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Abstract 

Precipitate coarsening and grain growth are ubiquitous in austenite and its decomposition 
products. Grain growth in austenite and ferrite is limited by particle pinning and by solute 
segregation at grain boundaries. Progress has been made in the modeling of grain growth and 
some experimental verification has been made. 

Particulate phases are important in ferrite and austenite, both for strengthening and for grain 
size control. The theories for particle coarsening are in general agreement with one another and 
with experimental data.   

Introduction 

Steel has played a key role in human societies since its discovery some 3500 years ago. 
Certainly the early blacksmiths observed the effects--mostly deleterious--of overheating of steel 
during forging. The most notable effects were probably (in today's terminology) the loss of 
hardness with the coarsening of carbides produced during tempering and the deleterious effects 
of overheating austenite on the properties of subsequent phases. 

Coarsening and grain growth both refer to the parasitic surface energy driven evolution of a 
system of particles to larger mean sizes.  Coarsening refers to the evolution of a system of 
precipitate particles embedded in a matrix.  In grain growth the particles abut one another and 
are not separated by a matrix phase. 

This paper deals with grain growth in austenite and ferrite and the coarsening of compound 
precipitates. The latter include both temper carbides and other compounds used in 
strengthening and in control of grain size in austenite and ferrite. 

The complexities of coarsening and grain growth theory are more appropriate in a paper written 
for theoretical physicists than in this contribution, which is directed toward physical 
metallurgists.  The theories described are at the simplest levels, which incorporate the basic 
physics of coarsening. Those interested in the complexities may find help in this paper's 
references or search the literature under the names of the leaders in coarsening theory.  Among 
these are J. W. Cahn, M. Hillert, Lücke, and V. V. Slyozov (also spelled Slezov). 

Theory 

Precipitates: 

The theory of diffusion in solids dates back at least to Fick (1) in 1855.  Analytical solution of 
the second order partial differential equation which is Fick's second law is generally impossible, 



especially in three dimensions.  However Zener (2) presented an elegant analysis of the growth 
rates of plates, cylinders, and spheres from supersaturated solid solutions.  He found in each 
case that the size of the particle varied as (Dt)1/2 times an appropriate function of the solute 
concentrations in the particle and matrix.  Here, D = diffusion coefficient and t = time.  Zener's 
formulations are the basis for much subsequent work in precipitate growth and coarsening. 

The basic coarsening theories (3-5) assume a small volume fraction of spherical, strain-free 
solid solution precipitates which grow or shrink at a rate controlled by diffusion through the 
matrix.  Rapid diffusion paths such as dislocations and grain boundaries are assumed not to 
play a role. Later derivations have attempted to relax these approximations.  

The basic physics behind particle coarsening are illustrated in a simple, unpublished derivation 
by R. L. Coble (6) who focused on the behavior of the largest particles, those with r = rmax. He 
assumed that: 

a. The maximum particle size, rmax and the mean, r , are related by a constant factor, β, so 
that: 

rmax = β r (1) 

b. The concentration gradient at the particle:matrix interface for a particle of size rmax is 
given by: 

∆C/∆r = [C( r ) - C(rmax)]/rmax. (2) 

This result comes from diffusion theory and is clear in Zener (2). 

c. The solute concentration at the particle:matrix interface is increased above the 
equilibrium value, Ce according to the Gibbs-Helmholtz equation: 

C(rmax) = Ceexp.(2γVm/ rmax RT) (3) 

where γ = particle:matrix interfacial energy, Vm = molar volume in the particle, and  

RT = gas constant times temperature. 

Expansion of the exponential gives 

C(rmax) = Ce(1 + 2γVm/ rmax RT) (4) 

A similar equation applies for C( r ). 

d. The mass flux at the particle:matrix interface, J,  is given by 

J = -D 
∂C 
∂r 

)rmax
 (5) 

e. The flux and particle growth rate are related by: 

rmax& = mJV (6) 



It is a simple to combine equations 1-6 and integrate to give:  

r3 − r0
3 = 

6DCeγVm 
2t 

(7)
β 3RT

where r0  = starting particle size and t = time.  From experiment β is the order of 2. 

The theory of diffusion controlled precipitate coarsening was developed by Greenwood (3), 
Wagner (4), and Lifshitz and Slyozov (5).  The derivations are too lengthy to repeat here, but 
the resulting rate equation is: 

r3 − r0
3 = 

8DCeγVm 
2t 

(8) 

r

9RT
Theory also predicts that the particles will take on a time-independent size distribution, as 
shown in Figure 1, with a limiting particle size of:  

max = 1.5 r (9) 

Equations 7 and 8 are in agreement if β = 34/3/2. The simple Coble treatment is thus in close 
agreement with the rigorous analysis.   

Figure 1. Final steady state normalized particle size distribution for diffusion-
controlled coarsening. (After Martin, et al. 7) 

The most striking aspect of equation 8 is that the mean radius cubed varies as time, as opposed 
to the radius squared in growth calculations. Coarsening is thus a much slower process than 
precipitate growth, as is reasonable in that growth of one particle only occurs by cannibalizing 
other particles. It is also seen that the key material variables are solubility and diffusion 
coefficient.  A system of sparingly soluble particles made of a slow diffusing solute will be 
stable against coarsening. The interfacial energy is likely to be near 0.1 J/m2, and the molar 
volume about 10-5  m3/mole: variations in Vm and γ are thus not likely to have a key role in 
coarsening behavior. 



Second phase particles of interest in steels are largely carbides, nitrides, carbonitrides, oxides, 
and sulfides rather than solid solutions.  At least two diffusivities and two concentrations are 
involved in determining the coarsening behavior. Their coarsening behavior clearly cannot be 
described by equation 8: an extended treatment is needed.  

The coarsening rate of compound precipitates was analyzed by Björklund, et al (8) and  by 
Bhattacharyya and Russell (9). The former paper was concerned with mixed alloy carbides in 
steel, whereas the latter was concerned with stoichiometric particles in any alloy.  Although the 
approaches are different, the results are very similar for the coarsening of alloy carbide particles 
in steel. 

The Bhattacharyya and Russell derivation is easily outlined for the case of AB precipitates in a 
matrix, N.  (Non-unity stoichiometric coefficients complicate the analysis without much 
altering the end coarsening equation.) 

The condition for equilibrium at the particle: matrix interface is now 
rCA

rCB = Keexp.( 2γVm/rRT)  (10)  

Where Ke = CA 
∞CB 

∞ is the equilibrium constant for A and B solubility over bulk AB in the 
matrix. CA 

∞ and CB 
∞ are the concentrations far from the precipitate particle.   

Maintenance of the 1:1 stoichiometric ratio requires that the fluxes of A and B atoms to or from 
the particles be equal. This equal flux condition will almost always be easier satisfied for one 

∞species than the other. If CA > CB 
∞ and DA>DB , the concentration of A will be constant right up 

to the surface of the particle, whereas there will be a concentration gradient in B.  B is then the 
rate controlling species. 

In either event the coarsening equation may be expressed as:  

r3 − r0
3 = 

8 < DC > γVm 
2t 

(11)
9RT

Björklund, et al. were concerned with the coarsening of alloy carbides so that <DC> equals 
DACA times compositional factors usually not far different from unity.  Here A refers to the 
alloy element, which would be a carbide former such as Cr, W, or Mo, and B to carbon.  In the 
Bhattacharyya and Russell treatment,   

∞<DC > = DA CA 
∞ or <DC > =DB CB (12) 

which ever is the smaller.  The two treatments are thus largely equivalent for the coarsening of 
alloy carbides in steel. The Björklund, et al treatment has the advantage of not assuming 
stoichiometric carbides.  

Earlier Cochart (10) presented an approximate analysis of compound particle coarsening, which 
gave the correct time dependence of coarsening and reflected the importance of the solubility. 
Wagner (4) suggested the criterion for identifying the rate controlling species.  This early work 
was not widely appreciated. 

In the general case, and especially when both A and B diffuse substitutionally, the rate 
controlling species could be either element.  In the case of alloy carbides, a substitutional alloy 
element will diffuse much slower than will the interstitial carbon.  It is thus unlikely that any 
disparities in matrix concentration will cause the carbon to be rate controlling. 



Lee, et al. (11) presented an analysis of precipitate coarsening of multicomponent particles, 
which generalized and extended the treatment of Björklund, et al.  Their analysis showed that 
coarsening could be viewed in terms of a series resistance composed of the resistances to 
coarsening provided by the various components in the particle.  They found that each 
component, no matter how plentiful or how fast diffusing, increased the coarsening resistance. 
If, however, the product DC were much less for one component than any of the others, it would 
become rate controlling.  The criterion of Bhattacharyya and Russell would then apply. Their 
criterion (equation 12) may be looked upon as selecting the largest resistance in the series 
circuit and equating the rest to zero. 

The various parameters and constants in equation 11 may be combined to give: 

r3 − r0
3  = Kct  (13)  

Where Kc= rate constant for coarsening, which depends strongly on temperature through the 
diffusivities and possibly the particle solubility.   

Grain Growth: 

Grain growth occurs in polycrystalline arrays so as to reduce the total grain boundary energy. 
(The energy of external surfaces may be an important factor in grain growth in thin sheets.) 
Many experimental and theoretical studies of grain growth have been performed over the years. 
Reviews include those by Burke and Turnbull (12) and Thompson (13). 

The following simple analysis considers a pure, one component materials with grain boundaries 
of isotropic mobility.  The particle is surrounded by grains averaging the overall mean size.  A 
grain smaller than the mean will shrink, a larger one will grow.  

A polyhedral grain is approximated by a sphere of equal volume, for which the area varies as 
dA/dV = 4/D, where D = diameter of the equivalent sphere.  If the grain changes volume by dV, 
the change in grain boundary energy is (4γ /D) dD, where γ = grain boundary energy per unit 
area. The decrease in grain boundary energy of the adjacent grains must be proportional to 
1/ D , so that the change in the grain boundary energy is (4αγ / D ) dD , where α = a numerical 
constant. If D = D , the change in surface energy must be zero.  Hence, α = 4 and the change in 
free energy due to growth of the subject grain is: 

dG1 1 1 
= P1 = 4γ − (14)

dV D D 

where P1 is the corresponding driving pressure. The growth rate of a grain is given by D&  = 
MP1/RT where M = grain boundary mobility.  It is convenient to follow the growth of the 
largest particle, that having D = Dmax. We assume that Dmax = β D , that maximum and mean 
grain diameters have a constant ratio throughout grain growth. Using this ratio and standard 
derivations of M gives: 

2D 2 − D = [
8γVMDb 


 
1− β 

 ]t (15)o RTa  β 2  



Where a = lattice parameter and Db = diffusivity of atoms across the grain boundary.  Burke 
and Turnbull (12) derived a similar equation, though with an undetermined numerical constant. 
This D 2 vs. t relationship is obtained in other, more rigorous treatments of grain growth. 

Hillert (14) used an elegant analysis to show that Dmax = 2 D . Then: 

2D 2 − D = 
2γVMDb t  (16)o RTa 

Equation 16 does not reflect the retarding effect of solutes and precipitate particles on grain 
growth. It is thus something of an upper limit for D . Grain sizes predicted by equation 16 are 
often far greater than those observed in engineering alloys and even commercially pure 
materials. 

Fine second phase particles have long been known to limit grain growth by pinning the grain 
boundaries. The theory for this phenomenon goes back at least to C. S. Smith (15) in 1948, 
who was acting on a suggestion by C. Zener. Many analyses of the phenomenon have been 
published in the intervening years. The following simple extension of the derivation for 
equation 16 illustrates some of the physics. 

Let an alloy have a volume fraction fv of uniformly distributed second phase particles of 
diameter, Dp. By the principles of quantitative metallography these particles will occupy an 
area fraction of fv on the grain boundaries of the system.  Movement of the grain boundary 
requires pulling away from the pinning effects of these particles.  The grain boundary no longer 
exists on the area occupied by the particles, hence must be re-created as the boundary pulls 
away. The free energy change, or pressure on pulling the boundary away from these particles 
during growth is given by: 

dG2/dV = 3fvγ/Dp = P2 (17) 

Grain growth will stop when the free energy to pull the boundary away from the particles 
equals the free energy gained through decrease in grain boundary energy, or P1 + P2 = 0. Grain 
growth will cease at critical value of D, given by: 

D Dmax max= 4( -1)/3fv (18)
D Dp

DmaxThe ratio must obviously be greater than unity, and must be less than two to prevent 
D 

runaway grain growth. Taking a value of 1.5 yields 
Dmax = 

2 
f −1  (19)vD 3p 

Equation 19 indicates that ca. one volume percent of nanometer sized particles will limit grain 
size to the hundreds of nm range.   

Hillert (14) made an elegant analysis of grain growth which somewhat paralleled that for 
diffusional coarsening leading to equation 8 and Figure 1.  He found that a particle for which 
D>2 D would grow without limit.  Such particles therefore could not exist in so-called normal 
grain growth, which requires a steady-state size distribution, when normalized to mean grain 



size. Thus, Dmax = 2 D . His statistical treatment also derived a particle size distribution in 
grain growth similar to that for diffusion-controlled particle coarsening. 

Hillert also integrated the effects of second phase particles into his analysis of the evolution of 
the grain size distribution and found that a steady state particle size distribution was 
unattainable in the presence of particle pinning. 

Abbruzzese and Lücke (16) developed a statistical theory of grain growth claimed to be more 
rigorous than earlier efforts.  The particle pinning term was left as a parameter.  Their 
predictions of the effects of pinning on grain growth differed significantly from those of Hillert 
(14). Later authors used the Abbruzzese and Lücke pinning term as a parameter in data fitting. 

Numerical simulation is often used to describe the kinetics of grain growth.  Most simulations 
have been used to describe two dimensional grain growth, as may occur in sheet and thin films. 
Numerical simulation is a much more difficult task in three dimensions.  Most simulations of 3
D grain growth have been performed in the last ten years, as facilitated by ever greater 
algorithm sophistication and computing power.  There have been several very different 
approaches to simulation of 3-D grain growth. (See Krill and Chen 17) 

This paper will discuss only the so called phase-field simulation model that uses an order 
parameter to distinguish between grain orientations.  It is obviously impossible to characterize 
each and every one of the myriad of possible misorientations between adjacent grains.  Krill 
and Chen (17) assign from 10-100 different order parameters (Q) to distinguish between the 
various possible orientations. If adjacent grains have different Q's, they remain discrete.  If the 
Q's are the same, the two grains coalesce to form a single, larger grain.  A gradient energy 
model was used for grain boundary energy, and the rate constants in their growth equations 
were related to the grain boundary mobility. 

An increase in the number of order parameters leads to a disproportionate increase in 
computational time. A computationally convenient number of parameters, say Q =10, leads to 
coalescence. The authors note that coalescence is not observed experimentally, hence should 
not appear in the simulation.  Use of a much larger number of order parameters eliminates grain 
coalescence, but at an unacceptable increase in computer time.   

Krill and Chen (17) escaped this dilemma by using a small number of order parameters, and 
reassigning all the parameters at any threat of coalescence.  Figure 2 illustrates the effects of 
such reassignment.  The differences in the progression of area per grain with time for Q = 20 
and Q = 100 fixed parameters are due to coalescence.  Using only 20 parameters and 
reassigning them to avoid coalescence is seen to give almost the same result as Q = 100, 
without reassignment, at a significant saving in computation. It is noted that either simulation 
produces the familiar D 2  vs. t relationship. The two differ at early times due to nucleation at 
early times in the Q = 100 case.  

The authors state that simulation efforts that include impurity effects and use a spectrum of 
boundary energies and mobilities are in progress, but are apparently far from fruition.   

Solute Drag On Grain Boundaries:  Ultra-pure zone refined metals undergo rapid 
recrystallization and grain growth at temperatures where the microstructure in the commercially 
pure metal changes little in years.  There have been numerous attempts to analyze the effect of 
solutes on grain boundary mobility.  Perhaps the most notable are those by Cahn (18) and by 
Lücke and Stüwe (19). That of Cahn will be very briefly described here.  



Figure 2. Time evolution of the square of average gain size with simulation 
time. Q = number of order parameters used to distinguish various grain 
orientations. (After Krill and Chen 17) 

In the simplest case adsorption and rapid diffusion are restricted to a one-atom thick region in 
the boundary. Cahn relaxed this assumption so that solute was assumed to be attracted to the 
grain boundary by a triangular potential well. The equilibrium solute concentration was then 
related to the potential by a Boltzmann distribution.   

A stationary grain boundary tends to equilibrate with the matrix and become enriched with 
solute. Any displacement of the grain boundary would tend to force solute atoms into higher 
energy sites, thus producing a free energy gradient. This gradient translates into a pressure, 
which would tend to move the grain boundary back to its original position.  Migration of the 
grain boundary would thus only occur in the presence of another, greater pressure. 

At very low migration velocities, the solute may diffuse along with the boundary and maintain 
nearly the equilibrium concentration.  There is thus a very small solute drag force.  Conversely, 
at high boundary velocities the solute atmosphere would be left behind, where it could not 
interact with the boundary. Cahn also found a breakaway phenomenon.  At a sufficiently high 
velocity the boundary would break away from the atmosphere and suddenly increase its 
velocity. The boundary mobility would approach that for a clean boundary and grain growth 
kinetics could approach the idealized state described by equation 16.  Fast diffusing solutes 
would the last to be left behind, hence would have the greatest retarding effect. 

The theory makes notable predictions in the low velocity regime.  First, the velocity varies 
inversely as the solute concentration, so that minor solutes have a very large effect.  Secondly, 
slower diffusing elements are least able to keep up with the slow-moving boundary, hence have 
the greatest retarding effect. 

Combination of the solute drag effects with either the analytical or computational grain growth 
analyses given early would give an extremely important result.  Unfortunately, such a treatment 
seems very far from feasible at present.   



EXPERIMENTAL 


Particle coarsening measurements are time consuming and difficult.  It is not always easy to 
separate nucleation from growth, to determine just what phase has nucleated or to determine the 
nucleation site. Most information is obtained from polished sections, which is a tedious, time 
consuming job. 

Compound Precipitates: 

The coarsening of compound precipitates plays an important role in the physical metallurgy of 
steel. Coarsening of temper carbides in martensitic steels, of sulfides and nitrides in the 
annealing of electrical steel, of nitrides in plain carbon steel, and of carbonitrides in High 
Strength Low Alloy (HSLA) steels are some examples.   

Bhattacharyya and Russell (20) used Cu-SiO2 as a model system.  Internal oxidation of a Cu-
0.11 wt.% Si alloy produced SiO2 particles with a mean size of about 20 nm.  Coarsening took 
place for times up to 5x105 s at temperatures from 850 oC to 1000 oC. Resulting particle size 
distributions were roughly similar to the theoretical shape shown in Figure 1, but in all cases 
had long tails at sizes larger than 2 r . Coarsening in all cases followed a r 3 vs. t law, and 
activation plots of the coarsening rate constant were linear. 

The authors tried to set the oxygen content in the matrix (and thereby the silicon content) by the 
coarsening atmosphere.  They concluded that they had failed, and that the solute concentrations 
remaining were set during internal oxidation.  Accordingly, they were not able to determine 
theoretical values of Kc to compare with their measured values.  Agreement on the other 
theoretical predictions was encouraging. 

Ozaki and Zee (21) studied the coarsening of HfC particles in a W matrix.  Their results are 
illustrative. They studied a system of about 0.4 mol % of intragranular HfC particles with a 
starting size of ca. 20 nm.  Hf is a fast diffuser in W with an activation energy given as about 
335 kJ/mole, as opposed to their stated 480 kJ/mole for self diffusion of W.  Ozaki and Zee 
appeared puzzled that the activation energy of coarsening corresponded to that for self diffusion 
of W. 

Hillert (22) analyzed intragranular precipitation of graphite in a steel.  He showed that for small 
particle sizes Fe diffusion was the rate controlling process, and only at large sizes was C 
diffusion rate controlling. 

The higher activation energy observed by Ozaki and Zee (21) is thus to be expected.  It is not 
enough to diffuse Hf from small particles to large in order to effect coarsening.  It is also 
necessary to diffuse W out of the way so that the Hf will have a place to re-precipitate.  The 480 
kJ/mole activation energy for coarsening is thus consistent with theory.   

Gustafson (23) studied the coarsening behavior of TiC particles in austenitic stainless steel. 
The TiC particles contained small amounts of the other elements.  Coarsening was at 900 oC for 
times up to 2.4x107 s. Particles had a mean radius of 51 nm at the start and 75 nm after the 
longest anneals so the amount of coarsening was thus not great.  Calculated rates were from a 
computerized system based on the series resistance model discussed earlier and a 
multicomponent diffusion theory by Morral and Purdy (24).  The theory predicted that the 
presence of nitrogen in the TiC precipitates would reduce the coarsening rate by an order of 
magnitude as compared to the coarsening of pure TiC.  Agreement between model and 
experiment were found for an assumed surface tension of 0.2 J/m2. Such an interfacial energy 
is physically reasonable so that the agreement is rewarding. 



Temper carbides based on such refractory metals as W and Mo are observed to coarsen little, 
even at red heat where plain iron carbide would coarsen instantly.  Such is the basis of so-called 
hot working tool steels. Either theory described earlier may be used to calculate such 
coarsening. It is easy to calculate that at 923K an iron carbide particle coarsening by carbon 
diffusion will go from the nm range to a tenth micron in seconds.  The coarsening of an alloy 
carbide will be controlled by diffusion of the alloy element in the matrix.  Such carbides are 
predicted to take days or years to go from nm to a tenth micron.  This simple calculation 
illustrates the physical basis for hot-working, or red-hardness steels.  This behavior is shown in 
Figure 3, from Bain (25)   

The most thorough study of the coarsening of alloy carbides was by Lee, et al. (11, 26, 27). 
They studied a commercial alloy and four experimental alloys with Mo2C-based precipitates. 
Each alloy contained about 0.2 wt.% C, significant amounts of Co, Ni, and Mo, and in three 
cases, Cr. The precipitates were rod shaped so the coarsening theory had to be modified.  The 
cube of the rod length was found to be linear in time as is expected for volume diffusion 
controlled coarsening. 

Comparison with theory was based on the series resistance model of Lee, et al described earlier.  
Mixed Mo-Cr carbides were expected in the Cr-bearing steels so the coarsening rate constant 
would depend on the diffusivities of both elements. Good agreement between theory and 
experiment was found for coarsening rate calculations based on the diffusion of Mo in ferrite 
for the Cr-free steel. In addition the activation energy for coarsening was close to that for Mo 
diffusion in ferrite. This extensive study lends considerable support to the theory for 
coarsening of compound precipitates. 

Grain Growth: 

High temperature grain growth in very pure elemental metals is sometimes reasonably well 
described by equation 16. The inability to predict grain growth rates under other conditions is 
due in large part to ignoring the retarding effects of solutes and second phase particles. 

The simulation of Krill and Chen (17) described earlier cannot give absolute values of grain 
size, but the relative values predicted agree well with experiment and earlier analytical 
calculations. Figure 2 shows a D 2 vs. t relationship. The analysis also predicts such 
topological parameters as faces, edges, and vertices per grain.  The predictions are in 
reasonable agreement with measurements on several steels and non-ferrous alloys.   

Austenite:  Austenite grain size exerts a major influence on the microstructure and properties of 
subsequent transformation products. Grain size is also an important characteristic of steels used 
in the austenitic state, as is the case for many stainless steels.   

Figure 4 compares predictions of grain size distributions by Krill and Chen (17) and by Hillert 
(14) with experimental results on type 304 austenitic stainless steel.  Krill and Chen claim that 
their model is in better agreement with these data than that of Hillert.  Neither distribution gives 
nearly an exact fit, which is entirely reasonable in view of the approximations in both 
treatments 



Figure 3. Secondary hardening in steel containing 0.34 wt.% C.  (After Bain 25) 

Figure 4. Comparison of grain size distributions measured on a type 304 
austenitic stainless steel and those predicted by Hillert (14) and by Krill and 
Chen (17). (After Krill and Chen 17) 

A recent paper by Militzer, et al. (28) illustrates some important characteristics of austenite 
grain growth. In particular they related theoretical predictions to experiments on commercial 
alloys. 

The paper studied coarsening in three commercial Al-killed plain carbon steels.  Carbon 
contents were 0.038 wt.%, 0.17 wt.%, and 0.78 wt.%.  Austenite grain growth was studied in 
isothermal, stepped, and continuous cooling tests.  The latter testing conditions were utilized to 
better model grain growth during rolling operations.  Only the easier to interpret isothermal 
tests will be considered here. 

Isothermal studies were made at temperatures from 850 oC to 1150 oC. Measurements on 
polished sections were converted to true 3-D grain sizes and in some cases to grain size 
distributions. Grain sizes ranged from typically tens of µm at the start of the annealing to 
hundreds of µm at the end.   



The experimental results were analyzed in terms of a statistical grain growth theory by 
Abbruzzese and Lücke (16). The effects of particle pinning on grain growth are accounted for 
by a pinning parameter, P. 

Militzer, et al. used P as a fitting parameter accounting for both particle pinning and solute drag 
to force agreement between theory and experiment.  The parameter, P, was found to be linear in 
temperature and time-independent in the higher carbon steels, but showed a more complex 
behavior in the low carbon steel. In this latter case, P had a complicated dependence on 
temperature and varied with time.  A time dependent P would be needed to describe AlN 
particle dissolution. 

Figure 5 shows that the lower carbon steels have an asymptotic approach to a limiting grain 
size, as predicted by the Zener-Smith theory.  Figure 6 shows the comparison of the theoretical 
and experimental maximum grain radii.  The agreement is impressive.   

The AlN particles responsible for boundary pinning were eliminated in the lowest carbon alloy 
by heating above 1150 oC, where dissolution occurred. Subsequent heating during grain growth 
experiments was thought to be too brief to allow re-precipitation.  Unpinned austenite growth 
was then studied at 1050 οC. The effect of the unpinning was dramatic.  First, grain growth 
followed a simple, parabolic law with no approach to a limiting grain size.  Second, the grain 
growth was much faster than in the presence of pinning.  Grains in the unpinned alloy 
quadrupled in size in 100 sec. going from 50µm to 200µm.  Grains in the pinned alloy grew 
hardly at all under the same treatment.  Even in the unpinned alloy grain growth was much 
slower than predicted by the simple theory, probably due to solute drag on the grain boundaries. 

HSLA steels are low in carbon (0.05-0.15 wt.%) with small amounts of strong carbide-forming 
elements such a niobium, vanadium, or titanium.  With proper processing these steels have 
twice the strength of mild steels.  This doubling of strength at a relatively low cost has made 
these alloys very popular and a subject of intensive research (Hansen, et al. 30) 

The alloying additions give copious fine (nm to a few tens of nm) carbonitride particles whose 
primary role is in limiting austenite grain growth during processing.  The particle pinning gives 
finer grained austenite than would normally be obtained. Figure 7 shows the strong delaying 
effect of small Nb and V additions on austenite recrystallization.   

Ferrite nucleates largely on austenite grain boundaries, hence also has finer grains and higher 
strength. HSLA steels may have ferrite grain sizes of ca. 5 µm as compared to 20-30 µm 
characteristic of plain carbon steel. The resulting Hall-Petch grain size strengthening is largely 
responsible for the doubling of the strength. The particles also provide some precipitation 
hardening of the steel. 

Coarsening of the carbonitrides is clearly controlled by the mobilities of the carbide formers, 
which being substitutional, diffuse slowly. The success of HSLA steels shows that the 
coarsening of the carbonitrides during processing is not excessive.  Quantitative tests of particle 
coarsening in HSLA steels are yet to be done. 



Figure 5. Austenite isothermal grain size kinetics in an Al-killed 0.17 wt.% C 
plain carbon steel. Continuous lines are from the theory of Abbruzzese. and 
Lücke. The degree of particle pinning of the grain boundaries was used as a 
fitting parameter.  (After Militzer, et al. 29) 

Figure 6. Comparison of limiting grain sizes in two plain carbon steels with 
those predicted by the Zener-Smith criterion.  Close agreement is seen.  (After 
Militzer, et al. 29) 



Figure 7. Recrystallization kinetics curves of four 0.1 wt.% C 0.2 wt.% Mn 
steels at 954 oC. The steel marked C-Mn had no microalloying addition.  The 
others had 0.03 wt.% Nb plus the amounts of V indicated.  Microalloying is seen 
to give a marked reduction in the recrystallization rate.  (After Michael, et al. 31) 

Ferrite:  Grain growth is of crucial importance in the ferritic grain oriented iron-silicon 
electrical steels used in large power transformers. These electrical steels are unusual alloys 
based on Fe-3wt.% Si with at most hundredths of wt.% of either deliberate or trace alloying 
elements, except for Mn.  The price of the steel is dictated by the core loss as determined by a 
simple measure, the Epstein test. These steels strictly fall outside the realm of this volume by 
never having existed in the austenitic state. However, studies on electrical steels provide 
invaluable guidance for grain growth in any ferritic steel. 

The aim of the processing is then to produce thin (~0.3 mm) sheets of the steel with the 
minimum core loss.  The details of the processing are closely guarded trade secrets, but the 
basics of the processing have become known from patents and the occasional paper by 
scientists at the steel companies.  Leslie (32) stated in 1980 that "The processing of grain-
oriented Si steels is the most complicated for any product in the industry."  The physical 
phenomena responsible for the need of such sophistication are remarkable, and are still being 
discovered. Ushigami, et al. (33) and Suzuki, et al. (34) give review of recent developments in 
these steels. 

The best electrical steels have a strong texture, named after the early investigator, Goss (35).  In 
this {110}<100> texture the <100> direction is in the rolling direction and the {110} planes lie 
in the plane of the sheet. The grains are large, and extend all the way through the sheet. 

Production of high quality sheet demands rigorous control of process variables (36).  Typically, 
a 1350 oC soak is followed by a hot roll to ~2 mm, then a cold roll to final thickness.  There 
may be an intermediate anneal during the cold rolling.  The steel is then decarburized in wet H2 
at 800-850 oC, temperatures which give recrystallization but only limited grain growth.  The 
steel is then given an insulating coating to prevent sticking during the final high temperature 
heat treatment and to give electrical insulation during use.  The final processing step is a high 
temperature anneal at 1150 oC-1200 oC in dry H2 where the final strong Goss texture is 



obtained. The steel is ferritic at all stages in the processing.  In fact the carbon content has to be 
kept low even before decarburization to prevent the formation of austenite during the 
processing cycle. 

According to Humphreys and Hatherly (36) a few Goss grains are created during hot rolling. 
Subsequent processing induces these grains to predominate over all other possible textures and 
to grow to the proper grain size. This task is crucially dependent on the presence of fine (tens 
of nm diameter) MnS and/or AlN particles which serve to selectively pin the grain boundaries 
until they are coarsened/removed during the final anneal.   

Lee and Szupnar (37) studied texture formation in a conventional grain oriented silicon steel, 
which used MnS for pinning. The alloy was decarburized in wet H2 and then given secondary 
recrystallization anneals in helium.  Figure 8 shows the development of the Goss texture at 
various annealing temperatures.  The Goss texture does not much develop at 860 oC and below. 
Above this temperature the Goss grains proceed to dominate the microstructure.  The Goss 
grains grow to much larger sizes than those of other orientations.   

Lee and Szupnar (37) found a high frequency of Σ5 Coincidence Site Lattice (CSL) boundaries 
between the Goss grains and their neighbors, both before and after secondary recrystallization. 
They observed that the Σ5 CSL boundaries were highly mobile and concluded that the 
formation of Goss texture was strongly influenced by the presence of these boundaries. 

Figure 9 shows schematically the sort of selective hindrance, which might lead to strong texture 
formation.  The effectiveness of the hindrance would depend on the particle distribution on a 
given boundary as well as the effect of particle pinning on that particular grain boundary. 
There is an intermediate crucial hindrance range where selective pinning is effective. 
Secondary recrystallization of electrical steel must occur within that range to obtain the desired 
strong Goss texture. 

Figure 8. The effect of annealing temperature on the degree of dominance of 
Goss grains. Goss grains are seen to dominate the microstructure upon 
annealing at 900 oC and above. (After Lee and Szupnar 37) 



Figure 9. Relationship between grain boundary mobility and inhibitor 
effectiveness. For a limited range of conditions special boundaries are able to 
move rapidly while general grain boundaries are relatively immobile.  (After 
Bölling, et al.38) 

Figure 10. Comparison of growth rates of (110)<001> Goss Grains to 
(110)<115> grains. The Goss grains are seen to grow much faster above about 
1020 oC. (After Ushigami, et al. 33) 



Ushigami, et al. (33) show in Figure 10 that the Goss grains grow faster than (110)<115> 
grains. Accordingly, Goss grains could grow freely at temperatures where other grains were 
relatively immobile. 

It is known that CSL boundaries are more highly ordered than "general" grain boundaries, 
which gives them unusual properties.  Figure 11 from the classic study of Aust and Rutter (39, 
40) shows this phenomenon.  Special boundaries are seen to migrate much faster at a given 
temperature, and have a much lower activation energy for migration.   

Figure 11. Grain boundary migrating at 300 oC in zone-refined lead crystals 
Special boundaries are found to: migrate much more rapidly at a given 
temperature (above) and have a lower activation energy for migration. (below) 
After Aust and Rutter 39, 40) 



Ushigama, et al. (33) note that the lower grain boundary energies of special boundaries makes 
them less susceptible to Zener-Smith pinning.  This lower energy also makes special boundaries 
less attractive sites for heterogeneous nucleation of second phase particles.  As such, any 
special boundaries present when particle nucleation takes place would be less decorated than 
general boundaries. This lower pinning particle density would also contribute to the higher 
mobility of special boundaries.  The so-called special boundaries thus have multiple roles in the 
control of the final recrystallized grain size and texture. 

Summary 

Compound precipitates have important roles in the processing and properties of steels.  Both 
experimental and theoretical study of the coarsening kinetics of these particles are difficult 
tasks. Where critical tests were performed, good agreement was found between theory and 
experiment. 

The effects of particle pinning and solute drag on grain boundary motion are hard to model or 
study. The role of special grain boundaries in grain growth is yet to be properly analyzed.  The 
most promising development in the understanding of grain growth is provided by computer 
simulation.  Better algorithms and greater computational capacity have made simulation of 
growth in 3-D possible, but only for pure, elemental crystals.   

Particle pinning of grain boundaries is vital in controlling the grain size during high 
temperature processing of austenite.  The particles may be aluminum nitrides formed in Al-
killed plain carbon steels or refractory carbonitrides in HSLA  steels. In any case the austenite 
grain size is much lower than in the absence of the particles. 

Formation of the Goss texture in ferritic electrical steels depends on the selective growth of the 
desired grains. This is affected through the influence of MnS and/or AlN particles which retard 
migration of the Goss grains relatively little.  Coarsening and dissolution of these particles 
during the final, high temperature anneal releases the more mobile Goss grains while the others 
are still pinned. 
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