3.40J / 22.71J Modern Physical Metallurgy

KJ Van Vliet and KC Russell

Lecture 8: Dislocation interactions III

March 4, 2004

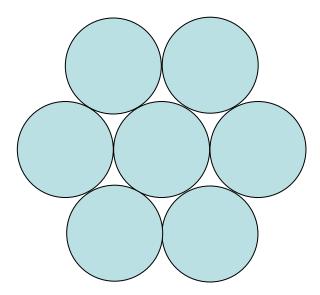
General formulation of Peach-Kohler:

If $|\mathbf{b} \cdot \Sigma \times \mathbf{g}| > f$, a dislocation will move if and only if:

...there exists an available slip system

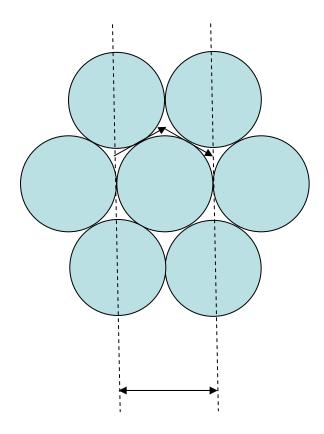
Q: What happens if a full dislocation cannot move?

LECTURE 8


Q: What happens when 2 moving dislocations intersect?

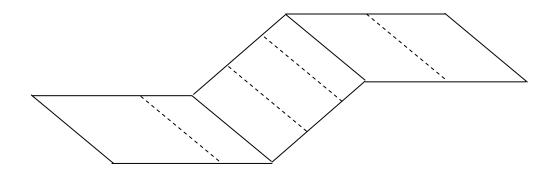
LECTURE 9

Q: What happens when a lot of dislocations interact?


Q: What happens if a full dislocation cannot move?

1. Partial dislocations

Continued on next page.


PARTIALS AND STACKING FAULTS

PARTIALS AND ANTIPHASE BOUNDARIES

A B		B A		A B		B A	A B		B A			
A B		B A		A B		B A	A B		B A			
A B		B A		A B		B A	 A B		B A			
		A B		B A		A B	B A		A B		B A	
A B		B A		A B		B A	A B		B A			
	A B		B A		A B		 	B A		A B		B A
A B		B A		A B		B A	A B		B A		A B	
	A B			B A	- -	A B	B A		A B			

2. CROSS-SLIP

2. CLIMB

Edge dislocations cannot cross-slip due to defined slip plane, ie, b $\mid \xi$.

If they cannot move in their slip plane, one option is to climb.

CLIMB = movement of vacancy row in one direction, so that the half-plane advances normal to the slip plane (up or down).

Requires collective motion of vacancy line, so favored only at

- elevated temperature
- elevated pressure.