
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-010 February 23, 2011

Decomposing Broadcast Algorithms Using
Abstract MAC Layers
Majid Khabbazian, Dariusz Kowalski, Fabian Kuhn
, and Nancy Lynch

Decomposing Broadcast Algorithms Using Abstract MAC Layers

Majid Khabbazian
Department of Applied Computer Science

University of Winnipeg
Canada

m.khabbazian@uwinnipeg.ca

Dariusz Kowalski2
University of Liverpool

United Kingdom
d.kowalski@liverpool.ac.uk

Fabian Kuhn
University of Lugano

Switzerland
fabian.kuhn@usi.ch

Nancy Lynch1

Massachusetts Institute of Technology
United States

lynch@csail.mit.edu

Abstract

In much of the theoretical literature on global broadcast algorithms for wireless networks, issues of message
dissemination are considered together with issues of contention management. This combination leads to com-
plicated algorithms and analysis, and makes it difficult to extend the work to more difficult communication
problems. In this paper, we present results aimed at simplifying such algorithms and analysis by decom-
posing the treatment into two levels, using abstract “MAC layer” specifications to encapsulate contention
management. We use two different abstract MAC layers: the basic layer of [1, 2] and a new probabilistic
layer.
We first present a typical randomized contention-management algorithm for a standard graph-based radio
network model and show that it implements both abstract MAC layers. Then we combine this algorithm
with greedy algorithms for single-message and multi-message global broadcast and analyze the combinations,
using both abstract MAC layers as intermediate layers. Using the basic MAC layer, we prove a bound of
O(D log(n

ε) log(∆)) for the time to deliver a single message everywhere with probability 1 − ε, where D is
the network diameter, n is the number of nodes, and ∆ is the maximum node degree. Using the probabilistic
layer, we prove a bound of O((D + log(n

ε)) log(∆)), which matches the best previously-known bound for
single-message broadcast over the physical network model. For multi-message broadcast, we obtain bounds
of O((D + k∆) log(n

ε) log(∆)) using the basic layer and O((D + k∆ log(n
ε)) log(∆)) using the probabilistic

layer, for the time to deliver a message everywhere in the presence of at most k concurrent messages.

Keywords: Broadcast protocol, global broadcast, multi-message broadcast, MAC layer, contention
management, wireless network algorithms.

1. Introduction

The last few years have seen a rapid growth in analytical work on algorithms for wireless ad hoc networks.
This work has generally followed one of two approaches. The first, represented, for example, by [3], analyzes
wireless network algorithms using standard message-passing models, and ignores interference and other low-
level communication issues, assuming that they are handled by a separate Medium Access Control (MAC)
layer. The second approach, represented by [4], uses models that are close to the actual physical network
and requires all algorithms to handle basic communication issues.

1Research supported by AFOSR contract FA9550-08-1-0159 and NSF grants CCF-0726514, CNS-0715397, CCF-0937274,
and NSF-PURDUE-STC Award 0939370-CCF.

2Research supported by the Engineering and Physical Sciences Research Council [grant numbers EP/G023018/1,
EP/H018816/1].

Preprint submitted to Elsevier February 10, 2011

Ignoring MAC layer issues and working with high-level communication models makes it possible to design
and analyze complex algorithms for high-level problems. The analysis of typical information-dissemination
protocols for tasks like single-message and multi-message message broadcast become almost trivial. However,
such analysis may not be entirely realistic: in wireless networks, all nodes share the same wireless medium,
which means that, in reality, only a limited amount of information can be transmitted per time unit in a
local region. Consequently, analyzing algorithms using classical message-passing models often yields time
bounds that are far too optimistic.
Designing algorithms directly for the physical network, on the other hand, avoids these problems, but
requires the algorithm designer to cope with physical layer issues such as message loss due to interference
and collisions. This leads to complicated algorithms and analysis even for simple tasks, and makes it
prohibitively difficult to study algorithms for complex high-level problems. Moreover, there are a variety
of wireless communication models (e.g., [5, 6, 7]), requiring algorithms to be rewritten and reanalyzed for
each new model. This complexity is an impediment to the development of a theory for wireless network
algorithms.
Recently, Kuhn et al. proposed a new approach with the goal of combining the advantages of both previous
approaches, while avoiding their major problems [1, 2, 8, 9]. Namely, they defined an Abstract MAC Layer
service that expresses the key guarantees of real MAC layers with respect to local broadcast. This service
accepts message transmission requests from nodes and guarantees delivery to nearby nodes within time that
depends on the amount of current local contention. The abstract MAC layer is intended to decompose the
effort of designing and analyzing wireless network algorithms into two independent and manageable pieces:
one that implements the abstract MAC layer over a physical network, and one that uses the abstract MAC
layer to solve higher-level problems. Moreover, the abstract MAC layer provides flexibility, in that it allows
different implementations of the layer to be combined easily with different high-level algorithms that use the
layer. To illustrate the approach, Kuhn et al. analyzed a greedy multi-message global broadcast protocol
in terms of the abstract MAC layer. This work demonstrated how one might build a theory for high-
level wireless network algorithms that does not ignore issues of contention, but makes analysis of high-level
algorithms tractable.
Kuhn et al. focused on high-level issues of designing and analyzing algorithms over the abstract MAC
layer. They did not address in detail the low-level issues of implementing the abstract MAC layer over a
physical network, nor issues of combining high-level and low-level algorithms. They also did not consider
the probabilistic nature of many MAC-layer algorithms. Typical MAC-layer algorithms use techniques such
as random backoff, which introduce a small probability that abstract MAC assumptions will be violated. To
obtain accurate results for higher-level algorithms, one should also take such probabilities into account.

This paper. In this paper, we present a case study that shows how one can combine results about high-
level protocols based on an abstract MAC layer with results about algorithms that implement an abstract
MAC layer over a physical network, and thereby obtain good overall results for the high-level protocols
over the physical network. Specifically, we develop and analyze greedy protocols for broadcasting a single
message and multiple messages throughout a wireless network, using a slot-based physical network model
that includes message collisions without collision detection. Each of our protocols is split formally into a
high-level broadcast protocol and a low-level contention management algorithm. We use abstract MAC layers
to encapsulate the contention management. We use two different MAC layers: the basic (non-probabilistic)
one from [1, 2], and a new probabilistic layer.
For contention management, we use a randomized algorithm called DMAC that is similar to those in [4, 10];
in this algorithm, nodes transmit repeatedly using a predetermined schedule of transmission probabilities.
We show that DMAC implements the basic abstract MAC layer with high probability, and that it implements
the probabilistic precisely.
We then combine DMAC with a greedy algorithm for single-message global broadcast and analyze the
combination twice, using both abstract MAC layers as intermediate layers. Using the basic MAC layer, we
prove that the combined algorithm takes time O(D log(n

ε) log(∆)) to deliver the message everywhere with
probability 1− ε, where D is the network diameter, n is the number of nodes, and ∆ is the maximum node
degree. Using the probabilistic MAC layer, we prove a bound of O((D + log(n

ε)) log(∆)), matching the best
bound previously obtained without such a split [4]. Our combined algorithm is similar to that of [4]; the
key difference is that we decompose the algorithm and its analysis into two pieces that can be used and

2

understood independently.
We then present an algorithm for multi-message broadcast, obtaining new bounds of O((D+k′∆) log(nk

ε) log(∆))
using the basic layer and O((D + k′∆ log(nk

ε)) log(∆)) using the probabilistic layer, for the time to de-
liver a single message everywhere in the presence of at most k′ concurrent messages, with at most k mes-
sages overall. If k is polynomial in n, these bounds reduce to simply O((D + k′∆) log(n

ε) log(∆)) and
O((D + k′∆ log(n

ε)) log(∆)), respectively. Our analysis for multi-message broadcast over the probabilistic
layer is not easy; in fact, we believe it would be infeasible without such a decomposition.
Note that, for both our single-message and multi-message broadcast algorithms, the bounds that we have
obtained using the new probabilistic MAC layer are better than those using the basic MAC layer. When we
began this work, we first considered just the basic layer, as in [1, 2], and obtained our bounds for broadcast
as easy corollaries of results already proved in [1, 2]. However, the bound we obtained for single-message
broadcast was not quite as good as the best known bound (in [4]), which led us to define the probabilistic
layer and reanalyze the high-level broadcast algorithms using that layer.

Discussion. The main contributions of this paper are: (1) the definition of the new probabilistic MAC layer,
(2) the clean decomposition of a single-message broadcast algorithm similar to that of Bar-Yehuda et al. [4]
into two pieces, a greedy high-level protocol and the DMAC contention-management algorithm, which can
be used and analyzed independently, and (3) the design and analysis of a multi-message broadcast algorithm
based on the broadcast algorithm of [1, 2] combined with DMAC . This work demonstrates that it is feasible
to design and analyze high-level algorithms for collision-prone physical networks using abstract MAC layers.
More evidence for the value of this approach appears in other recent work: Cornejo et al. [11, 12] have devel-
oped new Neighbor Discovery algorithms over the basic abstract MAC layer. These enable the construction
of high-level dynamic graph models like the one used in [3] over an abstract MAC layer, which supports
the analysis of many dynamic graph algorithms in terms of abstract MAC layers, and therefore, in terms of
physical network models. Also, Dolev et al. [13] have recently developed three new implementations of our
probabilistic layer based on physical network models with multiple channels and adversarial interference; by
combining these with our high-level broadcast algorithms, they automatically obtain algorithms and bounds
for global broadcast for all three models. Also, Khabbazian et al. [14] have developed an implementation
of the probabilistic abstract MAC layer based on Analog Network Coding (ANC) techniques [15]. This
implementation yields better bounds than the implementation in this paper, under certain assumptions.
By combining their implementation with our high-level multi-message broadcast algorithm, they obtain an
algorithm and a complexity bound for multi-message broadcast using ANC.

Related work. This work relies on [1, 2] for the general idea of decomposing wireless network algorithms using
an abstract MAC layer, as well as the basic abstract MAC layer specification and the greedy multi-message
global broadcast algorithm. Later versions of this work appear as [8, 9]. The later versions include some
small improvements, including removing a technical assumption that all messages sent on the MAC layer are
unique. Adler and Scheideler [16] also analyzed high-level wireless network protocols in terms of an abstract
MAC layer. They considered the problem of point-to-point message routing, and used a different MAC layer
model, which relates message delivery to signal strength.
The problem of single-message global broadcast in an ad hoc radio network was introduced in [4]. That paper
contains a randomized algorithm that accomplishes the task in O((D+log(n

ε)) log(∆)) steps with probability
≥ 1− ε. Our single-message broadcast algorithm was inspired directly by this algorithm; essentially, we split
the algorithm and its analysis into two parts, while retaining the time bound. Subsequently, numerous
papers have addressed this problem, e.g., [17, 18] obtain a bound of O((D +log(n

ε)) log(n
D)), which improves

upon [4] for dense networks with large diameters.
The problem of multi-message global broadcast has not been widely studied. A randomized algorithm
for delivering k messages was given in [19]; it relies on a BFS tree built in a set-up phase prior to the
broadcast requests, and routes all messages through the root of the tree. The overall cost is O((n + (k +
D) log(n

ε)) log(∆)), with probability 1 − ε. Our algorithm is faster for cases where k′∆ < k + D. Our
algorithm does not require any precomputation and is much simpler (the high-level algorithm is a trivial
greedy algorithm) and more robust (the algorithm is symmetric and does not have a single point of failure).
The paper [18] contains a randomized algorithm for n simultaneous broadcasts working in time O(n log(n

ε) log(n))
with probability ≥ 1−ε. This algorithm differs from ours and that of [19] in that it allows intermediate nodes
to combine an arbitrary amount of information into a single message, thus reducing high-level contention.

3

In all of this prior work on broadcast, the issues involving broadcast and contention management are inter-
mingled. Earlier versions of this work appeared in [20, 21].

The rest of the paper is organized as follows. Section 2 describes mathematical preliminaries. Section 3
presents our physical network assumptions. Section 4 presents our two abstract MAC layers. Section 5
presents a probabilistic algorithm that implements both of our abstract MAC layers over the physical network.
Section 6 defines the global broadcast problem and our broadcast algorithms. Section 7 presents our results
for single-message broadcast, and Section 8 our results for multi-message broadcast. Section 9 concludes.

2. Mathematical Preliminaries

We collect here some necessary mathematical background related to graph theory, probability distributions,
and probabilistic timed I/O automata.

2.1. Graph Theory
Throughout this paper, we fix a (static) connected undirected network graph G = (V,E). Let n = |V | be
the number of nodes in G, and let ∆ ≥ 1 be the maximum node degree. Fix σ = dlog(∆ + 1)e slots. Let
dist(i, j) denote the distance (the length, in hops, of a shortest path) between nodes i and j. Let D be the
diameter of G, that is, the maximum distance between any two nodes in G.
If i ∈ V , then let Γ(i) be the set of nodes consisting of i and all of its neighbors in G. If I ⊆ V , then we
define Γ(I) =

⋃
i∈I Γ(i).

Definition 2.1 (Consistent shortest paths). For every i, j ∈ V , we fix a shortest path Pi,j from i to j in G.
We assume that these shortest paths are consistent in the sense that, for every i, j, i′, j′ ∈ V , if nodes i′ and
j′ appear, in that order, on path Pi,j, then path Pi′,j′ is a subpath of Pi,j.

One way to obtain a consistent set of shortest paths is to define a total order on the nodes in V , regard a
path as a sequence of nodes, and define Pi,j to be the lexicographically smallest shortest path from i to j.

2.2. Probability Distributions
The following simple lemma compares probability distributions. It is used twice later, in the proofs of
Lemmas 7.3 and 8.11.

Lemma 2.2. For every positive integer q, let Xq and Yq be {0, 1}-valued random variables. Suppose that
the Yq are a collection of independent random variables. Suppose further that:

1. Pr(X1 = 1) ≥ Pr(Y1 = 1).

2. For every q ≥ 2 and x1, x2, ..., xq−1 ∈ {0, 1}, Pr(Xq = 1|X1 = x1, . . . , Xq−1 = xq−1) ≥ Pr(Yq = 1).

Then for every r ≥ 1 and every nonnegative integer d,

Pr(
r∑

q=1

Xq ≥ d) ≥ Pr(
r∑

q=1

Yq ≥ d).

Proof. By induction on r. The base case, for r = 1, follows from the first enumerated assumption. For the
inductive step, suppose the result holds for r ≥ 1 and show it for r + 1. We have that

Pr(
r+1∑
q=1

Xq ≥ d) = Pr(Xr+1 = 1|
r∑

q=1

Xq = d− 1) · Pr(
r∑

q=1

Xq = d− 1) + Pr(
r∑

q=1

Xq ≥ d)

≥ Pr(Yr+1 = 1) · Pr(
r∑

q=1

Xq = d− 1) + Pr(
r∑

q=1

Xq ≥ d)

= Pr(Yr+1 = 1) · (Pr(
r∑

q=1

Xq ≥ d− 1)− Pr(
r∑

q=1

Xq ≥ d)) + Pr(
r∑

q=1

Xq ≥ d)

= Pr(Yr+1 = 1) · Pr(
r∑

q=1

Xq ≥ d− 1) + Pr(Yr+1 = 0) · Pr(
r∑

q=1

Xq ≥ d).

4

By the inductive hypothesis on r, for both d − 1 and d, we get that this last expression is greater than or
equal to

Pr(Yr+1 = 1) · Pr(
r∑

q=1

Yq ≥ d− 1) + Pr(Yr+1 = 0) · Pr(
r∑

q=1

Yq ≥ d)

= Pr(Yr+1 = 1) · Pr(
r∑

q=1

Yq = d− 1) + Pr(
r∑

q=1

Yq ≥ d)

= Pr(
r+1∑
q=1

Yq ≥ d).

Combining all the inequalities, we get

Pr(
r+1∑
q=1

Xq ≥ d) ≥ Pr(
r+1∑
q=1

Yq ≥ d),

as needed to complete the inductive step.

The following lemma encapsulates a Chernoff bound analysis. It is used in the proofs of Lemmas 7.3 and 8.11.

Lemma 2.3. Let Yq, q = 1, ... be a collection of independent {0, 1}-valued random variables, each equal to 1
with probability p > 0. Let d and τ be nonnegative reals, d ≥ 1. Let r = b 1

p (3d + 2τ)c. Then

Pr(
r∑

q=1

Yq < d) ≤ e−τ .

Proof. Let µ = rp. Using Chernoff, we get:

Pr(
r∑

q=1

Yq < d) ≤ exp
(
−1

2
(µ− d)2

µ

)
. (1)

Note that the function f(x) = exp(− (x−d)2

2x) is non-increasing in x for d ≤ x. Also, since d ≥ 1, we have

d ≤ 3d + 2τ − p =
(

1
p
(3d + 2τ)− 1

)
p ≤

⌊
1
p
(3d + 2τ)

⌋
p = rp = µ .

Therefore,

exp
(
−1

2
(µ− d)2

µ

)
≤ exp

(
−1

2
(3d + 2τ − p− d)2

3d + 2τ − p

)
= exp

(
−1

2
(2d + 2τ − p)2

3d + 2τ − p

)
≤ exp (−τ) .

2.3. Probabilistic Timed I/O Automata (PTIOA)
We formalize our results in terms of probabilistic timed I/O automata, as defined by Mitra [22]. PTIOAs
include mechanisms (local schedulers and task schedulers) to resolve nondeterminism.1

1Here, we modify Mitra’s model slightly: We assume that the task scheduler is a mapping that takes each finite set of tasks
of size ≥ 2 to an infinite sequence of individual tasks in the set. This task scheduler is used to resolve nondeterministic choices
whenever a set of two or more tasks (which are sets of locally-controlled actions) contain actions that are enabled at the same
time.

5

Throughout the paper, we consider probabilistic executions of systems modeled as PTIOAs. We analyze
the probabilities of events, which are sets of time-unbounded executions. These probabilities are taken
with respect to the probability distribution that arises by considering the entire probabilistic execution,
starting from the initial system state. In addition, we often consider probabilities with respect to a “cone”
in the full probabilistic execution following a particular closed execution β.2 More precisely, we consider the
conditional probability distribution on the set Aβ of time-unbounded executions that extend β. We denote
this probability distribution by Prβ .

3. The Physical Model

We assume a collection of n probabilistic processes. We assume that time is divided into slots, each of
real-time duration tslot; for simplicity, we assume that tslot = 1. Processes have synchronized clocks, and
so can detect when each slot begins and ends. Processes communicate only on slot boundaries. We assume
all processes awaken at the same time 0, which is the beginning of slot 1. We assume that each node has
both transmitter and receiver hardware. The receivers operate at every slot, and processes decide when to
transmit.
We assume that the n processes reside at the nodes of communication graph G = (V,E), one per node.
Following a common conventions, we sometimes ignore the distinction between processes and the graph
nodes at which they reside, referring to processes as “nodes”. Our model is a special case of the model
considered in [1, 2], with only a single, static, undirected graph G. Processes know n and ∆, but nothing
else about the graph; in particular, they do not know their neighbors in G.
We assume a physical network, Net , with collisions but no collision detection. When a process transmits
in some slot, its message reaches exactly itself and all its G-neighboring processes. Thus, each process j,
in each slot, is reached by some collection of messages (from itself and its transmitting neighbors). What
process j actually receives is defined as follows: If j is reached by its own message, then it receives just its
own message, regardless of whether it is reached by any other messages. Thus, a process always receives its
own message, regardless of what else reaches it. (a) If j is not reached by its own message, but is reached
by exactly one message (from another process), then it receives that message. (b) If j is reached by no
messages, it receives silence, represented by ⊥. (c) If j is not reached by its own message, but is reached by
two or more messages from other processes, then it receives silence, ⊥. Thus, processes cannot distinguish
collisions from silence; that is, we assume no collision-detection.

4. Abstract MAC Layers

In this section, we specify the two abstract MAC layers, a special case of the basic layer of [1, 2],3 and the new
probabilistic layer. Our layers are defined for a single, static, undirected communication graph G = (V,E)
with maximum node degree ∆; this is a special case of the layer in [1, 2], which allows two graphs, G and
G′, representing guaranteed and possible communication.
Both of our specifications present an interface to higher layers with inputs bcast(m)i and abort(m)i and
outputs rcv(m)i and ack(m)i, for every m in a given message alphabet M and every i ∈ V . Both specifica-
tions are parameterized by positive reals, frcv, fack, and fprog. These bound delays for a particular message
to arrive at a particular receiver, for an acknowledgement to arrive at a sender indicating that its message
has arrived at all neighbors, and for some message from among many competing messages to arrive at a
receiver.4 For many MAC implementations, fprog is notably smaller than frcv and fack, because the time
for some message to arrive at a receiver is substantially shorter than the time for a particular message to
arrive at every neighbor. Both specifications also use a (small) nonnegative real parameter tabort, which

2“Closed” means that the execution is a finite sequence of alternating discrete and continuous steps, and the final continuous
step spans a closed time interval.

3The definition of the basic layer is slightly more general in later versions of this work [8, 9], in that it drops a “unique
message” assumption. Here we retain that assumption, since it makes some things a bit simpler.

4Since our bounds do not depend on the actual contention, but only on maximum node degree, we express them as constants
rather than as functions of the contention as in [1, 2].

6

bounds the amount of time after a sender aborts a sending attempt when the message could still arrive at
some receiver.
We model a MAC layer formally as a PTIOA Mac. To implement either of our specifications, Mac must guar-
antee several conditions whenever it is composed with any probabilistic environment Env and the physical
network Net (also modeled as PTIOAs). The composition Mac‖Env‖Net (again a PTIOA) yields a unique
probabilistic execution, that is, a unique probability distribution on executions. To define the guarantees
of the MAC layers, we assume some “well-formedness” constraints on the environment Env : An execution
α of Mac‖Env‖Net is well-formed if (a) it contains at most one bcast event for each m ∈ M (all messages
are unique), (b) any abort(m)i event in α is preceded by a bcast(m)i but not by an ack(m)i or another
abort(m)i, and (c) any two bcasti events in α have an intervening acki or aborti.

4.1. The Basic Abstract MAC Layer
Our Basic Abstract MAC Layer specifies worst-case bounds for receive, acknowledgement, and progress de-
lays. The specification says that the Mac automaton guarantees the following, for any well-formed execution
α of Mac‖Env‖Net : There exists a cause function that maps every rcv(m)j event in α to a preceding
bcast(m)i event, where i 6= j, and that also maps each ack(m)i and abort(m)i to a preceding bcast(m)i. The
cause function must satisfy:

1. Receive restrictions: If a bcast(m)i event π causes rcv(m)j event π′, then (a) Proximity: (i, j) ∈
E. (b) No duplicate receives: No other rcv(m)j caused by π precedes π′. (c) No receives after
acknowledgements: No ack(m)i caused by π precedes π′.

2. Acknowledgement restrictions: If bcast(m)i event π causes ack(m)i event π′, then (a) Guaranteed com-
munication: If (i, j) ∈ E then a rcv(m)j caused by π precedes π′. (b) No duplicate acknowledgements:
No other ack(m)i caused by π precedes π′. (c) No acknowledgements after aborts: No abort(m)i caused
by π precedes π.

3. Temination: Every bcast(m)i causes either an ack(m)i or an abort(m)i.

For any α that is is well-formed and satisfies the above restrictions, we define a message instance in α to be
a matched pair of bcast/ack or bcast/abort events.
The specification also says that the Mac automaton guarantees the following three upper bounds on message
delays. Here, frcv bounds the time for a particular message to arrive at a particular receiver, fack bounds
the time for an acknowledgement to arrive at a sender, and fprog bounds the time for some message to arrive
at a receiver. The receive delay bound also includes another constraint, bounding the time after an abort
when a corresponding rcv may occur.

1. Receive delay bound: If a bcast(m)i event π causes a rcv(m)j event π′, then the time between π and
π′ is at most frcv. Furthermore, if there exists an abort(m)i event π′′ such that π causes π′′, then π′

does not occur more than tabort time after π′′.

2. Acknowledgement delay bound: If a bcast(m)i event π causes an ack(m)j event π′, then the time
between π and π′ is at most fack.

3. Progress bound: If α′ is a closed execution fragment within α and j is any node, then it is not the case
that all three of the following conditions hold: (a) The duration for α′ is strictly greater than fprog.
(b) At least one message instance from a neighbor of j completely contains α′. (c) No rcvj event of a
message instance that overlaps α′ occurs by the end of α′.

4.2. The Probabilistic Abstract MAC Layer
Our Probabilistic Abstract MAC Layer specifies probabilistic bounds for receive delay, acknowledgement
delay, and progress. In addition to the four parameters above (frcv, fack, fprog, and tabort), this specification
uses parameters εrcv, εack, and εprog, representing error probabilities for satisfying the delay bounds.
The Probabilistic Abstract MAC Layer specification says that, for every well-formed execution α of Mac‖Env‖Net ,
there exists a cause function as before, satisfying the following non-probabilistic properties defined in Sec-
tion 4.1: all the Receive restrictions, No duplicate acknowledgements, and No acknowledgements after aborts.

7

Moreover, no rcv happens more than tabort time after a corresponding abort. Note that the Guaranteed
communication and Termination properties do not appear in this list; we replace these with probabilistic
versions, in the acknowledgement delay bound, below.
The specification also says that the Mac automaton must guarantee the following three probabilistic upper
bounds on message delays. In defining these bounds, we use the following terminology: If β is a closed
execution, then we say that a bcast event in β is active at the end of β provided that it is not terminated
with an ack or abort in β. Assume i, j ∈ V , and t is a nonnegative real.

1. Receive delay bound: Let j be a neighbor of i. Let β be a closed execution that ends with a bcast(m)i

at time t. Define the following sets of time-unbounded executions that extend β:

• A, the executions in which no abort(m)i occurs.

• B, the executions in which rcv(m)j occurs by time t + frcv.

If Prβ(A) > 0, then Prβ(B|A) ≥ 1− εrcv.

2. Acknowledgement delay bound: Let β be a closed execution that ends with a bcast(m)i at time t.
Define the following sets of time-unbounded executions that extend β:

• A, the executions in which no abort(m)i occurs.

• B, the executions in which ack(m)j occurs by time t + fack and is preceded by rcv(m)j for every
neighbor j of i.

If Prβ(A) > 0, then Prβ(B|A) ≥ 1− εack.

3. Progress bound: Let β be a closed execution that ends at time t. Let I be the set of neighbors of j that
have active bcasts at the end of β, where bcast(mi)i is the bcast at i. Suppose that I is nonempty.
Suppose that no rcv(mi)j occurs in β, for any i ∈ I. Define the following sets of time-unbounded
executions that extend β:

• A, the executions in which no abort(mi)i occurs for any i ∈ I.

• B, the executions in which, by time t + fprog, at least one of the following occurs:

(a) An ack(mi)i for every i ∈ I,
(b) A rcv(mi)j for some i ∈ I, or
(c) A rcvj for some message whose bcast occurs after β.

If Prβ(A) > 0, then Prβ(B|A) ≥ 1− εprog.

The progress bound says that, if a nonempty set of process j’s neighbors have active bcasts at some point,
and none of these messages has yet been received by j, then with probability at least 1 − εprog, within
time fprog, either j receives one of these or something newer, or else all of these end with acks. This is all
conditioned on the absence of aborts.

4.3. Nice Executions
We end Section 4 with a technical definition and lemma related to our acknowledgement delay bound. These
are used in our analysis in both Sections 7 and 8. The “executions” considered here are executions of
any system of the form Mac‖Env‖Net , where Mac implements the probabilistic abstract MAC layer with
acknowledgement parameters fack and εack, Env is a well-formed probabilistic environment for the MAC
layer and Net is the physical layer.

Definition 4.1 (Nice broadcast events and nice executions). Suppose a bcast(m)i event π occurs at time t0
in execution α. Then we say that π is nice if ack(m)i occurs by time t0 + fack and is preceded by a rcv(m)j

for every neighbor j of i. We say that execution α is nice if all bcast events in α are nice. Let N be the set
of all nice executions.

The following lemma bounds the probability that an execution is not nice.

8

Lemma 4.2. If Env submits at most b bcasts in any execution and never submits an abort, then

Pr(N̄) ≤ b · εack.

Proof. For any integer b′, define:

• Hb′ to be the set of time-unbounded executions that contain at least b′ bcast events, and in which it is
not the case that, by time fack after the (b′)th bcast event, a corresponding ack occurs that is preceded
by a corresponding rcv for every neighbor of the broadcasting node.

• Cb′ to be the set of time-unbounded executions that contain strictly fewer than b′ bcast events.

• Bb′ to be the set of finite executions β such that β is a prefix of a time-unbounded execution that
contains at least b′ bcast events and β ends with the (b′)th bcast event.

Then N̄ =
⋃

b′,1≤b′≤b Hb′ ; the bound b suffices because each execution contains at most b bcast events.
Also, Cb′ ⊆ H̄b′ . Also, the sets {Aβ}β∈Bb′ and Cb′ constitute a partition of the set of all time-unbounded
executions. (The notation Aβ is defined in Section 2.3.)
For each β ∈ Bb′ , the definition of fack implies that

Prβ(Hb′) ≤ εack.

Then we obtain:

Pr(Hb′) = Σβ∈Bb′ (Prβ(Hb′) · Pr(Aβ)) + Pr(Hb′ |Cb′) · Pr(Cb′)
= Σβ∈Bb′ (Prβ(Hb′) · Pr(Aβ))
≤ Σβ∈Bb′ (εack · Pr(Aβ))
≤ εack.

Then, using a union bound, we obtain:

Pr(N̄) = Pr(
⋃

b′,1≤b′≤b

Hb′) ≤ b · εack,

as needed.

5. Implementing the Abstract MAC Layer over the Physical Layer

We implement our abstract MAC layers using a contention management algorithm DMAC . DMAC uses a
probabilistic transmission strategy similar to the Decay strategy of [4] and the Probability-Increase strategy
of [10]. We prove two theorems about DMAC: Theorem 5.7 says that DMAC implements the probabilistic
abstract MAC layer (exactly), and Theorem 5.13 says that it implements the basic abstract MAC layer with
high probability.

5.1. Modified Decay Algorithm
Our Decay probabilistic transmission algorithm differs slightly from the one in [4] in that the processes
successively increase their transmission probabilities in each Decay phase rather than decrease them.5 Also,
in our algorithm the processes choose randomly whether to transmit in each individual slot, whereas in [4],
they choose randomly whether to drop out of the entire current Decay phase. We give a lower bound on the
success probability for our algorithm. The algorithm uses knowledge of ∆, the maximum degree in G.

5Thus, our strategy might be better called “Growth” rather than “Decay”, but we keep the original name.

9

Decay:
This algorithm runs for exactly σ = dlog(∆ + 1)e slots.

A set I of processes, |I| ≤ ∆, plus another distinguished process j, participate. We assume that
at least one process in I participates in all slots. Other processes in I, and also j, may participate
in some slots, but once they stop participating, they do not participate in later slots.

At each slot s = 1, . . . , σ, each participating process transmits with probability ps, where pσ =
1
2 , pσ−1 = 1

22 , . . . , pσ−s = 1
2s+1 , . . . , p1 = 1

2σ .

Lemma 5.1. In our modified Decay, with probability at least 1
8 , at some slot, some process in I transmits

alone (that is, without any other process in I transmitting and without j transmitting).

Proof. This depends on the following claim:

Claim 1: At some slot s, the number of participants cs satisfies 1
2cs

≤ ps ≤ 1
cs

.

Proof of Claim 1: We must have p1 ≤ 1
c1

, because if not, then p1 > 1
c1

, which means that 1
2dlog(∆+1)e > 1

c1
≥

1
∆+1 . This implies that 1

∆+1 > 1
∆+1 , a contradiction. If also 1

2c1
≤ p1, then we are done. So assume that

p1 < 1
2c1

. Then it must be that p2 < 1
c2

, because p2 = 2p1 and c2 ≤ c1. Again, if also 1
2c2

≤ p2, we are done,
so assume that p2 < 1

2c2
. We continue in this way through all the slots. If we never reach one where we are

done, it must be that pσ < 1
2cσ

. However, pσ = 1
2 and cσ ≥ 1, so this is impossible.

Given Claim 1, we consider what happens at the indicated slot s. If j participates in slot s, then the
probability that some process in I transmits alone is exactly (cs − 1)ps(1 − ps)cs−1. This is at least (cs −
1)(1

2cs
)(1 − 1

cs
)cs−1 = 1

2 (cs−1
cs

)(1 − 1
cs

)cs−1 = 1
2 (1 − 1

cs
)cs We have that cs ≥ 2, because at least one process

in I participates in slot s, in addition to j. So 1
2 (1− 1

cs
)cs ≥ 1

2 · 1
4 = 1

8 . Thus, if j participates in slot s, the
probability that some process in I transmits alone is at least 1

8 .
On the other hand, if j does not participate in slot s, then the probability that some process in I transmits
alone is exactly csps(1− ps)cs−1. If cs = 1, then this is equal to ps, which is ≥ 1

2cs
= 1

2 . If cs > 1, then the
value of the expression is at least cs(1

2cs
)(1 − 1

cs
)cs−1 = 1

2 (1 − 1
cs

)cs−1, which is ≥ 1
2 (1 − 1

cs
)cs ≥ 1

2 · 1
4 = 1

8 .
Thus, if j does not participate in slot s, then the probability that some process in I transmits alone is at
least 1

8 .

5.2. The DMAC Algorithm
Our MAC algorithm is DMAC (φ), where φ is a positive integer parameter that indicates the number of
Decay phases that are executed.

DMAC(φ), φ a positive integer:
We group slots into Decay phases, each consisting of exactly σ slots.

Each MAC layer process i that receives a message from its environment, via a bcast(m)i input
event, starts executing Decay with message m (and a unique message identifier) at the beginning
of the next Decay phase. Process i executes exactly φ Decay phases, and then outputs ack(m)i at
the end of the final phase. However, if process i receives an abort(m)i input from the environment
before it performs ack(m)i, then it performs no further transmission on behalf of message m and
does not perform ack(m)i.

Meanwhile, process i tries to receive, in every slot. When it receives any message m′ from a
neighbor (not from itself) for the first time on the physical network, it delivers that message to
its environment with a rcv(m′)i output event, at a real time slightly before the ending time of
the slot.

Note that, in DMAC (φ), no process starts participating in a Decay phase part-way through the phase, but
it may stop participating at any time as a result of an abort.
Define DMAC (φ) to be the composition of DMAC (φ)i processes for all i.

10

5.3. Properties of DMAC
Throughout this subsection, we let Env be any probabilistic environment, and consider the unique proba-
bilistic execution of DMAC (φ)‖Env‖Net . We prove five lemmas giving properties of DMAC (φ).
First, Lemma 5.2 asserts that DMAC (φ) satisfies all of the non-probabilistic guarantees.

Lemma 5.2. In every time-unbounded execution, the Proximity, No duplicate receives, No receives after
acknowledgements, No duplicate acknowledgements, and No acknowledgements after aborts conditions are
satisfied. Moreover, no rcv happens more than time 1 after a corresponding abort.

Proof. Straightforward. For the last property, note that when a message is aborted, its transmitting process
i participates in no further slots for that message. That implies that the lag time is at most tslot = 1.

The next lemma gives an absolute bound on acknowledgement time.

Lemma 5.3. In every time-unbounded execution α, the following holds. Consider any bcast(m)i event in α,
and suppose that α contains no abort(m)i. Then an ack(m)i occurs after exactly φ Decay phases, starting
with the next phase that begins after the bcast(m)i.

Proof. Immediate from the definition of DMAC (φ).

The rest of the section gives probabilistic properties. First, we apply Lemma 5.1 to obtain a probabilistic
version of the progress bound.

Lemma 5.4. Let j ∈ V . Let β be a closed execution that ends at time t. Let I be the set of neighbors of
j that have active bcasts at the end of β, where bcast(mi)i is the bcast at i. Suppose that I is nonempty.
Suppose that no rcv(mi)j occurs in β, for any i ∈ I. Let g and h be nonnegative integers, h > 0. Let
g + 1 be the number of the first Decay phase that starts strictly after time t. Define the following sets of
time-unbounded executions that extend β:

• A, the executions in which no abort(mi)i occurs for any i ∈ I.

• B, the executions in which, by the end of Decay phase g + h, at least one of the following occurs: a
rcv(mi)j for some i ∈ I, or a rcvj for some message whose bcast occurs after β.

• C, the executions in which, by the end of Decay phase g + h, ack(mi)i occurs for every i ∈ I.

If Prβ(A) > 0, then

1. Prβ(B ∪ C|A) ≥ 1− (7
8)h.

2. Prβ(Ā ∪B ∪ C) ≥ 1− (7
8)h.

Proof. We have that

Prβ(B ∪ C|A) = Prβ(B ∪ C|C ∩A)Prβ(C|A) + Prβ(B ∪ C|C̄ ∩A)Prβ(C̄|A)
= Prβ(C|A) + Prβ(B|C̄ ∩A)Prβ(C̄|A)
≥ Prβ(B|C̄ ∩A)(Prβ(C|A) + Prβ(C̄|A))
= Prβ(B|C̄ ∩A),

so, for the first conclusion, it suffices to show that Prβ(B|C̄ ∩A) ≥ 1− (7
8)h.

So assume C̄∩A, that is, that within h phases, not every i ∈ I has an ack(mi)i, and no abort(mi)i occurs for
any i ∈ I. Then some neighbor of j participates in all phases q, where g + 1 ≤ q ≤ g + h. Then Lemma 5.1
implies that, in each phase q, (regardless of what has happened in the previous phases), the following holds:
With probability ≥ 1

8 , a rcvj for a message mi, i ∈ I, or for a “new” message (one whose bcast occurs after
β), occurs at phase q, unless such a rcvj occurs at an earlier phase. Thus,

Prβ(B|C̄ ∩A) ≥ 1−
(

7
8

)h

,

11

as needed.
The second conclusion follows from the first since

Prβ(Ā ∪B ∪ C) = Prβ(Ā ∪B ∪ C|A)Prβ(A) + Prβ(Ā ∪B ∪ C|Ā)Prβ(Ā)
= Prβ(B ∪ C|A)Prβ(A) + Prβ(Ā)
≥ Prβ(B ∪ C|A).

The next lemma gives a probabilistic bound on the receive delay.

Lemma 5.5. Let ε be a positive real. Suppose that φ, the parameter for DMAC (φ), is equal to d8∆ ln(1
ε)e.

Let i, j ∈ V , i a neighbor of j. Let β be a closed execution that ends with bcast(m)i at time t. Let g+1 be the
number of the first Decay phase that starts strictly after time t. Define the following sets of time-unbounded
executions that extend β:

• A, the executions in which no abort(m)i occurs.

• B, the executions in which, by the end of Decay phase g + φ, a rcv(m)j occurs.

If Prβ(A) > 0, then

1. Prβ(B|A) ≥ 1− ε.

2. Prβ(Ā ∪B) ≥ 1− ε.

Proof. For every q = 1, . . . , φ, we define 0-1 valued random variable Xq by

Xq =

{
1 if rcv(m)j occurs by the end of phase g + q,

0 otherwise.
(2)

For the first conclusion, it suffices to show that

Prβ(
φ∑

q=1

Xq ≥ 1|A) ≥ 1− ε,

that is, that

Prβ(
φ∑

q=1

Xq = 0|A) ≤ ε.

First, we claim that

Prβ(X1 = 1|A) ≥ 1
8∆

. (3)

This is because, by Lemma 5.1, the conditional probability that some rcvj occurs in phase g + 1 is at least
1
8 , and because all neighboring senders are equally likely to succeed. Similarly, for every q, 2 ≤ q ≤ φ, and
x1, x2, ..., xq−1 ∈ {0, 1},

Prβ(Xq = 1|X1 = x1, . . . , Xq−1 = xq−1, A) ≥ 1
8∆

. (4)

12

Then

Prβ(
φ∑

q=1

Xh = 0|A)

= Prβ(X1 = 0|A) · Prβ(X2 = 0|X1 = 0, A) · Prβ(X3 = 0|X1 = X2 = 0, A)
· . . . · Prβ(Xφ = 0|X1 = X2 = . . . = Xφ = 0, A)

≤
(

1− 1
8∆

)φ

=
(

1− 1
8∆

)d8∆ ln(1
ε)e

≤
(

1− 1
8∆

)8∆ ln(1
ε)

≤ e− ln(1/ε) = ε.

The last inequality follows from (1 + x) < ex. The second conclusion follows from the first as in the proof of
Lemma 5.4, this time by showing that Prβ(Ā ∪B) ≥ Prβ(B|A).

The fifth and final lemma gives a probabilistic bound on the acknowledgement delay.

Lemma 5.6. Let ε be a positive real. Suppose that φ = d8∆ ln(1
ε)e. Let i ∈ V . Let β be any closed execution

that ends with bcast(m)i at time t. Let g + 1 be the number of the first Decay phase that starts strictly after
time t. Define the following sets of time-unbounded executions that extend β:

• A, the executions in which no abort(m)i occurs.

• B, the executions in which, by the end of Decay phase g+φ, ack(m)i occurs and is preceded by rcv(m)j

for every neighbor j of i.

If Prβ(A) > 0, then

1. Prβ(B|A) ≥ 1− ε∆.

2. Prβ(Ā ∪B) ≥ 1− ε∆.

Proof. For the first conclusion, note that Lemma 5.3 implies that ack(m)i is certain to occur by the claimed
time, in fact, just at the end of phase g + φ. For the rcv(m)j events, we use Lemma 5.5 to conclude that
the probability that each individual rcv(m)j event occurs within φ phases is ≥ 1 − ε. Then we use a union
bound to conclude that the probability that all the rcv(m)j events occur within φ phases is ≥ 1− ε∆.
The second conclusion follows as in the two previous proofs.

5.4. Implementing the Probabilistic Layer
In this section, we show that DMAC (φ), for a particular choice of φ, implements the probabilistic abstract
MAC layer. This implementation claim is precise—no new probabilities are introduced for the implementa-
tion relationship.
For this section, we fix several constants:

• ε, a real number, 0 < ε ≤ 1.

• h, a positive integer. This is the number of Decay phases we will consider for the progress bound.

• φ = d8∆ ln(1
ε)e. This is the number of Decay phases we will consider for the receive and acknowledge-

ment bounds.

We define the seven parameters for the probabilistic MAC layer, as functions of ε, h, and φ:

• frcv = fack = (φ + 1)σ.

13

• fprog = (h + 1)σ.

• εrcv = ε.

• εack = ε∆.

• εprog = (7
8)h.

• tabort = 1.

Using Lemmas 5.2- 5.6, we obtain:

Theorem 5.7. DMAC (φ) implements the Probabilistic Abstract MAC Layer with parameters as defined
above.

Proof. We consider a system consisting of DMAC (φ) composed with a well-formed probabilistic environment
Env and the physical network Net . We assume that (after all nondeterminism in Net and in the scheduling
is suitably resolved) that the composition DMAC (φ)‖Env‖Net yields a single probabilistic execution. We
must show that this probabilistic execution satisfies all of the non-probabilistic and probabilistic guarantees
that are listed in Section 4.2.
Lemma 5.2 implies immediately that the probabilistic execution satisfies all of the needed non-probabilistic
guarantees.
Lemma 5.5, Conclusion 1, implies that the probabilistic execution satisfies the first probabilistic requirement,
on the receive delay. In some detail, consider any closed execution that ends with a bcast(m)i at time t, and
define A and B as in the definition of the receive delay bound, where frcv = (φ + 1)σ and εrcv = ε. Suppose
that Prβ(A) > 0. Let g + 1 be the number of the first Decay phase that starts strictly after time t. Define
B′ to be the set of time-unbounded executions that extend β in which a rcv(m)j occurs by the end of Decay
phase g + φ. Then by Lemma 5.5, Conclusion 1, Prβ(B′|A) ≥ 1− ε.
Since Decay phase g + φ ends at time (g + φ)σ and t ≥ (g − 1)σ by choice of g, we have that Decay phase
g + φ ends by time ≤ t + (φ + 1)σ. It follows that Prβ(B|A) ≥ 1− ε, as needed for the receive delay bound.
Similarly, Lemma 5.6, Conclusion 1, implies that probabilistic execution satisfies the second probabilistic
requirement, on the acknowledgement delay bound. Here, we use fack = (φ + 1)σ and εack = ε∆.
Finally, Lemma 5.4, Conclusion 1, implies that the probabilistic execution satisfies the progress delay bound.
Here, we use fprog = (h + 1)σ and εprog = (7

8)h.

Corollary 5.8. DMAC (φ) implements the probabilistic abstract MAC layer with frcv = fack = O(∆ log(1
ε) log(∆)),

fprog = O(h log(∆)), εrcv = ε, εack = ε∆, εprog = (7
8)h, and tabort = O(1).

5.5. Implementing the Basic Layer
In this section, we prove a theorem saying that, with probability ≥ 1− ε, algorithm DMAC (φ) implements
the basic abstract MAC layer, for certain values of ε and φ. Actually, our theorem doesn’t quite say this. Our
general definition of implementation for an abstract MAC layer says that the layer’s guarantees should hold
when the implementation is combined with an arbitrary probabilistic environment Env . Here, we show that
the guarantees hold when the implementation is combined with an Env satisfying a constraint, namely, that
in any execution, Env submits at most b bcasts, for some fixed positive integer b. Note that this constraint
implies that the total number of external MAC layer events (bcast, ack, abort, and rcv) is at most b(∆ + 2).
For this section, we fix constants:

• ε, a real number, 0 < ε ≤ 1.

• b, a positive integer. This bounds the number of bcast events.

• a = b(∆ + 2). This bounds the total number of external MAC layer events.

• ε1 = ε
2a . This is a smaller error probability, which we will use to bound errors for some auxiliary

properties.

• φ = d8∆ ln(∆
ε1

)e. This is the number of Decay phases we will consider for the receive and acknowledge-
ment bounds.

14

• h = log 8
7
(1

ε1
), the real number such that (7

8)h = ε1.

We define the four parameters for the basic abstract MAC layer:

• frcv = fack = (φ + 1)σ.

• fprog = (dhe+ 1)σ.

• tabort = 1.

Before stating the theorem, we define some terminology for describing violations of correctness conditions.
First, we define the set AV , which represents the executions in which the acknowledgement delay bound is
violated. We express AV as the union of sets AV q, each of which describes a violation starting from the qth

bcast event.

Definition 5.9 (AV q, where q is a positive integer, 1 ≤ q ≤ b). If α is a time-unbounded execution, then
we say that α ∈ AV q provided that at least q bcast events occur in α and the following holds. Let bcast(m)i

be the qth bcast event. Then ack(m)i occurs in α, and for some neighbor j of i, a rcv(m)j does not precede
the ack(m)i. We define AV =

⋃
1≤q≤b AVq.

Next, we define the set PV , which represents the executions in which the progress delay bound is violated.

Definition 5.10 (PV). If α is a time-unbounded execution, then we say that α ∈ PV provided that there
is a closed prefix β of α such that the following holds. Let t be the ending time of β. Let I be the set of
neighbors of j that have active bcasts at the end of β, where bcast(mi)i is the bcast at i. Then I is nonempty,
no abort(mi)i occurs in α for any i ∈ I, no rcvj occurs by time t + fprog for any mi, i ∈ I, nor for any
message whose bcast occurs after β, and, for some i ∈ I, ack(mi)i does not occur by time t + fprog.

We can express PV as the union of sets WPV q, where WPV q describes a violation starting from the qth

external MAC layer event:

Definition 5.11 (WPV q, where q is a positive integer, 1 ≤ q ≤ a). If α is a time-unbounded execution,
then we say that α ∈ WPV q provided that at least q external MAC layer events occur in α, β is the closed
prefix of α ending with the qth such event, and the following holds. Let t be the ending time of β. Let I be
the set of neighbors of j that have active bcasts at the end of β, where bcast(mi)i is the bcast at i. Then I is
nonempty, no abort(mi)i occurs in α for any i ∈ I, no rcvj occurs by time t + fprog for any mi, i ∈ I, nor
for any message whose bcast occurs after β, and, for some i ∈ I, ack(mi)i does not occur by time t + fprog.
We define WPV =

⋃
1≤q≤a WPV q.

Lemma 5.12. PV = WPV .

Proof. Clearly WPV ⊆ PV ; we argue that PV ⊆ WPV . Suppose that α ∈ PV . Then by definition of PV ,
α is a time-unbounded execution with a closed prefix β such that the following holds. Let t be the ending
time of β. Let I be the set of neighbors of j that have active bcasts at the end of β, where bcast(mi)i is the
bcast at i. Then I is nonempty, no abort(mi)i occurs in α for any i ∈ I, no rcvj occurs by time t + fprog for
any mi, i ∈ I, nor for any message whose bcast occurs after β, and, for some i ∈ I, ack(mi)i does not occur
by time t + fprog.
Define β′ to be the prefix of β ending with the last external MAC event in β. We know that some such
event exists, because some neighbor of j has an active bcast at the end of β. Let t′ ≤ t be the ending time
of β′. Let I ′ be the set of neighbors of j that have active bcasts at the end of β′; since no external MAC
events occur in β after β′, we have I ′ = I. Since no rcvj occurs by time t + fprog for any mi, i ∈ I, nor for
any message whose bcast occurs after β, we have that no rcvj occurs by time t′ + fprog ≤ t + fprog for any
mi nor for any message whose bcast occurs after β′. Since for some i ∈ I, ack(mi)i does not occur by time
t + fprog, it also does not occur by time t′ + fprog. Therefore, β′ illustrates that α ∈ WPV .

Theorem 5.13. Consider the system DMAC (φ)‖Env‖Net, where Env is a probabilistic environment that
submits at most b bcasts. Consider the unique probabilistic execution of DMAC (φ)‖Env‖Net.
Then with probability at least 1 − ε, the probabilistic execution yields an execution that satisfies all the
properties of the basic abstract MAC layer, with frcv, fack, fprog, and tabort as defined above.

15

Proof. We must show that, with probability at least 1−ε, the execution satisfies all the properties that define
the basic abstract MAC layer, including all correctness guarantees and delay bounds. Theorem 5.7 implies
that the algorithm satisfies all the non-probabilistic properties. Also, by Lemma 5.3, for every bcasti event
that is not terminated with an abort, a corresponding acki occurs within φ Decay phases, and hence by time
fack = (φ+1)σ. Thus, if the implementation fails for an execution α, it must be because α ∈ AV ∪PV . We
show that Pr(AV ∪ PV) ≤ ε.

Claim 1: Pr(AV) ≤ ε
2 .

Proof of Claim 1: Consider any particular q, 1 ≤ q ≤ b. We apply Lemma 5.6, Conclusion 2, with ε in that
lemma instantiated as ε1

∆ . We use the total probability theorem (see, e.g., [23]) to combine the resulting
bounds for different branches of the probabilistic execution, to obtain:

Pr(AV q) ≤ ε1
∆

·∆ = ε1 =
ε

2a
≤ ε

2b
.

Then, using a union bound for all values of q, we obtain that

Pr(AV) ≤ ε

2b
· b =

ε

2
.

Claim 2: Pr(PV) ≤ ε
2 .

Proof of Claim 2: Consider any particular q, 1 ≤ q ≤ a. We apply Lemma 5.4, Conclusion 2, with h in that
lemma instantiated as our dhe, and use the total probability theorem to combine the bounds for different
branches of the probabilistic execution, to obtain:

Pr(WPV q) ≤
(

7
8

)h

= ε1 ≤ ε

2a
.

Then, using a union bound for all values of q, we obtain that

Pr(WPV) ≤ ε

2a
· a =

ε

2
.

In view of Lemma 5.12, we have:
Pr(PV) ≤ ε

2
.

By Claims 1 and 2, Pr(AV ∪ PV) ≤ ε, as needed.

Corollary 5.14. Consider the system DMAC (φ)‖Env‖Net, where Env is a probabilistic environment that
submits at most b bcasts. Consider the unique probabilistic execution of DMAC (φ)‖Env‖Net.
Then with probability at least 1− ε, the execution satisfies all the properties of the basic abstract MAC layer,
with frcv = fack = O(∆ log(∆b

ε) log(∆)), fprog = O(log(∆b
ε) log(∆)), and tabort = O(1).

6. Global Broadcast

So far, we have defined our basic and probabilistic abstract MAC layers, presented the DMAC algorithm,
and proved that DMAC implements both layers. This completes the first part of our work. Now we turn to
the second part: defining and analyzing single-message and multi-message global broadcast protocols over
the MAC layers. In this section, we define the global broadcast problem and present the broadcast protocols
that we will consider.
In the multi-message broadcast (MMB) problem, messages arrive from the environment at arbitrary times, at
arbitrary locations, via arrive(m)i inputs. The algorithm is supposed to deliver all messages to all locations,
using deliver(m)i outputs. The single-message broadcast (SMB) problem is essentially the special case of the
MMB problem for a single message originating at a single (known) location i0 at the beginning of execution;
however, for this case, for consistency with prior literature, we assume that the message starts out in process
i0’s state.
Our broadcast algorithms are simple greedy algorithms, based on the Basic Multi-Message Broadcast
(BMMB) algorithm of [1, 2]. These algorithms are intended to be combined with a (basic or probabilistic)
MAC layer.

16

Basic Multi-Message Broadcast (BMMB) Protocol: Every process i maintains a FIFO
queue named bcastq and a set named rcvd. Both are initially empty. If process i is not currently
sending a message on the MAC layer and its bcastq is not empty, it sends the message at the
head of the queue on the MAC layer (disambiguated with identifier i and sequence number)
using a bcast output. If i receives a message from the environment via an arrive(m)i input, it
immediately delivers the message m to the environment using a deliver(m)i output, and adds
m to the back of bcastq and to the rcvd set. If i receives a message m from the MAC layer via
a rcv(m)i input, it first checks rcvd. If m ∈ rcvd it discards it. Else, i immediately performs a
deliver(m)i output and adds m to bcastq and rcvd.

Basic Single-Message Broadcast (BSMB) Protocol: This is just BMMB specialized to
one message, and modified so that the message starts in the state of a designated initial node i0.

We combine these with our DMAC implementation of the MAC layer, parameterizing the combined algo-
rithms with the number φ of Decay phases. Namely, BSMB -Decay(φ) consists of BSMB composed with
DMAC (φ); this combination is similar to the global broadcast algorithm in [4]. BMMB -Decay(φ) consists
of BMMB composed with DMAC (φ).

7. Analysis of the Single-Message Broadcast Algorithm

In this section, we analyze the BSMB -Decay(φ) single-message global broadcast protocol using both abstract
MAC layers. In Section 7.1, we consider the basic layer and in Section 7.2, the probabilistic layer. We use
different values of φ in these two subsections.
We carry out this analysis by combining results from Section 5 for our MAC layer implementation with
higher-level analysis of the global broadcast algorithm. Our theorems, Theorems 7.1 and 7.8, take the form
of assertions that, with probability at least 1 − ε, for an arbitrary ε, 0 < ε ≤ 1, the message is delivered
everywhere within some time t. The goal is to minimize t, as a function of ε and various graph parameters.
The analysis using the basic MAC layer is very simple, because it uses previous high-level analysis results
without modification. However, it yields a slightly worse bound than the one obtained by Bar-Yehuda et al.
for the intermingled algorithm [4]. The analysis using the probabilistic MAC layer yields the same bounds
as in [4], but the high-level analysis of BSMB over the MAC layer must be redone. The ideas in this analysis
are derived from those in the portion of the analysis of [4] that deals with the high-level algorithm, with a
little extra complication due to asynchrony. Our main accomplishment here is that we have decomposed the
algorithm and its analysis into two independent and reusable pieces.

7.1. Analysis Using Basic Abstract MAC
In this subsection, we use our basic MAC layer to prove an upper bound of O(D log(n

ε) log(∆)) on the
time to deliver the message everywhere with probability at least 1 − ε. In this section, when we talk about
“executions”, we mean executions of BSMB -Decay(φ) together with our physical network and a probabilistic
environment, that is, of BSMB -Decay(φ)‖Env‖Net .
To define φ (the number of Decay phases), we define constants:

• b = n. This is a bound on the number of bcast events. In this algorithm, the single message gets bcast
at most once by each process.

• a = n(∆ + 2). This is a bound on the total number of external MAC layer events.

• ε1 = ε
2a .

• φ = d8∆ ln(∆
ε1

)e.
Theorem 7.1. The BSMB-Decay(φ) algorithm guarantees that, with probability at least 1 − ε, rcv events,
and hence, deliver events, occur at all nodes 6= i0 by time

O(D log(
n

ε
) log(∆)).

17

Proof. Theorem 3.2 of [2] implies that when the BSMB algorithm is used together with the basic abstract
MAC layer, the message is always received everywhere within time O(Dfprog). Based on the constants
defined in Section 5.5, and using the assumption that σ = dlog(∆ + 1)e, we substitute

fprog = O(h log(∆)), h = O(log(
1
ε1

)), ε1 =
ε

2a
, and a = O(n∆),

to obtain a bound of the form
O(D log(

n

ε
) log(∆)).

This means that, if the algorithm ran with a basic abstract MAC layer with fprog as above, it would, in
every execution, deliver the message everywhere by the indicated time.
However, instead of the basic abstract MAC layer, we have an algorithm that implements the abstract MAC
with probability at least 1− ε, whenever it is placed in an environment that submits at most n bcasts. Since
this is true for the environment consisting of the BSMB protocol (plus its own environment), Theorem 5.13
implies that, with probability at least 1 − ε, the MAC layer achieves the progress bound fprog for every
message. That implies that the entire system achieves the required message delivery bound with probability
at least 1− ε.

7.2. Analysis Using Probabilistic Abstract MAC
In this section, we use our probabilistic MAC layer to improve the bound of Section 7.1 to O((D +
log(n

ε)) log(∆)). This is the same bound as in [4], and our analysis uses similar ideas. However, we have
split the analysis into two parts using an abstract MAC layer.
In our analysis, we first assume a probabilistic abstract MAC layer with parameters fprog, fack, εprog, and
εack and analyze the complexity of BSMB in terms of those parameters. Then, in Section 8.3.4, we replace
the abstract layer with DMAC and combine our bounds for DMAC with our bounds for BSMB to obtain
our overall result, Theorem 7.8.
In Section 7.2.2, our probabilistic statements are with respect to the system BSMB‖Mac‖Env‖Net , where
Mac is an arbitrary implementation of the abstract probabilistic MAC layer with parameters fprog, fack,
εprog, and εack, and Env is some probabilistic environment. In Section 7.2.3, we consider the system BSMB -
Decay(φ)‖Env‖Net , where φ = d8∆ ln(1

ε)e, and Env is some probabilistic environment.

7.2.1. Progress Conditions
We define two constants:

γ3 =
3

1− εprog
and γ2 =

2
1− εprog

. (5)

Successful progress for the message is captured formally in the following “Progress Condition”, which is
parameterized by a nonnegative real τ . We also include a (small) parameter δ, because of a technical race
condition that arises from the combination of probability and asynchrony.

Definition 7.2 (PCδ
j (τ), where j ∈ V − {i0} and δ and τ are nonnegative reals). We say that α ∈ PCδ

j (τ)
if a rcvj event occurs in α by time

(γ3dist(i0, j) + γ2τ)(fprog + δ).

Also, we define:
PCδ(τ) =

⋂
j

PCδ
j (τ).

Let PCj(τ) and PC(τ) denote PC0
j (τ) and PC0(τ), respectively.

18

7.2.2. Probabilistic Upper Bound on Message Delivery Time
In this section, we prove a lower bound on the probability that the message is delivered everywhere, within
a certain time bound that depends on the diameter of the network and on fprog. Most of the work in
our analysis is devoted to proving the following lemma, which lower-bounds the probability of the progress
condition PCδ

j (τ). It works for any positive value of δ, no matter how small—any nonzero δ suffices to
handle the race conditions.

Lemma 7.3. Let τ be a nonnegative real number, j ∈ V − {i0}. Let δ be a positive real. Then

Pr(PCδ
j (τ) ∪ N̄) ≥ 1− e−τ .

Proof. We begin with an overview of the proof. We consider the distinguished shortest path Pi0,j from i0 to
j. For every q, we define time tq = q(fprog +δ). We define a random variable Distq to capture the maximum
progress made by the message along the path by time tq, and a Boolean random variable Xq to indicate
whether progress is made between times tq and tq+1; Xq is essentially min(1, Distq+1−Distq). We prove (in
Claim 2) the key fact that, for any finite execution β that ends at time tq + δ, the probability that Xq = 1,
that is, that progress is made between times tq and tq+1, conditioned on an execution being an extension
of β, is at least 1 − εprog. Combining this result for all such β yields (Claim 3) that the probability that
Xq = 1, conditioned on any values of X0, X1, . . . , Xq−1, is at least 1− εprog. Also (Claim 4), the probability
that X0 = 1 is at least 1 − εprog. We then apply Lemma 2.3 (where the Yq are 1 with probability exactly
1− ε) to obtain the final bound.
Now we give the details. Write Pi0,j as i0, i1, i2, . . . , id = j. Define tq = q(fprog + δ) for every nonnegative
integer q. Let the random variable Distq be the maximum l, 1 ≤ l ≤ d, such that a rcvil

event occurs by
time tq; if no such event occurs then define Distq = 0. Then Distq is well-defined for each execution and we
have

∀q ≥ 0, Distq ≥ 0. (6)

Also, by definition of Distq,
∀q ≥ 0 : Distq+1 ≥ Distq. (7)

Define a 0-1 random variable Xq, q ≥ 0, by

Xq =

1 if the execution is in N̄ ,

1 if Distq = d, and

min(1, Distq+1 −Distq) otherwise.
(8)

Claim 1: For every time-unbounded execution α and for every r ≥ 1, if α satisfies
∑r−1

q=0 Xq ≥ d then either
α satisfies Distr = d or α ∈ N̄ .
Proof of Claim 1: By contradiction. Suppose that α satisfies

∑r−1
q=0 Xq ≥ d, α does not satisfy Distr = d

and α ∈ N . Then (7) implies that it is not the case that α satisfies Distq = d for any q, 0 ≤ q ≤ r − 1.
Consequently, all Xq, 0 ≤ q ≤ r − 1, are determined using Case 3 of (8). Then α satisfies:

Distr −Dist0 =
r−1∑
q=0

(Distq+1 −Distq) ≥
r−1∑
q=0

Xq ≥ d.

Thus, α satisfies Distr ≥ Dist0 +d, so by (6) and the fact that Distr ≤ d, we get that α satisfies Distr = d,
a contradiction.

Claim 1 implies that

∀r ≥ 1 : Pr((Distr = d) ∪ N̄) ≥ Pr(
r−1∑
q=0

Xq ≥ d). (9)

Claim 2: Let α be a time-unbounded execution and q ≥ 0. Let β be any finite prefix of α that ends at time
tq + δ ≤ tq+1. Then Prβ(Xq = 1) ≥ 1− εprog.

19

Proof of Claim 2: Note that the values of random variables Dist0, . . . , Distq and X1, . . . , Xq−1 for all α ∈ Aβ

are determined solely by the prefix β. (The notation Aβ is defined in Section 2.3.) So we will sometimes
refer to the values of these variables in β.
If β contains any ack events without all corresponding rcv events, then Aβ ⊆ N̄ . Then by Case 1 of (8), we
get Xq = 1 in β, so Prβ(Xq = 1) = 1, which suffices. So from now on, assume that every ack event in β is
preceded by all corresponding rcv events.
If Distq = d in β, then by Case 2 of (8), we get Xq = 1 in β, so again Prβ(Xq = 1) = 1. So assume that
Distq = e in β, where 0 ≤ e < d.
If e = 0, then a bcasti0 occurs at time t0 = 0, so bcasti0 occurs in β. If e > 0, then by the definition of Distq,
a rcvie event occurs by time tq, which implies that a bcastie occurs in β. In either case, a bcastie occurs in
β.
If ackie

occurs in β, then, by assumption, it must be preceded by a rcvie+1 . Then by Case 3 of (8), we again
have Prβ(Xq = 1) = 1. So assume that ackie does not occur in β.
Let J be the set of neighbors of ie+1 that have an active bcast at the end of β. Then J is nonempty because
ackie does not occur in β and the BSMB protocol does not use abort events. If any of these active bcast(m′′)
events causes a rcvie+1 in β, then by Case 3 of (8), we have Prβ(Xq = 1) = 1. So assume that none of these
active bcast events causes a rcvie+1 in β.
Then by the definition of fprog, applied to β and node ie+1, with probability at least 1 − εprog (according
to Prβ), either a rcvie+1 occurs by time (tq + δ) + fprog = tq+1, or else an ackie occurs by time tq+1 with
no preceding rcvie+1 . In either case, we claim that Xq = 1 in the probabilistically-chosen execution: If a
rcvie+1 occurs by time tq+1, then this follows from Case 3 of (8). On the other hand, if an ackie occurs by
time tq+1 with no preceding rcvie+1 , then the execution is in N̄ , so this follows from Case 1 of (8). Thus, we
have Prβ(Xq = 1) ≥ 1− εprog.

Claim 3: For every q ≥ 1 and every x0, x1, ..., xq−1 ∈ {0, 1},

Pr(Xq = 1|X0 = x0, X1 = x1, . . . , Xq−1 = xq−1) ≥ 1− εprog.

Proof of Claim 3: Fix q, x0, . . . , xq−1. Let B be the set of finite prefixes β of time-unbounded executions α
such that β ends at time tq + δ, and in which

∀i, 0 ≤ i ≤ q − 1 : Xi = xi.

Let C be the set of minimal elements of B, that is, C = {β ∈ B| 6 ∃β′ ∈ B such that β′ is a proper prefix of β}.
Note that every time-unbounded execution α in which

∀i, 0 ≤ i ≤ q − 1 : Xi = xi,

is in exactly one set of the form Aβ for β ∈ C.
Using Claim 2, we get

Pr(Xq = 1|X0 = x0, X1 = x1, . . . , Xq−1 = xq−1)

=
∑
β∈C

Pr(Xq = 1|Aβ ∧X0 = x0, . . . , Xq−1 = xq−1) · Pr(Aβ |X0 = x0, . . . , Xq−1 = xq−1)

=
∑
β∈C

Pr(Xq = 1|Aβ) · Pr(Aβ |X0 = x0, . . . , Xq−1 = xq−1)

=
∑
β∈C

Prβ(Xq = 1) · Pr(Aβ |X0 = x0, . . . , Xq−1 = xq−1)

≥
∑
β∈C

(1− εprog)Pr(Aβ |X0 = x0, . . . , Xq−1 = xq−1)

= (1− εprog)
∑
β∈C

Pr(Aβ |X0 = x0, . . . , Xq−1 = xq−1)

= (1− εprog).

20

Claim 4:
Pr(X0 = 1) ≥ 1− εprog.

Proof of Claim 4: The proof is similar to that for Claim 3, but simpler. Let B be the set of finite prefixes β
of time-unbounded executions such that β ends at time δ. Let C be the set of minimal elements of B, Note
that every time-unbounded execution α is in exactly one set of the form Aβ for β ∈ C.
Using Claim 2, we get

Pr(X0 = 1) =
∑
β∈C

Pr(X0 = 1|Aβ)Pr(Aβ)

=
∑
β∈C

Prβ(X0 = 1)Pr(Aβ)

≥
∑
β∈C

(1− εprog)Pr(Aβ)

= (1− εprog)
∑
β∈C

Pr(Aβ)

= (1− εprog).

We now return to the main proof. Let Yq, 0 ≤ q, be a collection of independent 0-1 random variables such
that

Pr(Yq = 1) = 1− εprog.

By Claim 3, we have that for every q ≥ 1, and for every x0, x1, ..., xq−1 ∈ {0, 1},
Pr(Xq = 1|X0 = x0, X1 = x1, . . . , Xq−1 = xq−1) ≥ Pr(Yq = 1).

By Claim 4, we have that
Pr(X0 = 1) ≥ Pr(Y0 = 1).

It follows from Lemma 2.2 that, for any r ≥ 1,

Pr(
r−1∑
q=0

Xq ≥ d) ≥ Pr(
r−1∑
q=0

Yq ≥ d).

Therefore, by (9), we get

Pr((Distr = d) ∪ N̄) ≥ Pr(
r−1∑
q=0

Yq ≥ d)

= 1− Pr(
r−1∑
q=0

Yq < d).

(10)

Now we set r = bγ3d + γ2τc. By the definition of PCδ
j , we have that, for any time-unbounded execution α,

if Distr = d in α, then α ∈ PCδ
j (τ). Hence, by (10), we have

Pr(PCδ
j (τ) ∪ N̄) ≥ 1− Pr(

r−1∑
q=0

Yq < d). (11)

Now we apply Lemma 2.3, with p = 1 − εprog, to obtain an upper bound for the probability of the sum on
the right-hand side of (11):

Pr(
r−1∑
q=0

Yq < d) ≤ e−τ . (12)

Then by (11) and (12), we get
Pr(PCδ

j (τ) ∪ N̄) ≥ 1− e−τ ,

which completes the proof.

21

Note that the δ term is used in the proof of Lemma 7.3 to ensure that the values of random variables
Dist0, Dist1, . . . , Distq and X0, X1, . . . , Xq−1 are really determined by the prefix β—this does not follow
automatically. Nevertheless, we can remove the δ from the statement of the lemma:

Lemma 7.4. Let τ be a nonnegative real number, and let j ∈ V − {i0}. Then

Pr(PCj(τ) ∪ N̄) ≥ 1− e−τ .

Proof. Follows since Lemma 7.3 holds for every δ > 0. In detail, Lemma 7.3 says that, for every δ > 0.
Pr(PCδ

j (τ) ∪ N̄) ≥ 1− e−τ . Note that, for 0 < δ1 ≤ δ2, we have PCδ1
j (τ) ∪ N̄ ⊆ PCδ2

j (τ) ∪ N̄ . Therefore,

Pr(
⋂
δ>0

PCδ
j (τ) ∪ N̄) ≥ 1− e−τ . (13)

We claim that ⋂
δ>0

PCδ
j (τ) ∪ N̄ = PCj(τ) ∪ N̄ . (14)

One direction is obvious; we argue the other, that⋂
δ>0

PCδ
j (τ) ∪ N̄ ⊆ PCj(τ) ∪ N̄ .

So, let α ∈ ⋂
δ>0 PCδ

j (τ) ∪ N̄ . If α ∈ N̄ then α ∈ PCj(τ) ∪ N̄ and we are done. On the other hand, if
α ∈ ⋂

δ>0 PCδ
j (τ), then for every δ > 0, α contains a rcvj event at a time that is ≤ (γ3d + γ2τ)(fprog + δ).

Since α cannot contain an infinite sequence of discrete events at successively decreasing times (a basic
property of timed executions for PTIOAs), the only possibility is that α contains a rcvj event at a time that
is ≤ (γ3d + γ2τ)fprog. Thus, α ∈ PCj(τ), which suffices.
Then by (13) and (14), we get that

Pr(PCj(τ) ∪ N̄) ≥ 1− e−τ ,

as needed.

Lemma 7.4 allows us to bound the probability of the progress condition for all nodes.

Lemma 7.5. Let τ be a nonnegative real number. Then

Pr(PC(τ) ∪ N̄) ≥ 1− ne−τ .

Proof. By definition of PC, we have:
PC(τ) =

⋂
j 6=i0

PCj(τ).

Using a union bound and Lemma 7.4, we obtain:

Pr(PC(τ) ∪ N̄) = Pr(
⋂

j 6=i0

(PCj(τ) ∪ N̄)) ≥ 1− ne−τ .

Lemma 7.5 yields a bound for the set of executions that satisfy the progress condition for all nodes, and also
are nice, as defined in Section 4.3.

Lemma 7.6. Let τ be a nonnegative real number. Then

Pr(PC(τ) ∩N) ≥ 1− ne−τ − Pr(N̄).

22

Proof. Using Lemma 7.5, we obtain:

Pr(PC(τ) ∩N) ≥ Pr((PC(τ) ∩N) ∪ N̄)− Pr(N̄)
= Pr(PC(τ) ∪ N̄)− Pr(N̄)

≥ 1− ne−τ − Pr(N̄).

Now we combine Lemma 7.6 with Lemma 4.2 (our upper bound on the probability of N̄) to obtain our
bound for BSMB over the probabilistic MAC layer.

Theorem 7.7. Let ε be a real number, 0 < ε ≤ 1. The BSMB protocol guarantees that, with probability at
least

1− ε− nεack,

rcv events, and hence, deliver events, occur at all nodes 6= i0 by time

(γ3D + γ2 ln(
n

ε
))fprog.

Proof. By Lemmas 7.6 and 4.2, with probability at least

1− ne−τ − nεack,

rcv events occur at all nodes 6= i0 by time

(γ3D + γ2τ)fprog.

The conclusion follows by replacing τ with ln(n
ε).

7.2.3. Analysis of the Complete Algorithm
Finally, we combine our bound for the BSMB protocol in terms of the probabilistic abstract MAC layer
(Theorem 7.7) with our results for DMAC to obtain a bound for the combined BSMB -Decay algorithm.

Theorem 7.8. Let ε be a real number, 0 < ε ≤ 1. Let φ = d8∆ ln(1
ε)e. The BSMB-Decay(φ) algorithm

guarantees that, with probability at least 1− ε, rcv events, and hence, deliver events, occur at all nodes 6= i0
by time

O((D + log(
n

ε
)) log(∆)).

Proof. Choose εack = ε
2n . Theorem 7.7, applied with ε in that theorem instantiated as our ε

2 , implies that,
with probability at least

1− ε

2
− nεack ≥ 1− ε,

rcv events occur at all nodes 6= i0 by time

(γ3D + γ2 ln(
n

ε
))fprog.

Using the definitions of parameters for the implementation of the probabilistic layer, in Section 5.4, we may
assume that εprog ≤ 7

8 , so this expression is

O((D + log(
n

ε
))fprog).

Again using those parameter definitions, we substitute fprog = O(log(∆)) into the expression, to get a bound
of

O((D + log(
n

ε
)) log(∆)).

23

8. Analysis of the Multi-Message Broadcast Algorithm

Now we analyze the BMMB -Decay(φ) multi-message global broadcast protocol using both abstract MAC
layers. In Section 8.2, we consider the basic layer, and in Section 8.3, the probabilistic layer. We use different
values of φ in these two subsections.
We carry out this analysis by combining results from Section 5 with higher-level analysis of the global
broadcast algorithm. Our theorems, Theorems 8.4 and 8.21, assert probabilistic upper bounds on the time
for delivering any particular message to all nodes in the network, in the presence of a limited number of
concurrent messages. We assume a bound k on the number of messages that arrive from the environment
during the entire execution.
As for single-message broadcast, the analysis using the basic layer is simple, while the analysis using the
probabilistic layer is more difficult and yields a better bound. The latter analysis is new; it uses many
ideas from Section 7.2, plus new ideas to cope with the on-line arrival of messages. It also uses a new path
decomposition trick. The analysis is not easy; in fact, we believe it would be infeasible without such a
decomposition.

8.1. Definitions
We define the set of broadcast messages that are concurrent with a given broadcast message m. For this, it
is useful to identify the final MAC-layer ack event associated with each broadcast message.

Definition 8.1 (Clear events). Let α be an execution in N (the set of nice executions, as defined in Sec-
tion 4.3), and let m ∈ M be a message such that an arrive(m) event occurs in α. We define the event
clear(m) to be the final ack(m) event in α.

Definition 8.2 (The Set K(m)). Let α be an execution in N and let m ∈ M be a message such that
arrive(m) occurs in α. We define K(m) to be the set of messages m′ ∈ M such that an arrive(m′) event
precedes the clear(m) event and the clear(m′) event follows the arrive(m) event. That is, K(m) is the set
of messages whose processing overlaps the interval between the arrive(m) and clear(m) events.

Since a broadcast message can first arrive at a node via either an arrive or rcv event, we use the following
notation to combine the two possibilities:

Definition 8.3 (get events). A get(m)j event is defined to be the first event by which node j receives message
m; this may be either an arrive event by which m arrives from the environment, or a rcv event by which m
is received from the MAC layer.

8.2. Analysis Using Basic Abstract MAC
In this subsection, we use our basic MAC layer to prove an upper bound of O((D + k′∆) log(nk

ε) log ∆) on
the time to deliver any particular message everywhere with probability at least 1 − ε, in the presence of at
most k′ concurrent messages and with at most k messages overall. If k is polynomial in n, the bound reduces
to O((D + k′∆) log(n

ε) log(∆)). In this section, when we talk about “executions”, we mean executions of
BMMB -Decay(φ) together with our physical network and a probabilistic environment, that is, of BMMB -
Decay(φ)‖Env‖Net .
We define constants:

• b = kn. This is a bound on the number of bcast events. In this algorithm, each of the k messages gets
bcast at most once by each node.

• a = kn(∆ + 2). This is a bound on the total number of external MAC layer events.

• ε1 = ε
2a .

• φ = d8∆ ln(∆
ε1

)e.

24

Theorem 8.4. Let m ∈ M . The BMMB-Decay(φ) algorithm guarantees that, with probability at least 1− ε,
the following property holds of the generated execution α.
Suppose an arrive(m) event occurs in α. Let k′ be a positive integer such that |K(m)| ≤ k′. Then get(m)
events, and hence, deliver events, occur at all nodes in α within time

O((D + k′∆) log(
nk

ε
) log(∆))

of the time of the arrive(m) event.

Note that if k is polynomial in n, the bound reduces to O((D + k′∆) log(n
ε) log(∆)).

Proof. Theorem 3.2 of [2] implies that when the BMMB algorithm is used together with the basic abstract
MAC layer, the message is always received everywhere within time

(D + 2k′ − 1)fprog + (k′ − 1)fack,

which is O((D + k′))fprog + (k′ − 1)fack. Based on the constants defined in Section 5.5, we substitute

fprog = O(log(
1
ε1

) log(∆)), fack = O(∆ log(
∆
ε1

) log(∆)), ε1 =
ε

2a
, and a = O(kn∆),

to obtain a bound of the form

O((D + k′) log(
nk

ε
) log(∆)) + (k′ − 1)O(∆ log(

nk

ε
) log(∆)) = O((D + k′∆) log(

nk

ε
) log(∆)).

Thus, if the algorithm ran with a basic abstract MAC layer with fprog and fack as above, it would, in every
execution, deliver each message m everywhere by the indicated bound.
However, instead of the basic abstract MAC layer, we have an algorithm that implements it with probability
at least 1−ε, whenever it is placed in an environment that submits at most kn bcasts. Since this is true for the
environment consisting of the BMMB protocol (plus its own environment), Theorem 5.13 implies that, with
probability at least 1− ε, the MAC layer achieves the progress bound fprog and the acknowledgment bound
fack. That implies that the entire system achieves the required message delivery bounds with probability at
least 1− ε.

8.3. Analysis Using Probabilistic Abstract MAC
Now we use our probabilistic MAC layer to improve the bound of Section 8.2 to O((D+k′∆ log(nk

ε)) log(∆)).
In our analysis, we first assume a probabilistic layer with parameters fprog, fack, εprog, and εack and analyze
the complexity of BMMB in terms of these parameters. Then, in Section 8.3.4, we replace the abstract layer
with DMAC and combine the bounds for DMAC and BMMB to obtain Theorem 8.21.
For our analysis of BMMB over the abstract MAC layer, we begin by redefining the progress condition PC ,
in Section 8.3.1. Then, in Section 8.3.2, we prove a non-probabilistic bound on the message delivery time in
executions that are “well-behaved”, in the sense that they satisfy the new PC , and also are “nice” as defined
in Section 4.3. Finally, in Section 8.3.3, we bound the probability that an execution is well-behaved and use
this to infer our probabilistic bound on message delivery time.
In Section 8.3.3, our probabilistic statements are with respect to the system BMMB‖Mac‖Env‖Net , where
Mac is an arbitrary implementation of the abstract probabilistic MAC layer with parameters fprog, fack, εprog,
and εack, and Env is some probabilistic environment that submits at most k messages. In Section 8.3.4,
we consider the system BSMB -Decay(φ)‖Env‖Net , where φ = d8∆ ln(1

ε)e, and Env is some probabilistic
environment that submits at most k messages.

8.3.1. Progress Conditions
Our first definition identifies the messages whose processing is completed at a particular node or set of nodes
by a designated real time:

25

Definition 8.5. For any i ∈ V , nonnegative real number t and execution α, define Cα
i (t) to be the set of

messages m such that ack(m)i occurs by time t in α.
For any I ⊆ V , nonnegative real number t and execution α, define Cα

I (t) to be the set of messages
⋂

i∈I Cα
i (t),

that is, the set of messages m such that ack(m)i occurs by time t for every i ∈ I.

We now redefine the progress condition PC. In this definition, we use the same constants γ3 = 3
1−εprog

and
γ2 = 2

1−εprog
defined in Section 7.2.1. As before, the progress condition is parameterized by a nonnegative

real τ .
The condition refers to two arbitrary nodes i and j. It says that, if a broadcast message is received by, or
arrives at, node i by time t, and is “new” in that it is not already completely processed in the neighborhood
of the path from i to j by time t, then either this message or some other “new” message is received by, or
arrives at node j within a certain amount of time.

Definition 8.6 (Progress Condition PCi,j(τ), where i, j ∈ V, i 6= j, and τ is a nonnegative real). Write Pi,j

as i = i0, i1, . . . , id = j, and let I = {i1, . . . , id} (note that I does not include node i = i0). We say that the
progress condition, PCi,j(τ), holds for an execution α (i.e., α ∈ PCi,j(τ)) if for every nonnegative real t,
the following holds:
If a get(m)i event for some message m /∈ Cα

Γ(I)(t) occurs in α by time t, then a get(m′)j event for some
message m′ /∈ Cα

Γ(I)(t) occurs by time
t + (γ3d + γ2τ)fprog.

Also, we define:
PC(τ) =

⋂
i,j,i6=j

PCi,j(τ).

Now we define an alternative progress condition WPCi,j . WPCi,j differs from PCi,j in that it is stated in
terms of real times at which get or ack events occur, rather than arbitrary real times. We prove that WPCi,j

is in fact equivalent to PCi,j . WPCi,j is more convenient to use in a union bound analysis in Section 8.3.3.

Definition 8.7 (The set of executions WPCi,j(τ), where i, j ∈ V , i 6= j, and τ is a nonnegative real). Write
Pi,j as i = i0, i1, . . . , id = j, and let I = {i1, . . . , id}. An execution α is in WPCi,j if for every nonnegative
real t, the following holds:
If a get or ack event occurs anywhere at time t and a get(m)i event for some message m /∈ Cα

Γ(I)(t) occurs
by time t then a get(m′)j event for some message m′ /∈ Cα

Γ(I)(t) occurs by time

t + (γ3d + γ2τ)fprog.

Also, we define:
WPC(τ) =

⋂
i,j,i6=j

WPCi,j(τ).

Lemma 8.8. For every i, j ∈ V , i 6= j, and nonnegative real τ :

PCi,j(τ) = WPCi,j(τ).

Proof. Fix i, j, and τ . Assume that Pi,j : i = i0, i1, . . . , id = j and I = {i1, . . . , id}. We show that
PCi,j(τ) ⊆ WPCi,j(τ) and WPCi,j(τ) ⊆ PCi,j(τ).

1. PCi,j(τ) ⊆ WPCi,j(τ).

Let α be any execution in PCi,j(τ); we show that α ∈ WPCi,j(τ). Fix a nonnegative real t, and
suppose that a get or ack happens at time t. Further, suppose that a get(m)i event occurs for some
message m /∈ Cα

Γ(I)(t) by time t. By the definition of PCi,j(τ), a get(m′)j event for some message
m′ /∈ Cα

Γ(I)(t) occurs in α by time t + (γ3d + γ2τ)fprog. It follows that α ∈ WPCi,j(τ).

2. WPCi,j(τ) ⊆ PCi,j(τ).

Let α be any execution in WPCi,j(τ); we show that α ∈ PCi,j(τ). Fix t, and suppose that a get(m)i

event occurs for some message m /∈ Cα
Γ(I)(t) by time t. We show that a get(m′)j event occurs for some

26

message m′ /∈ Cα
Γ(I)(t) by time t + (γ3d + γ2τ)fprog. Fix m to be any message such that m /∈ Cα

Γ(I)(t)
and a get(m)i event occurs by time t. Let t′, t′ ≤ t, be the largest real number such that either a get
or an ack event occurs at time t′. We have Cα

Γ(I)(t) ⊆ Cα
Γ(I)(t

′), because, by definition of t′, no ack

event occurs after t′ and by time t. Since Cα
Γ(I)(t

′) ⊆ Cα
Γ(I)(t), we get Cα

Γ(I)(t) = Cα
Γ(I)(t

′).

Also, by choice of t′, the get(m)i event occurs by time t′, and either a get or an ack occurs at time
t′. Then by the definition of WPCi,j(τ), a get(m′)j event, m′ /∈ Cα

Γ(I)(t
′) occurs by time t′ + (γ3d +

γ2τ)fprog ≤ t + (γ3d + γ2τ)fprog. It follows that α ∈ PCi,j(τ), as needed.

The following lemma follows immediately from Lemma 8.8.

Lemma 8.9. For every nonnegative real τ :

PC(τ) = WPC(τ).

8.3.2. Message Delivery Guarantee for Well-Behaved Executions
In this subsection, we prove a lemma giving a non-probabilistic upper bound on message delivery time in
“well-behaved” executions. By “well-behaved”, we mean that the executions satisfy the progress condition
and also are “nice”; that is, they are in PC(τ)∩N . The lemma says that, if a message m arrives at a node i
from the environment at time t0, j is any node, and l is any positive integer, then either m reaches j within
a certain time that depends on dist(i, j) and l, or else l new messages reach j in that time. The proof of this
result is the most challenging one in the paper.

Lemma 8.10. Let τ be a positive integer. For nonnegative integers d and l, with l > 0, define

td,l := t0 + ((γ3 + γ2)d + ((γ3 + 2γ2)τ + γ3 + γ2)l) fprog + (l − 1)fack.

Let α be an execution in PC(τ) ∩ N . Assume that arrive(m)i occurs at time t0 in α. Let M ′ ⊆ M be the
set of messages m′ for which arrive(m)i precedes clear(m′) in α. Let j ∈ V , dist(i, j) = d.
Then for every integer l ≥ 1, at least one of the following two statements is true:

1. A get(m)j event occurs by time td,l and ack(m)j occurs by time td,l + fack.

2. There exists a set M ′′ ⊆ M ′, |M ′′| = l, such that for every m′ ∈ M ′′, get(m′)j occurs by time td,l and
ack(m′)j occurs by time td,l + fack.

Proof. We prove the lemma by induction on l.

• Base case: l = 1.

We consider subcases based on whether d = 0 or d > 0. If d = 0, then j = i. Let m′ be the first
message in i’s queue immediately after the arrive(m)i event. Then m′ ∈ M ′, get(m′)i occurs by time
t0 ≤ t0,1, and ack(m′)i occurs by time t0,1 + fack, so Statement 2 is true using M ′′ = {m′}.
If d > 0, then we use the fact that α ∈ PCi,j(τ) to obtain a message with the needed properties. Write
Pi,j as i = i0, i1, . . . , id = j and let I = {i1, . . . , id}. If m ∈ Cα

j (t0) then Statement 1 is true. If not,
then m /∈ Cα

Γ(I)(t0). Then since α ∈ PCi,j(τ), a get(m′)j event for some m′ /∈ Cα
Γ(I)(t0) occurs by time

t0 + (γ3d + γ2τ)fprog < td,1.

If m′ reaches the front of j’s queue by time td,1, then ack(m′)j occurs by time td,1 + fack. Also, note
that m′ ∈ M ′, because m′ /∈ Cα

Γ(I)(t0). So Statement 2 is true using M ′′ = {m′}. Otherwise, that is,
if m′ does not reach the front of j’s queue by time td,1, then in the last state of α at time td,1, some
other message m′′ is first on j’s queue. This implies that get(m′′)j occurs by time td,1 and ack(m′′)j

occurs by time td,1 + fack. Also, note that m′′ ∈ M ′ because m′′ is still in j’s queue at time td,1 > t0.
So again, Statement 2 is true for j and l, in this case using M ′′ = {m′′}.

27

• Inductive step: l > 1, assume the lemma for l − 1 and all values of d.

Now we proceed by induction on d.

– Base case: d = 0.
Then j = i. Suppose there are exactly l0 messages in i’s queue immediately after the arrive(m)i

occurs at time t0. Note that the arrive(m)i event is also the get(m)i event. All of these l0
messages are in M ′, and all of their geti events occur by time t0 ≤ t0,l. If l ≥ l0 then we have
that ack(m)i occurs by time t0 + l0fack ≤ t0 + lfack ≤ t0,l + fack, which implies that Statement 1
is true. On the other hand, if l < l0, then ack(m′)i events occur for the first l messages on the
queue by time t0 + lfack ≤ t0,1 + fack, so Statement 2 is true.

– Inductive step: d > 1, assume the lemma for l and all smaller values of d.
Write Pi,j as i = i0, i1, . . . , id = j and let I = {i1, . . . , id}. Assume that Statement 1 is false for j
and l, that is, that it is not the case that get(m)j occurs by time td.l and ack(m)j occurs by time
td.l + fack. We show that Statement 2 must be true for j and l.
Since Statement 1 is false for j and l, it is also false for j and l−1. Then by inductive hypothesis,
Statement 2 must be true for j and l−1. That is, there exists M ′′ ⊆ M ′, |M ′′| = l−1, such that,
for every m′ ∈ M ′′, get(m′)j occurs by time td,l−1 and ack(m′)j occurs by time td,l−1+fack < td,l.
Since Statement 1 is false for j and l − 1, we have m /∈ M ′′. Fix this set M ′′ for the rest of the
proof.

Claim 1: If get(m′)j occurs by time td,l for some m′ ∈ M ′ − M ′′, then Statement 2 is true for j
and l.

Proof of Claim 1: Suppose that get(m′)j occurs by time td,l for some particular m′ ∈ M ′ −M ′′.
If m′ reaches the front of j’s queue by time td,l, then ack(m′)j occurs by time td,l + fack, so
Statement 2 is true for j and l using the size l set M ′′ ∪ {m′}. Otherwise, that is, if m′ does not
reach the front of j’s queue by time td,l, then in the last state of α at time td,l, some other message
m′′ is first on j’s queue. This implies that get(m′′)j occurs by time td,l and ack(m′′)j occurs by
time td,l + fack. Note that m′′ ∈ M ′ because m′′ is still in j’s queue at time td,l > t0. Also,
m′′ /∈ M ′′, because m′′ is still in j’s queue at time td,l whereas ackj events occur for all messages
in M ′′ before that time. Then Statement 2 is true for j and l, using the size l set M ′′ ∪ {m′′}.

Claim 2: Let j1 and j2 be neighbors. If M ′′ 6⊆ Cα
j1

(tdist(i,j1),l−1 + fack) then for some m′ ∈
M ′ −M ′′, get(m′)j2 occurs by time tdist(i,j1),l−1 + fack.

Proof of Claim 2: By inductive hypothesis for j1 and l − 1, either Statement 1 or Statement 2
is true for j1 and l − 1. If Statement 1 is true then m ∈ Cα

j1
(tdist(i,j1),l−1 + fack). Since α ∈ N ,

this implies that get(m)j2 occurs by time tdist(i,j1),l−1 + fack, as needed. On the other hand, if
Statement 2 is true, then there are at least l− 1 elements of M ′ in Cα

j′(tdist(i,j1),l−1 + fack). Since
M ′′ 6⊆ Cα

j′(tdist(i,j1),l−1 + fack), this set must contain some message m′ ∈ M ′−M ′′. Since α ∈ N ,
this implies that get(m′)j2 occurs by time tdist(i,j1),l−1 + fack, as needed.

We return to the main proof. If for some neighbor j′ of j, M ′′ 6⊆ Cα
j′(tdist(i,j′),l−1 + fack), then

Claim 2 implies that for some m′ ∈ M ′−M ′′, a get(m′)j event occurs by time tdist(i,j′),l−1+fack ≤
td+1,l−1 + fack < td,l. Then Claim 1 implies that Statement 2 is true for j and l, as needed.
The remaining case is where, for every neighbor j′ of j, M ′′ ⊆ Cα

j′(tdist(i,j′),l−1 + fack). Then for
any integer e, 0 ≤ e ≤ d− 1, let Ie = {ie+1, . . . , id}. Let e′ be the smallest integer, 0 ≤ e′ ≤ d− 1,
such that

M ′′ ⊆
⋂

j′∈Γ(Ie′)

Cα
j′(tdist(i,j′),l−1 + fack). (15)

We know that e′ exists because (15) holds for e′ = d − 1. For this e′, we have the following
property:

Claim 3: There exists m′ ∈ M ′ −M ′′ such that get(m′)ie′ occurs by time te′+1,l−1 + fack.

28

Proof of Claim 3: If e′ = 0, then m′ = m satisfies the claim. So assume that e′ > 0. By the way
e′ was chosen, there must be some neighbor j′ of ie′ such that M ′′ 6⊆ Cα

j′(tdist(i,j′),l−1 + fack).
Then by Claim 2, for some m′ ∈ M ′−M ′′, a get(m′)ie′ event occurs by time tdist(i,j′),l−1 +fack ≤
te′+1,l−1 + fack, as needed.

Once more, we return to the main proof. Let d − e′ = qτ + r, where q and r are nonnegative
integers and 0 ≤ r < τ .
First suppose that q > 0. By (15), we have

M ′′ ⊆ Cα
Γ(J)(te′+τ+1,l−1 + fack),

where J = {ie′+1, . . . ie′+τ}. This is because, for every j′ ∈ Γ(J), dist(i, j′) ≤ e′ + τ + 1.
Claim 3 says that there exists m′ ∈ M ′ −M ′′ such that get(m′)ie′ occurs by time

te′+1,l−1 + fack < te′+τ+1,l−1 + fack.

Fix m′. If m′ ∈ Cα
Γ(J)(te′+τ+1,l−1 + fack), then get(m′)ie′+τ

occurs by time te′+τ+1,l−1 + fack).
Otherwise, m′ /∈ Cα

Γ(J)(te′+τ+1,l−1+fack). In this case, we apply the PCie′ ,ie′+τ
(τ) condition, with

m = m′ and t = te′+τ+1,l−1 + fack. This implies that there exists m1 /∈ Cα
Γ(J)(te′+τ+1,l−1 + fack)

such that get(m1)ie′+τ
occurs by time

te′+τ+1,l−1 + fack + (γ3τ + γ2τ)fprog ≤ te′+2τ+1,l−1 + fack.

Note that m1 ∈ M ′, because m1 /∈ Cα
Γ(J)(te′+τ+1,l−1 + fack). Also, m1 /∈ M ′′, because m1 /∈

Cα
Γ(J)(te′+τ+1,l−1 + fack) and M ′′ ⊆ Cα

Γ(J)(te′+τ+1,l−1 + fack). So m1 ∈ M ′−M ′′. Thus, in either
case, there exists m1 ∈ M ′ −M ′′ such that get(m1)ie′+τ

occurs by time te′+2τ+1,l−1 + fack.
We can repeat the same argument using the progress conditions

PCie′+τ ,ie′+2τ
(τ), PCie′+2τ ,ie′+3τ

(τ), . . . PCie′+(q−1)τ ,ie′+qτ
(τ),

to show that there exists mq ∈ M ′ −M ′′ such that get(mq)id−r
occurs by time

td−r+τ+1,l−1 + fack.

Then, by applying the progress condition PCid−r,j(τ), we show that there exists m′′ ∈ M ′ −M ′′

such that get(m′′)j occurs by time

td−r+τ+1,l−1 + fack + (γ3r + γ2τ)fprog ≤ td,l.

Now suppose that q = 0, that is, d − e′ < τ . Then using the progress condition PCie′ ,j(τ), we
can show that there exists m′′ ∈ M ′ −M ′′ such that get(m′′)j occurs by time

td+1,l−1 + fack + (γ3r + γ2τ)fprog ≤ td,l.

Thus, in any case, a get(m′′)j event occurs for some m′′ ∈ M ′ − M ′′ by time td,l. Then Claim 1
implies that Statement 2 is true for j and l, as needed.

8.3.3. Probabilistic Upper Bound on Message Delivery Time
In this section, we prove a lower bound on the probability that executions satisfy the progress condition
and are nice, that is, on the probability of the event PC(τ) ∩ N . We then tie all the results together in
Theorem 8.20.
The first lemma bounds the probability of fast message propagation between particular nodes i and j.
Specifically, after any finite execution β in which i gets a new message, the lemma gives a lower bound on
the probability that either some new message is delivered to j within a short time, or else the execution
is not nice. In this lemma, we consider probabilities with respect to the conditional distribution on time-
unbounded executions of BMMB that extend a particular finite execution β. The notation Aβ and Prβ is
defined in Section 2.3.
As before, the lemma includes a δ term to handle race conditions. We remove δ in a following lemma.

29

Lemma 8.11. Let τ be a nonnegative real number. Consider i, j ∈ V , i 6= j, write Pi,j as i = i0, i1, i2, . . . , id =
j, and let I = {i1, . . . , id}.
Let β be a finite execution of the BMMB protocol that ends at time t0. Assume that there exists m /∈ Cβ

Γ(I)(t0)
such that a get(m)i event occurs in β.
Let δ be a positive real. Let F δ be the subset of Aβ in which there exists m′ /∈ Cβ

Γ(I)(t0) for which a get(m′)j

event occurs by time
t0 + (γ3d + γ2τ)(fprog + δ).

Then
Prβ(F δ ∪ N̄) ≥ 1− e−τ .

Proof. The proof follows the general outline of that for Lemma 7.3, and again uses Lemma 2.3. Now we use
the path Pi,j , and define tq = t0 + q(fprog + δ). The definitions of Distq and Xq are similar to before, only
now they talk about progress for some message not in Cβ

Γ(I)(t0), rather than just the single given message.

Arguments throughout the proof are modified to give progress guarantees for messages not in Cβ
Γ(I)(t0).

Specifically, define tq = t0 + q(fprog + δ) for every nonnegative integer q. Let the random variable Distq be
the maximum l, 0 ≤ l ≤ d, such that there exists m′ /∈ Cβ

Γ(I)(t0) for which a get(m′)il
event occurs by time

tq. Since in β, and hence in all executions in Aβ , a get(m)i0 event occurs by time t0 and m /∈ Cβ
Γ(I)(t0),

Distq is well-defined for each execution and we have

∀q ≥ 0, Distq ≥ 0. (16)

Also, by definition of Distq,
∀q ≥ 0 : Distq+1 ≥ Distq. (17)

Define a 0-1 random variable Xq, q ≥ 0, by

Xq =

1 if the execution is in N̄ ;
1 if Distq = d;
min(1, Distq+1 −Distq) otherwise.

(18)

Claim 1: For every α ∈ Aβ and for every r ≥ 1, if α satisfies
∑r−1

q=0 Xq ≥ d then either α satisfies Distr = d

or α ∈ N̄ .
Proof of Claim 1: By contradiction. Suppose that α satisfies

∑r−1
q=0 Xq ≥ d, α does not satisfy Distr = d

and α ∈ N . Then (7) implies that it is not the case that α satisfies Distq = d for any q, 0 ≤ q ≤ r − 1.
Consequently, all Xq, 0 ≤ q ≤ r − 1, are determined using Case 3 of (18). Then α satisfies:

Distr −Dist0 =
r−1∑
q=0

(Distq+1 −Distq) ≥
r−1∑
q=0

Xq ≥ d.

Thus, α satisfies Distr ≥ Dist0 +d, so by (6) and the fact that Distr ≤ d, we get that α satisfies Distr = d,
a contradiction.

Claim 1 implies that

∀r ≥ 1 : Prβ((Distr = d) ∪ N̄) ≥ Pr(
r−1∑
q=0

Xq ≥ d). (19)

Claim 2: Let α ∈ Aβ and q ≥ 0. Let β′ be any finite prefix of α that ends at time tq + δ ≤ tq+1. Then
Prβ′(Xq = 1) ≥ 1− εprog.
Proof of Claim 2: Note that the values of random variables Dist0, . . . , Distq and X1, . . . , Xq−1 for all α ∈ Aβ′

are determined solely by the prefix β′. So we will sometimes refer to the values of these variables in β′.

30

If β′ contains any ack events without all corresponding rcv events, then Aβ′ ⊆ N̄ . Then by Case 1 of (18),
we get Xq = 1 in β′, so Prβ′(Xq = 1) = 1, which suffices. So from now on, assume that every ack event in
β′ is preceded by all corresponding rcv events.
If Distq = d in β′, then by Case 2 of (18), we get Xq = 1 in β′, so again Prβ′(Xq = 1) = 1. So assume that
Distq = e in β′, where 0 ≤ e < d.
By the definition of Distq, there exists m1 /∈ Cβ

Γ(I)(t0) for which a get(m1)ie event occurs in β′. If m1 reaches
the front of ie’s queue by time tq, then bcast(m1)ie

occurs in β′. If not, then some other message m2 is at
the front of ie’s queue in the last state of β′ at time tq, in which case bcast(m2)ie occurs in β′. Note that
m2 /∈ Cβ

Γ(I)(t0). Thus, in either case, there exists m′ /∈ Cβ
Γ(I)(t0) for which a a bcast(m′)ie event occurs in

β′. Fix such m′.
If ack(m′)ie occurs in β′, then, by assumption, it must be preceded by a rcv(m′)ie+1 . Then by Case 3 of
(18), we again have Prβ′(Xq = 1) = 1. So assume that ack(m′)ie does not occur in β′.
Let J be the set of neighbors of ie+1 that have an active bcast(m′′) for some message m′′ at the end of β′.
Then J is nonempty because ack(m′)ie does not occur in β′ and the BMMB protocol does not use abort

events. Note that for any such active bcast(m′′) event, we have m′′ /∈ Cβ
Γ(I)(t0). This is because J ⊆ Γ(I),

and so all nodes in J have cleared all the messages in Cβ
Γ(I)(t0) by the end of β′. If any of these active

bcast(m′′) events causes a rcv(m′)ie+1 in β′, then by Case 3 of (18), we have Prβ′(Xq = 1) = 1. So assume
that none of these active bcast(m′′) events causes a rcv(m′)ie+1 in β′.
Then by the definition of fprog, applied to β′ and node ie+1, with probability at least 1 − εprog (according
to Prβ′), either a rcv(m′′)ie+1 occurs for some m′′ /∈ Cβ

Γ(I)(t0) by time (tq + δ) + fprog = tq+1, or else an
ack(m′)ie

occurs by time tq+1 with no preceding rcv(m′)ie+1 . (For the first case, according to the definition
of fprog, m′′ may be either a message that is active at a neighbor in J after β′, or else a message whose
bcast occurs after β′; either way, we have m′′ /∈ Cβ

Γ(I)(t0) as claimed.) In either case, we claim that Xq = 1

in the probabilistically-chosen execution: If a rcv(m′′)ie+1 occurs for some m′′ /∈ Cβ
Γ(I)(t0) by time tq+1,

then this follows from Case 3 of (18). On the other hand, if an ack(m′)ie
occurs by time tq+1 with no

preceding rcv(m′)ie+1 , then the execution is in N̄ , so this follows from Case 1 of (18). Thus, we have:
Prβ′(Xq = 1) ≥ 1− εprog.

Claim 3: For every q ≥ 1 and every x0, x1, ..., xq−1 ∈ {0, 1},

Prβ(Xq = 1|X0 = x0, X1 = x1, . . . , Xq−1 = xq−1) ≥ 1− εprog.

Proof of Claim 3: Fix q, x0, . . . , xq−1. Let B be the set of finite prefixes β′ of executions α ∈ Aβ such that
β′ ends at time tq + δ, and in which

∀i, 0 ≤ i ≤ q − 1 : Xi = xi.

Let C be the set of minimal elements of B, that is, C = {β′ ∈ B| 6 ∃β′′ ∈ B such that β′′ is a proper prefix of β′}.
Note that every α ∈ Aβ in which

∀i, 0 ≤ i ≤ q − 1 : Xi = xi,

is in exactly one set of the form Aβ′ for β′ ∈ C.

31

Using Claim 2, we get

Prβ(Xq = 1|X0 = x0, X1 = x1, . . . , Xq−1 = xq−1)

=
∑
β′∈C

Prβ(Xq = 1|Aβ′ ∧X0 = x0, . . . , Xq−1 = xq−1) · Prβ(Aβ′ |X0 = x0, . . . , Xq−1 = xq−1)

=
∑
β′∈C

Prβ(Xq = 1|Aβ′) · Prβ(Aβ′ |X0 = x0, . . . , Xq−1 = xq−1)

=
∑
β′∈C

Prβ′(Xq = 1) · Prβ(Aβ′ |X0 = x0, . . . , Xq−1 = xq−1)

≥
∑
β′∈C

(1− εprog)Prβ(Aβ′ |X0 = x0, . . . , Xq−1 = xq−1)

= (1− εprog)
∑
β′∈C

Prβ(Aβ′ |X0 = x0, . . . , Xq−1 = xq−1)

= (1− εprog).

Claim 4:
Prβ(X0 = 1) ≥ 1− εprog.

Proof of Claim 4: The proof is similar to that for Claim 3, but simpler. Let B be the set of finite prefixes
β′ of executions α ∈ Aβ such that β′ ends at time t0 + δ. Let C be the set of minimal elements of B. Note
that every α ∈ Aβ is in exactly one set of the form Aβ′ for β′ ∈ C.
Using Claim 2, we get

Prβ(X0 = 1) =
∑
β′∈C

Prβ(X0 = 1|Aβ′)Prβ(Aβ′)

=
∑
β′∈C

Prβ′(X0 = 1)Prβ(Aβ′)

≥
∑
β′∈C

(1− εprog)Prβ(Aβ′)

= (1− εprog)
∑
β′∈C

Prβ(Aβ′)

= (1− εprog).

We now return to the main proof. Let Yq, 0 ≤ q, be a collection of independent 0-1 random variables such
that

Pr(Yq = 1) = 1− εprog.

By Claim 3, we have that for every q ≥ 1, and for every x0, x1, ..., xq−1 ∈ {0, 1},

Prβ(Xq = 1|X0 = x0, X1 = x1, . . . , Xq−1 = xq−1) ≥ Pr(Yq = 1).

By Claim 4, we have that
Prβ(X0 = 1) ≥ Pr(Y0 = 1).

It follows from Lemma 2.2 that, for any r ≥ 1,

Prβ(
r−1∑
q=0

Xq ≥ d) ≥ Pr(
r−1∑
q=0

Yq ≥ d).

32

Therefore, by (19), we get

Prβ((Distr = d) ∪ N̄) ≥ Pr(
r−1∑
q=0

Yq ≥ d)

= 1− Pr(
r−1∑
q=0

Yq < d).

(20)

Now we set r = bγ3d + γ2τc. By the definition of F δ, we have that, for any time-unbounded execution α, if
Distr = d in α, then α ∈ F δ. Hence, by (20), we have

Prβ(F δ ∪ N̄) ≥ 1− Pr(
r−1∑
q=0

Yq < d). (21)

Now we apply Lemma 2.3, with p = 1 − εprog, to obtain an upper bound for the probability of the sum on
the right-hand side of (21):

Pr(
r−1∑
q=0

Yq < d) ≤ e−τ . (22)

Then by (21) and (22), we get
Pr(F δ ∪ N̄) ≥ 1− e−τ ,

which completes the proof.

We now remove the δ term.

Lemma 8.12. Let τ be a nonnegative real number. Consider i, j ∈ V , i 6= j, write Pi,j as i = i0, i1, i2, . . . , id =
j, and let I = {i1, . . . , id}.
Let β be a finite execution of the BMMB protocol that ends at time t0. Assume that there exists m /∈ Cβ

Γ(I)(t0)
such that a get(m)i event occurs in β.
Let F be the subset of Aβ in which there exists m′ /∈ Cβ

Γ(I)(t0) for which a get(m′)j event occurs by time

t0 + (γ3d + γ2τ)fprog.

Then
Prβ(F ∪ N̄) ≥ 1− e−τ .

Proof. Follows since Lemma 8.11 holds for every δ > 0. In detail, Lemma 8.11 says that, for every δ > 0.
Prβ(F δ ∪ N̄) ≥ 1− e−τ . Note that, for 0 < δ1 ≤ δ2, we have F δ1 ∪ N̄ ⊆ F δ2 ∪ N̄ . Therefore,

Prβ(
⋂
δ>0

F δ ∪ N̄) ≥ 1− e−τ . (23)

We claim that ⋂
δ>0

F δ ∪ N̄ = F ∪ N̄ . (24)

One direction is obvious; we argue the other, that⋂
δ>0

F δ ∪ N̄ ⊆ F ∪ N̄ .

So, let α ∈ ⋂
δ>0 F δ ∪ N̄ . If α ∈ N̄ then α ∈ F ∪ N̄ and we are done. On the other hand, if α ∈⋂

δ>0 F δ, then for every δ > 0, α contains a get(m′)j event for some m′ /∈ Cβ
Γ(I)(t0) at a time that is

≤ t0 + (γ3d + γ2τ)(fprog + δ). Since α cannot contain an infinite sequence of discrete events at successively

33

decreasing times, the only possibility is that α contains a get(m′)j event for some m′ /∈ Cβ
Γ(I)(t0) at a time

that is ≤ t0 + (γ3d + γ2τ)fprog. Thus, α ∈ F , which suffices.
Then by (23) and (24), we get that

Prβ(F ∪ N̄) ≥ 1− e−τ ,

as needed.

Next, we prove a lower bound on the probability for PC, in Lemma 8.19. In doing this, we use the equivalent
WPC definition from Section 8.3.1. We decompose the analysis in terms of the number of get or ack events
that have occurred so far. This requires another auxiliary definition, a version of the WPCi,j definition that
depends on the number of get or ack events.

Definition 8.13 (WPCi,j,c(τ), where i, j ∈ V , i 6= j, c is a positive integer, and τ is a nonnegative real).
Write Pi,j as i = i0, i1, . . . , id = j, and let I = {i1, . . . , id}. We say that α ∈ WPCi,j,c(τ) if for every
nonnegative real t, the following holds:
If α contains at least c get or ack events, and the cth such event occurs at time t, and a get(m)i event for
some message m /∈ Cα

Γ(I)(t) occurs by time t, then a get(m′)j event for some message m′ /∈ Cα
Γ(I)(t) occurs

by time
t + (γ3d + γ2τ)fprog.

Lemma 8.14. Suppose i, j ∈ V , i 6= j, and τ is a nonnegative real. Then

WPCi,j(τ) =
⋂

1≤c≤2nk

WPCi,j,c(τ).

Proof. The definitions immediate imply one direction, that

WPCi,j(τ) ⊆
⋂

1≤c≤2nk

WPCi,j,c(τ).

For the other direction, that ⋂
1≤c≤2nk

WPCi,j,c(τ) ⊆ WPCi,j(τ),

we use the fact that the total number of get and ack events is bounded by 2nk: one get and one ack event
for each of the n nodes for each of the ≤ k messages.

For use in handling race conditions, it is also helpful to define an extension of the previous definition that
includes a δ term:

Definition 8.15 (WPCδ
i,j,c(τ), where i, j ∈ V , i 6= j, c is a positive integer, and δ and τ are nonnegative

reals). Write Pi,j as i = i0, i1, . . . , id = j, and let I = {i1, . . . , id}. We say that α ∈ WPCi,j,c(τ) if for every
nonnegative real t, the following holds:
If α contains at least c get or ack events, and the cth such event occurs at time t, and a get(m)i event for
some message m /∈ Cα

Γ(I)(t) occurs by time t, then a get(m′)j event for some message m′ /∈ Cα
Γ(I)(t) occurs

by time
t + (γ3d + γ2τ)fprog + δ.

Now we prove a lower bound for WPCi,j,c(τ). Note that the probabilities in Lemma 8.16 are with respect
to the entire probabilistic execution of BMMB , starting from an initial state.

Lemma 8.16. For any i, j ∈ V , i 6= j, positive integer c, positive real δ and nonnegative real τ , we have:

Pr(WPCδ
i,j,c(τ) ∪ N̄) ≥ 1− e−τ ,

34

Proof. Fix i, j, c, δ, and τ . Define the usual notation for Pi,j and I.
Define Bδ to be the set of finite prefixes β of executions α containing at least c get or ack events, such that
the cth such event occurs at time t and β ends at time t + δ. Let Cδ be the set of minimal elements of Bδ.
Note that every time-unbounded execution α containing at least c get or ack events is in at most one set of
the form Aβ for β ∈ Cδ.
Let D be the set of time-unbounded executions that contain fewer than c get or ack events. Notice that
D ⊆ WPCδ

i,j,c(τ)

Claim 1: For every β ∈ Cδ,
Prβ(WPCδ

i,j,c(τ) ∪ N̄) ≥ 1− e−τ .

Proof of Claim 1: Let t be the time of the cth get or ack event in β. If β contains no get(m)i event for a
message m /∈ Cβ

Γ(I)(t) by time t, then by definition, Aβ ⊆ WPCδ
i,j,c(τ), so

Prβ(WPCδ
i,j,c(τ) ∪ N̄) = 1.

So from now on assume that β contains a get(m)i event for a message m /∈ Cβ
Γ(I)(t) by time t. Fix such an

m. If m ∈ Cβ
Γ(I)(t + δ), then in particular, m ∈ Cβ

j (t + δ), which implies that get(m)j occurs in β, so again
Aβ ⊆ WPCδ

i,j,c(τ), so
Prβ(WPCδ

i,j,m(τ) ∪ N̄) = 1.

So from now on assume that m /∈ Cβ
Γ(I)(t + δ).

Now we apply Lemma 8.12 to β, with t0 = t + δ, to conclude that, with probability ≥ 1− e−τ , either there
exists m′ /∈ Cβ

Γ(I)(t + δ) such that get(m′)j occurs by time

t + δ + (γ3d + γ2τ)fprog,

or the execution is in N̄ . For each such m′, we have that m′ /∈ Cβ
Γ(I)(t), so we get:

Prβ(WPCδ
i,j,c(τ) ∪ N̄) ≥ 1− e−τ .

Then we use Claim 1 to obtain:

Pr(WPCδ
i,j,c(τ) ∪ N̄) =

∑
β∈Cδ

Prβ(WPCδ
i,j,c(τ) ∪ N̄) · Pr(Aβ) + Pr(WPCδ

i,j.c(τ) ∪ N̄ |D) · Pr(D)

=
∑
β∈Cδ

Prβ(WPCδ
i,j,c(τ) ∪ N̄) · Pr(Aβ) + Pr(D)

≥ (1− e−τ) · Pr(D̄) + Pr(D)

≥ (1− e−τ),

as needed.

And now we remove δ:

Lemma 8.17. For any i, j ∈ V , i 6= j, positive integer c, and positive real τ , we have:

Pr(WPCi,j,c(τ) ∪ N̄) ≥ 1− e−τ .

Proof. By an argument like the one used to prove Lemma 8.12.

Lemma 8.18. Let τ be a nonnegative real number. Then

Pr(WPC(τ) ∪ N̄) ≥ 1− 2n3ke−τ .

35

Proof. By definition of WPC and Lemma 8.14, we obtain that

WPC(τ) =
⋂

i,j∈V,i 6=j

WPCi,j(τ) =
⋂

i,j∈V,i 6=j,1≤c≤2nk

WPCi,j,c(τ).

Using a union bound and Lemma 8.17, we obtain:

Pr(WPC(τ) ∪ N̄) = Pr(
⋂

i,j∈V,i 6=j,1≤c≤2nk

(WPCi,j,c(τ) ∪ N̄)) ≥ 1− 2n3ke−τ .

We now use Lemmas 8.18 and 8.9 to obtain our lower bound on the probability of PC(τ).

Lemma 8.19. Let τ be a positive real number. Then

Pr(PC(τ) ∩N) ≥ 1− 2n3ke−τ − Pr(N̄).

Proof. Using Lemma 8.18, we obtain:

Pr(WPC(τ) ∩N) ≥ Pr((WPC(τ) ∩N) ∪ N̄)− Pr(N̄)
= Pr(WPC(τ) ∪ N̄)− Pr(N̄)

≥ 1− 2kn3e−τ − Pr(N̄).

By Lemma 8.9, WPC(τ) = PC(τ), which completes the proof.

Finaly, we combine Lemma 8.10 with Lemma 8.19 and the bound for Pr(N̄) in Lemma 4.2, and instantiate
τ as dln(2n3k

ε)e, to obtain our result for BMMB over the probabilistic MAC layer:

Theorem 8.20. Let m ∈ M and let ε be a real number, 0 < ε < 1. The BMMB protocol guarantees that,
with probability at least

1− ε− nkεack,

the following property holds of the generated execution α:
Suppose an arrive(m)i event π occurs in α, and let t0 be the time of occurrence of π. Let k′ be a positive
integer such that |K(m)| ≤ k′. Then get(m) events, and hence, deliver events occur at all nodes in α by
time

t0 +
(

(γ3 + γ2)D + ((γ3 + 2γ2)dln(
2n3k

ε
)e+ γ3 + γ2)k′

)
fprog + (k′ − 1)fack.

Proof. Let τ = dln(2n3k
ε)e. The theorem follows immediately from two claims:

Claim 1: Suppose α ∈ PC(τ) ∩ N . Suppose an arrive(m)i event π occurs at time t0 in α. Let k′ be a
positive integer such that |K(m)| ≤ k′. Consider any node j. Then a get(m)j occurs by time

t1 = t0 +
(

(γ3 + γ2)D + ((γ3 + 2γ2)dln(
2n3k

ε
)e+ γ3 + γ2)k′

)
fprog + (k′ − 1)fack.

Proof of Claim 1: Let M ′ ⊆ M be the set of messages m′ for which arrive(m)i precedes clear(m′) in α.
Therefore, we have K(m) ⊆ M ′.
Based on Lemma 8.10, and using the fact that dist(i, j) ≤ D, by time t1, either a get(m)j event occurs or
there exists a set M ′′ ⊆ M ′ with |M ′′| = k′ such that get(m′)j events occur for all messages m′, m′ ∈ M ′′.
In the first case, the claim holds.
So suppose that the first case does not hold and the second case does hold, that is, a get(m)j event does
not occur by time t1, but there is a set M ′′ ⊆ M ′ with |M ′′| = k′ such that get(m′)j events occur for all
messages m′ ∈ M ′′ by time t1. Since get(m)j does not occur by time t1, clear(m) does not occur by time
t1. Therefore, the arrive(m′) events for all m′ ∈ M ′′ precede clear(m). It follows that M ′′ ⊆ K(m). Then

36

because |M ′′| = k′ and |K(m)| ≤ k′, we get M ′′ = K(m). Since m ∈ K(m), it follows that there is a get(m)j

event by time t1, a contradiction.

Claim 2: The probability of the event PC(τ) ∩N is at least 1− ε− nkεack.
Proof of Claim 2: By Lemma 8.19, the probability of the event PC(τ)∩N is at least 1− 2n3ke−τ −Pr(N̄).
Since τ ≥ ln(2n3k

ε), this yields that

Pr(PC(τ) ∩N) ≥ 1− ε− Pr(N̄) ≥ 1− ε− nkεack.

The last inequality follows from Lemma 4.2.

8.3.4. Analysis of the Complete Algorithm
Finally, we combine our bound for the BMMB protocol in terms of the probabilistic abstract MAC layer
(Theorem 8.20) with our results for DMAC to obtain a bound for the combined BMMB -Decay algorithm.

Theorem 8.21. Let m ∈ M and ε be a real number, 0 < ε < 1. Let φ = d8∆ ln(1
ε)e. The BMMB-Decay(φ)

algorithm guarantees that, with probability at least 1−ε, the following property holds of the generated execution
α:
Suppose an arrive(m)i event π occurs in α. Let k′ be a positive integer such that |K(m)| ≤ k′.
Then get(m) events, and hence, deliver events, occur at all nodes in α within time

O((D + k′∆ log(
nk

ε
)) log(∆))

of the time of occurrence of π.

Note that if k is polynomial in n, the bound reduces to O((D + k′∆ log(n
ε)) log(∆)).

Proof. Choose εack = ε
2nk . Theorem 8.20 implies that, with probability at least

1− ε

2
− nkεack ≥ 1− ε,

get(m) events occur everywhere within time(
(γ3 + γ2)D + ((γ3 + 2γ2)dln(

4n3k

ε
)e+ γ3 + γ2)k′

)
fprog + (k′ − 1)fack.

Using the definitions of parameters for the implementation of the probabilistic layer, in Section 5.4, we may
assume that εprog ≤ 7

8 , so this expression is

O((D + log(
nk

ε
)k′)fprog) + (k′ − 1)fack.

Again using those parameter definitions, we substitute fprog = O(log(∆)) and fack = O(∆ log(nk
ε) log(∆))

into the expression, to get a bound of

O((D + log(
nk

ε
)k′) log(∆)) + (k′ − 1)O(∆ log(

nk

ε
) log(∆)) = O((D + k′∆ log(

nk

ε
)) log(∆)).

The reason why we can use fack = O(∆ log(nk
ε) log(∆)) here is as follows. We instantiate ε in the parameter

definitions with ε
2nk∆ , for the ε in the statement of this theorem. Then the parameter definitions say that

εack =
ε

2nk∆
·∆ =

ε

2nk
.

This yields, from the parameter definitions, that

fack = O(∆ log(
2nk∆

ε
) log(∆)),

which is
O(∆ log(

nk

ε
) log(∆)),

as needed.

37

9. Conclusions

In this paper, we have shown how one can use abstract MAC layers to decompose global broadcast algorithms
into a high-level part for broadcast and a low-level part for contention management. We use both the basic
abstract MAC layer of [1, 2] and a new probabilistic layer. The basic layer is simple to use, but yields bounds
that are not optimal. The probabilistic layer yields better bounds, at the cost of somewhat more difficult
high-level analysis. The approach is flexible, in that it allows high-level algorithms to be combined easily
with different implementations of the MAC layer.
Our analysis of the multi-message broadcast algorithm is sufficiently hard that we think it would have been
infeasible without such a decomposition. Thus, we believe that this approach enables analysis of more
complicated algorithms than one could handle otherwise.
Even with the decomposition, the proofs are not trivial. Complications arise because of issues such as race
conditions, the combinination of synchronous and asynchronous algorithms, and composition of probabilistic
systems. Nevertheless, the analysis is not too difficult, and the results are reusable.
Some technical questions remain. For example, we wonder whether one could remove the dependence on
k, the total number of messages sent in the entire execution, in the bound for multi-message broadcast
(Theorem 8.21).
Other avenues for future work involve designing and analyzing other algorithms over the MAC layers, and
developing and analyzing other algorithms to implement the MAC layers. For instance, as we described in
the introduction, Cornejo et al. [11, 12] have developed new Neighbor Discovery algorithms over the basic
abstract MAC layer, which support higher-level dynamic graph algorithms. Khabbazian et al. [14] have
developed an implementation of the probabilistic abstract MAC layer based on Analog Network Coding
(ANC) techniques [15], which can be combined with our high-level broadcast algorithms. Many more ex-
amples remain to be studied. We are also interested in learning how the theoretical results change in the
presence of communication uncertainty, as represented by the dual graph model of Kuhn et al. [1, 2].
We hope that this work will contribute to building a comprehensive theory for wireless network algorithms,
spanning all the way from the physical network level to applications.

References

[1] F. Kuhn, N. Lynch, C. Newport, The Abstract MAC layer, in: The Proceedings of the International
Symposium on Distributed Computing, pp. 48–62.

[2] F. Kuhn, N. Lynch, C. Newport, The Abstract MAC layer, MIT Technical Report (MIT-CSAIL-TR-
2009-021) (2009).

[3] J. Walter, J. Welch, N. Vaidya, A mutual exclusion algorithm for ad hoc mobile networks, Wireless
Networks 7 (2001) 585–600.

[4] R. Bar-Yehuda, O. Goldreich, A. Itai, On the time-complexity of broadcast in multi-hop radio networks:
An exponential gap between determinism and randomization, Journal of Computer and System Sciences
45 (1992) 104–126.

[5] D. Peleg, Time-efficient broadcasting in radio networks: A review, in: The Proceedings of The Inter-
national Conference on Distributed Computing and Internet Technologies, pp. 1–18.

[6] L. Gasieniec, On efficient gossiping in radio networks, in: The Proceedings of The International
Colloquium on Structural Information and Communication Complexity, pp. 2–14.

[7] A. Pelc, Algorithmic aspects of radio communication, in: The Proceedings of The International Work-
shop on Foundations of Mobile Computing, pp. 1–2.

[8] F. Kuhn, N. Lynch, C. Newport, The Abstract MAC layer, Distributed Computing (2011). To appear.
Special issue.

[9] F. Kuhn, N. Lynch, C. Newport, The Abstract MAC Layer, Technical Report MIT-CSAIL-TR-2010-
040, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, 2010.

38

[10] T. Jurdzinski, G. Stachowiak, Probabilistic algorithms for the wakeup problem in single-hop radio
networks, in: The Proceedings of International Symposium on Algorithms and Computation, pp. 139–
150.

[11] A. Cornejo, N. Lynch, S. Viqar, J. Welch, A neighbor discovery service using an Abstract MAC layer,
in: The Proceedings of Allerton Conference on Communication, Control and Computing.

[12] A. Cornejo, S. Viqar, J. Welch, Reliable neighbor discovery for mobile ad hoc networks, in: The
Proceedings of Sixth ACM SIGACT/SIGMOBILE International Workshop on Foundations of Mobile
Computing (DIALM-POMC 2010), pp. 63–72.

[13] S. Dolev, S. Gilbert, M. Khabbazian, C. Newport, More channels is better: Efficient and robust wireless
broadcast, 2010. Submitted for publication.

[14] M. Khabbazian, F. Kuhn, N. Lynch, M. Medard, A. ParandehGheibi, MAC design for analog network
coding, 2010. Submitted for publication.

[15] S. Gollakota, D. Katabi, ZigZag decoding: Combating hidden terminals in wireless networks, in: The
Proceedings of the ACM SIGCOMM Conference, volume 38, pp. 159–170.

[16] M. Adler, C. Scheideler, Efficient communication strategies for ad hoc wireless networks, Theory
Comput. Syst. 33 (2000) 337–391.

[17] D. Kowalski, A. Pelc, Broadcasting in undirected ad hoc radio networks, in: The Proceedings of the
International Symposium on Principles of Distributed Computing, pp. 73–82.

[18] A. Czumaj, W. Rytter, Broadcasting algorithms in radio networks with unknown topology, in: The
Proceedings of the Symposium on Foundations of Computer Science, pp. 492–501.

[19] R. Bar-Yehuda, A. Israeli, A. Itai, Multiple communication in multi-hop radio networks, SIAM Journal
on Computing 22 (1993) 875–887.

[20] M. Khabbazian, D. Kowalski, F. Kuhn, N. Lynch, Decomposing broadcast algorithms using Abstract
MAC layers, in: The Proceedings of Sixth ACM SIGACT/SIGMOBILE International Workshop on
Foundations of Mobile Computing (DIALM-POMC 2010), pp. 13–22.

[21] M. Khabbazian, D. Kowalski, F. Kuhn, N. Lynch, The Cost of Global Broadcast using Abstract MAC
Layers, Technical Report MIT-CSAIL-TR-2010-005, MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, 2010.

[22] S. Mitra, A Verification Framework for Hybrid Systems, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 2007.

[23] D. Bertsekas, J. N. Tsitsiklis, Introduction to Probability, Athena Scientific, 2008.

39

