire metal layer could be dedicated to the top level for connections between the engines.
Gates for the the context initialization table and the last line FIFOs were placed in groups

and allocated to specific regions within the core domain as shown in Fig. 5-10.

5.8 Test Setup

The MP-CABAC test chip is verified by feeding it various encoded bits and checking that
the decoded bins were correct. For HD sequences, the encoded bits and decoded bins are
on the order of several tens of megabytes, which requires them to be stored in an off-chip
SDRAM. A Spartan-3 FPGA is used as an interface between the SDRAM and the test chip;
both the FPGA and the SDRAM are located on the Opal Kelly XEM3050 board [89].

Fig. 5-11 shows the connections of the test setup. The test chip is connected to two
Opal Kelly boards; one to provide the encoded bits (input) and the other to read and check
the decoded bins (output). The architecture of the logic on- the input FPGA and output
FPGA are shown in Fig. 5-12 and Fig. 5-13 respectively. The two 16-bit-wide SDRAMs on
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the Opal Kelly boards are used as a single 32-bit-wide memory. Both the encoded bits (or
decoded bins) and their corresponding FIFO indices are stored in the SDRAMSs. The data
is interleaved by storing four 7-bit FIFO indices in a 32-bit word followed by four 64-bit
entries which are stored as eight 32-bits words in the SDRAM. Separate clocks are used for
the SDRAM control logic and the rest of the FPGA (interface) logic; the SDRAM is clocked
at a higher frequency since it deals in increments of 32-bits, while the rest of the FPGA

operates on 64-bits.

The large number of I/O pads and the pad to chip area ratio significantly limited the
packaging options. Details on the packaging challenges and the bonding diagram can be

found in Appendix F.
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5.9 Results and Measurements

The MP-CABAC test chip, shown in Fig. 5-14, was implemented in 65-nm CMOS. A sum-
mary of the chip statistics is shown in Table 5.1. The power was measured when performing

real-time decoding of various 720p bitstreams with different number of IES (Table 5.2).

Simulations of the test chip at 0.9V indicate that it should support a core frequency up
to 114 MHz and an interface frequency up to 90 MHz; however, the chip was tested at a
maximum core and interface frequency of 67.2 MHz at 0.9V. This reduction in frequency
was caused by the delay of the off-chip level converters and I/O pads of the test chip and
the FPGA.

For simplicity, the interface logic on the FPGA assumes a specific order of FIFO index
requests, which was determined from simulations. When the core and interface clocks are not
aligned, the request order during testing becomes different from simulation. Consequently,
during testing both interface and core clocks where driven by the same external clock to
ensure phase alignment. A more flexible test setup which can adapt to different request
orders can be used to mitigate this sensitivity to clock phase; a fast FPGA may be necessary

to speed up the more complex interface logic.

The MP-CABAC test chip can achieve up to 1,594 Mbins/s at 0.9V. For the bigships
(720p) sequence with QP=27, IBBP, this maps to a real-time (worst-case) frame rate of 1,807
fps and an average frame rate of 9,845 fps across 297 frames with a bit-rate of 146 Mbits/s.
For the rally (4kx2k) sequence with QP=27, IBBP, this maps to a real-time (worst-case)
frame rate of 245 fps and an average frame rate of 382 fps across 234 frames with a bit-rate
of 116 Mbits/s. This is the highest report frame rate for 720p and 4kx2k resolutions. Based
on these results, we can estimate to a first order that the MP-CABAC can achieve around
60 fps for 8kx4k. Frame rates of up to 120 fps are useful for high motion video. The rest

can be traded off for power reduction as discussed in the next section.
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Table 5.1: Summary of MP-CABAC chip implementation.

Video Coding Standard MP-CABAC for "H.265’
Technology 65-nm

Core Area 3.4 mm x 4.2 mm
Logic Gate Count (NAND-2) 2502k

I/O Pads (package) 232 (223-pin PGA)
Supply Voltage L ;[5?8 0\'/9 (}// (()c)ore)
Operating Frequency 9.5 to 67.2 MHz
Core Power Consumption 0.6 to 28.8 mW
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Table 5.2: Measured performance for varying number of IES per frame.

Supply Voltage [V] 0.6 0.7 | 0.8 | 0.9
Frequency [MHz] 5.5 | 18.0 | 42.0 | 67.2
IES—1 Core Power [mW] | 06 | 14 | 32 | 54
Bin-rate [Mbins/s] | 14 | 45 | 106 | 169
IES=2 Core Power [mW] | 0.7 | 1.7 | 40 | 7.7
Bin-rate [Mbins/s] | 256 | 80 | 186 | 298
IES—4 Core Power [mW] | 0.8 | 25 | 6.0 | 11.3
Bin-rate [Mbins/s] | 44 | 140 | 327 | 523
IES—8 Core Power [mW] | 1.1 | 3.5 | 9.2 | 18.0
Bin-rate [Mbins/s] | 78 | 249 | 580 | 928
IES—16 Core Power  mW] | 1.4 | 6.3 | 144 | 28.8
Bin-rate [Mbins/s] | 130 | 512 | 996 | 1594

5.9.1 Tradeoffs

Fig. 5-15 shows the power-performance-coding efficiency tradeoff across the various bit-
streams. The power-performance tradeoff is shown in Fig. 5-16 on a log scale for different
number of IES. As the number of IES increases, the power-performance tradeoff improves.
For instance, for 5 mW, 420 Mbins/s is achieved with 16 IES whereas only 160 Mbins/s
is achieved with one IES, a 2.6x improvement. Alternatively, for 150 Mbins/s, this chip
requires 4.7 mW with one IES and only 1.6 mW with 16 IES, a 2.9x reduction in power.

This improved tradeoff comes at cost of 4.9% in coding efficiency.

The power consumption of the core domain ranges from 0.6 mW at 0.6 V to 28.8 mW at
0.9V when decoding between 14 to 1,594 Mbins/s respectively. The energy per bin is shown
in Fig. 5-17. Increasing the number of IES can reduce the energy per bin to minimum of
10.5 pJ with 16 IES. The leakage energy dominates the energy per bin as we decrease the
number of IES and supply voltage. The leakage could have been reduced by power gating

the disabled slice engines.
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5.9.2 Power Breakdown and Switching Activity

Power breakdown was determined from simulation with the nominal corner, operating at
1.2V at 25°C using the switching activity of bigships (IES=16, QP=27, IBBP). The slice
engines only consume 67% of the total chip power as shown in Fig. 5-18a. The remaining
power is consumed by the last line and IES FIFOs, interface logic and input/output FIFOs.
Within the slice engine, a significant amount of power goes to the arithmetic decoder, context
selection, context memory and the data flow control (Fig. 5-18b). Finally, Fig. 5-18c shows
the power breakdown across partitions. SIGMAP dominates since it decodes the most bins
and must read from a large context memory. Fig. 5-19 shows a breakdown of the leakage
power.

Fig. 5-20 shows the switching activity in different modules of a slice engine in the MP-
CABAC. These values were obtained through gate level simulations of the bigships sequence
over a time interval of 5,000 ns (625 CORE cycles) for a B-frame. Note that the switching
activity in SIGMAP and COEFF engine are high, which is consistent with the fact that
more bins are in the SIGMAP and COEFF partitions.

5.10 Summary

This chapter presents a highly scalable MP-CABAC test chip with 80 parallel engines. The
performance of the test chip can be scaled by adjusting the number of IES, the supply voltage,
and the operating frequency, enabling it to tradeoff power-performance-coding efficiency
depending on the target application. The measured power of the test chip ranges between
0.6 mW to 28.8 mW and can achieve a bin-rate up to 1,594 Mbins/s, for a real-time frame
rate of 1,807 fps for 720p (bigships) or 245 for 4kx2k (rally). A minimum energy per bin of
10.5 pJ can be achieved with 16 IES per frame at a cost of 4.9% in coding penalty. A round
robin scheme was used to transfer data on/off-chip for each of the 80 engines. Custom clock
gating was used to reduce clock power of disabled slice engines when the number of IES is

less than 16. The test setup used to verify and characterize the test chip was also described.
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Figure 5-18: Simulated (post-layout) power breakdown of MP-CABAC.
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Chapter 6

Conclusions and Future Work

This thesis presented several key optimizations that illustrate how parallelism can meet the
power-performance requirements for current and next generation video coding in a cost effec-
tive manner. First, applying parallel architectures to key bottlenecks can increase through-
put; when done carefully, area cost can be kept to a minimum. Second, aggressive voltage
scaling can be used to tradeoff the high throughput for significant power savings. Third, Am-
dahl’s law shows that parallel architectures are not enough; parallel algorithms are necessary
to enabled effective utilization of the available hardware afforded by Moore’s law. Parallel al-
gorithms, designed with parallel architecture in mind, can increase throughput with reduced
area and coding efficiency cost relative to H.264/AVC. These algorithms also enable scalabil-
ity across power-performance-coding efficiency. Finally, joint optimization of algorithm and
architecture enables us to identify minor changes that have a significant impact on increasing
performance and reducing area cost without affecting coding efficiency. While parallel ar-
chitectures and algorithms improve tradeoffs, joint architecture and algorithm optimizations

can provide significant benefits with no tradeoff in cost.

In this thesis, we presented several methods (bin, syntax element, and slice parallelism)
of increasing the CABAC throughput with different costs such as power, coding penalty
and area. Thus, the method should be selected based on the constraints of the application.

For instance, if power is of utmost importance, then syntax element and slice parallelism

165



should be used instead of bin parallelism which requires extra computations for speculation.
Alternatively, if coding efficiency is the focus, then bin parallelism should be used. For area

constrained applications, bin and syntax element parallelism should be use.

6.1 Summary of Contributions

In this section, we will summarize several architecture and algorithm optimizations that

demonstrate the key ideas presented in this thesis.

6.1.1 Parallel Architectures

e Deblocking Filter (DB) and Motion Compensation(MC) were identified as key
bottlenecks that required parallelization in the H.264/AVC decoder. The modified DB
uses four parallel filters for a 2 to 3x throughput improvement, while the modified MC
uses two luma interpolators and four chroma interpolators for a 2 to 4x throughput
improvement. In both DB and MC, luma and chroma components are processed in
parallel. Parallelizing DB and MC only increased the total logic area in the decoder
by 12%.

e Partition and slice engines enable binary arithmetic decoders to operate in parallel.
Each slice engine contains 5 parallel partition engines, and each frame can be decoded
with 16 parallel slice engines. This results in a total of 80 binary arithmetic decoders
that can operate in parallel, which provides a 24.11x increase in throughput relative

to a single decoder. The parallel engines are synchronized using FIFOs.

6.1.2 Parallel Algorithms

e Syntax Element Partitions (SEP) enable bins of different syntax elements to be
processed in parallel. It reduces the coding penalty by 2 to 4x compared to H.264/AVC

for the same 2.7x throughput improvement.
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¢ Interleaved Entropy Slices (IES) enable bins of different entropy slices to be pro-
cessed in parallel. It reduces the coding penalty by 2 to 3x compared to H.264/AVC
for the same 10x throughput improvement.

e Massively Parallel CABAC (MP-CABAC) leverages SEP and IES to provide
high throughput with low coding efficiency and area cost (improved tradeoff). It can
be used in conjunction with bin parallelism for additional increase in throughput. The
algorithm is scalable such that it can be used for various applications. Architectural
considerations such as memory bandwidth, synchronization, area cost, etc. are ac-

counted for in the algorithm design.

6.1.3 Joint Algorithm/Architecture Optimization

¢ Modified mvd Context Selection reduces last line buffer size by 50% at a cost of
0.02% in coding penalty.
e Range Comparison Reordering provides a 11% reduction in the critical path with

no impact on coding efficiency.

6.1.4 Test Chips

Two test chips were fabricated to demonstrate the impact of the aforementioned algorithm
and architectural optimizations.

A low power H.264/AVC video decoder was implemented in 65-nm CMOS that
utilized architecture techniques such as parallelism, pipelining, and domain partitioning to
maximize voltage scaling and power savings, while maintaining performance. Off-chip mem-
ory bandwidth was reduced to address system power. A complete real-time decoding system
was implemented. The test chip can decode HD 720p at 30fps with measured power of 1.8mW
at 0.7 V, which is over 6x lower that previously published results. This can be attributed to
the parallel architectures that enable a high throughput of 1.84 pixels per cycle.

A Massively Parallel CABAC (MP-CABAC) test chip in 65-nm CMOS was de-

signed and implemented with a high performance architecture that can provide scalability
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in three dimensions (power-performance-coding efficiency). Measured performance of 1,594
Mbins/s at 0.9 V is achieved, for a real-time frame rate of 1,807 fps for 720p (bigships) or
245 fps for 4kx2k (rally). Co-optimization of algorithm and architecture enabled additional
speed up with no impact on coding efficiency, and reduction in area with negligible coding
penalty. Additional architectural strategies were used to increase the performance by reduc-
ing critical path and balancing workload across engines. Round robin interface was used to
share the limited I/O across all 80 engines. Custom clock gating was used to reduce the

clock power of the engines.

6.2 Future Work

There are many exciting challenges that lie ahead for next generation video coding.

e Adoption of MP-CABAC into 'H.265°. A new working group, Joint Collaborative
Team for Video Coding (JCT-VC), has recently formed to begin formal standardization
of 'H.265’. Rather than only focusing on coding efficiency, this next-generation coding
standard intends to also address the needs of mobile applications and focus on the
complexity of the video codec algorithms and the energy cost of the video codec circuits.
The MP-CABAC has been submitted in a joint proposal by Texas Instruments and
Massachusetts Institute of Technology [90].

e Fully Parallel CODEC. To evaluate the impact of the MP-CABAC, a fully parallel
codec should be implemented. In addition to an ASIC implementation, this highly
parallel codec could also be mapped to a GPU or a many-core processor.

. Optimz’ze’ MP-CABAC. Additional optimizations of the MP-CABAC should be ex-
plored. For instance, to increase throughput, smart encoding algorithms that adap-
tively map syntax elements to different partitions based on workload can be developed.
To reduce power, syntax elements should be partitioned to exploit low switching ac-
tivity rate (e.g. bins which often have the same context or state would be placed in

the same partition such that the switching in the context selection and memory is

reduced.)
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e Closing the loop on DVFS. To fully leverage the highly voltage-scalable architectures
and maximize the impact of DVFS, effective workload prediction strategies are required
to set the correct voltage and frequency for a given workload.

e Integration of off-chip memory. Off-chip memory bandwidth consumes a significant
portion of the system power. This power can be reduced by leveraging existing
advanced technologies such as System-In-Package, where both separately fabricated
DRAM and decoder die are vertically stacked and connected in a package, and em-
bedded DRAM, where DRAM and decoder are integrated on the same die. Upcoming
technologies include through-silicon via (T'SV), which integrates off-chip memory ver-
tically on top of the decoder die and connecting them through specially fabricated
vias to further reduce interconnect length and power. TSV can also increase available
memory bandwidth since reducing interconnect length enables higher speed.

e Power-Rate-Distortion Optimization. Existing encoders can tradeoff quality for re-
duced power consumption by adjusting motion estimation parameters and intra mode
search [91]. Encoders can also reduce power by extending rate-distortion optimiza-
tion to include encoder power; power-rate-distortion optimization can account for the
encoding power when making a decision on the prediction mode [92]. The difficulty
lies in developing a model that can estimate encoding complexity and power in a fast
and simple way while meeting real-time encoding requirements. A potential variation
of this approach would be to include decoder power in the optimization for broadcast
applications where the energy constraint is more likely to be in the decoder than the

encoder.

e Parallelizing Multiview Video Coding (MVC) and Scalable Video Coding (SVC). The
first drafts of the standards document for Multi-view Video Coding (MVC) for 3-D
video and Scalable Video Coding (SVC) have recently been completed. Both standards
can involve processing multiple streams of data and would benefit from the application
of parallel architectures and low power techniques. MVC and SVC encoding also

continues to be an area of research.
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o Multi-standard CODEC. Video content can now come from a variety of different
sources. As a result, they can be coded in numerous different standards. Support-
ing multiple codecs poses an interesting challenge as it requires a balance between
reconfigurability, power and performance. Furthermore, software/hardware partition-

ing of the codec should be examined.
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Appendix A

Additional Details on CABAC

A.1 Performance Requirements Calculations

It is important to understand the performance requirements for real-timing decoding appli-
cations such as video conferencing. To achieve real-time low-delay decoding, the processing
deadline is dictated by the time required to decode each frame to achieve a certain frames
per second (fps) performance.

The performance requirement of the arithmetic coding engine, and thus operating fre-
quency, is dictated by the rate of the bins that need to be encoded and decoded (i.e. bin-rate),
and not the bits of the compressed data (i.e. bit-rate). While the H.264/AVC standard re-
stricts the bit-rate at each level, there is no equivalent restriction on the bin-rate; instead
the number of bins per frame is restricted. This was done to reduce the complexity of the
rate-control at the encoder.

Table A.1 shows the peak bin-rate requirements for a frame to be decoded instanta-
neously based on the specifications of the H.264/AVC standard [26]. They are calculated by
multiplying the maximum number of bins per frame by the frame rate for the largest frame

size.

Section 7.4.2.10 of the H.264/AVC recommendation [26] limits the maximum number of

binary symbols in a coded picture as follows:
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BinCountsInNALunits<(32/3)*NumBytesInVclNALunits+(RawMbBits*PicSizeInMbs) /32

where BinCountsInNALunits is the coded picture size in bins. NumBytesInVclNALunits
is defined as.the sum of NumBytesInNALunit values for all VCL NAL units of a coded
picture and it is limited for the main profile in Section A.3.1 in [26]:

Y- NumBytesNALunit (n>0)=384*MaxMBPS* (tr(n)-tr(n-1))/MinCR

Maximum value of the BinCountsInNALunits can be computed using the level specific
limits in Table A-1 in [26]. Consequently, the CABAC decoder performance requirement for
a worst case coded picture can be computed by multiplying the BinCountsInNALunits with
the maximum frame rate allowed at a given level.

For high definition (level 3.1 to 5.1) in H.264/AVC, the maximum bin rate ranges from
121 Mbins/s up to 2.11 Gbins/s [26]. To guarantee real-time decoding with no latency, the
CABAC engine must meet this performance. Without concurrency, decoding 1 bin/cycle
requires multi-GHz frequencies, which leads to high power consumption and is difficult to
achieve even in an ASIC. Existing H.264/AVC CABAC hardware implementations such
as [71] only go up to 149 MHz; the maximum frequency is limited by the critical path, and

thus parallelism is necessary to meet next generation performance requirements.

A.2 Bin Parallelism for H.264/AVC CABAC

Bin parallelism is particularly challenging at the decoder due to the strong data dependencies
from bin to bin. For instance, typically the context to be used on a bin depends on the value
of the previous bin. Thus, to decode two bins in parallel, the context for the second bin is
unknown until the first bin has been decoded. Consequently, it is a significant challenge to
decode both bins at the same time, since it is necessary to know which context to use in
order to correctly decode the compressed data. One method of achieving parallelism involves
some speculative computation. This enables the engine to start decoding the second (third,

fourth, etc.) bin before the first bin has fully been resolved. However, speculation requires
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Table A.1: Peak bin-rate requirements for real-time decoding of worst case frame at various
high definition levels.

Level Video Maximum | Maximum Maximum Peak
Resolution Frame Rate | Bit-rate | Bins per frame | Bin-rate
[width x height] [fps] [Mbits/s] [Mbins| [Mbins/s]
3.1 1280 x 720 30 17.5 4.0 121
3.2 1280 x 720 60 25 4.0 242
4.0 1920 x 1080 30 25 9.2 275
4.1 1920 x 1080 30 50 17.6 527
4.2 1920 x 1080 60 50 17.6 1116
5.0 1920 x 1080 72 169 17.6 1261
5.1 1920 x 1080 120 300 17.6 2107

Table A.2: A comparison of the various H.264/AVC CABAC architectures. *Estimated
based on independent simulations of bin distribution

Bins in | Cycles Freq. | Bin-rate [Mbins/sec

Ref. Approach Parallel | per bin Tech. [MHz] | Range [ Avel(age]
71 Precompute 1to3 1 0.18um | 149 | 149 to 447 218*
80 Assume MPS 2 3 0.18um 303 101 to 202 124
[85] | Variable Bin-Rate | 1 to 16 1 0.18um 45 45 to 720 129*

additional computations which may increase power consumption. Furthermore, the critical

path increases with each additional bin, since all computations cannot be done entirely in

parallel (e.g. each bin needs to wait for ‘codIRangeL.PS’ from the previous bin). This reduces

the overall performance improvement that can be achieved. Table A.2 summarizes several

variations of this approach. Note that the reported bin-rates for these approaches are in the

low hundreds of Mbins/s. Additional parallelism is needed to reach the Gbins/s required for

4kx2k.

It is important to note that as the degree of bin parallelism increases, the number of

precomputed values as well as the complexity of the context management increases substan-

tially.
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Precompute In [71], Yu proposes an architecture that decodes one to three bins per cycle.
Specifically, for each possible outcome of the first bin, it precomputes some values necessary
for second bin decoding while the first bin is still begin decoded (Fig. A-3a). Once the first
bin is resolved, the appropriate set of precomputed values is selected, and the second bin
can then be resolved much faster. If the third bin is coded with a bypass mode (i.e. doesn’t
require a context), then it can also begin decoding before the second bin is resolved. This
approach is applied to a subset of the syntax elements. The critical path is increased due to
the additional time for the second bin, and potentially third bin, to resolve. Note that in this
approach, as the number of parallel bins increases linearly, the number of precomputations

and context fetches from memory increase exponentially.

Assume MPS In [80], Kim proposes decoding two bins in parallel by assuming that
the first decoded bin is always the most probable symbol (MPS) (Fig. A-3b). Thus, it only
precomputes one set of values for the second bin while the first bin is still being decoded. This
approach is applied to all syntax elements. The critical path is increased due to the additional
time for the second bin to resolve. The increase is less than [71] though since renormalization
is not required for the second bin when MPS is assumed. However, it produces two bins less
frequently than [71] since it relies on the probability of MPS. Unlike [71], as the number
of parallel bins increases linearly, the number of precomputations and context fetches from

memory also increase approximately linearly.

Variable Bin-Rate In [85|, Zhang extends [80]'s ” Assume MPS” approach to 16 bins
(Fig. A-3c). This is applied to a subset of syntax elements. The authors claim that this
guarantees a fixed bit-rate of decoding, with a variable bin-rate. However, this approach
increases the critical path significantly and the performance becomes quite low if there is a
short string of MPS. Short strings of MPS are much more likely than long strings of MPS as
shown in Fig. A-1. Fig. A-2 shows how the bin-rate will scale with increase number of bins.
We can see that if each addition bin increases the critical path by 7.7%, then the maximum

bin-rate increase of 1.84x is achieved at 5 bins. It is likely that the additional delay per

174



40% 100%
35% r 90%
L 80%
30%
5 - 70% <
e L 60% 3
B £
@ 20% 50% 2
(]
B 2
Z 159 40% £
2 L 30% &
S 10% a
& L 20%
5% L 10%
0% F 0%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Length of MPS String

Figure A-1: Distribution for length of MPS string (averaged across five common condition
sequences). As the length of the MPS string increases, it is less liklely to occur.

bin is greater than this, which would move the peak to the left. Finally, it is important to
note that the bit-rate does fluctuate and is only constant when averaging across a certain
window of time: thus, this approach will have problems meeting performance requirements

if the bit-rate has a large peak.

A.3 Bin Parallelism for '"H.265’ CABAC

The MP-CABAC can be used in conjunction with the bin parallelism to further increase the
throughput. One of the main challenges of bin parallelism occurs at the decoder. Typically
the context to be used on a bin depends on the value of the previous bin. Thus, to decode
two bins in parallel, the context for the second bin is unknown until the first bin has been
decoded. Consequently, it is a significant challenge to decode the second bin at the same
time as the first since it is necessary to know which context to use in order to correctly
decode the compressed data.

Various approaches for bin parallelism in H.264/AVC are presented in Appendix A.2.
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Figure A-4: Conceptual illustration of bin parallel decoding. The first bin is en-
coded/decoded with context A, while the second bin can be encoded/decoded with context
B or C. The range is divided into four intervals rather than two.

Several of these approaches utilize predictive schemes to guess the context of the second bin,
which would still have limited throughput in the worst case. An non-standard compliant
bin parallel scheme is presented in [73]; however, it does not account for the fact that the
context can change for each bin. In [31,74], we proposed an algorithmic approach of enabling
bin parallelism for the next generation standard, which is fundamentally parallel and can

deterministically decode several bins with different contexts at the same time.

Deterministic decoding that accounts for the different contexts is achieved through the
use of conditional probabilities. At any given time, there are only two possible outcomes
for the first bin (one or zero) and thus there are only two contexts that could be used for
the second bin based on the value of the first bin. Let’s assume they are context B and C

respectively. The conditional probabilities of B are C are shown in equations below.

Prg(2™Bin) = Pr(2™Bin|1°Bin = 0)

Prc(2Bin) = Pr(2™Bin|1%Bin = 1)

Table A.3 can be constructed using these probabilities. Rather than dividing the range
into two intervals every cycle, we divide the range into four intervals based on Table A.3.
Consequently, picking one interval based on the offset will decode 2-bins. This form of 2-bin

decoding is illustrated in Fig. A-4.
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Table A.3: Probability table to construct four intervals for 2-bin decode.

1%in | 2"bin | Probability

0 0 PTA(O) X P’I‘B(O)
0 1 P’T‘A(O) X PTB(].)
1 0 PTA(I) X Prc(O)
1 1 P’I‘A(l) X P'r'c(l)

A.3.1 Coding Efficiency and Throughput

This approach has negligible impact on coding efficiency. For a 2-bin per cycle implemen-
tation, the average coding efficiency penalty (BD-rate) was 0.76% relative to H.264/AVC,
with a throughput improvement of 1.79 to 1.98x.

A.3.2 Area Cost

In terms of architecture, the context memory which typically dominates the area does not
need to be replicated; only a decision tree needs to be added to select context B and C. The
arithmetic coding engine also needs to be extended from 9-bit to 14-bits. A true multiplier

can be used to avoid a large look up table.
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Appendix B

Calculating Coding Efficiency

In this thesis, we often compare the coding efficiency of various algorithms. In this appendix,

we will discuss how this metric is computed.

The VCEG standards body provides a set of common conditions under which a set of
reference sequences should be coded in order to compare the coding efficiencies [34] of various
algorithms. There are five 720p HD reference sequences: bigships, city, crew, night, and
shuttle. Details on these sequences can be found in Appendix E. The common conditions

set encoding parameters such as motion estimation search range, QP, GOP size, etc.

To determine the coding efficiency, each of these video sequences is encoded at with
varying QP to create the rate-distortion (RD) curve. The common conditions [34] set by
VCEG uses QP of 22, 27, 32, and 37. The RD-curve shows how the video fidelity, measured
in peak signal-to-noise ratio (PSNR), changes with bit-rate. Fig. B-1 shows an example
RD-curves of CAVLC and CABAC for reference sequence bigships with prediction structure
IBBP. The coding efficiency is measured using the Bjgntegaard ABitrate (BD-rate) [78],
which computes the average difference between the RD-curves. The difference can also be

measured in terms of BD-PSNR. An excel spreadsheet plug-in is provided in [93].

Finally, the reported coding efficiency is typically the average across all five 720p reference
sequences and prediction structures (IBBP, IPPP, Ionly). In the next section, we will provide

the results from experiments comparing the coding efficiency of CABAC and CAVLC.
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Figure B-1: Rate-distortion (RD) curves used to evaluate coding efficiency of CABAC versus
CAVLC for sequence bigships, with IBBP prediction structure. The BD-rate measures the
average difference between the RD-curves. From the above two curves, we can see that
CABAC has better coding efficiency since it provides higher PSNR at the same bit-rate, or
equivalently lower bit-rate at the same PSNR.
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Table B.1: A comparison of the coding efficiency of CAVLC and CABAC in H.264/AVC for
common conditions.

Prediction Structure | Video | BD-PSNR | BD-rate

Ionly bigships -0.5 9.85
city -0.43 7.01

crew -0.41 11.33
night -0.35 5.49

shuttle -0.60 16.03

Average -0.46 9.94

IPPP bigships -0.49 15.95
city -0.42 13.51

crew -0.43 15.08
night -0.37 9.99

shuttle -0.59 16.93

Average -0.46 14.29

IBBP bigships -0.73 25.49
city -0.74 26.68

crew -0.59 21.11

night -0.58 17.27

shuttle -0.97 30.24

Average -0.72 24.16

B.1 CAVLC vs. CABAC for HD

Five 720p video sequences were encoded under common conditions to quantify the impact
of CABAC entropy coding versus CAVLC. The BD-PSNR and BD-rates were computed for
different prediction structures as shown in Table B.1. The CABAC gives between 5.49% to
30.24% improvement in coding efficiency (BD-rate) over CAVLC. The average improvement
is 16.13%.
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Appendix C

Enabling Multi-Core Processing with
IES

In Chapter 2, parallelism was applied at the micro-architecture level. IES enable the entire
decoding path to be parallelized; subsequently, parallelism can be achieved at the core level
by replicating units of the entire decoder, and all units can be used to decode a single video
sequence (Fig. C-1). This is beneficial in terms of minimizing design costs, since it can be
done with existing decoder cores. IES can be used for both CABAC as well as CAVLC.
To demonstrate the impact of IES at the decoder level, the IES approach was applied to
the decoder discussed in Chapter 2. Note that the use of IES renders the decoder non-
standard compliant. An RTL implementation was simulated! across several video sequences
and degrees of parallelism to evaluate its impact on performance and power savings [33].
As the number of IES increases, the operating frequency required to hit a performance
point reduces; this allows the voltage to be lowered resulting in power savings. Fig. C-2
shows the tradeoff between the number of IES and the estimated power savings for a given
performance point (the number of IES on the x-axis will scale for different resolutions/frame
rates). Another benefit of multi-core IES is that the last line buffer does not need to be

replicated across cores. The area cost increases linearly with a slope less than 1 relative to

!The RTL implementation of IES for CAVLC and the subsequent simulations were done by Daniel
Finchelstein
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Figure C-1: Muti-core decoder architecture.

the degree of parallelism as shown in Fig. C-2.

Fig. C-3 shows that the IES approach results in a higher throughput-parallelism trade-
off when compared with other multi-core approaches, namely H.264/AVC slices and frame
parallelism. The higher IES performance can be attributed to better workload balance and

better coding efficiency (i.e. reduces workload since fewer bits need to be processed).
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Figure C-2: Performance of IES multi-core decoding. The power is normalized relative to
a single decoder running at the nominal supply voltage. The area increase assumes caches

make up 75% of the area of a single decoder core and the memory controller takes 23% of
the logic [30].
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Figure C-3: Three different multi-core architectures show nearly-linear performance gains.
The multi-core performance of H.264/AVC slices is slightly lower because of the extra pro-
cessing required by the CAVLC and also the unbalanced slice workload due to uneven image
characteristics across the slices.
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Appendix D

Content of SEP FIFOs

This chapter describes the data stored in each SEP FIFO. Tables D.1, D.2, D.3, D.4, and
D.5 list the data in each FIFO for partitions MBINFO, PRED, CBP, SIGMAP, and COEFF
respectively. The size of the data is also provided along with the frequency with which
the data is accessed (e.g. every slice, macroblock, 4x4 block). Careful effort was made to
reduce the data widths and consequently the entry size of the SEP FIFOs. In hindsight, the
PRED FIFOs could be significantly reduced if the mb_type and sub_mb_type were sent from

MBINFO rather than the number of motion vectors and reference index and their locations.

Table D.1: Input SEP FIFOs to MBINFO partition.

Data Width | Read/Write Frequency

slice_type 2 slice
transform_8x8_mode_flag 1 slice
num_ref_idx_10_gt1 1 slice
num_ref_idx_11_gt1 1 slice
num._ref_idx_10_1t2 1 slice
num_ref_idx_11_1t2 1 slice
direct_8x8_inference_flag 1 slice
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Table D.2: Input SEP FIFOs to PRED partition.

Data Width | Read/Write Frequency
slice_type 2 slice
end_of_slice_flag 1 macroblock
mb_skip_flag 1 macroblock
predType 1 macroblock
Intra_16x16 1 macroblock
transform_8x8_mode_flag 1 macroblock
B_Direct_16x16 1 macroblock
numRefldxL0_perMb 3 macroblock
numRefldxL1_perMb 3 macroblock
numMvdLO_perMb 5 macroblock
numMvdL1_perMb 5 macroblock
block_skip_10 4 4x4 block
block_skip_11 4 4x4 block
block_numORefldxL0 2 4x4 block
block_num1RefldxL0 2 4x4 block
block_ numORefldxL1 2 4x4 block
block_num1RefldxL1 2 4x4 block
block_numOMvdLO 4 4x4 block
block_num1MvdLO 4 4x4 block
block_num2MvdL0 4 4x4 block
block_num3MvdL0 4 4x4 block
block_numOMvdL1 4 4x4 block
block num1MvdL1 4 4x4 block
block_num2MvdL1 4 4x4 block
block_num3MvdL1 4 4x4 block
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Table D.3: Input SEP FIFOs to CBP partition.

Data Width | Read/Write Frequency
slice_type 2 slice

cbp_start_state 2 4x4 block
predType 1 macroblock
CodedBlockPatternLuma 4 macroblock
CodedBlockPatternChroma 2 macroblock
partial_condition_for_transform_8x8_flag 1 macroblock
mb_skip_flag 1 macroblock
end_of_slice_flag 1 macroblock
Intra_16x16 1 macroblock

Table D.4: Input SEP FIFOs to SIGMAP partition.

Data Width | Read/Write Frequency
empty_slice 1 slice
ctxBlockCat 3 4x4 block

last_ctxBlockCat_in_slice 1 4x4 block

Table D.5: Input SEP FIFOs to COEFF partition.

Data Width | Read/Write Frequency
empty_slice 1 slice
ctxBlockCat 3 4x4 block

numCoeff 7 4x4 block
last_ctxBlockCat_in_slice 1 4x4 block

189




190



Appendix E

Video Test Bitstreams

The nine HD video sequences used as test bitstreams in this thesis are described in this

chapter of the appendix.
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Table E.1: Properties of various encoded video sequences used as test bitstreams in this thesis.

Video Resolution | Frame | Common Bit-rate | Encoder | QP PSNR Profile | Chapter
Sequence Rate | Conditions | [Mbits/s] [dB] Used
mobcal 1280x720 30 No 5.4 x264 23,26 n/a baseline 2

26 x264 23,26 n/a baseline 2
parkrun 1280x720 30 No 0.44-4.64 | JM12.0 | 22-37 36./54 high i5
shields 1280x720 30 No 7 x264 23,26 n/a baseline 2

1.16 22 39.13 3,4, 5

L 0.42-0.45 27 36.14 . 34,5

bigships 1280x720 30 Yes 018 JM12.0 35 33.37 high 34 5

0.09 37 30.73 3,4, 5
city 1280x720 30 Yes 0.65-38.91 | JM12.0 | 22-37 | 29.93-38.77 | high 3
crew 1280x720 30 Yes 0.90-18.54 | JM12.0 | 22-37 | 33.85-40.48 high 3
night 1280x720 30 Yes 1.10-36.17 | JM12.0 | 22-37 | 30.81-39.45 high 3
shuttle 1280x720 30 Yes 0.37-11.77 | JM12.0 | 22-37 | 35.46-42.70 high 3
rally 4096x2160 30 Yes 9.04-9.10 JM12.0 27 41.78 high 3,4,5
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Figure E-1: Screen captures of video test bitstreams.
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Appendix F
Packaging for MP-CABAC

Due to the pad to chip area ratio, a 223-pin pin grid array (PGA) package was used. A QFP
(quad flat package) could not be used due to the large cavity size (which occurs when the
number of pins exceeds 208) resulting in long bond wires (lengths should be no more than
150-200 mils). A ZIF (zero insertion force) socket is used. The bonding diagram is shown
in Fig. F-1. The 232 pins are reduced to 223 pins by sharing several power and ground

connections.
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Figure F-1: Bonding diagram for the 223-PGA package. The package has two rings. The
internal ring contains the power and ground pads, some of which are shared to reduce number
of pins. The downbonds to the package substrate are highlighted in red.
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