
GPES: A GENERAL PROCESS ENGINEERING SYSTEM

by

MOHAMMAD SHARIF ARAB-ISMAILI

B.S., Abadan Institute
(1971)

of Technology

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1978

Signature of Author:.A,..
Department of Chemical Engineering, May 12, 1978

Certified L....
........J.H. Porter, Thesis Supervisor

Accepted by..j-

G.C. Williams, Chairman, Department Committee on Graduate Theses

GPES: A GENERAL PROCESS ENGINEERING SYSTEM

by

Mohammad Sharif Arab-Ismaili

Submitted to the Department of Chemical Engineering
on May 12,1978 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

ABSTRACT

The General Process Engineering System (GPES) has been designed as a
generalized framework which can be used to create different kinds of sim-
ulation systems for process engineering, each suited to the needs of a
particular set of users. This has been accomplished by having generalized
data structures represent the elements of a chemical process flowsheet such
as units, streams, components, etc. However, to create a particular
simulation system, one must define these data structures and provide com-
puter programs to perform process unit operations. The information set
defining a process element is called a template. Hence a system created by
GPES is called a Template Based System (TBS). A language called Template
Definition Language (TDL) has been provided to enable the administrator of
the TBS to -communicate with the system to define templates.

Once a TBS has been implemented (templates have been defined and computa-
tional subroutines provided) a process designer may use that system to model,
simulate, or design any arbitrary process configuration. A language called
Process Engineering Language (PEL) has been provided to enable the designer
to communicate with the TBS in terms very similar to those he might use to
describe the process to another designer. The system provides the user with
some other advanced features not usually found in other general purpose
process simulators. It provides an environment wherein the designer and the
computer can work as partners on the problem solving team, each performing
the job he does best, enhancing the capability of either partner working
alone.

The created systems (TBS's) are not limited to a particular class of pro-
cesses. They are open-ended systems which can be easily modified, expan-
ded, or updated.

This thesis describes the motivation and design of GPES and demonstrates its
application by developing a number of prototype TBS's. The system has been
implemented in PL/1 on Multics, a time-sharing system by Honeywell.

Thesis Supervisor: James H. Porter
Lecturer, Department of Chemical Engineering

Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
May 12, 1978

Professor George C. Newton, Jr.
Secretary of the Faculty
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dear Professor Newton:

In accordance with the regulations of the Faculty, I hereby submit a
theses entitled "GPES: A General process Engineering System," in partial
fulfillment of the requirements for the Degree of Doctor of Philosophy in
Chemical Engineering at the Massachusetts Institute of Technology.

Respectfully submitted,

Mohammad Sharif Arab-Ismaili

ACKNOWLEDGMENTS

I wish to express my sincerest gratitude to my thesis supervisor,

Professor James H. Porter. His valuable guidance and timely suggestions

deserve appreciation of the highest kind. I am also grateful to

Professor L.B. Evans of the MIT Chemical Engineering Department, to

Professor S.E. Madnick of the MIT Sloan School of Management, and to

Professor W.D. Seider of the University of Pennsylvania, for their help

while serving on the thesis committee.

Acknowledgment is also due to Professor J.F. Louis, and Dr. J. D.

Teare of the MIT Energy Laboratory for their valuable suggestions and

comments concerning this work.

I am grateful to Dr. H. Cohen and Mr. B. Misra for their effort in

testing the system by implementing a prototype TBS for MHD process

studies.

I wish to thank Dollina Borella, Lana Krasner, Patricia Rynne, Alice

Sanderson, and Barbara Thomas for their effort and patience in typing

this manuscript.

Finally, I wish to express my indebtedness to my wife and my mother

who have patiently and lovingly encouraged me throughout my studies.

This work was supported by the MIT Energy Laboratory and the U.S.

Department of Energy.

Mohammad Sharif Arab-Ismaili
Cambridge, Massachusetts
May 1978

5

TABLE OF CONTENTS

Page

1. SUMMARY

1.1

1.2

1.3

1.4

1.5

Introduction

Criteria for Computer Systems Amenable to Simulation and Design

Existing Computer Systems and the Problem

Thesis Objective

Thesis Work

1.5.1 General Process Engineering System

1.5.2 Development Process of a Template Based System

1.5.3 Development of a Number of Prototype TBS's

1.5.4 An Example: The Development of a Prototype TBS for
Analyzing Heat Exchanger Networks

1.6 Conclusions and Thesis Contributions

2. INTRODUCTION

2.1 Chemical Process Simulation

2.2 Simulation Versus Design

2.3 Criteria for Computer Systems Amenable to Simulation and Design

2.4 The Problem

2.5 Thesis Objective

2.6 Thesis Work

2.7 General Process Engineering System

2.8 Operating Environment

2.9 Organization of the Thesis

3. A FRAMEWORK FOR THE DEVELOPMENT OF GENERAL PURPOSE PROCESS SIMULATORS 76

3.1 A Chemical Process 76

Page

3.1.1 Chemical Components 77

3.1.2 Streams 79

3.1.3 Units 81

3.2 Other Elements of Interest 83

3.2.1 Functions 84

3.2.2 Variables 85

3.3 Units of Measurement 85

3.4 Calculating Routines 86

3.4.1 Route Selection 88

3.5 Template Based System 90

4. THE TEMPLATE DATA BASE 92

4.1 Information Content of a Template Data Base 92

4.1.1 The Dimension Table 99

4.1.2 Stream Templates 102

4.1.3 Unit Templates 106

4.1.4 Component Templates 110

4.1.5 Function Templates 113

4.1.6 Table of Property Estimation Methods 117

4.1.7 Control Information 117

4.1.8 Text File 125

4.2 The Template Data Base Segments 127

4.3 The Template Definition Language 131

4.4 "updatetdb Program 135

4.4.1 Consistency of the Data in the Template Data Base 137

4.5 Protection of the Template Data Base 138

4.5.1 Utility Programs 139

4.5.1.1 gaccesstdb Program 139

Page

4.5.1.2 taccesstdb Program 141

4.5.1.3 copy_tdb Program 142

4.5.1.4 copyseg Program 143

4.5.1.5 deletetdb Program

5. DATA STRUCTURES REPRESENTING A PROCESS FLOWSHEET 144

5.1 Memory Management 144

5.1.1 The Process Directory Data Structure 147

5.2 Data Structures Representing the Process Elements 149

5.2.1 Parameters Structure 149

5.2.2 The Unit Structure 152

5.2.3 The Component Structure 155

5.2.4 The Stream Structure 160

5.2.5 The Pre-Defined Function Structure 162

5.2.6 The User-Defined Function Structure 162

5.2.7 The Variable Structure 169

5.2.8 The Data Structure Containing the Property
Estimation Methods in Use 169

5.3 Process Files 174

5.4 Component Files 177

6. TBS PROGRAMS 184

6.1 Primary Programs 184

6.1.1 Calculating Routines 184

6.1.2 Pre-Defined Function Evaluation Routines 187

6.2 Secondary Programs 187

6.3 Interaction between TBS Programs and the CPES Executive 187

6.4 Writing a TBS Program 197

Page

6.4.1 Input 197

6.4.2 Output 197

6.4.3 Error Detection 198

6.4.4 Convergence Routines 199

6.4.5 Writing an "all" Calculating Routine 201

6.5 Service Routines 202

7. PROCESS ENGINEERING LANGUAGE -- BASIC PRINCIPLES 212

7.1 Basic Concepts of PEL 212

7.1.1 Command Objects 212

7.1.2 Process Files 218

7.1.3 Component Files 218

7.1.4 Property Estimation Methods 218

7.1.5 Units of Measurement 220

7.1.6 Profile Parameters 220

7.1.7 Arithmetic Expressions 220

7.1.8 Command Elements 221

7.2 Classification of Commands 222

7.2.1 Configuration Commands 222

7.2.2 Value Assignment Commands 223

7.2.3 Output Commands 224

7.2.4 Input Commands 224

7.2.5 Clearing and Switching Commands 225

7.2.6 Commands for Component Files 225

7.2.7 Commands for Process Files 226

7.2.8 Continue Command 226

7.2.9 Iterative Commands 226

7.3 Using a TBS

7.4 Using the System

7.5 PEL Messages

7.5.1 Information Messages

7.5.2 Requesting Messages

7.5.3 Warning Messages

7.5.3.1 Informatory Warning Messages

7.5.3.2 Severe Warning Messages

7.5.4 Error Messages

7.5.4.1 Informatory Error Messages

7.5.4.2 Severe Error Messages

7.5.4.3 Calculate Error Messages

7.5.5 System Messages

7.5.5.1 Informatory System Messages

7.5.5.2 Severe System Messages

8. GPES ADMINISTRATION AND PROTECTION

8.1 The GPES Text File

8.2 The TBS Table

8.3 The Users Table

8.4 Various Copies of GPES Files

8.5 The GPES Organization

9. THE GPES EXECUTIVE

9.1 The Program Structure

9.2 Lexical Analysis Phase

9.3 Command Recognition Phase

9.4 Syntax Analysis Phase

Page

228

228

230

231

231

231

233

233

233

233

236

236

236

237

237

238

238

239

244

249

252

256

260

264

268

270

Page

9.4.1 Intermediate Form of Arithmetic Expressions 275

9.4.2 Intermediate Forms of Commands 292

9.5 Execution Phase 307

10. EXERCISE IN THE DEVELOPMENT OF TEMPLATE-BASED SYSTEMS 308

10.1 Development Process of a Template-Based System 309

10.2 Development of a Prototype TBS for Analyzing Heat Exchanger
Networks 312

10.3 A Prototype TBS for Hydrocarbon Processes 330

10.4 A Prototype TBS for Magnetohydrodynamic Processes 359

11. RECOMMENDATIONS AND CONCLUSIONS 364

11.1 Recommendations 364

11.2 Conclusions and Thesis Contributions 371

APPENDIX A: STATE OF THE ART 376

A.1 Structure of the Programs 381

A.2 Input Methods 383

A.3 Data Checking 383

A.4 The Storage of Data 383

A.5 Operating Modes 384

A.6 Available Unit Models 384

A.7 Physical Property Determination 384

A.8 Convergence Acceleration 384

APPENDIX B: TEMPLATE DEFINITION LANGUAGE 386

Reserved Words in TDL 386

Program interrupt 389

Page

TDL Commands 389

delete Commands 390

end Command 390

insert Commands 391

list Commands 397

print Commands 397

replace Commands 399

revise Commands 400

APPENDIX C: TBS SERVICE ROUTINES 404

C.1 Basic Service Routines 405

C.2 Comparison Service Routines 413

C.3 Service Routines Retrieving or Storing the Values of
Parameters 416

C.4 Service Routines Retrieving Other Variables of Interest 442

C.5 Service Routines Interacting with the User 445

C.6 Service Routines Performing Arithmetic Operations on
Two Parameter Sets . 448

APPENDIX D: PROCESS ENGINEERING LANGUAGE -- DETAILED DESCRIPTION 460

D.1 COMMAND ELEMENTS 460

Character Set 460
Symbols 462

Literals 462
Terminal Symbols 462
Identifiers 463

Language Keywords 465
Established Identifiers 467
User Supplied Identifiers 475

Composite Identifiers 476
Blanks 477
Comments 477

D.2 EXPRESSIONS 478

Use of Expressions 478
Expression Operations 478

Arithmetic Operations 479

Page

Boolean Operations 479
Comparison Operations 480
Combination of Operations 480

Priority of Operators 482
Operands of an Expression 483

D.3 FUNCTIONS 484

Pre-defined Functions 484
User-Defined Functions 485
Built-In Functions 486

D.4 SEMI-FORMAL DEFINITION OF PEL SYNTAX 492

D.5 PEL COMMANDS 509

assume commands 509
bugs command 509
calculate commands 510
clear command 514
close command 514
connect command 515
continue command 517
copy commands 517
create commands 518
delete commands 521
deletef commands 524
disconnect command 525
end command 526
escape command 526
help command 526
include command 528
leave command 528
let commands 529
leta commands 533
list commands 533
listf commands 535
listt commands 536
load commands 536
loop command 538
news command 539
open commands 539
print commands 541
printf commands 547
printt commands 548
profile command 549
read commands 553
reada commands 558
repeat command 558
save commands 565
specify commands 566
stop command 570
terminate command 571
unspecify commands 572
use command 576

D.6 PEL MESSAGES

D.6.1 Warning Messages

D.6.1.1 Informatory Warning Messages

D.6.1.2 Sever Warning Messages

D.6.2 Error Messages

D.6.2.1 Informatory Error Messages

D.6.2.2 Severe Error Messages

D.6.2.3 Calculate Error Messages

D.6.3 System Messages

D.6.3.1 Informatory System Messages

D.6.3.2 Severe System Messages

APPENDIX E: LITERATURE CITATIONS

BIOGRAPHICAL SKETCH

Page

578

579

579

588

590

590

599

616

620

620

623

631

644

LIST OF TABLES

Table Page

4.1 The Value Status Codes Table 100

4.2 The Template Data Base Segments 130

4.3 The Template Definition Language Commands 132

6.1 Number of Primary Programs in a TBS 189

6.2 Call Statements Used by GPES Executive to Invoke a TBS Primary
Program 191

6.3 External Variables for Use by TBS Programs 195

6.4 Service Routines Retrieving or Storing the Values of Parameters 205

6.5 A Short Description of Each Service Routine 207

7.1 PEL Commands 213

7.2 Built-In Constants 219

7.3 Format of PEL Messages 232

7.4 Conditions in an Expression Producing Severe Warning Messages 234

7.5 States Where Informatory Error Messages May Be Produced 235

8.1 Commands Used by the GPES Administrator to Update the TBS Table 243

8.2 Commands Used by the GPES Administrator to Update the Users Table 248

8.3 The GPES Files 251

8.4 GPES Programs Used by Each Group 255

9.1 Token Class Types 266

9.2 Command Object Codes 271

9.3 Command Verb Codes and Object Flags 272

Table Page

9.4 Operations in the Parsed Matrix 278

9.5 The Representation of Operands in the Parsed Matrix 280

9.6 The Index of Built-In Functions in the Parsed Matrix 281

9.7 The Representation of Operators in the Parsed Matrix 282

9.8 The Precedence Table 285

9.9 The Control Blocks of Various Commands 294

10.1 TBS-II Property Estimation Methods 344

A.1 Computer-Aided Process Design Systems 378

B.1 The TDL Commands 387

B.2 Permitted Abbreviations in the TDL Commands 388

D.1 Special Characters 461

D.2 Functions of Other Special Characters 464

D.3 Language Keywords 468

D.4 General Format of PEL Commands 498

LIST OF FIGURES

1.1 The Hierarchical Structure of GPES Usage

1.2 Use of the GPES

1.3 The Development Process of a TBS

1.4 Heat Exchangers TBS -- Countercurrent Ex

1.5 Heat Exchangers TBS -- Mixer Model

1.6 Heat Exchangers TBS -- Divider Model

1.7 Heat Exchangers TBS -- Unit Coniergence

1.8 Heat Exchangers TBS -- Printout of Some

1.9 Heat Exchangers TBS -- Heatex Calculatin

1.10 Heat Exchangers TBS -- The Process Flow

1.11 Heat Exchangers TBS -- A PEL Computer S

1.12 Heat Exchangers TBS -- Another PEL Comp
Example Case

1.13 Heat Exchangers TBS -- Adjuster Model

3.1 An Example of Routing Problem

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

The Parameter Template Structure

The Parameter Value Status Structure

The Dimension Table Structure

An Example of a Dimension Table

The Stream Template Structures

An Example of a Stream Template

The Unit Template Structures

An Example of a Unit Template

Figure Page

94

98

101

103

104

107

108

.111

:hanger Model

Model

remplates

g Routine

sheet for the Example Case

ession for the Example Case

iter Session for the

Figure Page

4.9 The Component Template Structures 112

4.10 An Example of a Component Template 114

4.11 The Function Template Structures 115

4.12 An Example of a Function Template 118

4.13 The Property Estimation Methods Table Structure 119

4.14 An Example of a Property Estimation Methods Table 120

4.15 The Control Information Structure 121

4.16 An Example of a Control Information 126

4.17 Format of the Text File 128

4.18 An Example of a Text File 129

4.19 The Flow Chart for updatetdb Program 136

4.20 Information Flow Regarding the Template Data Base 140

5.1 The Process Directory Data Structure 148

5.2 An Example of a Process Directory Data Structure 150

5.3 The Parameters Structure 151

5.4 The Unit Structure 153
5.5 An Example of a Unit Structure 156
5.6 The Component Directory Structure 157

5.7 An Example of a Component Directory 159

5.8 The Stream Structure 161

5.9a An Example of a Stream Structure with No Components 163

5.9b An Example of a Stream Structure with Some Components 164

5.10 The Pre-Defined Function Structure 165

5.11 An Example of a Pre-Defined Structure 166

5.12 The User-Defined Function Structure 167

5.13 An Example of a User-Defined Function Structure 170

Figure Page

5.14 The Variable Structure 171

5.15 An Example of a Variable Structure 172

5.16 The Data Structure for Property Estimation Methods in Use 173

5.17 An Example of the Data Structure for Property Estimation
Methods in Use 175

5.18 The Directory of a Process File 176

5.19 An Example of a Process File 178

5.20 The Component File Structure 180

5.21 The Structure of a Component in the Component File 181

5.22 An Example of a Component File 183

6.1 The Interaction between the GPES Executive and TBS Programs 185

6.2 Classification of TBS Programs 188

6.3 The Arguments Structure 193

6.4 Interaction between GPES Executive, a Unit Calculating Routine,
and Service Routines 194

6.5 Classification of Service Routines Retrieving or Storing the
Values of Parameters 203

8.1 Format of the GPES Text File 240

8.2 The TBS Table 241

8.3 TBS Registration Form 245

8.4 The Users Table 246

8.5 GPES User Registration Form 250

8.6 Information Flow Regarding GPES Files 253

8.7 The Hierarchical Structure of GPES Usage 254

9.1 The Flow Chart for System Initialization Phase 257

Figure Page

9.2 The Flow Chart for TBS Attachment Phase 258

9.3 The Flow Chart for Process Initialization Phase 259

9.4 The Layout of the "pel" Program 262

9.5 The Token Table 265

9.6 An Example to Demonstrate the Function of Lexical Analysis Phase 269

9.7 The Flow Chart for Command Recognition Phase 274

9.8 The Parsed Matrix Structure 276

9.9 An Example of a Parsed Matrix 283

9.10 The Stack Used in Parsing the Expressions 286

9.11 The Parser Algorithm 287

9.12 The Command Header Structure 293

9.13 The Cblock Structure 295

9.14 The Cblockl Structure 297

9.15 The Cblock2 Structure 298

9.16 The Cblock3 Structure 299

9.17 The Cblock4 Structure 301

9.18 The Cblock5 Structure 303

9.19 The Cblock6 Structure 304

9.20 The Cblock7 Structure 305

10.1 Development Process of a Template-Based System 310

10.2 Heat Exchangers TBS -- Countercurrent Exchanger Model 314

10.3 Heat Exchangers TBS -- Mixer Model 315

10.4 Heat Exchangers TBS -- Divider Model 316

10.5 Heat Exchangers TBS -- Unit Convergence Model 318

10.6 Heat Exchangers TBS -- Printout of Some Templates 320

Figure

10.7 Heat Exchangers TBS -- Heatex Calculating Routine

10.8 Heat Exchangers TBS -- Process Flowsheet for the Example Case

10.9 Heat Exchangers TBS -- A PEL Computer Session for the Example
Case

10.10 Heat Exchangers TBS -- Another PEL Computer Session for the
Example Case

10.11 Heat Exchangers TBS -- Adjuster Model

10.12 Heat Exchangers TBS -- Inserting a Template

10.13 TBS-II -- Templates for Control Information, Dimension Table,
and Property Estimation Methods Table

10.14 TBS-II -- Stream Template

10.15 T-BS-II -- Component and Function Templates

10.16 TBS-II -- Isothermal Flash Unit Template

10.17 TBS-II -- Calculating Routines for Stream and Isothermal Flash
Unit

10.18 TBS-II -- Distillation Unit Template

10.19 TBS-II -- Function Calculating and Evaluating Routines

10.20a TBS-II -- Process Flowsheet for the Example Case

10.20b TBS-II -- Computational Flowsheet for the Example Case

10.21 TBS-II -- A PEL Computer Session for the Example Case

10.22 TBS-II -- Another PEL Computer Session for the Example Case

10.23 MHD TBS -- Process Flowsheet of an Open Cycle MHD Topped Plant

10.24 MHD TBS -- A PEL Computer Session for the Example Case

10.25 MHD TBS -- Another PEL ComDuter Session for the Examle Case

C.1 Examples of the Use of Service Routines Related to Unit Data
Structures

C.2 Examples of the Use of Service Routines Related to Component
Data Structures

Page

322

324

325

326

328

329

331

333

335

337

338

341

348

349

349

351

355

360

362

363

407

408

Figure Page

C.3 Examples of the Use of Service Routines Related to Function Data

Structures 411

C.4 Examples of the Use of Service Routines Related to Stream Data

Structures 412

C.5 Examples of the Use of Service Routines Related to Flow Parameters 414

C.6 Examples of the Use of Service Routines Directly Retrieving or

Storing the Values of Parameters 418

C.7 Example of the Use of the Service Routine Retrieving the Arguments 444

C.8 Example of the Use of the Service Routine Retrieving the Property
Estimation Methods in Use 444

C.9 Examples of the Use of Service Routines Performing Arithmetic

Operations on Two Parameter Sets 450

C.10 Examples of the Use of Service Routines Performing Arithmetic

Operations on Flow Parameters of Two Streams 455

CHAPTER 1

SUMMARY

1.1 Introduction

Since the advent of large scale computers workers in almost every

professional discipline have attempted, in some degree, to formalize their

rules and analysis procedures to enhance the effectiveness of computers

within their discipline. For many professions, a large class of problems

exist which we shall call network analysis problems. These networks are

characterized by streams which transport items obeying the general laws of

conservation (i.e. Rate of Input - Rate of Output + Rate of Production -

Rate of Depletion = Rate of Accumulation) and by process units, which

collect these items from in-flowing streams and redistribute the items to

out-flowing streams. The rules that govern the proportion and rate of

distribution of each item type are usually defined as the Scienge of that

discipline.

Thus, in electrical engineering for instance, coulombs are conserved

and capacitors, resistors, conductor elements, etc. are process units in

electrical networks. Raw materials, finished goods, dollars are conserved

items and factories are process units in economic networks. Mass of
S

chemical species, energy and momentum are conserved items and distillation

columns, heat exchangers, pumps, etc. are process units in chemical process

networks. It is possible to continue almost indefinitely in this manner,

cataloging networks of single disciplines or combined networks of

multidisciplines.

Two questions are normally asked concerning networks. The first

question is, given a specified network, how will it respond under given

perturbations in stream item flows or in process unit parameters which

govern the distribution proportion or rate? This is normally called the

simulation problem. It is characterized as the analysis of fixed network

modules in a fixed configuration. Much time has been devoted to developing

procedures or methodology for solving problems of this type. The results

of these efforts have led to rules to govern simulation procedures. These

rules have been incorporated into computer systems which we shall classify

as General .urnose Process Simulators. Many such simulators are in

existence and they have characteristically required tens of man-years to

implement.

The second question normally asked concerning networks is, given a

specified response of items in out-flowing streams from the network and

given specified constraints on the parameters of process units or streams

within the network, which network will behave in the desired manner? This

is called the design problem. The design problem may have many solutions

but as the number of constraints on the system behavior is increased, the

number of solutions is diminished until there may be no solutions. These

problems are characterized by the fact that in arriving at a solution not

only the process units must be selected, but their configuration within the

overall process must also be chosen. Methodology for selecting process

units and units arrangement is not yet formalized although efforts have

been devoted to developing General.Purpose Process Synthesizers since the

early 1970's. At present computer aided design systems must include man in

the loop to carry out the important task of process unit selection and

arrangement to accomplish a stated objective. It has not yet been

established that these "creative" aspects of design, much of which are

developed through experience (design know-how), can be formalized to the

extent that they can be incorporated in a computer system which would

eliminate man from the loop. Serious doubts are entertained as to whether

this accomplishment is at all possible without subjecting the

computer to the impossible task of analyzing the doubly infinite set of

considering all possible process unit selections and configurations. Thus,

the current procedure to solve design problems is for man to propose the

process unit selection and arrangement, use a General Purpose Simulator to

analyze the proposed network, and then compare the proposed network's

response to the desired response and alter either network configuration or

process unit selection, or both, until a network is developed with the

desired characteristics. The process of design is necessarily iterative,

and having arrived at a solution one is usually not certain that other

solutions do not exist.

Considering the iterative nature of design problems, a general purpose

simulator to be effective as a design tool must use a mode of operation,

methods of input and calculation techniques that minimize the effort

required for designer-computer communication, so as to maximize effective

interaction between the designer and the computer. The time scale is

important in process design.

These characteristics not only enable the simulator to provide the

design atmosphere for process designers, but they also enhance the

capability and effectiveness of the system as a tool for simulation.

1.2 Criteria for Computer Systems Amenable to Simulation and Design

There are two basic modes of computer operation: the off-line batch

processing mode and the on-line interactive processing mode.

On-line processing enables the designer to speed up the design

process. However, replacing the batch mode by the interactive mode is not

sufficient. The interface between the human mind and the computer must

also be modified to make the job easier for the designer, as discussed by

Porter (133]. The essence of his discussion is that "it is necessary to

create an atmosphere wherein the design team and the computer as an added

partner are able to rapidly evaluate the effects of equipment arrangement

and process variable selection in chemical process design".

The basic question is, "How does the designer communicate with and

maintain control over the computer?" This is the area where most automated

design systems are inefficient. The designer is required to prepare some

sort of input forms specifying the process configuration, the operating

conditions of the units and the thermodynamic states of the streams. After

the input is fed, the computer takes over complete control and arrives at a

solution. Such a system is not very conductive to creative design. The

environment of process design is much more dynamic. A designer rarely

knows the entire plant configuation at the outset of a design. The

flowsheet is more likely to evolve from an initial concept to a final

design after various perturbations of the initial concept. He must have

more contact with and greater control over the computer. He must be

allowed to specify what the computer should do at each stage of the design

and receive feedback in terms of the intermediate results so that he can

decide upon the next action to be taken by the computer.

One method of achieving this interaction is to provide a process

design language which is more "natural" to the designer and can be

interpreted by the computer. The language must be such that he can

describe flowsheet structure, request unit calculations, provide input,

request output and have the computer carry out other instructions. Thus,

he may solve a full flowsheet or any of its parts that he desires. He

should also be able to change the flowsheet structure easily without

respecifying the whole flowsheet.

The language should permit choice of engineering units for input data

to speed up the man-machine communication. The language should accept

arithmetic expressions where numerical data are expected. The user should

have access to every piece of information about the process network and be

able to refer to them in arithmetic expressions. In this way the user can

relate different items of information about the process flowsheet. The

system should allow the repetitive execution of a group of commands to

enhance the designer's iterative search. The system should allow the user

to save the results of one analysis in a file to be used as input for

further analysis. This will save both the designer and the computer time

in not having to reinitiate the problem.

To perform process engineering effectively, the engineering data

necessary for design must be available. The computer can assist

engineers in analyzing, estimating, and retrieving these data. However, it

is not efficient to have many individual computer-aided systems for

simulation, design, physical property estimation, analyzing laboratory data

and so on. Therefore, such systems should be organized into an integrated

system with a common data base, so that the consistency of these data is

maintained throughout the various stages of process engineering.

The description of a flowsheet should be independent of the programs

for analysis. The same description should serve all analysis for which

that flowsheet is applicable. For example, it should be suitable for

steady state simulation, equipment sizing, and economic evaluation, as

noted by Evans and SiederC33] who discuss the requirements of an advanced

computer system which will be needed to solve the process engineering

problems of the 1980's. Such a system must be extendable and capable of

modification. It should be easy to add new types of process units, to

define new types of streams, species, etc. Hence, the system can be

expanded to analyze new types of processes. The inability of existing

systems to analyze new energy conversion processes such as the

magnetohydrodynamics (MHD) process has been due to the lack of this feature

in these systems.

1.3 The Problem

Despite the considerable effort expended by the chemical and petroleum

companies on development of computer-aided design programs, the process

engineering profession still lacks the computing tools needed by process

designers. The existing systems don't meet the criteria discussed earlier.

Hence, they don't provide the design atmosphere for process engineers. On

the other hand, existing systems are only applicable to those process

flowsheets having conventional vapor-liquid streams. This inflexibility

makes it either impossible or very difficult to expand present-day systems

to include other types of processes such as coal processing systems.

The difficulties may be traced to the following characteristics of

existing programs:

a. They are not interactive.

b. They are not integrated.

c. They do not provide a natural problem oriented languge.

d. They do not have the capability of dynamic modification of the
process network.

e. They do not have the capability of storing the output model for
future study.

f. They are mostly developed for simulation, not for design.

g. They are not flexible.

1.4 Thesis Obiective

The objective of the thesis was to develop a framework for the

development of general purpose process simulators that:

a) are applicable to all types of chemical processes,

b) are more adaptable to the design environment.

1.5 Thesis Work

A general framework for modeling of chemical processes has been found

and based upon this framework, a computer system called General Process

Engineering System (GPES) has been designed and implemented. GPES allows

any group or organization to create its own computer aided design system

for engineering of chemical processes. These systems will not have the

shortcomings of existing systems that were discussed earlier. These

systems could be very simple or very sophisticated depending on the

particular needs and applications of the group or organization. Such

systems meet the criteria discussed earlier and therefore, provide the

design atmosphere for process designers. These systems are not limited to

analyzing process flowsheets having only conventional vapor-liquid streams.

They are applicable for analyzing any type of process flowsheet including

energy conversion porcesses such as coal gasification and MHD. Such

systems could easily be modified, expanded, and updated. This thesis

describes the design and application of GPES. Using GPES several prototype

computer aided design systems have been created to demonstrate the

application and use of GPES and systems created by GPES.

1.5.1 General Process Engineering System

GPES is a computer system which enables the rapid production of user

oriented computer aided design systems for engineering of chemical

processes. In using GPES to create a computer aided design system, one has

to define different types of process elements (process units, streams,

etc.) which may be present in the flowsheets to be analyzed or designed by

the users of that system. The subroutines performing the computations for

these elements (process moduels, etc.) must also be provided.

The different types of process elements are defined by providing an

information set for each of them. Each such an information set is called a

template in GPES terminology. For example a template for a specific type

of a process unit contains such information as the number of inlet and

outlet streams, number of unit parameters, etc. Thus, a system created by

GPES is called a Template Based System (TBS). The templates for each TBS

reside on a set of files called template data base. Hence, the creation of

a TBS consists of creation of a Template Data Base and development of a

package of subroutines, mainly to represent the mathematical models of

process units defined in that template data base. These subroutines are

called TBS programs.

Each TBS is the responsibility of a system administrator. A TBS

administrator may be assisted by a group of programmers for development of

TBS programs. This group is known as TBS programmers. Once a TBS has been

implemented (Templates have been defined and computational subroutines

provided) a process designer (user) may use it to analyze any arbitarary

specified configuraton of process units which are already defined in that

TBS.

The structure of the organization of a team using GPES is shown in

Figure 1.1. There are four levels of activity associated with GPES. Each

level is the responsibility of a different set of personnel:

1) The GPES administrator who is responsible for:

USER

FIGURE 1.1 THE HIERARCHICAL STRUCTURE OF
GPES USACE

USER

a) Maintenance of the GPES.

b) Protecting the system from unauthorized TBS administrators.

c) Protecing each TBS from Unauthorized users.

2) TBS administrators.

They are responsible for:

a) Implementation and maintenance of Template Based Systems.

b) Coordination of TBS Programmers.

c) Permitting a user to use a TBS.

3) TBS programmers.

They are responsible for development of TBS programs. A TBS may

contain the following programs:

a) Routines performing calculations for individual process

units (process modules).

b) Physical and thermodynamic property estimation routines.

c) Regression analysis programs.

d) Other programs which may be required for a particular TBS.

4) Users.

They are the ultimate users of the Template Based Systems, the

designers of chemical processes. A user may have access to one

or more of these systems.

For each of these groups a set of tools and mechanisms (programs and

languages used to communicate with those programs) has been developed to

assist them in performing their responsibilities. GPES consists of these

tools. The use of the system is shown in Figure 1.2.

A TBS Administrator creates and manipulates his template data base by

an interactive program called "updatetdb". A language called lemplate

Pefinition Language (TDL) has been provided to enable him to easily

communicate with the "update_tdb" program to define his templates.

I12

TRINAL

TBS A

PROGRATIERS

TIS B

PROGRAMMERS

FIGUPE 1.2 USE OF GPES

TERM I NAL TERMINALTERM IINAL

A TBS programmer writes the TBS programs in procedural languages such

as PL/1 or Fortran. Development of these programs has been standardized

and a package of service routines has been developed to assist him in his

effort.

The backbone of the system is the executive program, which provides

the means to execute the users' commands. In essence, the executive is a

table driven interpreter, the tables being template data bases and GPES

files. GPES files are part of a mechanism to protect the system from

unauthorized TBS Administrators and to protect each TBS from unauthorized

users.

GPES files contain information about each TBS and its authorized

users. The GPES Administrator performs his administrative duties by

creating and updating these files by an ineractive program known as the

administrative program. The executive program refers to these files to

locate the template data base of a given TBS and to permit the user to use

the specified TBS.

A special language has been designed to enable the user to easily

communicate with the Executive. The language has been named PEL, which

stands for Process Engineering Language. PEL consists of a series of

commands. Each command is a request for an action to be taken by the

system. The language enables a user to create and delete process elements,

specify and unspecify parameters and variables of process elements,

calculate (simulate) parts of or whole flowsheet and print results. PEL

allows the choice of engineering units. Many other features are available

within PEL.

All the information which is related to a particular flowsheet is

represented by a network of data structures. This network is created and

manipulated by the Executive Program in response to the user commands.

Changes in the flowsheet structure are reflected by changes in the network

structure, as the initial concept of the design evolves into a final

concept.

This network is located in an area of storage known as the working

area. The working area automatically expands as the need for more space is

recognized. Hence, there is no limitation on the size of the flowsheet

being analyzed. The user can save this network in a file and later,

retrieve it for further analysis.

This type of file is known as a process file. A user may have any

number of process files each of which may contain any number of processes.

The Executive Program creates and manipulates these files in response to

the user's commands. The users may share their process files. This will

promote team work on design and analysis of large process flowsheets. A

user may also have any number of another type of file known as component

files. A component file may contain the physical properties or constants

for estimating these properties for any number of chemical components. The

Executive Program also creates and manipulates these files in response to

the user's commands. Hence, the user may not be explicitly concerned about

the creation and maintenance of these files, outside the program. The

users may also share their component files. A TBS administrator may create

such files and make them accessable to all users of that TBS. Such files

are known as public component files.

1.5.2 Development Process of a Template Based System

Development process of a TBS in general is shown in Figure 1.3. It

consists of the following phases:

EXTERNAL
FACTORS

FACTORS

DEVELOPMENT PROCESS OF A TBSFIGURE 1. 3

1. TBS definition (Formalism) phase.

Once the need for development of a new TBS is brought about by

external factors, this would be the first phase of development.

In this phase the objective of the TBS should be stated and

different types of process units and streams that may be required

should be identified. Decisions should also be made mainly on how

to represent the process units and streams. The mathematical

models of the process units should also be prepared. This phase

not only provides input to the following two phases, but it is

essential for documentation purposes.

2. Template Definition Phase.

In this phase the TBS Administrator using the "updatetdb" program

defines a template mainly for every unit type and stream type.

3. TBS Programs Development Phase.

In this phase the TBS programmers develop a subroutine for every

unit type to represent its mathematical model. In this effort

sometimes the need for updating or modification of efforts made in

previous phases is realized, in which case the TBS administrator

has to return to one of the previous phases.

4. Testing Phase.

Before the TBS is released to the public, the TBS Administrator

should test it by simulating various process flowshees. Once any

error is found, he may have to return to one of the previous

phases for debugging.

5. Use (Production) Phase.

At this phase the TBS may be used by users for analysis and design

of various process flowsheets. In the course of the TBS usage,

the users may discover some errors in the TBS or may recognize the

need for expansion or improvement of the TBS. The users should

inform the TBS Administrator of the need for modification.

6. Updating Phase.

A TBS is an open-ended system which can be easily extended or

modified. The need for extension or modification may be realized

by inputs received from the previous phase or by other external

factors. This will lead the TBS administrator to one of the first

three phases for extending or modifying the TBS.

1.5.3 Develooment of a Number of Prototvoe Temolate Based Systems

Using GPES three prototype TBS's have been created to demonstrate the

application and use of GPES and systems created by GPES. These prototype

TBS's are as following:

1. Heat Exchanger Networks Analyzer. This prototype TBS is capable

of analyzing heat exchanger networks. It has been created to

demonstrate that using GPES, one could develop a very simple

system to solve a particular class of problems.

2. TBS-II. This prototype TBS is capable of analyzing processes with

conventional liquid-vapor streams, particularly hydrocarbon

processes. Currently it contains a few types of process units

such as distillation column, heat-exchanger, and isothermal flash

separation, and hence it is limited to processes having only these

process elements.

3. MHD. This prototype TBS is created to analyze MHD processes. It

is an example of a case where existing simulators can not be used

to simulate processes having streams other than conventional

liquid and vapor streams.

It should be noted that any of the above three TBS's could be expanded

to include additional unit operations. It is also not necessary to have

different TBS's to analyze different classes of processes. In fact, a

single TBS could have been created capable of analyzing all three types of

processes mentioned above.

1.5.4 An Example: Development of a TBS for Analyzing Heat Exchanger

Networks

One of the prototype TBS's which has been created is for analysis of

heat exchanger networks. To demonstrate the use and application of GPES

and systems created by GPES, the development process of this simple TBS is

briefly described next. It is presented in the framework described

earlier.

1. TBS Definition Phase (formalism).

The objective of this TBS is to analyze the steady state behavior

of an artibrary heat exchanger network.

Each stream in a heat exchanger network is characterized by two

variables: the product of mass flow rate and specific heat (WC)

and the Temperature (T). Pressure and composition are not

considered to be pertinent variables.

There are four types of units: counter-current heat exchanger,

mixer, divider, and convergence unit.

Counter-current heat exchanger is modeled as shown in Figure 1.4.

Unit type mixer is for adding two streams and is modeled as shown

in Figure 1.5. Unit type divider is for splitting one stream into

two streams and is modeled as shown in Figure 1.6. Unit type

convergence is for testing and promoting convergence for a recycle

stream. Most chemical processes involve recycle streams.

Specifications:

Parameters:

Connections: TIN

overall heat-transfer coefficient (e.g.,

Btu/hr-ft2-oF)

area (e.g., ft2)

tube inlet

tube outlet

shell inlet

shell outlet

Equations:

Material Balances: WCTOUT = WCTIN
WCSHOUT = WCSHIN

Energy Balances:

(1 - R)TTIN + R(1 - F)TSHIN

T TTOUT - TTIN
TSHOUT = SHIN R

where:

WCSHIN
R - C ---- ;

TIN
F = exp (R -1)

SHIN

Special case (R = 1):

TTIN + alphaTSHIN
TTOUT ~ 1 + alpha

with alpha = UA/WCSHIN
Input Variables

WCTIN, TTIN
WCSHIN, TSHIN
U, A

Output Variables

WCTOUT, TTOUT

WCSHOUT, TSHOUT

Figure 1.4 Heat Exchangers TBS - Countercurrent Exchanger Model

TOUT

SHIN

SHOUT

INI

OUT1

Specifications:

Parameters:

Connections:

None

IN1

IN2

OUT 1

first inlet stream

second inlet stream

outlet stream

Equations:

Material Balance:

Energy Balance:

WCOUT1 = WCIN1 + WCIN 2

WC T + WC
T -C IN1 IN1 GIN 2 TIN 2OUT1 5~wC +~~

IN1 IN2

Input Variables Output Variables

WCINl, TIN1

WCIN
2, TIN2

WCOUT1, TOUT1

Heat Exchangers TBS - Mixer ModelFigure 1 .5

Specifications:

Parameters: Fraction of inlet stream, IN1, diverted

to outlet stream OUT1

Connections: IN1 inlet stream

OUT 1

OUT2

first outlet stream

second outlet stream

Equations:

Material Balances:

Energy Balances:

WCOUT1 F WCIN1

WCOUT2 (1 -F) WCIN1

TOUT1 - TIN1

TOUT2 - TIN1

Input Variables Output Variables

WCOUT1, TOUT1

WCOUT2, TOUT2WCIN1, TIN1

Heat-Exchangers TBS - Divider Model.Figure 1.-6

Therefore, such processes contain information recycle loops. That

is, cycles for which insufficient information is available to

permit equations for each unit to be solved independently. The

equations for units in an information recycle loop must be solved

simultaneously. One solution technique is to "tear" one stream in

the recycle loop [11,22,51,148]; that is, to guess variables of

that stream. Based upon tear stream guesses, information is

passed from unit to unit until new variables of the tear stream

are computed. These new values are used to repeat the

calculations until convergence tolerances are satisfied. Unit

type convergence is used for comparing newly computed variables

(feed stream to the convergence unit) with guess values (product

stream from the convergence unit) and to compute new guess values

when convergence tolerances (unit parameters) are not satisfied.

The convergence unit is modeled as shown in Figure 1.7.

Physical dimensions pertinent to this TBS are as follows:

Standard Units Optional Units

1. Temperature Degree F Degree R, C, K

2. Area FT2

3. Heat Rate BTU/HR

4. Heat Transfer Coefficient BTU/HR-FT 2-F

2. Template Definition Phase.

Using the "update_tdb" Program, the following templates have be

defined:

a. A template for the only existing stream type, std.

b. A template for every one of the unit types: heatex, divider,

mixer, and convergence.

en

Specifications:

Parameters:

Connections:

MAXIT

NIT

RDEV WC

Maximum number of iterations

Number of iterations

Relative deviation for stream

parameter WC

ADEVWC Absolute deviation for stream

parameter WC

RDEV T Relative deviation for stream

parameter T

ADEVT Absolute deviation for stream

parameter T

FLAG Flag indicating convergence, it is

positive if convergence has been

achieved, it is negative otherwise.

IN Inlet stream

OUT Outlet stream

Equations:

Test for convergence:

If IWCIN - WCOUTI <= (RDEVWC)(WCIN) + ADEVWC
and ITIN - TOUTI <= (RDEVT)(TIN) + ADEV_T
then FLAG = +1, otherwise
WCOUT = WCIN, TOUT = TIN, and FLAG = -1.

Default Unit Parameters:

MAXIT = 50
NIT = 0

RDEV WC = .01
RDEV T = .01
ADEVWC = .05

ADEV T = .05

FLAG = -1.

Figure 1.7 Heat Exchangers TBS - Unit Convergence Model

c. A template for every one of the four dimension types. The

collection of these templates, which is referred to as a

dimension table, enables the system to automatically convert

the user-supplied data into standard units, if they are

provided in other optional units.

d. A template containing other miscellaneous information such as

the TBS name, TBS administrator's name, etc.

The printout of the dimension table, the stream template and the

template for unit type heatex are shown in Figure 1.8.

3. TBS Program Development Phase.

In this phase a subroutine for each process unit type is developed

to represent its mathematical model. The names of these

subroutines have been already supplied in the unit templates. The

system will call upon these routines to solve equations for each

unit. The subroutine for unit Heatex is listed in Figure 1.9.

4. Testing Phase.

In this phase the TBS has been tested by simulating various heat

exchanger networks.

5. Use (Production) Phase.

Now the system is ready to be used by ultimate users of the TBS,

process designers. To use the TBS they only have to know PEL

(Process Engineering Language). The following example

demonstrates the use of the TBS and PEL.

Example

There are a number of identical heat exchangers (A = 20 FT2

U = 10 BTU/HR-FT2 _oF), and a number of cold streams (WC 500

BTU/HR, T = 300 0F to be used to cool a hot stream (WC 1000

FIGURE 1.8 HEAT EXCHANGERS TBS - PRINTOUT OF SOME TEMPLATES
list units

UNIT TYPES
heatex
mi xe r
divider
convergence

ENTER COMMAND:
Print dimtable

DIMENSIONS TABLE

NUMBER OF DIMENSION TYPES = 4

DIMENSION TYPE NAME STANDARD UNITS

temperature

a rea

heat-rate

-4.6000000e+002
3.2000000e+001

-4*6000000e-002

1.0000000e-000
1, 8000000e+-000
I .8000000e+ 000

ft2

btu/hr

4 heat-transfer-co btu/hr-ft2-f
NOTE? DIMENSION TYPE OF A DIMENSION LESS PARAMETER IS ZERO.
ENTER COMMAND:
Print stream std

STREAM TYPE = std
REFERENCE = a standard stream twee for this TBS
TYPE OF COMPONENTS FLOWING IN THIS STREAM = none

NUMBER OF PHASES =

PHASE 0 (TOTAL STREAM)

NUMBER OF PHASE PARAMETERS = 2

PARAMETER DIMENSION TYPE
1-- we 3
2- t 1

NUMBER OF FLOW PARAMETERS = 0

PROCEDURE TO CALCULATE THE STREAM =

OPTIONS

FIGURE 1.8 CONTINUED

Print unit heatex

UNIT TYPE = heatex
REFERENCE = counter-current heat exchanger.

NUMBER OF UNIT PARAMETERS = 2

PARAMETER DIMENSION TYPE
1-u 4
2- a 2

NUMBER OF INLETS = 2

INLET CONNECTIONS STREAM TYPE
1- tin std
2- shin std

NUMBER OF OUTLETS = 2

OUTLET CONNECTIONS STREAM TYPE
3- tout std
4- shout std

PROCEDURE TO CALCULATE THE UNIT = heatex
MINIMUM NO OF ARGUMENTS = 0
MAXIMUM NO OF ARGUMENTS a 1

NUMBER OF LEVELS OF CALCULATION = 1

VALUE STATUS CODES FOR LEVEL = 1
UNIT PARAMETERS

PARAMETER CODE
1- u 7
2- a 7

FOR CONNECTION = tin
THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION = std

PHASE 0 (TOTAL STREAM)
PHASE PARAMETER CODE

1- we 7
2- t 7

FOR CONNECTION = shin
THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION = std

PHASE 0 (TOTAL STREAM)
PHASE PARAMETER CODE

1- wc 7
2- t 7

FOR CONNECTION = tout
THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION = std

PHASE 0 (TOTAL STREAM)
PHASE PARAMETER CODE

1- we 13
2- t 13

FOR CONNECTION = shout
THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION = std

PHASE 0 (TOTAL STREAM)
PHASE PARAMETER CODE

1- we 13
2- t 13

ENTER COMMAND:

FIGURE 1,9 WEAY EXCHiANGERS TBS - 11EATEX CALCULATING ROUTINE

heatemsell 05/07/78 1541.1 edt Surn

heatex I rroc(punitup a r aswitchrerror-switch) I
dcl Pkinit ptre

Pard rtrr
switch bit(i)p
error..switch bit(1)

dcl unit-ptr ertrwiptrefixed binvptrrbit(1))#
dcl strmr'tr entruirtrvtixed binptrvbit(1))1
dcl xput-parm entrwe(ptrrfixed bintfloat binvbit(1))l
dcl xsjet..parm entru(ptr~fixed binrfloat bitivfimed binvbit(1))l
dcl (pparmpstream) rtri
dcl em bajiltini
dcl vtwpeu

dcl (uvav ttirse ttoutu tshtinttshoutywctinvwctoutuwcshinvpwcshoutu t'f) float bint

/* retrieve input variables *
call uritptr(punitr0,erarorcode)l
call xdet-..aem(rarm,1ruuvtwpeucode)I
call Hget-parm(pparme2uavvtupeucode) 9
call unit-ptr(p-unitvlvpstreamucode)I
call strrn.rtr(stream,0,pF'amcode) S
call .-et..par^(Pparme1,wctinuvtupeucode)I
call ,tget-parm(prarmr2rttinpvtwj-evcode)IS
call urit-ptr(punitp2ppstreamvcode) S
call strm-.ptr(pstreamw0rpparmvcode)1
call maet-j'arm(pearm,1,wcshiintvtwpeucode)I
call xet-.parm(pearmv2v tshinivtupeecode) S

/* perform reauired computations #

/* material balance *
wctaut'wctiugS
wcshoutwcshis

1* energew balance *
rweshin/wtisf
f=exp(u*a/wcshin*(r-1)) S
if r=1

then ttout=(ttirmlu*a/wcshin*tshin)/(11-u*a/wcshin)I
else ttout-((1-r)*ttirslr*(i-f)$tshin)/(1--r*f)S

tshout=tshis-(ttout-ttin)/ri

1* store output variables *1
call unit-.ptr(unitp3pstreaecode)l
call strm..ptr(vpstreaum0ypparmrcode)D
call xpmjt..parm(parmlwctoutecode)D
call xiput-parm(prarmg2,ttoutpcode)I
call unit-.ptr(unitp4,pstreamecode) S
call strm-ptr(pstreamp0,pe-armpcode)I
call xput-iparm(pparmplvwcshoutucode)S
call)cp-ut-.anudppanu2tshouttcode) S

retuiirn$e
end heatext

BTU/HR,T : 12000F) to below 9500F, as shown in Figure 1.10a. The

problem is determining the minimum number of required heat

exchanges. The PEL computer session for solving this problem is

shown in Figure 1.11. To solve this problem, one may start with

one heat exchanger and increase the number of heat exchangers

until the hot stream is cooled to the desired temperature. As can

be seen in Figure 1.11, two heat exchangers will bring the hot

stream temperature below the 950 0F. Before terminating the

session, the user has saved his process network, so that he may be

able to continue his design effort sometime in the future.

At a later session, the user wishes to investigate other design

alternatives, especially those shown in Figures 1.10b and 1.10d.

The PEL computer session is demonstrated in Figure 1.12. As can

be seen, the output temperature for process configuration shown in

Figure 1.10b is 9500F compared to 9450F for the first

configuration. To simulate the process flowsheet shown in Figure

1.10c, one observes that unit H1 and H2 cannot be calculated

independently. To calculate unit H1 stream coldi should be known.

To determine stream cold1 unit H2 should be calculated which

requires the stream S1 to be known. Therefore, to calculate unit

H1 stream S1 should be known, but on the other hand, to find the

stream S1 requires the calculation of Unit H1. Thus, it can be

seen that the process flow sheet contains an information recycle

loop; that is, too few stream variables are known to permit

equations for each unit to be solved independently. One solution

technique is to tear one stream in the recycle loop; that is, to

guess variables of that stream. Based upon tear stream guesses,

COLD1 (WC = 500,
T =300)

COLD2 (WC = 500,
1 T= 300)

COLDn (WC = 500,
1 T= 300)

(WC=1000
T=1200)

(a)

COLD1 (WC = 1000
& T =300)

OLD2

NOTES

WC IN BTU/HR
T IN *F

C2

(b)

COLD2 (WC = 1000,
Co 2 T =300)

(d)

FIGURE 1.10 HEAT EXCHANGERS TBS - THE PROCESS FLOWSHEET
FOR THE EXAMPLE CASE

HOT

(WC=1000,
T=1200)

(c)

FIGURE 1.11 HEAT EXCHANGERS TBS - A PEL COMPUTER SESSION FOR THE EXAMPLE CASE
Pel brief

*beginning of attachment process.
**enter the name of TBS wou wish to use nowtheat-exchangers

*attachment process has been successful.

*new process created at:05/07/78 1618.5 edt Sun
**enter maximum number of components(O to 200)10

**COMMAND : $---DESCRIBE THE PROCESS CONFIGURATION---$

**continue create unit(hi) twpe=heatex'

**COMMAND *create streams(hotrcoldirs1ic1);

**COMMAND :connect unit hi at tin-hot shin=coldi tout=si shout=ci

**COMMAND : $---SPECIFY KNOWN PARAMETERS---$

**continue#specifw unit(hl) (a=20'ft2'i ui10);

**COMMAND ?specifw stream(hot) (wc-1000'btu/hr' , t=1200'f');

**COMMAND :specifw stream(coldi) (wc=500 , t=300);

**COMMAND : $---SIMULATE THE PROCESS AND PRINT THE RESULT---$

**continueacalculate unit(hi);

*entering routine heatex. for level 1 calculation of unit "h18
**COMMAND :print variable(s.si.PO.t) .

s.s1.p0.t= 1.061892e+003 f calculated
**COMMAND

**continue* $expand the process configurations

**continue let unit h2=hiJ

**COMMAND *let stream cold2=coldi;

**COMMAND Oconnect unit h2 at all=siscold2,s2tc2;

*stream "s2" does not exist. a stream of twee "std" has been created.
*stream "c2" does not exist. a stream of twee 'std" has been created.
**COMMAND : $---SIMULATE AND PRINT THE RESULT---$

**continue6calc unit.Ch2)1

*entering routine heatex for level 1 calculation of unit "h2"
**COMMAND *Print v(s.s2.PO.t)D

sos2.pO.t- 9.449777e+002 f calculated
**COMMAND : $---SAVE THE PROCESS---$

**continuetsave process netli

ERROR s 91 no Process file is opened,
*command ignored.
**COMMAND : S--CREATE AND OPEN A PROCESS FILE---S

**continuetopen process file(demo)i

**enter the relative or absolute Pathname of the directorw containing the process file demo'
(if it is the same as wour working directorw P>udd>ICPES>Arab-Ismaili, enter a null line):

*Process file "demo" does not exist.
**if wou wish a new one be created enter wes ,otherwise notwes

*Process file "demo" is opened.
**COMMAND :save process netl^

*Process has been saved.
**COMMAND #end;

*thank wou Arab-Ismaili for trwing GPES come back soon, bwe!
r 1638 6.163 271.965 5339

FIGURE 1.12 HEAT EXCHANGERS TBS - ANOTHER PEL COMPUTER SESSION FOR THE EXAMPLE CASE

Pel brief

*beginning of attachment process.
**enter the name of TBS wou wish to use now heat-exchangers

*attachment process has been successful.

*new process created at:05/07/79 1648.9 edt Sun
**enter maximum number of consonents(0 to 200):0

**COMMAND : ---LOAD THE PROCESS-$

**continuelosen process file(demo)0

**enter the relative or absolute Pethname of the directorw containing the process file "demo"
(if it is the same as your working directors r>udd>ICPES>Arab-Ismaili, enter a null line):

*Process file *demo' is opened.
**COMMAND :.load process netil

*Process "neti" has been created at:05/07/79 1618.5 edt Sun
bw swstem: OPES serial-no: 1 comsat-level: 1

and TVS: heat-exchaniers serial-no: 1 compet-level: 1
and it has not been accessed bw anw other incomsatible swstem since.

*SProcess has been loaded.
**COMMAND : S-SIMULATE THE PROCESS FOR CONFIGURATION SHOWN IN FIGURE 1.10b --

**continue specify stream (coldi)(we-1000)9

**COMMAND :calculate unit(hi);

*entering routine heatex for level 1 calculation of unit "h1'
**COMMAND :.let strea cold2=cl;

SSCOMMAND :calc unit(h2);

*entering routine heatex for level 1 calculation of unit "h2'
**COMMAND :'rint variable(s.s2.P.t)1

s.s2.O.t= 9.500000e+002 f calculated
**COMMAND *

**continueo S-SIMULATE THE PROCESS FOR CONFIGURATION SHOWN IN FIGURE 1.10 d ---.

**continue:create unit(test) tupeconversenceD

**COMMAND *connect unit test at in=c2 outucoldlF

**COMMAND S -- use the default values for.parameters of unit test-$

**continuetcalc u(test(2))t

*entering routine convg for level 2 calculation of unit *test'
**COMMAND :sseciif#9fw strea*(cold2)(wcw1000,t=300)f

**COMMAND : 6-assume the initial ealues of tear stream---

**c'ntinueassume stream(coldu) (wcfid0Ot=400)i

**COMMAND *calculate units(hish2ptest(ph1))1

*entering routine heatex for level 1 calculation of unit "h1'
tenterina routine heatex for level 1 calculation of unit "h2"
Sentering routine convs for level 1 calculation of unit 'test'
*entering routine heatex for level 1 calculation of unit 'hi"
entering routine heatex for level 1 calculation of unit 'h2
*entering routine convs for level 1 calculation of unit "test'
**COMMAND : S--as can be seen convergence has been achieved in two iterations--S

**continue: --print &be: result---$

**continuetsrint variable(s.s2.PO.t);

s.s2.O.t= 9.427469e+002 f calculated
**COMMAND S--SAVE THE NEW CONFIGURATION FOR FUTURE STUDIES---

**continueisave Process neti overridei

*Process has been saved.
**COMMAND *end;

*thank wou Arab-Ismaili for trwing GPES come back soon, bye!

information is passed from unit to unit until new values of the

variables of the tear stream are computed. These new values are

used to repeat the calculations until convergence tolerances are

satisfied. This has been done as shown in Figure 1.10d and

demonstrated in Figure 1.12.

As can be seen, convergence has been achieved in two iterations.

The output temperature is 943 F which is lower than the two

previous outcomes.

6. Updating Phase (TBS Administrator's Task).

A TBS is an open ended system which can easily be extended or

modified. Suppose a new unit type is to be added to the TBS. The

unit type is adjuster, which heats or cools a stream to a

specified temperature. The unit model is shown in Figure 1.13. A

new template defining this new unit type has been added to the

template based system and a subroutine representing the

mathematical model of the unit has been developed, and the updated

TBS has been tested. Now the users of the TBS may incorporate

units of this type in their process flowsheets when such a need

arises.

Specifications:

Parameters:

Connections:

Q Heat added (removed) (e.g., Btu/hr)

IN Inlet stream

OUT Outlet stream

Equations:

Material Balance:

Energy Balance:

Input Variables

WCIN

WCOUT = WCIN

Q = (TOUT - TIN)WCIN

Output Variables

WCOUT

TIN

TOUT

Heat Exchangers TBS - Adjuster ModelFigure 1. 13

1.6 CONCLUSIONS AND THESIS CONTRIBUTIONS

There are two basic problems with the existing general purpose

process simulators:

a) The existing systems are applicable to those process flowsheets

having only conventional vapor-liquid streams. This

inflexibility makes it either impossible or very difficult to

expand present-day systems to include other types of processes

such as coal processing or electric power generating systems.

b) The existing systems are mostly developed for simulation and do

not provide the design atmosphere for process engineers. A

general purpose simulator, to be effective as a design tool,

must use a mode of operation, methods of input and output, and

calculation techniques that minimize the effort required for

designer-computer communication so as to maximize effective

interaction between the designer and the computer. The time

scale is important in process design.

The objective of this thesis was to develop a framework for the

development of general purpose chemical process simulators that:

a) are applicable to all types of chemical processes, and

b) are more adaptable to the design environment.

In fulfillment of the above objective, the thesis has provided the

following contributions in the field of computer aided design for process

engineering:

1) Formulation of a general model for chemical proceses, to represent

the process flowsheet for any level of sophistication that may be used to

analyze that process. The introduction of the concept of a general

stream and flow parameters have been the major contributions for

achieving this result.

2) Identification of the issues involved in the design of a computer

system for process engineering. The work has distinguished two classes

of problems:

a) Those that are common to the design of any system,

b) Those that are related to a particular system.

3) Based upon the above findings, the work has led to the design and

implementation of a General Process Engineering System (GPES) which

allows any group or organization to easily and systematically build its

own system. These systems could be very simple or very sophisticated

depending on the particular needs and applications of the group.

The design and implementation of the GPES as a tool for creating

computer aided design systems for chemical process engineering provides

the following advantages:

a) Allows any group or organization to easily and systematically

build its own design system, thereby reducing the time and

effort required to produce such systems.

b) The created system may not be limited to a particular class of

processes. Such a system is open-ended and capable of

analyzing any type of process.

c) The created system is more adaptable to the design environment,

and provides the user with features not usually found in

existing general purpose simulators.

In summary, a system created by GPES (a TBS) has the following

characteristics:

a) Flexible. It is applicable for analyzing any type of process

flowsheets. It is not limited to process flowsheets having

only conventional vapor-liquid streams. The system can be

easily modified, expanded and updated.

b) The user communicates with the system by a problem oriented

language (PEL). The user may enter his input data in any

allowable units of measurement. Arithmetic expressions may be

used where numerical data is expected. The system performs

extensive types of error checking such as detection of over- or

under-specification of process units and streams. The system

produces over 200 easy-to-understand messages to detect the

user's negligence.

c) Interactive. Allowing the progressive design of a process.

d) Integrated. Capable of the following functions:

i) Simulating or designing a process for any required level

of sophistication such as: preliminary process

feasibility studies, plant design, equipment sizing, plant

modifications, debottlenecking studies, effects of

operational changes on plants, contractor checkout. The

appropriate programs should be provided in that TBS.

ii) Serving as a physical property data base system. It also

promotes sharing of data among users.

iii) Analyzing experimental data (regression analysis).

iv) Serving as a general purpose interpreter.

v) Serving as a desk calculator for arithmetic operations.

e) Dynamic creation and modification of process flowsheet.

Enabling the user to instruct the computer to alter process

configuration or operating parameters without having to

redescribe the problem.

f) The ability to save and retrieve user process models. This

will save both designer and computer time in not having to

reinitiate the problem. It also promotes sharing of process

models among users, and enhances teamwork.

g. It provides virtual memory. There is no limitation on the size

of the process flowsheet being analyzed by the user.

h. Ease of use in that no knowledge of programming and job control

language is required. All that is required is knowledge of PEL

(Process Engineering Language).

4) The work has provided a comprehensive example of the use of current

systems programming techniques (structured programming, dynamic storage

allocation, manipulation of arbitrary data structures, list processing,

etc.) and current computer technology (time sharing, virtual memory,

dynamic linking and loading) in a systems programming application of

interest to chemical engineering.

Using the GPES several prototype template based systems have been

created. The results of these efforts indicated that:

a) The GPES allows the creation of computer systems for different

types of processes.

b) The creation of such systems is simple and systematic.

c) The features provided by the system are very useful and

desirable for simulation and design of chemical processes.

In conclusion, the above studies and findings, and the availability

of such a GPES, will benefit the following groups:

a) Those interested in computer aided design for chemical

engineering applications.

b) Those planning to implement their own computer aided design

systems for chemical processes (by reducing the characteristic

20-100 man-years effort formerly required to produce such

systems). It allows them to focus their effort on the chemical

engineering side of the problem, which results in the

development of better process modules and comprehensive

physical and thermodynamic property calculation packages.

c) The process designers, by providing the ideal creative

environment for process design by computer.

d) Chemical engineering students in process design courses. By

allowing them to implement their own system or to use an

already developed educational one. They would be able to study

whole processes as carefully as we now study individual unit

operations.

CHAPTER 2

INTRODUCTION

2.1 Chemical Process Simulation

The simulation of chemical processing systems and the design of

computing systems that can be utilized for such simulations has been an

area of tremendous activity ever since the emergence of the general purpose

digital computer as a design tool for engineers. Process simulation, in

recent years, besides being accepted as a tool for the design and

understanding of chemical processes, has also become an important

requirement in the education of chemical engineers.

The simulation of any chemical process begins with the representation

of the process by a mathematical model. This model is then solved either

manually or, preferably, through the use of a computing aid to obtain

information about the performance of the process under a given set of

conditions. In most instances, the equations that constitute the

mathematical model of the process, under steady state, are numerous and

highly non-linear. The use of a digital computer for their solution

becomes almost mandatory.

2.2 Simulation Versus Design

Two questions are normally asked concerning chemical processes. The

first question is, given a specified flowsheet, how will it respond under

given perturbations in stream variables or process unit parameters. This

is normally called the simulation problem. It is characterized as the

analysis of a fixed network of modules in a fixed configuration. Much time

has been devoted to developing procedures or methodology for solving

problems of this type. The results of these efforts have led to rules to

govern simulation procedures. These rules have been incorporated into

computer systems which we shall classify as general purpose process

simulators. A host of these simulators are in existence which have

characteristically required tens of man-years to implement. A review of

the state of the art is presented in Appendix A. The second question

normally asked concerning chemical processes is, given a specified response

of items in out-flowing streams from a process and given specified

constraints on the parameters of the process units or streams within the

process, which flowsheet will behave in the appropriate manner. This is

called the design problem. The design problem may have many solutions, but

as the number of constraints on the system's behavior is increased, the

number of solutions is diminished until there may be no solutions. These

problems are characterized by the fact that in arriving at a solution, not

only process units must be selected, but the configuration of the process

units must also be selected. Methodology for selecting process units and

unit arrangement is not yet formalized, although efforts have been devoted

to developing General Purpose Process Synthesizers[134] since the early

1970's. At present, computer-aided design systems must include man in the

loop to carry out the important task of process unit selection and

arrangement to accomplish a stated objective. It has not yet been

established that these "creative" aspects of design, much of which are

developed through experience (design know-how), can be formalized to the

extent that they can be incorporated in a computer system which would

eliminate man from the loop. Serious doubts are entertained as to whether

this accomplishment is at all possible without subjecting the computer to

the impossible task of analyzing the doubly infinite set of considering all

possible process unit selections and configurations. Thus, the current

procedure to solve design problems is for man to propose process unit

selection and arrangement, use a General Purpose Simulator to analyze the

proposed network, and then compare the proposed network's response to the

desired response and alter either network configuration or process unit

selection, or both, until a network is developed with the desired

characteristics. The process of design is necessarily iterative and having

arrived at a solution, one is usually not certain that other solutions do

not exist.

Considering the iterative nature of design problems, a general purpose

simulator, to be effective as a design tool, must use a mode of operation,

methods of input and calculation techniques that minimize the effort

required for designer-computer communication so as to maximize effective

interaction between the designer and the computer. The time scale is

important in process design. A program with these characteristics can be

used as an effective design tool and an efficient simulator.

2.3 Criteria for Computer Systems Amenable to Simulation and Design

There are two basic modes of computer operation, the off-line batch

processing mode and the on-line interactive processing mode. In the

former, the time between runs is long and this is acceptable when the

results of one run are not critically important for the following run.

However, in problems where, say, modifications to a design are dependent on

results from a previous analysis, on-line processing is preferable.

Moreover, the reduced waiting time enables the designer to remember what

stage he had reached after the last processing and this continuity can

often lead to higher efficiency.

On-line processing enables the designer to speed up the design

process. However, replacing the batch mode by the interactive mode is not

sufficient. The interface between the human mind and the computer must

also be modified to make the job easier for the designer, as discussed by

Porter [133]. The essence of his discussion is that "it is necessary to

create an atmosphere wherein the design team and the computer as an added

partner are able to rapidly evaluate the effects of equipment arrangement

and process variable selection in chemical process design".

He states that the answers to the following two questions are

pertinent in determining the optimal use of the computer in such a design

environment, to establish the specifications for a computer system and to

establish the several unique concepts in programming that may be required

to meet the specifications of the computer system.

One is, "How should the design activities be split between the

designer and the computer?" The answer is fairly obvious. The designer's

primary task is that of selecting and arranging equipment and evaluating

the results of his efforts. The computer, therefore, should be used to

carry out all the required analyses such as calculations of individual unit

behavior and predictions of physical and thermodynamic properties required

to perform these calculations. This is what most systems do.

The second question is, "How does the designer communicate with and

maintain control over the computer?" This is the area where most automated

design systems are inefficient. The designer is required to prepare some

sort of input forms specifying the process configuation, the operating

conditions -of the units and the thermodynamic states of the streams.

After the input is fed, the computer takes over complete control and

arrives at a solution. Such a system is not very conducive to creative

design. The environment of process design is much more dynamic. A

designer rarely knows the entire plant configuration at the outset of a

design. The flowsheet is more likely to evolve from an initial concept to

a final design after various perturbations of the initial concept. He must

have more contact with and greater control over the computer. He must be

allowed to specify what the computer should do at each stage of the design

and receive feedback in terms of the intermediate results so that he can

decide upon the next action to be taken by the computer.

One method of achieving this interaction is to provide a process

design language which is more "natural" to the designer and can be

interpreted by the computer. The language must be such that the designer

can describe the flowsheet structure, request unit calculations, provide

input, request output and have the computer carry out other instructions.

Thus, he may solve a full flowsheet or any of its parts that he desires.

He should also be able to change the flowsheet structure easily without

respecifying the whole flowsheet.

The language should allow the choice of engineering units for input

data to speed up the process of man-computer communication. The language

should accept arithmetic expressions where numerical data are expected.

The user should have access to every single piece of information about the

process network and be able to refer to them in arithmetic expressions.

Hence, the user will be able to relate different items of information about

the process flowsheet. The system should allow the repetitive execution of

a group of commands, to enhance the designer's iterative search. The

system should allow the user to save the results of one analysis in a file

to be used as input for further analysis. This will save both the designer

and the computer time in not having to reinitiate the problem.

To perform process engineering effectively, the engineering data

necessary for design must be made available. The computer can assist

engineers in analyzing, estimating, and retrieving these data. However, it

64

is not efficient to have many individual computer-aided systems for

simulation, design, physical property estimation, analyzing laboratory

data, and so on. Therefore, such systems should be organized into an

integrated system with a common data base, so that the consistency of these

data are kept throughout the various stages of process engineering.

The description of a flowsheet should be independent of the programs

for analysis. The same description should serve all analysis for which

that flowsheet is applicable, for example, steady state simulation,

equipment sizing, and economic evaluation, as noted by Evans et. al. (331,

who discuss the requirements of an advanced computer system which will be

needed to solve the process engineering problems of the 1980's. Such a

system must be extendable and capable of modification. It should be easy

to add new types of process units, to define new types of streams, species,

etc. Hence, the system can be expanded to analyze new types of process.

The inability of'existing systems to analyze new energy conversion

processes such as the magnetohydrodynamic (MHD) process has been due to the

lack of this feature in these systems.

2.4 The Problem

There are two basic problems with the existing general purpose

simulators:

a. They are only applicable to those process flowsheets having

conventional vapor-liquid streams. This inflexibility makes it

either impossible or very difficult to expand present-day systems

to include other types of process such as MHD, or other coal

conversion processes.

b. They do not meet the criteria discussed earlier, and, therefore,

are not very useful as design tools.

The difficulties may be traced to following characteristics of

existing programs:

a. They are not interactive.

b. They are not integrated.

c. They do not provide natural problem oriented language.

d. They do not have the capability of dynamic modification of the

process network.

e. They do not have the capability of storing the output model for

future study.

f. They are mostly developed for simulation, not for design.

g. They are not flexible.

The implications of each shortcoming are examined next.

a. Existing Systems Are Not Interactive

The computer's role is as a tool that enables the designer to refine

his understanding of a process by interactive analysis. Computer-aided

design systems, to be effective, must permit the engineer to design

processes in a dynamic environment. To use the existing systems, one

prepares input forms, specifying process configuration, the operating

conditions of units, the stream variables, etc. This input is fed to the

program and the computer then takes over complete control, manipulating

input data to arrive at a solution.

This mode of operation is not compatible with the dynamic environment

of process design. The designer rarely knows the entire process

configuration at the outset of a design. More usual is the gradual

evolvement of the total design starting with the initial concept of the

plant and perturbing this concept by trying various process configurations

until a final concept emerges. Therefore, the designer really requires

more intimate contact with and greater control over the computer's

function, specifying at each stage of the design what the computer should

perform, and, based on the results, deciding upon the next action to be

taken by the computer.

b. The Existing Systems Are Not Integrated

Thermodynamic or transport properties that are not specified directly

must be calculated. The computer should also assist the engineer in

analyzing the laboratory data or in performing side calculations. However,

it is not efficient to have many individual computer-aided systems for

simulation, design, physical property estimation, analyzing the raw data,

arithmetic computation, and so on. Therefore, such systems should be

organized into an integrated system with a common data base, so that the

consistency of these data are kept throughout the various stages of process

engineering.

c. The Existing Systems Do Not Provide Natural Problem-Oriented Languages

Present systems generally require a rather rigid method of specifying

the problem statement. The engineer should be able to communicate with the

computer in terms that are familiar to him. Moreover, whatever language is

provided, it must have the capability to transmit a wide variety of

instructions to the computer.

d. Existing Systems Do Not Have the Capability of Dynamic Modification of

Process Networks

In the dynamic environment of design, the engineer is often required

to modify the process network. It is very desirable to be able to specify

to the computer an alteration in process configuration or in operating

parameters without having to redescribe the problem.

e. The Existing Systems Cannot Save The Results of Analysis

It is very useful to be able to save the results of analysis in a file

to be used as input for further analysis. This will save both designer and

computer time in not having to reinitiate the problem.

f. The Existing Systems are Mostly Developed for Simulation. Not for

Desigzn

For each process unit there is a set of equations of the form

f(inlet-streams, operating conditions, outlet-streams) = 0.

Simulation programs attempt to solve the equations in the form:

outlet-streams = f(inlet-streams, operating conditions).

Design programs must be capable of solving the former set of equations in

its general form. However, a general purpose process simulator could be

used as a trial-and-error tool to solve the design problem. Flowtran and

Design systems provide feed-back and feed-forward control blocks which

automate this trial-and-error process to some extent. But the control

block technique is not applicable in all cases.

Although it is not feasible to develop process unit models capable of

solving all possible forms of the design problem, models should be

developed which are capable of solving a limited set of problems and the

rest of the cases may be solved by iterative techniques. A system, in

order to permit this type of analysis, must use a mode of operation,

methods of input and calculation techniques that minimize the effort

required for designer-computer communication so as to maximize effective

interaction between the designer and the computer. The time scale is

important in process design.

a. Existing Systems Are Not Flexible

Adding new features or modifying some features to the existing systems

is either impossible or a very difficult task. The major limitation to

using a state-of-the-art, computer-aided design program to analyze energy

conversion processes such as those for coal gasification, oil from oil

shale, MHD, etc. is the inability of these systems to handle streams other

than conventional vapor-liquid streams. A system applicable to these

processes must permit analysis of flowsheets with different types of

streams. These include conventional vapor-liquid streams, multi-phase

streams containing solids, as well as energy streams and information

streams. The system should be sufficiently flexible to allow creation of

new stream types, each characterized by a different set of stream

variables.

2.5 Thesis Objective

The objective of the thesis was to develop a framework for the

development of general purpose chemical process simulators that:

a. are applicable to all types of chemical processes and

b. are more adaptable to the design environment.

2.6 Thesis Work

A general framework for modeling of chemical processes has been found

and, based upon this framework, a computer system called jeneral Process

Engineering system (GPES) has been designed and implemented. GPES allows

any group or organization to create its own computer aided design system

for engineering of chemical processes. These systems will not have the

shortcomings of existing systems that were discussed earlier. These

systems could be very simple or very sophisticated depending on the

particular needs and applications of the group or organization. Such

systems meet the criteria discussed earlier, and therefore provide the

design atmosphere for process designers. These systems are not limited to

analyzing process flowsheets having only conventional vapor-liquid streams.

They are applicable for analyzing any type of process flowsheet including

energy conversion processes such as coal gasification and MHD. Such

systems could easily be modified, expanded, and updated. This thesis

describes the design and application of GPES. Using GPES several prototype

computer aided design systems have been created to demonstrate the

application and use of GPES and systems created by GPES.

2.7 General Process Engineering System

GPES is a computer system which enables the rapid production of user-

oriented computer-aided design systems for engineering of chemical

processes. In using GPES to create a computer aided design system, one has

to define different types of process elements (process units, streams,

etc.) which may be present in the flowsheets to be analyzed or designed by

the users of that system. The subroutines performing the computations for

these elements (process modules, etc.) must also be provided. The

different types of process elements are defined by providing an information

set for each of them. Each such information set is called a template in

GPES terminology. For example, a template for a specific type of process

unit contains such information as the number of inlet and outlet streams,

number of unit parameters, etc. A system created by GPES is called a

Template _Rased System (TBS). The templates for each TBS reside on a set of

files called a template data base. Hence, the creation of a TBS consists

of creation of a template data base and development of a package of

subroutines mainly to represent the mathematical models of process units

defined in that template data base. Subroutines are called TBS programs.

Each TBS is the responsibility of a system administrator.

A TBS administrator may be assisted by a group of programmers for

development of TBS programs. This group is known as TBS programmers.

Once a TBS has been implemented (templates has been defined and

computational subroutines provided) a process designer (user) may utilize

it to analyze any arbitrary specified configuation of process units which

are already defined in the TBS.

The structure of the organization of a team using GPES is shown in

Figure 1.1. There are four levels of activity associated with GPES. Each

level is the responsibility of a different set of personnel:

1. The GPES administrator who is responsible for:

a. Maintenance of the GPES.

b. Protecting the system from unauthorized TBS administrators.

c. Protecting each TBS from unauthorized users.

2. TBS administrators who are responsible for:

a. Implementation and maintenace of template based systems.

b. Coordination of TBS programmers.

c. Permitting a user to use a TBS.

3. TBS programmers.

They are responsible for development of TBS programs.

4. Users.

They are the ultimate users of the template based systems, the

designers of chemical processes. A user may have access to one or

more of these systems.

For each of these groups a set of tools and mechanism (programs and

languages used to communicate with those programs) has been developed to

assist them in performing their responsibilities. GPES consists of these

tools.

The use of the system is shown in Figure 1.2. A TBS administrator

creates and manipulates his template data base by an interactive program

called "updatetdb". A language called lemplate Definition L4anguage (TDL)

has been provided to enable him to easily communicate with the "update_tdb"

program to define templates.

TBS programmers write the TBS programs in procedural languages such as

PL/1 or Fortran. Development of these programs has been standardized and a

package of service routines has been developed to assist them in their

efforts.

The backbone of the system is the executive program which provides the

means to execute the users' commands. In essence, the executive is a

table driven interpreter, the tables being Template Data Bases and GPES

files.

The GPES files are part of a mechanism to protect the system from

unauthorized TBS administrators and to protect each TBS from unauthorized

users. GPES files contain information about each TBS and its authorized

users. The GPES administrator performs his administrative duties by

creating and updating these files by an interactive program known as the

administrative program. The executive program refers to these files to

locate the Template Data Base of a specified TBS and to permit a user to

use a specified TBS.

A special language has been designed to enable the user to easily

communicate with the executive. The language has been named PEL, which

stands for Process Engineering Lanaguage. PEL consists of a series of

commands. Each command is a request for an action to be taken by the

system. The language enables a user to create and delete process elements,

specify and unspecify parameters and variables of process elements,

calculate (simulate) parts of or whole flowsheets, and print results. PEL

allows the choice of engineering units. Many other features are available

within PEL.

All information that is related to a particular flowsheet is

represented by a network of data structures. This network is created and

manipulated by the executive program in response to the user commands.

Changes in the flowsheet structure are reflected by changes in the network

structure, as the initial concept of the design evolves into a final

concept. The network is located in an area of storage known as the working

area. The working area automatically expands as the need for more space is

recognized. Hence, there is no limitation on the size of the flowsheet

being analyzed.

The user can save this network in a file and, later, retrieve it for

further analysis. This type of file is known as process file. A user may

have any number of process files, each of which may contain any number of

processes. The executive program creates and manipulates these files in

response to the user's commands. The users may share their process files.

This will promote team work on design and analysis of large process

flowsheets.

A user may also have any number of another type of files known as

component files. A component file may contain the physical properties or

constants for estimating these properties for any number of chemical

components. The executive program also creates and manipulates these files

in response to the user's commands, hence the user need not be explicitly

concerned about the creation and maintenance of these files, outside the

program. The users may share their component files. A TBS administrator

may create such files and make them accessible to all users of that TBS.

Such files are known as public component files.

Sharing of process or component files among users may be either

unrestricted or restricted depending on the discretion of the owner of the

file. Restricted access to a file means that only the information in the

file can be read and the contents of the file may not be changed.

Unrestricted access, on the other hand, enables one to read or modify the

contents of the file.

2.8 The.Qoeratina Environment

The system is being implemented in PL/1 on Multics (Multiplexed

Information and Computing Services), the time-sharing system by Honeywell

[53-59].

The two features of Multics which are of prime importance to the

design of GPES are virtual memory and dynamic linking. These are the most

significant differences between the Multics programming environment and

that of most other contemporary computer programming systems. The latter

usually have two sharply distinct environments: a resident file storage

system in which programs are created and object code and data are stored,

and an execution environment consisting of a central processing unit and a

"core image", which contains the instructions and data for the processor.

The programs must recognize the existence of and the distinction between

the two environments.

In Multics, the line between these two environments is not distinct.

Program construction can be simple without sacrificing capability.

Programs need be cognizant of only one environment rather than two. This

is accomplished by utilizing the concepts of virtual memory and dynamic

linking. The Multics' analog of the core image is called an address space.

It is different from the usual core image, since it is much larger and is

segmented.

A segment is a unit of storage of size up to 256K 36-bit words. User-

written programs, object codes, supervisor programs, command procedures,

data, etc. are all stored as segments. An address space may have up to

256K different segments. These segments do not reside in the main memory

at the same time but are fetched on demand by the operating system. This

is done automatically, thus giving the impression that the size of the

"core" is 262K million bytes! Hence, the name "virtual memory".

When a program already mapped into the current address space calls

another one which is not yet there, a "dynamic linking fault" occurs, the

supervisor locates the needed segment and maps it into the current address

space. Dynamic linking obviates load modules. Routines are "loaded" into

memory only when required.

2.9 Organization of the Thesis

This chapter describes the problems with existing systems and provides

the motives for the development of the system. It also provides an

overview of the system and its various components. Appendix A is devoted

to the review of the state of the art. Chapter 3 presents a framework upon

which the design of GPES is based. The design of the Template Data Base is

discussed in Chapter 4, while the communication mechanism by which the TBS

administrator creates and updates this data base is given in Appendix B.

Chapter 5 contains the design of various components of the network of data

structures which represent a process flowsheet.

The strategy for development of TBS programs is given in Chapter 6 and

the TBS programmer is referred to Appendix C for detailed description of

various service routines, which he may want to use in writing his TBS

programs. Chapter 7 is devoted to the discussion of the basic principles

of the Process Engineering Language (PEL), while Appendix D contains more

detailed description of PEL. The latter serves as the PEL Language

Reference Manual for the user. The design of the administrative management

aspects of the GPES is given in Chapter 8, which also describes how the

GPES administrator should carry out his duties. Chapter 9 is entirely

devoted to the design of GPES executive and its various components. The

development process of a TBS in general, and the development of three

prototype TBS's are described in Chapter 10, which also demonstrates the

use and application of these TBS's. Finally, the conclusions of this work,

and possible extension to the system and recommended areas for further

study are presented in Chapter 11.

CHAPTER 3

A FRAMEWORK FOR THE DEVELOPMENT OF GENERAL PURPOSE PROCESS
STMILATORS

A "framework" is a way of looking at a problem area. A framework

provides us with a set of labels which we can attach to things or concepts.

In and of themselves, such labels are of little interest, but if this task

is carefully and consistently done, we may find it to be of great help in

guiding future actions.

In this chapter we attempt to develop a framework for the development

of general purpose process simulators. A general purpose process simulator

is a computer tool by which the user can analyze and study chemical

processes. A systematic information analysis of a chemical process will

provide the framework upon which to develop these systems.

3.1 A Chemical Process

Broadly speaking, the function of every chemical process is to convert

materials into more useful products or to convert energy into more useful

forms by means.of some physico-chemical transformation. Most chemical

processes involve an arrangement of individual units of equipment, each of

which carries out some step in the overall process. The individual units

are interconnected with flow of materials and energy from one unit to the

next. Hence, a chemical process may be considered as a collection of

process units, and streams transporting chemical species, momenta and

energy between individual units.

In other words, a chemical process is a collection of some

inter-related entities. These entities fall into one of the following

classes: process units, streams, and chemical components. Every piece of

information regarding the process can be related to one of these entities.

The method of organizing this information will establish the desired

framework, and the following sections describe this methodology.

3.1.1 Chemical.Comoonents

Each chemical compound may be characterized by a set of pure-component

properties and property estimation constants which we shall refer to as

component parameters. The values of these parameters are required for

estimation of the thermodynamic and transport properties of streams

containing these components.

The values of these parameters may be known or may be estimated either

empirically or as a function of externally supplied laboratory data and

other component parameters. The estimating procedure, which will be

referred to as a comoonent calculating routine., depends on the component

type (e.g., hydrocarbon, coal), the laboratory data and the parameters to

be estimated. The choice of component parameters will depend upon the type

of chemical compound, the extent to which the compound has been studied

experimentally, the required accuracy of its properties, and the methods

being used to estimate these properties.

In general, comDonents can be classified into different tvaes. each

with a Darticular Darameter set and a calculating routine.

A parameter set is defined by the following information:

1)- The number of parameters.

2) The name and the physical dimension of each parameter. Note that

all parameters do not have the same physical dimensions. For

example, component parameters may have the physical dimensions of

temperature or pressure, or be dimensionless.

A component type may or may not require a calculating routine. A

component calculating routine may perform different functions or may employ

different mathematical models or estimation techniques. Each of these

could be characterized by a number, the level of calculation. A

calculating routine may perform different levels of calculation, each with

a different set of input/output parameters. In addition to input

parameters, a calculating routine may also require other input variables

which will be referred to as arguments. The arguments may be for

specifying the level of calculation, or they may provide additional data,

such as the maximum number of iterations to be used in an iterative search.

Therefore, a component calculating routine could be characterized by the

following information:

1. The name of the calculating routine.

2. Minimum and maximum number of arguments.

3. The number of levels of calculation.

4. For each level of calculation, the list of input and output

parameters. This information is required for controlling the

problem of under- or over-specification. In other words, this

assures that a value has been assigned to each input parameter and

that the values of output parameters have not been fixed by the

user before control is passed to the calculating routine.

Hence, a component may be characterized by the following information:

1. A name which identifies the component.

2. The type of the component.

3. The values of component parameters.

4. The value types of component parameters. The value type of a

parameter indicates whether the parameter has a value, or how a

value has been assigned to the parameter. It indicates whether

the parameter is unspecified, assumed, specified or calculated.

This information serves the following purposes:

a. To indicate whether a value has been assigned to a parameter.

b. To avoid calculating a parameter which has been fixed

(specified) by the user.

c. To facilitate error checking for under-or over-specification

of the input/output parameters.

d. To indicate which parameters are the output of a calculating

routine and, hence, to facilitate the debugging effort.

3.1.2 Streams

In general, a stream may represent the flow of material, momentum,

energy and/or information, from one unit in the process (or from the

environment) into another unit (or to the environment).

A common type of stream involves the material flow of a single-phased

fluid from one unit in the process into another unit. Such a stream might

be characterized by the temperature and mass flow rate of each component.

A stream that serves only as a heat transfer medium might be characterized

simply with two variables: temperature, and the product of mass flow rate

and heat capacity. Other types of streams may be defined to describe

multi-phase streams, streams contraining solids, energy streams, and

inforamtion streams, each characterized by a set of variables.

In general, each type of stream may be characterized by the following

information:

1. What types of components,if any, are allowed to flow in the

stream.

2. The number of phases.

3. Two sets of parameters for each phase. One set of parameters

represents those attributes of the phase which are independent of

the flow of any particular component in the phase. These are

called "phase parameters". Temperature, pressure, and total flow

rate are examples of phase parameters. Another set of parameters

represents those attributes of the phase that are specific to a

component in the phase. These component related parameters are

referred to as "flow parameters". Mole fraction, particle size

distribution, and diffusion coefficients are examples of flow

parameters. Each set of parameters, as described earlier in

Section 3.1.1, is characterized by: a) number of parameters, and

b) name and dimension type of each parameter.

4. The stream calculating routine. Associated with each stream type

there may be a calculating routine which performs calculations

such as dew point, bubble point, enthalpy, etc. As described

earlier in Section 3.1.1, other information associated with such a

calculating routine includes: a) minimum and maximum number of

arguments, b) number of levels of calculation, and c) for each

level of calculation the list of all phase and flow input/output

parameters.

One of the phases of the stream may represent the total stream. A

phase may correspond to a physical phase of the stream, such as vapor,

liquid or solid phases, or it may represent the grouping of certain

information about the stream.

All types of streams mentioned earlier can be represented within this

framework. For example, a single variable stream can be represented as a

stream with no component, one phase, and one phase parameter. The

framework can also represent a multi-phase stream, each phase of which has

a number of phase and flow parameters.

Therefore, a stream may be characterized by the following information:

1. A name which identifies the stream.

2. The type of the stream, which provides information on number of

phases, component types, etc., as discussed above.

3. Source of the stream which indicates whether it originates from

the environment or from a specific outlet port of a unit.

4. Destination of the stream which indicates whether it enters into

the environment or into a specific inlet port of a unit.

5. The list of the components present in the stream (if any).

6. For each phase of the stream, the values and value types of all

phase parameters.

7. For each phase of the stream, the values and value types of all

flow parameters of each component present in the stream.

3.1.3 Units

The most fundamental element in a chemical process flowsheet is the

process unit. A process unit may be described in terms of a model which

contains a set of mathematical relations between the output stream

variables and input stream variables as functions of the values of the

design and operating parameters of the unit. A unit type may be

characterized by the following information:

1. A set of parameters which represent the design and operating

parameters of the unit. As described earlier, each set of

parameters is defined by the following information:

a. The number of parameters, and,

b. The name and physical dimension of each parameter.

2. A description of inlet streams. This includes:

a. The number of inlets,

b. The name of each inlet port, and

c. The type of stream allowed to be connected to each inlet port.

3. A description of outlet streams. This includes:

a. The number of outlets,

b. The name of each outlet port, and

c. The type of stream allowed to be connected to each outlet

port.

4. The routine representing the mathematical model of the unit, which

is referred to as the unit calculating routine. A unit

calculating routine may perform different levels of calculation.

This may be due to:

a. Different sets of input/output variables. For example a unit

calculating routine may offer the following capabilities:

outlet streams f 1(inlet streams, unit parameters)

inlet streams f2(outlet streams, unit parameters)

unit parameters = f3 (inlet streams, outlet streams).

b. Different algorithms for calculation, and

c. Different levels of accuracy.

The following information is associated with each calculating

routine:

a. Minimum and maximum number of arguments,

b. Number of levels of calculation,

c. For each level of calculation the list of the unit input/output

parameters,

d. For each level of calculation and for each inlet or outlet port

whether a stream should or should not be connected to this

port, or whether such a stream is optional. For each stream

which is allowable, the list of all phase and flow input/output

parameters, and the status of the value of parameters of

components that are flowing in the stream, should also be

provided.

As described earlier in Section 3.1.1, the above information

regarding the calculating routine is required for detection of

the problem of under- or over-specification.

A unit, on the other hand, may be characterized by the following

information:

1. A name which identifies the unit.

2. The unit type, which associates all the information listed for the

unit type to this unit.

3. The values and value types of unit parameters.

4. For each inlet port, the name of the inlet stream (if any).

5. For each outlet port, the name of the outlet stream (if any).

3.2 Other Elements of Interest

A General Purpose Process Simulator, if it is to be effective as a

design tool, must also provide the user with the capability of analyzing

experimental data and performing side calculations. Therefore, in design

of these simulators, in addition to basic elements of a chemical process

(units, streams, and components), two other classes of entities, namely

functions and variables, should also be considered.

1.2.1 Functions

The purpose of functions is to enhance the user's calculating ability

and to provide him the capability of analyzing experimental data.

The user should be able to perform standard mathematical operations

such as SQRT, LOG, SIN, COS, ETC. These functions could be built in

(built-in functions) to the system and the user would be free to use them.

The user should also be able to define his own analytical functions to

improve his problem solving capability. These functions are called user-

defined functions. These two classes of functions do not provide the user

with any data analysis, capability, or the ability to evaluate

non-analytical functions. To overcome these shortcomings, we introduce

another class of functions called pre-defined functions. A pre-defined

function may be thought of as an entity with a set of parameters and a

calculating routine. The latter may calculate the function parameters as a

result of the analysis of some raw data. In addition, another routine may

be associated with a pre-defined function to evaluate the function. This

routine, which is referred to as a pre-defined function evaluating routine

may evaluate any analytical, non-analytical, or numerical function. Each

pre-defined function type may be characterized by the following

information:

1. A set of parameters presenting the coefficients of the function.

As described earlier, this includes: a) number of parameters and

b) name and physical dimension of each parameter.

2. The evaluating routine and its required number of arguments.

3. The calculating routine and its associated information: a) minimum

and maximum number of arguments, b) number of levels of

calculation, and c) input/output parameters for each level of

calculation.

Therefore, a pre-defined function may be characterized by the following

information:

1. The name which identifies the function.

2. The type which associates the above listed information for the

pre-defined function type to this function.

3. The value and value type of each function parameter.

3.2.2 Variables

A variable is an entity which represents a value. A variable may be

classified to the following groups:

1. Simple or user-supplied variables. Such a variable may be

characterized by a name and a value.

2. Qualified variables. A qualified variable is a variable referring

to a parameter of a unit, stream, component, or pre-defined

function.

3. Built-in variables or built-in constants. These are various

constants commonly used by chemical engineers, such as the gas

constant (R), Faraday's constant (F), Avogadro's constant (N),

etc. The value of these constants should be known by the system.

3.3 Units of Measurement

Every variable of a process flowsheet that can be represented with

numerical data is called a "parameter". There are five kinds of

parameters:

1. Unit Parameters

2. Stream Phase Parameters

3. Stream Flow Parameters

4. Component Parameters

5. Function Parameters

The number of stages in a distillation column would normally be defined as

a unit parameter of the column. The temperature of a stream would normally

be termed a stream phase parameter. The molar flow rate of a component in

a stream or its mole fraction would usually be a flow parameter. The

critical temperature of a component would be a component parameter.

Regression coefficients of a function can be defined as function

parameters.

All the parameters do not have the same physical dimensions.

The number of stages in a distillation column is dimensionless while the

critical temperature of a component has a physical dimension of

"temperature". A mechanism should be available to enable a user to provide

parameters in any units of measurement.

Such a mechanism requires the following information for each physical

dimension:

1. Standard units of measurement.

2. The number of other allowable options.

3. For each option, the units of measurement and some conversion

factors to enable the conversion of the optional units into

the standard units.

3.4 Calculating Routines

Calculating routines are the heart of any process simulator. As

mentioned earlier, there may exist a calculating routine for every type of

unit, stream, component and function.

The unit calculating routine is usually referred to as a "process

module" or "building block" in process simulation literature. The function

of a unit calculating routine is to simulate or design process units. The

concept of stream and component calculating routines is not often used in

other simulators.

A stream calculating routine may calculate some stream parameters as a

function of other parameters. Examples are calculation of dew point,

bubble point, enthalpy, viscosity, and phase equilibrium.

A component calculating routine may calculate a component's parameter

as a function of other parameters and experimental data. A function

calculating routine may perform regression analysis and other data analysis

functions.

As noted earlier, a calculating routine may perform different levels

of calculation. This may be due to:

1. Different sets of input/output variables.

2. Different algorithms for calculation.

3. Different mathematical models, or different levels of accuracy.

For each level of calculation there is a particular set of parameters

as the input to the routine, and another particular set of parameters as

the output from the routine. Each input parameter should have a value and

the values of output parameters should not have been fixed by the user.

Therefore, for each level of calculation the input and output parameters

should be checked for under- or over-specification. As noted earlier, a

calculating routine, in addition to input parameters, may also require

other input variables, usually computational variables which will be

referred to as arguments. The computational variables are data such as the

maximum number of iterations to be used if the routine is performing an

iterative search. These computational variables may also be considered as

a part of the input parameters. The arguments may also be used for

specifying the level of calculation, or specifying other options that a

calculating routine may provide.

3.4.1 Route Selection

A routing problem arises when a calculating routine calls upon another

routine, which in turn calls upon other routines, with choices existing at

each level. Seider, et. al. [151,166,321 discuss the problem of routing

and propose a method for implementing the routing capability (the ability

to specify the sequence of computations) in process simulators. The nature

of routing problems is illustrated through an example shown in Figure 3.1.

Consider the calculating routine "C1" which offers the choices of two

calculational methods: "C11" and "C12". Each calculational method will

call upon various physical property estimation routines (e.g., P1, P2),

which in turn call upon other physical property estimation routines (e.g.

P3, P4, P5). Consider also that each physical property estimation routine

offers the choice of different methods of estimation (e.g., P11, P12, P21,

P22, etc.). Seider's method allows the user to completely specify the

route of computation. For example, the user may specify the route as shown

by thick lines in Figure 3.1. Note that different methods of estimation

are used to estimate property P3. Method P31 is used for property P2,

while method P32 is used for property P1. A simpler approach could be used

which results in a more limited capability of route selection. That is to

allow the user only to specify the method to be used for each property

estimation, independent of the route of computation. With this approach

the method of estimation of property P3 may be either P31 or P32 for all

computations associated with calculating routine C1. Of course, the user

should always be able to alter his choices at any time, or to use default

options. In this approach there should be a global data base which

contains the methods currently being used for each property estimation.

P5 P4

FIGURE 3.1 AN EXAMPLE OF ROUTINING PROBLEM

This data base should be updated as the user alters his choices. The

following information would be required to manange this mechanism:

1. number of properties to be estimated.

2. name of each property.

3. number of options available for each property estimation.

4. the default option for each property estimation.

The argument list mentioned earlier is also another mechanism to

supply the level of calculation and other computational variables to the

calculating routine.

3.5 Template Based System

The design of the GPES is based upon the framework established in this

chapter. GPES differs also from most computer simulation systems in its

representation of the process flowsheet. Process elements such as units,

streams, components, functions (pre-defined, user-defined), and variables

(user-supplied) are represented by data structures connected to form a

network. This network represents the process flowsheet and is manipulated

by the system in response to the user commands as the initial concept of

the design evolves into a final concept. This will permit the user to

retain an active model of the problem being solved. The resulting model

may be saved indefinitely for later consideration. GPES employs

generalized data structures to represent process elements. However, before

the system can utilize them to model a process configuration, it requires

certain information about the types of units, streams, components, etc.

This information about each type of each process element (unit, stream,

etc.) is stored in a data structure called a "Template" in GPES

terminology. As a drawing template enables one to draw any number of

diagrams represented in that template, a template data structure enables

the system to create other data structures representing the process

elements defined by that template. For example, a template of stream type

x enables the system to create data structures, each representing a stream

of type x. Templates also contain other information, such as information

regarding the calculating routines, error checking to be done before

control is passed to the calculating routine, etc. The collection of these

templates and associated calculating routines (TBS programs) is called a

template based system (TBS). The templates are stored in a set of files

called the template data base. The information in this data base is

controlled by the TBS administrator. To enable the the TBS administrator

to insert, update, or delete the information in the data base, an

interactive program called "updatetdb" (update template data base) has

been developed along with a set of commands to control the operations of

this subsystem. The set of commands is called Template Definition Language

(TDL). The design of the template data base and other issues related to

the template data base is given in the next chapter.

CHAPTER 4

THE TEMPLATE DATA BASE

As described earlier, GPES creates a network of data structures, to

represent a chemical process. To create this network, however, it requires

certain information about the types of units, streams, components, etc.

This information is stored in the form of "templates" in a data base called

the "Template Data Base". The information in this data base is controlled

by the TBS system administrator. To enable him or her to insert, update or

delete the information in the data base, an interactive program called

"updatetdb" has been developed along with a set of commands to control

program operations. The set of commands is called Template Definition

Language (TDL).

4.1 The Information Content of the Template Data Base

The information in the data base is stored in the form of PL/1-type

data structures. All information is related to one of the following:

1. The Unit Types

2. The Stream Types

3. The Component Types

4. The Function Types

5. The Property Estimation Methods

6. The Physical Quantity Dimensions (units) and Unit Conversions

7. System Control Information

8. Text Information

The following terms and structures need to be explained before

describing the above information categories.

A. Parameter Template Structure

As described earlier in section 3.3, every variable of a process

flowsheet that can be represented by a numerical value is called a

parameter in GPES terminology. A parameter template structure as shown in

Figure 4.1 defines a parameter set. Each parameter is represented by a

name and a "Dimension Type". The name is the identifier used by users to

refer to that parameter. The "Dimension Type" is a number which is defined

in the dimension table, whose detailed description follows later. For each

dimension type the dimension table contains the standard units of

measurement (dimension) and other allowable units with their conversion

factors. Associating a dimension type for each parameter and providing the

dimension table enables the user to provide his input in any allowable

units of measurement. The system will automatically convert the input to

the standard units of measurement and store the result in an appropriate

location. Hence, the calculating routines always receive the input

parameters as standard units.

B. Calculatinx Routines

Information regarding the calculating routines is a part of

information stored in a template. Before describing this information the

interaction between the GPES executive and the calculating routines will be

discussed. Calculating routines are invoked in response to the user's

"calculate" commands. For example, suppose units A and B are both of type

heatexchange and the calculating routine of unit type heatexchange is

called heatx. Routine heatx will be called twice in response to the

following command: calculate unit (A, B (1, 12, 4));.

In effect the heatx routine is invoked as follows: call heatx (punit,

parg, switch, errorswitch); where punit is a pointer to the unit

L PARAMETER TEMPLATE STRUCTURE

NUMBER OF PARAMETERS = N

NAME DIMENSION TYPE

FIGURE 4,1 TIE PAPRETER TEMPLATE STRUCTURE

____________________I ___________________________

structure. For the first call on routine heatx, punit points to the unit

"A" data structure, and on the second call it points to the unit B data

structure (unit data structures will be described in Chapter 5). The

variable parg is a pointer to a list of arguments in a data structure such

as shown in Figure 6.3. During the first call parg is null, for the second

call it points to an argument data structure containing the three supplied

arguments 1,12, and 4. The argument switch indicates whether convergence

has been achieved, and is only used for special types of calculating

routines known as convergence routines. The argument errorswitch

indicates whether a serious error has been detected in the routine. The

argument list, such as the one in the above command, may be used to specify

the calculation route or to provide additional input to the routine. In

any case, the interpretation of these arguments should be clear both to the

user and the calculating routine.

The first argument is always interpreted as the level of calculation.

If it is not provided the default level, i.e. level one, will be assumed.

As discussed in section 3.4, a calculating routine may perform different

levels of calculation. This may be due to different sets of input/output

variables, different algorithms for calculation, different mathematical

models, or different levels of accuracy.

The following information is stored in a template for a calculating

routine:

Procedure: Name of the calculating routine. If no

routine has been implemented or no routine is

needed a ";" is placed in this field and no

other information about the calculating

routine will be required.

Reference: A short description of the calculating routine

or the template; or a reference to a document

describing the calculating routine. It could

also contain information such as author, date,

etc.

Minimum Number of Arguments:

This is the minimum number of arguments that

the routine requires. It should be 0 or more.

It implies that the user should provide at

least this number of arguments in a calculate

command, invoking the routine.

Maximum Number of Arguments:

This is the maximum number of arguments that

can be passed to the routine. A negative

number in this field indicates that the

maximum number of arguments is unlimited.

This number must be at least 1; in effect this

always gives the user the option of specifying

the level of calculation (first argument).

Number of Levels of Calculation:

This is the number of levels of calculation

that the routine provides. It should be one

or more. Therefore, the first argument

provided by the user should not be greater

than this number. If no argument is provided

the level of calculation would be assumed to

be one.

The template provides also information regarding the error checking to

be done by the system for each level of calculation before control is

passed to the calculating routine. This checking is primarily for

detecting under- or over-specification for the calculating routine.

C. Value Status of Parameters

As will be described in Chapter 5, the numerical values of parameters

are stored in parameter data structures such as the one shown in Figure

5.3. With every parameter value is associated a value type. This is

entirely different from the dimension type mentioned previously and is

associated with a parameter value, not the parameter itself. The value

type of the parameter indicates how a value has been assigned to the

parameter. The value type can be one of the following:

1. Unspecified (value type = 0)

2. Assumed (value type = 1)

3. Specified (value type = 2)

4. Calculated (value type = 3)

When control is given to the calculating routine, for each level of

calculation it expects certain parameters to have one of certain types and

not others. The Value Status Template structure of Figure 4.2 is a way of

telling the GPES executive to check that the parameters have values only of

certain types. Each entry of this data base has four single "bit" flags.

If, for instance, flags 1 and 3 are turned on for a parameter value, GPES

executive will check to see that the associated type is either

"unspecified" or "specified" but neither "assumed" nor "calculated".

The four flags, when concatenated, form a 4-bit binary number ranging

form 0 to 15. This is called the "Value Status Code" and its only

significance is the convenience it offers the TBS administrator when he is

entering this information at the terminal.

PARAMETER VALUE STATUS STRUCTURE

NUMER OF PARAMETERS = N

FLAG1 FLAG2 FLAG3 FLAG4

FIGURE 4,2 THE PARNETER VALUE STATUS STRUCTURE

Most of the parameters occurring in a computation are either:

1. Input variables,

2. Output variables, or

3. Initial assumption variables.

The input variables should not be "unspecified". The output variables

should not be "specified" and the initial assumption variables should

neither be "specified" nor "unspecified". Thus, the most commonly

occurring value status codes are:

Value Status Code 4-bit Reoresentation

1. Input variables 7 0111

2. Output variables 13 1101

3. Initial Assumption variables 5 0101

As is evident, the value status code of 0 is not acceptable. Table 4.1

gives the meanings of all the value status codes (this table is the output

of TDL command: "print vsctable" or PEL command: "printt vsctable ;").

The description of various template structures follows:

4.1.1 The Dimension Table

As described earlier, there is a dimension type associated with each

parameter in the parameter template structure. The dimension type

indicates the physical dimension of the parameter and consequently

indicates the allowable units of measurement. Dimension types have been

represented by integer numbers: 0,1,2,... This choice has primarily been

based on efficiency of processing (searching) and saving storage. The

dimension type of zero is used for dimensionless parameters. Each entry of

the data structure shown in Figure 4.3 corresponds to a dimension type, and

consists of the following:

100

TABLE 4.1

STATUS
CODE

1(0001)
2(0010)
3(0011)
4(0100)
5(0101)
6(0110)
7(0111)
8(1000)
9(1001)

10(1010)
11(1011)
12(1100)
13(1101)
14(1110)
15(1111)

UALUE-SIAIUS-CODES-IeBLE
ALLOWABLE PARAMETER TYPE

UNSPECIFIED ASSUMED SPECIFIED CALCULATED

x x

DIMENSION TABLE

_______ NUMBER = N _____

POINTER TO
NAME STANDARD UNITS OPTIONS

TABLE

OPTIONS TABLE

FIGURE '4,3 TIlE DII{J\ISION TABLE SliRLJJURE

NUMBER OF OPTIONS = M

NAME A B

FIGURE 4,3 TIE DIFBISION TABLE ST!RUR

102

a) name of the physical dimension (e.g., temperature, pressure, etc.)

b) standard units of measurement (e.g., DEGF)

c) a pointer to a data structure which contains other

options with their conversion factors.

There are two constants for converting a value in optional units to

the standard units. A linear relation is assumed such as

y= A + B x

where: y the value in standard units,

x the value in other allowable units, and

A and B are conversion factors.

When the user provides his input in optional units of measurement the

executive will automatically convert the input to the standard units of

measurement by using the above conversion formula. An example of a

dimension table is shown in Figure 4.4.

4.1.2 Stream Templates

A stream template contains a set of information defining a stream

type. All stream templates are placed in a directory to facilitate the

search for the template of a stream type. The directory is called "Stream

Template Directory" and is shown in Figure 4.5. Each entry of the

directory represents a stream template. The first entry represents the

template of the default stream type. Each entry contains the following

information:

a) stream type

b) the name of the calculating routine or a ";"

c) reference information

d) minimum number of arguments for the calculating routine

e) maximum number of arguments for the calculating routine

103

DIMENSION TABJF

4

TEMPERATURE F

PRESSURE PSIA

FLOW-RATE IBMOLES/H NUL

ENERGY-RATE BTU/HR NULL

OPTIONS TABLE

3

R -460 1

K -460 1.8

C 32 1.8

OPTIONS TABLE

3

ATM 0 14.696

PSIG +14.696 1

14.696
MMHG - 0 760

FIGURE 4.4 AN EXAMPLE OF A DIMENSION TABLE

STREAM TEMPLATE DIRECTORY

NUMBER OF STREAM TYPES = n

PROCEDURE REFERENCE
MINIMUM
NUMBER OF
ARGUMENTS

MAXIMUM
NUMBER OF
ARGUMENTS

COMPONENT
TYPE

POINTER TO
PHASE
TEMPLATE

POINTER TO
LEVEL
SUBSTRUCTUI

0

PHASE PARM.
TEM P LA TE

FLOW PARM.
TEMPLATE

EAM LEVEL DIRECTORY

NUMBER OF LEVELS =k

COMPONENT VALUE STATUS PO1NTER TE
P1 A SE

FLAG FLAG2 F'LAG3 FLAC4 DIRECT(Y
0

PHASE DIRECTORY

p

PHASE PARM.
VALUE STAT.
STRUCTURE

FLOW PARM.
VALUE STAT.
STRUCTURE

FIGURE 4.5 THE STREAM TEMPLATE STRUCTURES

NU.MBER OF PHASES = p

POINTER T(POINTER TO
PHASE PARt ILOW PARM.
TEMPLATE l'EMPLATE

NUMBER (OF PHASES)=p

POINTER TO POINTER T(
PHASE PARM FLOW PARM
VALUE STAT VALUE STA'

105

f) type of components (chemical species) allowed to flow in the

stream. Using the symbol "none" in this field indicates that

no component is allowed to flow in the stream, and the symbol

"all" indicates that any type component is allowed to flow in

the stream.

g) a pointer to a data structure which describes the different

phases of the stream. The data structure is called "phase

template". Phase zero usually represents the total stream.

A stream may have any number of phases. The "phase template"

contains the number of phases and an entry for each phase.

Each entry contains two pointers; one pointer points to a

parameter template structure describing the phase parameters

and another pointer points to a template structure describing

the flow parameters. The phase parameter template structure

contains the number of phase parameters and the name and

dimension type of each parameter. The flow parameter template

structure contains the number of flow parameters and the name

and dimension type of each parameter.

h) a pointer to a data structure which contains the number of

levels of calculation and for each level the error checking to

be performed by the system before control is passed to the

calculating routine. For each level of calculation there is

an entry in this data structure. Each entry contains the

following:

i) four flags indicating the value status codes of all

parameters of all components flowing in the stream

(if any).

106

ii) a pointer to the data structure "phase directory",

which contains the value status codes of each phase

and flow parameters of each phase of the stream.

An example of a stream template directory which contains only one

stream type is shown in Figure 4.6. The stream has one phase (phase number

0), 5 phase parameters and 1 flow parameter. Phase parameters are:

tf - Total molar flow rate

t - Temperature

p - Pressure

h - Enthalpy flow rate, and

vf - Vapor fraction (molar).

The flow parameter is molar flow rate (f).

4.1.3 Unit Templates

A unit template contains the information defining a process unit type.

All unit templates are placed in a directory to facilitate search pro-

cedures. The directory is called the "Unit Template Directory" and is

shown in Figure 4.7. Each entry of this directory represents a unit

template. The first entry represents the default unit type. Each entry

contains the following:

a) unit type (e.g., heatexchanger)

b) name of the calculating routine or a ";"

c) reference information

d) minimum number of arguments

e) maximum number of arguments

f) a pointer to a parameter template structure describing the

unit parameters. The unit parameter template structure

contains the number of unit parameters, name and dimension

type of each parameter.

107

STREAM TEMPLATE DIRECTORY

STANDARD
1 STD ; STREAM - - 0

PHASE TEMPLATE

0

0

PHASE PARAMETERE

5

1 TF 3

2
T 1

3 P 2

4 H 4

5 VF 0

FLOW PARAMETERS

FIGURE 4.6 AN EXAMPLE OF A STREAM TEMPLATE

UNIT TEMPLATE DIRECTORY

NUMBER OF UNIT TYPES - n

MINIMUM MAXIMUM POINTER TO POINTER TO POINTER TO
TYPE PROCEDURE REFERENCE NUMBER OF NUMBER OF PARAMETER CONNECTION LEVEL

ARGUMENTS ARGUMENTS TEMPLATE TEMPLATE SUBSTRUCTUR

T LEVEL DIRECTORY,,ECTIONf TEMPLATI

UNIT NUMBER OF INLETS

PARAMETER NUMBER OF CONNECem
TEMPLATE

1 NAME STREAM TYPE

m

CONNECTIONS SUBSTRUCT

UNIT NUMBER (OF CONNECTION
PARAMETERS
VALUE COMPONENTS VALUE STATUS CSTATUS A

NUMBER OF LEVELS-k

POINTER TO
POINTER CONNECTIONS

SUBSTRUCTURE'

URE

S) =m

ONNECTIOj POINTER TC
TATUS PHASE

0

PHASE PARM.
VALUE STAT.
STRUCTURE

PHASE TABLE

NUMBER (OF PHASES)=p

POINTER TOOINTER TO
PHASE PARMFLOW PARM.
VALUE STAT/ALUE STAT

FLOW PARM.
VALUE STATU
STRUCTURE

FIGURE 4.7 THE UNIT TEMPLATE STRUCTURES

FLA FLA FA F GTBL

109

g) a pointer to the connections template structure describing the

streams flowing into and out of the unit. The connections

template structure contains: the number of inlets (0 or

more), the number of connections (inlets and outlets), the

name of each connection, and the type of streams allowed to be

connected to each connection. The symbol "all" in the latter

field indicates that any type stream could be connected.

h) a pointer to a data structure which contains the number of

levels of calculation and for each level of calculation

specifies the error checking to be performed by the system,

before control is passed to the calculating routine. The

first entry of this data structure is associated with the

level one calculation and the second entry is associated with

the level two calculation, and so on. Each entry contains two

pointers: one points to a parameter value status structure

describing the status of each unit parameter's value; and

another one points to the connections substructure. The

connection substructure describes the checking procedures

for the unit connections. The connection substructure has as

many entries as the unit has connections. For each entry of

this structure there is a connection status. It is a number

indicating whether a stream should or should not be connected

to that connection. A connection status of 1 indicates that

such a stream is required. A connection status of 2 indicates

that such a stream is not permitted. A connection status of 3

indicates that such a stream is optional. If a specified

stream type can be connected to a connection (connection

110

status is one, or three and stream type of the connection is

not "all") then the entry contains the following additional

information:

i) value status of all parameters of all components (if

any) flowing in the connected stream.

ii) a pointer to a data structure describing the value

status of each phase or flow parameter of each phase

of the stream.

An example of a unit template is shown in Figure 4.8. The unit is a

splitter. It has 1 parameter, 1 inlet, and 2 outlets. The unit parameter

is the splitting ratio (R) and the inlet and outlet streams are of type

"STD" as defined earlier in Figure 4.6.

4.1.4 Component.Templates

A component template contains information defining a component type.

All component templates are placed in a directory to facilitate the search

for the template of a given component type. The directory is called

"Component Template Directory" and is shown in Figure 4.9. Each entry of

the directory represents a component template. The first entry represents

the template of the default component type. Each entry contains the

following information:

a) component type.

b) the name of the calculating routine or a ";".

c) reference information.

d) minimum number of arguments for the calculating

routine.

e) maximum number of arguments for the calculation

routine.

UNIT TEMPLATE DIRECTORY

UN IT
PARMS.

UN IT
CONNECTIONS

VSC OF STREAM
CONNECTED AT "OUT2"

VSC OF
UNIT PARMS.

N(TATIONS

VSC - VALUE STATUS CODE
PARMS. - PARAMETERS

DESCRIPTION
VSC OF

PHASE PARMS.INPUT VARIABLE

OUTPUT VARIABLE

NEITHER INPUT NOR OUTPUT

VSC OF
PHASE PARMS.

VSC OF
PHASE PARMS.

FIGURE 4.8 AN EXAMPLE OF A UNIT TEMPLATE

VSC OF
FLOW
PARMS.

CONNECT

COMPONENT TEMPL[ATE DIRECTORY

NUMBER OF COMPONENT TYPES n

[MINIMUM MAXIMUM POINTER TO POINTER TO
TYPE PROCEDURE REFERENCE NUMBER OF NUMBER OF PARAMETER LEVEL

ARGUMENTS ARGUMENTS TEMPLATE UBSTRUCTUR

*I.

COMPONENT
PARAMETERS
TEMPLATE

COMPONENT
PARAMETERS
VALUE STATU
STRUCTURE

COMPONENT LEVEL DIRECTORY

NUMBER OF LEVELS=k

TOINTER TO PARAMETER'
VALUE STATUS STRUCTURE

I

FIGURE 4.9 THE COMPONENT TEMPLATE STRUCTURES

V V 9 7

113

f) a pointer to a parameters structure describing the

component parameters. The parameters structure

contains the number of component parameters, and the

name and dimension type of each parameter.

g) a pointer to a data structure containing the number

of levels of calculation and for each level of

calculation information regarding the error checking

to be carried out by the system, before control is

passed to the calculating routine. The first entry

of this data structure is associated with the level

one of calculation and the second entry is

associated with the level two and so on. Each entry

points to a parameters value status structure

describing the status of each component parameter's

value.

An example of a component template directory having only one component

type is shown in Figure 4.10. The component has 8 parameters. Molecular

Weight (MW), Normal Boiling Point (NBP), Critical Temperature (TC),

Critical Pressure (PC), Critical Compressibility Factor (ZC), and Antoine

Vapor Pressure Constants (A1,A2,A3).

4.1.5 Function Temulates

A function template contains information defining a function type.

All function templates are placed in a directory to facilitate the search

for the template of a given function type. The directory is called

"Function Template Directory" and is shown in Figure 4.11. The first entry

represents the default function type. Each entry contains the following

information:

114

COMPONENT TEMPLATE DIRECTORY

STANDARD
STD ;TYPE NULL

COMPONENT

8

MW 0

NBP 1

TC 1

PC 2

ZC 0

Al 0

A2 0

A3 0

FIGURE 4.10 AN EXAMPLE OF A COMPONENT TEMPLATE

FUNCTION TEMPLATE DIRECTORY

NUMBER OF FUNCTION TYPES = n

PROCEDURE IREFERENCE MINIMUM MAXIMUM PROCEDURE NUMBER OF POINTER T POINTER TC
TYPE TO CALCU- NUMBER OF NUMBER OF TO EVALUATEARGUMENTS PARAMETER LEVEL

LATE THE ARGUMENTS ARGUMENTS THE FUNC- FOR EVALUATI EMPLATE SUBSTRUC.
FUNCTION TION. THE FUNCTION TEMPLATE

1

FUNCTION
PARAMETER!
TEMPLATE

-~

FUNCTION
PARAMETERS
VALUE STATU
STRUCTURE

I 2

FUNCTION LEVEL DIRECTORY

NUMBER OF LEVELS=k

POINTER TO PARAMETE S
VALUE STATUS STRUCTU E

FIGURE 4.11 THE FUNCTION TEMPLATE STRUCTURES

116

a) function type,

b) name of the function calculating routine (e.g.,

Regression Analysis Program), or a "1;"1

c) reference information,

d) minimum number of arguments for the calculating

routine,

e) maximum number of arguments for the calculating

routine,

f) name of the procedure to evaluate the function value

or a "t;". This is the routine that will be called

when a pre-defined function appears in an arithmetic

expression,

g) the number of arguments for the above routine,

h) a pointer to a parameter template structure

describing the function parameters. The function

parameter template structure contains the number of

function parameters, the name and dimension type of

each parameter.

i) a pointer to a data structure containing the number

of levels of calculation and for each level the

specific checking procedures to be carried out by

the system, before control is passed to the

calculating routine. The first entry of this data

structure is associated with the level one of

calculation, and the second entry is associated with

the level two and so on. Each entry points to a

parameters value status structure describing the

status of each function parameter's value.

117

An example of a function template directory having only one function

type is given in Figure 4.12. The function is in the form: y = A+Bx. The

function parameters (coefficients) A and B may be calculated by routine

L1CALC. Routine L1EVAL evaluates the function for a given argument, x.

4.1.6 Table of Prooertv Estimation Methods

A calculating routine may call upon other routines, especially for

physical property computations. Usually there is more than one method for

estimating a physical property. A mechanism is provided to enable a user

to specify the particular methods to be used for estimation of

physical properties. The Table of Property Estimation Methods as shown in

Figure 4.13 is the essential part of this mechanism. Each entry of the

table corresponds to a property and contains the following:

a) the property name as known by the users.

b) the number of options available for estimating that

property.

c) the default option. This is the option that will be

in effect until the user chooses another option for

estimation of that property.

The entry number of the property in the table is called the property

number or property type. This is the number used by the physical property

estimation routine to retrieve its specified method of calculation. An

example of a property estimation methods table is shown in Figure 4.14.

4.1.7 Control Information

A set of miscellaneous information is associated with each TBS as

shown in Figure 4.15. It consists of:

a) the name of the Template Based System.

b) the serial number of the TBS, identifying the

118

CULATION

VSC OF
FUNCTION PARAMETERS

FIGURE 4.12 AN EXAMPLE OF A FUNCTION TEMPLATE

119

PROPERTY ESTIMATION METHODS TABLE

NUMBER OF PROPERTIES = N

PROPERTY NUMBER OF DEFAULT
NAME OPTIONS OPTION

FIGURE 4.13 THE PROPERTY ESTIlATION EHODS TABLE STRUCTURE

120

PROPERTY ESTIMATION
METHODS TABLE

4

1 PVAP 2 1

2 FVAP 2 1

3 FLIQ 5 4

4 ALIQ 7 1

FIGURE 4.14 AN EXAMPLE OF A PROPERTY ESTIMATION

METHODS TABLE

121

CONTROL INFORMATION

SYSTEM (TBS)

COMPATIBILITY
NAME ISERIAL NUMBER LEVEL

CONSISTENCY FLAG

PROCEDURE PROCEDURE PROCEDURE PROCEDURE
TO TO TO TO

CALCULATE ALL CALCULATE ALL CALCULATE ALL CALCULATE ALL
UNITS COMPONENTS FUNCTIONS STREAMS

NUMBER OF NUMBER OF NUMBER OF NUMBER OF
LEVELS FOR LEVELS FOR LEVELS FOR LEVELS FOR
ABOVE ROUTINE ABOVE ROUTINE ABOVE ROUTINE ABOVE ROUTINE

REFERENCE REFERENCE REFERENCE REFERENCE
FOR ABOVE FOR ABOVE FOR ABOVE FOR ABOVE
ROUTINE ROUTINE ROUTINE ROUTINE

DEFAULT NUMBER OF SIGNIFICANT DIGITS

DEFAULT NUMBER OF DECIMAL DIGITS

DEFAULT DEBUGGING FLAG

FIGURE 4.15 THE CONTROL INFORMATION STRUCTURE

122

different generations of the TBS. This number

should be increased whenever the TBS is updated or

expanded.

c) the compatibility level of the TBS. There is such a

number associated with each generation of the TBS.

Those generations of a TBS having the same number

are said to be compatible. The incompatibility

problem may arise for a user dealing with two

generations of a TBS. An example will illustrate

the problem. Suppose a user of a TBS has created

and saved a process model having among other

elements streams of type "X". Then suppose that the

TBS administrator has updated the TBS and has

deleted the template of stream type "X". Now the

user attempts to retrieve his saved process under

the control of the updated TBS. Clearly his process

model is not compatible with the current generation

of the TBS. If this condition is not detected by

the system, serious problems may arise. Although

the above condition will be detected by the system,

there are other similar conditions which the system

either cannot detect or would require excessive

computer time for detection. The compatibilty level

is a way for solving this problem. The TBS

administrator should update the compatibility level

whenever the updated template data base is not

compatible with the previous generation. Extending

123

the data base (adding new templates) would not cause

incompatibility. Deleting an already defined

template as was the case in the above example will

result in an incompatible TBS. Updating a

previously defined template may or may not cause an

incompatibility problem. For example, changing the

number of phases of a stream type will result in an

incompatible TBS. Other examples are given in

Appendix B which describes the Template Definition

Language.

d) consistency flag indicating whether the template

data base is internally consistent or not. For

example,.if the template of a stream type mentioned

in a unit template is not defined, the data base is

said to be inconsistent. Only consistent data can

be said to define a TBS. The program "updatetdb"

will automatically check the data base and set the

flag, so that the inconsistent data base is not used

by the GPES executive, thus avoiding unpredictable

results.

e) procedure to calculate all units or a ";". If such

a routine has been implemented it would be called in

response to the following user command: calculate

unit all (optional argument list);

The routine should be able to determine the order in

which to calculate individual units. Such routines

are discussed in more detail in Chapter 6.

124

f) procedure to calculate all components or a ";".

g) procedure to calculate all functions or a ";".

h) procedure to calculate all streams or a ";".

i) number of levels of calculation for each of the

above routines.

j) reference information for each of the above

routines.

k) default number of significant digits (between 1 and

14).

1) default number of decimal digits (between 0 and 14).

m) default debugging flag (0 or 1).

The last three items are initial (default) values of three of the five

profile parameters. Profile parameters are those parameters that control

the operation of PEL input and output commands. The profile parameters

are:

sdigit: Significant number of digits to be used for printing numerical

values (1 to 14).

ddigit: Decimal number of digits to be used for printing numerical values

(0 to 14).

dflag: Debugging flag (between 0 and 3) which is used for debugging

purposes. Deflag of zero which is for normal operation indicates

that:

a) the GPES executive should write a message on the

user's terminal whenever it calls a calculating

routine, and

b) if a fatal error occurs in the calculating routine,

the GPES executive should take over control and

prevent the termination of the PEL session.

125

Dflag of one is a request for the latter only, and dflag

of two which may be used by the TBS administrator is a

request for the former only. The latter enables the TBS

administrator or TBS programmers using the Multics

debugging facilities to debug the TBS programs. Dflag

of three which may be used by the GPES administrator for

debugging the system is a request for additional

information regarding the internal operation of the

system. Default value of dflag can be set to either

zero or one by the TBS administrator.

output: It specifies the user's output file which could be either his

terminal or another file.

input: It specifies the user's input file which could be either his

terminal or another file.

The PEL "profile" command enables the user to specify the profile

parameters. The default values of the first three parameters

(sdigit,ddigit,dflag) are those given in the control information. The

default value of the input or output profile parameter is always the user's

terminal. An example of control information is shown in Figure 4.16.

4.1.8. Text File

The text file is created and updated by any available editor. It

contains the following information:

a) The TBS adminstrator's name.

b) Any reference about the TBS.

c) Any messages to the TBS users.

The above information (a,b,c) will be printed when the user

requests use of the TBS.

126

CONTROL INFORMATION

MHD

6

5

0

FIGURE 4.16 AN EXAMPLE OF A CONTROL INFORMATION

127

d) The TBS lock, which indicates whether the TBS can or cannot be

accessed by the users.

e) Any news about the TBS. This information, along with similar

information about the GPES will be printed in response to the

user's "news" command.

f) Any errors found or reported about the TBS. This information,

along with similar information about the GPES, will be printed

in response to the user's "bugs" command.

The format of the file is shown in Figure 4.17. Each of the above

items should start and terminate by a "%". "tbs-name" indicates the TBS

name. The format of each heading should be exactly as shown in the figure.

The notation ---- text--- indicates the text provided by the TBS system

administrator. It can be any number of characters or lines, and may

contain any character except "%", which terminates the text. The sequence

of providing the above items is immaterial. The "lock" item should have

one of the following formats:

%lock open%

%lock close%

If this item is not provided or it is as the first format, then the

system can be accessed by the users. The second form indicates that the

system cannot be accessed by the users. An example of a Text File is shown

in Figure 4.18.

4.2 The Temolate Data Base Seagments

The Template Data Base consists of a set of segments (files). These

segments accommodate various data structures that form the template data

base as listed in Table 4.2. Unit templates are stored in two segments:

one contains the unit template directory, and the other contains all the

128

Figure 4.17. Format of the Text File

%*tbs-name system administrator:---text---%

%*tbs-name reference:---text---%

%*tbs-name message:---text---%

%lock open% or %lock close%

%tbs-name news:---text---%

%tbs-name bugs:---text---%

FIGURE 4.18 AN EXAMPLE OF:* A TEXT FILE

text 05/12/78 1322.2 edt Fri

%*heat-)exchangers swstem administrator: Sharif Arab-Ismaili
room 66-064, MIT, Cambridge, May
telephone' (617) 253-6531 %

%*heat-exchangers reference*:A simple heat exchangers network anal zer,
developed for testing the GPES %

%*heat-exchangers messagelbe good to Yourself.%
%lock open%
%*heat-exchaners news* once upon a time there was........%
%*heat-exchangers busyou should be kiddin

130

SEGMENT NAME

utemp_dr

stempdr

ctemp_dr

fntempdr

dimedr

estmethdr

unitarea

strmarea

comparea

funcarea

dimearea

ctl info

text

TABLE 4.2

THE TEMPLATE DATABASE SEGMENTS

SEGMENT CONTENTS

unit template directory

stream template directory

component template directory

function template directory

dimension directory

property estimation methods table

template substructures of unit types

template substructures of stream types

template substructures of component types

template substructures of function types

dimension substructures

system control information

system administrator, reference, message,

lock, bugs, news.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

131

unit template substructures. Similarly, stream templates, component

templates and function templates are each stored in two segments.

Dimension table is also stored in two segments: one contains the

dimension directory and the other dimension substructures. Property

estimation methods table, control information, and text file each are

stored in a separate segment.

The program "1update-tdb"I creates and manipulates all these segments,

except the text segment which is created and manipulated by any available

editor.

4.3 The Temnlate Definition Language

The "updatetdb" is an interactive program for storing and updating

the template data base. It can be used through a simple command language

called Template Definition Language (TDL). The TDL command syntax is as

follows:

command [object] [identifier]

The "object" and "identifier" are not always required. "command" is a

language keyword indicating the function of the command, and "object" is

another language keyword indicating the object upon which the action should

take place. "identifier" is either another language keyword, an integer

number, or a user supplied identifier representing the type of the object.

For instance, if the system administrator wants to insert the template for

a unit type pump the command for it would be:

insert unit pump

Certain abbreviated forms are also allowed, such as

i u pump

For the insert command, the program prompts the user for all the required

information. The complete list of commands is given in Table 4.3.

132

TABLE 4.3

THE TEMPLATE DEFINITION LANGUAGE COMMANDS

COMMAND

1. insert

2. delete

OBJECT

unit
stream
component
function
dimension
property

unit
stream
component
function
dimention
property

unitlevel
streamlevel
complevel
funclevel

unit
stream
component
function
dimension
property
dimtable
proptable
ctlinfo
vsctable
all

units
streams
components
functions

3. replace

4. print

5. list

6. revise ctlinfo

IDENTIFIER

" type "
"type"
"type"
"type"
"number"
"number"

"type"

"type"
"type"
"type"
"number"
"number"

"type"
"type"
"type"
"type"

"type"
"type"
"type"
"type"
"number"
"number"

sysname
serialno
compatlevel
defsdigit
defddigit
defdflag
unitall
streamall
compall
funcall

7. end

133

The function of each command is as follows:

insert To insert the templates. The program prompts the user

for all the required information. Once all the

information has been provided, the program asks the user

whether the template is to be inserted into the template

data base, or to be ignored.

delete To delete the templates.

print To print the templates.

list To list the existing types of units, streams, components

or pre-defined functions.

replace To replace a part of a template, associated with any one

level of calculation. The program prompts the user for

all the required information.

revise To change an item of the control information. These

items can never be deleted, only changed. The program

prompts the user for all the required information.

end Triggers the termination of the session.

Before the update_tdb program accepts any command, it asks the user

whether the template data base is new or old. If the user's response is

"old" the program prompts the user for the path name (path name is a

Multics terminology indicating the address of a segment or a directory) of

the directory containing the template data base segments. If the user's

response is "new", the program prompts the user for the path name of the

directory under which the template data base segments are to be created.

Then the program creates and initializes the template data base segments.

In particular, the program initializes the control information as follows:

sysname = "1;"1

134

serialno = 1

compatlevel = 1

defsdigit = 14

defddigit = 14

defdflag = 0

Procedure to calculate all units

Procedure to calculate all streams = ";"

Procedure to calculate all components = ;"

Procedure to calculate all functions

Note that "t;I" means that the routine is not implemented. The user

(TBS Administrator) should use the revise command to specify the TBS name

(sysname) or to change the above default values.

During the session, the system administrator can exit from the program

by pushing the "quit" button on the terminal. Reentry after such an

abnormal exit can be accomplished by using the "pi" (for Program Interrupt)

command of Multics; this causes the current command activities to be

ignored and the program becomes ready to accept a new command. The use of

this mechanism is only recommended while providing information for an

insert or replace command when some errors has been discovered in

previously supplied information or to abort the printout of a print

command. Use of this mechanism under other conditions may damage the data

base.

Upon issuance of the "end" command, the program proceeds to check the

consistency of the data base. The consistency aspects are discussed in

section 4.4.1. If there are any inconsistencies, the system administrator

may want to return to command level to enter more commands. He or she is

therefore asked whether he or she would like to exit. If the answer is

135

"yes", the program asks for the default types of units, streams, components

and functions and these are made the first members of their respective

directories. When the GPES Executive wants a default type, it looks for

the first member of the corresponding directory.

The TDL language has been designed to be very simple. This

characteristic often makes it very inflexible. For example, to change an

item of information about a template one may have to delete that template

and insert a new one with the updated information. Only items of control

information can be changed directly. Information regarding any level of

calculation for a unit, stream, component, or function template can also be

replaced without deleting the entire template. A detailed description of

each TDL command is given in Appendix B. A sample computer session with

TDL is shown in Figure 10.12. The template printouts presented in Chapter

10 are also the result of TDL print commands.

4.4 "update tdb" Program

The sole purpose of the program is the management of data stored in

the template data base. The data stored in the data base must of course,

be internally consistent. The program "updatetdb" therefore, must check

for the consistency of the data, as will be described in the next section.

A schematic flowchart of the structure of the program is shown in

Figure 4.19. For a new data base the program creates and initializes the

data base segments. The program accepts one command at a time. The

command is processed either by an internal procedure, or by the external

procedure, print-temp, which is also used by the GPES executive for

printing information in the Template Data Base. The structure of the

program, in this sense, is modular, this is expected to facilitate the

maintenance of the program, which otherwise would have been difficult

FIGURE 4.19 THE FLOWCHART FOR UPDATE TDB PROGRAM

137

considering its size. The program creates temporary structures to contain

information provided by the user for insert and replace commands. Once all

the information is provided and the user approves its correctness,

permanent structures will be created and filled by the supplied

information. The temporary structures are then deleted. The purpose of

the temporary structures is to improve the consistency aspect of the data

base, and to allow the implementation of the "quit" mechanism as described

earlier.

4.4.1 Consistency of the Data in the Template Data Base

The data stored in the data base must, of course, be internally

consistent. Only consistent data can be said to define a template-based

system. The program updatetdb, therefore, checks to see if the following

conditions are true:

1. All stream types mentioned in the unit templates must exist in the

stream template directory.

2. All component types mentioned in the stream templates must exist

in the component template directory.

3. All dimension types mentioned in all parameter templates must

exist in the dimension table.

4. There should be no undefined dimension number less than the

maximum defined number. For instance, if dimension number 9 is

defined, so should the numbers 1 to 8. This is to ensure that no

entry of the dimension table is empty.

5. The above also holds true for the property estimation methods

table.

6. The TBS should have a name.

7. Default number of decimal digits should not be greater than the

default number of significant digits.

138

These checks are made before the termination of the session. During

the session, while the data base is being updated, the program does not

allow clearly invalid data to be inserted. For instance, it will not allow

a character string where a number is required. It will not allow a value

status code to be less than 1 or greater than 15, and so on.

If there is any inconsistency, the consistency flag is turned off, so

that the data base is not used by the GPES Executive, thus avoiding

unpredictable results.

During the session, the system administrator can exit from the program

by pushing the "quit" button on the terminal. This abnormal exit can leave

the data base in an inconsistent state. To protect against this, the

consistency flag is turned off at the beginning of the command processing

loop. Reentry after an abnormal exit can be accomplished by using the "pi"

(for program interrupt) command of Multics, that returns control to the top

of the command processing loop.

4.5 Protection of the Template Data Base

Two copies of every Template Data Base are required and a third one is

recommended. The two required copies are:

1. The original, or primary copy accessible by the TBS

Administrator. This copy is created and manipulated

by the update_tdb program.

2. The system copy, accessible to the GPES Executive.

The segment names for this copy are the same as in

Table 4.2 except that they are suffixed by

".syscopy". The system copy can be used while the

primary copy is being updated. The users have

access to this copy only.

139

One or more backup copies are recommended. They may be used to retain

the previous generations of the Template Data Base and/or to contain the

current generation to enable recovery from unintentional erasures and other

accidents. The segment names for each of these copies are the same as in

Table 4.2, except that they are suffixed by a symbol chosen by the TBS

administrator. Suffixes such as ".BACKUP", ".DATE", or ".SERIAL_NO", are

recommended. The flow of information between the different copies of the

Template Data Base, updatetdb, and GPES Executive is shown in Figure 4.20.

The copytdb is a utility program which copies one set of the data base

into another. Utility programs are described next.

4.5.1 Utility Programs

As has been discussed, the updatetdb program creates and updates the

original copy of the Template Data Base, except the text file. The

original copy of the text file is created and updated by any available

editor. Other utility programs have been developed to facilitate the TBS

Administrators' tasks, as listed in Table 8.4. These utility programs are

command procedures (a program composed of a set of Multics commands) and

are called by Multics command "execcom". A description of each program

will follow.

4.5.1.1 Raccess tdb

Although the TBS administrator should have read and write access to

all copies of the Template Data Base, the users should have only read

access to the system copy of the data base (this is for protection of the

data base). The command procedure gaccesstdb gives a user read access to

the system copy of the Template Data Base. It requires three arguments and

is called as follows:

ec gaccesstdb Directory PersonID ProjectID

140

GPES
EXECU

SYSTE
OF TH
TEMPL
DATA

TIVE

. - -. - - -.. -. -

FIGURE 4.20 INFORMATION FLOW REGARDING THE
TEMPLATE DATA BASE.

CPY BACKUP COPY
C _TDB OF THE

TEMPLATE
DATABASE

PRIMARY
COPY OF
THE TEMPLATE
DATA BASE

.7 1TEXT
FILE

M Cc
E
ATE
BASE

141

Where:

Directory Is the relative or absolute path name of the directory

containing the Template Data Base segments.

PersonID Is the user's Multics Person ID. Using a "*" in this

field indicates all users of the given project.

Project_ID Is the user's Multics Project ID. Using a "*" in this

field indicates all projects for the given user.

Example

ec gaccesstdb >udd>ICPES>Arab-Ismaili>heatexchangers * MHD

will give read access to a system copy of the Template Data Base (located

under the specified directory) to all users of project MHD.

The TBS Administrator should write a similar command procedure to give

execute access to all TBS programs (calculating routines, etc.) to a user.

The TBS administrator should also register each user with the GPES

administrator by filling out the form shown in Figure 8.5, and sending it

to the GPES administator.

4.5.1.2 taccess tdb

This command procedure is used to remove user access to a Template

Data Base. IT is called as follows:

ec taccesstdb Directory PersonID Project_ID

Where the three arguments are the same as described for gaccesstdb. The

TBS administrator should write a similar command procedure to remove user

access to TBS programs (calculating routines, etc.). To remove a user from

the list of authorized users of the TBS, the TBS administrator should also

notify the GPES administrator by filling out and sending the form shown in

Figure 8.5.

142

4.5.1.3 copy tdb

This command procedure is used to copy a Template Data Base into

another Template Data Base, while preserving the access rights of the

target data base. It is called as follows:

ec copytdb Directory Suffix1 Suffix2

Where Directory is the relative or absolute path name of the directory

containing the Template Data Bases. Suffix1 is the Suffix of the Data Base

to be copied from, and Suffix2 is the Suffix of the Data Base to be copied

into. Examples of the command are:

a) ec copy_tdb heatexchangers Il .syscopy

will copy the primary Template Data Base (TDB) into the system copy. If

the system copy does not exist a new one will be created and the TBS

administrator is the only one who will have access to it. If the system

copy does exist the copying operation will preserve its access list.

b) ec copy_tdb heatexchangers .backup .syscopy

will copy the backup copy of TDB into the system copy.

c) ec copy_tdb heatexchangers .backup ""

will copy the backup copy of TDB into the original copy.

4.5.1.4 copy seg

This command procedure is used to copy one segment into another, while

preserving the access rights of the target segment. It is called as

follows:

ec copyseg Directory segment1 segment2

where Directory is as defined earlier, segment1 is the name of segment to

be copied from, and segment2 is the name of segment to be copied into.

Although the TBS Administrator may use this command procedure for

copying any segment, it is recommended only for copying the text segment,

143

if that is the only segment in which some changes has been made. For

example, the following commmand will copy the primary text segment into the

system copy:

ec copyseg heatexchangers text text.syscopy

4.5.1.5 delete tdb

It is used to delete a TDB. It is called as follows:

ec delete_tdb Directory Suffix

where directory is as defined earlier, suffix is the suffix of the TDB to

be deleted. For example, to delete the backup copy of a Template Data

Base:

ec delete_tdb heat_exchangers .backup

144

CHAPTER 5

DATA STRUCTURES REPRESENTING A PROCESS FLOWSHEET

GPES differs from most computer simulation systems in its

representation of the Process Flowsheet. Process elements such as units,

streams, components, etc. are represented by data structures connected to

form a network. This network represents the process flowsheet and is

created and manipulated by the GPES Executive in response to the user's

commands. As the user concept of the process flowsheet changes, the

network of data structures is manipulated to reflect those changes. This

will permit the user to retain an active model of the problem being solved.

The resulting model may be saved indefinitely for later modification and

analysis.

GPES employs generalized data structures to represent process

elements. However, before the system can utilize them to model a process

configuration, it requires certain information about the types of units,

streams, components, etc. As discussed in the previous chapter, this

information is stored in the form of templates in the Template Data Base.

5.1 Memory Management

The data structures representing a process flowsheet are dynamically

allocated when they are needed and will be freed when they are not

required. Data structures of this kind are called "based data structures"

in PL/1 terminology. The process network may be saved by the user for

future retrieval and modifications. Hence, these data structures would be

allocated in "areas" (a PL/1 terminology) for simplicity of saving and

retrieving the process. Since the storage requirements for these

structures vary for each process flowsheet, storage allocation strategy may

145

be influenced by the desire to increase user flexibility or system

efficiency. In this section several methods are presented.

A) Single partition allocation with fixed size: In this approach a

single fixed size storage area will be allocated for a process. Process

data structures will be allocated in this area and they are accessed by

offset locators (an offset locator designates the location of a data

structure within the storage area).

Advantages:

1 - Simple and efficient for the system.

Disadvantages:

1 - The size of the partition is fixed regardless of the space

needed by the problem being solved.

2 - The process size cannot exceed the size of the partition.

B) Single partition allocation with variable size: It is the same

approach as the first method with the exception that the size of the

partition should be specified by the user.

Advantages:

1 - Relatively simple and efficient for the system.

Disadvantages:

1 - User must provide the size of the partition he needs for his

model.

2 - The maximum partition size is limited (for IBM PL/1 it is

32,766 Bytes, for Multics it is about 1,048,000 Bytes).

C) Dynamic partition allocation: In this approach there may be more

than one partition made available. As the process grows and the need for

additional space is recognized, another partition will be allocated

dynamically. AREA CONDITION signals the need for additional space. In

146

this approach the addressibility is achieved by the pair of partition-

number and offset in that partition. The size of the partition should be

selected based on the system efficiency and storage requirement for average

jobs.

Advantages:

1 - Allocates partitions as needed.

2 - There is no limitation on the size of the problem being

solved.

Disadvantages:

1 - System overhead associated with two level addressing.

The latter approach meets the requirements of GPES and has been

implemented. To allocate data structures within partitions, the GPES

Executive starts from the last allocated partition and if AREA CONDITION is

raised it tries the previous partition. If the required storage is not

found in the available partitions a new partition will be allocated to meet

the requirements. The collection of these partitions is called the working

area. It should be noted that, once a partition is allocated, it will not

be freed before the end of a process analysis or the specification of the

"clear" instruction by the user. In this implementation of the system

(Multics Implementation) the size of the partition is varying. Initially,

when it is allocated it occupies only one page of storage (about 4,000

Bytes in Multics). As the need for additional storage is recognized the

partition size automatically grows until it reaches the maximum of 255

pages (about 1048,000 Bytes), then another partition is allocated. A

partition table keeps track of the locations of the partitions. A

partition table is a part of the process directory data structure which is

described next.

147

5.1.1 The Process Directory Data Structure

The directory data structure which is shown in Figure 5.1 contains

the following information:

a) The name, serial number and compatibility level of the system

(i.e., GPES) and TBS under which the process was first

created.

b) Purity Flag, indicating whether the process has or has not

been accessed by either an incompatible version of the system

or TBS, or by a different TBS.

c) The date and time the process was first created.

d) A pointer to the beginning of the unit structure's list.

e) A pointer to the component directory.

f) A pointer to the beginning of the pre-defined function

structure's list. There is no similar information in the

directory for the user-defined functions, because user-defined

functions are not allocated in the working area, as will be

described later in this chapter.

g) Two pointers to the beginning of the stream structure's list.

This redundancy is required due to the internal structure and

organization of the GPES executive.

h) A pointer to the beginning of the variable structure's list.

i) A pointer to the data structure containing the "property

estimation methods in use".

j) The current number of allocated partitions.

k) A pointer to each allocated partition.

148

DIRECTORY

SYSTEM

NAME SERIAL NO. COMPATIBILITY
LEVEL

TBS

COMPATIBILITY
NAME SERIAL NO. LEVEL

PURITY FLAG

DATE AND TIME

POINTER TO THE UNIT LIST

PARTITION # OFFSET

POINTER TO THE COMPONENT DIRECTORY

PARTITION # OFFSET

POINTER TO THE PRE-DEFINED FUNCTION LIST

PARTITION # OFFSET

POINTER TO THE STREAM LIST

PARTITION # OFFSET

POINTER TO THE STREAM LIST

PARTITION # OFFSET

POINTER TO THE VARIABLE LIST

PARTITION # OFFSET

POINTER TO THE DATA STRUCTURE CONTAINING
THE PROPERTY ESTIMATION METHODS IN USE

PARTITION # OFFSET

NUMBER OF PARTITIONS = n

POINTER TO lst PARTITION

POINTER TO nth PARTITION

FIGURE 5.1

THE PROCESS
DIRECTORY
DATA STRUCTURE

PARTITION

PDR

149

Every piece of information about the process either is contained in

the process directory or can be obtained by navigating the list of data

structures which are chained to the directory. The external variable

"pdr" points to the directory, and therefore makes the directory

accessible to the routines requiring such information. An example of a

process directory having only one partition is shown in Figure 5.2.

5.2 Data Structures Reoresentina Process Elements

A description of various data structures representing the process

elements is given. The parameters structure which is common to most of

these elements is described first.

5.2.1 Parameters Structure

The parameters structure as shown in Figure 5.3 is used to contain a

set of parameters. A set of parameters may represent any of the following:

1) parameters of a unit.

2) parameters of a phase of a stream.

3) flow parameters of a component in a phase of a stream.

4) parameters of a component.

5) parameters of a pre-defined function.

Therefore, each unit has a parameter structure to contain its

parameters. A stream may have many parameter structures to contain phase

and flow parameters of each phase. A component or a pre-defined function

each have a parameter structure to contain their parameters. Each

parameter in the parameter structure is represented by a value and a value

type. The value type indicates how the value has been assigned.

The value type of a parameter can be one of the following:

1. Unspecified (value type = 0). When no value has been assigned

or user has explicitly unspecified the parameter by an

unspecify command, the parameter is said to be unspecified.

150

PARTITION NUMBER ONE

FIGURE 5.2 AN EXAMPLE OF A PROCESS DIRECTORY DATA STRUCTURE

151

PARAMETERS STRUCTURE

NUMBER OF PA WAETERS = N

VALUE VALUE TYPE

FIGURE 5.3 THE PARNETERS STRUCTURE

152

2. Assumed (value type = 1). The value has been assigned by one

of the followig commands: assume, leta, or reada. The user

assumes a value for a parameter if the exact value of the

parameter is unknown, but a value is required to initiate

calculation.

3. Specified (value type = 2). The value has been assigned by

one of the following commands: specify, let, read, or repeat.

4. Calculated (value type = 3). The value has been assigned by a

calculating routine.

The value type serves the following purposes:

1. To indicate a value has been assigned to a parameter.

2. To avoid calculating a parameter which has been fixed

(specified) by the user.

3. To facilitate error checking for under- or over-specification

of the parameters for a calculating routine.

4. To indicate which parameters are the output of a calculating

routine, and hence facilitate the debugging effort.

5.2.2 The Unit Structure

The data structure representing a process unit is shown in Figure 5.4.

Unit data structures are linked together by two sets of pointers. Each

unit points to the succeeding unit and also points to the preceding unit.

The pointer to the beginning of the chain of units is kept in the process

directory data structure. The positions of the unit data structures in the

chain are not the same as the position of corresponding units in the

process flowsheet. When a new unit data structure is created, it would be

added to the beginning of the chain, and it will remain as the first unit

in the chain until a) it is deleted or b) another unit data structure is

created.

153

UNIT STRUCTURE

POINTER TO NEXT UNIT

PARTITION # OFFSET

POINTER TO PREVIOUS UNIT

PARTITION # I OFFSET
TYPE

ITYPE

NAME

POINTER TO UNIT PARAMETERS

PARTITION # OFFSET ARAMETERS

NUMBER OF INLETS = m

NUMBER OF CONNECTIONS = n

POINTER TO STREAM STRUCTURE

PARTITION # OFFSET TO
INLET
STREAMS

m

m+1

TO
OUTLET
STREAMS

n

FIGURE 5.4 THE UNIT STRUCTURE

154

The unit data structure also contains:

a) Unit type (TYPE) and the index of the unit type in the unit

template directory(ITYPE). The ITYPE is provided to avoid

searching the unit template directory each time it is required

to access the unit's template. Whenever a process which is

saved earlier is retrieved, the system will update the ITYPE.

This is a necessary action because it is foreseeable that the

TBS system administrator may have updated the template data

base and consequently may have caused the reordering of the

unit templates in the directory. It is for this reason that

both TYPE and ITYPE have been provided.

b) Unit's name.

c) A pointer to a parameter structure which contains the unit

parameters. The parameter structure is created at the same

time the unit's structure is created. The value of each

parameter is unspecified until a value has been assigned by

the user or by a calculating routine.

d) Number of inlets. This number is taken from the unit

template.

e) Number of connections. This number is also taken from the

unit template. It is the total number of inlets and outlets.

f) For each connection a pointer to the corresponding stream's

structure. This pointer is null (partition_no =0) when no

stream is connected to the unit. These entries are updated in

response to the following user's requests:

i) Connect the unit to some streams,

ii) Disconnect the unit from some streams,

155

iii) Delete the streams which already have been connected to

the unit.

An example of a unit structure is shown in Figure 5.5. The unit

template was shown in Figure 4.8.

5.2.3 The.Comoonent Structure

The information regarding all components is stored in a data structure

called the component directory as shown in Figure 5.6. Each entry of the

directory corresponds to a chemical component. The number of entries of

the directory which is the maximum number of components that can be present

in the process is set by the user. Before the system accepts any command,

it prompts the user for this number and creates such a data structure. All

entries, of course, are empty at this time. When the user creates a

component or loads a component from a component file, the first non-empty

entry of the directory will accommodate that component. When the user

deletes a component, that entry again becomes empty and a possible location

for a new component that may be created later. Each entry contains the

following:

a) Component name.

b) Number of references. This is the number of streams that

contain the component. It is used to protect users from

deleting components which are present is some streams. This

number is initially zero. The number will be incremented by

one (1) whenever the component is said to be present in

another stream. Similarly, it will be decremented by one (1)

for each stream that no longer contains the component.

c) Component type.

d) Index of the component type in the component template

directory.

156

UNIT D1

TO NEXT UNIT

I .. I I
TO PREVIOUS UNIT

I I I
SPLITTER

3

Dl

3

1 0 -

2 0 -7

3 1 0

FIGURE 5.5 AN EXAMPLE OF A UNIT STRUCTURE

157

PCOMPDR

COMPONENT DIRI

NUMBER OF COMPOI

NUMBER OF
1 NAME REFERENCESTYPE ITYPE

2

MAXLNC

FIGURE 5.6 THE COMPONENT DIRECTORY STRUCTURE

158

e) A pointer to a parameter strucutre which contains the

component's parameters. For an empty entry it is a null

pointer.

Storing the components in a component directory as described above imposes

the following disadvantages:

a) The user has to specify the maximum number of components in a

process.

b) The above number is fixed for the entire life of the process.

Although a mechanism could be provided to remedy the above disadvantages,

it is a very time-consuming process. Once the number of components exceeds

the pre-specified maximum number, it requires that a new directory with a

larger number of entries be created and the old directory be copied into

the new directory and then be deleted. This will force recreation of all

streams which in turn forces the updating of all units. Therefore, this

mechanism has not been implemented. Instead the user is recommended to use

his best judgment in providing the maximum number of components.

Although the representation of components by a chain of data

structures similar to the one described for units does not have the above

disadvantages, it has the following more serious disadvantages:

a) The representation of streams would become more sophisticated

in order to refer to components which are flowing in them.

b) TBS Programs (Calculating Routines) need to be sophisticated

in dealing with components.

On the other hand, the component directory will not impose the above

disadvantages. Hence, it has been used for representing the components.

The entry number of a component in the directory is known as its

component-index. Figure 5.7 shows an example of a component directory

having two components.

159

PCOMPDR

COMPONENT DIRECTORY

4

NC4 0 STD 1

NC5 0 STD 1

0

8

FIGURE 5.7 AN EXAMPLE OF A COMPONENT DIRECTORY

8

160

5.2.4 The Stream Data Structure

A stream data structure as shown in Figure 5.8 contains the following:

a) A pointer to the next stream's data structure.

b) A pointer to the previous stream's data structure.

c) Stream type.

d) Index of the stream type in the stream template directory.

e) Stream name.

f) A pointer to the source unit and the connection number of the

unit where the stream originates.

g) A pointer to destination unit and the connection number of the

unit where the stream enters. These two pointers are updated

in response to the following user commands:

Connect or disconnect commands,

Delete the source or destination unit.

h) Number of phases. This is in addition to Phase 0 which

represents the total stream.

i) Maximum number of components (max_nc).

j) For each phase the following:

1) A pointer to a parameter structure which contains the phase

parameters.

2) "maxnc" entries, where each entry represents the flow of a

component in the stream. The entry contains a pointer

which points to a data structure which contains the flow

parameters of that component in the phase. The pointer is

null if the corresponding component is not present in the

stream.

161

STREAM STRUCTURE

POINTER TO NEXT STREAM

[PARTITION # OFFSET

POINTER TO PPEVIOUS STRFA

1PARTITION # IOFFSET

TYPE

ITYPE

NAME

POINTER TO SOURCE UNIT

CONNECTION # PARTITION #I OFFSET

POINTER TO DESTINATION UNIT

CONNECTION #1PARTITION #1 OFFSET

NUMBER OF PHASES = n

MAXIMUM NUMBER OF COMPONENTS = MAXNC

POINTER TO PHASE PARAMETERS

PARTITION # OFFSET PHASE

POINTER TO FLOW PARAMETERS
OF PHASE 0

1PARTITION # OFFSET

MAX NC FLOW- PARA-
METERS OF A
COMPONENT
WITH THE

COMPONENT
INDEX OF 2

nIN PHASE 0

2 FLOW PARA-
METERS OF A
COMPONENT

MAX NC WITH THE

COMPONENT
INDEX OF 1
IN PHASE n

FIGURE 5.8 THE STREAM STRUCTURE

162

Figure 5.9a shows a stream data structure of type "STD" which was defined

in Figure 4.6. Figure 5.9B shows the same stream containing components NC4

and NC5.

5.2.5 Pre-Defined Function Data Structure

The pre-defined function data structure is shown in Figure 5.10. It

contains the folloiwng:

a) A pointer to the next pre-defined function.

b) A pointer to the previous pre-defined function.

c) Function type.

d) Index of the function type in the function template directory.

e) Function name.

f) Number of references. This is the number of times the

' existing user-defined functions have referred to this

function. It is to protect users from deleting a pre-defined

function which is already referred to by the existing user

defined functions. In other words, a pre-defined function

having a positive number of references cannot be deleted.

g) A pointer to a parmeter structure which contains the function

parameters. These parameters are initially unspecified.

The data structure for a pre-defined function defined in Figure 4.12 is

shown in Figure 5.11.

5.2.6 Data Structures for a User-Defined Function

The general form of the data structure representing a user-defined

function is shown in Figure 5.12. It contains the following:

a) A pointer to the next user-defined function.

b) A pointer to the previous user-defined function.

c) Function name.

163

40-

PHASE PARAMETERS

5

1 0

2 0

3 0

4 0

5 0

STD

FEED

o

0 ZER

4 MAX
CO

0

[o I
2

3 0

4
0

FIGURE 5.9a AN EXAMPLE OF A STREAM
STRUCTURE WITH NO COMPONENTS

0 PHASE

IMUM OF 4
MPONENTS

164

PHASE
PARAMETERS

0

0

STD

1

FEED

0j

00
4

01

I I

FLOW PARAMETERS
OF ONE COMPONENT

1 J 0

FLOW PARAMETERS OF
ANOTHER

1 COMPONENT

FIGURE 5.9b AN EXAMPLE OF A STREAM
STRUCTURE WITH SOME COMPONENTS

165

PPDFN

PRE-DEFINED FUNCTION

POINTER TO NEXT PRE-DEFINED
FUNCTION

PARTITION I OFFSET
POINTER TO PREVIOUS PRE-DEFINED

FUNCTION

PARTITION # OFFSET

TYPE

ITYPE

NAME

NUMBER OF REFERENCES

POINTER TO THE FUNCTION PARAMETERS

PARTITION # OFFSET

FIGURE 5.10 THE PREDEFINED FUNCTION STRUCTURE

FUNCTION
PARAMETERS

166

PRE-DEFINED FUNCTION XYZ

FIGURE 5.11 AN EXAMPLE OF A
PRE-DEFINED FUNCTION STRUCTURE

167

PUDFN

USER DEFINED FUNCTION

FIGURE 5.12 THE USER DEFINED FUNCTION

POINTER TO NEXT USER DEFINED
FUNCTION

POINTER TO PREVIOUS USER DEFINED
FUNCTION

NAME

NUMBER OF REFERENCES

NUMBER OF ARGUMENTS

POINTER TO THE PARSED MATRIX
OF THE FUNCTION EXPRESSION

PARSED MATRIX
OF THE FUNCTION
EXPRESSION

STRUCTURE

I NOW

168

d) Number of references. The number of times the function

is referred to by other existing user-defined functions. This

is to protect the users from deleting a function which is

referred to by other existing functions.

e) Number of arguments.

f) A pointer to a data structure which reprsents the arithmetic

expression used for defining the function. This data

structure is called a "Parsed Matrix". In this matrix,

operations of the expression are listed sequentially in the

order they would be executed to evaluate the expression. The

parsed matrix data structure is also used to represent any

arithmetic expression encountered in the user's commands as

will be discussed in Chapter 9. The full description of the

parsed matrix will be given in Chapter 9. Each matrix entry

has one operator and two operands. Operators are represented

by integer numbers. Each operand is represented by a set of

three items, one of them a pointer pointing to the data

structure representing the operand. For efficiency reasons,

these pointers are absolute pointers, opposed to the type of

pointers defined earlier in this chapter as a pair of

partition number and offset locator. Hence the user-defined

functions, unlike the other process elements (e.g., units,

streams, etc.), are not created inside the working area and

cannot be saved. They are only valid for the duration of the

active process. The variable "udfnhead" points to the

beginning of the user-defined function's list.

169

The data structure representing the function created by the following user

command: create function (y(X1, X2) = X1 + X2*4); is shown in Figure 5.13.

Suppose two other functions were earlier defined. For ease of reading the

operators and operands of the matrix are shown as character strings. ARG1

and ARG2 represent the first and second arguments, respectively. Mi

denotes the result of the ith matrix entry.

5.2.7 Variable Data Structure

The variable data structure is shown in Figure 5.14. It contains the

following:

a) A pointer to the next variable.

b) A pointer to the previous variable.

c) Variable's name.

d) Variable's value.

For example, in response to the following user command:

sp v (X=2*4,Z=12); the data structures shown in Figure 5.15

will be added to the beginning of the variable list.

5.2.8 Data Structure Containing the Property Estimation Methods in Use

This data structure is shown in Figure 5.16. It contains the

following:

a) number of properties.

b) An entry for each property containing the estimation method in

effect.

When a new process is created, the entries of this data structure are

initialized to the default options given in the template for property

estimation methods table. Entries are updated in response to the user's

"use" commands.

170

UDFN-
HEAD

USER-DEFINED
FUNCTION y

NULL

y

0

2

I |

I

PARSED MATRIX FOR
THE FUNCTION EXPRESSION

CREATE FUNCTION
(y(X1,X2)=Xl+X2*4);

FIGURE 5.13 AN EXAMPLE OF A USER DEFINED
FUNCTION STRUCTURE

NULL

3

* ARG2 4

+ ARGI M1

1 M2 0

171

VARIABLE

POINTER TO NEXT VARIABLE

PARTITION # OFFSET

POINTER TO PREVIOUS VARIABLE

PARTITION # OFFSET

NAME

VALUE

FIGURE 5.14 THE VARIABLE STRUCTURE

172

VARIABLE Z VARIABLE X

FIGURE 5.15 AN EXAMPLE OF A VARIABLE STRUCTURE

173

PESTMETH
PROPERTY ESTIMATION

METHODS IN USE

NUMBER OF PROPERTIES = n

METHOD IN USE

FIGURE 5.16 THE DATA STRUCTURE FOR PROPERTY ESTIMATION

METHODS IN USE

174

For example, given the template in Figure 4.14, the data structure

shown in Figure 5.17a will be created. Figure 5.17b shows the data

structure after the following command:

use FVAP=2 ALIQ=5;

Associated with each process there is such a data structure which is

saved or retrieved along with other data structures constructing the

process, when the process is saved or retrieved. The external pointer

"pestmeth" contains the location of the data structure, enabling the

physical property estimation routines to access the data structure for

retrieving the specified methods of properties estimation.

The estimation routine will avoid requirement for this pointer by

using the following service routine to retrieve the methods to be used:

call get-meth (property__number, method, errrorcode);

The description of service routines is given in Chapter 6 and

Appendix C.

5.3 Process Files

A user may have any number of process files, each containing any

number of processes. A process file has a directory and a number of

processes. The process file directory resides on a single segment called

"Xdr.GPES" where X is the process file's name. Every partition of each

process resides on a separate segment, named XYn.GPES, where X is the

process file's name, Y is the process name, and n is the partition number.

All segments of a process file reside under one directory. The data

structure of the directory for a process file is shown in Figure 5.18. It

contains the name, serial number, and compatibility level of the system

under which the directory has been created and the current number of

entries. Each entry is either empty or represents a process.

175

4

1

(A)

(B)

FIGURE 5.17 AN EXAMPLE OF THE DATA STRUCTURE FOR
PROPERTY ESTIMATION METHODS IN USE.

DIRECTORY OF A PROCESS FILE

SYSTEM

PARTITION # OFFSET

SECOND PROCESS

NTH PROCESS

FIGURE 3.18 THE DIRECTORY OF A PROCESS FILE

1 1

SERIAL COMPATIBILITY
NAME NUMBER LEVEL

NUMBER OF PROCESSES n

FIRST PROCESS

NAME

SYSTEM

SERIAL COMPATIBILITY
NAME NUMBER LEVEL

TBS

SERIAL COMPATIBILITY
NAME NUMBER LEVEL

PURITY FLAG

DATE AND TIME

NUMBER OF PARTITIONS

POINTER TO FIRST UNIT

PARTITION # OFFSET

POINTER TO THE COMPONENT DIRECTORY

PARTITION # OFFSET

POINTER TO FIRST PRE-DEFINED FUNCTION

PARTITION # OFFSET

POINTER TO FIRST STREAM

PARTITION # OFFSET

POINTER TO FIRST STREAM

PARTITION # OFFSET

POINTER TO FIRST VARIABLE

PARTITION # OFFSET

POINTER TO THE TABLE OF PROPERTY ESTIMATION
METHODS IN USE

177

Each entry contains the following:

a) Process name. For an empty entry this field is blank.

b) Name, serial number, and compatibility level of the system

under which the process has been first created.

c) Name, serial number, and compatibility level of the TBS under

which the process has been first created.

d) Purity flag. This flag is "off" if the process has ever been

accessed by any incompatible system or TBS. It is "on",

otherwise.

e) Date and time when the process was first created.

f) Number of partitions.

g) A pointer to the beginning of unit structure list.

h) A pointer to the component directory.

i) A pointer to the beginning of the pre-defined function

structure list.

j) Two pointers to the beginning of the stream structure list.

k) A pointer to the beginning of the variable structure list.

1) A pointer to the data structure of the property estimation

methods in use.

An example of a process file is shown in Figure 5.19.

5.4 Component Files

A user may have any number of component files, and each may contain

data for any number of components of many component types. The users may

share their component files. Users component files are called private

component files. The TBS administrator may create such component files and

make them available to all users. These files are called public component

files. A TBS may have any number of public component files which may be

178

TESTdr.GPES

GPES 1 1

3

DIRECTORY
1 FOR PROCESS A

2 EMPTY ENTRY

DIRECTORY FOR
3 PROCESS B *

DIRECTORY FOR
PROCESS FILE "TEST"

TESTA1.GPES

TESTA2.GPES

2ND PARTITION
OF PROCESS A

TESTBl.GPES

PARTITIONS OF
PROCESS FILE "TEST"

FIGURE 5.19 AN EXAMPLE OF A PROCESS FILE

1ST PARTITION
OF PROCESS A

179

available to all or some users of the TBS. The data structure representing

a component file is shown in Figure 5.20. It contains the following:

a) Name, serial number, and compatibility level of the system_

under which the file has been first created.

b) Name, serial number, and compatibility level of the TBS under

which the file has been first created.

c) Purity flag indicating whether the file has or has not been

accessed by any incompatible system or TBS.

d) Remark, which may describe the source of data or references,

etc.

e) Maximum number of component types that the file may contain.

f) The above number of entries. Each entry representing a

component type, and contains the following: Component type,

number of parameters for each component of that type, and a

pointer to the first component of that type. For empty

entries, component type is blank.

g) A space in which all component data structures reside.

The structure of a component in the file is shown in Figure 5.21. It

contains the following:

a) A pointer to the next component in the list.

b) A pointer to the previous component in the list.

c) Component's name.

d) Number of component parameters.

e) The value of each parameter.

For saving in storage and efficiency in processing the value type of

parameters are not stored. Therefore, the components having unspecified

parameters cannot be saved.

180

COMPONENT FILE

SYSTEM

SERIAL COMPATIBILITY
NAME NUMBER LEVEL

TBS

SERIAL COMPATIBILITY
NAME NUMBER LEVEL

PURITY FLAG

REMARK

MAXIMUM NUMBER OF COMPONENT TYPES = n

NUMBER OF POINTER TO THE
TYPE COMPONENT PARAMETERS FIRST COMPONENT

n

SPACE COMPONENT

FIGURE 5.20 THE COMPONENT FILE STRUCTURE

181

COMPONENT

NEXT

PREVIOUS

NAME

NUMBER OF
PARAMETERS = n

1 1ST PARAMETER

n nTH PARAMETER

FIGURE 5.21 THE STRUCTURE OF A COMPONENT IN THE COMPONENT FILE

182

All components of each type are linked together by next and previous

pointers. Components in the list are in alphabetical order. Each

component file resides on a single segment, hence having a limited capacity

of about 106 bytes. The segment name is Xc.GPES where X is the component

file's name. An example of a component file is shown in Figure 5.22.

183

FIGURE 5.22

AN EXAMPLE OF A
COMPONENT FILE

DATAc GPES

GPES

TBS-I

TEST FILE

3

ONE 3

STD 8

Y

8

xC
3

B

8

E

8

A

3

184

CHAPTER 6

TBS PROGRAMS

As discussed earlier a TBS consists of a set of definitions

(templates) and a package of subroutines (programs). TBS programs are the

heart of a TBS. TBS programs can be divided into two classes: Primary

programs and secondary programs. Primary programs are those programs that

are called directly by the GPES Executive. Secondary programs are those

programs that are called by primary programs as shown in Figure 6.1.

6.1 Primary Programs

Primary programs are called by the system either in response to the

user's calculate commands or in case of a pre-defined function for

evaluating the value of the function. Hence primary programs can be

further divided into two groups: calculating routines and pre-defined

function evaluating routines. The templates of a TBS contain the names and

other information regarding the primary programs.

6.1.1 Calculating Routines

Associated with each type of unit, stream, component, or function is

usually a calculating routine. Unit calculating routines which are

referred to in the literature as process modules, building blocks, etc. are

the essential part of a TBS. In general they represent the functional

relationship between inlet streams, unit parameters, and outlet streams.

Stream and component calculating routines are not commonly used. But in

general a stream calculating routine may calculate a number of phase or

flow parameters as a function of the thermodynamic state variables and

chemical composition of the phase or stream. Examples are calculating

185

GPES EXECUTIVE

TBS PRIMARY

PROGFRAMS

TBS SECONARY
PROGRAMS

FIGURE 6.1 THE INTERACTION EREJ THE
GPES EXECUTIVE AN TBS PROGRAMS,

186

enthalpy and viscosity. Similarly a component calculating routine may

calculate a number of component parameters as a function of other

parameters, and/or some experimental data.

A function calculating routine may perform any algebraic, trans-

cendental, or integral operation or carry out such operations as regression

analysis on input data and calculate the function parameters (e.g.

regression coefficients).

It should be noted that not every unit, stream, component, or function

type need to have a calculating routine. Using a ";" as the calculating

routine's name in the template indicates that no calculating routine is

specified with that template.

The GPES design has been based on the assumption that for simulating a

process flowsheet the user of a TBS will provide the order in which

individual process units be calculated in his calculate command. However,

provision has also been made for implementing template based systems that

could simulate the entire process flowsheet without requiring the user to

provide the calculation order. Such a TBS should have a calculating

routine to perform this task. Therefore, in general a TBS in addition to

individual calculating routines for each unit type, stream type, etc. may

also have a calculating routine for all units, a calculating routine for

all streams, a calculating routine for all components, and/or a calculating

routine for all functions. These calculating routines, if any, will be

called in response to the following users commands:

calculate unit all (optional argument list);

calculate stream all (optional argument list);

calculate component all (optional argument list);

calculate function all (optional argument list);

187

Therefore, calculating routines can be divided to the following two

groups: Individual calculating routines and "all" calculating routines as

shown in Figure 6.2.

Each group may also be subdivided to the following four subgroups:

unit, stream, component, and function. Table 6.1 shows the number of

programs in each group for a TBS.

6.1.2 Pre-defined function evaluating routines

For each pre-defined function in addition to a calculating routine

there may be another routine known as an evaluating routine. When a pre-

defined function appears in an arithmetic expression in the user's command,

such a routine is called by the GPES executive. Its function is to

evaluate the function given the function parameters (coefficients) and the

function arguments.

6.2 Secondary Routines

Secondary programs are those routines that are called by primary

routines. Physical property estimation routines fall into this class of

routines. System-supplied service routines that are called by other

routines to perform various tasks also fall into this class of routines.

Service routines are described later.

6.3 Interaction Between TBS Programs and the GPES Executive

In a Fortran environment, in most chemical process simulation systems,

the process module is written as a subroutine with the transfer of

variables taking place through the parameter list of a call statement or

through common blocks of data. In GPES environment, the process of

transferring variables is more elaborate. The TBS program receives the

pointers to the data structures which contain the values of the variables.

Thus, before beginning the calculations, the program must retrieve these

188

TBS PROGRAMS

___ I

SECONDARY
ROUTINES

SYSTEM-SUPPLIED OTHER
SERVICE ROUTINES ROUTINES

PRE-DEFINED FUNC-
TION EVALUATION
ROUTINES

CALCULATING
ROUTINES

INDIVIDUAL

UNIT STREAM COMPONENT FUNCTION

UNITS STREAMS COMPONENTS FUNCTIONS

FIGURE 6.2 CLASSIFICATION OF TBS PROGRAMS

PRIMARY
ROUTINES

AL L

189

TABLE 6.1 Number of Primary Programs in a TBS

Primary Programs

Calculate Individual

Unit:

Stream:

Component:

Function:

Calculate All

Units:

Streams:

Components:

Functions:

Evaluate

Number

one or none for each unit type

one or none for each stream type

one or none for each component type

one or none for each pre-defined function

type

one or none

one or none

one or none

one or none

for

for

for

for

the TBS

the TBS

the TBS

the TBS

Function: one or none

type

for each pre-defined function

190

values from the data structures. This is done by reaching the variable

location through a series of pointers. The same must be done at the end of

the calculations to store the results into the data structures network.

This process of reaching the variable location in the network of data

structures is called "navigation". The TBS program calls upon some system-

supplied service routines to perform this process of naviagtion. The

service routines will be described later. This method of variable transfer

enables GPES to call every TBS program by a few generalized call statements

with standardized parameter lists, using the powerful means of dynamic

linking.

GPES will, in effect, call each group of TBS programs by the call

statements shown in Table 6.2.

The interaction between the GPES Executive and a unit calculating

routine (process module) is shown in Figure 6.4. Unit computations, which

are the heart of a unit calculating routine, can either be performed by the

calculating procedure or by a call on an already developed FORTRAN or PL/1

program (a secondary program).

Although a TBS program usually has access to all relevant information

through the pointers passed to it, some TBS programs (especially "all"

calculating routines) may require additional information which might not be

accessible through those pointers. A number of external variables have

been provided which enables those special routines to access any

information about the process flowsheet. These external variables are

listed in Table 6.3.

191

Table 6.2

Call Statements used by GPES Executive to Invoke a TBS Primary Program.

Group of Programs

Calculate Individual

Unit:

Stream:

Component:

Function:

Calculate All

Units:

Streams:

Component:

Functions:

Evaluate a Function:

Where:

routine

punit

pstream

comp_index

pfunc

parg

Call Statement

call

call

call

call

call

call

call

call

call

routine

routine

routine

routine

routine

routine

routine

routine

rout ine

(punit,parg,switch,errorswitch);

(pstream,parg,switch,error switch);

(compindex,parg,switch,error-switch);

(pfunc,parg,switch,errorswitch);

(parg,errorswitch);

(parg,errorswitch),

(parg,errorswitch);

(parg,errorswitch);

(pparm,arg,result)

is the name of the appropriate routine.

is the pointer to the unit structure (input).

is the pointer to the stream structure (input).

is the index (fixed bin(17)) of the component in the

component directory (input).

is the pointer to the pre-defined function structure

(input).

is the pointer to the arguments structure (input).

The arguments structure as shown in Figure 6.3 contains the

arguments the user provides in the calculate command.

192

Table 6.2 Contined

The first argument is always interpreted as the level of

calculation. The interpretation of other arguments, if

any, should be clear both to the user and to the

calculating routine. If no argument is provided (parg

null) the level of calculation is assumed to be one.

pparm is the pointer to the function's parameters structure

(input).

switch (bit(1)) Indicates whether convergence has been achieved

(output). It is only used for convergence routines which

are described in section 6.4.4

error_switch

(bit(1)) Indicates whether any severe error has been

detected by the routine (output).

arg (dim(*) float bin (63)) is the array of function arguments

(input).

result (float bin (63)) is the.result of the function evaluation

(output).

193

ARGUMENTS STRUCTURE

NUMBER OF ARGUMENTS M

ARGUMENT

2

M

FIGURE 6,3 THE ARGUMBITS STRUCTURE

194

UNIT CA
ROUTINE
CULATING _I _
GETS INPUT VARIABLE
VALUES FROM THE PUTS OUTPUT
NETWORK OF DATA VARIABLE VALUES
STRUCTURES INTO THE
CHECK FOR CERTAIN DATA STRUCTURES
ERRORS AND CONDI-
TIONS.

UNIT
COMPUTATION

SERVICE ROUTINES I

FIGURE 6.4 INTERACTION BETWEEN GPES EXECUTIVE, A UNIT CALCULATING ROUTINE,
AND SERVICE ROUTINES

GPES EXECUTIVE CREATES
AND MANIPULATES THE
DATA STRUCTURES NETWORK

DATA
STRUCTURES

NETWORK

-- - - - - a

195

Table 6.3

External Variables For Use By TBS Programs

Variable

p_dOr

pcompdr

pestmeth

outputfile

Description

A pointer to the process directory data

structure (shown in Figure 5.1). Used by

"all" calculating routines.

A pointer to the component directory (shown

in Figure 5.6). Used by component

calculating routines and physical property

estimation routines. By using the service

routines there is no need for this

variable.

A pointer to the data structure of

"property estimation methods in use" (shown

in Figure 5.16), used by property

estimation routines. If the service routine

"getmeth" is used there is no need for

this variable.

A file variable indicating the output file.

It represents either the terminal or

another file. TBS programs should write

error messages on the terminal. Other

outputs (if any) are recommended to be

printed on the output file specified by

this variable.

196

Table 6.3 Continued

Variable Description

s It is an integer number (fixed bin (17))

indicating the significant number of digits

to be printed for numerical data. A TBS

program may or may not use this number for

its printout (if any).

d It is an integer number (fixed bin (17))

indicating the decimal number of digits to

be printed for a numerical data. A TBS

program generating some output may or may

not use this number.

197

6.4 Writing a TBS Program

In this section some general considerations on writing a TBS program

are discussed. Examples in writing TBS programs is given in Chapter 10.

6.4.1 Input

Usually all the input data required by a TBS program are stored in the

process network. To retrieve these data, the TBS program may call upon

some service routines which in effect navigate through the process network.

Nevertheless a TBS program may also interact directly with the user for:

a) getting additional data, or b) asking user's preference where there is

more than one alternative available to the routine. In this case the TBS

program should write a message on the user's terminal requesting such data

and then call upon some other service routines for receiving the data.

6.4.2 OUtout,

Usually the TBS program will store the computed data into the process

network by calling upon the appropriate service routines. Nevertheless,

the TBS program may also write the intermediate or final results onto the

user's terminal or user's output file. The user's output file is either

the user's terminal or another file. The external file variable

"output_file" indicates the user's output file. Therefore, a TBS program

writing on this file should:

a) provide the following declaration:

declare outputfile file variable external;

b) The "put" statements should specify the file as follows:

put file (output-file)...;

198

6.4.3 Error Detection

Before the GPES executive passes control to a calculating routine for

a specific level of calculation, it performs the various types of error

checking requested in the associated template for that level of

calculation. This means that a calculating routine should not be concerned

about over- and under-specification of parameter values. In other words,

input data are provided (i.e., specified, assumed, or calculated), output

data are not fixed (i.e. not specified), and initial value assumptions (if

any) are provided and not fixed (i.e. assumed, or calculated). In the case

of a unit calculating routine, the necessary inlet and outlet streams are

also connected to the unit. In addition to the above types of error

checking which are performed by the GPES executive, there are numerous

other types of error checking which a TBS program may perform. The extent

of error checking that a program may undertake depends on the generality of

the program and the assumption about the user's knowledge of the program

and his common sense. The following are some examples of types of error

checking that a TBS program may perform:

a) unacceptable input data (e.g. negative numbers for flow rates,

mole fractions outside the range of 0 to 1, sum of mole fractions

more than one).

b) an internal algorithm fails to function (e.g. for a trial-and-

error calculation, convergence can not be achieved).

c) violating general laws of thermodynamics.

d) in the case of a unit calculating routine, if the unit is such

that only certain components are allowable in an inlet or outlet

stream, or if the components of one stream are required to be

identical as those in another stream, the routine should also

199

check for these conditions. Both of these checking procedures can

be accomplished easily using service routines.

Once a TBS program detects a serious error it should perform the

following:

a) write on the user's terminal a description of the detected error.

b) turn "on" the error switch: errorswitch = "1" b;

c) either return immediately to the calling program or continue

further error detection. In the latter case the program should

immediately return to the calling program after the error

detection task is completed.

The error detection task should be accomplished prior to writing the

computed results into the process network. Therefore, it is recommended

that. the transfering of the computed results into the process network be

performed as the last task of the routine.

6.4.4 Convergence Routines

Most chemical processes involve recycle streams. Therefore, such

flowsheets contain information recycle loops, that is, cycles for which too

few stream variables are known to permit equations for each unit to be

solved independently. The equations for units in an information recycle

loop must be solved simultaneously. One solution technique is to "tear"

one stream in the recycle loop [11,22,51,1481 that is, to guess variables

of that stream. Based upon tear stream guesses, information is passed from

unit-to-unit until new values of the variables of the tear stream are

computed. These new values are used to repeat the calculations until

convergence tolerances are satisfied. A TBS capable of analyzing

flowsheets with recycle streams should have one or more types of pseudo

units for testing and promoting convergence. This type of pseudo unit is

200

known as a convergence unit or convergence block. To define a unit of type

convergence, as in the definition of any other unit type, the TBS

administrator should create a template in the template data base and should

provide a calculating routine for it. Such a unit usually has one inlet

stream (containing the newly computed variables of the tear stream), one

outlet stream (containing the guess values of the tear stream) and a number

of parameters (convergence tolerances, etc.). Of course, such a unit is

not limited to one inlet and one outlet stream, but may have any number of

either. The calculating routine for such a unit is known as a convergence

routine. Such a routine should compare newly computed variables with guess

values, and compute new guess values when convergence tolerances are not

satisfied. In particular, it should perform the following:

a) Based on some pre-established criteria it should perform a

convergence test.

b) If convergence has been achieved turn "on" the "switch" argument.

This is the only required use of the "switch" argument which is one

of the arguments passed to each calculating routine.

c) If convergence has not been achieved it should estimate the

parameters of the output streams.

The information regarding the criteria for convergence could be either

part of a unit's parameters (this is usually the case), or part of the

parameters of a stream to be tested, or it could be provided by some

information streams input to the unit. The convergence acceleration

methods most commonly used in existing simulators are the following:

a) successive substitution,

b) bounded Wegstein,

c) dominant eigenvalue, and

d) quasi-Newton.

201

6.4.5 Writing an "all" Calculating Routine

Although writing an individual calculating routine is a very simple

and systematic task, writing an "all" calculating routine may not be quite

so simple. An "all" calculating routine should determine the order of

calculation and then monitor the execution of subsequent individual

calculating routines. This is a rather straightforward task when writing

an "all" calculating routine for streams, components, or functions, where

there is no interaction between individual elements. However, a unit "all"

calculating routine is more sophisticated, and such a routine should

perform the following:

a) Recognize the recycle streams.

b) Determine the loops and the order of calculation in each loop.

c) Either estimate the parameters of recycle streams or prompt the

user for this information.

d) Monitor the execution of individual calculating routines, and test

for convergence.

The use of the "calculate unit all;" command and consequently the

development of unit "all" calculating routines is not recommended for the

following reasons:

a) These routines require reasonable skill to develop.

b) The same objective; i.e., calculation of the entire process can be

achieved by having the user specify the order of calculation in the

calculate command.

c) The user may know something about the process that the unit "all"

calculating routine may not know. Hence, letting the user decide

on the order of calculation may result in faster convergence.

202

6.5 Service Routines

Service routines are developed to assist TBS programmers in conducting

various tasks, of which the most important is navigation of the network of

data structures. Although a TBS programmer using these service routines

in his program may not be concerned about the details of the data

structures representing process units, streams, or components, an

understanding of the existence of such data structures and their

interrelation will assure him of the proper usage of the service routines.

Although there are about 100 service routines, usually only a few of these

will be needed in writing a TBS program. Service routines perform various

tasks, and can be divided into the following six groups:

1) Routines performing basic operations: Given a pointer to a data

structure these routines return pointers to related data

structures.

2) Routines checking for the existence of some components in a given

stream.

3) Routines retrieving or storing the values of parameters from or

into the process network. 78 out of 101 existing service routines

fall in this group. Although using only two of them (getparm, and

putparm) in conjunction with the basic service routines would be

sufficient for accomplishing the above task, the other 76 routines

have been provided for greater user (TBS programmer) flexibility

and convenience. These routines can be divided into several

subgroups as shown in Figure 6.5. They are used either for

retrieving the values of parameters from the data structures (i.e.,

getparm) or for storing the values of parameters into the data

structures (i.e., putparm). The reference to parameters may be

203

GET/PUT

GETE

ROUTINES
FOR

REFERENCE RETRIEVING ONE/ALL
OR

STORING
THE

VALUES. OF
PARAMETERS

DIRECT INDIRECT ONE PARAMETER

ATTRIBUTE (PRECISION)

SINGLE DOUBLE
[FLOAT BIN(27)] [FLOAT BIN(63)] [FI

FIGURE 6.5 CLASSIFICATION OF SERVICE ROUTINES
RETRIEVING OR STORING THE VALUES OF PARAMETERS

204

made by a pointer to the parameter structure (direct), or through a

pointer to a parent structure (indirect). For example, given

"pparm", the pointer to a unit parameter structure, the call

statement:

call getparm(pparm,2,value,valuetype, code);

will retrieve the value and valuetype of the second unit

parameter. The same result can be achieved by the call statement:

call get,_uparm (punit,2,value,value_type, code); where punit is the

pointer to the unit data structure. Service routines getparm and

get..._uparm are examples of direct and indirect service routines

respectively. The service routines may retrieve or store either a

single parameter (i.e. the above example) or all the parameters in

a set. Routines getparms and get.uparms are examples of the~

latter. Although the values of all parameters in all data

structures are stored as double precision (FORTRAN terminology), in

a TBS program the values of parameters may be supplied with other

attributes. Service routines which provide different attributes to

numerical data fall into one of three groups: those routines

considering the values of parameters as double precision (i.e.,

getparm), those considering the values of parameters as single

precision (i.e., xgetparm), and those considering the values of

parameters as integer numbers (i.e., iget.parm).

A list of service routines retrieving or storing the values of

parameters is shown in Table 6.4.

4) Routines retrieving other variables of interest. Two routines fall

in this group: one returns the values of user-supplied arguments,

and another returns the method currently being used to estimate a

physical property.

suupdg-andT suuudg-:Indxl smaLdj7:ind mOTJsmavdj7i9ST suiaLdj-:la2x suupdj7iaS

suuLduj-jndT smapdug - indx suupduj7jnd
smapduj-:l;a2T smaLdug-qa2x smavduj--i9S uoTjDunj

suuLdj7:lndT suu-ed;5-:andx smaud:5-qnd quauodmoz)
sm-iudz)7qaST smaL-d 5-qa2x suijvdz --492

suuvds7-and-E sma-pds-qndx suuvd -:ind Mva aq ssuuvds qa2T smavds-qa2x smavd -qa2

uuvdu -- qnd-r mavduj7jndx uupdug-:tnd uoTqoung
mapdug-qaSE mavduj7-ja2x mapdug7 jaS

maudo7and-E ma-pdo-:jndx maudo7ind quauodmoo
mavdo7492-E mavdo-:i92x mjvdo7:iaS

mavds--:tnd-E ma-eds-:tndx mavds7and
mipds-q92T mavds-q@2x maeds7:192 ML9:E:ls

uuL-cf-:tnd-r maL-cf-:indx mavcf-:md aq:jqmtjvcj

UUvd-:192T UULcf-:192X mavd-492 ;DT2u'.rS
v

SUalaWMd dO SaflqVA alll ONIUOIS XO ONIAMM SaNIM011 MAUS *9 aqqVl

squauodmoo

TT'e JO
aaq9mvapd MOTJ V

s:)-pmavdg qnd-E sDmapdg-qndx
sz)-euuvdj-j;q2X

sz)vmavdj-:jnd
sz)vmaLdj :la2

:I;as
xa-aam-ea-ecl

v

smav& -- andT
smapdr --aaST

smavdr -indx
suu-Pdfi--iaSx

smaLdn7:lnd
smapdr -qa2 ITun

ULILdg-qndT
uLipdj -49ST

ujjpdg-:tndx
mavdj7:i;a2x

maLdj7and
maLdj7:la2

19:3am-eaucl

9T2u-ES
v

:qoualpjay

lDaJTPUI

mavdr -ind-r
mavdr -:ia2T

uupdr -:indx
mavdr --aa2x

m-i-edn-Ind
uuvdn-:ia2 'ITun

smi-ecl-qnd-c
sma-ecf-:19ST

smaucf-:indx
smavcT--qa2?x

smaLcf-:and
sma-ecr-las

:19S
aq:jqmvavcj

v
gouglap-a

:lz)aaT(I

UDTSTDaad
;aTqno(I

a;aqmnN
JasequI

UOTST39ad
aT2u7[S

206

5) Routines directly interacting with the user. These routines are

called to receive input data not provided in the process network,

directly from the user.

6) Routines performing arithmetic operations on two parameter sets.

These routines are helpful in writing process module calculations

for separation processes and material balancing in general.

Table 6.5 contains a short description of each service routine. More

detailed descriptions are given in Appendix C. A TBS administrator may

provide TBS programmers with additional service routines especially

developed for their particular needs and applications.

207

Table 6.5 A Shgrt Description of Each Service Routine

Group Descriotion

1) Basic Operations

spointer

unitptr

strmptr

get.comp.index

compptr

funcqptr

flow ptr

2) Comparison Routines

samecomps

checkcomps

Given a partition number and an offset it

returns a pointer.

Given the unit pointer, it returns the

pointer either to the unit parameters or

to the stream connected to the unit.

Given the stream pointer, it returns the

pointer to the parameters structure of a

given phase.

It returns the component index (entry

number in the component directory) of a

given component.

Given the component index it returns the

pointer to the component parameters.

Given the function pointer, it returns the

pointer to the function parameters.

It returns the pointer to the flow

parameters of a given component in a given

phase of a stream.

Determines if the components in one stream

are those that are in another stream.

Determines if the components present in a

stream are those whose names are specified.

208

Table 6.5 Continued

Group Description

3) Retrieving or Storing the Values of Parameters

getparm,put_parm,

xgetparm,xputparm,

igetparm,iputparm

getparms, putparms,

xgetparms,xputparms,

igetparms,iputparms

get-uparm, putuparm,

xgetuparm,xputuparm,

igetuparm,iput-uparm,

get-uparms , put-uparms,

xgetuparms,xputuparms,

iget-uparms,iput-uparms

get,_sparm,putsparm,

xgetsparm,xputsparm,

igetsparm,iputsparm

Given the pointer to the parameters

structure each routine returns/stores the

value of a given parameter.

Given the pointer to a parameters structure

each routine returns/stores the values of

all parameters.

Each routine returns/stores the value of a

given parameter of a unit.

Each routine returns/stores the values of

all parameters of a given unit.

Each routine returns/stores the value of a

phase parameter of a phase of a given

stream.

209

Table 6.5 Continued

Service Routine

getsparms , putsparms,

xgetsparms,xputsparms,

igetsparms , iput._sparms

get_.cparm, put.c parm,

xgetcparm ,xput_.o parm,

iget~cparm, iputopparm

get~cparms,put~cparms,

xgetcparms,xput.cparms,

iget.cparms,iput.oparms

getfnparm,putfnparm,

xget~fnparm,xputjfnparm,

igetfnparm,iput_fnparm

getfnparms, putfnparms,

xget._fnparms , xputjfnparms,

igetfnparms,iput_fnparms

get,_fparm, put_fparm,

xget_fparm,xputfparm,

igetfparm,iput_fparm

Description

Each routine returns/stores the values of

all phase parameters of a given phase of a

stream.

Each routine returns/stores the value of a

parameter of a given component.

Each routine returns/stores the values of

all parameters of a given component.

Each routine returns/stores the value of a

parameter of a given function.

Each routine returns/stores the values of

all parameters of a given function.

Each routine returns/stores the value of a

given flow parameter of a component in a

phase of a stream.

210

Table 6.5 Continued

Service Routine

getfparms,putfparms,

xgetfparms,xput_fparms,

igetfparms, iput_fparms Each routine returns/stores the values of

all flow parameters of a component in a

phase of a stream.

get_fparmacs,put_fparmacs,

xgetjfparmacs ,xputfparmacs,

iget_fparmacs,iput_fparmacs

4) Retrieving Other Variables

getarg

get_meth

Each routine returns/stores the values of a

given flow parameter of all components, in

a phase of a stream.

of Interest

It returns the value of a user-supplied

argument.

It returns the method currently being used

to estimate a physical property.

5) Interacting with the User

getrn

getin

getline

getresponse

To receive a real number from the user.

To receive an integer number from the user.

To receive a line of characters from the

user.

To receive a yes or no answer from the

user.

211

Table 6.5 Continued

Service Routine

6) Arithmetic Operations on Two

parmsoperator1

parmsoperator lv

parmsoperator2

parmspperator2v

fparmacs-operator1

fparmacsoperator lv

fparmacspperator2

fparmacsopperator2v

Description

Parameter Sets

This routine multiplies each parameter in a

set of parameters by a given constant and

adds to it another given constant. The

results are stored in a data structure of

comparable size corresponding to another

parameter set: p1. = P2. A + B for all i.
1 1

P1. = P2 A + B. for all i.

P1. P1. + P2. A + B for all i.1 1 1

P1. =P1. + P2. A. +- B. for all i.
1 1 1 1 1

It assigns a value to a given flow

parameter for each component in a given

phase of a stream equal to the product of a

constant and another given flow parameter

of the same component in a phase of another

stream and added to another constant:

F1 = F2. A + B for all components. Where

F1. and F2 are flow parameters of

component i, but F1. may be in a different

phase and stream than F2 .

F1. F2. A. + B. for all i.
1 1 1 1

F1= F1. + F2. A + B for all i.

F1l= F1. + F2. A. + B. for all i.

212

Chapter 7

PROCESS ENGINEERING LANGUAGE - BASIC PRINCIPLES

7.1 Basic Conceots of PEL

PEL (Process Engineering Language) is a problem oriented-language by

which the user instructs and communicates with any template based system

(TBS) created using GPES.

The basic elements of the language are commands (statements). Each

command is a request for an action to be taken by the system. The system

accepts a command, interprets it, and accomplishes what the user intended

by that command. Then the system is ready to accept another command. The

system ignores and prints error messages for illegal commands. Each

command begins with a keyword called a command verb and may be followed by

another keyword called the command object and is followed by the command

body (if any) and will be terminated by a semicolon. The command verb

indicates the function of the command and the command object indicates the

object upon which the action should be taken. Table 7.1 shows the command

verbs, and the corresponding command objects. This table is the output of

PEL command: Help commands;. There is no reserved word in PEL.

Consequently there is no need for the user to remember a long list of

reserved names which he must learn to avoid, even if he does not know what

they mean.

7.1.1 Command ObJects

A process may be viewed as a collection of equipment units, and

streams containing masses of individual chemical species, momenta, and

energy which flow through the process. To model and design a process it is

necessary to represent these elements of the process. Some of these

TABLE 7.1 PEL COMMANDS

**COMMANI :help commandsi

Fel commands

command obJects
command verbs I unit coamonent function stream flow variable process

abrevia- I units coamponents functions streams variables Processes
-- -- ----1-------------C-----------fo----------s-----------f-----------V-----------at--

assuae a I x x x x X
bugs
calculate calc I x x x x
clear cie I
close cl I X x
connect cnct I x
continue ct I
coes x H

create crt I . xX x 04
delete del Ix x x x x
deletef delf I x
disconrect disc I x
end
escape esc
help h
include inc I H
leave lv
let I x x x x x
leta I x x H x H
list 1 I x x x
listf if I x
listt it I x x H x
load Id x x
loop I I
news
open xx
Print x H x X x x x
printf p f x
Frintt pt
Profile Prof I
read rd 1 x x H X x
reada rda I h x x x X x
repeat r I
save sv I xX
specifu sP I x x X X x
stop
terminate term I x x
unspecifu uns I x x x H x H
use

note* for user defined function onlu "create'r *delete" rand "list* commands apPlu.

214

elements are basic, such as units, streams, components, and some are

auxilairy such as variables and functions to enhance the users calculating

ability. Commands are used to create and manipulate these elements.

Command objects represent these elements and are as follows:

Junit

A process unit may be thought of as an entity with the following

attributes:

NAME: Which identifies the process unit.

TYPE: Which determines the function of the process unit (e.g.

MHD generator, heat exchanger, etc.)

Those streams that are entering the process unit.

Those streams that are leaving the process unit.

Operating variables and other characteristics of the

unit.

stream

In general a

attributes:

NAME:

TYPE:

SOURCE:

DESTINATION:

stream may be thought of as an entity with the following

Which identifies the stream.

The type of the stream (e.g., liquid vapor stream,

information stream, etc.)

The unit from which the stream originates (a stream need

not originate from a unit. It may also enter from the

environment external to the process).

The unit to which the stream is entering (a stream need

not enter into a unit. It may also enter to the

environment external to the process).

INLET STREAMS:

OUTLET STREAMS:

PARAMETERS:

,

215

ONE OR MORE PHASES:

Each phase may be characterized by the following attributes:

FLOW: Flow information of the components present in the

phase.

The command object "flow" is used to represent such

information.

PHASE (STREAM) PARAMETERS:

Thermodynamic state variables and those

physical/chemical/transport properties used to define

the stream.

Usually phase 0 represents the total stream.

comDonent

A chemical component may be considered as an entity with the following

attributes:

NAME: The name of the component.

TYPE: Type of the component (indicates number of parameters,

etc.)

PARAMETERS: Physical properties of the component.

flow

One or more components may flow in a stream. Information regarding

the flow may be characterized by the following attributes:

COMPONENT - NAMES: The name of each component present in a stream

For each phase of the stream:

FLOW PARAMETERS: There are some parameters of a phase which are

specific to a component in a phase. We refer to

these component related parameters as "Flow

Parameters" (e.g., Flow Rate, Mole Fraction,

216

Diffusion Coefficients, etc). For each component

present in the stream, these parameters represent the

flow of the component in the phase.

function

There are three types of functions available to the user. They are:

pre-defined functions

user-defined functions

built-in functions

A function can be referenced in an expression as follows: function-

identifier (expression, ...) to represent a value which is the result of

the function evaluation. A short description of each type of functions

follows. A detailed discussion of functions is given in Appendix D

Pre-Defined Functions

These are the functions defined and established in a template based

system by its system administrator by providing the appropriate templates

and required subprograms.

A pre-defined function may be considered as an entity with the

following attributes:

NAME: The name of the function.

TYPE: The type of the function (indicates number of

parameters, number of arguments, routine used to

evaluate it, etc.).

PARAMETERS: Coefficients of the function.

User-Defined Functions

These are the functions that the user may provide at will to improve

his problem-solving capability.

Such a function may be considered as an entity with the following

attributes:

217

NAME: The name of the function.

ARGUMENTS: The list of dummy arguments.

EXPRESSION: The arithmetic expression representing the function.

Built-In Functions

These are functions built into the system and available to the user.

variable

A variable is an entity which represents a value. The variables may

be classified to the following groups:

1) Simple or user-supplied variables (e.g., X,Y,Z).

2) Qualified variables. A qualified variable is a variable referring

to a parameter of a user-created unit, stream, component, flow, or

a pre-defined function. A unit qualified variable refers to a

parameter of a unit, for example u.A.N. refers to parameter "N" of

unit "A". A component qualified variable refers to a parameter of

a component, for example c.CO.MW refers to parameter "MW" of

component "C0". A function qualified variable refers to a

parameter (coefficient) of a pre-defined function, for example

fn.H.AO refers to parameter "A0" of function "H". A stream

qualified variable refers to a parameter of a specific phase of a

stream, for example, s.FEED.pO.T refers to parameter "T" of phase

zero of stream "FEED". A flow qualified variable refers to a flow

parameter of a component in a specific phase of a stream, for

example f.FEED.pO.CO.X refers to flow parameter "X" of component

"CO" in phase zero of stream "FEED".

3) Built-In variables (Built-in constants). A built-in variable when

appearing in an arithmetic expression will represent a pre-set

value and it will be replaced by its value when used. In this

218

sense, it is more appropriate to call it a built-in constant. The

built-in constants currently implemented are listed in Table 7.2.

Such a variable is only interpreted as a built-in constant if

there is no other user-supplied variable with the same name.

process

A process represents the collection of above elements which have been

created by a user. When a user enters the system a working area will be

established to contain the created process elements. The content of this

working area is called the active or current process or the process in the

working area. The user may save this process and later retrieve it for

further investigation and analysis.

7.1.2 Process Files

A process file is a file which may contain any number of processes.

The user may create any number of process files. The user may save his

active process (process in the working area) in a process file or retrieve

a process from the file and store it in the working area. Users may share

their process files.

7.1.3 Component Files

A component file is a file which contains the physical properties of

components, or constants required by property estimation routines to

calculate physical properties. The components in the file may be of one or

more types. A user may create any number of component files, and users may

share their private component files. The TBS administrator may also create

such files and provide the users with access to them. Such files that are

accessible to all users are called public component files.

7.1.4 Property Estimation Methods

A TBS may offer more than one method for estimation of each physical

219

Table 7.2

Built-In Constants

Value Representing

2.718281828 Base of Natural Logarithm

9.6487OX104 Faraday Constant in coul/mole

6.02252X10 23 Avagadro's number in

number/mole

3.141592657

1.98719

Pi

Gas constant in Kcal/ K-Kgmole

%pi

%r

220

property. The user may choose the method to be used for one or more of

these properties. Default options will be used for those properties which

have not been specified by the user.

7.1.5 Units of Measurement

A TBS may allow the user to provide his data in one or more units of

measurement. The unit of measurement must be enclosed in a pair of

apostrophes and should immediately succeed the item of data to which it

refers. If no unit of measurement is provided for an item of data the

proper standard unit of measurement for that item of data will be assumed.

7.1.6 Profile Parameters

These parameters either control the format of output, or they specify

the input and output files to be used by the system. The TBS provides the

default values for these parameters. The user may change these parameters

at any time.

Profile parameters are as follows:

sdigit - Significant number of digits to be printed for numerical data.

ddigit - Decimal number of digits to be printed for numerical data.

dflag - Debugging flag indicates whether additional information regarding

command processing is to be printed.

output - Indicates the output file.

input - Indicates the input file.

7.1.7 Aritmetic Expressions

Arithmetic expressions may be used freely in a PEL command whenever a

numerical data is expected. An arithmetic expression is a representation

of a value. A number, a simple variable, or a qualified variable is an

expression. Combinations of numbers, simple variables, qualified variables

and/or functions, along with operators (e.g. + etc) are also

221

expressions. A full description of arithmetic expressions in PEL is given

in Appendix D.

7.1.8 Command Elements

There are very few restrictions in the format of PEL commands.

Consequently instructions can be written without consideration of special

coding forms. As long as each command is started on a new line and

terminated by a semicolon (;), the format is completely free. A command is

constructed from symbols. A symbol is the string of one or more characters

(up to 16 characters). There are three types of symbols: Literals,

Terminal Symbols (operators), and Identifiers.

Examples of Literals are 123, 123.475, and 12.3e+1. Examples of

Terminal Symbols are +, -, *, >, & , and = . Identifiers can be divided

into three groups: Language Keywords, Established Identifiers,

User-supplied Identifiers. A Language Keyword is an identifier that, when

used in proper context, has a specific meaning to the system. Established

Identifiers are the keywords of the TBS. These identifiers have been set

in the TBS by its responsible system adminstrator. User-supplied

identifiers are the identifiers provided by the user to identify the

objects he creates. Note that there is no reserved word in PEL. Language

Keywords and Established Identifiers will be interpreted as such only when

used in proper context.

For example the following command:

create unit (create,heatx) type = heatx; will create two units of type

"heatx". One unit is named "create" and another one is named "heatx".

Notice that only the first appearance of "create" is interpreted as a

Language Keyword. Similarly the second appearance of "heatx" is interpreted

as an Established Identifier.

A detailed description of command elements is given in Appendix D.

222

7.2 Classification of Commands

Each command is a request for an action to be taken by the system.

Commands enable a user to create process elements, specify parameters and

variables, calculate parts of or whole flowsheet, print results, etc. When

a user enters the system a working area will be established to contain the

created process elements. The content of the working area is called the

active process or the current process. The user can save this active

process in a process file and later retrieve it for further investigation.

In this section commands are classified according to their function. A

command may appear in more than one group. Each command is followed by a

short description. A more detailed description and command syntax is given

in Appendix D.

7.2.1 Configuration Commands

These commands may be used to specify the process configuration:

create To create units, components, functions (pre-defined and user-

defined), streams, or to specify what components are flowing in a

stream (flow).

delete To delete (remove) units, components, functions (pre-defined and

user-defined), streams, or to deny the flow of some components in

a stream (flow).

connect To connect a unit to streams.

disconnect To disconnect a unit from streams.

let,leta To duplicate or copy a unit, component, function (pre-defined

function), or stream.

load To copy the components from public files or user's private files

into the user's working area, or to copy an entire process from

a user's process files into his working area.

223

7.2.2 Value Assignment Commands

These commands may be used to assign values to parameters, variables,

etc.

specify To specify the value of unit parameters, component parameters,

function parameters (pre-defined functions), streams parameters

(phase or flow parameters), or variables.

unspecify To unspecify the value of parameters or variables.

assume Identical to the "specify" command with the exception that the

value assigned is assumed rather than specified.

let,leta To duplicate or copy unit, component, function (pre-defined

function), or stream.

calculate To calculate units, components, functions (pre-defined functions)

or streams. The GPES executive will call upon the associated

subprograms from the attached template based system to perform

the calculations.

read,reada To accept data from the terminal and to assign it to variables,

and parameters.

repeat It is the first command of a sequence of commands, and specifies

repetitive execution of the commands within the sequence. It

also assigns a value to its control variable.

copy To copy the component parameters from public component files to

a user's private component files.

include To accept data from the terminal and assign it to parameters of

specified components in the user's private component files.

use To instruct the system to use specified methods of physical

property estimations.

profile To allow the user to provide his/her desired profile parameters.

224

7.2.3 Output Commands

These commands are used to display information:

print To print information about units, components, functions

(pre-defined), streams, flow, variables, or the entire process in

the working area.

list To list names of units, components, functions (pre-defined and

user defined), streams, or variables existing in the working

area.

printf To print parameters of specified components from the component

public files or component private files.

listf To list the names of components on component public files or

component private files.

printt To print information about the template of a unit type, stream

type, component type, function type, (pre-defined type), or other

information regarding the template data base.

listt To list the types of units, streams, components, functions,

(pre-defined) available in the template data base.

use To print the physical property estimation methods which are in

effect.

profile To print the profile parameters in effect.

help To instruct the system to provide a description of a specific

command or object, or to list the PEL commands.

news To obtain current information about GPES and the TBS.

bugs To print the reported errors regarding GPES and the TBS.

7.2.4 Input Commands

These commands may be used to input data.

read,reada To accept data from the terminal and to assign it to variables

and parameters.

225

include To read component data from a terminal and store the information

in a component private file.

7.2.5 Clearing and Switching Commands

These commands may be usd to clear the working area and/or to switch

to another template based system or to the Multics level.

clear To clear the working area.

load It may be used to clear the working area and to load another

process from a private process file into the working area.

escape Allows the user to execute any number of Multics commands.

leave To leave the current attached template based system and attach

another one.

end To terminate the program.

7.2.6 Commands for Component Files

A user may have any number of component files which may be shared by

other users. Each TBS may have any number of public component files

accessible to the users of that TBS. The commands listed in this group are

used for data management and accessing these files.

open To introduce the desired private or public file to be used in

subsequent commands or to create a new private file. Only one

private file and one public file can be opened at any one time.

close To undo the effect of the open command.

terminate To terminate (destroy) the specified private files.

save To copy the components from the working area into the opened

private file.

load To copy the components from the opened private or public files

into the working area.

deletef To delete the specified components from the opened private file.

226

listf To list the components of a specified type existing on the opened

public or private file.

printf To print the parameters of specified components on the opened

public or private file.

copy To copy components from the opened public file into the opened

private file.

include To include components whose parameters are provided by the user

from the terminal into the opened private file.

7.2.7 Commands for Process Files

A user may have any number of process files which may be shared by

other users. A process file may contain any number of processes. Commands

listed in this group are used for data management and accessing of these

files.

open To introduce the desired process file to be used in subsequent

commands, or to create a new process file.

close To undo the effect of open command.

terminate To terminate (destroy) the specified process files.

save To copy the process from the working area into the opened process

file.

load To copy the specified process from the opened process file into

the working area.

deletef To delete specified processes from the opened process file.

listf To list the processes existing in the opened process file.

7.2.8 Continue Command

It is a null command which does not perform any action.

7.2.9 Iterative Commands

These commands may be used to perform repetitive execution of a

sequence of commands.

227

repeat Heads a sequence of commands and specifies repetitive execution

of the commands within the sequence.

loop Designates the end of the sequence of commands headed by a repeat

command.

stop Aborts repetitive execution of a group of commands headed by a

repeat command.

The following commands are not allowed to appear inside a repeat-loop

group:

delete

let

leta

unspecify

The following commands will clear the working area and will terminate

the execution of the repeat-loop commands:

clear

end

leave

load process

The following commands when appearing inside a repeat-loop sequence

will be executed only once, independent of the condition of the repeat-

loop:

bugs listf

close listt

connect load component

continue news

copy open

228

create printf

deletef printt

disconnect profile

.escape save

help terminal

include use

list

Only the following commands when appearing inside a repeat-loop

sequence will be executed repeatedly depending on the condition of the

loop:

assume

calculate

loop

print

read

reada

repeat

specify

7.3 Using a TBS

To use a TBS, the user should register with the TBS Administrator.

When entering the GPES executive the user is prompted for the name of the

TBS. When using PEL commands the user may exit from one TBS and enter

another one, or print any information regarding the entered TBS.

7.4 Using the System

In using the system the following steps are taken:

Step 1: Entering the system:

a. When the user is in the Multics ready state he should type in one

of the following:

229

pel

pel brief

pel bf

The function of the argument brief or bf is to inhibit the

printout of messages about the system and the attached TBS.

b. If the brief argument is not provided, some information about the

system will be printed.

c. If the GPES system administrator has locked the system, a system

message will be printed and the execution of the program will be

terminated.

Step 2: Attaching a TBS:

a. The user will be prompted to provide the name of the TBS he wishes

to use. To be able to use a TBS he should have been authorized by

that TBS system Administrator.

b. If the user is not an authorized user of the specified TBS or has

specified an unknown TBS, a system message will be printed and he

will be given the option of trying another TBS or leaving the

system.

c. If the brief argument was not provided in Step 1, some information

about the TBS will be printed.

d. If the TBS system administrator has locked the TBS, a message will

be printed and the user will be given the option of trying another

TBS or leaving the system.

e. If the TBS is inconsistent, a message will be printed and the user

will be given the choice of continuing to use the TBS or not using

it. If he chooses the latter he will be given the choice of

trying another TBS or leaving the system.

230

f. If any component file is opened it will be closed.

g. Profile parameters will be initialized to the default parameters

of the TBS.

Step 3: Creating a New Process:

a. A new process will be created.

b. All property estimation options will be initialized to default

parameters of the attached TBS.

c. The user will be prompted to provide the maximum number of

components.

Step 4: Command Level:

The user is now at command level. He may issue any of 39 PEL

commands. The system executes that command and then it is ready

to accept another command. The user will remain at the command

level except for the following commands:

leave: Clears the working area and transfers control to step 2.

escape: Transfers control to the Multics command level, where the

user may execute any number of Multics commands. To

return to PEL command level, the user should enter a

blank line (press the return key on the terminal).

clear: Clears the working area and transfers control to step 3.

end: Terminates the session.

7.5 PEL Messages

PEL messages are those messages that a user may receive when using the

GPES executive. Appendix D lists these messages and gives an example of

each occurrence of these messages. In this section, a general description

of PEL messages is given. PEL messages can be grouped into the following

five classes:

231

1) Information Messages

2) Requesting Messages

3) Warning Messages

4) Error Messages

5) System Messages

Warning messages and system messages each are divided into two types:

informatory and severe. Error messages are divided into three types:

informatory, severe, and calculate. Table 7.3 presents the format of PEL

messages.

7.5.1 Information Messages

These messages are not the result of a wrong action on the part of the

user. They only provide information about the system or the status of the

operation. They are in the following form:

*information message.

7.5.2 Reauesting Messages

These messages prompt the user to provide input or to answer a

question. They are in the following form:

**requesting message:

The user should then enter the requested data or his response to the

question.

7.5.3 Warning Messages

These messages call attention to a possible area of negligence on the

part of the user. They do not imply syntactical or other types of errors

in the command. Usually the execution of the command will continue after

detection of the condition evoking these warnings. Warning messages are of

two types: informatory and severe.

232

Table 7.3

Format of PEL Messages

*Information Message.

**Requesting Message:

WARNING i nn i

WARNING s nn s

ERROR i nn i

ERR0R s nn s

ERROR c nn c

"*SYSTEM*** i nn i

SYSTEM s nn s

Where:

nformatory warning message.

evere warning message.

nformatory error message.

evere error message.

alculate error message.

nformatory system message.

evere system message.

i indicates that the message is of informatory type,

s indicates that the message is of severe type,

c indicates that the message is of calculate type,

nn is the appropriate message number.

233

7.5.3.1 Informatory Warning Messages

These messages may be produced during the execution of a command. The

execution of the command will continue after the issuance of such warnings.

They usually do not require responsive actions. The presence of these

messages indicates that the command is not fully executed. The execution

of the parts skipped is not permitted, because it violates some

restrictions or the desired actions have already been accomplished.

7.5.3.2 Severe Warning Messages

These messages may be provided during the evaluation of an expression.

The conditions which cause these messages cannot usually be detected before

execution of the command. For this reason, a message will be printed and

the result of the expression will be assumed to be zero, and execution of

the command will be continued. Although the system does not require

responsive action, the user may want to undertake some corrective actions

once the execution of the command(s) has been completed. Table 7.4

presents the conditions in an expression producing severe warning messages.

7.5.4 Error Messages

These messages are the result of syntactical errors or other types of

errors made by the user. Error messages are of three types: Informatory,

Severe, and Calculate.

7.5.4.1 Informatory Error Messages

These are errors detected in the user's input. The system prints the

message and asks the user to reenter his input. Because these errors could

be corrected by the user the execution of the command will be continued.

They are the least severe type of errors. Table 7.5 indicates the

conditions under which these error messages may be produced.

234

Table 7.4

conditions in an expression producing severe warning messages

severe
warning
message
number

1

2

3

4

5

6

7

8

9

10

11

condition

IxI>1 in acos(x) or asin(x)

IxIl1 in atanh(x)

x<.O in log(x), log2(x), or logl(x)

x=0 in mod(y,x)

x<O in sqrt(x)

x=O & y=0 in atan(x,y) or atand(x,y)

zerodivide

overflow

underflow

x<0 in 0.00 **x

one or more parameters of 'a pre-defined function

appearing in the expression are unspecified.

236

Table 7.5

States Where Informatory Error Messages may be Produced

Informatory
Error
Message
Number May Occur in:

1 inputing a line of characters or a command line

2-15 inputing a command line.

16-17 inputing an integer number

18 inputing a (real) number

19 inputing yes or no

20-22 inputing in response to a read, or reada command

236

7.5.4.2 Severe Error Messages

Severe errors are the result of syntactical errors or other kinds of

errors that cannot be corrected. Upon the first detection of such an

error, the error-checking procedure will be discontinued and the execution

of the command will be ignored.

7.5.4.3 Calculate Error Messages

These errors are detected during the execution of a calculate command.

The system responds differently to this type of error. Errors of this type

are only detectable during the execution of the command while errors of

type "severe" are detected before the execution of the command. Once an

error of type "calculate" has been detected in a command the execution of

that command will be halted. If the command resides in a closed loop the

execution of all commands in the loop(s) will be stopped. If the command

is the last command typed by the user (e.g., not in a loop or in an open

loop) only the execution of that command will be stopped and preceding

commands if any will be unaffected.

7.5.5 System-Messages

System messages are issued in response to conditions which are not

necessarily attributable to the user's actions. They may be the result of

negligence on the part of the GPES Administrator, TBS Administrator, or the

user. These messages may be produced upon entering the system or attaching

a TBS or executing a command. They indicate conditions such as

incompatibility, improper access, presence or absence of some segments

(files). The user may be responsible in the following cases:

a) Attaching a TBS which is either:

Unknown, inconsistent, or inaccessible to the user.

b) Opening a process file, or opening a component file, or loading a

237

process which may not be compatible with the current version of the

system or the attached TBS.

c) Not having the required access for using a component or a process

file, or providing invalid path names for that purpose.

d) Intervening in the system file management by deleting or modifying

segments the system has created for him, or creating such segments

outside of the system. The names of these segements are always

suffixed by ".GPES".

e) Attempt to use a proprietary or an unknown routine.

System messages are of two types: informatory and severe.

7s5;5.l Informatory System Messages

inese messages may be produced upon entering the system, attaching a

TBS, or executing a command. The operation of the system or

execution of the command usually will continue after the issuance

of such messages. They usually do not require responsive actions.

When produced as a result of the execution of a command. They

indicate that the command is not fully executed. The execution of

the parts skipped is not, permitted because it violates some

restrictions or provides invalid information or refers to unknown

segments.

7.5.5.2 Severe System Messages

These messages may be produced upon entering the system, attaching a

TBS, or executing a command. If detected during entrance to the

system, admission will be denied. If detected during attachment of

a TBS, attachment of that TBS will be stopped. If detected during

the execution of a command, that command will be ignored.

238

CHAPTER 8

GPES ADMINISTRATION AND PROTECTION

GPES may contain any number of TBS's, each having any number of users.

To assist the GPES administrator in administrating and protecting the

system and each TBS from unauthorized users, a mechanism has been provided

as a part of GPES, to protect files and insure security. GPES has three

files for this purpose: Text file, TBS table, and users table. The text

file also serves other purposes as will be described next.

8.1 The GPES Text File

The GPES text file is created and updated by any available editor. It

contains the following information:

a) The GPES Administrator's name.

b) Any reference about the GPES.

c) Any message to the users.

The above information (a,b,c) will be printed when the user enters the

system.

d)The system lock which indicates whether the system can or cannot be

accessed by the users.

e) Any news about the GPES. This information along with similar

information about the attached TBS will be printed in response to the

user's "news" command.

f) Any errors found or reported about GPES. This information along with

similar information about the attached TBS will be printed in response to

the user' s "bugs" command.

g) Information describing the PEL commands which will be printed in

response to the user's "help" commands. It contains the following:

239

1) Syntax notation conventions.

2) A description of each of the seven objects: unit, component,

function, stream, flow, variable, and process.

3) A description of each PEL command followed by all its subgroups.

The format of the file is shown in Figure 8.1. Each item of

information should start and terminate by a %. The heading for each item

should be exactly as shown in Figure 8.1. Notation ---text--- indicates

that any number of characters or lines can be provided. Although the

sequence of providing the items of information is not important, the

sequence shown in Figure 8.1 is recommended. The format of "lock item"

should be one of the following:

%lock open%

%lock close%

If this item is not provided or it is as the first format, the system

can be accessed. The second format indicates that the system cannot be

accessed.

8.2 The TBS Table

This table contains information regarding every TBS, as shown in

Figure 8.2. Each entry of the table may be empty or contain information

regarding a TBS. Each entry contains the following information:

a) The date on which the TBS was added to the table.

b) The TBS's name.

c) The pathname of the directory containing the template data base.

This information enables the GPES executive to locate the template

data base once the user provides the TBS' name.

d) The TBS administrator's name, address and telephone number.

240

Figure 8.1

Format of The GPES Text File

%*GPES message ----Text----%

%*GPES reference ----Text----%

*GPES system administrator----Text----%

%lock open% or %lock close%

%GPES news----Text----%

%GPES bugs----Text----%

%syntax notation conventions----Text----%

%unit----Text----%

%component----Text----%

%function----Text----%

%stream----Text----%

%flow----Text----%

%variable----Text----%

%process----Text----%

%assume----Text----%

%assume unit----Text----%

%assume component---- Text----%

%assume function----Text----%

%assume stream----Text----%

%assume flow---Text---%

%assume variable---Text---%

%bugs---Text---%

%calculate---Text---%

%use---Text---%

241

TBS TABLE

SYSTEM'S NAME (i.e., GPES)

NUMBER OF ENTRIES = n

DATE

TBS NAME

THE PATHNAME OF THE DIRECTORY
CONTAINING THE TEMPLATE DATA BASE

TBS ADMINISTRATOR'S NAME

TBS ADMINISTRATOR'S ADDRESS

TBS ADMINISTRATOR'S TELEPHONE NUMBER

CURRENT USAGE

TOTAL USAGE

PENDING FLAG

INUSE FLAG

n

FIGURE 8.2 THE TBS TABLE

242

e) The TBS current and total usage. A mechanism for recording this

information has been proposed, but has not been implemented. It

will be described in Chapter 11.

g) The pending flag which indicates whether the TBS is not currently

operational, or could be used.

h) The inuse flag which indicates whether the entry is empty or not.

It is also a safety flag which is "on" when the entry contains

complete information about a TBS.

An interactive program called "updatetbstbl" has been developed to

create and update this file. The GPES Administrator communicates with this

program by a simple set of commands. The command syntax is as follows:

command (tbs-name]

For instance, if the GPES Administrator wants to insert a TBS called "XYZ"

the command for it would be: insert XYZ, or in the abbreviated form: i

XYZ. Having received the insert command, the program prompts the user for

all the required information. The complete list of commands is given in

Table 8.1. Using an "e" as the tbsname indicates that the command must be

executed for each TBS in the Table. Before the program accepts any command

it would create a new table if one does not already exist.

The function of each command is as follows:

insert: To insert a new TBS into the table. The program prompts the GPES

Administrator for all the required information. If the TBS

Administrator is new (if he is not the administrator of an a

existing TBS), the program will also provide the TBS

243

Table 8.1

Commands Used by the GPES Administrator to Update the TBS Table

Command

insert or i

delete or d

print or p

pend or pd

restore or r

end

tbs name

tbsname

tbs name or *

tbsname or *

tbsname or *

tbsname or *

244

Administrator access to programs he may need in performing his

duties (i.e., update-tdb program and other utility programs).

delete: To remove a TBS from the table. If the TBS Administrator is not

the Administrator of any other existing TBS, the program also

denies the access rights given earlier.

print: To print information regarding a TBS.

pend: To change the status of a TBS to pending, so that the TBS cannot

be accessed by its users.

restore: To undo the effect of the pend command.

end: To terminate the program.

The GPES administrator will add an entry to the table upon receiving

the TBS registration form shown in Figure 8.3.

8.3 The Users Table

This table contains information regarding every user of each TBS. As

shown in Figure 8.4, the table consists of a number of data structures

chained together. Each of these data structures represents a user of a

TBS. A user amy have access to one or more TBS. Therefore associated with

each user there are a number of such data structures, each corresponding to

a TBS for which the user has authorization for using the TBS. Each data

structure contains the following:

a) A pointer to the next data structure in the list.

b) A pointer to the previous data structure in the list.

c) Date on which entry was made.

d) User's name.

e) TBS name.

f) User's address, and telephone number.

g) User's current and total usage of the TBS. A mechanism for

245

FIGURE 8.3

TBS REGISTRATION FORM

TO: GPES ADMINISTRATOR FROM:

DATE

TBS NAME

REQUEST FOR: ADDING DELETING PENDING RESTORING

CHECK ONE: D D
ADDING

I I I I I I I I I I I I I I I _ I I I I | |
TBS ADMINISTRATOR'S PERSONID

I I I I 1 1 1 1 1 1 I I I I I I I I I I I I I 1|
TBS ADMINISTRATOR'S ADDRESS

I I

I A D I I I I I I l 111

PATHNAME OF THE DIRECTORY CONTAINING THE TEMPLATE DATA BASE

I I

I I I I I I I I I I I I I I 1 1 I I I I I I I I

L I I I I I I l I I I I I | | | I I I I I I

I I I I 1 l I I I I I I I I I 1 I I I | | I I I

I I

I I

I I
A BRIEF DEOSCRIPTION OF THE TBS:

APPROVED BY:

,

I

246

USERS TABLE

SYSTEM'S NAME (i.e., GPES)

POINTER TO FIRST USER IN THE TABLE

POINTER TO NEXT USER

POINTER TO PREVIOUS USER

DATE

USER'S NAME

TBS NAME

USER'S ADDRESS

USER'S TELEPHONE NUM1BER

CURRENT USAGE

TOTAL USAGE

PENDING FLAG

THE USERS TABLEFIGURE 8.4

247

recording this information is proposed, but has not been

implemented. It will be discussed in Chapter 11.

h) Pending flag which indicates the status of the user regarding the

usage of the TBS. When it is "on" the user can not use the TBS.

The data structures in the list are alphabetically ordered by users'

names. The data structures for the same user are ordered by TBS's names.

An interactive program called "update_userstbl" has been developed to

create and update this table. In fact, both updatetbstbl,

update_userstbl are entries of a single program, called the Administrative

Program. This program has also two other entries, used by the GPES

executive to obtain information about a TBS or to verify whether the user

is authorized to use the requested TBS.

The GPES Administrator communicates with the update-userstbl program

with a simple set of commands. The command syntax is as follows:

command (user name] [tbs name]

For example, if the GPES Administrator wants to authorize user "Smith" to

use the TBS "XYZ" he would give the command:

insert Smith XYZ

Having received the insert command, the program prompts the user for all

the required information. The complete list of commands is given in Table

8.2. Using an "*" as the tbsname or the username indicates that the

command must be executed for all TBS's or all users. Before the program

accepts any command it creates a new "users table" if one does not already

exist.

The function of each command is as follows:

insert: To make an entry in the table (to authorize a user for a TBS).

The program prompts the GPES Administrator for all the required

248

Table 8.2

Commands used by the GPES Administrator to Update the Users Table

Command User name TBS name

1) insert or i username tbsname

2) delete or d user-name or * tbs name or *

3) print or p username or * tbsname or *

4) pend or pd username or * tbsname or *

5) restore or r username or * tbsname or *

6) end

249

information. The program also gives the new user necessary

access to the GPES executive.

delete: To delete an entry in the table (to delete a user from the list

of authorized users of a TBS). If the user is not using any

other TBS, the program would also deny the access rights given

earlier, when the user was first inserted to the table.

print: To print information about a user of a TBS.

pend: To prevent the user from using the TBS, temporarily.

restore: To undo the effect of the above command.

end: To terminate the execution of the program.

The GPES Administrator will add an entry to the table upon receiving the

user registration form shown in Figure 8.5.

8.4 Various Copies of GPES Files

Two copies of each GPES file are required and a third one is

recommended. The two required copies are:

1) The original or primary copy accessible to the GPES Administrator only.

Table 8.3 lists the names of segments containing the primary copy of

GPES files.

2) The system copy accessible to the GPES Executive program. The segment

names for this copy are the same as in Table 8.3, except that they are

suffixed by ".syscopy". The system copy can be used while the primary

copy is being updated. The users have access to this copy only.

A backup copy is also recommended, to enable recovery from

unintentional erasures and other accidents. The segment names for the

backup copy are the same as shown in Table 8.3, except that they are

suffixed by ".backup". The flow of information between the different

copies of the GPES files, the GPES Executive, and other utility programs is

250

FIGURE 8.5
GPES USER REGISTRATION FORM

TO: GPES ADMINISTRATOR FROM: TBS ADMINISTRATOR

DATE

TBS NAME

REQUEST FOR: ADDING DELETING PENDING RESTORING

CHECK ONE: D DD
ADD

I |
USER'S PERSONID

[I I I I I I I I I I I I I I I I I l I I I I I
USER'S ADDRESS

I I I I I I I I I I I I I I I I I I I I

USER'S TELEPHONE NUMBER

DELETE, PEND, OR RESTORE

I I
USER'S PERSONID

OR CHECK THIS BOX IF THE REQUEST IS FOR ALL USERS D
APPROVED BY:

251

Segment Name

stext

tbstbl

userstbl

Table 8.3

GPES Files (primary copy)

Contents Created and Updated by

text file any available editor

tbs table update_tbstbl program

users table updateusers-tbl program

252

shown in Figure 8.6. The utility program "copyseg" copies one segment

into another, while preserving the access control list of the target

segment. Access control list of a segment contains the name of authorized

users of the segment. Utility programs are described in Chapter 4.

8.5 GPES Organization

There are four levels of activity associated with GPES. The hierarchy

is represented in Figure 8.7. Each level is the responsibility of a

different set of personnel:

1) The GPES Administrator who is responsible for:

a) Maintenance of the GPES.

b) Permitting a TBS Administrator to use the system.

c) Permitting the users introduced by a TBS Administrator to use the

system.

2) TBS Administrators are responsible for:

a) Implementation and maintenance of template based systems.

b) Coordination of TBS programmers.

c) Permitting a user to use a TBS.

3) TBS Programmers are responsible for development of TBS programs.

4) Users who are the ultimate users of the system, the designers of

chemical processes.

For each of these groups some tools have been developed to assist them

in performing their duties. The tools are a set of programs and languages

to be used to communicate with those programs.

Table 8.4 lists the various programs that an individual in each group

requires to perform his duties.

253
USER

SYSTEM COPY BACKUP COPY

THE

GPES

EXECUTIVE

COPYSEG

PRIMARY
COPY

THE GPES ADMINISTRATOR

FIGURE 8.6 INFORMATION FLOW REGARDING GPES FILES

254

USER

FIGUPE 8.7 THE HIERARCHICAL STRUCTURE OF
GPES USAGE

USER

255

TABLE 8.4 GPES PROGRAMS USED BY EACH GROUP

Group Program Function
Language Used to
Communicate
with the Program

1) GPES
Administrator update tbs tbl To create and update A set of commands

the TBS table
update userstbl To create and update A set of commands

the users table
any editor To create and update Editor commands

the GPES text file
copy_seg To copy a segment

into another one

2) TBS
Administrators updatetdb To create and update Template Definition

the template data Language (TDL)
base

any editor To create and update Editor commands
the TBS text file

copy_tdb To copy the template
data base

delete tdb To delete a copy of a
template data base

gaccesstdb To give users access
to TDB

taccess tdb To deny users access
to TDB

gaccess sub (to be developed by
TBS administrators)
To give users ac-
cess to TBS pro
grams

taccess sub (to be developed by
TBS administrators)
To deny users ac-
cess to TBS pro-
grams

3) TBS
Programmers service routines To perform various

tasks for a TBS
program

compilers,etc. To develop TBS Procedural languages such
programs as Fortran, PL/1, etc.

4) USERS GPES executive To solve users
problems

Process Engineering
Language (PEL)

256

CHAPTER 9

THE GPES EXECUTIVE

The Executive is an interactive program which executes PEL commands.

It is the backbone of the system. In essence the executive is a table-

driven interpreter, the tables being the template data bases and GPES

files.

The program processes one user command at a time. Before the program

can process user commands, the working environment, within which the

commands must operate, must be prepared. Therefore, the program's task

consists of a) environment preparation and b) command processing.

The former consists of the following three phases:

1) System initialization phase. As shown in Figure 9.1, the user is

admitted to the system and a working area is established for him.

The token table which will be described later is also allocated.

2) TBS initialization or TBS attachment phase. In this phase the

user's desired TBS is initiated and attached to the system as shown

in Figure 9.2.

3) Process initialization phase. As shown in Figure 9.3, the Proces

Directory is initialized and the data structures for "Property

Estimation Methods in Use" and "Component Directory" are created.

The command processing loop consists of the four following phases:

1) Lexical analysis. In this phase a command (a string of characters)

is read and decomposed into recognizable symbols called tokens.

The tokens are placed into the token table.

2) Command recognition phase. In this phase the command is recognized

by its first two tokens.

257

FIND USER'S IDENTIFICA-

TION (NAME, PROJECT)

ESTABLISH THE WORKING AREA:
LLOCATE THE PROCESS DIRECTOR
ALLOCATE FIRST PARTITION.

FIGURE 9.1 THE FLOW CHART FOR
SYSTEM INITIALIZATION

PHASE

258

YES

INITIATE CTLINFO
AND TEXT FILES OF

THE TBS

DATA BASE
CONSISTENT

YES

INITIATE OTHER FILES
(SEGMENTS) OF THE

TEMPLATE DATA BASE

CLOSE OPENED
COMPONENT FILES

(IF ANY)

YES

FIGURE 9.2 THE FLOW CHART
FOR TBS ATTACHMENT

PHASE

259

PROCESS
INIT IAL-
IZATION

FIGURE 9.3 THE FLOW CHART FOR PROCESS INITIALIZATION PHASE

INITIALIZE
THE PROCESS
DIRECTORY

ALLOCATE AND INITIALIZE
THE DATA STRUCTURE FOR

"PROPERTY ESTIMATION
METHODS IN USE"

PROMPT THE USER

FOR THE MAXIMUM
NUMBER OF COMPONENTS

ALLOCATE AND
INITIALIZE THE

COMPONENT DIRECTORY

COMMAND
PROCESSING

LOOP

260

3) Syntax analysis and interpretation phase. Once a command is

recognized it will be checked for its syntax and simultaneously its

meaning will be interpreted.- For some commands an intermediate

form representing the semantics of the command will be constructed.

4) Execution phase. In this phase the command is executed. The

execution phase being the last step in the command processing loop,

ensures that the command is only executed when it is syntactically

and semantically correct.

The program processes the user's commands one at a time. Therefore,

control remains in the command processing loop except for the following

commands:

a) end command which terminates the program.

b) clear command which clears the working area and

transfers control to the process initialization

phase.

c) leave command which transfers control to the TBS

attachment phase where a new TBS is attached.

d) escape command which transfers control to the

Multics command level where the user may execute any

number of Multics commands. To return to PEL

command processing loop the user should enter a

blank line.

9.1 The GPES Executive Structure

The executive consists of a main program called "pel" and a

number of other external programs. The structures of the "pel" program and

of each of these external programs are modular. This is expected to

facilitate the maintenance of the system, which otherwise would have been

261

difficult considering its size. The "pel" program consists of a main

section, over 60 internal routines, and a "begin block" for each command.

The "begin block" is a PL/1 terminology which refers to a group of PL/1

statements. A begin block is similar to an internal routine with the

exception of the way control is passed to it. Control is passed to a begin

block by a goto statement or through normal sequential execution. The

layout of the "pel" program is shown in Figure 9.4. The main section of

the "pel" program monitors the execution of other routines and begin

blocks. It calls upon the external program "lexical" to perform the first

phase of the command processing task. Then it performs the command

recognition phase. Once the command is recognized it passes control to the

associated begin block of the command. The begin block of a command

performs the syntax checking and interpretation of the command. These

begin blocks in turn will call upon various internal routines to perform

various functions. For some commands an intermediate form representing the

semantics of the command will be constructed to be passed to the execution

phase. The execution of a command is either performed in the same begin

block or an internal or external procedure is invoked to perform the task.

In addition to "pel" program, the GPES executive consists of the

following external programs:

1) The "tbsvalidation" and "tbsaccess" programs. These two

programs are called by the "pel" program in TBS

attachment phase to get information about a TBS.

In fact, both tbsvalidation and tbs access are

entries of a single program which also has two

other entries (updatetbstbl, updateusers_tbl)

by which the GPES administrator updates the TBS

262

GLOBAL DECLARATIONS

VARIOUS

INTERNAL

ROUTINES

SYSTEM INITIALIZATION PHASE

TBS- ATTACHMENT PHASE

MAIN PROCESS INITIALIZATION PHASE

SECTION READ: CALL LEXICAL(O); LEXICAL ANALYSIS PHASE

COMMAND RECOGNITION PHASE

GO TO APPROPRIATE BEGIN BLOCK

BEGIN GO TO READ;

BLOCKS

(ONE GO TO READ;

FOR

EACH

COMMAND)

BEGIN BLOCK FOR PRINTING ERROR MESSAGES

GO TO READ;

FIGURE 9.4 THE LAYOUT OF THE "pel" PROGRAM

263

Table and Users Table, as described in Chapter 8.

By refering to the TBS table the tbs_validation

program verifies if a given TBS is in existence or

operational and returns the address of the

associated template data base. The tbs__access

program verifies the access rights of the user

regarding the specified TBS by referring to the

Users Table.

2) The "lexical" program. The main purpose of this

program is the lexical analysis as will be

described later.

3) The "cdbsys" program. This program is called for

the execution of commands related to component

files. Its main function is the manipulation and

data management of component files.

4) The "pdbsys" program. This program is called for

the execution of commands related to process

files. Its main function is the manipulation and

data management of process files.

5) The "printtemp" program. This program which is

also used by "update_tdb" program prints

information about the templates. It is called in

the execution phase of "printt" and "listt"

commands.

6) The service routines getline, get-response, getin,

and getrn. These routines which are part of the

package of service routines developed for TBS

264

programmers are also used by "pel" and other

programs. The functions of these programs are as

follows:

getline

getresponse

getin

getrn

To receive a line of characters f

the user.

To receive a yes or no answer fro

the user.

To receive an integer number from

the-user.

To receive a real number from the

user.

rom

m

9.2 Lexical Analysis Phase

The action of parsing the command (a string of characters) into the

proper syntactic classes is known as Lexical Analysis. The operational

details for this step involve conceptually simple string processing

techniques. The input command (a string of characters) is scanned

sequentially. The basic elements or tokens are delimited by blanks and

operators, and thereby recognized as identifiers, special identifiers,

literals, or terminal symbols. The basic elements (tokens) are placed into

a table called a token table. The token table is shown in Figure 9.5. It

contains one command at a time. The table grows or shrinks automatically

to accommodate any size command. Each entry of the table contains a token.

The "symbol" contains the character representation of the token and "type"

indicates the syntactic class of the token. Each PEL command terminates

with a ";". Hence, the last entry of the token table is always a ";". The

types of each class of tokens are listed in Table 9.1. The comments are

discarded in the Lexical Phase, since they have no effect on the execution

of the command.

265

TOKEN TABLE

NUMBER OF TOKENS = n

SYMBOL TYPE

1

FIGURE 9.5 THE TOKEN TABLE

Token Class Types

I) Terminal Symbols

(1)

II) Numbers

III) Identifiers

266

Table 9.1

267

Table 9.1 continued

IV) Composite Identifiers (2)

First element of a unit qualified variable 27

First element of a component qualified variable 28

First element of a function qualified variable 29

First element of a stream qualified variable 30

First element of a flow qualified variable 31

Other elements of a qualified variable 25

Notes:

1. The dimension field (indicating the units of measurement) is always

enclosed in a pair of apostrophes. Therefore, it consists of three tokens:

two apostrophes and the dimension field itself. For simplicity only the

latter is placed in the token table with a type of 4.

2. The separating points of a composite identifier are not placed in the

token table.

268

The external program "lexical" is called to perform the lexical

analysis. The program prompts the user for a line of a command and then

performs lexical analysis on that line. The program detects lexical errors

(e.g. improper identifier, invalid composite identifiers, etc.) and prompts

the user to reenter the line in error. Then the program asks for a new

line and repeats the above process until the command terminator ";" is

received. Note that there is no limit on the size of a PEL command. A PEL

command may consists of any number of lines and each line may be up to 262

characters. The program also prints the contents of the token table if the

profile parameter dflag (debugging flag) is equal to three, as demonstrated

in Figure 9.6. The lexical porgram has also two other modes of operation:

1) In this mode of operation the program reads a line of characters (a

Multics command) and passes it to the Multics command processor to be

executed. This process is repeated until the input command is a blank line

when the program returns control to the caller (pel program). The lexical

is called with this mode of operation in response to the user's escape

command.

2) This mode of operation is like the original mode of operation with one

exception. The exception is that the program returns to the caller after

processing only one line of input. The program is called with this mode of

operation in execution phase of read and reada commands.

9.3 Command Recognition Phase

In this phase the first or the first and second toksns of the command

are examined to recognize the command. Each command begins with a keyword

called a command verb and may be followed by another keyword called the

command object. In this phase a verb-code and object-code are associated

with the command and for further analysis control is passed to the

FIGURE 9.6 AN EXAMPLE TO DEMONSTRATE THE FUNCTION OF LEXICAL ANALYSIS PHASE

**COMMAND : S---A REQUEST OF PRINTOUT OF THE TOKEN TABLE AMONG OTHER INFORMATION---s

**continue:profile dflam=3;

**COMMAND : $---THE FOLLOWING COMMAND CONTAINS ALL TYPES OF TOKENS---$

continue:specifw variables(s.feed.p0.t-u.a.%s1+fn.h.a2'f' , x-h(a-c.co.tc*4))

**continue:if(w<1/4 Z f.feed.s0.co.x<=w I d>.4 I W>=12.3e-4 & w"=15)'

1 specifw 25
2 variables 25
3 (16
4 s 30
5 feed 25
6 P0 25
7 t 25
a = 10
9 u 27

10 a 25
11 %zp 25
12 + 12
13 fn 29
14 h 25
15 a 25
16 ** 19
17 2 24
1s f 4
19 r 3
20 x 25
21 = 10
22 h 25
23(16
24a 25
25 3
26- 11
27 c 28
28 co 25
29 tc 25
30 * 13
31 4 24
32) 5
33) 5
34 if 25
35 (16
36 w 25
37 < 15
38 1 24
39 / 6
40 4 24
41 1 7
42 f 31
43 feed 25
44 pO 25
45 co 25
46 x 25
47 <- 21
48 w 25
49 & 7
50 d 25
51 > 14
52 .4 24
53 : 8
54 w 25
55 >- 20
56 12.3e-4 24
57 1 7
58 w 25
59= 18
60 15 24
61) 5
62 1

ERROR s 30 "feed" is an unknown stream
*command ignored.
**COMMAND '

270

associated begin block of the command. The verb-codes and object-codes are

integer numbers representing command verbs, and command objects

respectively. Table 9.2 lists the object codes. The data structure

"command object flag" indicates the acceptable objects for each command.

The data structure has an entry for each command which consists of seven

bits, one for each object. Each bit is "on" or "off" depending on whether

the corresponding object is acceptable for the command or not, as shown in

Table 9.3. The flowchart for command recognition phase is shown in

Figure 9.7.

9.4 Synatx Analysis and InterDretation Phase

The token table is scanned to check the syntax and interpret the

meaning of the command. The global variable "start" is used to point to

the current token under consideration. For each command there is a begin

block performing syntax checking and interpretation. Of course, these

blocks call upon various internal routines to perform various functions.

For some commands intermediate forms representing the semantics of the

commands will be constructed to be passed to the execution phase. This is

required for commands that appear inside a repeat-loop group and must

therefore be executed repetitively. The PEL commands can be classified

into three groups according to their appearance in a repeat-loop group:

1) Those that are not permitted in a repeat-loop. The commands in this

group are as follows: let,leta,delete, and unspecify. Note that let and

leta commands may impliciy unspecify a parameter.

2) Those that if appearing inside a repeat-loop only will be executed

once, independent of the condition of the repeat-loop. Some of these

commands even terminate one or all of the repeat-loops (e.g.

stop,clear,leave, and load process).

271

ObJect

unit

component

function

stream

flow

variable

process

Table 9.2 Command ObJect Codes

Object Code

1

2

3

Table 9.3 Command Verb Codes and Object Flags

Verb-code (unit) (component) (function) (stream) (flow)

OBJECT FLAGS
(1) (2) (3) (4) (5)

repeat

loop

assume

specify

calculate

print

leta

let

delete

unspecify

disconnect

create

connect

list

printt

open

save

load

deletef

listf

(variable) (process)

(6) (7)

0 0

terminate

close

printf

copy

include

use

end

stop

clear

profile

news

help

listt

bugs

leave

continue

(1)

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

1

FIGURE 9.3
(2)

1

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

1

1

CONTINUED

(3)

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

1

escape

reada

read

(4)

0

0

0

0

0

0

0

(5)

0

0

0

0

0

0

0

(6)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

(7)

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

274

FIGURE 9.7 THE FLOWCHART FOR COMMAND RECOGNITION PHASE

' SECOND %%

TOKEN A VALID
COMMAND OBJECT
% ?

HERE IS AN
Oo TIVE REPEAT COMMANI
S THIS COMMAND PERMITTED

IN THE
LOOP

275

3) Those that when appearing inside a repeat-loop will be executed

repeatedly depending on the condition of the repeat-loop and their "if-

clauses". The following commands fall in this group: repeat, loop,

assume, specify, read, reada, calculate, and print.

The syntax of most of the commands falling in the first two groups is

rather simple. Consequently the tasks of syntax analysis and

interpretation of these commands are straightforward. Once these commands

are analyzed and executed they are no longer needed. On the other hand the

syntax of commands falling in the third group is usually more sophisticated

and also they have to be executed repeatedly if appearing inside a repeat-

loop command. Therefore, the discussion in this section will be limited to

these commands.

An intermediate form for each of these commands will be constructed. The

intermediate form affords two advantages:

1) Simplifying the task of the execution phase by providing all the

relevant information for execution.

2) Representing the command in a repeat-loop.

Arithmetic expressions may appear in these commands and other

commands. Therefore, before describing the intermediate forms of these

commands the intermediate form of arithmetic expressions is described.

9.4.1 The Intermediate Form of Arithmetic Exoressions

The intermediate form of an arithmetic expression is placed in the

data structure "parsed matrix" shown in Figure 9.8.

In this matrix operations of the expression are listed sequentialy in the

order that they would be executed to evaluate the expression.

The parsed matrix data structure is also used to represent the mathematical

expression of the user defined functions as discussed in Chapter 5.

276

DP PARSE

1

2

FIGURE 9.8 THE PARSED MATRIX STRUCTURE

NUMBER OF ENTRIES = n

OPERAND 1 OPERAND 2
INTERNED-

OPERATOR P P IATERESULT

INDEX INDEXI VALUE 11VALUE

PARSED MATRIX STRUCTURE

277

Each matrix entry has one operator, two operands, and a location to store

the result at the time of evaluation. The operator indicates the type of

operation to be performed on the operands. The different types of

operations in the parsed matrix are shown in the Table 9.4. The operator

"," indicates that the two operands are part of an argument list of a

function reference as will be demonstrated in the example that follows

later in this section. The end of matrix operation which is the last entry

of the matrix converts the result of the expression to the standard units

of measurement. For this entry operand 2 represents the result of the

expression before the conversion and operand 1 contains the "B"

coefficient. "A" coefficient is placed in the location of the intermediate

result. The result of operation and consequently the result of the

expression is A+B (operand 2). Coefficients "A" and "B" are always

supplied; even when the expression represents the value of a dimensionless

variable, "A" of zero and "B" of one are supplied.

An operand may be one of the following:

1) A number,

2) A simple variable,

3) A qualified variable,

4) The result of another entry (intermediate result),

5) A dummy argument which only appears for an expression representing

(defining) a user defined function. In such an expression, simple

variables and qualified variables are replaced with their values.

Built-in constants are always replaced by their values.

6) A pre-defined function,

7) A user-defined function,

8) A built-in function.

OPERATIONS IN THE PARSED MATRIX

Operand 1 Operand 2

Arithmetic Arithmetic
Operation Operator

(+, -,*, /,
or

Comparison Comparison Operand 1 Operand 2

Operation Operator

< or

Boolean Boolean Operand 1 Operand 2
Operation Operator

or |)

Negation Operand
(- prefix)

Argument
List Argument 1 Argument 2

(no operation)

Function
keference or Function Argument

"B" Coefficient Operand

Intermediate
Result

"A" Coefficient

Operation

TABLE 9.4

Operator

End of
Matrix
Operation

279

The last 3 types of operands may only appear as the first operand of a

function reference operation.

The other types of operand may appear as the first or second operands

for any operation (except as the first operand of a function reference

operation). Therefore, the first operand of the entry having operators "("

or "-(" is always interpreted as a function.

Each operand is represented in the matrix by the following three

items:

1) p - a pointer

2) index - an integer number

3) value - a real float number

Table 9.5 shows how each operand is uniquely represented by these three

items. The index of a built-in function represents the function as it is

listed in table 9.6.

The operators are not placed in the matrix as characters (e.g. +,

but they are represented by integer numbers as shown in table 9.7.

An example of a parsed matrix is shown in Figure 9.9. For ease of reading

the actual symbols are used as operators and operands. "Mi" denotes the

matrix entry "i".

The internal routine "parser" performs the parsing of arithmetic

expressions and it is called as follows:

call parser (fn_begin, dimension type, terminatecode);

The global variable "start" points to the beginning of the expression

in the token Table. For expressions representing a function the variable

"fnbegin" points to the beginning of the dummy argument list in the token

table for other expressions "fnbegin" is zero. The "dimension_type"

indicates the dimension type of the variable or parameter to which the

280

Operand

TABLE 9.5 THE REPRESENTATION

I P I

OF OPERANDS IN THE PARSED MATRIX

Index Value

Number Null 0 Number

Simple :Pointer to the
Variable Variable's Structure 0 -

Qualified Lointer to the
Variable arameters Structure Parameter Number -

Intermediate Null - Entry Number of -
Result The Matrix

Dummy Null + Argument Number -
Argument

Pre-defined Pointer to
Function the Function's Entry Number of Number of Arguments

Structure the Function Type
in the Function
Template directory

User-defined Pointer to
Function the Function's 0 Number of Arguments

Structure

Built-in The index of the
Function Null Built-in Function Number of Arguments

281

TABLE 9.6 THE INDEX OF BUILT-IN FUNCTIONS IN THE PARSED MATRIX

Index BUILT-IN FUNCTION

1 ABS

2 ACDS

3 ASIN

4 ATANH

5 COS

6 COSD

7 COSH

8 ERF

9 ERFC

10 EXP

11 LOG

12 LOG2

13 LOG10

14 SIGN

15 SIN

16 SIND

17 SINH

18 SQRT

19 TAN

20 TAND

21 TANH

22 ATAN (Xl)

23 ATAND (Xl)

24 MAX

25 MIN

26 MOD

27 ATAN(X1,X2)

28 ATAND (X1,X2)

282

TABLE 9.7 THE REPRESENTATION OF OPERATORS IN THE PARSED MATRIX

Operator Symbolic Representation Operation
of the Operator

1 End of Matrix

2 Minus prefix (negation)

3 Argument List
Construction

6 Division

7 & "And" Operation

8 "Or" Operation

10 Comparison Operation
11 Subtraction

12 + Addition

13 * Multiplication

14 > Comparison Operation

15 < Comparison Operation

16 (Function Reference

17 -(- Function Reference

18 ,= Comparison Operation

19 ** Exponentiation

20 > Comparison Operation
21 <= Comparison Operation

283

PARSED MATRIX FOR THE EXPRESSION:
10+2*(-4+F(X+Y,X*Y,Z)/A),

11

4

+ X y

* X Y

M2 M3

M4 Z

(F M5

/M6 A

+ M1 M7

* 2 M8

+ 10 M9

1 M1O 0

FIGURE 9.9 AN EXAMPLE OF A PARSED MATRIX

284

value of the expression will be assigned. It is zero for dimensionless

parameters and variables. The dimension type allows the program to convert

the value of expression to the standard units of measurement, if it has

been provided in other units.

The "terminatecode" indicates the symbol designating the end of the

expression. In PEL commands an expression is terminated either by

(other than those separating the arguments of a function reference) or by a

")" (other than those matching the left parentheses of the expression).

The "terminate_code" of zero indicates that the expression can be

terminated either by "," or by ")". The terminate_code of one requires

termination by ")" only.

The parser program scans the expression (token-table) on two passes.

On the first pass.the terminating token is recognized and replaced by a

token which uniquely designates the end of expression ("," is replaced by

the token of type 9, ")" is replaced by the token of type 1). The size of

the expression and consequently the size of the parsed matrix are also

found in this pass. On the second pass, the expression is parsed and

placed in a parsed matrix structure. A modified operator precedence

algorithm is used as shown in Figure 9.11. Associated with each operator

there is a number called precedence. It indicates the priority of the

operator as listed in Table 9.8. The data structure stack contains the

tokens that are currently being worked on by the parser as shown in Figure

9.10. The tokens in the stack are represented by two integer numbers. One

indicates the location of the token in the token table and the other

indicates the type of the token. The reference to an entry of the matrix

is by location equal to minus matrix entry number, and type equal to 40, if

the matrix entry represents a value, or type equal to 41, if the matrix

entry does not represent a value (when representing an argument list).

285

TABLE 9.8 THE PRECEDENCE TABLE

Symbol Type Precedence

1 0

2 0

3 3

4 0

) 5 1

6 8

& 7 5

8 4

Not Used 9 0

10 6

11 7

+ 12 7

* 13 8

> 14 6

15 6

16 2

-(17 2

18 6

** 19 9

>= 20 6

<= 21 6

ENTRY LOCATION TYPE

A INDEX OF THE TYPE
TOKEN IN THE OF THE

TOKEN TOKEN TABLE TOKEN

AN ,MINUS INDEX
INTERIOF THE INTER-
MEDI- MEDIATE
ATE RESULT

RESULT (- ENTRY N.TM-
BER IN THE
PARSED
MATRIX)

FIGURE 9.10 THE STACK USED IN PARSING THE EXPRESSIONS

286

STACK

LOCATION TYPE

(VALUE
TYPE)

(ARGUMENT
TYPE)

287

FIGURE 9.11 THE PARSER ALGORITEMI

NOTATIONS

T TOKEN TABLE
S STACK
M PARSED MATRIX
IP TOKEN TABLE POINTER RED
SP STACK POINTER
K PARSED MATRIX POINTER
P PRECEDENCE
OPTYPEl,

OPTYPE2 INDICATOR OF THE VALUE
TYPE OF OPERANDS 1 AND 2
OPTYPE - 40 VALUE TYPE
OPTYPE = 41 ARGLMNT (LIST) TYPE

UPDATE

288

FIGURE. 9.11 CONTINUED

TP - TP + 1

e.g.
-*4

S(SP) - T(TP)

OR
-SQRT(Y)

NEGATION

289

FIGURE 9.11 CONTINUED

e.g.
A,B

END OF
MATRIX
OFERATION

RETURN

290

FIGURE 9.11 CONTINUED

[TINUE

A

IS

2) - "(

YES

IS IS
SP-3) YES

'ERATOR OPTYPE2 - 40 - ERROR .g.
X+(Y,Z)

1YES

y FUNCTION REFERENCE

FIND NUMBER OF USER SUPPLIED ARGUMENTS

REMOVE
?ARENTHESIS

e.g.
SORT(X,Y)

e.g. 46(X+Y)

FUNCTION
REFERENCE
OPERATION

FIGURE 9.11 CONTINUED

e.g.
-(X,Y)

.g.
X,Y + Z

292

9.4.2 Intermediate Forms of Commands

Various data structures are used to represent the commands in the

third group. These data structures will be generally referred to as

"control blocks" (cblock), indicating the fact that they are controling the

execution of the commands. If a command is not in a loop its control block

will be deleted, once the command has been executed. But if a command is

in a loop, its control block is linked to the control block of the previous

command by the data structure shown in Figure 9.12. Therefore, there is

one such data structure for each command in the loop. These data

structures and associated control blocks will be deleted once the execution

of the loop has been completed. The control blocks for various commands

are listed in Table 9.9. Although the "unspecify" command does not belong

to this group of commands, its syntax is very similar to the "read"

command, and it is also represented by an intermediate form. Figures 9.13

to 9.20 show the control blocks and demonstrate their applications. The

following notations are generally used in describing the control blocks:

p_parsed - pointer to the parsed matrix of an arithmetic expression.

pparm - pointer to a parameters structure.

parm no - parameter number.

pvariable- pointer to a simple variable structure.

The notations used to describe the syntax of commands are defined in

Appendix D. Although a command may not always be executed (if the

condition in "if-clause" does not hold or if it is inside an unexecutable

loop), its syntax analysis and interpretation phase (and consequently the

construction of its control block) is always performed to detect its

syntactic and semantic errors.

293

COMMAND

POINTER TO THE NEXT COMMAND
IN THE LOOP

POINTER TO THE PREVIOUS
COMMAND IN THE LOOP

VERBCODE

OBJECTCODE

POINTER TO PARSED MATRIX
OF IF OR WHILE EXPRESSION.
IT IS NULL WHEN THERE IS NOT
AN IF OR WHILE CLAUSE.

POINTER TO THE CONTROL
BLOCK OF THE COMMAND

FIGURE 9.12 THE COMMAND HEADER STRUCTURE

294

TABLE 9.9 THE CONTROL BLOCKS OF VARIOUS COMMANDS

Command Control Block

Repeat CBlock

Loop

Calculate CBlock5

Specify or assume variables CBlockl

Specify or assume other objects CBlock3

Print Variables CBlock2

Print Components CBlock6

Print other objects CBlock4

Read, Reada, or Unspecify Variables CBlock2

Read, Reada, or Unspecify other objects CBlock7

295

FIGURE 9..13 THE CBLOCK STRUCTURE

USED FOR: REPEAT COMMAND

SYNTAX:
INCREMENT TYPE: repeat for <variable> from(<expression>['dimension'])

to(< expression>['dimension']) [by(< expression>['dimension'])]
[while(< expression>) -;

LIST TYPE: repeat for <variable>=(<expression>['dimension']
[,<expression>['dimension']]*)[while(<expression>)];

BLOCK
CBLOCK

CONTROL
VARIABLE

PARM NO

SIMPLE
VARIABLE PVARIABLE 0

QUALIFIED
VARIABLE

EXPRESSION

POINTER TO THE PARENT
REPEAT COMMAND (IF ANY)

POINTER TO THE CORRESPONDING
LOOP COMMAND

CONTROL VARIABLE
(SEE ACCOMPANYING DESCRIPTION)

I P I PARMNO

POINTER TO NEXT EXPRESSION
FOR THE LIST TYPE. IT IS
NULL FOR INCREMENT TYPE.

PEXPRESSION

FLAG

IT IS "ON", IF AT THE FIRST
ITERATION THE COMMAND WAS
UNEXECUTABLE. IT IS "OFF"
OTHERWISE.

FOR INCREMENT TYPE: (FROM)

PPARM PARM NO

EXPRESSION

PARSED

MATRIX

(TO)

FOR LIST TYPE: (EXPRESSION 1) (EXPRESSION 2)

THE VARIABLE "CR" IS USED TO POINT TO THE CURRENT REPEAT COMMAND.

(cont. next page)

NEXT

POINTER TO
THE PARSED
MATRIX

PARSED

MATRIX

(BY)

296

FIGURE 9.13 CONTINUED

EXAMPLE:
repeat for x from (1) to (5);

specify variable (y = sqrt(x)) if (y<25);
repeat for z = (10,27,18);
print v(x,y,z);
loop;
news;

STATUS OF THE CONTROL BLOCKS AFTER THE ISSUANCE OF THE LAST COMMAND (e.g. NEWS);
NOTICE THAT THE EXTERNAL REPEAT COMMAND IS NOT CLOSED YET.

297

FIGURE 9.14 THE CBLOCK1 STRUCTURE

USED FOR: specify, or assume variables.

SYNTAX: {specify I assume} variables (<variable> = <expression> ['dimension']
[, <variable> = <expression> ['dimension'] I *) [<if-clause> I ;

PCBLOCK
CBLOCK1

NEXT

P

PARM NO

NAME

P_PARSED

EXAMPLE: specify vk

PCBLOI

VARIABLE REPRESENTATION

VARIABLE' PARM NO NAME

SIMPLE, PVARIABLE 0 VARIABLE'S

KNOWN NAME

SIMPLE,
UNKNOWN, NULL 0 VARIABLE' S

1ST TIME NAME

SIMPLE, POINTER TO

UNKNOWN CBLOCK1 OF -1 VARIABLE'S
REPEATED 1ST OCCUR- NAME
REPEATEDRANCE OF VAR

QUALIFIED
VARIABLE

PPARM

x = 4 * y, .u.a.%p4 = f(x,z) - 3);

PARMNO -

$ variable x is known $

3

298

FIGURE 9.15 THE CBLOCK2 STRUCTURE

USED FOR: print, read, reada, or unspecify variables

SYNTAX: { pri
{ all

PCBLOC\

FOR "ALL"
OPTION
PCBLOCK
= NULL.
FOR PRINT
UNKNOWN
VARIABLES
ARE NOT
ALLOWED.

nt

*I
read | reada I unspecifyl variables

(<variable-list>) } [<if-clause> 1;
(if-clause is not allowed for unspecify conmands)

CBLOCK2 VARIABLE REPRESENTATION

1 VARIABLE PARM NO
OBJECT_

CODE

SIMXPLE,
KNOWN, PVARIABLE PARTITION; 6
1ST TIME

3IMPLE,
QTOWN, PVARIABLE - 6
EPEATED TIMES

3IMPLE,
JNKNOWN, NULL 0 6
LST TIME

>IMPLE, CBLOCK2 01 6
JNKNOWN, 1ST OCCUR-
EPEATED TIMESENCE

NEXT

OBJECTCODE

P

PARMNO

VARIABLE'S NAME

DIMENSION TYPE PPARM

EXAMBLE: read v(x, u.a.t, x); $ variable x is -unknown $

PCBLOC\

6

NULL

0

x

0

PARI_ NO
1,2,3,
4, OR 5

QUALIFIED
VARIABLE

I

PPARM OF UNIT a

PARM NO OF t

u.a.t

DIMENSION TYPE
OF t

NULL

6

0

x

0

299

FIGURE 9.16 THE CBLOCK3 STRUCTURE

USED FOR: SPECIFY, OR ASSUME UNITS, COMPONENTS, FUNCTIONS, STREAMS OR FLOW

SYNTAX: {(specify | assume} {unit I component | function} (<object-list>)
(<parameter-specification-list>) [<if-clause>];

{ specify I assume} stream (<stream-list>) [<phase-field>]

(<parameter-specification-list>) [<phase-field>]
(<parameter-specification-list>)]* [<if-clause>];

(specify I assume} flow (<stream-list>) [<phase-field>]
(<flow-parameter-specification-list>) [[<phase-field>]
(<flow-parameter-specification-list>)]* [<if-clause>];

PCBLOCK

CBLOCK3

NEXT (NULL FOR UNIT,
COMPONENT, OR FUNCTION)

PLIST

PPAR
1

n

LIST

NUMBER = n

PARMS

NEXT

PARM NO

P PARSED

LIST CONTAINS
POINTERS TO
VARIOUS
PARAMETER
STRUCTURES
(PPARM' S)

(cont. next page)

FIGURE 9.16 CONTINUED

EXAMPLE: specify units (a, b) (%p3 - 2 + x, %p4 - y - z);

PCBLOCK

2

1 PPARM OF UNIT a

2 PPARM OF UNIT b

EXAMPLE: specify stream (feed) phase2 (%pZ - x*y) (all - ,, x + y,, x/y);

%p2 - x/y));

PPARM OF FLOW PARAMETERS OF COMPONENT Co2
IN PHASE ZERO OF STREAM FEED

301

FIGURE 9.17 THE CBLOCK4 STRUCTURE

USED FOR: print units, functions, streams, flow, or process

SYNTAX: print (unit I function stream I flow} fall I (<object-list>)
<print-option> [<if-clause>];

print process f flowsheet I all} [<if-clause>];

PCBLOCK

CBLOCK4

PRINTCODE

NUMBER = n

POINTER TO UNIT,
FUNCTION, OR STREAM

n = 0 FOR ALL OPTION
OR FOR PROCESS

(cont. next page)

302

FIGURE 9.17 CONTINUED

PRINTCODE PRINT OPTION

UNSPECIFIED OR FLOWSHEET (FOR PROCESS)

ASSUMED

SPECIFIED

CALCULATED

PARAMETERS

CONNECTIONS (FOR UNIT AND STREAM)
STREAMS (FOR COMPONENT)
FUNCTIONS (FOR FUNCTION)
COMPONENTS (FOR FLOW)

TYPE

ALL

PCBLOCK

1

2

3

CBTLCK4

EXAMPLE:
print units (a,b,c)

parameters;

EXAMPLE: print units all all;

PCBLOCK

CBLOCK4

4

3

POINTER TO UNIT a

POINTER TO UNIT b

POINTER TO UNIT c

7

0

FIGURE 9.18 THE CBLOCK5 STRUCTURE

USED FOR: calculate units, components, functions, or streams.

SYNTAX: calculate (unit I component function | stream}
(<identifier> C (<arguments>])]

, <identifier> [([<arguments> I)
PCBLOCK

4 CBLOCKS

{all C ((<arguments> I) I |
[, <transfer-point>])]
] [, <transfer-point>])]]*) }

C <if-clause>];

NEXT

IDENTIFIER

COMP INDEX

(FOR COMPONENTS ONLY)

CALCULATING
ROUTINE'S NAME

ADDRESS OF THE
CALCULATING ROUTINE
(ENTRY VARIABLE)

PARG

POINTER TO THE
CBLOCK5 REPRESENTING
THE OBJECT SPECIFIED
BY TRANSFER POINT

EXAMPLE: calculate units
(a, b(1,12,4), d(,a));

IS THE POINTER TO THE UNIT, FUNCTION,
IT IS NULL FOR ALL OPTION.

2

PCBLOCK

CBLOCK5

a

POINTER TO UNIT a

ROUTINEl

NULL

NULL

ARGUMENTS

NUMBER - n

CBLOCK5

b

POINTER TO UNIT b

ROUTINE2

NULL

OR STREAM STRUCTURE.

CBLOCK5

rNULL

d

POINTER TO UNIT d

ROUTINE3

NULL

3

1 1

2 12

3 4

304

FIGURE 9.19 THE CBLOCK6 STRUCTURE

USED FOR: print components.
SYNTAX: print component f all (<component-list>)

PCBLOCK

CBLOCK6

} <print-option>
[<if-clause>];

AS DESCRIBED FOR CBLOCK4

FOR ALL OPTION n = 0

EXAMPLE: print components (co, co2) streams;
$ list the streams that contain components co or co2. $

PCBLOCK

CBLOCK5

5

2

1 COMPINDEX
OF co

2 COMPINDEX
OF co2

PRINT CODE:

NUMBER = n

COMPONENT INDEX

FIGURE 9.20 THE CBLOCK7 STRUCTURE

USED FOR: read, reada, or unspecify units, components, functions, streams, or flow.

SYNTAX: {read reada I unspecify)

(read reada unspecify}

{ read reada unspecify}

PCBLOCK

(unit component function} {all I (object-list>)
{all | (<parameter-list>) } } [<if-clause>];

stream (all I (<stream-list>) [< phase-field>]
f all (< parameter-list>) f [phase-f ield>]
{ all (< parameter-list>) } * } <if-clause> J;

flow { all (<stream-list>) C <phase-field>] (all I
(<flow-parameter-list>) } E [< phase-field>]
{ all < (flow-parameter-list>) }]* } [<if-clause>];

CBLOCK7

P (NULL FOR ALL OPTION)

PPARM TEMP OR PPHASE-TEMP

NUMBER - n

NAME PPARM OR PSTREAM

STREAM

PPARMTEMP: POINTER TO
PARAMETERS TEMPLATE
STRUCTURE.

PPHASE TEMP: POINTER TO
PHASE TEMPLATE
STRUCTURE.

FLOW

1

PARMN (PARAMETER NUMBERS)

NUMBER - m

PARM NO
UNIT,

COMPONENT, OR

FUNCTION

(NULL
FOR
ALL
OP-
TION)

1

n

(cont. next paze)

XPHASE

NEXT

PHASE NO

PPARM TEMP OF PHASE PARAMETERS

P (NULL FOR ALL OPTION)

PARMN

PARAMETER NUMBER- OF SPECIFIED
PHASE PARAMETERS

XPHASE

NEXT

PHASE NO

PPARM TEMP OF FLOW PARAMETERS

P (NULL FOR ALL OPTION)

COMPONENT

NEXT

COMPONENT NAME

COMPONENT INDEX

P (NULL FOR ALL OPTION)

PARMN

PARAMETER NUMBER OF SPECIFIED
FLOW PARAMETERS

FIGURE 9.20 CONTINUED

EXAMPLE: read u(a, b) (%p2, %p3 , %pl);

CBLOCK7

PPARM TEMP

2

PPARM OF
a UNIT a

PPAII OF
b UNIT b

PARMN

3

1 2

2 3

3 1

EXAMPLE: read stream (feed) (%pl, /p2) phasel all;

CBLOCK7

PPHASE TEM

1

POINTER
feed TO STREAM

feed

EXAMPLE:
read flow (feed)
(co (Zpl, %p3), co2 all);

CBLOCK7

PPHASE TEMP

POINTER
feed TO STREAM

feed

XPHASE FOR PHASE 0

0

PPARM TEP OF PHASE 0

PARIN

2

1

2

XPHASE FOR PHASE 0

NULL

0
k'ZAR T.ir U7
FLOW PARAMETERS

COMPONE

co

COMP INDEX OF co

PARM.N

2

t 3

XPHASE FOR PHASE 1

PPARM TEMP OF PHASE I

NULL

CoMPONENT

NULL

co2

COMP_INDEX OF co2

NULL

PCBLOCK

307

9.5 Execution Phase

In this final phase the command is executed. As mentioned earlier

there is a begin block associated with each command performing the syntax

analysis and interpretation phase. The same begin block also monitors the

execution of the command. The execution may be performed in the same block

or another internal or external routine may be invoked. For commands

related to component files the external routine "cdbsys" (component data

base system) is called to execute the commands. The external routine

"pdbsys" (process data base system) is called for command related to

process files. The external routine "printtemp" is called to print

information about templates in response to "printt" and "listt" commands.

The execution of commands for which intermediate forms were

constructed is controlled by these intermediate forms, and monitored by

some internal routines. The intermediate forms will be deleted once the

execution of the command or commands within a loop is completed. The

execution of other commands is performed by their associated begin blocks.

308

CHAPTER 10

EXERCISE IN DEVELOPMENT OF TEMPLATE BASED SYSTEMS

In this chapter a general framework for the development of TBS's will

be presented and the development of a number of prototype TBS's will be

described.

Using GPES three prototype TBS's have been created to demonstrate the

application and use of GPES and systems created by GPES. These prototype

TBS's are as follows:

1. Heat Exchanger Networks Analyzer. This prototype TBS is capable

of analyzing heat exchanger networks. It has been created to

demonstrate that using GPES, one could develop a very simple

system to solve a particular class of problems.

2. TBS-II. This prototype TBS is capable of analyzing processes

with conventional liquid-vapor streams, particularly

hydrocarbon proceses. Currently it contains a few types of

process units such as distillation columns, heat-exchangers,

and isothermal flash separations, and hence it is limited to

processes having only these process elements.

3. MHD. This prototype TBS is created to study MHD processes. It

is an example of a case where existing simulators cannot be

used to analyze processes having streams other than

conventional liquid and vapor streams.

It should be noted that any of the above three TBS's could be expanded to

309

include additional unit operations. It is also not necessary to have

different TBS's to analyze different classes of processes. In fact, a

single TBS could have been created capable of analyzing all three types

of processes mentioned above.

10.1 Development Process of a Template Based System

Development process of a TBS in general is shown in Figure 10.1. It

consists of the following phases:

1. TBS definition (Formalism) phase.

Once the need for development of a new TBS is brought about by

external factors, this would be the first phase of

development. In this phase the objective of the TBS should be

stated and different types of process units, streams,

components, and pre-defined functions that may be required

should be identified. Decisions should also be made on how to

represent these elements. The mathematical models of the

process units should be prepared. The standard units of

measurement and other allowable options for each relevant

physical dimension should also be identified. This phase not

only provides input to the following two phases, but it is very

useful for documentation purposes.

2. Template Definition Phase.

In this phase the TBS Administrator using the "update tdb"

program defines the templates. As described in Chapter 4 these

templates are as follows:

310

,EXTERNAL
FACTORS

FIGURE 10.1 DEVELOPMENT PROCESS OF A TBS

311

a) a template for every unit type.

b) a template for every stream type.

c) a template for every component type.

d) a template for every pre-defined function type.

e) a template for every physical dimension.

f) a template for every physical property where the user has

the option of selecting its method of estimation.

g) a template for system control information which includes

items of information such as the name of the TBS.

The TBS Administrator using any available editor should also

create a text file as described in Chapter 4. This file

includes items of information such as the name and address of

the TBS Administrator, reported errors, news, etc.

3. TBS Programs Development Phase.

In this phase the TBS programmers develop TBS programs as

described in Chapter 6. These programs mainly consist of a

calculating routine for each unit type. In this effort

sometimes the need for updating or modifications of efforts

made in previous phases is realized, in which case the TBS

Administrator has to return to one of the previous phases.

14. Testing Phase.

Before the TBS is released to the public, the TBS Administrator

should test it by simulating various process flowsheets. Once

312

any bug is found, he may have to return to one of the previous

phases for debugging.

5. Use (Production) Phase.

At this phase the TBS may be used by designers for analysis and

design of various process flowsheets. In the course of the TBS

usage, the users may discover some bugs in the TBS or may

recognize the need for expansion or improvement of the TBS.

The users should inform the TBS Administrator of the need for

modification.

6. Updating Phase.

A TBS is an open-ended system which can be easily extended or

modified. .The need for extension or modification may be

realized by inputs received from the previous phase or by other

external factors. This will lead the TBS Administrator to one

of the first three phases for extending or modifying the TBS.

10.2 Development of a Prototype TBS for Analyzing Heat Exchanger Networks

The development process of this simple TBS will be presented in the

above framework.

1. TBS Definition Phase (formalism).

The objective of this TBS is to analyze the steady state

behavior of an arbitrary heat exchanger network. Each stream

in a heat exchanger network is characterized by two variables:

the product of mass flow rate and specific heat (WC) and the

313

temperature (T). Pressure and composition are not considered

to be pertinent variables.

There are four types of units: counter-current heat exchanger,

mixer, divider, and convergence unit.

The counter-current heat exchanger is modeled as shown in

Figure 10.2. The unit type mixer is for adding two streams and

is modeled as shown in Figure 10.3. The unit type divider is

for splitting one stream into two streams and is modeled as

shown in Figure 10.4. Unit type convergence is for testing and

promoting convergence for a recycle stream. Most chemical

processes involve recycle streams. Therefore, such processes

contain information recycle loops. That is, cycles for which

insufficient information is available to permit equations for

each unit to be solved independently. The equations for units

in an information recycle loop must be solved simultaneously.

One solution techniques is to "tear" one stream in the recycle

loop 11,22,51,148]; that is, to guess variables of that

stream. Based upon tear stream guesses, information is passed

from unit to unit until new variables of the tear stream are

computed.

These new values are used to repeat the calculations until

convergence tolerances are satisfied. Unit type convergence is

used for comparing newly computed variables (feed stream to the

314

Specifications:

Parameters:

Connections: TIN

TOUT

SHIN

SHOUT

Equations:

Material Balances:

SHIN

TOUT

overall heat-transfer coefficient (e.g.,

Btu/hr-ft2 -oF)

area (e.g., ft 2)

tube inlet

tube outlet

shell inlet

shell outlet

WCTOUT = WCTIN
WCSHOUT = WCSHIN

Energy Balances:

(1 - R)TTIN + R(1 - F)TSHIN
TTOUT =..~~~~~~~~~1~~-~.

T TTOUT - TIN
SHOUT TSHIN R

where:

WC U
R -WSHIN F=exp UA

TIN SHIN

Special case (R = 1):

TTIN + alphaTSHIN
TTOUT T ~~I~~N l~

TOUT 1 + alpha

with alpha = UA/WCSHIN

(R -1)

Input Variables

WCTIN, TTIN
WCSHIN, TSHIN
U, A

Output Variables

WCTOUT, TTOUT

WCSHOUT, TSHOUT

Figure 10.2 Heat Exchangers TBS - Countercurrent Exchanger Model

315

Specifications:

Parameters:

Connections:

None

IN1

IN2

OUT 1

first inlet stream

second inlet stream

outlet stream

Equations:

Material Balance:

Energy Balance:

WCOUT1 = WCIN1 + WCIN2

WCIN1 TIN1 + WCIN2 TIN2
OUT1 ~~~2~~+9I IN1 IN2

Input Variables Output Variables

WCIN1, TIN1

W IN2, TIN2

WCOUT1, TOUT1

Heat Exchangers TBS - Mixer ModelFigure 10 .3

316

OUT 1

Specifications:

Parameters: Fraction of inlet stream, IN1, diverted

to outlet stream OUT1

Connections: IN1 inlet stream

OUT1

OUT2

first outlet stream

second outlet stream

Equations:

Material Balances:

Energy Balances:

WCOUT 1

WCOUT
2

= F WCIN1

= (1 -F) WCIN1

TOUT1 = TIN1

TOUT
2 = TIN1

Input Variables Output Variables

WCOUT1, TOUT1

WCOUT2, TOUT2
WCINl, TIN1

Figure 10.4 Heat-Exchangers TBS - Divider Model.

317

convergence unit) with guess values (product stream from the

convergence unit) and to compute new guess values when

convergence tolerances (unit parameters) are not satisfied.

The convergence unit is modeled as shown in Figure 10.5.

Physical dimensions pertinent to this TBS are as follows:

Standard Units Optional Units

1. Temperature Degree F Degree R, C, K

2. Area Ft2

3. Heat Rate Btu/hr

4. Heat Transfer
Coefficient Btu/hr-ft 2 -Degree F

2. Template Definition Phase.

Using the "update tdb" Program, the following templates have

been defined:

a. A template for the only existing stream type, std.

b. A template for every one of the unit types: heatex,

divider, mixer, and convergence.

c. A template for every one of the four dimension types. The

collection of these templates, which is referred to as a

dimension table, enables the system to automatically

convert the user-supplied data into standard units, if

they are provided in other optional units.

d. A template containing other miscellaneous information such

as the TBS name, etc.

318

Specifications:

Parameters:

Connections:

MAXIT Maximum number of iterations

NIT Number of iterations

RDEVWC Relative deviation for stream

parameter WC

ADEV WC Absolute deviation for stream

parameter WC

RDEVT Relative deviation for stream

parameter T

ADEV T Absolute deviation for stream

parameter T

FLAG Flag indicating convergence, it is

positive if convergence has been

achieved, it is negative otherwise.

IN Inlet stream

OUT Outlet stream

Equations:

Test for convergence:

if |WC IN -WCOUTI <= (RDEVWC)(WCIN) + ADEV_WC
and ITIN - TOUTi <= (RDEVT)(TIN) + ADEV T

then FLAG = +1, otherwise

WCOUT = WCIN, TOUT = TIN, and FLAG = -1.
Default Unit Parameters:

MAXIT = 50

NIT = 0

RDEVWC = .01

RDEVT = .01

ADEVWC = .05
ADEVT = .05

FLAG = -1.

Figure 10.5 Heat Exchangers TBS - Unit Convergence Model

319

The printout of the dimension table, the stream template and

the template for unit type heatex are shown in Figure 10.6.

Using the Multics editor, a text file, as described in Chapter

4, has also been created. It contains information such as the

TBS Administrator name and address, news, reported errors, etc.

3. TBS Program Development Phase.

In this phase a subroutine for each process unit type is

developed to represent its mathematical model. The names of

these subroutines have been already supplied in the unit

templates. The system will call upon these routines to solve

equations for each unit. The subroutine for unit Heatex is

listed in Figure 10.7.

4. Testing Phase.

In this phase the TBS has been tested by simulating various

heat exchanger networks.

5. Use (Production) Phase.

Now the system is ready to be used by ultimate users of the

TBS, process designers. To use the TBS they only have to know

PEL (Process Engineering Language). The following example

demonstrates the use of TBS and PEL.

Example

There are a number of identical heat exchangers (A = 20 ft2,

U = 10 Btu/hr-ft2 .OF), and a number of cold streams (WC =

FIGURE 10.6 HEAT EXCHANGERS TBS - PRINTOUT OF SOME TEMPLATES
list units

UNIT TYPES
heatex
Iii ,-xe r
divider
convergence

ENTER COMMAND:
print dinitable

DIMENSIONS TABLE

NUMBER OF DIMENSION TYPES 4

DIMENSION TYPE NAME STANDARD UNITS

temperature

area

heat-rate

-4.6000000e+002
3.2000000et001

-4.6000000e+002

1.0000000e+000
1.8000000e+000
1.8000000e+000

ft2

btu/hr

4 heat-transfer-co btu/hr-ft2-f
NOTE; DIMENSION TYPE OF A DIMENSION LESS PARAMETER IS ZERO.

ENTER COMMAND:
print stream std

STREAM TYPE = std
REFERENCE = a standard stream twee for this TBS
TYPE OF COMPONENTS FLOWING IN THIS STREAM - none

NUMBER OF PHASES =

PHASE 0 (TOTAL STREAM)

NUMBER OF PHASE PARAMETERS = 2

PARAMETER DIMENSION TYPE
1- wc 3
2-t 1

NUMBER OF FLOW PARAMETERS = 0

PROCEDURE TO CALCULATE THE STREAM = i

OPTIONS

321

FIGURE 10.6 CONTINUED
Print unit heatex

UNIT TYPE = heatex
REFERENCE = counter-current heat exchanger.

NUMBER OF UNIT PARAMETERS a 2

PARAMETER
1- u
2- a

NUMBER OF INLETS =

INLET CONNECTIONS
1- tin
2- shin

NUMBER OF OUTLETS =

OUTLET CONNECTIONS
3- tout
4- shout

DIMENSION TYPE
4
2

2

STREAM TYPE
std
std

STREAM TYPE
std
std

PROCEDURE TO CALCULATE THE UNIT = heatex
MINIMUM NO OF ARGUMENTS = 0
MAXIMUM NO OF ARGUMENTS 1

NUMBER OF LEVELS OF CALCULATION =

VALUE STATUS CODES FOR LEVEL =
UNIT PARAMETERS

PARAMETER
1- u

CODE
7

2- a 7
FOR CONNECTION = tin

THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION =

PHASE 0 (TOTAL STREAM)
PHASE PARAMETER CODE

1- we 7
2- t 7

FOR CONNECTION - shin
THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION =

PHASE 0 (TOTAL STREAM)
PHASE PARAMETER CODE

1- we 7
2- t 7

FOR CONNECTION = tout
THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION =

PHASE 0 (TOTAL STREAM)
PHASE PARAMETER CODE

1- we 13
2- t 13

FOR CONNECTION w shout
~TRf~CECT~~ON IS REUfRD15
STREAM CONNECTED TO THIS CONNECTION =

PHASE 0. (TOTAL STREAM)
PHASE PARAMETER CODE

1- wc
2- t

13
13

ENTER COMMAND:

std

std

std

std

FIGURE 10.7 HEAT EXCHANGERS TBS - HEATEX CALCULATING ROUTINE

heatex.-11 05/07/78 1538.6 edt Sun

heatexteroc(puritvpargpswitcherror-switch)i
del Funit Ftrr

Parg Ptrr
switch bit(1)p
error-switch bit(l);

dcl unit-ptr eretrw(Ftrtfixed binretrpbit(1))I
del stre.ptr ertru(ptrfixed binreptrbit(1))9
del xPut-.arm entrw(ptryfixed binrfloat binebit(1))I
dcl xset-rarm entrw(ptrpfixed binrfloat binefixed binrbit(1))9
del (-rarmeestream) ptr9
del exe builtini
dcl vtupe

code bit(l);
del (urattinettoutvtshinvtshoutwctievwctoutrweshinewchouteruf) float bini

/* retrieve input variables */
call unit-etr(punittOepparmycode)i
call xget-varm(pparaeiururvtweercode)9
call xset-pare(pprarar2avtuevecode)i
call unit-ptr(reunitr Ipstreamevcode)#
call strma-etr(pstreamrOppparmacade)9
call xset-arm(prarmilrwctinevtweercode)i
call xset-aruo(pearwy2vttinevtue#code) I
call urit-etr(unit2upstreamvcode)I
call stru-e...tr(strear 0OPparuPcode) I
call xet-Farm (earur IrwcshinevtwePcode)I
call xget-par(er-arar2ptshinevtu-ercode)9

/* -erformi reauired comuutations */

/* material balance */
wctout=wctin
wcshout=wcshini

/* enerseu balance */
r=wcshin/wctini
f=ex.(u*a/wcshin*(r-1))9
if r=1

then ttout=(ttintu*a/wcshin*tshin)/(1+u*a/wcshin);
else ttout=((1-r)*ttin+r*(1-f)*tshir)/(i-r*f)i

tshiout=tshtin-(ttout-ttins)/r;

/* store output variables */
call urit-etr(punitv3vpstreamercode);
call stra-etr(estreamOppararcode)9
call xput--are(praraiewctoutpcode)!
call xeut-e-arm(pearne,2pttoutPcode);
call urit-ptr(purit4vpstreamycode);
call strm-etr(pstreameaOpparmecode) i
call xput-r-arn(pearur1weshoutrcode)I
call xput-parue(pearotP2,tshoutpcode)9

retu 'rev
end heatex I

323

500 Btu/hr, T 3000F) to be used to cool a hot stream (WC =

1000 Btu/hr, T 1200 0F) to below 950 0F, as shown in Figure

10.8a. The problem is determining the minimum number of

required heat exchangers. The computer session for solving

this problem is shown in Figure 10.9. To solve this problem,

one may start with one heat exchanger and increase the number

of heat exchangers until the hot stream is cooled to the

desired temperature. As can be seen in Figure 10.9, two heat

exchangers will bring the hot stream temperature below the

9500F. Before terminating the session, the user has saved

his process network, so that he may-be able to continue his

design effort sometime in the future. At a later session, the

user wishes to investigate other design alternatives,

especially those shown in Figures 10.8b and 10.8c. The PEL

computer session is demonstrated in Figure 10.10. As can be

seen, the output temperature for process configuration shown in

10.8b is 950OF compared to 945oF in the first configu-

ration. To simulate the process flowsheet shown in Figure

10.8c, one observes that unit H1 and H2 cannot be calculated

independently. To calculate unit H1 stream coldi should be

known. To determine stream cold1 unit H2 should be calculated

which requires the stream S1 to be known. Therefore, to

calculate unit H1 stream S1 should be known, but on the other

324

-COLD1 (WC - 500,
a T 300)

COLD2 (WC = 500,
3 T 300)

COLDn (WC 500,
1 T= 300)

(WC-1000
T=1200)

(a)

COLD1 (= 1000,a T =300)
L -2 m

OLD2

NOTES

WC IN BTU/HR
T IN 0F

2

(b)

(c)

COLD2 (WC = 1000,
-, . T = 300)

FIGURE 10.8

(d)

HEAT EXCHANGERS TBS - THE PROCESS FLOWSHEET
FOR THE EXMIPLE CASE

(WC=1000,
T=1200)

FIGURE 10.9 HEAT EXCHANGERS TBS - A PEL COMPUTER SESSION FOR THE EXAMPLE CASE
Pel brief

*beginning of attachment process.
**enter the name of TBS wou wish to use nowtheat-exchangers

*attachment process has been successful.

*new process created at:05/07/78 1831.5 edt Sun
**enter maximum number of components(O to 200)*0

**COMMAND : $---DESCRIBE THE PROCESS CONFIGURATION---$

**continueocreate unit(hi) tpeieheatex;

**COMMAND *create streams(hotrcold1,s1,ci)'

**COMMAND *connect unit hi at tin=hot shin-coldl tout=sl shout=cl;

**COMMAND : $---SPECIFY KNOWN PARAMETERS---$

**continueispecifw unit(hl) (a=20'ft2', u-10);

**COMMAND ispecifw stream (hot) (wc1000'btu/hr' rt=1200'f'); '

**COMMAND :specifv stream(coldl)(wc=500,t=300);

**COMMAND : $---SIMULATE THE PROCESS AND PRINT THE RESULT---$

**continue*calculate unit(hi);

*entering routine heatex for level 1 calculation of unit "h1"
**COMMAND *Print variable(s.si.p0.t);

s.sl.pO.t= 1.061892e+003 f calculated
**COMMAND , $---EXPAND THE PROCESS CONFIGURATION---$

**continuetlet unit h2=hi;

**COMMAND *let stream cold2=coldl;

**COMMAND #connect unit h2 at all=s1,cold2,s2,c2;

*stream "s2" does not exist. a stream of twee "std' has been created.
*stream "c2" does not exist. a stream of twpe "std" has been created.
**COMMAND 0*SIMULATE AND PRINT THE RESULT---$

**continue*calc unit(h2);

*entering routine heatex for level 1 calculation of unit "h2"
**COMMAND :Print variable(s.s2.P.t),

s*s2*,.0t= 9.449777e+002 f calculated
**COMMAND : $---SAVE THE PROCESS---t

**continue#save process ntati;

ERROR s 91 no Process file is opened.
*command ignored.
**COMMAND CREA TE AND OPEN A.PROCESS FILE7-

**continue*open process file(demo)i

**enter the relative or absolute Pathname of the directorv containing the Process file "demo"
(if it is the same as wour working directorw P>udd>ICPES>Arab-Ismaili, enter a null line):

*Process file "demo" does not exist.
**if wou wish a new one be created enter wes Potherwise notves

*Process file "demo' is opened.
**COMMAND :save Procv*ess netlt

*Process has been saved.
**COMMAND 'end;

*thank wou Arab-Ismaili for trving GPES come back soon, bwe!
r 1838 4.330 153.635 2482

326

FIGURE 10.10 HEAT EXCHANGERS TBS - ANOTHER PEL COMPUTER SESSION FOR THE EXAMPLE CASE
Pel brief

*beginning of attachment process.
**enter the name of TBS wou wish to use nowtheat-exchangers

*attachment process has been successful.

*new process created at:05/07/78 1844.1 edt Sun
**enter maximum number of components(0 to 200)*0

**COMMAND : ' $---LOAD THE PROCESS---$

**continue:open Process file(demo)7P

**enter the relative or absolute Pathname of the directorw containing the process file "demo"
(if it is the same as wour working directors ,>udd>ICPES>Arab-Ismaili, enter a null line):

*Process file "demo" is opened.
**COMMAND 'load process netlP

Process "netl has been created at:05/07/78 1831.5 edt Sun
bw sustemo GPES serial-no: 1 compat-level* 1

and TBS: heat-exchangers serial-no: 1 compat-level* 1
and it has not been accessed bw anw other incompatible swstem since.

*Process has been loaded.
**COMMAND : $---SIMULATE THE PROCESS FOR CONFIGURATION SHOWN IN FIGURE 10.8 b-$

**continuetspecifw stream(cold1)(wc=1000);

**COMMAND :calc u(hil)P

*entering routine heatex for level 1 calculation of unit "hi"
**COMMAND let stream cold2=cl;

**COMMAND Ocalc u(h2);

*entering routine heatex for level 1 calculation of unit "h20
**COMMAND :Print v(s.s2.PO.t);

s.s2.po.t= 9.500000e+002 f calculated
**COMMAND : -$SIMULATE THE PROCESS FOR CONFIGURATION SHOWN IN FIGURE 10.8 d---4

**continueocreate unit(test) twpenconvergence;

**COMMAND *connect unit test at in-c2 outicold1l

**COMMAND : $---use the default values for parameters of unit test---$

**continue:calc unit(test(2));

*entering routine conv9 for level 2 calculation of unit "test"
**COMMAND ispqcifu stream (col:dZj fc-1000,t-300);

**COMMAND : S---assume the initial values of tear stream---$

**continue*assume stream(coldl)(wc1000,t-400);

**COMMAND :calculate units(hih2,test(rhl));

*entering routine heatex for level 1 calculation of unit "hi"
*entering routine heatex for level 1 calculation of unit "h2"
*entering routine conv9 for level 1 calculation of unit "test"
*entering routine heatex for level 1 calculation of unit "hi"
*entering routine heatex for level 1 calculation of unit "h2"
*entering routine convs for level 1 calculation of unit "test"
**COMMAND $AS CAN BE SEEN CONVERGENCE HAS BEEN ACHIEVED IN TWO ITERATIONS---$

**continue:Print variable(s.s2.P0.t);

s*s2.p0.t= 9.427469e+002 f calculated
**COMMAND * $---SAVE THE NEW PRBCESS FOR FUTURE STUDIES---$

**continueosave process neti override;

*Process has been saved.
**COMMAND :end;

*thank wou Arab-Ismaili for truing GPES come back soon, bwe!
r 1853 1.586 90.254 1479

327

hand, to find the stream S1 requires the calculation of unit

H1. Hence, it can be seen that the process flowsheet contains

an information recycle loop; that is, too few stream variables

are known to permit equations for each unit to be solved

independently. One solution technique is to tear one stream in

the recycle loop; that is, to guess variables of that stream.

Based upon tear stream guesses, information is passed from unit

to unit until new values of the variables of the tear stream

are computed. These new values are used to repeat the

calculations until convergence tolerances are satisfied. This

has been done as shown in Figure 10.8d and demonstrated in

Figure 10.10.

As can be seen, convergence has been achieved in two

iterations. The output temperature is 943 0F which is lower

than the two previous outcomes.

6. Updating Phase (TBS Administrator's Task)

A TBS is an open ended system which can easily be extended or

modified. Suppose a new unit type is to be added to the TBS.

The unit type is adjuster, which heats or cools a stream to a

specified temperature. The unit model is shown in Figure

10.11. A new template defining this new unit type has been

added to the template based system as shown in Figure 10.12 and

a subroutine representing the mathematical model of the unit

328

Specifications:

Parameters:

Connections:

Q

IN

OUT

Equations:

Material Balance:

Energy Balance:

Input Variables

Heat added (removed) (e.g., Btu/hr)

Inlet stream

Outlet stream

WCOUT = WCIN

Q = (TOUT - TIN)WCIN

Output Variables

WCIN

TIN

TOUT

WCOUT

Q

Heat Exchangers TBS - Adjuster ModelFigure 10.11

FIGURE 10.12 HEAT EXCHANGERS TBS - INSERTING A TEMPLATE
update-.tdb

IS IT A NEW TDB? was OR no?no

ENTER THE ABSOLUTE PATH NAME OF THE DIRECTORY CONTAINING THE DATABASE SEGMENTS:
>udd>ICPES>Arab-Ismaili>heat-exchangers

ENTER COMMAND:
insert unit adjuster

ENTER REFERENCE:
Heats or cools a stream to a specified temperature.

ENTER NUMBER OF UNIT PARAMETERS:
1

ENTER PARM NAMES AND DIM TYPES:
NAME DIM TYPE

1 00 3

ENTER NUMBER OF CONNECTIONS:
2

ENTER NUMBER OF INLETS:
1

ENTER CON NAMES AND STREAM TYPES:
NAME STRM TYPE

l:in std

2: out std

ENTER PROCEDURE NAME TO CALCULATE THE UNIT:
adjuster

ENTER MIN NUMBER OF ARGUMENTS:
0

ENTER MAX NUMBER OF ARGUMENTS:
1

ENTER NUMBER OF LEVELS OF CALCULATION:
1

VALUE STATUS CODES FOR LEVEL I
ENTER VALUE STATUS CODE FOR 1 UNIT PARAMETERS

1:13

FOR CONNECTION in
ENTER CONNECTION STATUS:1

FOR PHASE 0
ENTER VALUE STATUS CODE FOR 2 PHASE PARAMETERS

1:7

2:7

FOR CONNECTION out
ENTER CONNECTION STATUS:1

FOR PHASE 0
ENTER VALUE STATUS CODE FOR 2 PHASE PARAMETERS

1:13

2:*7

OK? wes OR noies

ENTER COMMAND:
end

----- DATABASE INCONSISTENCIES-

----- NO DATABASE INCONSISTENCIES

DO YOU WISH TO EXIT? was OR no ?
was

ENTER DEFAULT UNIT TYPE:
heatex

r 1509 1.368 58.049 1269

330

has been developed. The users of the TBS may now incorporate

units of this type in their process flowsheets when such a need

arises.

10.3 A Prototype TBS for Hydrocarbon Processes

The objective of this TBS is to analyze the steady state behavior of

hydrocarbon processes. One stream type, one component type, and a number

of unit types will be required for such a TBS. It should be clear that a

process flowsheet may contain any number of streams, components or units

of the specified types.

The stream type which is referred to as "std" (standard) stream is a

conventional vapor-liquid stream. This stream in addition to phase zero

which represents the total stream, has two more phases to represent the

vapor and liquid phases. Phase zero has five phase parameters and one

flow parameter. The phase parameters are:

1-t Temperature in degrees Kelvin

2-p Pressure in atmospheres

3-f Total molal flow rate in Kgmol/hr

5-h Molal enthalpy in Kcal/Kgmol

5-vf Vapor fraction.

The flow of components in the total stream is represented by their

FIGURE 10.13 TS-I - TEMPLATES FOR CONTROL INFORMATION, DIMENSION TABLE AND PROPERTY ESTIMATION METHODS TABLE

SYSTEM CONTROL INFORMATION

SYSTEM NAME a TBS-II
SERIAL NUMBER a 1
COMPATIBILITY LEVEL a

PROCEDURE TO
PROCEDURE TO
PROCEDURE TO
PROCEDURE TO

CALCULATE
CALCULATE
CALCULATE
CALCULATE

ALL
ALL
ALL
ALL

UNITS - I
STREAMS a ;
COMPONENTS =
FUNCTIONS =

DEFAULT NUMBER OF SIGNIFICANT DIGITS =
DEFAULT NUMBER OF DECIMAL DIGITS = 5
DEFAULT DEBUGGING FLAG = 0

UNIT TYPES
iflash
heatex
splitter
convu
distillation
add

STREAM TYPES
std

COMPONENT TYPES
one

FUNCTION TYPES
11

DIMENSIONS TABLE

NUMBER OF DIMENSION TYPES =

DIMENSION TYPE NAME STANDARD UNITS

Pressure

flow.rate

enthapw.rate

area

heatex-coeff

at&

kamol/hr

kcal/hr

7 enthalsw/aol kcal/ksol
NOTE: DIMENSION TYPE OF A DIMENSION LESS PARAMETER IS ZERO.

PROPERTY ESTIMATION METHODS TABLE

kcal/hr/a2/k

psia
mahs

iboole/hr

2.7300000e+002
0.0000000e+000
2.55 556+002

0.0000000e+000
0.0000000e+000

0.0000000e+000

0.0000000e+000tt2

1.0000000+000
5.55555560-001
5.555556e-001

6.8050000-002
1.3157900&-003

4.5359000e-001

9.2903040a-002

NUMBER OF PROPERTIES a

PROPERTY NUMBER PROPERTY
pvap

OPTIONS

NO. OF OPTIONS DEFAULT METHOD

332

.mole fractions. Thus, the only flow parameter of phase zero is the mole

fraction (z).

Phase one represents the vapor phase and has zero phase parameters

and one flow parameter. The latter is the mole fraction in the vapor

phase.

Phase two represents the liquid phase and similarly has zero phase

parameters and one flow parameter. The latter is the mole fraction in

liquid phase (x).

A calculating routine is associated with this stream type which has

two levels of calculation. Level one of calculation normalizes the total

stream mole fractions, and level two performs an equilibrium

calculation. Given the stream temperature (t), pressure (p), and total

stream mole fractions (z's), level two of calculation determines the

molal enthalpy (h), vapor fraction (vf), and compositions in each phase

(y's and x's). The template for the stream type is shown in Figure 10.14.

The component type "one" which is the only type component in this TBS

is represented by the following fifteen parameters:

1 - molwt molecular weight

2 - tb normal boiling point, K

3 - tc critical temperature, K

4 - pc critical pressure, K

5 - zc critical compressibility

6 - omega Pitzer's acentric factor

TABLE 10.14 TBS-II - STREAM TEMPLATE

STREAM TYPE - std
REFERENCE a Standard Streem- Vapor-Liauid Streaf
TYPE OF COMPONENTS FLOWING IN THIS STREAM - one

NUMBER OF PHASES a 2

PHASE 0 (TOTAL STREAM)

NUMBER OF PHASE PARAMETERS = 5

PARAMETER DIMENSION TYPE
1- t 1
2- p 2
3- f 3
4- h 7
5- vf 0

NUMBER OF FLOW PARAMETERS 1

PARAMETER DIMENSION TYPE
1- z 0

PHASE 1

NUMBER OF PHASE PARAMETERS = 0

NUMBER OF FLOW PARAMETERS = 1

PARAMETER DIMENSION TYPE
1- w 0

PHASE 2

NUMBER OF PHASE PARAMETERS =

NUMBER OF FLOW PARAMETERS -

PARAMETER DIMENSION
1- x 0

PROCEDURE TO CALCULATE THE STREAM =
MINIMUM NO OF ARGUMENTS a 0
MAXIMUM NO OF ARGUMENTS - 1

NUMBER OF LEVELS OF CALCULATION =

VALUE STATUS CODES FOR LEVEL =
VALUE STATUS CODE FOR ALL
FLOWING IN THIS STREAM =
PHASE 0 (TOTAL STREAM)

PHASE PARAMETER
1- t
2- P,
3- f
4- h
5- vf

FLOW PARAMETER
1- z

PHASE I
FLOW PARAMETER

1- v
PHASE 2

FLOW PARAMETER
1- x

VALUE STATUS CODES FOR LEVEL =
VALUE STATUS CODE FOR ALL
FLOWING IN THIS STREAM a
PHASE 0 (TOTAL STREAM)

PHASE PARAMETER
1- t
2- p
3- f
4- h
5- vt

FLOW PARAMETER
1- z

PHASE 1
FLOW PARAMETER

1- v
PHASE 2

FLOW PARAMETER

0

1

TYPE

stracale

2

1
PARAMETERS OF ALL COMPONENTS
15

CODE
15
15
15
15
15

CODE
5

CODE
15

CODE
15

2
PARAMETERSOFALCMNET

7

CODE
7
7

15
13
13

CODE
7

CODE
13

CODE

334

7 - cpvapa constants in ideal gas heat capacity equation

8 - cpvapb with cp in kilocalories per kg-mole Kelvin and

9 - cpvapc and t in Kelvins:

10 - cpvapd cp = cpvapa + (cpvapb)t + (cpvapc)t2 +

(cpvapd)t3

11 - delhg standard enthalpy of formation at 2980K,

Kcal/Kg-mole

12 - anta Antoine's vapor pressure equation coefficients, with

13 - antb vapor pressure in millimeters of mercury and t

14 - antc in Kelvins:

ln(vapor pressure) = anta - antb/(t + antc)

15 - hv Heat of vaporization at normal boiling point,

kcal/kg-mole

The choice of the above parameters to represent the component has been

based on the availability of data and requirements of thermodynamic

property estimation routines. The latter assume ideal thermodynamic

behavior (i.e. ideal gas and ideal solution) for both liquids and

vapors. The template for the component type is shown in Figure 10.15.

Although currently there are six unit types for this TBS, more unit

types can be easily added. The unit types are as follows:

1) Isothermal flash (iflash). It determines the quantity and

composition of liquid and vapor streams resulting when a

feed stream is flashed at a specified temperature and

335

FIGURE 10.15 TBS-II - COMPONENT AND FUNCTION TEMPLATES

COMPONENT TYPE = one
REFERENCE = Component of Tvpe one

NUMBER OF COMPONENT PARAMETERS =

NAME
1- molwt
2- tb
3- tc
4- pc
5- zC
6- omesa
7- cPvapa
8- cavapb
9- cpvasc

10- cpvapd
11- delhg
12- anta
13- antb
14-
15-

DIM TYPE
0

antc
hv

PROCEDURE TO CALCULATE THE COMPONENT = ?

ENTER COMMAND:
Print function 11

FUNCTION TYPE = 11
REFERENCE = Least Souares Line Fittins

NUMBER OF FUNCTION PARAMETERS

PARAMETER
1- 3O

2- al

DIMENSION TYPE

PROCEDURE TO EVALUATE THE FUNCTION = 1leval
NUMBER OF ARGUMENTS = 1

PROCEDURE TO CALCULATE THE FUNCTION
MINIMUM NO OF ARGUMENTS = 0
MAXIMUM NO OF ARGUMENTS = 1

NUMBER OF LEVELS OF CALCULATION =

VALUE STATUS CODES FOR LEVEL =
PARAMETER CODE

1- aO 13
2- al 13

lcalc

1

336

pressure. The template for this unit type is shown in

Figure 10.16. The calculating routine for this unit type

and the calculating routine for the stream type are both

entries of a single program which is listed in Figure

10.17.

2) Distillation. The rigorous multicomponent distillation

method of Thiele-Geddes was used in the calculating

routine of this unit. The detailed equations and

algorithms are. given in Perry [127] (equations 13-115 to

13-134). The convergence forcing procedure, the

theta-method, was also used.

The routine is rigorous in the sense that heat balances,

material balances, and equilibrium relations are applied

at each stage.

The following restrictions apply to this unit type:

a) single saturated liquid feed

b) total condenser

c) partial reboiler

d) top and bottom drawoffs only.

The template for this unit type is shown in Figure 10.18.

3) Heat Exchanger (heatex). It determines the stream outlet

temperatures and thermal duty for a counter-current one

shell and one tube heat exchanger involving single phase

fluids undergoing no phase change.

337

FIGURE 10-4 TBS-II - ISOTHERMAL FLASH UNIT TEMPLATE

UNIT TYPE - iflash
REFERENCE = Isothrenal flash calculation

NUMBER OF UNIT PARAMETERS a 4

PARAMETER DIMENSION TYPE
1- t.en I
2- 2
3- mex.iter 0
4- tolerance

NUMBER OF INLETS 1

INLET CONNECTIONS STREAM TYPE
1- in std

NUMBER OF OUTLETS a 2

OUTLET CONNECTIONS STREAM TYPE
2- ovreead std
3- bottom% std

PROCEDURE TO CALCULATE THE UNIT = iflash
MINIMUm NO OF ARGUMENTS a 0
MAXIMUM NO OF ARGUMENTS a I

NUMBER OF LEVELS OF CALCULATION a 1

VALUE STATUS CODES FOR LEVEL I
UNIT PARAMETERS

PARAMETER CODE
1- te" 7
2- pree 7
3- aauIter 7
4- tolerance 7

FOR CONNECTION a in
THIS CONNECTION IS REGUIRED
STREAM CONNECTED TO THIS CONNECTION a std

VALUE STATUS CODE OF ALL PARAMETERS OF ALL COMPONENTS
FLOWING IN THIS STREAM a 7
PHASE 0 (TOTAL STREAM)

PHASE PARAMETER CODE
1- t 15
2- p 15
3- Y. 7
4-h 15
5-vf 15

FLOW PARAMETER CODE
I- 7

PHASE I
FLOW PARAMETER CODE

15
PHASE 2

FLOW PARAMETER CODE
1- x 15

FOR CONNECTION = overhead
THIS CONNECTION 13 REOUIRED
STREAM CONNECTED TO THIS CONNECTION std

VALUE STATUS CODE OF ALL PARAMETERS OF ALL COMPONENTS
FLOWING IN THIS STREAM a 7
PHASE 0 (TOTAL STREAM)

PHASE PARAMETER CODE
I- t 13
2- 13
3-f 13
4- h 13
5vf .3

FLOW PARAMETER CODE
1- = 13

PHASE I
FLOW PARAMETER CODE
v- 13

PHASE 2
FLOW PARAMETER CODE

1- x 13
FOR CONNECTION a bottoms

THIS CONNECTION IS REOUIRED
STREAM CONNECTED TO THIS CONNECTION a

VALUE STATUS CODE OF ALL PARAMETERS OF ALL COMPONENTS
FLOWING IN THIS STREAM a 7
PHASE 0 (TOTAL STREAM)

PHASE PARAMETER CODE

3- 13-- z

4- h 1

FLOW PARAMETER CODE
1- : 13~HASE 1

--

PHASE

338

FIGURE 10.17 CALCULATING ROUTINES FOR STREAM AND ISOTHERMAL FALSH UNIT

strmcalc:proc(pstreampargswitcherror-switch);

/*DECLARATIONS*/

del (pstreamuParg)ptr;
del (switchwerrorswitch) bit(1);
del code bit(l);

del (level ,irvtwPe);
del (sumptprhrfpvf) float bin(63);
del max.nc exti
del (z(max.nc),x(max-nc),w(max-nc)) float bin(63);
del vtv(max-nc);
dcl PParm Ptr;

del strm-ptr entrw(ptrefixed binptrrbit(1));
del get-arg entrw(ptr ,fixed binfixed binbit(i));
del met-Parm entrw(ptrpfixed binufloat bin(63),fixed binbit(1));
del Put-parm entrw(Ptr rfixed binifloat bin(63),bit(1))r
del get.farmacs entrw(ptryfixed binfixed binedim(*) float bin(63),

dim(*) fixed binwbit(1));
del Put-fparmacs entrw(ptrfixed binfixed binedim(*) float bin(63),bit(1));
del ealib entrw(dim(*) float bin(63),dim(*) fixed binfloat bin(63),float bin(63),

dim(*) float bin(63),dim(*) float bin(63),float bin(63),float bin(63),
fixed binrbit(1))i

del enthal entrw(dim(*) float bin(63),dim(*) fixed binfloat bin(63)vfloat bin(63),bit(1),
bit(1))
returns(float bin(63));

del swsprint output file streami

/*STREAM CALCULATING ROUTINE*/

/* find the level of calculation */

call get-arg(pargelplevelcode);
goto 1(level)o;

IC1): /*LEVEL !* normalize mole fractions */

/* retrieve input variables */
call get-fParmacs(stream,0,1,zvtvvcode);

/* Perform the calculations */
sum=0;
do i-1 to max.nce
if vtv(i)"=-1

then if z(i)<O
then do;

Put skip edit("STRMCALC: ONE OR MORE OF MOLE FRACTIONS ARE NEGATIVE ")(a);
error.switch="1"be
return;
end;

else sum-sum+z(i);
end;

/* store the results */

call put-farmacs(stream,0,1ez/sumacode);
returni

339

FIGURE 10.17 CONTINUED

1(2): /*LEVEL 2* FIND ENTHALPY AND EQUILIBRIUM COMPOSITIONS */

/* get input variables */
call stem-ptr(pstreamp0pPraropcode);
call get-Parm(pparm1rtrvtwpecode);
call get-Parm(PParmr2rpyvtwPecode);
call set-fparmacs(pstreamOplzpvtvecode);

/* Perform the computations */

call eolib(zpvtvetrpexrwryvF.01,5Ocode)$
if code -

then dof
error.switch="1"b;
Put skip edit("STRMCALC: NO CONVERGENCE")(a);
returnO
end;

huvf*enthal(wevtvetpr".1"brcode)+ (1-vf)*enthal(xivtvrptp,*O"becode);

/* store the output variables */
call Put-par(psarmr4rbrcode);
call put-Parm(Pparmr5yvficode);

call Put-faracs(pstreamv1i,,wpcode);
call put-farmas(pstrear2,1,xecode);
return;

/*ISOTHERMAL FASH UNIT CALCULATING ROUTINE */

iflashientrw(punitrpargswitchterror-switch);

/* additional declarations */

dcl punit Ptri
del unit-ptr entrw(ptrfixed binptrbit(1));
del same.comps entrw(Ptreptrbit(1));
dcl iset-parm entrw(ptrfixed bingfixed binfixed binbit(1));
del no-of-iterations;
dcl epsilon float bin(63);
del (pstreamlpstream2ppstream3) Ptrf

/* PRELIMINARY CHECKS */

call unit-tr(unit,1ipstreamlrcode);
call unit-ptr(punit,2,pstream2,code);
call unit-ptr(punitt3,pstream3,code);

/* DO ALL STREAMS HAVE THE SAME COMPONENTS ? */
call same-comps(streamlrpstream2,code);
if code

then error.switch-"1"by
call same-comps(pstreamrpstream3rcode);
if code

then error-switch="1"b;
if error-switch

then do;
Put skip edit("IFLASHi COMPONENTS IN INLET AND OUTLET STREAMS NOT THE SAME')(a);
return;
end;

340

FIGURE 10*17 CONTINUED'

1* GET INPUT VARIABLES *

call uriit...tr(uritv~ypparrncode)f
call Met..parn(pparrn,1,trvtpepcode)^
call ae-ampam~yptppoev

call get...parr(pparrn,4epsiloripvtvyi~code)p

call strrn..tr(pstream1,0,pp'arrnpcode)^
call aet-parm(pparrn,3,fpvtypevcode)'
call get...fparracs(pstrearn1,0,1zpvtvpcode)$'

1* PERFORM THE CALCULATIONS *1

call eolib(zpvtvtppxpvfeps~o~ion...of-.iterationspcode)'
if code

then dol~
error..switch=110br
Put skip edit(OIFLASH* NO CONVERGENCE")(a)p
returnP
endp'

1* STORE OUTPUT VARIABLES *1
call strm-..tr(pstream2,0,pparrnpcode)'
call Put...parr(armlptycode)y
call Put...parw(pparrn2pycode)'
call Put...parr(,arrn,3f*vfycode);
call Put...parr(pparrn,4,erthal (vyvtvytp','
call Put...parm(parrn,5,1*Pcode);
do i=0 to 1;^
call Put..fparmacs(pstream2,iriwcode)^
endr

call strm-...tr(pstrear3,0,pparrnpcode)^
call Put...Parr(PParr1t~code)1'
call PuL..parr(pparp2pcode)p*
call Put...parr(pparn~p3f*(-vf),code)p
call PuL..parm(pF'arrn4,erthal(,vtvptpp
call Put-Parrn(pParrn,5,0+code)'
call Put-fparniacs(pstrearn3,0,1,x.tcode)^
call Put-fp'arracs(pstrearn3v2pl,,rcode)*P

call Put..fparnacs(pstrear3,1,1,x*.code)4
call Put-..Tharnacs(pstrear22,1,xpcode)P

a

1 'bycode) ,code);

O'bvcode) ,code)v

return;

en~d strrncalc?'

FIGURE 10.18 TFS-II DISTILLATION UNIT TEMPLATE

UNIT TYPE - distillation
REFERENCE - Risorous distillation Thiele-Geddes

NUMBER OF UNIT PARAMETERS a 9

PARAMETER DIMENSION TYPE
1- noof.altes 0
2- plates-below-fee 0
3- reflux-ratio 0
4- condenser-dutw 4
5- rebailer-dutv 4
6- u.er..teo.-limit 1
7- lower.team.limit 1
9- tolerance 0
9- mex-it 0

NUMBER OF INLETS I

INLET CONNECTIONS STREAM TYPE
1- feed std

NUMBER OF OUTLETS = 2

OUTLET CONNECTIONS STREAM TYPE
2- overhead std
3- bottoms std

PROCEDURE TO CALCULATE THE UNIT = distillation
MINIMUM NO OF ARGUMENTS a 0
MAXIMUM NO OF ARGUMENTS - 1

NUMBER OF LEVELS OF CALCULATION a 1

VALUE STATUS CODES FOR LEVEL = 1
UNIT PARAMETERS

PARAMETER CODE
1- no-of-paltes 7
2- Plates-below.fee 7
3- reflux.ratio 7
4- condenser-dutw 13
5- reboiler.dut 13
6- uppr-t#ap-liait 7
7- lower.temp-limit 7
a- tolerance 7
9- max-it 7

FOR CONNECTION - feed
THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION = std

VALUE STATUS CODE OF ALL PARAMETERS OF ALL COMPONENTS
FLOWING IN THIS STREAM = 7
PHASE 0 (TOTAL STREAM)

PHASE PARAMETER CODE
1- t 13
2- p 7
3- f 7
4- h 13
5- vt 7

FLOW PARAMETER CODE
1-z 7

PHASE 1
FLOW PARAMETER CODE

I- w 15
PNASE 2

FLOW PARAMETER CODE
1- x 15

FOR CONNECTION - overhead
THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION s std

UALUE STATUS CODE OF ALL PARAMETERS OF ALL COMPONENTS
FLOWING IN THIS STREAM = 7
PHASE 0 (TOTAL STREAM)

PHASE PARAMETER CODE
1- t 5
2- p 13
3- f 7
4- h 13
5- vt 13

FLOW PARAMETER CODE
1- z 13

PHASE I
FLOW PARAMETER CODE

I- w 13
PHASE 2

FLOW PARAMETER CODE
1- x 13

FOR CONNECTION - bottoms
THIS CONNECTION IS REQUIRED
STREAM CONNECTED TO THIS CONNECTION - std

VALUE STATUS CODE OF ALL PARAMETERS OF ALL COMPONENTS
FLOWING IN THIS STREAM = 7
PHASE 0 (TOTAL STREAM)

PHASE PARAMETER CODE
1- t 5
2- p 13
3- f 13
4- h 13
5- vf 13

FLOW PARAMETER CODE
1- z 13

PHASE I
FLOW PARAMETER CODE

1-v 13
PHASE 2

FLOW PARAMETER CODE
1- x 1:

342

4t) Add. It adds two streams and determines the product

stream. It has two levels of calculation. Level one is

only for material balancing. Level two is for both

material and heat balancing. For level two of calculation

both inlet streams should be either vapor or liquid. The

outlet stream temperature is determined by a heat

balance. The output stream pressure is assumed to be

equal to the minimum of the inlet stream pressures.

5) Splitter. It separates an input stream into two output

streams, each having the same composition, temperature,

and pressure as the input. The distribution factor which

is the unit parameter specifies the flow rate of each

output stream as a fraction of the flow rate of the input

stream.

6) Convergence (convg). It is a psuedo unit type which is

used for stream convergence. Streams to be converged are

input and output to this unit. The test for convergence

is based on the total flow rate and composition. In other

words, the unit indicates convergence, if the following

relations are true:

in - fout 1 fin I <= tolerance

(zini - zout,i)/zin,il <= tolerance

for all components

343

If the above test fails then the output stream is set to

be equal to the input stream.

The calculating routine for this unit type can perform two

levels of calculation. In level one, given the unit

parameters (i.e. maximum number of iterations, tolerance,

etc.), and inlet and outlet streams, it tests for

convergence as described above. In level two it

initializes the unit parameters to the default values.

Some of the above calculating routines call upon physical and

thermodynamic property estimation routines, for various functions.

Although these property estimation routines have been based on simplified

assumptions regarding the thermodynamic behavior of liquid and vapor

mixtures, they could easily be replaced with more realistic models

without requiring any change in calculating routines. Table 10.1 lists

the property estimation methods currently implemented for this TBS.

There are two options for estimating vapor pressure: (1) Antoine's

equation, and (2) Riedel's equation [140] . The template of the property

estimation methods table which is shown in Figure 10.13 indicates that

the user of this TBS is allowed to choose either of these methods at any

time. If the user does not specify the method the default would be

Antoine's equation. The templates of the TBS control information and

dimension table are also shown in Figure 10.13.

A pre-defined function has been established for this TBS to

demonstrate the implementation and application of such functions. The

344

Table 10.1 TBS-II Property Estimation Methods

Vapor Pressure

Two methods for estimating vapor pressures have been implemented:

1 - Antoine's equation:

ln(pvap) = anta - antb/(t + antc)

where vapor pressure is in millimeters of mercury and t in Kelvins.

2 - Riedel's equation [140]:

ln(pvap/pc) = A - B/tr + Cln(tr) + Dt6

where:

tr t/tc

A = -35Q

'B = -36Q

C 42Q + alpha

D -Q

Q = 0.0838(3.578 - alpha.)

0.315W + ln(p)
alphac = 5~5 ln~-Itb/7E-

cc

36 6
W = -35 + 7 + 421n(tb/t) - (tb/t)

K Value:

k, = yi/xi = pvapi/p

345

Table 10,1 (continued)

Enthalpy

Basis: enthalpy of pure components at 298oK; vapor state is zero.

Molal enthalpy in vapor phase:

t.
ENTHALPY f cpvdt +-i delhg.

~298 1

Molal enthalpy in liquid phase:

ENTHALPYL ENTHALPYv - E hv.1

where

cpv Z [cpvapa + (cpvapb)t2 + (cpvapc)t3 + (cpvapd)t]

Equilibrium Composition of a Mixture

If E z.k.<= 1 mixture is at or below bubble point:
. 1 1
1

xi = zi, yi =0 for all i

If E z /k.<= 1 mixture is at or above dew point:

71 = zi, xi = 0 for all i.

In the two-phase region:

z.(1 - k.)
1 1 - 0

Half interval method is used to find the root of the above equation,

vf, for an accuracy of + tolerance. Once vf (vapor fraction) is found

x's and y's are found as follows:

z=

x. = -~~----"--1 ~~i'i= k. * x for all i

346

Table 10.1 (continued)

Average Heat Capacity

Average heat capcity in vapor phase:

CPAVGv(T1, T2) = [ENTHALPYV(T2) - ENTHALPYv(T1)]/(T2 - T1)

Average heat capcity in liquid phase:

CPAVGL(T1, T2) = [ENTHALPYL(T2) - ENTHALPYL T1)]/(T2 - T1)

Bubble Point Temperature

F(TB) = 1 - zk i(TB) 0.0

Half interval method is used to find the root of the above equation,

bubble point temperature, for an accuracy of + tolerance.

Given the enthalpy of a liquid or vapor mixture find, its temperature:

ENTHALPYGIVEN - ENTHALPYV(T) = 0

or

ENTHALPYGIVEN - ENTHALPYL(T) = 0

Half interval method is used to find the root of the above equations,

temperature, for an accuracy of + tolerance.

347

function is a least squares line fitting function whose template and

calculating and evaluating routines are shown in Figure 10.15 and 10.19

respectively. The examples that follow demonstrate the application of

this TBS.

Examples

a) The example presented here is selected from the unpublished class

notes of Professor L.B. Evans-[29] with his permission.

Simulate the steady state behavior of a three-stage flash separation

process shown in Figure 10.20a. The feed stream is a mixture with the

following compositions:

Component Mole Fraction

N-Butane .25

N-Pentane .25

N-Hexane .25

N-Heptane .25

The feed flow rate is 100 kg moles per hour. The stage specifications

are:

Stage Temperature Pressure

1 2250F 100 psia

2 185 0F 50 psia

3 125 0F 14.7 psia

The computational flowsheet for this process is shown in Figure 10.20b.

Units "M1" and "M2" are for mixing the streams and unit "TEST" is for

FIGURE 10.19 TBS-II - FUNCTION CALCULATING AND EVALUATING ROUTINES

05/12/78 1254.9 edt Fri

l1calciproc (Pfuncrpargswitcherror-switch);

/* DECLARATIONS */

dcl (Pfuncrpara) Ptri
dcl (switcherror-switch) bit(1);

dcl getin entrw(fixed bintfixed bin);
dcl getrn entrw(float bin(63));
dcl func-.tr entrw(ptryptrbit(1));
del Put-parm entrw(ptryfixed binyfloat bin(63),bit(1));

del irn;
del (xrwsxtsx2,swsw2psxwaOrarr2) float bin(63);
dcl P Ptr;
del code bit(1);

/* CALCULATING ROUTINE */

Put skip edit("L1CALCO ENTER THE NUMBER
call getin(nv99999);

OF DATA POINTS:")(a);

sxpswpsx2psw2,sxw-0;

Put skip sdit("L1CALC: ENTER X AND Y.OF
do im1 to n;
Put skip edit(iy'*")(x(5),f(5),a);
call getrn(x);
call metrn(w);
sx-sx+x;
sw=sw+w;
sx2=sx2+x**2;
sw2=sw2+w**2;
sxw=sxw+x*w;

end;

EACH POINT'")(a);

aO=(sw*sx2-sx*sxw)/(n*sx2-sx**2);
a1=(n*sxw-sx*sw)/(n*sx2-sx**2);
r2=(n*sxw-sx*sw)**2/((n*sx2-sx**2)*(n*ss2-sw**2));

/* STORE THE COEFFICIENTS */
call func-ptr(pfuncrecode);
call put-parm(P1riaOrcode);
call Put-parm(pr2raircode);

/* PRINT R SQUARE */
Put skip edit("R2=",r2)(x(5),ave(22,14,14));

return;

/* EVALUATING ROUTINE */

l1evalientrw(pparmargresult);

/* additional declarations */
del Pparm Ptr;
del arg(*) float bin(63);
del result float bin(63);
del set-parm entrw(ptrrfixed binpfloat bin(63),fixed binrbit(1));
dcl vtwee;

/* get the coefficients */
call set-parm(pearmrlpaOrvtwpecode);
call get-Parm(pparmr2,saivtwyePcode);

/* evaluate the function */
result=a0+a1*ars(1);

return;

end 11calc;

11calc.p11

349

- OVERHEAD PRODUCT

FEED ~

FIGURE 10.20a TBS-II --
PROCESS FLOWSHEET FOR
THE EXAMPLE CASE

FEED

UNITS

M1 ,M2
Fl,F2,F3
TEST
DISTIL

TYPE

ADD
IFLASH
CONVG
DISTILLATION

.... SDISTILl

o S

i- -sm- BOT TOM

FIGURE 10.20b TBS-II -- COMPUTATIONAL FLOWSHEET FOR THE EXAMPLE CASE

PRODUCT

LPROD
,--emTOP
I

350

stream convergence. The PEL computer session for simulating this

flowsheet is shown in Figure 10.21.

b) Determine the sensitivity of the recovery of N-Pentane in the

overhead and N-Hexane in the bottom product to variations in stage 2

pressure. The PEL computer session for this analysis is also shown in

Figure 10.21.

c) Simulate the process with the following feed compositions:

Component Mole Fraction

N-Butane .2

I-Butane .2

N-Pentane .2

N-Hexane .2

N-Heptane .2

The PEL computer session for simulating this case is shown in Figure

10.22.

d) Distill the bottom product of the flowsheet desribed in part (a)

by a distillation column with the following specifications:

Number of plates 10

Plates below feed 5

Reflux ratio = 2.5

Overhead flow rate = 30% of feed

Total condenser

Partial reboiler.

FIGURE 10.21 TBS-II - A PEL COMPUTER SESSION FOR THE EXAMPLE CASE

Pol brief

*beginning of attachment Process.
**enter the name of TBS wou wish to use now:TBS-II

*attachment process has been successful.

*new Process created at:05/12/7S 1342.6 edt Fri
**enter maximum number of comsonents(O to 200):5

**COMMAND : $DESCRIBE THE PROCESS CONFIGURATION$

**continue:create units(mlya2) tweinadd;

**COMMAND *create units(f1lf2,f3) tvpemiflashf

**COMMAND ereate unit(test) twPeeconvgi

**COMMAND : create streams(feedelprodpvprodvsirs2,s3,s4vs5,s6,s7);

**COMMAND connect unit al at inlfteed in2=s5 out-isl

**COMMAND *connect unit fi at in-si overheadnvprod bottosms2;

**COMMAND :connect unit m2 at allis2,s7vs3;

**COMMAND :connect unit test at all-s3rs4;

**COMMAND :connect unit f2 at alls4vs5ps6f

**COMMAND :connect unit f3 at allas6,s7,ilpod;

**COMMAND $DESCRIBE THE COMPOSITIONS OF THE STREAMS$

**continue*open component private file(data);

**enter the relative or absolute pathname of the directorw containing the Private component file "data"
(if it is the same as wour working directorw ,>udd>ICPES>Arab-Ismaili, enter a null line):

*component private file data has been created at: 04/19/78 1032.9 est Wed
bw swstem: OPES serial.no: 1 compat.level: I

and T9S: TBS-II serial.no* 1 compat.level: 1
and it has not been accessed bw env other incompatible system since.
remark*source: Reid and sherwoodProperties of liouids and Gassest 3rd ed.

**COMMAND **load components(nc49nc5rnc6,nc7);

**COMMAND :creete flow all all;

**COMMAND :ssecifw streem(feed) (f-100);

**COMMAND :read flow(feed) ll;

**enter the following flow parameters:
stream feed

Phase 0
component ne4

1-z :.25

1-z :.25

component nc6
1-Z 0.25

component nc7
1-2 :.25

**COMMAND :

FIGURE 10.21 CONTINUED

**continue: sSPECIFY UNIT PARAMETERS$

**continue:read units all

**enter the following unit
unit test

1-Sax-iter

2-n-iter

3-tolerance

4-flas

unit f3
1-teos

3-sax-iter

4-tolerance

unit f2
1-temp

3-sex..iter

4-tolerance

unit fi

4-tolerance

unit *2
1-max-iter

2-tolevranes

unit &l
1-max-iter

2-tolerancs

**COMMAND:

peraeeters:

:50

:0

.01

:125'f'

:14.7'psia'

:50

:.01

:185'1'

:50'ps.ia'

:50

:.01

225'f'

:100'sia'

.01

SASSUME THE PARAMETERS OF THE TEAR STREAM$

**continue:leta stream s4=feedf

*CCOMMAND :Ita flow s4=feedf

*COMMAND : $SIMULATE THE PROCESS$

*Ccontinueocalculate units(f2rf3,mlflta2rtest(Cf2))I

routine iflash
routine iflash
routine add
routine iflash
routine add
routine convy
routine iflash
routine iflash
routine add
routine iflash
routine add
routine convs
routine iflash
routine iflash
routine add
routine iflash
routine add
routine convs
routine iflash
routine iflash
routine add
routine iflash
routine add
routine conve
routine iflash
routine iflash
routine add
routine iflash
routine add
routine convi
:Profile dflas-1;

for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level
for level

calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit
calculation of unit

*entering
*entering
*entering
*entering
*entering
*entering
Centering
*entering,
*entering
*entering
*entering
*entering
*entering
*entering
*enterins
Centering
*entering
*entering
*entering
*entering
*entering
*entering
*entering
*entering
*entering
*entering
*entering
Centering
*entering
*entering
**COMMAND

'f2"
* f3'

*f1'

"test'
*f2'
sf3'

fl

'm2'
"test'
"f2'

"f3'

'al'

'a2*
' test'
'f2'
Of3'

"al'
'f 1"
* a2"
'test'
"12"
'f3'

"al'
"ft'
'm2'
0 test I

"ZCOMMAND :

poen~aTOO-.sEETVC X-T
Sm~rlOO-------- cjTS-------------------------------------7urvesw

pae~aTeaT3 TOO-06?EO*Z x-T
snww-------- OOsauwTp-wn~W------------------------------- W'361ufva

Gaumusuo~woa
Pelf~nOTOO zOO-*T?96969 X-T

avTsoSUTfl-W-------------------------------- Baza

Ps' EMOTQOO00+0000000 -
3fl~ff~---------- aO!UOsUTp-vnTW--------------------------- --- Zv 899waW

ZOUMuOuo4Goa

snl7 -------- OOTIOUSTP6nTw------------------------------ 87"Wava

Ps'6TflaTsa OOO+*000000 1-
Wn~~~~ffOUTTfl ---------- CTCNP*TR ------------------------- 6" S

PO1EfTnQTRQ 000+0000000O'O-
unes-------- OOTUODUTP-NnTW------------------------------- Vewerme

POI&TnlsoT OO-svG89*E Z-T
wn~~~r7OO W U nT----------CTCGPw~x ------------------------- 7fww~

Pb1eTnOTROTO*ET~ Z-1

po~e~nalea 1O-69EOE*SZ-
snlaOSam~pflU----------a~cwpwTx ------------------ ----- arvahW

poe3nOTRO ZOO-SMY9609 Z-T
snes---------CrOSurwP-lTW-------ou~mo

0

PGI*TnOTOD 000+0000000 -
snrs-------- coruoeurp-Iw------------------- --- IlwalwaW

p~~aw 00+000000oo0 N-T

pale~naleao00+*000.0o-
snOTOSTUfwW---------------cTcwP-f~n ----------- ---- VN7UU3wzUr

pela~na~taO00+0000000 -
Wnrw-------- UCTSoIwTP-nTWX----- ---- w;vwauu

voungusuodwoo

P*ItTnQTeO z00-svzOes.v .~
5fl$W----------- MOTSODU!P-onTR--- -U -----

ZaUw4u~uodUo*

pe-4alnOTOD O0-*ET690*1T-
sn;.------O5OT fT---------CTCMPv~m --------------------- Tw~nwar

90UMIU@OU46

Psle~O~eD 00-0*ET9z z
silei;--------oor~ouwwTp-*nnwR fUsUWuwu~u~

POI&TnOTe* TOO-0VOVS 0LT
snjw7W e~pun~v---------OTCOP6Tn --------------------- welawivua

SnOg---- OTSONNTPD"T*R -W7EUW-W3
ZOUMIUSU04000

pelv~naleaTOO-OET680O Z-
sn~wl---------OCIoautp-nTw-------------------------vleww

pa1*TnQTOQ TO-04E~T9*Z Z-T
in~;-------O~O3~pflW------------------------------- N69o

QZUftUGuOdSOQ
Ps*TOOD10-*00&iOzo Z-1

in;;-------oo~ou.p-3l~------------------------- WIIGWCVu
vauftlusuedsoa

PO1WNflOTOO
PSOTflOTIO

aNVWW03**

*5@L4d

OS04,d

POs&d ULSo O

O5@t4d

o &5344
PO44A U94,4 jto M014

f5AeOeSSJ94 (POJdj4POJ4A) M01T4 lJT40 aNVWW03**
Jt/TOUwwA 100O+4EZ9 W4*0aPO1jdUs
J4/TOU5W4 TOO+RBE469*E w4*04POJaA*S

(J04*PO4jdT d0*P.AdA*S)A ju;j:nut4uo***

*±fsiins 3H.L INI~4s :Onulluoo**

'33nNIINO Tz~oT 3mnifI

FIGURE 10.21 CONTINUED

**cont inue I $SAVE THE PROCESS$

**continue open Process file(demo)#

**enter the relative or absolute Pathname of the directorw containing the Process file 'demo"
(if it is the same as sour working directorw r>udd>ICPES>Arab-Ismailir enter a null line)?

*Process file "demo" is opened.
**COMMAND ?save Process flash-seerationl

*process has been saved.
**COMMAND : $PART b - SENSITIVITY ANALYSIS $

**continuetrepeat for u.f2.Pres from(30'psia') to(70'psia') bw(i0'Psia')l

**COMMAND tcalculate units(f2vf3vmlflrm2rtest(vf2))

**COMMAND :specifv variables (rnc5=sevprodPO.f*fevprod.PO.nc5ez/(sofeedePO.f*fefeedePO~nc5ez)*100.

rnc6=s.lprod.POef*flprodPO.nc6ez/(sofeed.PO.f*fefeedeP0.nc6.z)*100**continue:

**continuel u.testen-iter=0

**COMMAND tPrint variables(uf2*Presrrnc5rrnc6)1

usf2*pres=
rnc5=
rnc6=

**COMMAND :loop$

u. f2 P res=
rnc5=
rnc6=
u.f2.Pres=
rnc5=
rnc6=
u.f2.Pres=

rnc5=
rnc6=
u*f2.pres=
rnc5=
rnc6=

**COMMAND :endf

2e04150e+000
5e61943e+001
7.39111e+001

2#72200e+000
4.43336et001
8.39143e+001
3e40250e+000
4.12333e+001
8.46989e+001
4#08300e+000
3.77734e+001
8.41252e+001
4.76350et000)
3e60755e+001
8.38169et001

atm

atm

atm

atm

atm

specified

specified

specified

specified

sPecif ied

*thank you Arab-Ismaili for trwing GPES come back soony buel
r 1420 15.788 332.606 5656

FIGURE 10.22 TBS-II - ANOTHER PEL COMPUTER SESSION FOR THE EXAMPLE CASE
Pel brief

*beginnins of attachment process.
**enter the name of TBS wou wish to use now:TBS-II

*attachment process has been successful.

*new process created at:05/12/78 1421.6 edt Fri
**enter maximum number of components(0 to 200):0

**COMMAND : $LOAD THE PROCESS$

**continueiopen Process file(demo)lI

**enter the relative or absolute Pathname of the directorw containing the Process file 'demo'
(if it is the same as wour working directorw t>udd>ICPES>Arab-Isaaili, enter a null line)?

*Process file 'demo" is opened.
**COMMAND ;load Pr flash-seserationi

*srocess "flash.seperation' has been created at:05/12/79 1342.6 edt Fri
by swstemS GPES serial-no I compet-level: 1

and TBSI TBS-II serial-no; 1 cospat-level: I
and it has not been accessed bw anu other incompatible swstem since.

*Process has been loaded.
**COMMAND I $SIMULATE FOR PART c OF EXAMPLE CASES

*Ccontinualopen component Private file(data)f

**enter the relative or absolute pathname of the directorw containing the private component file "data'
(if it is the same as wour working directorw ,>udd>ICPES>Arab-Ismaili enter a null line):

*component private file data has been created at: 04/19/78 1032.9 est Wed
bw smstemS GPES serial.nos I cospat-level: 1

and TBS: TBS-II serialnot 1 comset-level: 1
and it has not been accessed bw any other incompatible swotem since.
resark:sourcel Reid and sherwoodiProperties of liouids and Gasses* 3rd ed.

**COMMAND Iload component(ic4)

**COMMAND :create flow all (ic4)I

**COMMAND : SSPECIFY NEW COMPOSITIONSS

**continuegread flow(feed)alli

**enter the following flow
stream feed

shase 0
component nc4

1-z

component nc5
1-Z

component nc6

perameterss

1.2

;.2

coeaat-.nc L-

1-z

component ic4
1-2

**COMMAND : SASSUME PARAMETERS OF TEAR STREAMS

**continuegleta stream s4mfeedf

**COMMAND :leta flow s4-feedi

**COMMAND : $SIMULATE THE.PROCESS6

**continuelcale (f2,f3,mlmfla2,testf2))D

ERROR s 56 '' is an invalid command obJect
*command ignored.
**COMMAND scalc units(f2,f3,mlfiam2,test(,f2))0

*enterins
Centering
Centering
*entering
*entering
*entering
Centering
*entering
Centering
$entering
*entering
Centering
*entering
*entering
*entering
*entering
*enterins
*entering
Centering
*entering
*entering
Centering
Centering
*enterins
k ErnmmANn

routine
routine
routine
routine
routine
routine
routine
routine
routine
routine
routine
routine
routine
routine

iflash
if lash
add
iflash
add
cQnvg
iflash
iflash
add
iflash
add
conv
iflash
iflash

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

routine add
routine iflash
routine add
routine convg
routine iflash
routine iflash
routine add
routine iflash
routine add
routine conv9

:P ,f , 11i'Ag=

level
level
level
level
level
level
level
level
level
level
level
level
level
level
level
level
level
level
level
level
level
level
level
level

for 'calc" command.

calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation
calculation

unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit

"12'
"f3'
"mi'
'fi"
'm2'
'test'
"f2'
'13'
'ml'
'fi'
'.2'
'test'
"f2'

'f3'
'ml'
'fi'
'm2'
'test'
'12'
'f3'
"ml'
"f1'
'n2'
'test'

FIGURE 10.22 CONTINUED

**coletinue: sPRINT THE RESULTS$

**cortirue:Prirt v(s.vprod.PO.fvs.lprod.P0.f);

s.vprod.p0.f=
s.lprod.po.fz

**COMMAND :Print flow(vprodplprod)si

flow of stream vprod
Phase 0

6.00717e+001 ksmol/hr
3.97889e+001 kaaol/hr

calculated
calculated

componentanc4
aamasate2-------------------------.alue.dianosiao--------status

1-z 3.01688e-001 calculated
componentanc5

arametaz-------------------------walue-disosion. status
1-z 2.09767e-001 calculated

comsonentonc6
aamata -........................ walu..diamsio...--------status

1-z 1.15032e-001 calculated
componentanc7

nazaaater------------------------..walu-.dieosio.... status
1-z 5.73200e-002 calculated

component-ic4
a=amaax2-------------------------walua.diaasio--------status

1-z 3.15303e-001 calculated
Phase 1

comnonent-nc4
aaametae ------------------------ walue.diaaasio status

1-W 3.01688e-001 calculated
comsonent-nc5

aaasieta.-------------------------..alue.disasio...--------status
1-w 2.09767e-001 calculated

component-nc6
nazameter.-------------------------walue.dieasio--------status

1-w 1.15032e-001 calculated
component-nc7

aamter.------------.. -------------valua.dimaensio--------status
1-W 5.73200e-002 calculated

componantnic4
acamasta.-------------------------Ualue-diamosio.--------status

1-W 3.15303e-001 calculated
Phase 2

componentenc4
aamasta.-------------------------ualue.diamosion--------status

1-x 0.000000+000 calculated
component-nc5

aamaeter.-------------------------walue-dimaaosio--------status
1-x 0.00000e+000 calculated

comsonent-nc6
aamaate.-------------------------ualue-dinaosico--------status

1-x 0.00000e+000 calculated
component-nc7

samasete.-------------------------walue-diaaosion--------status
1-x 0.00000e+000 calculated

componentoic4
aacameta.------------------------- walue-dimasio.--------status

1-x 0.00000e+000 calculated
flow of stream lprod

-prasa .
componentwnc4

azaet.-------------------------.. walua.diaeasion--------status
1-Z 4.64010e-002 calculated

coaponentenc5
aaasate.-------------------------walua.diseasio--------status

1-z 1.83312e-001 calculated
componentnc6

amaranta-------------------------walu-diaasi... ..--------status
1-z 3.28559e-001 calculated

component-nc7
aasaete.-------------------------walue-diameasio.--------status

1-z 4.16061e-001 calculated
consonent-ic4

aaaaster.-------------------------walu.diaeosion--------status
1-2 2.70924e-002 calculated

Phase 1
conponent-nc4

aamaaster.---- ---------------------walue.diaeasioa--------status
1-w 0.00000e+000 calculated

conponentenc5
aamastax--..-----------------------walua.diaos.o ..--------status

1-W 0.00000e+000 calculated
component-nc6

azamasta.-------------------------walue-dsmosio.--------status
I-W 0.00000e+000 calculated

component-nc7
nazaaete.-------------------------walu-.diaansio.--------status

1-W 0.00000e+000 calculated
comsonentsic4

araeter.-------------------------... alu..diaosio.o.--------status
1-W 0.00000e+000 calculated

phase 2
component-nc4

gazamate-------------------------malue-dabosoo--------status
1-x 4.64010e-002 calculated

component-nc5
aamaast .------------------------- alua-diaeosion--------status

1-x 1.83312e-001 calculated
component-nc6

aar2aate2-------------------------walue.diaaosio.--------status
1-x 3.28559e-001 calculated

componnt-nc7
aamasta.------------------------- alua-disaosio--------status

1-x 4.16061e-001 calculated
componentnic4

saxamater.-------------------------walue-diamosion--------status
1-x 2.70924e-002 calculated

FIGURE 10.22 CONTINUED

**continue: *PART d - DISTILLATION s

**continue:load process flash-seperation;

*Process "flash-seperation" has been created at:05/12/78 1342.6 edt Fri
bw sWstem: GPES serial-no: compat-level: 1

and TBS: TBS-II serial-no: 1 compat-level: 1
and it has not been accessed bw any other incompatible swstem since.

*Process has been loaded.
**COMMAND :create unit(distil) twue-distillation;

**COMMAND :connect unit distillation at feednlprod overhead-top bottomsabottoas

ERROR s 27 'distiA.1atio" is an unknown unit
*command ignored.
**COMMAND :connect unit distil at feed=lprod overheadntop bottoasmbottoss

*strea *toP" does not exist. a stream of twpe "std" has been created.
*stream "bottoms" does not exist. a stream of twpe "std" has been created.
**COMMAND :create flow (topebottoms) all;

-**COMMAND :read unit(distil)alli

**enter the followinm unit parameters:
unit distil

1-no-of-paltes :10

2-plates-below-fee:5

3-reflux-ratio :2.5

4-condenser-dutw

5-reboiler-dutw

6-upper-temP.limit':400'If'

7-lower-te"s-limit:50'f'

8-tolerance :.1

9-ax.it :20

**COMMAND :specift stream(top) (f=.3*s.lProd.0.t);

**COMMAND *assume variables(s.top.s0.t=325, s.bottoms.P0.t=375

-**COMMAND icalc unit(distil)$

DISTILLATION: ROUTINE NOT CONVERGED IN 20 ITERATIONS.
**COMMAND :Print flow(tao)pi

flow of stream top
Phase 0

conponent=nc4
aaaastaz-------------------------malue-dimosion--------status

1-Z 2.32067e-001 calculated
coaponent-nc5

1-Z 7.12658e-001 calculated
comonent-nc6

amaaetsm alus-dimmosioo--------status
1-Z 5.44348e-002 calculated

comsonent-nc7
aazama"am------------------------walue-diseasion--------status

1-: 8.42561e-004 calculated
Phase 1

componentenc4
maxamtem------------------------ walue-dinmosioo--------status

1-W 0.00000e+000 calculated
cosponent-nc5

aaaametem----------------..walue-diamosion--------status
1-W 0.000000+000 calculated

componentnc6
nazametam-------------------------malue-.dimosion--------status

1-W 0.000000+000 calculated
coaponent-nc7

aamantax-------------------------ialun.dimasioc--------status
1-V 0.000000+000 calculated

phase 2
component-nc4

aamamstem.-------------------------ualue-diaeosion--------status
1-x 2.32067e-001 calculated

componentnc5
aamamtmz..------------------------alue-dimansion--------status

1-x 7.12658e-001 calculated
component-nc6

aamametem-------------------------walue-diaeosion--------status
1-x 5.44348e-002 calculated

component-nc7
aaametma-------------------------yalue-diaaosio.--------status

1-x 8.42561e-004 calculated

FIGURE 10.22 CONTINUED

**continue: Print flow(bottoms)pi

flow of stream bottoms
phase 0

component=nc4
parameter -------------- _-_-----ualuedimension------- status

1-z 2.26183e-005 calculated
component=nc5

aavameter------------------------- alue-dimension------__status
1-z 2,36730e-002 calculated

component=nc6
earameLer ------------------------- alue-dimeasion------- status

1-z 4.50006e-001 calculated
camponent=nc7

earameter ------------------------- ualue-dimeasion--------status
1-z 5.26131e-001 calculated

phase 1
component=nc4

uarameLer----_--------------------alue-dimeosion--------status
1-w 0,00000et000 calculated

camponent=rc5
arameter_--------------_-------value-dimension -------- status

1-W 0.000000e000 calculated
component=nc6

earameta----------------------------ualue-dimension--------status
1-W 0.00000e+000 calculated

comonent=nc7
earameter -------------------------ualue-dimension--------status

1-V 0.00000et000 calculated
phase 2

component=nc4
earameter----_--------------------value-dimension--------status

1-x 2.28103e-005 calculated

component=nc5
earameter ------------------------- ualue-dimension---_____status

1-x 2.36730e-002 calculated
component=nc6

earameter-------------------------ualue-dimension---------status
1-x 4,50006e-001 calculated

camponent=nc7
eaameter-------------------------value-dimension--------status

1-. 5.26131e-001 calculated
**COMMAND :save process flash-seperation override#

*Krocess has been saved.
**COMMAND tendi

*thank uou Arab-Ismaili for truing GPES come back soony buel
r 1454 10.546 191.693 3218

If V

359

The PEL computer session for simulating this case is also shown in Figure

10.22.

10.4 A Prototype TBS for Magnetohydrodynamic (MHD) Processes

This TBS has been developed by Dr. H. Cohen and Mr. B. Misra from the

MIT Energy Laboratory. The purpose of this study was to test the GPES

independently, as well as to produce a useful system for the study of MHD

power plants. The discussion about MHD power generators and detailed

specification of this TBS is beyond the scope of this thesis and can be

found elsewhere [90,91,92,93 ,94,95 ,96,97,98, 99,100,101,102] The

process configuration of an open-cycle MHD-topped power plant is shown in

Figure 10.23. This process has eight unit types and six stream types.

The stream types are as follows: water, air, fuel, combustion gas,

power, and heat. The unit types are as follows: combustor, MHD

generator, inverter, diffuser, heat exchanger, steam plant, compressor,

and efficiency. The last mentioned unit is only a pseudo-unit; it

calculates the total power and the efficiency of the system. The

combustor has two inlet streams: one for air, through which air at a

prescribed pre-heat temperature is fed, and the other for fuel and seed.

The combustion gas from the combustor is fed to the MHD generator where

power is generated. The inverter serves to convert the power from the

generator to A.C. power. The diffuser receives the combustion gas from

the MHD generator and reduces the flow velocity to a prescribed value.

The heat exchangers are used to heat the air to specified temperatures,

a - f ___II IawwoI pheatm ON"

- COMBUSTOR

- COMPRESSOR

- DIFFUSER

- EFFICIENCY

- HEAT EXCHANGERS

- INVERTER

- MHD-GENERATOR
- PRE-H1EATER
- STEAM-PLANT

a - AIR

f - FUEL

g - COMBUSTION GAS

h - HEAT

p - POWER

w - WATER FIGURE 10.23 MHD TBS -- PROCESS FLOWSHEET

OF AN OPEN CYCLE MHD TOPPED PLANT

comb
comp
di f u
eff
hel,he2
inv
nh d
pheat
steam

361

while the steam plant serves to generate power from the heat losses from

the combustor, the MHD generator, the diffuser, and the enthalpy of

combustion gas flowing within it. The compressor draws atmospheric air

and feeds it to the heat exchanger II, after a specified compression.

The power from the inverter and the steam plant is fed into the

pseudo-unit efficiency, from which the compressor draws the requisite

amount of power for its operation. It calculates the efficiency of the

system as the ratio of the net power output and the total energy supply

at the combustor. The application of this TBS will be illustrated by the

following examples.

Examples:

The model for the process flowsheet shown in Figure 10.23 has already

been saved.

a) Determine the sensitivity of the overall system efficiency to

variations in condensation pressure at the termination of the steam

cycle. The PEL computer session for this analysis is shown in Figure

10.24.

b) An externally fired pre-heater, as shown by the dashed lines in

Figure 10.23 may be used to raise the temperature of the air coming out

of the high temperature heat exchanger. Determine the effect of the

degrees of pre-heat on the overall system efficiency. The PEL computer

session for this case is shown in Figure 10.25.

FIURE 10.24 M"D TBS - A PEL COMPUTER SESSION FOR THE EXAMPLE CASE
Pel brief

*beainnin of attachment process.
**enter the name of TBS uou wish to use now1MHD

*attachment Process has been successful.

*new Process created atO05/07/78 2004.5 edt Sun
**enter maximum number of components(0 to 200):0

**COMMAND i $---LOAD THE PROCESS--.$

**continue:apen Process file(misra);

**enter the relative or absolute Pathname of the directoru containing the process file "misra"
(if it is the same as uour working director ,>udd>ICPES>HCohenr enter a null line):

*rocess file "misra" is opened.
**COMMAND tload Process demaoi

*Process "demo" has been created at:04/19/78 0914.8 est Wed
bu sustem GPES serial.no: 1 compat-level 1

and TBS; MHD serial-not 1 comat-level 1
and it has not been accessed bu anu other incompatible sustem since.

*Process has been loaded.
**COMMAND : $--- PART (a) SENSITIVITY OF OVERADS SYSTEM EFFICIENCY

**continueirepeat for u.steam.pes from(3000) to(10000) bQ(1000);

**COMMANID calculate units(steamreff)i

TO VARIATIONS IN CONDENSATION PRES.---$

*enterins routine steam-inter
*enterinq routine effic-inter
**COMMAND terofile dflaA=11

for level
for level

1 calculation of unit
1 calculation of unit

**COMMAND :print variables(u.steam.esvu.eff.effic);

u. steamt.iees
u.eff.effic=

**COMMAND :Iloop

u.steam.pes=

u.eff.effic=
u*steame5*es=
u.eff.effic=
u.steam.pes=-
u*eff.effic=
u. s team. *pes=

u. eff'effic=
u.steam.es=
u.eff.effic=
u.steam.Pes=
u.eff.effic=
u* team.pes=

**COMMANDI

3.0000e1003
4.8425e-001

4.0000ef003
4*8464e-001
5.0000e+003
4.8416e-001
6.0000e+003
4.8290e-001
7. 0000e+003
4.8094e-001
8.0000e1003
4.7854e-001
9.0000eO1003
4.7594e-001

1.0000el004

4.7334e-001

newtons/sam

newtons/saom

newtons/sam

newtons/sam

newtons/som

newtons/sa (

newtons/sam

newtons/sa

"steam"
"eff"

specified
calculated

specified
calculated
specified
calculated
specified
calculated
specif ied
calculated
specif ied
calculated
spec if i ed
calculated
specified
calculated

FIGURE 10.25 MHD TS - ANOTHER PEL COMPUTER SESSION FOR THE EXAMPLE CASE

**COMMAND : $*--- PART (b) - EFFECT OF AN EXTERNALLY FIRED PREHEA'IER ON PLANT EFFICIENCY--*

**continue seecifv u(steam) (res=5000)f

**COMMAND :create 'unit(pheat) tWeew're.heaterr

**COMMAND :disconnect unit comb at (airin);

**COMMAND Wconnect unit Fheat at air.in=he...airout air....out=Pheat.air.out Power.in=h-Power;

*stream "Pheat.air.out" does not exist. a stream of tWee 'air' has been created,
**COMMAND :connect unit comb at air.in###in=heat.air..out;

**COMMAND :specifu unit(pheat)(eff=.7);

**COMMAND : repeat for sopheat....air-outPO.t from(199#00) to (2200) bw(50);

**COMMAND :calc units(pheatcombrmhdinvrdiffurhelsteameff);

**COMMAND :specifw variable (des-extpheat=spheat-air-out.PO.t - s.hel-airout.PO.t);

**COMMAND terint varatiables(des-ext-pheatru.eff.effic);

de.ext-pheat= 0,0000e+000
u. eff . eff ic= 4.8416e-001 calculated

**COMMAND :loor;

de'.ext.pheat= 5.0000e4001
u.eff.effic= 5.0839e-001 calculated
deg-ext-pheat= 1.0000e+002
u.eff.effic= 5.11s1e-00l calculated
deg-ext_pheat= 1.5000e+002
u.feffteffic= 5.0lOe-001 calculated
des-ext-Pheat= 2.0000e+002
uieff.effic= 4#9426e-001 calculated
del-ext-pheat= 2.5000e+002
u.eff.effic= 5.2330e-001 calculated
deN-ext-pheat= 3. OOOe+002

ef f eff i c= 5.0360e-001 calculated
**COM.8AN10 lecadt

*thanrs wou "ICoheng for W~Iri tGhS comae bacV soar., bwe!
r 2200 58.637 840.057 14068

364

Chapter 11

RECOMMENDATIONS AND CONCLUSIONS

11.1 Recommendations

There are many possible ways in which the GPES system could be

extended to provide more user flexibility. Such possible extensions are

discussed in this section, and are recommended for future work.

1) Drawing of Process Flowsheets

The system could be extended to draw a schematic diagram

representing the process flowsheet in response to the user's

command: print process flowsheet; the information required for this

task is stored in the network of data structures representing the

process. What is required is the development of an algorithm for

this function.

2) Optional Units of Measurement for Printout Variables

The user may provide his input in any allowable units of

measurement. The system automatically converts this input to the

standard units of measurement for that parameter and stores the

result in an appropriate location in the process network. Hence,

the calculating routines always receive their input parameters in

standard units, and should also compute their output parameters

which are stored in the process network in standard units. When the
I

user requests for output the parameters are also printed in standard

units. It is desirable that the user be able to specify the units

365

of measurement for output parameters. The profile command can be

extended to allow the user-system communication. For example, the

following hypothetical command indicates that the printout of

parameters having physical dimensions of temperature or pressure

should be in degrees Centigrade and millimeters of mercury,

respectively: profile outputunits(temperature = C, pressure

mmHg). The dimension table described in Chapter 4 contains the

standard units of measurement for each physical dimension and other

allowable options with their conversion factors for each dimension

type. A temporary data structure is required to contain the current

output units of measurement for each physical dimension. The

entries of this data structure which are initially set to some

default values or standard units should be updated in response to

the profile commands specifying the output units. The print

routines should use this data structure and the dimension table in

converting the parameter values to the specified units of

measurements before printing them.

3) Graph Plotting Capability

In sensitivity analysis and other parametric studies of a process

flowsheet it is more desirable to present the results in graphs than

tables. This capability could be incorporated to the system. The

user could set up such graphs by the following hypothetical command:

graph graphname initialize (specification of graph

parameters);

366

where graph parameters could be attributes such as x axis title, y

axis title, number of curves, character used in plotting each curve,

maximum number.of data points for each curve, length of x axis per

unit of x, length of y axis per unit of y, origin, etc. The user

could specify the data points on the curves by the following

hypothetical command:

graph graphname set (value or expression for x, value or

expression for yl, value or expression for y2, ...);

The graph can be plotted by the following hypothetical command:

graph graph name print;

The following examples illustrates the application of such

capability. In this example variations in steam plant efficiency

are plotted versus the feed stream temperature.

graph A initialize (xtitle = "temperature," ytitle

"efficiency," ncurves = 1, char "*", maxn = 10, ...);

repeat for s.feed.po.t from (100) to (200) by (10);

calculate units (..., steamplant, ...);

graph A set (s.feed.po.t, u.steamplant.eff);

loop;

graph A print;

4) Merging of Two-Process Models

A user may save his process model in a process file and retrieve it

later for further study. The user may also retrieve someone else's

367

process model with his permission. When retrieving a process the

process in the file replaces the current process in the working

area. This means that the process in the working area is lost if

the user has not saved it before loading a new process. It is

desirable to be able to merge two processes without having to build

one over the other. This capability is especially useful when a

team is analyzing a large process flowsheet and each member is

studying a section of the flowsheet. It allows the assembly of all

these sections to an integrated process model which enables the

study of the whole process.

The user could request such an operation by a merge command similar

to a load command.

Although the system could easily be extended to perform this

function, its payoff may be offset by excessive computer overhead

time. This is due to the effort required to make the two processes

compatible. The following are some conflicts that should be

resolved by the system before merging the two processes:

a) Name Duplication.

b) Addressability. The addressability of a process is by a

pair of partition number and offset. Therefore in merging two

processes, there will be address conflicts. This could be

resolved by either of the following:

a. to relocate one of the processes

368

b. to change the system's memory management scheme from

two-level addressability (partition number and offset) to

a three-level addressability: process number, partition

number and offset.

c) Merging of component directories. When merging two

component directories the entry number of components in the new

directory may not be the same as they were prior to merge.

This change must be reflected in all streams referring to these

components.

5) Choice of Calculating Routines

When a user requests for calculation the system will invoke the

appropriate calculating routines specified in the templates. If a

user wants to use different calculating routines, he would be able

to do so by using some Multics commands. But this requires

familiarity with the Multics system. Therefore it is recommended

that the calculate commands and consequently the system itself be

modified to allow the user to specify the calculating routines.

6) Extension of Templates

The function of calculating routines could be more simplified by

allocating more types of error checking to the system. This

requires extension of templates to convey the additional testing

criteria to the system. Some of the examples of types of error

checking that the system could be instructed to perform are as

follows:

369

a) same components should be present in inlet and outlet

streams.

b) upper and lower limits for parameter values.

Even the function of some calculating routines which represent

simple models could be completely eliminated by describing them in

templates and having the system carry out the calculations.

7) Billing and Statistics

It is desirable that the system be able to gather information

regarding the usage of each user of each TBS, and the usage of each

TBS by all users. This infomation may be used for billing,

statistics, or other managerial purposes. As described in Chapter

8, provisions have been made in designing the TBS table and user's

table for this information. Nevertheless, this information is not

recorded. To record this information directly on these tables

implies that the user should have write acesss to these files, which

is not acceptable for security reasons. The other alternative is

using the message segment facility of Multics. This involves the

following:

a) establish a message segment (a special file)

b) modify the system so that when the user enters the system

or leaves the system a message containing the required

information would be sent to the above "safe box"

c) modify the GPES administrative programs (updatetbstbl,

updateusertbl) to process these messages, update appropriate

entries in the users' and TBS tables, and generate reports.

370

8) Unsteady State Analysis

The system is designed primarily for the study of steady-state

operation of chemical processes. It is recommended that its

application for unsteady state operations be explored.

9) Computational Schemes

The basic computational scheme of the system is sequential modular

with user specifying the order of calculations. Although provisions

have been made for implementing template-based systems with other

computational schemes, the burden of such an effort is entirely on

the TBS Administrators. Further research in this area is required

to generalize and automate the process.

371

11.2 CONCLUSIONS AND THESIS CONTRIBUTIONS

There are two basic problems with the existing general purpose

process simulators:

a) The existing systems are applicable to those process flowsheets

having only conventional vapor-liquid streams. This

inflexibility makes it either impossible or very difficult to

expand present-day systems to include other types of processes

such as coal processing or electric power generating systems.

b) The existing systems are mostly developed for simulation and do

not provide the design atmosphere for process engineers. A

general purpose simulator, to be effective as a design tool,

must use a mode of operation, methods of input and output, and

calculation techniques that minimize the effort required for

designer-computer communication so as to maximize effective

interaction between the designer and the computer. The time

scale is important in process design.

The objective of this thesis was to develop a framework for the

development of general purpose chemical process simulators that:

a) are applicable to all types of chemical processes, and

b) are more adaptable to the design environment.

In fulfillment of the above objective, the thesis has provided the

following contributions in the field of computer aided design for process

engineering:

372

1) Formulation of a general model for chemical proceses, to represent

the'process flowsheet for any level of sophistication that may be used to

analyze that process. The introduction of the concept of a general

stream and flow parameters have been the major contributions for

achieving this result.

2) Identification of the issues involved in the design of a computer

system for process engineering. The work has distinguished two classes

of problems:

a) Those that are common to the design of any system,

b) Those that are related to a particular system.

3) Based upon the above findings, the work has led to the design and

implementation of a General Process Engineering System (GPES) which

allows any group or organization to easily and systematically build its

own system. These systems could be very simple or very sophisticated

depending on the particular needs and applications of the group.

The design and implementation of the GPES as a tool for creating

computer aided design systems for chemical process engineering provides

the following advantages:

a) Allows any group or organization to easily and systematically

build its own design system, thereby reducing the time and

effort required to produce such systems.

b) The created system may not be limited to a particular class of

processes. Such a system is open-ended and capable of

analyzing any type of process.

c) The created system is more adaptable to the design environment,

and provides the user with features not usually found in

existing general purpose simulators.

373

In summary, a system created by GPES (a TBS) has the following

characteristics:

a) Flexible. It is applicable for analyzing any type of process

flowsheets. It is not limited to process flowsheets having

only conventional vapor-liquid streams. The system can be

easily modified, expanded and updated.

b) The user communicates with the system by a problem oriented

language (PEL). The user may enter his input data in any

allowable units of measurement. Arithmetic expressions may be

used where numerical data is expected. The system performs

extensive types of error checking such as detection of over- or

under-specification of process units and streams. The system

produces over 200 easy-to-understand messages to detect the

user's negligence.

c) Interactive. Allowing the progressive design of a process.

d) Integrated. Capable of the following functigns:

i) Simulating or designing a process for any required level

of sophistication such as: preliminary process

feasibility studies, plant design, equipment sizing, plant

modifications, debottlenecking studies, effects of

operational changes on plants, contractor checkout. The

appropriate programs should be provided in that TBS.

ii) Serving as a physical property data base system. It also

promotes sharing of data among users.

374

iii) Analyzing experimental data (regression analysis).

iv) Serving as a general purpose interpreter.

v) Serving as a desk calculator for arithmetic operations.

e) Dynamic creation and modification of process flowsheet.

Enabling the user to instruct the computer to alter process

configuration or operating parameters without having to

redescribe the problem.

f) The ability to save and retrieve user process models. This

will save both designer and computer time in not having to

reinitiate the problem. It also promotes sharing of process

models among users, and enhances teamwork.

g. It provides virtual memory. There is no limitation on the size

of the process flowsheet being analyzed by the user.

h. Ease of use in that no knowledge of programming and job control

language is required. All that is required is knowledge of PEL

(Process Engineering Language).

4) The work has provided a comprehensive example of the use of current

systems programming techniques (structured programming, dynamic storage

allocation, manipulation of arbitrary data structures, list processing,

etc.) and current computer technology (time sharing, virtual memory,

dynamic linking and loading) in a systems programming application of

interest to chemical engineering.

Using the GPES several prototype template based systems have been

created. The results of these efforts indicated that:

375

a) The GPES allows the creation of computer systems for different

types of processes.

b) The creation of such systems is simple and systematic.

c) The features provided -by the system are very useful and

desirable for simulation and design of chemical processes.

In conclusion, the above studies and findings, and the availability

of such a GPES, will benefit the following groups:

a) Those interested in computer aided design for chemical

engineering applications.

b) Those planning to implement their own computer aided design

systems for chemical processes (by reducing the characteristic

20-100 man-years effort formerly required to produce such

systems). It allows them to focus their effort on the chemical

engineering side of the problem, which results in the

development of better process modules and comprehensive

physical and thermodynamic property calculation packages.

c) The process designers, by providing the ideal creative

environment for process design by computer.

d) Chemical engineering students in process design courses. By

allowing them to implement their own system or to use an

already developed educational one. They would be able to study

whole processes as carefully as we now study individual unit

operations.

376

APPENDIX A

STATE OF THE ART

Process simulation is the representation of a chemical process by a

mathematical model which is then solved to obtain information about the

performance of the chemical process. The mathematical model is usually

solved by a computer program. This computer program is generally known as

a chemical process simulation program. The chemical engineer mostly deals

with continuous deterministic system simulation. The simulation program

may be a specific one prepared to simulate a particular process with a

fixed plant layout or may be general to simulate any kind of process

configuration. General purpose simulators use the modular approach.

According to this method each chemical processing step is represented as a

separate mathematical model called a unit module or building block or

process unit. The unit modules are connected by data sets which represent

the streams of materials and energy flowing between the units of the plant.

An executive program supervises the information flow between the unit

modules.

A simulation program may be used for steady-state or dynamic

simulation. Although the aim of the process simulation program is to be a

tool for design, most of the simulation programs work in the

simulation/performance mode. It is characteristics of such a mode of

calculation that all stream inputs and design parameters for the units are

specified. The information flow in the simulation program is in the same

direction as the heat and material flow in the chemical plant. Ideally, in

the design mode of calculation the system inputs and/or design parameters

are calculated from specified outputs. Design calculations can be

377

performed by iterative simulation. Iterative simulation may take place

over an entire process with the user scheduling the cases to be computed,

or it may take place internal to the simulation through the use of control

blocks. Some process simulation programs perform optimization, equipment

sizing or economic evaluation. In many cases, the connection between the

programs which perform these tasks and the process simulation program is

weak, frequently ad-hoc.

Since the steady-state process simulation program is the most widely

used, the discussion is limited to this type of program. The important

systems of this type that have been publicly acknowledged are listed in

Table A.1. These systems have been developed by four types of

organizations: chemical process companies, academic institutions,

commercial computing services and consulting organizations, serving the

chemical process industries. Evans [33) classifies these systems into two

groups: first generation programs and second generation programs. He uses

the terms "first and second generation" in an evolutionary sense, in that

the development of the second generation programs has been based upon the

technology gained by the development of the first generation programs.

Kellog's flexible flow sheet, Chevron's material and energy balancing,

PACER and CHESS programs are examples of first generation systems and

Monsanto's FLOWTRAN, Dupont's CPES, and Union Carbide's IPES are examples

of the second generation systems.

Currently, a major research effort is underway at the Massachusetts

Institute of Technology to develop a third generation computer system for

chemical process engineering. The project, funded by the United States

Department of Energy and budgeted at over three million dollars, is one of

the greatest efforts of its kind. It is being directed by

378

ASPEN (Advanced Sys
Process Engineering

AGPSS

CAPES (Computer-Aic
Engineering System)

Chem E

Chemical Process Si

CHEMOS

CHEOPS (Chemical Er
Optimization System

CHESS (Chemical Eng
Simulation System)

CHESS - 2 (commerc
of CHESS)

CHEVRON (Generaliz
Material Balancing

CHIPS (Chemical Enj

Table A.1

COMPUTER-AIDED PROCESS DESIGN SYSTEMS

DEVELOPED By

tem for Massachusetts Institute of Technology
(under development)
[3,4,5,6,7,8,9,10,30,31,32,33,74,151]

University of Michigan [5]

ed Process Chiyoda Chemical Engineering and
Construction Co., Yokeshoma, Japan [1

Petroleum Consultants [131]

mulator Georgia Institute of Technology [5]

University of British Columbia [5]

igineering Shell Development Company £60]

ineering

Lal version

ed Heat and
System)

gineering

06]

University of Houston [115,116]

Chem Share, Inc.

Chevron Research Company [34,138]

Information Processing System) Service Bureau Corp. [153]

CPES Dupont

CONCEPT - III Computer-Aided Design Center,
Cambridge, U.K. [21]

COPE Exxon

DESIGN Chem Share, Inc.

DISCOSSA (Digital Simulation for Oregon State University [28,86]
Computation of Steady-state Analysis)

Extended U.P. PACER University of Pennsylvania

Flexible Flowsheet M.W. Kellogg Company [69,79,80,

FLOWPACK II I.C.I., Ltd.

126]

379

Table A.1 Continued

NAME

FLOWTRAN

GEMCS

GEPDS (General Electric Process
Design System)

GIFS (Generalized Interrelated
Flow Simulation)

GPFS

GPS

IPES

MACSIM (version of PACER)

MAEBE (Material and Energy
Balancing Execution)

NETWORK

PACER (Process Assembly Case
Evaluator Routine)

PACER (MAD)
(MAD version of PACER)

PACER 245
(commercial version of PACER

PDA Program 2249

PEETPACK (Process Engineering
Evaluation Techniques Package)

PRIMER

Process Analysis System

PROPS

PROVES

QUIKBAL

DEVELOPED BY

Monsanto Chemical Company [149]

Canadian General Electric Co.,
McMaster University [22,72,73]

General Electric Company [43]

Service Bureau Corp. [25,152]

Suntech, Inc. [5]

Phillips Petroleum/McDonnell
Douglas Automation Company [5]

Union Carbide

McMaster University

University of Tennessee [78]

Imperial Chemical Co., Ltd. [1,12]

Purdue University and
Dartmouth College [22,34,113,154,155]

University of Houston [114]

Digital Systems, Inc.

McDonnell Douglas Automation Co. [5]

University of Aston, Birmingham, U.K.
[128]

[162]

Oklahoma State University [5]

University of Missouri-Rolla [5]

[814,85]

Mobil

380

Table A.1 Continued

NAME.

RUMBA

SEPSIM

SIMUL-UNT

SLED (Simplified Language for
Engineering Design)

SPAD

SPECS

SSI/100

Symbol

Syntha II

UOS (Unit Operations Simulator)

DEVELOPED BY

Kennecott Copper Corp. [5]

University of Waterloo [5]

Universdad Nacional [5]

University of Michigan [123]

University of Wisconsin [5]

Shell

Simulation Science, Inc. [5]

Computer-Aided Design Center,
Cambridge, U.K. [5]

Syntha Corp. of Greenwich/Control
Data Corp. [5]

Bonner and Moore Engineering Associates
[112]

381

Professor Lawrence B. Evans of MIT and Professor Warren D. Seider of the

University of Pennsylvania. The system is named ASPEN (Advanced System for

Process Engineering) and is expected to meet the needs of the Chemical

Process Engineering profession in the 1980's. Those interested in

additional information on this effort are directed to Evans et. al.

13,4,5,6,7,8,9,10,30,31,32,33,74,151].

Different aspects of the first and second generation systems are

briefly discussed next. For an extensive review of the subject the reader

is referred to Evans et. al. [34], who describe the first generation

systems, and to Motard et. al. [117], who summarize recent work in steady-

state process simulation.

A.1 Structure of the Programs

Evans [29] has classified the approaches used in the development of

steady-state process simulation programs into three categories:

1. Development of a special-purpose computer program on an ad hoc

basis.

2. Use of a set of subroutines as building blocks to develop a

simulation of a process.

3. Use of a general-purpose executive program to simulate a

particular class of processes.

The first approach requires developing the program from scratch. It

requires the greatest programming effort and may be solved very efficiently

using sophisticated numerical methods since the equations and constraints

are fully defined prior to the effort of programming. However, it is

inflexible when it comes to evaluating different plant layouts. This

approach is almost never preferred.

382

In the second approach, the user writes his own main or executive

routine which calls a number of subroutines to simulate individual units,

to compute properties and to carry out other auxiliary functions. The

structure of the flowsheet is incorporated into the user's program. This

approach is, once again, not very flexible when it comes to evaluation of

different plant layouts.

In the third approach, there exists an executive program which is

available to the user. He simply has to provide a complete and unambiguous

description of his problem in the form of a set of data cards or statements

in a problem-oriented language (POL).

As noted by Motard, Shacham and Rosen [117], the general simulation

programs using the last approach can be viewed as having one of two basic

internal structures -- fixed structure or variable structure. In the

former, the executive program is invariant with respect to flowsheet

structure. The matching of streams to unit modules and the path of

calculations through the program is determined by data supplied by the

user.

In variable structure programs, a different executive program is

constructed for each different flowsheet structure. Such programs employ a

problem-oriented language which is interpreted directly into executable

code (the compiler approach), or the POL may in turn generate a program in

a procedure-oriented language, usually FORTRAN, which is then compiled,

linked and executed (the pre-compiler approach). In the latter case,

evaluation of different plant layouts can become quite expensive since the

cost of- compilation and linking is incurred every time. One disadvantage

of the fixed structure executive programs is that they require all unit

modules to be loaded into the computer memory regardless of whether a

383

particular unit module will actually be used. This can frequently lead to

load modules whose size is greater than the available main memory.

A.2 Input Methods

Methods for inputing process specifications may vary from fixed format

strings of words and numbers (e.g. Flexible Flowsheet, CHEVRON, PROVES) to

free-format problem oriented languages. Process descriptions are provided

in two forms. In the process oriented form, the user describes the

contents, configuration, and data for his process independent of the

calculation procedure. The user in later input or the program as part of

its function will determine how to compute the desired output (e.g. PACER,

CHEVRON).

In the calculation oriented form, the user describes the process as a

sequence of calculations that may include recycle loops to be converged,

each unit in the sequence receiving and transferring data to other units.

The program performs calculations as specified (e.g. DESIGN, CHIPS,

FLOWTRAN). This latter method gives the user control over calculations.

A.3 Data Checking

In most of the simulation programs the data checking must be done by

the user, which is often not sufficient and more checking must be done by

the simulator. It is often impossible to discover from the computer

results that the source of some errors is due to absured input data.

A.4 The Storage of the Data

The input data as well as calculated values are usually stored in

arrays with fixed boundaries. In fixed structure programs, due to the

limitation of the FORTRAN language, the storage space must always be

allocated according to the maximum capacity of the simulation program

without considering the actual problem size. Such use of storage space

384

reduces the flexibility and efficiency of these simulation programs. This

problem may be solved partially by the use of main programs written by the

user or POL generated main programs, since the boundaries of the arrays are

declared according to the actual problem size. Another approach is that of

using dynamic storage allocation which is provided by a language such as

PL/1.

A.5 Operating Modes

Most systems have been designed to operate off-line, using card input.

In some cases on-line operation via teletype was provided later although

the system and inputs were fundamentally unchanged.

A.6 Available Unit Models

In general, the existing systems make available a library of standard

unit modules for separation, heat exchange, mixing, and fluid transport, at

varying levels of sophistication. Chemical reactors pose a problem, since

general modeling is not available and most actual units are fairly

specific.

A.7 Physical Property Determination

Thermodynamic or transport properties that are not specified directly

must be calculated. This really requires integration of a simulation

program with a properties calculator. Some systems have this feature and

some systems do not, and the user is responsible for providing the

necessary data.

A.8 Convergence Acceleration

The following convergence acceleration methods are being used in

existing programs:

1. Successive Substitution,

2. Bounded Wegstein,

385

3. Dominant Eigenvalue,

4. Quasi-Newton.

Some systems use only one of these methods (e.g., FLOWTRAN, CONCEPT

use Bounded Wegstein) while some other systems use more than one of these

methods (CAPES uses Bounded Wegstein, Dominant Eigenvalue and Quasi-

Newton).

386

APPENDIX B

TEMPLATE DEFINITION LANGUAGE

TDL is a simple command language by which the TBS Administrator

instructs and communicates with "updatetdb" program to store or update the

templates in the template data base. The basic elements of the language

are commands. Each command is a request for an action to be taken by the

"updatetdb" Program. The program accepts a command, interprets it, and

finally accomplishes what the user intended by that command. Then the

program is ready to accept another command. The program ignores and prints

error messages for illegal commands. The program does not allow invalid

data to be inserted. It prints messages and asks the user to reenter the

appropriate data. The TDL command syntax is as follows:

command (object] [identifier]

The "object" and "identifier" are not always required. The "command"

is a language keyword indicating the function of the command. The "object"

is another language keyword indicating the object upon which the action

should be taken. The "identifier" is either another language keyword, an

integer number, or a user supplied identifier representing the type of the

object. The complete list of TDL commands is given in Table B.1.

Permitted abbreviations of language keywords are given in Table B.2.

Reserved Words in TDL

The symbols "all", "none", ";", and symbols starting with the percent

sign character (%) have special meanings in TDL and PEL. A unit, stream,

and function type cannot be "all". A component type cannot be "all" or

"none". The symbol "all" when used as an object type refers to all types of

that object. Using the symbol "none" as a component type indicates that no

component is allowed in that context. Parameter names and unit connection

387

TABLE B.1

THE TEMPLATE DEFINITION LANGUAGE COMMANDS

COMMAND-

1. insert

2. delete

OBJECT IDENTIFIER

unit
stream
component
function
dimension
property

unit
stream
component
function
dimention
property

unitlevel
streamlevel
complevel
funclevel

unit
stream
component
function
dimension
property
dimtable
proptable
ctlinfo
vsctable
all

units
streams
components
functions

3. replace

4. print

5. list

6. revise

"type"
"type"
"type"
"type"
"number"
"number"

"type"
"type"
"type"
"type"
"number"
"number"

"type"
"type"
"type"
"type"

"type"
"type"
"type"
"type"
"number"
"number"

ctlinfo sysname
serialno
compatlevel
defsdigit
defddigit
defdflag
unitall
streamall
compall
funcall

7. end

388

TABLE B.2

PERMITTED ABBREVIATIONS IN THE TDL COMMANDS

KEYWORD

all
compall
compatlevel
complevel
component
components
ctlinfo
defddigit
defdflag
defsdigit
delete
dimension
dimtable
end
funcall
funclevel
function
functions
insert
list
print
property
proptable
replace
revise
serialno
stream
streamall
streamlevel
streams
sysname
unit
unitall
unitlevel
units
vsctable

ABBREVIATION

ca
clvl
cl
comp, c
comps, cs
ci
dd
ddf
ds
d
dim, d
dtbl, dt

fna
fnl
func, fn
funcs, fns

1
p
prop, p
ptbl, pt
r
rvs
sno
s
sa
si
strms, as
sysn
u

ua
ul
us
vsctbl

389

names cannot be "all" or symbols starting with the percent sign character

(%). This restriction has been imposed to provide greater user flexibility

in referring to parameters and connections in PEL. In PEL a user may

refer to a parameter either by its name or, by the symbol %parametern (or

%parmn, or %pn), where n is the parameter number. Similarly, a unit

connection position is referred either by its name or by %cnctn (or %cn),

where n is the connection number. Also in PEL, the symbol "all" is used to

refer to all parameters or all unit connections. Another reserved word in

TDL is the character semicolon (;). Using a ";" as a routine's name

indicates that no routine is implemented. There is no other reserved word

in TDL. All symbols except the reserved words mentioned in this section

can be used in any context. All symbols used in TDL cannot be more than 16

characters.

Program Interrupt

During the TDL session, the user can exit from the program by pushing

the "QUIT" button on the terminal. This mechanism can be used for aborting

the printout of a print command, or, in the case of insert or replace

commands, for avoiding the need to enter additional information when the

user has detected some errors in previously supplied information. Reentry

after this abnormal exit can be accomplished by using the "pi" (Program

Interrupt) command of Multics. After the reentry the current command

activities will be ignored and the program is ready to accept a new

command.

Use of this mechanism for cases other than those mentioned above may

damage the data base, and should not be attempted.

TDL Commands

This section contains descriptions of TDL commands. The commands are

presented in alphabetical order.

390

Delete Commands

These commands are used to delete the templates. They are as follows:

delete unit "tvDe"

If the specified unit template exists, it will be deleted.

delete stream "type"

If the specified stream template exists, it will be deleted.

delete component "type"

-If the specified component template exists, it will be deleted.

delete function "tyDe"

If the specified function template exists, it will be deleted.

delete dimension "number"

The corresponding entry of the dimension table will be deleted.

delete property "number"

The corresponding entry of the property estimation table will be

deleted.

End Comsand

This command is used to terminate the session. The program checks the

consistency of the data base and will print any detected inconsistency.

The user-is then asked if he or she would like to exit. If the answer is

"yes", the program asks for the default types of unit, stream, component,

and function and these are made the first members of their respective

categories. Clearly the above inquiry only takes place for those

categories which contain more than one member. When the GPES Executive

wants a default type, it looks for the first member of the corresponding

directory.

391

Insert- Commands

These commands are used to insert the templates into the template data

base. The program prompts the user for all the required information. The

program then asks the user whether the template is to be inserted into the

template data base, or to be ignored. These commands are as follows:

insert unit "tye"

This command is used to define a new unit type. The template of the

specified unit type should not already exist. The program prompts the user

for the following information:

* Reference Information (48 characters).

* Number of Unit Parameter (0 or a positive number).

* Name and Dimension type of each parameter.

* Number of inlets (Zero or a positive number).

* Number of connections (A number not less than the above number).

* Connection name and stream type for each connection. Using the

symbol "all" as the stream type indicates that any type of stream

could be connected to the unit. Otherwise, the specified stream

type should have been already defined.

* Procedure to calculate the unit. This should be the name of the

calculating routine. If such a routine is not required or

implemented, a semicolon (;) should be used.

If the user's response is not a ";", the program prompts the user for

the following additional information regarding the calculating

routine:

* Minimum number of arguments (zero or a positive number).

* Maximum number of arguments. A negative number can be used to

indicate that the maximum number of arguments is unlimited. Otherwise

392

a positive number equal to or greater than the minimum number of

arguments should be provided.

* Number of Levels of calculation (a positive number).

For each level of calculation, the program asks for the value status

code of each unit parameter and information regarding the inlet and outlet

streams. The latter consists of the following information for each unit

connection:

* Connection status which should be 1, 2, or 3. The connection status

of 1 indicates that a stream must be connected to the connection

before the unit calculating routine could perform the specified

level of calculation. The connection status of 2 indicates that

such a stream is not permitted. The connection status of 3

indicates that such a stream is optional.

If the connection status is 1 or 3 and the stream type is not "all", the

following information would also be required:

* If the stream can have any component, a value status code for all

parameters of all components flowing in the stream.

* A value status code for each phase and flow parameter of each phase.

insert stream "type"

This command is used to define a new stream type. The template for

the specified stream type should not already exist. The program prompts

the user for the following information:

* Reference Information (up to 48 characters).

* Type of components flowing in the stream. Providing the symbol

"none" in this context indicates that no component is allowed to

flow in the stream. Providing the symbol "all" is the indication

that any type of component may flow in the stream. Providing any

393

other symbol is interpreted as allowing only the specified type of

components to flow in the stream.

* Number of phases. (Zero or a positive integer number).

The program asks for the following information for each phase:

* The number of phase parameters (0 or a positive integer number).

* Name and dimension type of each -phase parameter.

* The number of flow parameters (Zero or a positive integer number).

For a stream with no component (Component type : none) this number

should be zero.

* Name and dimension type of each flow parameter.

* Procedure to calculate the stream (Name of the calculating routine

or a ";".)

If the user's response is not a ";",. the program prompts the user for the

following additional information regarding the calculating routine:

* Minimum number of arguments (Zero or a positive integer number)

* Maximum number of arguments. A negative number may be used to

indicate that the maximum number of arguments is unlimited.

Otherwise a positive number equal to or greater than the minimum

number of arguments should be provided.

* Number of levels of calculations (a positive integer number).

The program also asks for the following information for each level of

calculation:

* If the stream can have any component, a value status code for all

parameters of all components flowing in the stream.

* A value status code for each phase and flow parameter of each phase.

394

Remarks

A unit template includes information about its inlet and outlet stream

types. Therefore, all such streams should be defined prior to the

definition of the unit. Updating these stream templates after the unit

template has been defined will impose some restrictions. To update a

template one has to delete the template and insert a new one (except for

replacing information regarding a level of calculation). To insert a

stream type which is already rooted in the existing unit templates, the

program forces the user to use the same number of phases as before, and for

each phase the same number of phase and flow parameters as before.

Therefore if the above restrictions will prevent the desired updatings, the

user has to delete the templates of all units referring to that stream

type. Once the stream has been updated, the unit templates which have been

deleted should be reinserted.

insert component "tyDe"

This command is used to define a new component type. The template of

the specified component type should not already exist. The program prompts

the user for the following information:

* Reference information (up to 48 characteres).

* Number of component parameters (Zero or a positive integer number).

Name- and dimension type of each parameter.

' * Procedure to calculate the component (name of the calculating

routine of a ";")

If the user's response is not a ";", the program prompts the user for the

following information regarding the calculating routine:

* Minimum number of arguments (Zero or a positive integer number).

395

e Maximum number of arguments. A negative number may be used to

indicate that the maximum number of arguments is unlimited.

Otherwise a positive integer number equal to or greater than the

minimum number of arguments should be provided.

* Number of levels of calculation (a positive integer number).

* A value status code for each component parameter for each level of

calculation.

All component types mentioned in defining the stream templates should

be defined prior to terminating the session.

insert function ."tvoe"

This command is used to define a new function type. The template for

the specified function type should not already exist. The program prompts

the user for the following information:

e Reference information (up to 48 characters).

* Number of function parameters (Zero or a positive integer number).

* Name and dimension type of each parameter.

* Procedure to evaluate the function, or a ";".

* Number of arguments for the above routine (if it is not a ";").

* Procedure to calculate the function (name of the calculating routine

or a ";"n).

If the user's response is not a ";", the user is prompted for the following

additional information:

* Minimum number of arguments. A negative number may be used to

indicate that the maximum number of arguments is unlimited.

Otherwise a positive integer number equal to or greater than the

minimum number of arguments should be provided.

* Number of levels of calculation (a positive integer number).

396

* A value status code for each function parameter for each level of

calculation.

insert dimension "number"

This command is used to define a dimension type. A dimension type is

either zero or a positive integer number. The dimension type of zero is

always represents the dimensionless parameters and hence, should not be

defined.

When defining the other dimension types, the program prompts the user

for the following information:

I The name of the physical dimension (e.g., temperature, pressure,

etc.).

* The standard units of measurement. Units of measurement should not

contain any apostrophes.

* The number of options (Zero or a positive integer number).

* For each option the unit of measurement and conversion factors A and

B. Conversion factors are used to convert a value given in an

optional units of measurement to the standard units as follows:

value in standard units = A+B (value in optional units).

Each entry of the dimension table which represents a dimension type

should be defined using this command. The sequence of defining
e

each dimension type is not important, but before the session is

terminated, all dimension types mentioned in other templates should

have been defined and there should be no undefined dimension

number (type) less than the maximum defined number. The last

restriction is to ensure no entry of the dimension table is empty.

397

insert prooerty "number"

This command is used to define each entry of the property estimation

table. The program prompts the user for the following information:

* The name of the property as it is to be known by the users.

* The number of options available for estimating the property (a

positive integer number).

* The default option (a positive integer number not greater than the

above number).

The sequence of defining each entry of the table is not important, but

before the session is terminated, all the entries of the table should have

been defined. In other words, there should be no undefined property number

less than the maximum defined number.

List Commands

These commands are used to list the existing types of units, streams,

components, or pre-defined functions. These commands are as follows:

list units

list streams

list components

list functions

Print Commands

These commands are used to print the templates. The specified templates

should exit.

Print commands are as follows:

print unit "tvoe"

It will print the specified unit template.

398

print stream "type"

It will print the specified stream template.

Drint comDonent "tvoe"

It will print the specified component template.

print function "tvpe"

It will print the specified function template.

print dimension "number"

It will print the specified dimension type.

print property "number"

It will print the specified property.

print dimtable

It will print the entire dimension table.

print protable

It will print the entire property table.

print ctlinfo

It will print the control information.

print vsctable

It will print the value status codes table.

The Value Status Codes Table, unlike the Dimension Table or Property

Estimation Table, is not defined by the user (TBS Administrator).

It is a table describing the meaning of each 15 value status codes.

print all

It prints the entire template data base. The printout resulting from this

command can be used as a reference guide for the users of the TBS.

The printout consists of the following:

a) The System Control Information

b) The list of Unit Types

399

c)- The list of Stream Types

A) The List of Component Types

e) The List of Function Types

f) The Dimension Table

g) The Property Estimation Table

h) The Value Status Codes Table

i) The Template for each Stream Type

j) The Template for each Component Type

k) The Template for each Unit Type

1) The Template for each Function Type

Reolace.Commands

These commands are used to replace a part of a template associated

with any one level of calculation. The program prompts the user for all

the required information. The program then asks the user whether the given

information is correct or not. If the new set of information is correct,

it will replace the old set. These commands are as follows:

reolace unit "tvoe"

If the unit type exists and there is a calculating routine associated

with it, the program prompts the user for the level of calculation to be

replaced. If the above number is a positive integer number less than or

equal to the number of levels of calculation for that unit type, the user

is prompted for the required information regarding the unit calculating

routine for the specified level of calculation. This information is

exactly the same as the user provides for each level of calculation when

inserting a new unit type.

400

reDlace stream "tyoe"

If the stream "type" exists and there is a calculating routine

associated with it, the program asks the user for the level of calculation

to be replaced (a positive integer number).

If the input number is less than or equal to the number of levels of

calculation for that stream type, the user is prompted for the required

information regarding the stream calculating routine for the specified

level of calculation. This information is exactly the same as the user

provides for each level of calculation when inserting a new stream type.

replace component "type"

If the specified component template exists and a calculation routine

is associated with it, the user is asked for the level of calculation to be

replaced (a positive integer number). If the input number is not greater

than the component's number of levels of calculation, then the user will be

prompted for a value status code for each component parameter.

replace function "type"

If the specified function template exists and a calculating routine is

associated with it, the user is asked for the level of- calculation to be

replaced (a positive integer number). If the input number is not greater

than the function's number of levels of calculation, the user will be

prompted for a value status code for each function parameter.

Revise Commands

These commands are used to change an item of the control information.

These items can never be deleted, only changed. The program prompts the

401

user for all the required information. When a new template data base is

created, the items of'control information are initilized as follows:

sysname =

serialno = 1

compatlevel = 1

defsdigit = 14

defddigit = 14

defdflag = 0

Procedure to calculate all units

Procedure to calculate all components :

Procedure to calculate all functions =

Procedure to calculate all streams =

Note that ";" indicates that the routine is not implemented. The user

should use the revise command to provide a name for the TBS (sysname) or to

change the above default values. Revise commands are as follows:

revise Otlinfo svsname

The program prompts the user for the name of the TBS.

revise ctlinfo serialno

The program prompts the user for the TBS Serial Number (a positive

integer number). The serial number should be revised for each generation

of the TBS.

revise ctlinfo compatlevel

The program prompts the user for the TBS compatibility level (a

positive integer number). Compatibility level should be revised whenever

the updated version of the TBS is not compatible with previous generations.

Two generations of a TBS are said to be incompatible if the processes

created by each are not compatible. The problem arises when a process

402

created and saved under the control of one generation of the TBS is

retrieved under the control of another generation of the TBS.

Extending a TBS (adding new templates) will not make the TBS incompatible.

Changing a template may or may not make the TBS incompatible. The

following are some examples of actions that will make the TBS incompatible:

i) Deleting an already defined template.

ii) Changing the number of parameters of a unit, stream, component,

or function.

iii) Changing the number of phases of a stream.

iv) Changing the number of connections of a unit.

v) Changing the interpretation of a property number (type) or

changing the number of properties in the Property Estimation

Table.

When a user is loading an incompatible process, the GPES

Executive will inform the user and ask him/her if the operation

is to be continued. Therefore, it is recommended that the users

be informed about the changes which have been made in the TBS so

that they may decide whether or not those changes should be of

any concern to them.

revise ctlinfo defsdigit

The program prompts'the user for the default number of significant.

digits (between 1 and 14) to be used in printing the numerical data in

response to PEL print commands.

revise ctlinfo defddigit

The program prompts the user for the default number of decimal digits

(between 1 and 14) to be used in printing the numerical data in response to

PEL print commands. This number should not be greater than the defsdigit.

403

revise ctlinfo defdflag

The program prompts the user for the default debugging flag (0 or 1).

The flag of 0 which is for normal operation is recommened.

revise ctlinfo unitall

The program prompts the user for the name of the routine to calculate

all units. If the user's response is not a "f;", the user also has to

provide the reference information and number of levels of calculation.

revise ctlinfo streamall

The program prompts the user for the name of the routine to calculate

all streams. If the user's response is not a ";", the reference

information and number of levels of calculation should also be provided.

revise ctlinfo comoall

The program prompts the user for the name of the routine to calculate

all components. If the user's response is not a ";", the reference

information and number of levels of calculation should also be provided.

revise ctlinfo funcall

The program prompts the user for the name of the routine to calculate

all functions. If the user's response is not a ";", the reference

information and number of levels of calculation should also be provided.

404

APPENDIX C

TBS SERVICE ROUTINES

Service routines assist TBS Programmers in performing various tasks.

Service routines may be classified to the following six groups:

1. Routines performing basic operations. Given a pointer to a data

structure, these routines return pointers to the related data

structures.

2. Routines checking for existence of some components in a given

stream.

3. Routines retrieving or storing the values of parameters from or

into the process network. 78 out of 101 existing service routines

fall into this group. Although using only 2 of these routines

(GET_PARM and PUTPARM) in conjunction with the basic service

routines (first group) will be sufficient for accessing the

parameters, the remaining 76 routines are provided for greater

user flexibility and convenience. They may be used to access the

parameters directly or indirectly; or access one parameter or a

vector of parameters at a time. They may view the parameters of

having different attributes.

4. Routines retrieving other variables of interest. Two routines

fall in this group. One returns the value of a user supplied

argument, and another one returns the method currently being used

to estimate a physical property.

5. Routines directly interacting with the user. These routines are

called to receive input data not provided in the process network,

directly from the user.

405

6. Routines performing arithmetic operations on two parameter sets.

These routines are helpful in writing calculating routines for

separation processes and material balancing in general.

A description of each service routine in each group follows next.

C.1 Basic Service Routines

Spointer

Given a pair of partition number and offset, it returns a pointer.

Usage

DECLARE SPOINTER ENTRY (FIXED BIN, OFFSET) RETURNS (PTR);

P = SPOINTER (PARTJNO, OFF);

where:

P is the returned pointer (output)

PART_NO is the partition number (Input)

OFF is the offset (input)

Notes

P is null for the following cases:

a. PART_NO is zero.

b. PART_NO is invalid (negative or greater than the number of

partitions).

UNIT PTR

Given the unit pointer, it returns the pointer either to the unit

parameters or the stream connected at a given connection.

Usage

DCL UNIT_PTR ENTRY (PTR, FIXED BIN, PTR, BIT (1));

CALL UNIT_PTR (PUNIT, NUMBER, P, CODE);

where:

PUNIT is the pointer to the unit structure (input).

406

NUMBER is zero or connection number (input).

P is the pointer to the unit parameters structure, if

NUMBER = 0. Otherwise, it is the pointer to the stream

connected at the given connection (output).

CODE is the error code (output).

Notes

CODE is turned "on" and P is null for the following cases:

a. PUNIT is null.

b. NUMBER is negative or greater than the number of unit

connections.

c. The unit is not connected at the given connection.

Example

See Figure C.1.

GET COMP INDEX

It returns the component index (entry number in the Component

Directory) of a given component.

Usage

DCL GET_COMP_INDEX ENTRY (CHAR (16), FIXED BIN, BIT (1));

CALL GET_COMP_INDEX (NAME, COMP_INDEX, CODE);

where:

NAME is the component's name (input).

COMP_INDEX is the component's index (output).

CODE is the Error Code (output).

Notes

CODE is turned "on" and COMPINDEX is zero if the component does not exist.

Example

See Figure C.2.

407

PUNIT

UNIT-PTR
CALL UNITPTR (PUNIT,O,PPARM,CODE);

CALL UNIT PTR (PUNIT,1,PSTREAM,CODE);

PUT-UPARM
CALL PUT UPARM (PUNIT,4,13.9,CODE); OR CALL PUT PARM (PPARM,4,13.9,CODE);

PUTUPARMS
VALUEV(1)=2.3; VALUEV(2)=7.5; VALUEV(3)=1.6; VALUEV(4)=13.9;

CALL PUT UPARMS (PUNIT,VALUEV,CODE); OR CALL PUT PARMS (PPARM,VALUEV,CODE);

GET-UPARM
CALL GET UPARM (PUNIT,2,VALUE,VTYPE,CODE); /* VALUE=7.5,VTYPE=3 */
OR
CALL GETPARM (PPARM,2,VALUE,VTYPE,CODE);

GET-UPARMS
CALL GET UPARMS(PUNIT,VALUEV,VTV,CODE); OR CALL GET PARMS (PUNIT,VALUEV,

VTV,CODE);
/* VALUEV(1)=2.3,VALUEV(2)=7.5,VALUEV(3)=1.6,VALUEV(4)=13.9 */
/* VTV(1),VTV(2),VTV(3),VTV(4)=3 */

FIGURE C.1 EXAMPLES OF THE USE OF SERVICE ROUTINES
RELATED TO UNIT DATA STRUCTURES

PPM

2
?STREAM

4

2.3
3

7.53

1.6

13.9

1

2

3

4

3

3

408

COMPONENT DIRECTORY

4

NC4

PPARM

19

12.5

7.6

GET-COMPINDEX
CALL GET COMPINDEX ("NC4",COMP_INDEX, CODE);

3

3

3
/* COMPINDEX=3 */

COMPPTR
CALL CON? PTR (2,PPARM,CODE);

PUT-CPARM
CALL PUTCPARM (2,1,19,CODE);

PUTC.PARMS
VALUEV(1)=19; VALUEV(2)=12.5; VALUEV(3)=7.6;

CALL PUT CPARMS (2,VALUEV,CODE);

GETCPARM
CALL GETCPARM(2,3,VALUE,VTYPECODE);

/* VALUE=7.6,VTYPE=3 */

GET-CPARMS
CALL GETCPARMS(2,VALUEV,VTV,CODE);

/* VALUEV(1)=19,VALUEV(2)=12.5,VALUEV(3)=7.6 */

/* VTV(1),VTV(2),VTV(3)=3 */

FIGURE C.2 EXAMPLES OF THE USE OF SERVICE ROUTINES
RELATED TO COMPONENT DATA STRUCTURES

409

COMP PTR

Given the component index, it returns the pointer to the component

paramters' structure.

Usageg

DCL COMP_PTR ENTRY (FIXED BIN, PTR, BIT (1));

CALL COMP_PTR (COMP_INDEX, PPARM, CODE);

where:

COMP_INDEX is the component index (input).

PPARM is the pointer to the parameters' structure (output).

CODE is the error code (output)

Notes2

CODE is turned "on" and P is null for the following cases:

a. COMP INDEX is negative or more than the maximum number of componen t~s

(MAXNC).

The component does not exist.b.

Example

See Figure

FUNC. PTR

Given

parameters

Usaize

DCL

CALL

where:

PFUNC

PPARM

CODE

C.2.

the function pointer, it returns the pointer to the function

structure.

FUNC_PTR ENTRY (PTR, PTR, BIT(1));

FUNC_PTR (PFUNC, PPARM, CODE);

is the pointer to the function structure (input).

is the pointer to the parameters' structure (output).

is the error code (output).

410

Notes

CODE is turned "on" and P is null when PFUNC is null.

Example

See Figure C.3.

STRM PTR

Given the stream pointer, it returns the pointer to the parameters'

structure of a given phase.

USAGE

DCL STRMPTR ENTRY (PTR, FIXED BIN, PTR, BIT (1));

where:

PSTREAM is the pointer to the stream structure (input).

PHASENO is the phase number (input).

PPARM is the pointer to the parameters' structure (output).

CODE is the error code (output).

NOTES

CODE is turned "on" and P is null for the following cases:

a. PSTREAM is null.

b. PHASENO is negative or greater than the number of phases of the

stream.

Example

See Figure C.4

FLOW PTR

It returns the pointer to the flow parameters structure, of a given

component in a given phase of a stream.

411

PFUNC

FUNC-PTR
CALL FUNC PTR (PFUNC,PPARM,CODE);

PUT-FNPARM
CALL PUTFNPARM (PFUNC,2,1.3,CODE);

PUT-FNPARMS
VALUEV(1)=2.7; VALUEV(2)=1.3;

CALL PUTFNPARMS (PFUNC,VALUEV,CODE);

GET-FNPARM
CALL GET FNPARM (PFUNC,1,VALUE,VTYPE,CODE);

/* VALUE=2.7 , VTYPE=3 */

GETFNPARMS
CALL GET FNPARMS (PFUNC,VALUEV,VTV,CODE):

/* VALUEV(1)=2.7, VALUEV(2)=1.3, VTV(1),VTV(2)=3 */

FIGURE C.3 EXAMPLES OF THE USE OF SERVICE ROUTINES

RELATED TO FUNCTION DATA STRUCTURES

412

PSTREAM

3

13.9 3

4.3 3

17.6 3

PPARM L

MAXIMUM NUMBER
OF COMPONENTS

NUMBER OF PHASES

STRMJPTR
CALL STRMPTR (PSTREAM,O,PPARM,CODE);

PUT...SPARM
CALL PUTSPARM (PSTREAM,O,2,4.3,CODE);

PUTSPARMS
VALUEV()=13.9; VALUEV(2)=4.3; VALUEV(3)=17.6;

CALL PUTSPARMS (PSTREAM,0,VALUEV ,CODE);

GETSPARM
CALL GETSPARM (PSTREAM,0,1,VALUE,VTYPE, CODE);

/* VALUE=13.9, VTYPE=3 */

GET.-SPARMS
CALL GETSPARMS (PSTREAM,O ,VALUEV ,VTV ,CODE);

/* VALUEV(1)=13.9, VALUEV(2)=4.3, VALUEV(3)=17.6 */

/* VTV(1), VTV(2), VTV(3) = 3 */

FIGURE C.4 EXAMPLES OF THE USE OF SERVICE ROUTINES
RELATED TO STREAM DATA STRUCTURES

4

0

-U

413

USAGE

FLOWPTR ENTRY (PTR, FIXED BIN, FIXED BIN, PTR, BIT (1));

FLOWPTR (PSTREAM, PHASE_NO COMP_INDEX, PPARM, CODE);

PSTREAM

PHASENO0

COMPINDEX

PPARM

CODE

is the pointer to the stream structure (input).

is the phase number (input).

is the component index (input).

is the pointer to the flow parameters' structure (output).

is the error code (output).

NOTES

CODE is turned "on" and P is null for the following cases:

a. PSTREAM is null.

b. PHASE_NO is invalid, negative or greater than the number of phases

of the stream.

c. COMP_INDEX is invalid or the component does not exist or does not

flow in the stream.

Examole_

See Figure QDa

C.2 Comoarison Service Routines

AME .CQMPS

Determines if the components in one stream are those that are in

another stream.

Usage2

DCL

CALL

SAMECOMPS ENTRY (PTR, PTR, BIT(1));

SAME_COMPS (PSTREAM1, PSTREAM2, CODE);

DCL

CALL

where:

414

PSTREAM

FIGURE C.5 EXAMPLES OF THE USE OF
SERVICE ROUTINES RELATED
TO FLOW PARAMETERS

MAXIMUM NUMBER 4
OF COMPONENTS

NUMBER OF 0
PHASES

PARM

12 2

2

0 31 3.5 3 1 15.2 2

4 - 2 7.6 3 2 19.3 31

FLOW PTR
CALL FLOWPTR (PSTREAM,0,1,PPARM,CODE);

PUTFPARM
CALL PUT FPARM (PSTREAM,0,1,1,3.5,CODE);

PUTFPARMS
VALUEV(1)=3.5; VALUEV(2)=7.6;

CALL PUTFPARMS (PSTREAM,0,1 ,VALUEV,CODE);

GET-FPARM
CALL GETFPARM (PSTREAM,0,2,1,VALUE,VTYPE,CODE);

/* VALUE=15.2,VTYPE=2 */

GET FPARMS
CALL GET FPARMS(PSTREAM,O,I,VALUEV,VTV,CODE);

/* VALUEV(1)=3.5,VALUEV(2)=7.6,VTV(1),VTV(2)=3 */

PUTFPARMACS
VALUEV(1)=7.6; VALUEV(4)=19.3;

CALL PUTFPARMACS (PSTREAM,0,2,VALUEV,CODE);

GET.JPARMACS
CALL GETFPARMACS (PSTREAM,O,2,VALUEV,VTV,CODE);

/* VALUEV(1)=7.6,VALUEV(4)=19.3,VTV(1),VTV(4)=3,VTV(2),VTV(3)=-1 */

415

where:

PSTREAM1 is the pointer to the 1st stream's structure (input).

PSTREAM2 is the pointer to the 2nd stream's structure (input).

CODE is the error code (output).

Notes

CODE is turned "on" for the following cases:

a. PSTREAM1 or PSTREAM2 is null.

b. The same components do not flow in both streams.

CHECK-COMPS

Determines if the components present in a stream are those whose names

are specified.

Usage

DCL CHECK_COMPS ENTRY (PTR, DIM(*)CHAR(16),BIT(1));

CALL CHECK.COMPS (PSTREAM, COMPJNAMES, CODE);

where:

PSTREAM is the pointer to the streams' structure (input).

COMP_NAMES is the array of component names (input).

CODE is the error code (output).

Notes

CODE is turned "on" for the following cases:

a. PSTREAM is null.

b. Components in the stream are not exactly those specified in the array

of component names.

416

C.1 Service Routines Retrieving or Storing the Values of Parameters

GET PARM. XGET PARM. IGET PARM

Each of these routines retrieves the value and value type of a given

parameter. The only difference among the routines is the attribute of the

returned value.

Usaize

DCL GET_PARM ENTRY (PTR, FIXED BIN, FLOAT BIN(63), FIXED BIN, BIT(1));

DCL XGET_PARM ENTRY (PTR, FIXED BIN, FLOAT BIN(27), FIXED BIN,

BIT(1));

DCL IGET_PARM (PTR, FIXED BIN, FIXED BIN, FIXED BIN, BIT(1));

CALL GET_PARM (PPARM, PARMNO, VALUE, VTYPE, CODE);

CALL XGET_PARM (PPARM, PARMNO, XVALUE, VTYPE, CODE);

CALL IGETPARM (PPARAM, PARMNO, IVALUE, VTYPE, CODE);

where:

PPARM is the pointer to the parameters' structure (input).

PARM_NO is the paramter number (input).

VALUE is the paramters' value in double precision (output).

XVALUE is the parameter's value in single precision (output).

IVALUE is the parameter's value as an integer number (output).

VTYPE is the value type (output).

CODE is the error code (output).

Notes

CODE is "on" for the following cases:

a. PPARM is null.

b. PARMNO is invalid.

VTYPE has one of the following values:

0 Unspecified

417

Assumed

Specified

Calculated

See Figure S.J

GET PARMS. XGET PARMS. IGET PARMS

Each of these routines retrieves the values and value types of all

parameters of a given parameters' structure. The only difference among the

routines is the attribute of the returned values.

Usaize

DCL

DCL

DCL

CALL

CALL

CALL

GETPARMS ENTRY (PTR, DIM (*) FLOAT BIN (63), DIM (*) FIXED

BIN, BIT (1));

XGETPARMS ENTRY (PTR, DIM (*) FLOAT BIN (27), DIM (*) FIXED

BIN, BIT (1));

IGET-PARMS ENTRY (PTR, DIM (*) FIXED BIN, DIM C*) FIXED BIN,

BIT (1));

GETPARMS (PPARM, VALUEV, VTV, CODE);

XGETPARMS (PPARM, XVALUEV, VTV, CODE);

IGETPARMS (PPARM, IVALUEV, VTV, CODE);

where:

PPARM is the pointer to the parameters' structure (input).

VALUEV is the vector containing the parameters' values in double

precision (output).

XVALUEV is the vector containing the parameters' values in single

precision (output).

IVALUEV is the vector containing the parameters' values as integer

numbers (output).

418

PPARM

3

1 13 3

2 7.6 3

3 27.4 3

PUT_PARM
CALL PUTPARM (PPARM,2,7.6,CODE);

PUT PARMS
VALUEV(1)=13; VALUEV(2)=7.6; VALUEV(3)=27.4;

CALL PUT PARMS (PPARM, VALUEV ,CODE);

GET PARM
CALL GET PARM (PPARM, 1 ,VALUE,VTYPE,CODE);

/* VALUE=13,VTYPE=3 */

GET_PARMS
CALL- GETPARMS (PPARM,VALUEV,VTV,CODE);

/* VALUEV(1)=13,VALUEV(2)=7.6,VALUEV(3)=27.4 */

/* VTV(1),VTV(2),VTV(3)=3 */

FIGURE C.6 EXAMPLES OF THE USE OF SERVICE ROUTINES
DIRECTLY RETRIEVING OR STORING THE VALUES OF PARAMETERS

419

VTV is the vector containing the value types(output).

CODE is the error code(output).

Notes

CODE is "on" for the following cases:

a. PPARM is null.

b. The size of VALUEV, XVALUEV, IVALUEV, OR VTV is not equal to the

number of the parameters.

The Ith entry of VTV indicates the value type of the Ith parameter.

Each entry of VTV may be one of the following:

0 UNSPECIFIED

1 ASSUMED

2 SPECIFIED

3 CALCULATED

ExaMole

See Figure Qd

PUT PARM. XPUT PARM. IPUT PARM

Each of these routines stores the value of a given parameter. The

only difference among the routines is the attribute of the given value.

Usa CTe

DCL PUT_PARM ENTRY(PTR, FIXED BIN, FLOAT BIN (63), BIT (1));

DCL XPUT_PARM ENTRY (PTR, FIXED BIN, FLOAT BIN (27) BIT (1));

DCL IPUT_PARM ENTRY (PTR, FIXED BIN, FIXED BIN, BIT(1));

CALL PUT_PARM (PPARM, PARMNO, VALUE, CODE);

CALL XPUT_PARM (PPARM, PARMNO, XVALUE, CODE);

CALL IPUTPARM (PPARM, PARMNO, IVALUE, CODE);

420

where:

PPARM is the pointer to the parameters' structure (input).

PARMNO is the parameter number (input).

VALUE is the paramter's value in double precision (input).

XVALUE is the parameter's value in single precision (input).

IVALUE is the parameter's--value as an integer number (input).

CODE is the error code (output).

Notes

CODE is "on" for the following cases:

a. PPARM is null

b. PAR._NO is invalid (less than one or greater than number of

parameters).

The value type of 3 (calculated) will be assigned to the parameter.

Examole

Assign the result of some calculations, RESULT, to the 3rd parameter of a

unit. The pointer to the parameters' structure, PPARM, has been already

found.

CALL PUT-FARM (PPARM, 3, RESULT, CODE);

See also Figure C.6.

PUT PARMS. XPUT PARMS. IPUT PARMS

Each of these routines stores the values of all parameters of a given

set. The only difference among the routines is the attribute of the given

values.

Usage

DCL PUT_PARMS ENTRY (PTR, DIM(*) FLOAT BIN(63), BIT(1));

DCL XPUT_PARMS ENTRY (PTR, DIM(*) FLOAT BIN(27), BIT(1));

421

DCL IPUTPARMS ENTRY (PTR, DIM(*) FIXED BIN, BIT(1));

CALL PUT_PARMS (PPARM, VALUEV, CODE);

CALL XPUT-PARMS (PPARM, XVALUEV, CODE);

CALL IPUTPARMS (PPARM, IVALUEV, CODE);

where:

PPARM is the pointer to the parameters' structure (input).

VALUEV is the vector containing the parameter values in double

precision (input).

XVALUEV is the vector containing the parameter values in single

precision (input).

IVALUEV is the vector containing the parameter values as integer

numbers (input).

CODE is the error code (output).

Notes

CODE is "On" for the following cases:

a. PPARM is null.

b. The size of vector VALUEV, XVALUEV, or IVALUEV is not equal

to the number of parameters.

The value type of 3 (calculated) will be assigned to all parameters.

Excample

Suppose there is a parameters' structure having 10 parameters. All the

parameters have been calculated and the result is in vector XVALUEV. Store

the result in the process network.

DCL XVALUE(10) FLOAT BIN;

DCL XPUT_PARMS ENTRY (PTR, DIM(*) FLOAT BIN, BIT(1));

422

CALL. XPUT_PARMS (PPARM, XVALUEV, CODE);

See also Figure C.6.

GET UPARM. XGET UPARM. IGET UPARM

Each of these routines retrieves the value and value type of a given

unit parameter. The only difference among the routines is the attribute of

the returned value.

Usagxe

DCL GET_UPARM ENTRY (PTR, FIXED BIN, FLOAT BIN(63), FIXED BIN,

BIT(1));

CALL GETJPARM (PUNIT, PARM_NO, VALUE, VTYPE, CODE);

DCL XGET_UPARM ENTRY (PTR, FIXED BIN, FLOAT BIN (27), FIXED BIN,

BIT(1));

CALL XGETUPARM (PUNIT, PARM_NO, XVALUE, VTYPE, CODE);

DCL IGET_PARM ENTRY (PTR, FIXED BIN, FIXED BIN, FIXED BIN,

BIT(1));

CALL IGETUPARM (PUNIT, PARM_NO, IVALUE, VTYPE, CODE);

where:

PUNIT is the pointer to the unit structure (input).

Other symbols are as defined for the GET_PARM routine.

Notes

The same as those given for the GET_FARM routine.

ExamDle

See Figure C.1.

GET UPARMS. XGET UPARMS. IGET UPARMS

Each of these routines retrieves the values and value types of all

423

parameters of a given unit. The only difference among the routines is the

attribute of the returned values.

UaGe

DCL GET_UPARMS ENTRY(PTR,

DCL GET_UPARMS ENTRY(PTR,

DCL IGET_UPARMS ENTRY(PTR,

CALL GET_UPARMS (PUNIT,

CALL XGET_UPARMS (PUNIT,

CALL IGET_UPARMS (PUNIT,

where:

DIM(*) FLOAT BIN(63), DIM(*) FIXED BIN, BIT(1));

DIM(*) FLOAT BIN(27), DIM(*) FIXED BIN, BIT(1));

DIM(*) FIXED BIN, DIM(*) FIXED BIN, BIT(1));

VALUEV ,VTV, CODE);

XVALUEV ,VTV, CODE);

IVALUEV ,VTV, CODE);

PUNIT is the pointer to the unit structure (input)

Other symbols are as defined for GETPARMS routine.

Notes

See those given for GETPARMS routine.

Examnle

See Figure C.1.

PUT UPARM. IPUT PARM, IPUT PARM

Each of these routines stores the value of a given unit parameter.

The only difference among the routines is the attribute of the given value.

PUTUPARM

XPUTUPARM

IPUTUPARM

PUT_UPARM

XPUTUPARM

IPUT_UPARM

ENTRY(PTR, FIXED BIN,

ENTRY (PTR, FIXED BIN,

ENTRY(PTR, FIXED BIN,

(PUNIT, PARM_NO,

(PUNIT, PARM_NO,

(PUNIT, PARM_NO,

FLOAT BIN(63), BIT(1));

FLOAT BIN(27), BIT(1));

FIXED BIN, BIT(1));

VALUE, CODE);

XVALUE, CODE);

IVALUE, CODE);

DCL

DCL

DCL

CALL

CALL

CALL

424

where:

PUNIT is the pointer to the unit structure (input).

Other symbols are as defined for PUT.PARM routine.

Notes

See those given for PUTPARM routine.

Examole

See figure C.1.

PUT UPARMS. XPUT UPARMS. IPUT UPARMS

Each of these routines stores the values of all parameters of a given unit.

The only difference among the routines is the attribute of the given

values.

Usaxe-

PUTUPARMS

XPUT_UPARMS

IPUT_UPARMS

PUT_UPARMS

XPUTUPARMS

IPUT_UPARMS

ENTRY(PTR,

ENTRY (PTR,

ENTRY(PTR,

(PUNIT,

(PUNIT,

(PUNIT,

DIM(*) FLOAT BIN(63), BIT(1));

DIM(*) FLOAT BIN(27), BIT(1));

DIM(*) FIXED BIN, BIT(1));

VALUEV ,CODE);

XVALUEV ,CODE);

IVALUEV ,CODE);

PUNIT

Other symbols

is the pointer to the unit structure (input).

are as defined for PUT_PARMS routine.

Notes

See those given for PUT_PARMS routine.

Example

See Figure C.1.

DCL

DCL

DCL

CALL

CALL

CALL

where:

425

GET CPARM. IGET CPARM. IGET CPARM

Each of these routines retrieves the value and value type of a given

component parameter. The only difference among the routines is the

attribute of the returned value.

UsaGe

DCL GET_CPARM ENTRY (FIXED BIN, FIXED BIN, FLOAT BIN (63), FIXED BIN, BIT(1));

DCL XGET_CPARM ENTRY (FIXED BIN, FIXED BIN, FLOAT BIN, FIXED BIN, BIT(1));

DCL IGETCPARM ENTRY (FIXED BIN, FIXED BIN, FIXED BIN, FIXED BIN, BI));

CALL GETCPARM (COMPINDEX, PARMNO, VALUE, VTYPE, CODE);

CALL IGETCPARM (COMPJ_INDEX, PARM_NO, XVALUE, VTYPE, CODE);

CALL IGET_CPARM (COMP._INDEX, PARMNO, IVALUE, VTYPE, CODE);

where:

COMP_INDEX is the component index (input). Other symbols are as defined for

GET_PARM routine.

Notes

See those given for GET.PARM routine.

Example

See Figure .C.1

GET CPARMS, XGET CPARMS. IGET CPARMS

Each of these routines retrieves the values and value types of all

parameters of a given component. The only difference among the routines is

the attribute of the returned values.

DCL GET_CPARMS ENTRY(FIXED BIN, DIM(*) FLOAT BIN (63),

DIM(*) FIXED BIN, BIT(1));

DCL XGET_CPARMS ENTRY (FIXED BIN, DIM(*) FLOAT BIN (27),

DIM(*) FIXED BIN, BIT(1));

426

DCL IGEt_CPARMS ENTRY (FIXED BIN

CALL GET_CPARMS (COMPINDEX,

CALL XGET_CPARMS (COMPINDEX,

CALL IGETCPARMS (COMPINDEX,

where:

COMP_INDEX is the component index

the GET_PARMS routine.

Notes

See those given for the GET_PARMS

Example

See Figure _fQa

PUT CPARM. XPUT CPARM. IPUT CPARM

, DIM(*) FIXED BIN,

DIM(*) FIXED BIN, BIT(1)));

VALUEV, VTV, CODE);

XVALUEV, VTV, CODE);

IVALUEV, VTV, CODE);

(input). Other symbols are as defined for

Each of these routines stores the value of a given component

parameter. The -only difference among the routines is the attribute of the

given value.

UsaFe

DCL PUT_CPARM ENTRY (FIXED BINFIXED BIN, FLOAT BIN (63), BIT(1));

DCL XPUT_CPARM ENTRY (FIXED BIN, FIXED BIN, FLOAT BIN (27), BIT(1));

DCL IPUT_CPARM ENTRY (FIXED BIN, FIXED BIN, FIXED BIN, BIT (1));

CALL PUT_CPARM (COMPINDEX, PARMNO, XVALUE, CODE);

CALL XPUT_CPARM (COMP_INDEX, PARMNO, XVALUE, CODE);

CALL IPUTCPARM (COMPINDEX, PARM_NO, IVALUE, CODE);

427

where:

COMP.INDEX is the component index (input). Other symbols are as defined

for the PUTPARM routine.

NoteQs

See those given for PUTPARM routine.

ExaMole

See Figure QaZ

PUT CPARMS. XPUT CPARMS. IPUT CPARMS

Each of these routines stores the values of all parameters of a given

component. The only difference among the routines is the attribute of the

given values.

Usage

DCL PUT_CPARMS ENTRY (FIXED BIN, DIM '(*) FLOAT- BIN (63), BIT(1));

DCL XPUT_CPARMS ENTRY (FIXED BINDIM (e) FLOAT BIN (27), BIT(1));

DCL IPUT_CPARMS ENTRY (FIXED BIN, DIM FIXED BIN, BIT (1));

CALL PUTCPARMS (COMP_INDEX, VALUE, CODE);

CALL XPUT_CPARMS (COMP_INDEX, XVALUE, CODE);

CALL IPUT_CPARMS (COMP_INDEX, IVALUE, CODE);

where:

COMP_INDEX is the component index (input). Other symbols are as defined

for PUT_PARMS routine.

Notes

See those given for PUT_PARMS routine.

Examle

See Figure L

428

GET FNPARM.XGET FNPARM.IGET FNPARM

Each of these routines retrieves the value and value type of a given

function parameter. The only difference among the routines is the

attribute of the returned value.

Usage

DCL GET_FNPARM

DCL' XGETFNPARM

DCL IGETFNPARM

CALL GET_FNPARM

CALL XGET_FNPARM

CALL IGETFNPARM

where:

ENTRY (PTR, FIXED

ENTRY (PTR, FIXED

ENTRY (PTR, FIXED

(PFUNC, PARM_NO,

(PFUNC, PARMNO,

(PFUNC, PARMNO,

BIN,

BIN,

BIN,

VALUE,

XVALUE

IVALUE

FLOAT BIN (63), FIXED BIN, BIT(1));

FLOAT BIN (27), FIXED BIN, BIT(1));

FIXED BIN, FIXED BIN, BIT(1));

VTYPE, CODE);

, VTYPE, CODE);

, VTYPE, CODE);

PFUNC is the pointer to the function structure (input). Other symbols are

as defined for the GET_PARM routine.

Notes

See those given for the GET_PARM routine.

Examole

See Figure C.3

GET FNPARMS. XGET FNPARMS. IGET FNPARMS

Each of these routines retrieves the values and value types of all

parameters of a given function. The only difference among the routines is

the attribute of the returned values.

GET_FNPARMS ENTRY (PTR, DIM (*) FLOAT BIN (63),

DIM (*) FIXED BIN, BIT(1)):

DCL

429

XGET_FNPARMS

IGETFNPARMS

ENTRY (PTR,

ENTRY (PTR,

DIM (*)

DIM (*)

DIM C*)

DIM C*)

FLOAT BIN (27),

FIXED BIN, BIT(1));

FIXED BIN,

FIXED BIN, BIT(1));

GETFNPARMS

XGETFNPARMS

IGET_FNPARMS

(PFUNC,

(PFUNC

(PFUNC,

VALUEV,

XVALUEV,

IVALUEV,

VTV, CODE);

VTV, CODE);

VTV, CODE);

where:

PFUNC is the pointer to the function's structure (input). Other symbols are

as defined for the GET_PARMS routine.

Notes

The same as those given for GETPARMS routine.

Example

See Figure _Q..

PUT FNPARM. XPUT FNPARM. IPUT FNPARM

Each of these routines stores the value of a given function parameter.

The only difference among these routines is the attribute of the given

value.

Usage

DCL PUT_FNPARM ENTRY(PTR, FIXED BIN, FLOAT BIN (63), BIT(1));

DCL XPUT FNPARM ENTRY(PTR, FIXED BIN, FLOAT BIN (27), BIT(1);

DCL IPUTFNPARM ENTRY(PTR, FIXED BIN, FIXED BIN, BIT(1));

CALL PUTFNPARM (PFUNC, PARMNO, VALUE, CODE);

CALL XPUT_FNPARM (PFUNC, PARM_NO, XVALUE, CODE);

CALL IPUTFNPARM (PFUNC, PARMNO, IVALUE, CODE):

DCL

DCL

CALL

CALL

CALL

430

where:

PFUNC is the pointer to the function's structure (input). Other symbols

are as defined for the PUT_PARM routine.

Notes

The same as those given for the PUT_PARM routine.

ExamDle

See Figure.C..3,

PUT FNPARMS. XPUT FNPARMS. IPUT FNPARMS

Each of these routines stores the values of all parameters of a given

function. The only difference among the routines is the attribute of the

given values.

Usaje.

DCL PUT_FNPARMS ENTRY (PTR, DIM C*) FLOAT BIN (63), BIT(1));

DCL XPUTFNPARMS ENTRY (PTR, DIM (*) FLOAT BIN (27), BIT(1));

DCL IPUT_FNPARMS ENTRY (PTR, DIM (*) FIXED BIN, BIT (1);

CALL. PUT_FNPARMS (PFUNC, VALUEV, CODE);

CALL XPUTFNPARMS (PFUNC, XVALUEV, CODE);

CALL IPUT_FNPARMS (PFUNC, IVALUEV, CODE);

where:

PFUNC is the pointer to the function's structure (input). Other symbols

are as defined for the PUT_PARMS routine.

Notes

The same as those given for the PUTFARMS routine.

Example

See Figure C.3

431

GET SPARM. XGET SPARM. IGET SPARM

Each of these routines retrieves the value and value type of a phase

(stream) parameter of a given phase of a stream. The only difference among

the routines is the attribute of the returned value.

UsaGTe

DCL GET.SPARM ENTRY (PTR, FIXED BIN, FIXED

DCL XGET_SPARM ENTRY (PTR, FIXED BIN, FIXED

DCL IGET_SPARM ENTRY (PTR, FIXED BIN, FIXED

BIN, FLOAT BIN (63), BIT(1));

BIN, FLOAT BIN (27), BIT(1));

BIN, FIXED BIN, BIT(1));

CALL GET.SPARM (PSTREAM, PHASENO, PARMNO, VALUE, VTYPE,

CALL XGET_SPARM (PSTREAM, PHASE_NO, PARMNO, XVALUE, VTYPE,

CALL IGET.SPARM (PSTREAM, PHASE_NO, PARMNO, IVALUE, VTYPE,

where:

PSTREAM is the pointer to the stream structure (input).

PHASE_NO is the phase number (input).

Other symbols are as defined for the GET.PARM routine.

Notes

The same as those given for GETPARM routine.

Examole

See Figure _QA

CODE);

CODE);

CODE);

GET SPARMS. XGET SPARMS. IGET-SPARMS

Each of these routines retrieves the values and value types of all

phase (stream) parameters of a given phase of a stream. The only

difference among the routines is the attribute of the given values.

432

Usa e

DCL PUT_SPARMS ENTRY (PTR,FIXED BIN,DIM C*) FLOAT BIN (63),BIT(1));

DCL XPUT_SPARMS ENTRY (PTRFIXED BINDIM C') FLOAT BIN (27)BIT());

DCL IPUT_SPARMS ENTRY (PTR,FIXED BIN,DIM ()FIXED BIN, BIT ();

CALL PUT_SPARMS (PSTREAMPHASENO,VALUEVCODE);

CALL XPUT_SPARMS (PSTREAMPHASENO,XVALUEVCODE);

CALL- IPUT_SPARMS (PSTREAMPHASENOIVALUEVCODE);

where:

PSTREAM is the pointer to the stream structure (input).

PHASE_NO is the phase number (input).

Other symbols are as defined for PUT_PARMS routine.

Notes

See those given for PUT_PARMS routine.

Examole

See Figure CJ

PUT SPARM. XPUT SPARM. IPUT SPARM

Each of these routines stores the value of a phase (stream) parameter

of a given phase of a stream. The only difference among the routines is

the attribute of the given value.

Usage

DCL PUT_SPARM ENTRY (PTR, FIXED BIN, FIXED BIN, FLOAT BIN (63), BIT(1));

DCL XPUT_SPARM ENTRY (PTR, FIXED BIN, FIXED BIN, FLOAT BIN (27), BIT(1));

DCL IPUT_SPARM ENTRY (PTR, FIXED BIN, FIXED BIN, FIXED BIN, BIT(1));

433

CALL PUTSPARM (PSTREAM, PHASE_NO, PARMNO,

CALL XPUTSPARM (PSTREAM, PHASENO, PARMNO,

CALL IPUT.SPARM (PSTREAM, PHASENO, PARMNO,

VALUE, CODE);

XVALUE, CODE);

IVALUE, CODE);

where:

PSTREAM is the pointer to the stream structure (input).

PHASE_NO is the phase number (input).

Other symbols are as defined for the PUT_PARM routine.

Notes

The same as those given for PUTPARM routine.

ExaMple

See Figure CAl

PUT SPARMS. XPUT SPARMS. IPUT SPARMS

Each of these routines stores the values of all phase (stream)

parameters of a given phase of a stream. The only difference among the

routines is the attribute of the given values.

PUTSPARMS ENTRY (PTR, FIXED BIN, DIM(*)

XPUT_SPARMS ENTRY (PTR, FIXED BIN, DIM(*)

IPUTSPARMS ENTRY (PTR, FIXED BIN, DIM()

PUT_SPARMS (PSTREAM, PHASENO,

XPUTSPARMS (PSTREAM, PHASE-NO,

IPUTSPARMS (PSTREAM, PHASENO,

VALUEV,

XVALUEV,

IVALUEV,

FLOAT BIN (63), BIT(1));

FLOAT BIN (27), BIT(1));

FIXED BIN , BIT(1));

CODE);

CODE);

CODE);

Usage

DCL

DCL

DCLL

CALL

CALL

CALL

434

where:

PSTREAM is the pointer to the stream structure (input).

PHASE_NO is the phase number (input).

Other symbols are as defined for PUT_PARMS routine.

Notes

See those given for PUT_PARMS routine.

Example

See Figure CA.

GET FPARM. XGET FPARM. IGET FPARM

Each of these routines retrieves the value and value type of a flow

parameter of a component in a given phase of a stream. The only difference

among the routines is the attribute of the returned value.

Usage

DCL. GET_FPARM ENTRY (PTR,FIXED BINFIXED BINFIXED BIN,

FLOAT BIN (63),FIXED BINBIT(1));

DCL XGETFPARM ENTRY (PTR,FIXED BIN,FIXED BIN, FIXED BIN,

FLOAT BIN (27), FIXED BIN,BIT(1));

DCL IGETFPARM ENTRY (PTR,FIXED BINFIXED BIN, FIXED BIN,

FIXED BIN, FIXED BIN,BIT(1));

CALL GETFPARM (PSTREAM, PHASENO, COMPINDEX , PARMNO, VALUE , VTYPE, CODE);

CALL XGETFPARM (PSTREAM,PHASE_NO, COMP_INDEX, PARMNOXVALUEVTYPECODE);

CALL IGET_FPARM (PSTREAMPHASENO,COMP_INDEX,PARM_NO,IVALUEVTYPECODE);

435

where:

PSTREAM is the pointer to the stream structure (input).

PHASE_NO is the phase number (input).

COMP_INDEX is the component index (input).

Other symbols are as defined for GET_PARM routine.

Notes

See those given for GETPARM routine.

ExaMole

See Figure C.5.

GET FPARMS. XGET FPARMS. IGET FPARMS

Each of these routines retrieves the values and value types of all

flow parameters of a component in a given phase of a stream. The only

difference among the routines is the attribute of the returned values.

usage

DCL GET.FPARMS ENTRY (PTR,FIXED BINFIXED BIN, DIM (*) FLOAT BIN (63),

DIM (*) FIXED BIN, BIT(1));

DCL XGETFPARMS ENTRY (PTRFIXED BIN,FIXED BIN, DIM (*) FLOAT BIN (27),

DIM (') FIXED BIN, BIT(1));

DCL IGET_FPARMS ENTRY (PTRFIXED BINFIXED BIN, DIM (*) FIXED BIN,

DIM(*) FIXED BIN, BIT(1));

CALL GET_FPARMS (PSTREAMPHASE_NOCOMPINDEXVALUEVVTVCODE);

CALL XGET_FPARMS (PSTREAMPHASENO,COMPINDEXXVALUE,VTV,CODE);

CALL IGET_FPARMS (PSTREAM,PHASE_NO,COMPINDEXIVALUEVTVCODE);

436

Where:

PSTREAM is the pointer to the stream structure (input).

PHASE_NO is the phase number (input).

COMP_INDEX is the component index (input).

Other symbols are as defined for GET_PARMS routine.

Notes

See those given for GETPARMS routine.

ExaMple:

See Figure ja*t

PUT FPARM. XPUT FPARM. IPUT FPARM

Each of these routines stores the value of a flow parameter of a

component in a given phase of a stream. The only difference among the

routines is the attribute of the given value.

Usage

DCL PUT_FPARM ENTRY(PTRFIXED BIN,FIXED BINFIXED BIN,

FLOAT BIN(63),BIT(1));

DCL XPUT_FPARM ENTRY(PTRFIXED BINFIXED BIN,FIXED BIN,

FLOAT BIN(27), BIT(1));

DCL IPUTFARM ENTRY(PTRFIXED BIN, FIXED BIN, FIXED BIN,

FIXED BIN, BIT(1));

CALL PUTFPARM (PSTREAM,PHASENO, COMPINDEXPARMNO,VALUE, CODE);

CALL XPUTFPARM (PSTREAM, PHASENO, COMPINDEX, PARM_NO, XVALUECODE);

437

CALL IPUTFPARM (PSTREAMPHASENO,COMPINDEX,PARMNOIVALUECODE);

where:

PSTREAM is the pointer to the stream structure (input).

PHASE_NO is the phase number (input).

COMPINDEX is the component Index (input).

Other symbols are as defined for PUT_PARM routine.

Notes

See those given for PUT_PARM routine.

Example

See Figure C.5.

PUT FPARMS. XPUT FPARMS. IPUT FPARMS

Each of these routines stores the values of all flow parameters of a

component in a given phase of a stream. The only difference among the

routines is the attribute of the given values.

DCL PUTFPARMS ENTRY (PTR,FIXED BIN,FIXED BIN,DIM (*)

FLOAT BIN (63), BIT(1));

DCL XPUT_FPARMS ENTRY (PTR, FIXED BIN, FIXED BIN,DIM (*)

FLOAT BIN, BIT(1));

DCL IPUTFPARMS ENTRY (PTR,FIXED BINFIXED BIN, DIM (*)

FIXED BIN, BIT(1));

CALL PUTFPARMS (PSTREAM,PHASENO,COMPINDEX,VALUEV,CODE);

CALL XPUTFPARMS (PSTREAM,PHASENO,COMPINDEX,XVALUE,CODE);

438

CALL IPUTFPARMS (PSTREAM,PHASENO,COMPINDEXIVALUECODE);

Where:

PSTREAM is the pointer to the stream structure (input).

PHASE_NO is the phase number (input).

COMP_INDEX is the component index (input).

Other symbols are as defined for PUT_PARMS routine.

Notes

See those given for PUT_PARMS routines.

Examle

See Figure C.5.

GET FPARMACS. XGET FPARMACS. IGET FPARMACS

Each of these routines retrieves the values and value types of a given

flow parameter of all components in a given phase of a stream. The only

difference between the routines is the attribute of the returned values.

Usage

DCL GET_FPARMACS ENTRY (PTR, FIXED BIN, FIXED BIN, DIM(*) FLOAT BIN(63),

DIM(*) FIXED BIN, BIT(1));

DCL XGETFPARMACS ENTRY (PTR, FIXED BIN, FIXED BIN, DIM(*) FLOAT BIN(27),

DIM(*) FIXED BIN, BIT(1));

DCL IGETFPARMACS ENTRY (PTR, FIXED BIN, FIXED BIN, DIM(*) FIXED BIN,

DIM(*) FIXED BIN, BIT(1));

CALL GET_FPARMACS (PSTREAM, PHASENO, PARMNO, VALUEV, VTV, CODE);

CALL XGET_FPARMACS (PSTREAM, PHASE_NO, PARMNO, XVALUEV, VTV, CODE);

439

CALL IGET_FPARMACS (PSTREAM, PHASENO, PARMNO, IVALUEV, VTV, CODE);

where:

PSTREAM is the pointer to the stream's structure (input).

PHASE_NO is the phase number (input).

PARMNO is the flow parameter number (input).

VALUEV, XVALUEV, IVALUEV are vectors containing the values of the given

flow parameter of all components in the given

phase of the stream (output).

VALUEV is in double precision.

XVALUEV is in single precision.

IVALUEV is in integers.

VTV is the value type vector, which contains the value types of the

given flow parameter of all components in the given phase of the

stream (output).

CODE is the error code (output).

Notes

CODE is "on" for the following cases:

a. PSTREAM is null.

b. PHASE_NO is invalid (negative, or greater than the number of phases of

of the stream).

c. PARM_NO is invalid (less than one, or greater than the number of flow

parameters of the given phase of the stream).

d. The dimension size of VALUEV, XVALUEV, IVALUEV, or VTV is not equal to

the maximum number of components (MAX_NC).

VTV(I) contains the value type of the given flow parameter of the Ith

component.

440

If VTV(I)=-1 indicates that the Ith component does not flow in the stream.

VTV(I) = 0 indicates that the flow parameter of Ith component is

unspecified.

VTV(I) = 1 indicates that the flow parameter of Ith component is assumed.

VTV(I) = 2 indicates that the flow parameter of Ith componet is specified.

VTV(I) = 3 indicates that the flow parameter of Ith component is

calculated.

VALUEV(I), XVALUEV(I), or IVALUEV(I) contains the value of given flow

parameter of the Ith component.

Examole

Suppose 1st flow parameter of phase 0 of a stream represents the molar flow

rate of a component in the stream.

Find total molar flow rate of all components in the stream.

DCL MAX_NC EXT;

DCL XVALUEV (MAX_NC) FLOAT BIN;

DCL VTV (MAXNC) FIXED BIN;

CALL XGETFPARMACS(PSTREAM,0,1,XVALUEV,VTV,CODE);

TF =0;

DO I=1 TO MAX_NC;

IF VTV (I) = -1

THEN TF TF + XVALUEV (I);

END;

See also Figure sj

441

PUT FPARMACS. XPUT FPARMACS, IPUT FPARMACS

Each of these rountines stores the values of a given flow parameter of

all components in a given phase of a stream. The only difference among the

routines is the attribute of the given values.

Usge

DCL PUT_FPARMACS ENTRY (PTR,FIXED BINFIXED BIN, DIM (*) FLOAT BIN (63),

BIT (1));

DCL XPUTFPARMACS ENTRY (PTR, FIXED BIN, FIXED BIN, DIM (*) FLOAT BIN

(27), BIT (1));

DCL IPUT_FPARMACS ENTRY (PTR,FIXED BIN, FIXED BIN, DIM (*) FIXED BIN,

BIT (1));

CALL PUT_FPARMACS (PSTREAM, PHASENO, PARMNO, VALUEV, CODE);

CALL XPUT_FPARMACS (PSTREAM, PHASE_NO, PARMNO, XVALUEV, CODE);

CALL IPUTFPARMACS (PSTREAM, PHASENO, PARMNO, IVALUEV, CODE);

where:

PSTREAM is the pointer to the stream's structure (input).

PHASE_NO is the phase number (input).

PARMNO is the flow parameter number (input).

VALUEV,XVALUEV, and IVALUEV are vectors containing the values of the given

flow parameter of all components in the given phase of the stream (input).

VALUEV is in double precision.

XVALUEV is in single precision.

IVALUEV is in integers.

CODE is the error code (output).

Notes

CODE is "on" for the following cases:

442

a. PSTREAM is null.

b. PHASE_NO is invalid (negative or more than the number of phases of the

stream.)

c. PARM_NO is invalid (less than one, or more than the number of flow

parameters of the given phase.)

d. The size of the vector VALUEV, XVALUEV, IVALUEV, or VTV is not equal to

the maximum number of components.

Only flow parameters of those components will be stored that are

present in the stream. Value type of all assigned parameters will be set

to 3 (calculated).

ExamDle

Suppose that the 1st flow parameter of the phase 0 of a stream

represents the molar flow rate.

Suppose further that the total molar flow rate (TF) and mole fractions

(X) are known. Store individual molar flow rates.

DCL MAX_NC EXT;

DCL X(MAX NC) FLOAT BIN;

DCL XPUT_FPARMACS ENTRY(PTR, FIXED BINFIXED BINDIM(*)FLOAT BIN,BIT(1));

XW) =X(*)*TF;

CALL XPUT_FPARMACS (PSTREAM,0,1,X, CODE);

See also Figure C.

C.4 Service Routines Retrieving Other Variables of Interest

443

GET METH

It returns the method currently being used to estimate a physical

property.

Usage

DCL GETMETH ENTRY (FIXED BIN, FIXED BIN, BIT (1));

CALL GET_METH (PROP_NUMBER, METH, CODE);

where:

PROPNUMBER is the property number (input).

METH is the method number in effect (output).

CODE is the error code (output).

Note

CODE is "on" if PROPNUMBER is invalid.

Example

See Figure .7

GET ARG

Given the pointer to the arguments structure, it returns the value of

a given argument.

Usage

DCL GET_ARG ENTRY (PTR, FIXED BIN, FIXED BIN, BIT (1));

CALL GET_ARG (PARG, ARG_NO, ARGUMENT, CODE);

where:

PARG is the pointer to the arguments structure (input).

ARG_NO is the argument number(input).

ARGUMENT is the value of the specified argument (output).

CODE is the error code (output).

444

CALL GETARG (PARG,2,ARGUMENT,CODE);

/* ARGUMENT=7 */

2 7

3 12

FIGURE C.7 EXAMPLE OF THE USE OF THE SERVICE ROUTINE
RETRIEVING THE ARGUMENTS

PESTMETH

ESTMETH

5

1

2

3 2

4

5

CALL GET_METH (3,METH);

/* METH=2 */

FIGURE C.8 EXAMPLE OF THE USE OF THE SERVICE ROUTINE
RETRIEVING THE PROPERTY ESTIMATION METHODS IN USE

PARG

445

Notes

CODE is "on" for the following cases:

a. PARG is null

b. ARG_NO is zero or negative, or greater than the number of arguments.

Example

See Figure C.8

C.5 Service Routines Interacting with the User

GETIN

This routine receives an integer number from the user.

Usagze

DCL GETIN ENTRY (FIXED BIN, FIXED BIN);

CALL GETIN (NUMBER, LIMIT)

where:

NUMBER is the returned integer number (output).

LIMIT is the upper limit of the number (input).

Notes

The TBS program before calling this routine should write a message on

the user's terminal requesting the required INPUT. The GETIN routine then

receives and examines the user's response. If the user's response is valid

it returns to the caller, otherwise, informs the user and receives a new

response and repeats this process until the user's response is acceptable.

A valid response is an unsigned integer number up to five digits and less

than the specified upper limit.

Example

The TBS Program:

446

PUT SKIP EDIT("ENTER NUMBER OF ITERATIONS:")(A);

CALL GETIN (NIT, 300)

user's terminal session:

ENTER NUMBER OF ITERATIONS: 4A

ERR0R i 16 "4A" is an invalid integer number.

A valid integer number consists of 1 to 5 decimal digits.

**reenter the number: 400

ERROR i 17 the above number must not be greater than 300

**reenter the number: 40

GETLINE

This routine receives a line of characters from the user.

Usage

DCL GETLINE ENTRY (CHAR(*),FIXED BIN (21));

CALL GETLINE (LINENREAD);

where:

LINE is the returned response (output).

NREAD is the number of characters read (output).

Notes

This routine is not usually used for tbs programs.

Example

TBS program:

DCL TEXT CHAR(10);

PUT SKIP EDIT ("ENTER TEXT:")(A);

CALL GETLINE (TEXT, NREAD);

user's terminal session:

ENTER TEXT: Once upon a time

447

ERROR i 1 bad input or line greater than 10 characters.

**reenter the line: AB E

GETRN

This routine receives a real number from the user.

Usage

DCL GETRN ENTRY (FLOAT BIN(63));

CALL GETRN(NUMBER);

where:

NUMBER is the returned number (output).

Notes

The TBS Program before calling this routine should write a message on

the user's terminal requesting the required input. The GETRN routine then

receives and examines the user's response. If the user's response is a

valid number it returns to the caller, otherwise it informs the user and

receives a new response and repeats this process until the user's response

is acceptable.

Example

The TBS Program:

PUT SKIP EDIT ("Enter an initial value for T:") (A);

CALL GETRN (TEMP);

User's Terminal Session:

Enter an initial value for T:23.4F2

ERROR i 18 "23.4F2" is an invalid number.

**Reenter the Number: 23.4e2

GET RESPONSE

This routine receives a yes or no answer from the user.

448

Usage

DCL GET.RESPONSE RETURNS (BIT(1));

FLAG = GET_RESPONSE();

where:

FLAG indicates the user's response (output). It is "on" if the user's

response is "yes", and it is "off" if the user's response is "no".

Examole

TBS Program:

PUT SKIP EDIT ("DO YOU WANT TO USE THE SHORTCUT METHOD?") (A);

IF GET_RESPONSE()

THEN...

ELSE...

User's Terminal Session:

DO YOU WANT TO USE THE SHORTCUT METHOD? WHAT

ERROR i 19 Your response should be yes or no.

**REENTER PLEASE: yes

C.6 Service Routines Performing Arithmetic Operations on Two Parameter Sets

PARMS OPERATOR1

This routine multiplies each parameter in a set of parameters by a

given constant and adds to it another given constant. The results are

stored in a data structure of comparable size corresponding to another

parameter set: P1 = P2. A+B for all i

~sa1e

DCL PARMS_0PERATOR1 ENTRY (PTR, PTR, FLOAT BIN(63), FLOAT BIN(63), BIT(1));

CALL PARMS_OPERATOR1 (PPARM1, PPARM2, A,B, CODE);

449

where:

PPARM1 is the pointer to the target parameters structure (input).

PPARM2 is the pointer to the other parameters structure (input).

A is the multiplication constant (input).

B is the addition constant (input).

CODE is the error code (output).

Notes

CODE is "on" for the following cases:

a. PPARM1, or PPARM2 is null.

b. The numbers of parameters of two parameters structure are not the

same.

c. One or more parameters of set pointed by PPARM2 are unspecified.

The value types of all assigned parameters will be set to 3 ("calculated").

ExaMple

See Figure Q.e

PARMS OPERATOR1V

This routine functions almost the same as PARMS_OPERATOR1 Routine.

The only difference is that the multiplication and addition constants are

vectors in this case: P1. = P2. A + B. for all i.

Usa11e

DCL PARMS_0PERATOR1V ENTRY (PTR, PTR, DIM(*) FLOAT BIN(63), DIM(*) FLOAT

BIN(63), BIT(1));

CALL PARMS_OPERATOR1V (PPARM1, PPARM2, AVEC, BVEC, CODE);

where:

AVEC is the vector of multiplication constants (input).

BVEC is the vector of addition constants (input).

450

PPARM1

al

a2

a3

a4

3

3

3

3

PPARM2

bl

b2

b3

b4

b5

2

2

3

2

1

PARMS OPERATORI
CALL PARMSOPERATORI (PPARI1,PPARM2 ,A,B,CODE);

/* al=bl*A+B, a2=b2*A+B, a3=b3*A+B, ... */

PARMSOPERATOR1V
CALL PARMS_OPERATORIV (PPARM1 ,PPARM2,AVEC ,BVEC ,CODE);

/* al=b1*AVEC(1)+BVEC(1), a2=b2*AVEC(2)+BVEC(2), */

PARMS.OPERATOR2
CALL PARMSOPERATOR2 (PPARM1,PPARM2,A,B,CODE);

/* al=al+bl*A+B, a2=a2+b2*A+B, */

PARMS-OPERATOR2V
CALL PARMS OPERATOR2V (PPARM 1,PPARM2,AVEC,BVEC,CODE);

/* al=al+bl*AVEC(1)+BVEC(1), a2=a2+b2*AVEC(2)+BVEC(2), */

FIGURE C.9 EXAMPLES OF THE USE OF SERVICE ROUTINES
PERFORMING ARITHMETIC OPERATIONS ON TWO PARAMETER SETS

451

The other variables are as defined for PARMS_OPERATOR1.

Notes

CODE is "on" for the following cases:

a. PPARM1, or PPARM2 is null.

b. The two parameters structures do not have the same number of

parameters.

c. One or more parameters of set pointed by PPARM2 are unspecified.

d. The size of vector AVEC, or BVEC is not the same as the number

of parameters.

The value types of assigned parameters will be set to 3 ("calculated").

Example

DCL (AVEC(3), BVEC(3)) FLOAT BIN(63);

DCL PARMSOPERATOR1V (PTR, PTR, DIM(*) FLOAT BIN(63), DIM(*) FLOAT

BIN(63), BIT(1));

BVEC(*) = 0;

AVEC) = 1/2;

AVEC(2) = 1/3;

AVEC(3) = 1/4;

CALL PARMS_0PERATOR1V (PPARM1, PPARM, AVEC, BVEC, CODE);

AVEC(1) = 1/2;

AVEC(2) = 2/3;

AVEC(3) = 3/4;

CALL PARMS_OPERATOR1V (PPARM2, PPARM, AVEC, BVEC, CODE);

See also Figure C.9.

PARMS OPERATOR2

This routine multiplies each parameter in a set of parameters by a

452

given constant and adds to it another given constant. The results are

added to another set of parameters and are stored as the new values of this

set of parameters: P1. = P1 + P2 A + B for all i.

Usage

DCL PARMS_OPERATOR2 ENTRY (PTR, PTR, FLOAT BIN(63), FLOAT BIN(63), BIT(1));

CALL PARMS_OPERATOR2 (PPARM1, PPARM2, A,B, CODE);

where:

The variables are as defined for PARMS_OPERATOR1 routine.

Notes

CODE is "on" for the following cases:

a. PPARM1, or PPARM2 is null.

b. The number of parameters of two parameter sets are not the

same.

c. One or more parameters of either set are unspecified.

The value types of assigned parameters will be set to 3("calculated").

Example

Add one set of parameters to another set of parameters.

CALL PARMS_OPERATOR2 (PPARM1, PPARM2, 1,0, CODE);

See also Figure C.9.

PARMS OPERATOR2V

This routine functions almost the same as routine PARMS_PPERATOR2.

The only difference is that the multiplication and addition constants are

vectors in this case: P1 = P1. + P2. A. + B for all i.

U1g1e

DCL PARMSOPERATOR2V (PTR, PTR, DIM(*) FLOAT BIN(63), DIM(*) FLOAT BIN(63),

BIT(1));

453

CALL PARMS_0PERATOR2V (PPARM1, PPARM2, AVEC, BVEC, CODE);

where:

The variables are as defined for routine PARMS_0PERATOR1V.

Notes

CODE is "on" for the following cases:

a. PPARM1, or PPARM2 is null.

b. The numbers of parameters of two sets are not the same.

C. The size of the vector AVEC, or BVEC is not the same as the

number of parameters.

d. One or more parameters of either set are unspecified.

The value types of all assigned parameters will be set to 3 ("calculated").

ExaMole

See Figure C.9.

FPARMACS OPERATOR1

It assigns a value to a given flow parameter for each component in a

given phase of a stream equal to the product of a constant and another flow

parameter of the same component in a phase of another stream and added to

another constant:

F1 = F2 *A+B for all i (components)

Usayte

DCL FPARMACSOPERATOR1 ENTRY (PTR, FIXED BIN, FIXED BIN, PTR, FIXED BIN,

FIXED BIN, FLOAT BIN(63), FLOAT BIN(63), BIT(1));

CALL FPARMACSOPERATOR1 (PSTREAM1, PHASEN01, PARM_NO1, PSTREAM2,

PHASENO2, A,B, CODE);

where:

PSTREAM1 is the pointer to the target stream (input).

454

PSTREAM2 is the pointer to the other stream (input).

PHASE_N01 is the phase number of the target stream (input).

PHASE_N02 is the phase number of the other stream (input).

PARM_NO1 is the flow parameter number of the given phase of the

target stream (input).

PARM_N02 is the flow parameter number of the given phase of the

other stream (input).

A is the multiplication constant (input).

B is the addition constant (input).

CODE is the error code (output).

Notes

CODE j "on" for the following cases:

PSTREAM1, or STREAM2 is null.

PHASE_NO1 or PHASE_N02 is invalid.

PARM_NO1, or PARM_N02 is invalid.

Both streams do not have the same components.

The specified flow parameter of a component in the given phase of

the stream pointed by PSTREAM2 is unspecified.

The value types of assigned parameters will be set to 3("calculated")

Example

The first flow parameter of phase 0 of each of the streams pointed by

PSTREAM1, PSTREAM2 or PSTREAM3 represents the molar flow rate of a

component in that stream.

Given the splitting ratio, R, split the stream pointed by PSTREAM1 to

streams pointed by PSTREAM2 and PSTREAM3.

CALL FPARMACS_OPERATOR1 (PSTREAM2, 0,1, PSTREAM1, 0,1, R,O, CODE);

CALL FPARMACS_0PERATOR1 (PSTREAM3, 0,1, PSTREAM1, 0,1, 1-R, 0, CODE);

See also Figure C.10.

.

455

PSTREAM1 PSTREAM2

-= PHASE
N02

- PRMNOa3 FARM d 2 e I 3 PARM N02

FPARMACS OPERATOR1
CALL FPARMACS OPERATOR1 (PSTREAM1,PHASE_NO1,PARM_N01,PSTREAM2,PHASE N02,

PARM_N02,A,B,CODE);

/* a=d*A+B, b=e*A+B, c=f*A+B */

FPARMACS OPERATOR1V
CALL FPARMACS OPERATORIV (PSTREAM1,PHASE_NO1, PARM_NOI,PSTREAM2,PHASE N02,

PARM_N02,AVEC,BVEC,CODE);

/* a=d*AVEC(1)+BVEC(1), b=e*AVEC(2)+BVEC(2), c=f*AVEC(4)+BVEC(4) */

FPARMACS OPERATOR2
CALL FPARMACS OPERATOR2 (PSTREAM1,PHASE_N01,PARM_N01,PSTREAM2,PHASE_N02,

PARM_N02,A,B,CODE);

/* a=a+d*A+B, b=b+e*A+B, c=c+f*A+B */

FPARMACS OPERATOR2V
CALL FPARMACSOPERATOR2V.(PSTREAM1,PHASEN01,PARM_N01,PSTREAM2,PHASE_N02,

PARM_N02,AVEC,BVEC,CODE);

/* a=a+d*AVEC(1)+BVEC(1), b=b+e*AVEC(2)+BVEC(2), c=c+f*AVEC(4)+BVEC(4) *1

FIGURE C.10 EXAMPLE OF THE USE OF SERVICE ROUTINES
PERFORMING ARITHMETIC OPERATIONS ON FLOW PARAMETERS OF TWO STREAMS

456

FPARMACS OPERATOR1V

This routine functions almost the same as routine FPARMACS OPERATOR1.

The only difference is that the multiplication and addition constants are

vectors in this case:

F1= F2 *A +B. for all i (components).

Usage

DCL FPARMACS_0PERATOR1V ENTRY (PTR, FIXED BIN, FIXED BIN, PTR, FIXED BIN,

FIXED BIN, DIM(*) FLOAT BIN(63), DIM(*) FLOAT BIN(63), BIT(1));

CALL FPARMACS_0PERATOR1V (PSTREAM1, PHASEN01, PARMNO1, PSTREAM2,

PHASE-N02, PARM_N02, AVEC, BVEC, CODE);

where:

AVEC is the vector of the multiplication constants (input).

BVEC is the vector of the addition constants (input).

The other variables are as defined for routine FPARMACS_OPERATOR1.

Notes

CODE is "on" for the following casses:

a. PSTREAM1, or PSTREAM2 is null.

b. PHASE_NO1 or PHASENO2 is invalid.

c. PARM_NO1, or PARM_N02 is invalid.

d. Both streams do not have the same components.

e. The size of vector AVEC or BVEC is not equal to the maximum

number of components (MAXNC).

f. The given flow parameter of a component in the given phase of

the stream pointed by PSTREAM2 is unspecified.

The value types of assigned parameters will be set to 3("Calculated").

457

Example

Phase 1 is the vapor phase and Phase 2 is the liquid phase, and

the first flow parameter of each phase is the mole fraction. KVAL contains

K values. Liquid phase compositions are already set. Set vapor phase

compositions.

DCL KVAL(MAXNC) FLOAT BIN(63);

DCL BVEC(MAX_NC) FLOAT BIN(63);

BVEC(*) = 0;

CALL FPARMACSOPERATOR1V (PSTREAM1,1,1,PSTREAM1,2,1,KVALBVEC,CODE);

See also Figure C.10.

FPARMACS OPERATOR2

It adds to a given flow parameter of each component in a phase of a

stream a value equal to the product of a constant and another given flow

parameter of the same component in a phase of another stream and added to

another constant:

F1 i= F1 + F2. * A+B for all i (components)

Usaize

DCL FPARMACS_OPERATOR2 ENTRY (PTR, FIXED BIN, FIXED BIN, PTR, FIXED BIN,

FIXED BIN, FLOAT BIN(63), FLOAT BIN(63)., BIT(1));

CALL FPARMACS_OPERATOR2 (PSTREAM1, PHASE_NO1, PARMNO1, PSTREAM2,

PHASE_N02, PARM_N02, A, B, CODE);

where:

The variables are as defined for FPARMACS_OPERATOR1 routine.

Notes

CODE is "on" for the following cases:

a. PSTREAM1, or PSTREAM2 is null.

458

b. PHASE_NO1, or PHASE_N02 is invalid.

c. PARM_NO1, or PARM_N02 is invalid.

d. Both streams do not have the same components.

e. Flow parameter "PARM_N02" of a component in phase "PHASE_N02"

of the stream pointed by "PSTREAM2" is unspecified.

f. Flow parameter "PARM_NO1" of a component in phase "PHASE_NO1"

of the stream pointed by "PSTREAM1" is unspecified.

The value types of assigned parameters will be set to 3 ("calculated").

ExamDle

STREAM3 is the result of adding STREAM1 and STREAM2. All streams are of

the same type and the first flow parameter of Phase 0 represents the molar

flow rate of each component.

CALL FPARMACS_OPERATOR1 (PSTREAM3, 0, 1, PSTREAM1, 0, 1, 1.0, 0, CODE);

CALL FPARMACSOPERATOR2 (PSTREAM3, 0, 1, PSTREAM2, 0, 1, 1.0, 0, CODE);

See also Figure C.10.

FPARMACS OPERATOR2V

This routine functions the same as FPARMACS_0PERATOR2 with the exception of

the addition and multiplication constants that are vectors in this case:

F1 = F1 + F2 *A + B. for all i (component).

Usage

DCL FPARMACS_OPERATOR2V ENTRY (PTR, FIXED BIN, FIXED BIN, PTR, FIXED BIN,

FIXED BIN, DIM(*) FLOAT BIN(63), DIM(*) FLOAT BIN(63), BIT(1));

CALL FPARMACSOPERATOR2V (PSTREAM1, PHASEN01, PARM_NO1, PSTREAM2,

PHASE_N02, PARM_N02, AVEC, BVEC, CODE);

where:

The symbols are as described for FPARMACS_0PERATOR1V.

459

Notes

CODE is "on" for the following cases:

a. PSTREAM1, or PSTREAM2 is null.

b. PHASE_NO1, or PHASE_N02 is invalid.

c. PARMNO1, or PARM_N02 is invalid.

d. Both streams do not have the same components.

e. The size of vector AVEC or BVEC is not equal to MAXNC.

f. Flow parameter "PARMNO2" of a component in the phase

"PHASE_NO2" of the stream pointed by "PSTREAM2" is unspecified.

g. Any of the target flow parameters are unspecified.

The value types of assigned parameters will be set to 3("calculated").

Examle

See Figure C.10.

460

APPENDIX D

PROCESS ENGINEERING LANGUAGE - DETAILED DESCRIPTION

D.1 COMMAND ELEMENTS

There are very few restrictions in the format of PEL commands.

Consequently, instructions can be written without consideration of special

coding forms. As long as each command is started on a new line and

terminated by a semi-colon (;), the format is completely free. Characters

entered after the ";" are ignored.

A command is constructed from symbols.

A symbol is the string of one or more characters.

Character Set

Any character set may be used to write a PEL command. In PEL any

character set will be classified according to: Digits, extended alphabetic

characters, and special characters.

Digits

There are ten digits (0 through 9).

Special Characters

There are 21 special characters, as shown in Table D.1. These

characters perform special functions and all of them are delimeters

separating elements of a statement (break characters). The point (.) when

used as a part of a number is not treated as a delimeter. Special

characters are combined to create other symbols. For example, <= means

less than or equal to, ** means exponentiation. Blanks are not allowed in

such composite symbols.

Extended Alphabetic Characters

All other characters fall in this category.

461

TABLE D.1

SPECIAL CHARACTERS

NAME CHARACTER

Blank

Equal sign or assignment symbol

Plus sign +

Minus sign

Asterisk or multiply symbol *

Slash or divide symbol

Left parenthesis (

Right parenthesis)

Comma

Point or period

Single quotation mark or apostrophe

Double quotation marks "

Semicolon

Colon

"Not" symbol A

"And" symbol &

"Or" symbol

"Greater than" symbol >

"Less than" symbol <

Currency symbol or dollar sign $

Tab

462

Alphanumeric Characters

An alphanumeric character is either an extended alphabetic character

or a digit but not a special character.

Symbols

A command is constructed from symbols. There are three types of

symbols: Literals, terminal symbols (operators), and identifiers.

Literals

Literals can be grouped into 2 classes:

a) Real numbers. A real number can be in three forms:

1. Without decimal point (e.g. 123)

2. With decimal point (e.g. 123., 123.495)

3. Scientific notation (e.g. 12.3e+1)

A real number can be up to 16 characters including point (.) and e.

Exponent can not exceed three digits and must be greater than -129 and less

than 128. No embedded blanks are allowed (e.g. 12.3e -4 is invalid). All

real numbers may have a "+" or "-"t prefix.

b) Integer numbers. An integer number consists of up to 5 digits and

no "+" or "-" prefix is allowed.

Terminal Symbols (operators)

The special characters (except the blank and tab) and some

combinations of them are terminal symbols. The terminal symbols perform

specific functions in a program.

Many of them function as operators.

There are three types of operators: arithmetic, comparison, and

Boolean.

The arithmetic operators are:

+ denoting addition or prefix plus

463

- denoting subtraction or prefix minus

* denoting multiplication

/ denoting division

** denoting exponentiation

The comparison operators are:

> denoting "greater than"

>= denoting "greater than" or "equal to"

denoting "equal to"

denoting "not equal to"

<= denoting "less than or equal to"

< denoting "less than"

The Boolean operators are:

& denoting "and"

I denoting "or"

Table D.2 shows some of the functions of other special characters.

Identifiers

All other symbols are identifiers. An identifier is a single

alphabetic character or a string of alphanumeric characters, preceded and

followed by a blank or some other delimiter (break-characters).

An identifier can also be enclosed in quotation marks. Such an

identifier can contain any character including special characters (except

the tab and quotation mark itself which indicates the end of the

identifier). The right most blanks in an enclosed identifier are ignored.

For example, Identifiers: "AB ", "AB" and AB are exactly the same, but

"A B", " AB", and "AB" are 3 different identifiers. The dimension field is

a special type of identifier which is enclosed in a pair of single

quotation marks and can contain any special characters except the single

464

TABLE D.2

FUNCTIONS OF OTHER SPECIAL CHARACTERS

NAME CHARACTER USAGE

Point or period

Currency symbol

Colon

Comma

Semicolon

Assignment

Blank

Tab

Single quotation
mark

Parentheses

Double quotation
marks

Indicates decimal point; connects

elements of a composite identifier

Encloses a comment

Currently not used

Separates elements of a list

Terminates a command

Indicates assignmenti

Separates elements of a statement

Separates elements of a statement

Encloses dimension (units of mea-
surement) of a value

Encloses lists; delimits portions
of a computational expression

Encloses an identifier which may
contain special characters

1 Note that the character = can be used as an equal sign and as an
assignment symbol.

465

quotation mark (apostrophe) itself and tab. The rightmost blanks in the

dimension field are also ignored. The length of an identifier (not

including " or ' of an enclosed identifier) must not exceed 16 characters.

There are no other restrictions on the format of an identifier as long

as it cannot be interpreted as a number. For example, 1A, 123B, AB2,

137E1475, "123", "+", and "ABC" all are legal identifiers. The identifiers

can be divided into three groups:

1. Language Keywords

2. Established Identifiers

3. User-Supplied Identifiers

Language Keywords

A keyword is an identifier that, when used in proper context, has a

specific meaning to the system. A keyword can specify such things as the

action to be taken, the nature of data, the purpose of a name. Some

keywords can be abbreviated. Note that there is no reseved word in PEL.

These identifiers only when used in proper context will be interpreted as

keywords. The language keywords can be classified into the following

groups:

1. Command Verbs

Each PEL command starts with a keyword called the command verb. The

command verb indicates the function of the command.

2. Command Objects

A command object is a keyword representing one of the seven process

elements. In some commands the command object follows the command verb

to indicate the object upon which the command action should be taken.

3. Phase Fields

A phase field is a keyword representing a specific phase of a stream.

466

The keyword phasen, or pn may be used to refer to nth phase of a

stream. Where n is an integer number. -In addition, phase zero which

represents the total stream can be also referred by any of these

keywords: stream, streams, or s.

4. Parameter References

The parameter may be referenced either by its name or by one of the

three following keywords: %parametern, %parmn, or %pn where n is the

parameter number.

5. Process Equipment Connection References

A connection may be referenced either by its name or by one of the two

following keywords: %cnctn, or %cn where n is the connection number.

6. Print Options

Print options are the keywords used in a print command to specify the

type of information to be printed.

7. Profile Parameters

The profile parameters are represented by the following keywords:

sdigit: Significant number of digits

ddigit: Decimal number of digits

dflag: Debugging flag

output: Indicating the output file

input: Indicating the input file

8. Built-In Constants

These are the symbols used to represent built-in constants. All these

symbols start with the percent sign "%" These symbols like all other

keywords are not reserved words. Such a symbol only will be

interpreted as a built-in constants, if there is no user supplied

variable with the same name.

467

9. Built-In Functions

The symbols used to represent built-in functions are another group of

language keywords. Such a symbol only will be interpreted as a

built-in function, if there is no user created function with the same

name.

10. Other Keywords

All other keywords which do not belong to any of the above groups, will

fall into this category. Each of these keywords may appear in one or

more commands. They may be a part of different clauses of a command.

A keyword may belong to more than one of the above groups.

The complete list of keywords and their abbreviations is given in Table

D.3.

Established Identifiers

Established identifiers are the keywords of the attached TBS. These

identifiers have been set in the TBS by its responsible system

administrator. These identifiers can be classified into the following

groups:

1) Unit types: a unit type is an identifier representing the type of a

unit. Symbol "all" is excluded as a unit type.

2) Stream types: A stream type is an identifier representing the type of

a stream. The symbol "all" is excluded as a stream type.

3)- Component types: A component type is an identifier representing the

type of a component. The symbols "all" and "none" are excluded as

component types.

4) Pre-defined Function types: A pre-defined function type is an

identifier representing the type of a pre-defined function. The symbol

"all" is excluded as a function type.

468

Group

1) Command Verbs

Table D.3

Language Keywords

Keyword Alternative

assume

bugs

calculate

clear

close

connect

continue

copy

create

delete

deletef'

disconnect

end

escape

help

include

leave

let

leta

list

listf

listt

load

loop

Abbreviation

a

calc

clr

cl

cnc t

ct

crt

del

delf

disc

esc

h

inc

lv

1

i f

lt

ld

lp

467

Table D.3 Continued

2) Command Objects

3) Phase Fields

(note: n is

the phase number.)

Keyword

news

open

print

printf

printt

profile

read

reada

repeat

save

specify

stop

terminate

unspecify

use

unit

stream

component

flow

function

variable

process

phasen

Alternative

units

streams

components

functions

variables

processes

Abbreviation

p

pf

pt

prof

rd

rda

r

av

sp

term

unsp

u

s

c

f

fn

v

pr

pn

stream streams

470

Table D.3 Continued

Grouo Keyword

4) Parameter References

(note: n is the

parameter number.) %parametern

5) Connection References

(note: n is the

connection number.) %cnctn

6) Print Options assumed

specified

unspecifed

calculated

parameters

connections

type

all

streams

functions

components

flowsheet

7) Profile Parameters

sdigit

ddigit

dflag

output

input

Alternative

%parmn

Abbreviation

%pn

%cn

a

sp

unsp

calc

p

cnct

stream

function

component

471

Table Q.3 Continued

Group Keyword

8) Built-In Constants

5e

%n

%pi

%r

9) Built-In Functions

abs

acos

asin

atan

atand

atanh

cos

cosd

cosh

erf

erfc

exp

log

log2

loglo

max

min

mod

Alternative Abbreviation

472

Table D.3 Continued

Group Keyword Alternative Abbreviation

sign

sin

sind

sinh

sqrt

tan

tand

tanh

10) Other Keywords all

at

brief bf

by

commands

otlinfo

default

dimension

file

from

for

if

notation

override

print p

private

property

473

Table D.3 Continued

Group AlternativeKeyword

public

to

type

vsctable

while

Abbreviation

474

5) Physical Dimensions (Dimensions): A dimension is an identifier

enclosed in a pair of single quotation marks representing the units of

measurement.

6) Physical Property Names: A TBS may allow the user to choose the

methods for estimating some or all of the physical properties. Physical

property names are identifiers referring to these properties.

7) Unit Parameter Names: A unit parameter name is an identifier

representing a parameter of a unit type. The symbol "all" and symbols

starting with "%" are excluded as parameter names. A user may refer to a

parameter either by its name or by language keywords: %parametern, %parmn,

or % pn where n is the parameter number. The symbol "all" refers to all

parameters.

8) Unit Connection Names: A unit connection name is an identifier

representing a connection positions of a unit type. The symbol "all" and

symbols staring with "%" are excluded as connection names. A user may

refer to a connection either by its name or by language keywords: %cnctn,

or %cn, where n is an integer number equal to the connection number.

Symbol "all" refers to all connections.

9) Stream (phase) Parameter Names: For each phase (including phase 0

which represents the total stream) of each stream type, the identifiers

representing the phase parameters are the phase parameter names of that

phase of that stream type.

10) Flow Parameter Names: For each phase (including phase 0 which

represents the total stream) of each stream type the identifiers

representing the flow parameters are the flow parameter names of that phase

of that stream type.

11) Component Parameter Names: For each component type the identifiers

475

representing the parameters are the component parameter names of that

component type.

12) Pre-defined Function Parameter Names: For each pre-defined function

type the identifiers representing the parameters (coefficients) are the

pre-defined function parameter names of that function type.

User-Suoplied Identifiers

These are the identifiers provided by the user to identify the objects

or files he creates. The user-supplied identifiers are as follows:

1) Unit identifiers: when a user creates a unit, he must assign an

identifying name to that unit.

2) Stream-identifiers: when a user creates a stream, he must assign an

identifying name to the stream.

3) Component identifiers: are the names of the pure components.

4) Function-identifiers: when a user creates a function, he must assign

an identifying name to the function.

5) Process-identifiers: when a user attempts to save or to load a process

he must identify it by a name.

6) Simple Variable identifiers: the user must provide a name for a simple

variable to represent its value. Although there is no restriction on the

format of these identifiers it is recommended that such identifiers do not

start with percent sign (%) so that the user can distinguish them from the

built-in constants.

7) Component File Names: these are the names of component public or

private files. A user may create any number of component private files. A

TBS may have any number of component public files. Users may share their

component files.

8) Process File Names: these are the names of process files. A user may

476

have any number of process files, each containing any number of processes.

Users may share their process files.

Composite Identifiers

These are the identifiers composed of two or more identifiers, and

separated by points C.). Each composing identifier is called an element.

Each element may be a language keyword, an established identifier, or a

user-supplied idenifier. No embedded blanks are allowed between the

elements. Currently, the qualified variables are the only composite

identifiers. Qualified variables are those variables referring to a

parameter of a unit, stream, component, or a pre-defined function. They

are as follows:

Unit Qualified Variables

A unit qualified variable refers to a parameter of a unit. The

general format of a unit qualified variable is:

unit.unit-identifier.parameter

For example: variable u.a.t refers to parameter "t" of unit "a".

Component Oualified Variables

A component qualified variable refers to a parameter of a component.

The general format of a component qualified variable is:

component.component-identifier.parameter

For example: c.co2.%p3 refers to third parameter of component co2.

Stream Qualified Variables

A stream qualified variable refers to a parameter of a specific phase

of a stream. The general format of a stream qualified variable is:

stream.stream-identifier.phase-field.parameter

For example: variable s.feed.pl.t refers to parameter "t" of phase one of

stream "feed".

477

Flow Qualified Variables

A flow qualified variable refers to a flow parameter of a component in

a specific phase of a stream. The general format of a flow qualified

variable is:

flow.stream-idenifier.phase-field.component-identifier.flow-parameter

For example: variable f.feed.pl.co2.x refers to flow parameter "x" of

component "co2" in phase one of stream "feed".

Function Qualified Variables

A function qualified variable refers to a parameter (coefficient) of a

pre-defined function. The general format of a function qualified variable

is:

function.function-identifier.parameter

For example: variable fn.h.ao refers to parameter "ao" of pre-defined

function "h".

Blanks

Blanks may be used freely in a command. One or more blanks must be

used to separate identifiers and constants that are not separated by some

other delimiters or by a comment.

Comments

Comments are permitted whenever blanks are allowed in a command. A

comment is treated as a blank and can therefore be used in place of a

required separating blank. Comments do not otherwise affect execution of a

command; they are used only for documentation purposes. The general format

of a comment is:

$ character string $

The comment itself may contain any character except $, which would be

interpreted as terminating the comment. A comment may not continue to the

next line.

478

D.2 EXPRESSIONS

An expression is a representation of a value. A single constant, a

simple variable, or a qualified variable is an expression. Combinations of

contants and/or variables, along with operators and/or parentheses, are

expressions. An expression that contains operators is an operational

expression. The constants and variables of an operational expression are

called operands.

Examples of expressions are:

27

work

(x-y)*u.heat.A

Use of Expressions

Expressions may appear in a PEL statement for the following purposes:

1) To represent a value

examples are:

repeat for y from (A+B) to (A*B);

specify unit (heat) (A=x*B, U=u.heat.A*C);

2) To define a function

for example:

create function (h(x,y)=x*y*+sqrt(x+y));

3) To be used in while and if clauses for checking conditions.

examples are:

repeat for Y from (1) to (10) while (A<B&C>D);

specify v(x=10) if (Y>Z);

Expression Operations

An operational expression can specify one or more single operations.

The class of operation is dependent upon the class of operator specified

479

for the operation. There are three classes of operations: arithmetic,

boolean, and comparison.

Arithmetic Onerations

An arithmetic operation is one that is specified by combining operands

with one of the following operators:

+ - * / **

The plus sign and minus sign can appear either as prefix operators

(associated with and preceding a single operand, such as +A or -A) or as

infix Operators (associated with and between two operands, such as A+B or

A-B). All other arithmetic operators can appear only as infix operators.

An expression of greater complexity can be composed of a set of such

arithmetic operations. Note that prefix operators can precede and be

associated with any of the operands of an infix operation. For example,

expression A*-B is equivalent to A*(-B), and A--B is equivalent to A-(-B).

Only one prefix operator can precede and be associated with a single

variable. For example, expression A*--B is in error.

Boolean Operations

In PEL a boolean operation is one that is specified by combining

operands with one of the following operators:

"and" symbol &

"or" symbol |

Both operators can be used as infix operators only.

Note that there is no boolean data in PEL, arithmetic data is the only

data in PEL. The result of a boolean operation is either +1 or -1

depending on the operands.

The result of an "and" operation is +1 only if both operands are

positive or zero otherwise the result is -1. The result of an "or"

480

operation is +1 unless both operands are negative, in which case it it -1.

Comparison Operations

A comparison operation is one that is specified by combining operands

with one of the following operators:

"less than" <

"less than or equal to" <=

"equal to"

"not equal to "

"greater than or equal to" >=

"greater than" >

All of these operators can be used as infix operators only. The

result of a comparison operation is +1 if the relationship is true, -1 if

the relationship is false.

Combinations of Operations

The most common occurrence of comparison operations and boolean

operations are in "while" and "if" clauses.

For example: repeat for X from (1) to (10)

while (Y<B&C>D);

Comparison operations and boolean operations need not be limited to these

statements, however, the following statement could be valid:

specify variables (X=A<B,Y=C=D);

In this example the value of +1 would be assigned to X if A is less than

B,otherwise, the value -1 would be assigned. In the same way the value +1

would be assigned to Y if C is equal to D, otherwise, the value -1 would be

assigned. Note that in the Y assignment the first "=' sign is the

assignment symbol; the second "=" sign is the comparison operator.

481

Different types of operations can be combined within the same

operational expression. Any combination can be used. For example, the

expression shown in the following command is valid:

specify variables (A=6,B=-8,C=9,D=-1);

specify variable (X:A+B<C&D);

Each operation within the expression is evaluated according to the rules

for that kind of operation.

B would be added to A resulting in the value, -2.

-2 would be compared to C resulting in +1 since the relationship is

true.

An "and" operation would be performed as a result of the comparison

between (+1) & D resulting in -1.

The result of "and" operation (-1) would be assigned to X.

The expression in this example is described as being evaluated

operation-by-operation, from left to right. Such would be the case for

this particular expression. The order of evaluation, however, depends upon

the priority of the operators appearing in the expression.

Similarly, "while" and "if" expressions can have combined types of

operations. The "while" and "if" expressions would be evaluated like any

other expression. If the result of expression is positive or zero, the

relationship would be considered to be true (conditions hold). If the

result of the expression is negative, the relationship would be considered

false (conditions do not hold).

For example:

calculate units (heater, turbine) if (u.Heat.A<100);

If parameter A of unit Heat is less than 100, the result of expression

would be +1 and consequently the command would be executed. Similarly the

482

following command will be executed if Y+Z is zero or positive.

specify variable (X=10) if (Y+Z);

Priority of Operators

In the evaluation of expressions, priority of the operators is as

follows:

prefix + prefix - (highest)

**

*

infix + infix -

& (lowest)

If two or more operators of the same priority appear in the same

expression, the order or priority of those operators is from left to right;

that is, the leftmost operator in the expression is evaluated first. Note

that the order of evaluation of the expression in the command:

specify variable (X=A+B<C&D);

is the result of the priority of the operators. It is as if various

elements of the expression were enclosed in parantheses as follows:

(A)+(B)

(A+B)<(C)

((A+B)<C)&(D)

The order of evaluation (and, consequently, the result) of an

expression can be changed through the use of parentheses. The above

expression, for example, might be changed as follows:

(A+B)<(C&D)

In such an expression, those expressions enclosed in parentheses are

evaluated first to be reduced to a single value, before they are considered

in relation to surrounding operators.

483

Operands of an Expression

An operand of an expression can be a constant (number), a simple

variable, or a qualified variable. An operand can also be an expression

that represents a value that is the result of a computation, as shown in

the following expression:

B*sqrt(X)

In this example, the expression sqrt(X) represents a value that is equal to

the square root of the value X. Such an expression is called a function

reference.

The function sqrt is one of the PEL built-in functions. There are

other types of functions in PEL. A complete discussion of functions

follows.

484

D.1 FUNCTIONS

There are three types of functions available to the user. They are:

pre-defined functions

user-defined functions

built-in functions

The general form of a function reference is as follows:

function-indentifier (expression, expression, ...)

Pre-Defined Functions

These are the functions defined and established in the TBS by the

responsible system administrator, by providing the appropriate templates,

and required subprograms. The user incorporates these functions into his

problem solving capability by a "create" command. The coefficients of such

a function (if any) may be explicitly provided by a "specify" command or

may be assigned by a "calculate" command which in effect calls upon a

calculating routine. For example, suppose the TBS has a pre-defined

function of type I1 which is in the form:

X2 2
F(Xl,X2)= Xl 3X2 dX

The following commands show how the user can use such a function type:

"COMMAND: create function (H) type=I1;

**COMMAND: specify variable (X=H(0,2));

**COMMAND: print variable (X);

X=8

Suppose there is another pre-defined function of type L1 which is in

the form: F(X)=AO+A1*X, where AO and Al are function parameters. Suppose

the calculating routine for this function when invoked will perform a least

square curve fitting on user supplied data to determine parameters

485

(coefficients) AO and Al of the function. The following commands show how

the user can use such a function:

**COMMAND: create function (P) type=Ll; $AO and Al are unspecified now $

**COMMAND: specify function (P)(AO=2,A1:4);

**COMMAND: specify variable (X=P(5)); $X=2+4*5=22$

**COMMAND: print v(X);

X=22

**COMMAND: calculate function (P);

*entering routine leasts for level 1 calculation of function "P"

**enter number of data: 4

**enter X and Y:

1: 2 10

2: 4 20

3: 6 30

4: 7 35

**COMMAND: specify variable (X=P(3));

**COMMAND: print variable (X);

X=15

The "delete" command can remove the function from the users working

area, if it is not referred to in any current user-defined function.

User-Defined Functions

These are the functions that the user may provide at will to improve

his problem solving capability. For example:

create function (XXX(X,Y,Z)=X**Y+sqrt(Z));

specify variable (A:XXX(2,1,4)); $A=2** 1+sqrt(4)=4$

The "delete" command will remove the function from the users working

area, if the function is not referred to in any other current user-defined

486

function:

delete function (XXX);

Built-In Functions

These are the functions built-in to the system and available to the

user. Each such function will only be interpreted as a built-in function,

if there is no other user created function with that name.

The built-in functions can be classified according to the features

they are intended to serve. These classes are:

Arithmetic

Mathematical

Arithmetic Built-in Functions

These functions allow the programmer to investigate simple properties

of arithmetic values. They are:

abs

max

min

mod

sign

Mathematical Built-In Functions

These functions provide standard mathematical operations. They are:

acos log

asin log2

atan log10

atand sin

atanh sind

cos sinh

cosd sqrt

487

cosh tan

erf tand

erfc tanh

exp

A description of each built-in function is given in this section.

They are presented in alphabetical order.

abs(x)

abs returns the absolute value of a given expression x.

acosx

acos returns a value that represents the inverse (arc) cosine in

radians of a given expression x.

The absolute value of x must be less than or equal to 1, i.e.,

abs(x)<=1. The result is in the range:

0<=acos(x) <=pi

asin(x)-

asin returns a value that represents the inverse (arc) sine in radians

of a given expression x.

The absolute value of x must be less than or equal to 1, i.e., abs

(x)<=1. The result is in the range:

-pi/2<=asin(x)<=pi/2

atan (x1) or atan (x1,x2)

atan returns a value that represents the inverse (arc) tangent in

radians of a given value xl or of a given ratio xl/x2. x1 and x2 are

expressions.

If x1 alone is specified the result is in the range:

-pi/2<atan(xl)<pi/2

If x1 and x2 are specified, it is an error if x1 and x2 are both zero.

488

The results for all other values of x1 and x2 are given by:

arctan(x1/x2) for x2>0

pi/2 for x2=0 and x1>O

-pi/2 for x2=0 and x1<O

pi + arctan(x1/x2) for x2<0 and x1>0

-pi+arctan(xl/x2) for x2<0 and x1<O

atand (xl) or atand (xl.x2)

atand returns a value that represents the inverse (arc) tangent in

degrees of a given value x1 or of a given ratio x1/x2. x1 and x2 are

expressions.

If x1 alone is specified, the result is in the range:

-90<atand(xl)<90

If x1 and x2 are specified, the result is defined in terms of the

function atan as:

180/pi*atan(xl ,x2)

atanh(x)

atanh returns a value that represents the inverse (arc) hyperbolic

tangent of a given expression x.

The absolute value of x must be less than 1, i.e., abs(x)<1.

cos(x)

cos returns a value that represents the cosine of a given value x.

x is an expression whose value is in radians.

cosd(x)

cosd returns a value that represents the cosine of a given value x.

x is an expression whose value is in degrees.

cosh(x)

cosh returns a value that represents the hyperbolic cosine of a given

expression x.

489

erf returns a value that represents the error function of a given

expression x.

The result is given by:

2 -t2
erf(x)= - et dt

erfc(x)

erfc returns a value that represents the complement of the error

function of a given expression x.

The result is definedd in terms of the function erf as:

1-erf(x)

exp(-x)-

exp returns a value that represents the base of the natural logarithm

system, e, to the power of expression x.

lonz(x)

log returns a value that represents the natural logarithm, i.e., base

e, of a given value x.

x is an expression whose value must be positive.

log2(x)

log2 returns a value that represents the binary logarithm, i.e., base

2, of a given value x.

x is an expression whose value must be positive.

log1o(x)

log10 returns a value that represents the common logarithm, i.e., base

10, of a given value x.

x is an expression whose value must be positive.

490

max(xl.x2)

max returns, from a set of two arguments, the value of the argument

with the largest value.

xl,x2 are two expressions from which the largest is to be returned.

min(xlx2)

min returns, from a set of two arguments, the value of the argument

with the smallest value.

xl,x2 are two expressions from which the smallest is to be returned.

mod(x1,-x2)

mod returns the smallest positive value, R, such that:

(xl - R)/x2 = n, where n is an integer.

R is the smallest positive value that must be subtracted from a given value

x1 to make it exactly divisible by the given value x2.

If x1 is positive, R is the remainder of the division of x1 and x2; if

x1 is negative, R is the modular equivalent of this remainder.

x2 must not be zero.

x1, and x2 are expressions.

sign(x)

sign returns a value that indicates whether a given value x is

positive, zero, or negative. The value returned is as follows:

value of x value returned

x > 0 +1

x = 0 0

x < 0 -1

x is an expression.

sin(x)

sin returns a value that represents the sine of a given value x.

x is an expression whose value is in radians.

491

sind returns a value that represents the sine of a given value x.

x is an expression whose value is in degrees.

sinh~x)

sinh returns a value that represents the hyperbolic sine of a given

expression x.

sart(-x)

sqrt returns a value that represents the square root of x. The result

is the positive square root of x.

x is a non-negative expression.

tan(.x)

tan returns a value that represents the tangent of a given value x.

x is an expression whose value is in radians.

tand(x)

tand returns a value that represents the tangent of a given value x.

x is an expression whose value is in degrees.

tanh(x)

tanh returns a value that represents the hyperbolic tangent of a given

value x.

x is an expression whose value is in radians.

492

D.4 SEMI FORMAL DEFINITION OF PEL SYNTAX

The following conventions and definitions facilitate the description

of the syntax of the PEL commands.

BRACKET

indicates that the content of the bracket is optional. In other

words the contents of the bracket can be repeated none or one

time.

[]* Indicates that the content of the bracket can be repeated none or

more times.

BRACES

{ } Indicates that only one of the items contained in braces and

separated by I can be specified.

UNDERLINED WORDS

The underlined words are TBS pre-established words.

NOT UNDERLINED AND NOT ENCLOSED IN < >.

These are language keywords. They can appear as specified in the

syntax notation or can be replaced by their abreviations or alternatives.

ENCLOSED IN < >

Symbols enclosed in corner-brackets represent syntactic classes whose

description follows. In other words, such symbols have to be replaced by

other symbols as described next.

<identifier>

It is a user supplied identifier.

<number>

It is a real number.

493

<inteaer-number>

It is an integer number up to five digits.

<Dhase-field>

It represents a specific phase of a stream. Keywords phaseO, p0, stream,

streams, or s represents phase zero. Keyword phasen, or pn represents the

nth phase. n is an integer number. It should be noticed that the number

of phases of each stream depends upon the stream type.

<parameter>

It refers to a parameter of a unit, stream, component, or pre-defined

function. A parameter can be refered either by its pre-established name or

by one of the keywords %parametern, %parmn, or %pn, where n is the

parameter number:

{Darameter|%parameternlparmnlpnl

<connection>

It refers to a connection position of a unit. A connection can be referred

either by its pre-established name, or by one of the keywords %cnctn, or

%cn, where n is the connection number:

{connection%cnctnjcn}

<exDre ssion>

It is a mathematical expression as described in sections D.2.

<unit>

It is a unit identifier.

<stream>

It is a stream identifier.

<component>

It is a component identifier.

494

<function>

It is a pre-defined or user-defined function identifier.

<variable>

It is a simple or qualified variable identifier.

<process>

It is a process identifier.

(file>

It is a file identifier.

<unit-list>

It is a list of unit identifiers:

<unit> E, <unit>]*

No duplicate name is allowed.

<stream-list>

It is a list of stream identifiers:

<stream>(,<stream>]*

No duplicate name is allowed.

<component-list>

It is a list of component identifiers:

<component>[,<component>]*

No duplicate name is allowed.

<function-list>

It is a list of function identifiers:

<function>(,<function>]*

Each function can be pre-defined or user defined but can not be built-in.

No duplicate name is allowed.

<variable-list>

It is a list of variable identifiers:

495

<variable> (, <variable>]*

Variables can be simple or qualified.

<process-list>

It is a list of process identifiers:

<process> (,<process>]*

No duplicate name is allowed.

<file-list>

It is a list of file identifiers:

<file> ,<file>]*

No duplicate name is allowed.

<dummv-argument-list>

It is a list of dummy arguments used in creating a user defined function:

<identifier>(,<identifier>]*

No duplicate name is allowed.

<parameter-list>

It is a list of parameters:

<parameter>(,<parameter>]*

No duplicate name is allowed.

<connection-list>

It is a list of unit connection names:

<connection>[,<connection>]*

No duplicate name is allowed.

<flow-parameter-list>

It is a list of flow parameters of the components present in a stream:

<component>{alll(<parameter-list>)I

(,<component>{alll(<parameter-list>)I]*

496

<arguments>

It is a list of integer numbers used in calculate commands to be passed as

arguments to the calculating routine:

<integer-number>[,<integer-number>]*

<transfer-point>

It is a unit, stream, component, or function identifier used in calculate

commands:

{<unit>j<stream>l<component>l<function>}

<parameter-specification-list>

It provides data for the parameters of units, streams, components, or

pre-defined functions:

Option 1: <parameter>=<expression>['dimension']

C,<parameter>=<expression>[I'dimension']]*

Option 2: all=[[,]*<expression>['dimension']]

, ,]*<expression> ['dimension']]*

In the second option it is not necessary to specify all the parameters, but

the sequence of the parameters must be preserved by providing the repeated

commas. Suppose a unit has 5 parameters 1st and 4th parameters are P and

T. The following are valid examples of parameter-specification-lists for

the above unit:

T=2,%P2=3,P=4 $1st parameter =4, 2nd parameter = 3,

4th parameter =2 $

all=,,8,3 $3rd parameter = 8, 4th parameter = 3 $

all=12,,9 $1st parameter =12, 3rd parameter = 9 $

<flow-parameter-specification-list>

It provides data for the flow parameters of the components present in a

stream:

497

<component>(<parameter-specification-list>)

(,<component>(<parameter-specification-list>)]*

<ob ect>

It is a keyword representing a class of objects (command objects):

{unitjstreamlcomponentjflowlfunctionivariablelprocess}

<verb>

It is a keyword indicating the action to be taken by a command (command

verb):

{assumelbugs calculatelclearlcloselconnecticontinuelcopylcreatedeleteI

deletefldisconnect IendlescapelhelplincludelleavelletiletallistllistfI

listt load loopinewslopenlprintlprintflprinttlprofilejreadireadarepeatI

savelspecifylstopiterminatelunspecifyluse}

<if-clause>

Some commands may have if-clause. The execution of such a command depends

on the conditions set in the if-clause. The if-clause is in the following

form:

if(<expression>)

The command having the if-clause will not be executed, if the result of the

expression is negative; it will be executed otherwise. Examples of valid

if-clauses are:

if(A>B)

if(A>B & C>D)

if(A&B)

if(-3)

Table D.4 lists the general format (syntax) of each command.

498

Table D.4 GENERAL FORMAT OF PEL COMMANDS

TerminatorCommand

Body

assume unit <unit-list>)(<parameter-specification-list>)

<if-clause>]

component (<component-list>)(<parameter-specification-list>)

C <if-clause>]

function (<function-list>)(<parameter-specification-list>)

[<if-clause>]

stream (<stream-list>) [<phase-field>](<parameter-

specification-list>)[[<phase-field>](<parameter-

specification-list>)]*

[<if-clause>]

flow (<stream-list>)[<phase-field>](<flow-parameter-

specification-list>)[[<phase-field>]

(<flow-parameter-specification-list>)]*

C <if-clause>]

variable (<variable>=<expression>['dimension'][,<variable>=

<expression>['dimension']]*)C<if-clause>]

bugs

Command

Verb

Command

Object

499

Table D.4.continued

Command

Verb

Command

Object

TerminatorCommand

Body

calculate

unit all(([<arguments>))] [<if-clause>]

(<unit>([C<arguments>](,<transfer-point>])]

C,<unit>[([<arguments>][,<transfer-point>])]]*)
(<if-clause>]

component all[((<arguments>))] (<if-clause>]

(<component>((C<arguments>](,<transfer-point>])]

C,<component>((C<arguments>][,<transfer-point>])]]*)

(<if-clause>]

function all((<arguments>])] (<if-clause>]

(<function>(((<arguments>](,<transfer-point>])]

(,<function>(((<arguments>][,<transfer-point>])]]*)

(<if-clause>]

stream all [([<arguments>)][<if-clause>)

(<stream>((<arguments>][,<transfer-point>])]

(,<stream>(((<arguments>][,<transfer-point>])]]*)

[<if-clause>]

clear

close component C{publiciprivate}] file

process file

500

Table D.4 Continued

Command Command

Verb Object

TerminatorCommand

Body

connect unit <unit> at connection-name =<stream>

[connection-name=<stream>]*

<unit> at all =[(,]*<stream>][,(,]*<stream>]*

Continue

copy components {alll(<component-list>)}[type=t.] [override]

file

create unit (<unit-list>)(type=tvoe];

component (<component-list>)[type=tyDel

function (function-list>)[type=tye];

(<function>(<dummy-argument-list>)=<expression>

[,<function>(<dummy-argument-list>)=<expression>]*);

stream (<stream-list>)(type=tvDe)

flow {alll(<stream-list>)}{alll(<component-list>)}

delete unit {allI(<unit-list>)}

component tallJ(<component-list>)}

function tallJ(<function-list>)}

stream {alll(<stream-list>)}

flow {all|(<stream-list>)}{all|(<component-list>)}

501

Table D.4 Continued

Command Command

Verb Object

TerminatorCommand

Body

deletef component {allI(<component-list>)} [type=tve];

process {allI(<process-list>) I

disconnect unit (unit> at {allJ(<connection-list>)}

end

escape

help {commandslnotationj<object>|<verb><object>I

<verb>tall)

include component (<component-list>) Ctype=j.]t [Coverride]

leave [brife]

{letlleta} unit <unit>=<unit>

component <component>=<component>

function <function>=<function>

stream <stream>=<stream>

flow <stream>=<stream>

502

Table D.4 Continued

Command Command

Verb

list

Object

Command Terminator

Body

unit

component

function

stream

variable

listf component {all|(type=type]} [{privateipublicl]

process

listt unit

component

function

stream

load component (<component-list>)(type=tvpe][{publiclprivatel]

process (process>

loop

news

503

Table D.4 Continued

Command Command

Verb Object

open

Command

Body

Terminator

component [{publiciprivate}] file (<file>)

process file(<file>)

print unit {all I(<unit-list>) {unspecified I assumed I specified

calculated!parameterslconnectionsjtypelall}

[if-clause>]

component {all|(<component-list>)}{unspecifiedlassumed

specified calculated parameterslstreamstype all}

[<if-clause>]

function {alll(<function-list)>}{unspecifiedlassumedjspecified

calculated parameterslfunctions type all}

[<if-clause>]

stream talll(<stream-list>)}{unspecifiediassumedlspecifiedI

calculatedlparametersIconnectionstypeIall}

[<if-clause>] ;

flow {alll(<stream-list>)}{unspecifiedlassumedspecified

calculatedjparametersIcomponentslall}

[<if-clause>] ;

variable tall|(<variable-list>)}[<if-clause>]

process {all!flowsheet} [<if-clause>]

504

Table D.4 Continued

Command Command

Verb Object

TerminatorCommand

Body

printf component

printt

{alll(<component-list>)}(type=tve]

[{public private}]

{unitistreamIcomponentifunction}{[type=tvoe]Iall} ;

{dimension| property} {<integer-number>| all}

ctlinfo

vsctable

all

profile print

[{sdigitIddigitIdflagloutputlinput}=

<integer-number>]*

default

505

Table D.4 Continued

Command

Object

Command

Body

Terminator

{readIreada} unit (<unit-list>){alll(<parameter-list>)}(<if-clause>] ;

component

all [<if-clause>]

(<component-list>){alll(<parameter-list>)}

(<if-clause>]

all [<if-clause>]

function (<function-list>){alll(<parameter-list>)}

[<if-clause>]

all [<if-clause>]

stream (<stream-list>)[<phase-field>]{alll.(<parameter-

list>)}[[<phase-field>]{alll(<parameter-list>)}]e

[<if-clause>]

all [<if-clause>]

flow (<stream-list>)[<phase-field>]{alll(<flow-parameter-

list>)}(C(<phase-field>]{alli(<flow-parameter-

list>)}]e[<if-clause>)

all [<if-clause>]

variable {allJ(<variable-list>)} [<if-clause>]

Command

Verb

506

Table D.4 Continued

Command Command

Verb Object

repeat

TerminatorCommand

Body

for <variable> from (<expression>['dimension']) to

(<expression>('dimension'])[by (<expression>

('dimension'])][while (<expression>)]

for <variable>=(<expression>('dimension']

(,<expression>('dimension']]*)

(while (<expression>)]

save component {all|(<component-list>)} [override]

process <process>

specify unit (<unit-list>)(<parameter-specification-list>)

(<if-clause>];

component (<component-list>)(<parameter-specified-list>)

[<if-clause>]

function (<function-list>)(<parameter-specification-list>)

[<if-clause>]

stream (<stream-list>)(<phase-field>](<parameter-

specification-list>)[[<phase-field>](<parameter-

specification-list>)]* (<if-clause>]

flow (<stream-list>)[<phase-field>](<flow-parameter-

specification-list>)[(<phase-field>](flow-parameter-

specification-list>)]* [<if-clause>]

variable (<variable>:<expression>['dimension'](,<variable>=

<expression>['dimension']]*) [<if-clause>]

507

Table D.4 Continued

Command Command

Verb Object

Command

Body

Terminator

stop

terminate

component file (<file-list>)

process file (file-list>)

unspecify

unit (<unit-list>) {alli (<parameter-list>)}

all

components

(<component-list>){all|(<parameter-list>)}

all

functions (<function-list>){all|(<parameter-list>)}

all

streams (<stream-list>)[<phase-field>]{ all l (<parameter-

list>)} [E<phase-field>]{alll(<parameter-list>)}]*

all

flow (<stream-list>)[<phase-field>]{all l (<flow-parameter-

list>)} [[<phase-field>]{alll (<flow-parameter-

list>)]*

all

508

.4 Continued

Command

Object

Command

Body

Terminator

variables {all I (<variable-list>)}

use print

(roperty-name = <integer-number>]*

default

Tgble D

Command

Verb

509

D.5 PEL COMMANDS

PEL commands are described in this section. The commands are

presented in alphabetical order, and each is accompanied by the following

information:

1) FUNCTION - a short description of the meaning and use of the

command.

2) GENERAL FORMAT - the syntax of the command.

3) GENERAL RULES - the rules that must be known by the user for

proper usage of the command.

4) EXAMPLES - one or more examples.

ASSUME COMMANDS

The assume commands are used to supply the estimated numerical

values of parameters, when the user is not certain about the parameter

values and the system requires such data for initiating calculations

(e.g. recycle streams).

The general format and rules of these commands are the same as the

specify commands (replace command verb, specify, with assume). Note for

simple variables the assume command and specify command are exactly the

same.

BUGS COMMAND

FUNCTION: to print reported errors in the system and the attached

TBS.

510

GENERAL FORMAT: bugs;

CALCULATE COMMANDS

These commands are used to perform the calculations associated with

an object. The calculate commands can be grouped into the following four

commands:

I. CALCULATE UNITS

FUNCTION: to perform the calculation(s) associated with the unit

(unit operation).

GENERAL FORMAT:

Type 1: calculate units all [([<arguments>])] [<if-clause>];

Type 2: calculate units

(<unit>[([<arguments>][,<transfer-point>])]

[,<unit>[([<arguments>][,<transfer-point>])]]*)

[<if-clause>];

GENERAL RULES: <arguments> is a list of integer numbers to be

passed to the calculating routine. The first

argument is always interpreted as the level of

calculation specifying the specific calculation to

be made. The interpretation of other arguments

depends on the calculating routine. The arguments

may represent some input variables or specify the

route for the calculating routine or other routines

called by that routine.

511

Transfer-point is the name of the unit where

the calculation should start again if convergence

has not been achieved.

Other general rules for this command are as follows:

1) All units must exist.

2) Transfer-point must be the name of a unit

specified earlier in the list.

3) If level is not specified default level of one

will be assumed.

4) The number of arguments the user should provide

for each unit depends on the unit type. For

example, suppose unit type "x" has 2 levels of

calculations and minimum and maximum number of

arguments have been pre-set in the attached TBS

to 2 and 4 respectively. Then the following are

the only valid argument lists for calculating a

unit of type "x":

(ni,n2)

(n1,n2,n3)

(n1,n2,n3,n4)

Where n1 should be either 1 or 2. The other

arguments should be integer numbers between 0

and 99999.

512

5) Before the system passes control to the

calculating routine it performs some specific

checking for each unit. These are primarily for

detecting over- or under-specification. If an

error is detected by the system or the

calculating routine the execution of the command

will be terminated. Moreover, if the command

resides in a closed loop the execution of that

loop will be terminated.

6) If the profile parameter dflag is not equal to

one, the system will print a message on the

user's terminal whenever it calls a

calculating routine.

7) If the profile parameter dflag is not equal to

two, the system will take over control and

prevent the termination of the PEL

session, whenever an undetected fatal error

occurs in a calculating routine. In this case

the execution of the calculate command will be

terminated and if the command resides in a

closed loop the execution of that loop will also

be terminated.

EXAMPLE: calculate u(A,B, C(,A),D(2)); it calculates unit A

followed by units B, and C. If calculation in unit C

513

does not converge, the calculation will be repeated

starting with unit A. Once convergence has been achieved

in unit C, unit D will be calculated with level equal to

two.

II. CALCULATE STREAMS

FUNCTION: To perform specific calculations for streams (e.g., dew

point, enthalpy, viscosity, etc.) '

GENERAL FORMAT: The same general format as calculate units command.

GENERAL RULES: The same as those for calculate units command.

EXAMPLE: calculate streams (Si,S2,S3);

III. CALCULATE COMPONENTS

FUNCTION: To perform specific calculations for pure components

(e.g., vapor pressure, calculating component parameters

based on experimental data, etc.).

GENERAL FORMAT: The same general format as calculate units command.

GENERAL RULES: The same as those for calculate units command.

EXAMPLE: calculate components (K2SO4(1));

It is a request for level 1 calculation for the component.

IV. CALCULATE FUNCTIONS

FUNCTION: To compute coefficients of a pre-defined function by

correlating raw data, or to perform other calculations

for a pre-defined function.

GENERAL FORMAT: The same general format as calculate units command.

514

GENERAL RULES: The same as those for calculate units command. The

calculating routine may prompt the user for some

input such as the data to be correlated.

EXAMPLE: calculate function (enthalpy);

CLEAR COMMAND

FUNCTION: To clear the working area and to create a new process.

GENERAL FORMAT: clear;

GENERAL RULES:

1) The working area will be cleared. In other words,

all the existing units, components, functions,

streams, and variables will be deleted.

2) The execution of all repeat-loop groups will be

terminated (if any).

3) A new process will be created; property estimation

methods options will be initialized to default

options; and the user will be prompted to provide

the maximum number of components.

4) The opened process file (if any) and the opened

component fiels (if any) will remain opened.

5) Profile parameters will remain unchanged.

CLOSE COMMANDS

These commands are used to close a component file or a process

file. The close commands can be grouped to the following two commands:

I. CLOSE COMPONENT

FUNCTION: To close a component private or public file.

515

GENERAL FORMAT:

GENERAL RULES:

close component [{publiclprivate}] file;

1) If public or private is not specified the default

would be the file which is opened. If both files

are opened or if both files are closed the defulat

would be public.

2) A warning message will be printed if the specified

file is already closed.

3) If the specified file is opened it will be closed.

EXAMPLE: close c public file;

II. CLOSE PROCESS

FUNCTION: To close a process file.

GENERAL FORMAT: close process file;

GENERAL RULES:

1) The opened process file will be closed.

2) If no process file is opened, a warning message wi

be printed.

EXAMPLE: close pr file;

CONNECT COMMANDS

Connect commands may be used to connect units to streams.

I. CONNECT UNIT

FUNCTION: To connect a unit to streams.

11

516

GENERAL FORMAT:

Option 1: connect unit <unit> at connection-name=

<stream> [connection-name=<stream>]*;

Option 2: connect unit <unit> at all = [[,]*<stream>]

[,[,]*<stream>]*;

GENERAL RULES:

1) The unit must exist.

2) For option 1 all connection names must belong to the

unit type.

3) For option 2 repeated commas are allowed to preserve

the sequence of connections (inlets, outlets).

4) For each unit connection which has already been

connected a warning message will be printed.

5) For each non-existing stream one will be created.

The type of the stream depends on the specified

connection. If the specified connection only allows

a particular stream type, a stream with that type

will be created. Otherwise, a stream with the

default type will be created.

6) For each connection which does not allow the

connection of the specified stream type a warning

message will be printed.

7) Any attempt to connect an already connected stream

will cause a warning message.

517

EXAMPLE: connect unit a at %c1=S1 %cnct3=S5 feed=S2;

Stream S1 will be connected to the 1st connection, S5 to

the 3rd connection and S2 to the connection named feed.

If the feed connection is the 5th connection the

following command is equivalent to the above command:

cnct unit a at all=S1,,S5,,S2;

CONTINUE COMMAND

FUNCTION: This is a dummy command which does not perform any action.

GENERAL FORMAT: continue;

COPY COMMANDS

Copy commands may be used to copy data from the public component

files into the private component files.

I. COPY COMPONENT

FUNCTION: To copy components data from a public component file into

a private component file.

GENERAL FORMAT:

Option 1: copy component {alll(<component-list>)}

[type=type][override];

Option 2: copy component file;

GENERAL RULES:

1) Both the private and public files should be opened.

2) For option 1:

a) if type is not specified default type will be assumed.

b) every component or every specified component of the given

518

type in the public file will be copied into the private

file, provided that the component exists in the public

file, and override option is specified. If override

option is not specified every component which already

exists in the private file will produce a warning

message.

3) For option 2 all components of all types in the public

file will be copied to the private file. The number

representing the maximum number of component types in the

file will also be copied.

CREATE COMMANDS

Create commands are used to create the process elements. Create

commands can be grouped into the following five commands:

I. CREATE UNITS

FUNCTION: To create units.

GENERAL FORMAT: create units (<unit-list>)

[type = unit-type];

GENERAL RULES:

1) If type is not specified the default type will be assumed.

2) For each non-existing specified unit one will be created.

3) For each existing specified unit a warning message will

be printed.

EXAMPLE: crt u (Heatl,Heat2) type=HeatEx;

II. CREATE STREAMS

FUNCTION: To create streams.

519

GENERAL FORMAT: create streams (<stream-list>) [type = stream-type];

GENERAL RULES:

1) If type is not specified the default type will be assumed.

2) For each non-existing specified stream one will be created.

3) For each existing specified stream a warning message will

be printed.

EXAMPLES: crt s (S1, S2, S3);

crt streams (S4, FEED) type=LIQVAP;

III. CREATE COMPONENTS

FUNCTION: To create components.

GENERAL FORMAT: create components (<component-list>)

[type = component-type ;

GENE

EXAM

RAL RULES:

1) If type is not specified the default type will be assumed.

2) For each non-existing component in the list, one will be

created, as long as the number of existing components does

not exceed the pre-specified maximum number of components.

3) For each existing specified unit a warning message will

be printed.

PLE: crt c (CaSO4, H20, CaS, H2);

IV. CREATE FLOW

FUNCTION: To create the flow of components in a stream. In other

words, to specify the components that are flowing in a

stream.

520

GENERAL FORMAT:

create flow {all (<stream-list>)}

{all (<component-list>)};

GENERAL RULES:

1) For each non-existing stream or component, a warning message

will be printed.

2) For each existing stream that does not permit the flow of a

specified component type a warning message will be printed.

3) For each component which already exists in a given stream a

warning message is produced.

EXAMPLE: crt flow (S , S2) all,

All the existing components will be present in streams

S1, and S2-

V. CREATE FUNCTIONS

FUNCTION: To create a pre-defined function or to define and create

an analytical function.

GENERAL FORMAT:

Type 1: To create a pre-defined function:

create function (<function-list>)

[type = function-type]

Type 2: To create a user defined function:

create function

(<function> (<dummy-argument-list>) =< expression>

[,<function> (<dummy-argument-list>) =<expression> }

521

GENERAL

EXAMP

RULES:

DELETE COMMANDS

Delete commands are used to delete an object from the working area.

Delete commands can be grouped into the five following commands:

I. DELETE UNITS

FUNCTION: To remove a unit data structure.

GENERAL FORMAT: delete units {allj(<unit-list>)};

1) For type 1:

a) If type is not specified, the default type will be

assumed.

b) For each existing function a warning message will be

printed.

c) For each non-existing function one with the specified

type will be created.

2) For type 2:

a) None of the functions must exist.

b) The expressions in addition to numbers and dummy

arguments could also refer to other functions and

variables. It should be noted that the other

variables referred to, would be substituted with

their values at that time and will remain unchanged.

LES: crt functions (H,S,CP) type=L2;

crt function (xxx(x,y)=x/y+h(s(cp(y))));

522

GENERAL RULES:

1) For each existing specified unit the corresponding source

and destination of all inlet and outlet streams will be

initialized, and unit will be deleted.

2) For each non-existing unit a warning message will be

printed.

EXAMPLE: delete units all; $all units will be erased $

II. DELETE STREAMS

FUNCTION: To remove a stream data structure.

GENERAL FORMAT: delete streams {all|(<stream-list>)};

GENERAL RULES:

1) For each existing specified stream its unit connections

will be initialized and the stream will be erased.

2) For each non-existing stream a warning message will be

printed.

EXAMPLE: delete s (S2, FEED);

III.DELETE COMPONENTS

FUNCTION: To remove a component data structure.

GENERAL FORMAT: delete components {all| (<component-list>)};

GENERAL RULES:

1) For each non-existing component in the list, a warning

message will be printed.

2) For each component that is present in any stream a warning

message will be printed.

523

3) Only those existing components which are not present in any

stream at that time, will be erased.

IV. DELETE FLOW

FUNCTION: To delete the flow information portion of streams. In

other words to indicate that some components are not

longer present in a stream.

GENERAL FORMAT: delete flow {allj(<stream-list>)}

{all|(<component-list>)};

GENERAL RULES:

1) For each non-existing stream or component a warning message

will be printed.

2) For each specified existing component which is not presnet

in a specified existing streams a warning message will be

printed.

3) Flow information of all specified existing components in all

specified existing streams which contain those components

will be erased.

EXAMPLE: del f all all

The flow information of all components in all streams

will be deleted. In other words, there would be no

component in any stream.

V. DELETE FUNCTIONS

FUNCTION: To delete user-created functions.

524

GENERAL FORMAT: delete functions {allI(<function-list>)};

GENERAL RULES:

1) For each non-existing function a warning message will be

printed.

2) A function cannot be deleted if it is referred by an

existing user-defined function. Therefore, for each such

function a warning message will be printed.

EXAMPLE: delete functions (A,B,C);

DELETEF COMMANDS

Deletef commands are used to delete components in a component file,

or to delete processes in a process file. Deletef commands can be

grouped into the following two commands.

I. DELETEF COMPONENTS

FUNCTION: to delete components in a component private file.

GENERAL FORMAT: deletef components {alll(<component-list>)

[type=type];

GENERAL RULES:

1) If type is not specified the default type will be assumed.

2) The component private file should be opened.

3) The user should have the proper access to the file.

4) Each specified component which does not exist in the file

will produce a warning message.

5) Each specified component which exists in the file will be

deleted.

525

EXAMPLE: deletef components (C1,C2) type=one;

II. DELETEF PROCESS

FUNCTION: To delete specified processes in a process file.

GENERAL FORMAT: deletef process {allj(<process-list>)};

GENERAL RULES:

1) The process file should be opened.

2) The user should have the proper access to the file.

3) Each specified process which does not exist in the file will

raise a warning message.

4) Each specified process which exists in the file will be

deleted.

EXAMPLE: deletef pr (E1,E2);

DISCONNECT COMMANDS

Disconnect commands are used to disconnect units from streams.

I. DISCONNECT UNIT

FUNCTION: To disconnect a unit from streams.

GENERAL FORMAT: disconnect unit <unit> at {all|(<connection-list>)};

GENERAL RULES:

1) The unit must exist.

2) If all option is specified, the unit will be disconnected

at all connections.

3) For every specified connection, the unit will be

disconnected from the stream connected to that connection.

If the unit is already disconnected at that connection a

warning message will be printed.

526

EXAMPLE: disconnect unit MHDChannel at (feed);

END COMMAND

FUNCTION: To terminate the session.

GENERAL FORMAT: end

GENERAL RULES:

1) The user is reminded if he or she has created some output

in his output file (i.e. output.GPES segment) during the

session.

2) The working area will be cleared. Therefore the user

should save his current process before issuing this

command, if that process is of any interest to him.

3) The executive session will be terminated.

ESCAPE COMMAND

FUNCTION: To transfer control to the Multics command level where

the user may execute any number of Multics commands or

invoke other programs.

GENERAL FORMAT: escape;

GENERAL RULES:

1) To return to PEL command level, the user should enter

a blank line.

HELP COMMANDS

FUNCTION: To print a description of a PEL command.

GENERAL FORMAT:

Type 1: help commands;

527

Type 2: help notation;

Type 3: help <object>;

Type 4: help <verb><object>;

Type 5: help <verb>;

Type 6: help all;

GENERAL RULES:

1) For type 1:

2) For type 2:

3) For type 3:

4) For type 4:

5) For type 5:

6) For type 6:

all the PEL commands will be tabulated.

syntax notation conventions used in

describing the general format of commands

will be printed.

A description of the given object will be

given.

A description of the given command will be

printed. The description includes the

function, general format, general rules, and

one or more more examples.

A description of the given group of commands

will be given. Each command in that group

will be described as mentioned for type 4.

The printout includes the following:

a) Table of PEL commands (type 1);

b) Syntax notation conventions (type 2);

c) Description of each of the seven command

objects (type 3 for each object);

d) Description of all the PEL commands (type

5 for each command).

528

EXAMPLE: help commands; $table 7.1 is the output of this command.$

INCLUDE COMMANDS

Include commands are used to add some components to a component file.

I. INCLUDE COMPONENT

FUNCTION: To include the specified components whose parameters are

provided by the user from the terminal, into a private

component file.

GENERAL FORMAT: include component (<component-list>)[type=type]

[override];

GENERAL RULES:

1) If type is not specified, the default type will be assumed.

2) The component private file should be opened.

3) The user should have the proper access on the file.

4) For each component the user will be prompted to provide the

value of each parameter. If the component is already

present in the file and override option is not provided a

warning message will be printed.

LEAVE COMMAND

FUNCTION: To leave the current attached TBS and attach another one.

GENERAL FORMAT: leave [brief];

GENERAL RULES:

1) The working area will be cleared. The current process will

be lost if the user does not save it before issuing this

command.

529

2) The opened component files (if any) will be closed.

3) The user will be asked to provide the name of the new TBS.

The new TBS will be attached. If brief option is not

provided some information about the new TBS will also be

printed.

4) All profile parameters will be initialized to the TBS

default parameters.

5) A new process will be created; property estimation methods

option will be initialized to the TBS default options; and

the user will be prompted to provide the maximum number of

components.

6) The opened process files (if any) will remain opened.

EXAMPLE: leave bf;

A.5.9 LET COMMANDS

Let commands are used to duplicate or copy an object. The let

commands can be grouped into the following five commands:

I. LET UNIT

FUNCTION: To duplicate or copy a unit.

GENERAL FORMAT: let unit <unit>=<unit>;

GENERAL RULES:

1) The unit on the righthand side must exist.

2) If the unit on the lefthand side exists, it must be same

type as the unit on the righthand side.

530

3) If the unit on the lefthand side (target unit) does not

exist, one with the same type as the other unit will be

created.

4) The values and value types of all parameters of the unit on

the righthand side will be assigned to the parameters of

the target unit.

5) The inlet and outlet connections remain unchanged.

EXAMPLE: let unit A=B;

Suppose unit B has four parameters as follows:

p1 "unspecified"

p2 "specified" 10

p3 "assumed" 20

p4 "calculated" 2

Unit A parameters would be:

p1 "unspecified"

p2 "specified" 10

p3 "assumed" 20

p4 "calculated" 2

II. LET STREAM

FUNCTION: To duplicate or copy a stream;

GENERAL FORMAT: let stream <stream>=<stream>;

GENERAL RULES:

1) The stream on the righthand side must exist.

531

2) If the target stream exists, it must be the same as the

other stream.

3) If the target stream does not exist one with the same type

as the other stream will be created.

4) All the phase parameters of each phase of the stream on the

righthand side will be assigned to those of the target

stream. Flow information and flow parameters are not

copied.

5) The source and the destination of each stream remain

unchanged.

EXAMPLE: let stream S1 = S2;

III. LET COMPONENT

FUNCTION: To copy or duplicate a component.

GENERAL FORMAT: let component <component>=<component>;

GENERAL RULES:

1) The component on the righthand side must exist.

2) If the component on the lefthand side exists, it must be

the same as the other component.

3) If the target component does not exist one with the same

type as the other component will be created, provided that

the number of components does not exceed the pre-specified

maximum number of components.

4) All parameters of the component on the righthand side will

be assigned to those of the target component.

EXAMPLE: let c IC4H10 = NC4H10;

532

IV. LET FLOW

FUNCTION: To duplicate or copy the flow information of a stream.

GENERAL FORMAT: let flow<stream> = <stream>;

GENERAL RULES:

1) The stream on the righthand side must exist.

2) If the stream on the lefthand side exists, it must be same

as the other stream.

3) If the stream on the lefthand side does not exist one with

the same type as the other stream will be created.

4) The flow of all components in all phases will be copied

from righthand side stream to the target stream. In other

words only those components will be present in the lefthand

side stream that are presnet in the righthand side stream,

and all flow parameters will be copied.

5) All phase parameters of the target stream remain unchanged.

6) The source and destination of the target sream remain

unchanged.

EXAMPLE: let flow S1 = S2;

V. LET FUNCTION

FUNCTION: To duplicate or copy a pre-defined function.

GENERAL FORMAT: let function <function> = <function>;

GENERAL RULES:

533

1) The function on the righthand side must exist and must be a

pre-defined type.

2) If the function on the lefthand side (target function)

exists, it must be same type as the function on the

righthand side.

3) If the target function does not exist, one with the same

type as the other function will be created.

4) All parameters (coefficients) of the function on the

righthand side will be assigned to the parameters of the

target function.

EXAMPLE: let fn A = B;

LETA COMMANDS

These commands function exactly like the let commands with one

exception. In let commands both value and value type of each parameter

will be copied, whereas in leta commands only the value of each parameter

will be copied. The value type of all target parameters which are not

unspecified will be set to "assumed".

The general format and rules of these commands are the same as the

let commands (replace let with leta). The relationship between let and

leta commands is the same as the relationship between specify and assume

commands, or between read and reada commands.

LIST COMMANDS

List commands are used to list the process elements in the working

534

area. List commands can be grouped to the following five commands.

I. LIST UNITS

FUNCTION: To list the units in the process.

GENERAL FORMAT: list units;

GENERAL RULES: 1) The name of each unit in the process will be

printed.

II. LIST STREAMS

FUNCTION: To list the streams in the process.

GENERAL FORMAT: list streams;

GENERAL RULES: 1) The .name of each stream in the process will be

printed.

III. LIST COMPONENTS

FUNCTION: To list the components in the process.

GENERAL FORMAT: list components;

GENERAL RULES: 1) The name of each component in the process will be

printed.

IV. LIST FUNCTIONS

FUNCTION: To list the functions in the process.

GENERAL FORMAT: list functions;

GENERAL RULES: 1) The name of each function in the process will be

printed.

V. LIST VARIABLES

FUNCTION: To list the simple variables.

GENERAL FORMAT: list variables;

535

GENERAL RULES: 1) The name and value of each simple variable in

the process will be printed.

LISTF COMMANDS

listf commands are used to list components or processes in the

component files or process files. listf commands can be grouped into the

following two commands:

LISTF COMPONENTS

FUNCTION: To list all the components in a component file.

GENERAL FORMAT: listf component {all|[type=type]} [{privatejpublic}];

GENERAL RULES: 1) If private or public is not specified the

default would be the file which is opened. If

both files are opened or if both files are

closed, the default would be the public file.

2) The specified file should be opened.

3) If "all" option is given, all components of

every type will be listed.

4) If neither type nor all is specified the default

type will be used.

5) If the all option is not given the components of

the given type or default type will be listed.

EXAMPLE: listf c private; components of default type in the opened

private component file will be listed.

II. LISTF PROCESS

FUNCTION: To list the processes in a process file.

GENERAL FORMAT: listf process;

536

GENERAL RULES: 1) The process file should be opened.

EXAMPLE: lf pr;

LISTT COMMANDS

listt commands are used to list the types of objects in the attached

TBS. listt commands can be grouped into the following commands:

I. LISTT UNIT

FUNCTION: To list the unit types (templates).

GENERAL FORMAT: listt units;

GENERAL RULES: 1) All unit types will be listed.

II. LISTT STREAMS

FUNCTION: To list the stream types (templates).

GENERAL FORMAT: listt streams;

GENERAL RULES: 1) All stream types will be listed.

III. LISTT COMPONENTS

FUNCTION: To list the component types (templates).

GENERAL FORMAT: listt components;

GENERAL RULES: 1) All component types will be listed.

IV. LISTT FUNCTIONS

FUNCTION: To list the pre-defined function types (templates).

GENERAL FORMAT: listt functions;

LOAD COMMANDS

Load commands are used to retrieve components from a component file

or a process from a process file into the working area. Load commands

can be grouped into the following two commands:

537

I. LOAD COMPONENTS

FUNCTION: To copy the specified components from a public or private

component file into the working area.

GENERAL FORMAT: load component (<component-list>) [type=type]

[{publicprivate}];

GENERAL RULES: 1) If type is not specified the default component

type would be assumed.

2) If public or private is not specified the

default would be the file which is opened. If

both files are opened or if both files are

closed the default would be the public file.

3) The specified or implied file should be opened.

4) For every specified component which already

exists in the working area a warning message

will be printed.

5) For every specified component which does not

exist in the specified file, a warning message

will be printed.

6) When a component is loaded the value types of

all its parameters will be set to be specified.

EXAMPLE: load c(C02,CO);

II. LOAD PROCESS

FUNCTION: To load a process from a process file into the working

area.

538

GENERAL FORMAT: load process <process>;

GENERAL RULES: 1) The process file should be opened.

2) The specified process must exist in the process

file.

3) If the process is not compatible with the

current generation of the system or attached TBS

the user will be given the option of continuing

or ignorng the command.

4) All active repeat commands (if any) will be

terminated.

5) The working area will be cleared. Therefore if

current process is of any interest to the user,

he should save it, before issuing this command.

6) The specified process will be loaded into the

working area.

7) The property estimation methods in effect and

maximum number of components will be those of

the loaded process.

EXAMPLE: load pr test;

LOOP COMMAND

FUNCTION: To designate the end of a group of commands headed by a

repeat command to be repeated.

GENERAL FORMAT: loop;

GENERAL RULES: 1) There must be an unterminated repeat command

preceding the loop command.

539

NEWS COMMAND

FUNCTION: To print the news of the system and the attached TBS.

GENERAL FORMAT: news;

OPEN COMMAND

Open commands are used to open a component or process file or to create

such a file. Open commands can be grouped into the two following

commands:

I. OPEN COMPONENT

FUNCTION: To open a component file.

GENERAL FORMAT: open component [{publiclprivate}] file (<file>);

GENERAL RULES: 1) If public or private is not specified, default

would be the file which is not opened. If both

files are closed or if both files are opened

the default would be public file.

2) The user will be prompted to privde the

pathname of the file.

3) If the request is for a public file, the

specified public file should exist.

4) The user should have the proper access, for

opening the file.

5) If the request is for a private file, and if

the specified file does not exist a new

component file will be created provided that:

a) The user has the proper access for creating

a new file under the given pathname, and

540

b) The user is willing to create a new one.

6) If the file is not compatible with the attached

TBS the user will be given the option of

continuing the opening or ignoring the command.

7) Public files are in fact the private file of

TBS system administrators. They are created

and updated by the TBS system administrators.

8) Once the user has opened a private (or public)

file it remains open until:

a) He closes the private (or public) file,

b) He opens another private (or public) file,

c) He terminates the file,

d) He leaves the TBS, or

e) He terminates the session.

EXAMPLE: open c file (A);

II. OPEN PROCESS

FUNCTION: To open or create a new process file.

GENERAL FORMAT: open process file (<file>);

GENERAL RULES: 1) The user will be prompted to provide the

pathname of the file.

2) If the file exists the user should have the

proper access for opening of the process file.

3) If the file does not exist a new one will be

created provided that:

541

a) The user has the proper access for

creating a new file under the given

pathname, and

b) The user is willing to do so.

4) If the file is incompatible with the attahced

TBS the user will be given the option of

continuing the opening or ignoring the command.

5) Once a process file is opened it remains opened

until:

a) The user closes the file

b) The user opens another file

c) The user terminates the file, or

d) The user terminates the session.

EXAMPLE: open pr file (x);

PRINT COMMAND

Print commands are used to print some information about a process

element. These commands can be grouped into the following seven commands:

I. PRINT UNITS

FUNCTION: To print some information about units.

GENERAL FORMAT: print units {all|(<unit-list>)} {unspecified|

assumedlspecifiedicalculated parameters connectionsI

typeall}[<if-clause>];

GENERAL RULES: 1) All specified units must exist.

542

2) Print option indicates the type of information

to be printed about each specified unit or every

unit:

a) unspecified: unspecified unit

parameters will be printed.

b) assumed: assumed unit parameters will

be printed.

c) specified: specified unit parameters

will be printed.

d) calculated: calculated unit

parameters will be printed.

e) parameters: all the unit parameters

will be printed.

f) connections: inlet and outlet streams

will be listed.

g) type: unit type will be printed.

h) all: type, connections, and all the

unit parameters will be printed.

EXAMPLE: print u (A) unspecified; Unspecified parameters of unit

"A" will be printed.

II. PRINT STREAMS

FUNCTION: To print some information about streams.

GENERAL FORMAT: print streams {alli (<stream-list>)}

{unspecifiedlassumed specifiedicalculated iparametersI

543

connections typelall}[<if-clause> ;

GENERAL RULES: 1) All specified streams must exist.

2) Print option indicates the type of information

to be printed about each specified stream or

about every stream:

a) unspecified: unspecified phase

(stream) parameters will be printed.

b) assumed: assumed phase (stream)

parameters will be printed.

c) specified: specified phase (stream)

parameters will be printed.

d) calculated: calculated phase (stream)

parameters will be printed.

e) parameters: all the phase (stream)

parameters will be printed.

f) connections: source and destination

of the stream will be printed.

g) type: stream type will be printed.

h) all: type, connections, and all the

phase (stream) parameters will be

printed.

FUNCTION: print s all connections; Source and destination of each

stream will be printed.

544

III PRINT COMPONENTS

FUNCTION: To print specific information about components.

GENERAL FORMAT: print components{alll(<component-list>)}

{unspecifiediassumedispecifiedIcalculatedIparametersI

streamsltypelall} (<if-clause>];

GENERAL RULES:

1) All specified components must exist.

2) The given print option indicates the specific information to

be printed about each specified component or each component.

a) unspecified: unspecified component parameters will be

printed.

b) assumed: assumed component parameters will be printed.

c) specified: specified component parameters will be printed.

d) calculated: calculated component parameters will be

printed.

e) parameters: all the component parameters will be printed.

f) streams: streams containing the component will be listed.

g) type: component type will be printed.

h) all: type, parameters and streams will be printed.

EXAMPLE: print c (C02) streams if (A>B);

If variable A is greater than variable B the streams

containing

component C02 will be listed.

IV PRINT FLOW

FUNCTION: To print specific information about components flowing in

streams.

545

GENERAL FORMAT: print flowtallj(<stream-list>))

{unspecifiedassumedispecifiedcalculatediparametersI

componentsall} [<if-clause>];

GENERAL RULES:

1) All specified streams must exist.

2) The given print option indicates the type of information to

be printed about each specified stream or each stream:

a) unspecified: unspecified flow parameters will be printed.

b) assumed: assumed flow parameters will be printed.

c) specified: specified flow parameters will be printed.

d) calculated: calculated flow parameters will be printed.

e) parameters: all the flow parameters will be printed.

f) components: components present in the stream will be

listed.

g) all: parameters and components will be printed.

EXAMPLE: p f all c; $components present in each stream will be

listed.$

V PRINT.FUNCTIONS

FUNCTION: To print specific information about pre-defined functions.

GENERAL FORMAT: print functions (allj(<function-list>)}

{unspecifiedlassumedlspecifiedIcalculatedjparametersI

functionsjtypelall} [<if-clause>];

GENERAL RULES:

1) All specified functions must exist and be of the pre-defined

type.

2) The given print option indicates the specific information to

be printed about each specified function or each function.

546

a) unspecified: unspecified parameters will be printed.

b) assumed: assumed parameters will be printed.

c) specified: specified parameters will be printed.

d) calculated: calculated parameters will be printed.

e) parameters: all the function parameters will be printed.

f) functions: the number of times the existing user-defined

functions refering to the function will be printed.

g) type: the function type will be printed.

h) all: type, parmeters, and functions will be printed.

EXAMPLE: fn (H) calculated;

$calculated parameters of function H will be printed.$
0

VI PRINT VARIABLES

FUNCTION: To print values of variables.

GENERAL FORMAT: print variables {allj(<variables-list>)}

[<if-clause>];

GENERAL RULES:

1) Variables can be simple or qualified.

2) If all option is used all simple variables will be printed.

EXAMPLE: print v (u.distil.t,x); value of parameter "It" of unit distil

and value of variable x will be printed.

VII PRINT PROCESS

FUNCTION: To print information about the entire process.

GENERAL FORMAT: print process {flowsheetlall} [<if-clause>];

GENERAL RULES:

1) If flowsheet option is specified a flowsheet diagram of the

process will be printed (it is not implemented yet).

2) If all option is specified the following information will be

printed:

547

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

EXAMPLE: print pr

be equal

printed.

Process flowsheet (not implemented yet).

A list of all units.

A list of all streams.

A list of all components.

A list of all user-defined functions.

A list of all pre-defined functions.

A list of all simple variables.

All information about each unit.

All information about each stream.

All information about each component.

All information about each pre-defined function.

all if (u.test.flag=1); If parameter flag of unit test

to one, all information about the entire process will be

PRINTF COMMANDS

Printf commands are used to print information about components on a

component file.

I. PRINTF COMPONENTS

FUNCTION: To print parameters of components on a component file.

GENERAL FORMAT: printf components {alll(<component-list>)}[type=tgpg]

[{public private}];

GENERAL RULES: 1) If type is not specified default component type will

be assumed.

2) If public or private is not specified the default

would be the file which is opened. If both files

are opened or if both files are closed the default

would be public.

548

EXAMPLE: printf c (C

on the ope

PRINTT COMMANDS

FUNCTION: To p

TBS.

GENERAL FORMAT:

GENERAL RULES:

3) The specified file should be opened.

4) The parameters of each specified component

which exists on the file will be printed.

5) For each specified component which does not exist on

the file, a warning message will be printed.

0) public; Parameters of component CO of default type

ed public file will be printed.

rint information about the templates of the attached

Type 1: printt {unitlstreamicomponentifunction}

{[t e=ttype.] tall};

Type 2: printt dimension {<integer-number>}|all};

Type 3: printt property {<integer-number>jall};

Type 4: printt ctlinfo;

Type 5: printt vsctable;

Type 6: printt all;

1) For Type 1, if type is not specified the default

type for the given object will be assumed.

2) For Type 1, the template of the specified type or

every type of the given object will be printed.

3) For Type 2, the template of the given dimension type

or the entire dimension table will be printed.

4) For Type 3, the template of property estimation

methods of the given property or all properties will

be printed.

549

5) For Type 4, the template for the control information

of the attached TBS will be printed.

6) For Type 5, the value status codes table will be

printed.

7) For Type 6, all templates will be printed. The

output may be used as the Users Reference Manual of

the attached TBS.

EXAMPLES: printt component;

The template of the default component type will be

printed.

Printt dimension 1;

The template for the dimension type 1 will be printed.

PROFILE COMMAND

FUNCTION: To allow the user to provide his/her desired profile

parameters.

GENERAL FORMAT:

Type 1: profile print;

Type 2: profile {{sdigitlddigitjdflagloutputlinput}:

<integer-number>]*;

Type 3: profile default;

GENERAL RULES:

1) The profile parameters are as follows:

sdigit: number of significant digits to be used in response

to print commands. It should be between 1 and 14

(inclusive).

ddigit: Number of decimal digits to be used in response to

print commands it should be between 0 and sdigit

(inclusive).

550

output: It must be either 0 or 1, the value of zero

indicates that the output commands should be printed

on user's terminal, the value of one indicates that

the output of output commands should be saved on a

segment which later on could be printed on a high

speed printer or to be kept for any other purposes.

Upon specifying the value of one to this profile

parameter, the system will create a segment called

"output.GPES" in the user's current working

directory, if one does not already exist. The

output saved on this segment in one session follows

the previously created outputs and is preceded by a

headline specifying the date on which the output was

created.

dflag: Debugging flag is a number between zero and three

indicating whether additional information regarding

command processing to be printed. dflag of zero

indicates that:

a) whenever the system calles upon a

calculating routine a message be

printed on the terminal, and

b) if any fatal error occurs in the

calculating routine, the GPES

executive take over control, and

thus prevent the termination of the

session. The system should ignore

the command for which the routine

was invoked, and accept a new

command.

551

dflag of one is a request for (b) only. dflag of

two is a request for (a) only. dflag of three is a

request for both (a) and (b) and the printout of

some additional information regarding the internal

operation of the system. dflag of three is

recommended for use by the GPES administrator for

debugging the system. dflag of two is recommended

for use by TBS administrators and TBS programmers

for debugging TBS programs. dflag of zero or one is

recommended for normal operation. The default value

of dflag is either zero or one and is set by the TBS

administrator.

input: Currently it must be 0. It indicates that the

system should receive the commands and other inputs

from the terminal.

2) For Type 1: The current value of profile parameter will be

printed.

3) For Type 2: a) The sequence of listing parameters is

immaterial.

b) Any number of parameters may be specified.

c) The system will override the already specified

or default options. The specified parameters

will be in effect until they are overrided by

another profile command or initialized to the

default profile parameters of a new TBS (when

attaching a new TBS).

552

4) For Type 3: All profile parameters will be initialized to the

default values of the current attached TBS. They

will remain in effect until they are overrided by

another profile command or initialized to the

default parameters of a new TBS (when attaching a

new TBS).

5) When attaching a TBS the profile parameters will be set to the

default profile parameters of the TBS. The default parameters

are: sdigit = between 0 and 14 (inclusive) set by the TBS

system administrator.

ddigit = between 0 and sdigit (inclusive) set by the

TBS system administrator.

dflag = 0 or 1 set by the TBS system administrator.

output = 0

input = 0

EXAMPLES:

**COMMAND: prof sdigit =

**COMMAND: prof print;

sdigit = 10

ddigit = 2

dflag = 0

output = 0

input = 0

**COMMAND: prof default;

*COMMAND: prof print;

sdigit = 14

ddigit = 13

dflag = 0

output = 0

input = 0

10 ddigit = 2;

553

READ COMMANDS

Read commands are used to instruct the system to accept data from the

terminal and assign it to parameters or variables. The user is prompted to

provide data for each specified parameter or variable. The user's response

should be in the following form:

[[{+I-}]<number> ['dimension']]

The dimension should be appropriate for the corresponding parameter.

If dimension is not specified the default is the standard units for that

parameter. If no value is provided (a blank line is entered) for a

variable or parameter the value of that parameter or variable remains

unchanged. The read commands can be grouped to the following six commands:

I..READ..UNIT

FUNCTION: To accept data from the terminal and assign it to unit

parameters.

GENERAL FORMAT:

Type 1: read unit (<unit-list>) {allj(<parameter-list>)}

C <if-clause>];

Type 2: read unit all [<if-clause>];

GENERAL RULES:

1) For type 1:

a) Each unit in the list must exist.

b) All units in the list must be the same type.

c) All specified parameters must belong to the unit

type.

d) The user is prompted to provide data for every

specified parameter for each specified unit.

554

2) For Type 2: The user is prompted to provide data for

every parameter of each existing unit.

EXAMLE:

**COMMAND: read u(ul) (t,p,n);

**enter the following unit parameters:

unit ul

t: 100 'degr'

p: 100 'dum'

ERROR i 21 'dum' is an invalid dimension for the specified

parameter.

**reenter the input: 100 'atm'

n: $parameter n remains unchanged$

**COMMAND:

II. READ STREAMS

FUNCTION: To accept data from the terminal and assign it to

stream parameters.

GENERAL FORMAT:

Type 1: read stream (<stream-list>)

[<phase-field>]falll(<parameter-list>)}

[[<phase-field>]{alll(<parameter-list>)}]*

[<if-clause>];

Type 2: read stream all [<if-clause>];

GENERAL RULES:

1) Each stream in the list must exist.

2) Each stream in the list must be the same type.

3) If phase-field is not specified phase 0 (total stream)

will be assumed.

555

4) Each specified parameter should be a valid phase

parameter of the given phase of the stream type.

5) The user is prompted to provide data for every specified

phase (stream) parameter for each specified stream.

6) For Type 2: The user is prompted to provide data for

every phase (stream) parameter for each stream.

EXAMPLE: rd stream (feed) (wc,t);

II.. READ COMPONENT

FUNCTION: To accept data from the terminal and assign it to

component parameters.

GENERAL FORMAT:

Type 1: read component (<component-list>)

{alll(<parameter-list>)}

[<if-clause>];

Type 2: read component all [<if-clause>];

GENERAL RULES:

1) Each component in the list must exist.

2) All components in the list must be the same type.

3) All specified parameters must belong to the component

type.

4) The user will be prompted to provide data for every

specified parameter for each specified component.

5) For Type 2, the user is prompted to provide data for

every parameter of each existing component.

EXAMPLE:

read c (c1) (t) if(-l);

556

IV. READ FLOW

FUNCTION: To accept data from the terminal and assign it to flow

parameters.

GENERAL FORMAT:

Type 1: read flow (<stream-list>)

[<phase-field>]{alll(<flow-parameter-list>)I

[[<phase-field>]{all|(<flow-parameter-list>)}]*

[<if-clause>];

Type 2: read flow all [<if-clause>];

GENERAL RULES:

1) Each specified stream should exist.

2) All specified streams should be the same type.

3) If phase-field is not specified the default would be phase

0 (total stream).

4) Every specified parameter should be a valid flow parameter

of the given phase of the stream type.

5) The user is prompted to provide data for every specified

flow parameter for each stream.

6) For Type 2 user will be prompted to provide data for every

flow parameter of each existing stream.

EXAMPLE:

read flow (feed) all; $read all flow parameters of all

components in phase 0 of stream feed$

read flow (feed)(CO(f),(C02(f)); $read flow parameter "f" of

components CO and C02 in phase 0 of stream feed$.

557

V. READ FUNCTION

FUNCTION: To accept data from the terminal and assign to pre-

defined function parameters.

GENERAL FORMAT: Type 1: read function (<function-list>)

{all|(<parameter-list>)} [<if-clause>];

Type 2: read function all [<if-clause>];

GENERAL RULES:

1) Each function in the list must exist.

2) All functions in the list must be pre-defined and the same

type.

3) All specified parameters must belong to the function type.

4) The user is prompted to provide data for every specified

parameter for each specified function.

5) For Type 2, the user is prompted to provide data for every

parameter of each existing function.

EXAMPLE: read fn all if(A>B); If variable A is greater than

variable B, the user will be prompted to provide data

for every parameter of each existing pre-defined

function.

VI. READ VARIABLES

FUNCTION: To accept data from the terminal and assign it to

variables.

GENERAL FORMAT:

Type 1: read variables (<variable-list>)

(<if-clause>];

Type 2: read variables all [(<if-clause>];

558

GENERAL RULES:

1) Variables can be simple or -qualified.

2) The user will be prompted to provide data for each

specified variable.

3) For Type 2, the user will be prompted to provide data for

each existing simple variable.

EXAMPLE:

read v(u.a.t,x,y);

READA 9OMMANDS

These commands function exactly like the read commands with one

exception. A read command functions as though the input data has been

assigned to parameters by a specify command, while a reada command

functions as though the input data has been assigned to parameters by an

assume command. In other words the relationship between read and reada

commands are the same as the relationship between specify and assume

command or between let and leta commands. The general rules and formats of

reada commands are the same as the read commands (replace read with reada).

For further explanation refer to read commands.

NOTE: For simple variables read and reada commands function exactly the

same.

REPEAT COMMAND

FUNCTION: It heads a group of commands and specifies repetitive

execution of the commands within the group.

GENERAL FORMAT: Type 1: repeat for <variable>

from (<expression>['dimension'])

to (<expression>['dimension'])

559

[by(<expression>['dimension'1)]

[while(<expression>)];

Type 2: repeat for

<variable>:(<expression>['dimension']

[,<expression>[dimension]]*)

(while(<expression>)];

GENERAL RULES:

1) For type 1, if the BY option is not specified the value of

one will be assumed.

2) The variable (control-variable) can be simple or

qualified.

3) For qualified variables valid dimensions may be provided.

4) loop command designates the end of the sequence of

commands to be repeated.

5) Each expression in the command should be evaluatable

before the control-variable has been assigned. For

example, if u.a.t is unspecified the following command is

in error: repeat for u.a.t from(10) to (10*u.a.t);

6) The WHILE clause specifies that before each repetition of

the command sequence, the associated expression be

evaluated. If it is positive or zero the commands within

the group be executed, otherwise, the execution of the

group be terminated.

7) For type 1, the FROM (expression) represents the initial

value of the control-variable. The BY (expression)

represents the increment to be added to the control-

variable after each execution of the commands in the

560

group. The TO (expression) represents the terminating

value of the control variable. Execution of the commands

in the group terminates as soon as:

a) the WHILE (expression) (if any) becomes negative,

b) the value of the control-variable, when updated is

greater than the TO (expression), if the BY (expression)

is positive or zero, or

c) the value of the control-variable, when updated, is

less than the TO (expression), if the BY (expression) is

negative.

8) For type 2, initially the value of the first expression

will be assigned to the control-variable. In the 2nd

repetition the value of the 2nd expression will be

assigned to the control-variable and in the 3rd repetition

the value of 3rd expression and so on. The execution of

the commands in the group terminates as soon as:

a) the WHILE expression (if any) becomes negative, or

b) the list of expressions to be assigned to the

control-variable is exhausted.

9) PEL commands can be classified to the following groups

with respect to their appearance inside a repeat-loop

group.

a) Commands that are not allowed inside a repeat-loop

grouD. The following commands are not allowed

inside a repeat-loop group:

delete

let

561

leta

unspecify

b) Commands that terminate the group

The following commands when appearing after a

repeat command will terminate the execution of the

sequence of commands to be repeated:

clear

end

leave

load process

stop

The first four commands will terminate the most

outside group. In other words, they terminate each

existing group. The stop command terminates only

the corresponding group.

c) Non-ReDetitive Commands

The following commands when appearing inside the

group will be executed only once regardless of the

condition of the group:

bugs listt

close load component

connect news

continue open

copy printf

create printt

deletef profile

disconnect save

562

escape terminate

help use

include

list

listf

d) Repetitive Commands

Only the following commands when appearing inside

the group can be executed, any number of times,

depending on the condition of the group:

assume

calculate

loop

print

read

reada

repeat

specify

10) A repeat command is called unexecutable when after the

control-variable has been initialized (the first

iteration), the WHILE expression is negative; or for type

1 the control variable is greater than the TO expression

and the BY expression is positive or zero; or the control

variable is less than the TO expression and the BY

expression is negative. If a repeat command is

unexecutable, non-repetitive commands that may follow

this command will be executed only once as usual.

Repetitive commands that may follow the command will be

563

checked for syntax, but will not be executed, as long as,

the condition in the group does not permit. If the

repeat command is nested inside another repeat-loop

group, conditions may be relaxed and the execution of the

group may be resumed. But if the repeat command is

external (the most outside group), the holding conditions

will remain unchanged and the corresponding loop command

that will follow will terminate the group without

achieving any purpose from the group. Hence, external

unexecutable repeat commands will produce warning

messages.

11) If a repeat command appears in a group headed by an un-

executable repeat command, the repeat command itself will

be executed, in other words, its control-variable will be

initialized to the specified value, but the repetitive

commands (except the repeat commands) following it will

not be executed.

12) Although the same variable can be used as the

control-variable of several nested repeat-loop groups,

if proper care is not exercised it may result in an

endless loop.

13) Although the user can change the value of the control

variable, FROM, TO, and BY expressions inside a

repeat-loop group, if proper care is not taken it may

result in an endless loop.

EXAMPLES: repeat for s.feed.s.t from (10) to (100) by (10);

564

repeat for seed = (exp1, exp2, exp3) while (air<1.3);

loop;

loop;

565

SAVE COMMANDS

Save commands are used to store components in the working area into a

component file or to store the active process into a process file. Save

commands can be grouped into the following two commands:

I. SAVE COMPONENTS

FUNCTION: To copy the components data from the working area into

a private component file.

GENERAL FORMAT: save components { allI(<component-list>)}

[override];

GENERAL RULES: 1) For every non existing specified component a

warning message will be printed.

2) For every specified component whose one or

more parameters are unspecified a warning

message will be printed and the component

would not be saved.

3) The private component file should be opened

and the user should have the proper access.

4) If the override option is not provided, for

each specified component which already exists

in the private component file a warning

message will be printed.

5) Only the component parameters will be copied

into the private file, and the value types of

parameters will not be copied.

EXAMPLE: save c(C02,CO,Newcomp);

566

II. SAVE PROCESS

FUNCTION: To store the current process network into the opened

process file, under the specified name.

GENERAL FORMAT: save process <process> [override];

GENERAL RULES: 1) The process file should be opened and the user

should have the proper access.

2) If the override option is not provided there

must be no process with that name in the file.

3) If override option is provided, and there is

another process in the file with the same

name, the current process will override the

old one.

EXAMPLE: save process test;

SPECIFY COMMANDS

Specify commands are used to specify data about a process element.

Specify commands can be grouped into the following six commands:

I. SPECIFY UNITS

FUNCTION: To supply data about units.

GENERAL FORMAT: specify units (<unit-list>) (<parameter

-specification-list>)[<if-clause>];

GENERAL RULES: 1) The specified units must exist, and all must

be the same type.

2) Specified parameters must be a valid parameter

of that unit type.

3) Each expression should be evaluatable before

the execution of the command.

567

EXAMPLE: specify u(HEATER) (U=20, A=40 'FT2');

j.. SPECIFY STREAMS

FUNCTION: To specify phase (stream) parameters.

GENERAL FORMAT: specify streams (<stream-list>) [<phase-field>]

(<parameter-specification-list>) [[<phase-field>]

(<parameter-specification-list>)]e [<if-clause>];

GENERAL RULES: 1) The specified streams must exist, and all must

be the same type.

2) If a phase-field is not specified the default

would be phase 0 (total stream).

3) Each specified parameter must be a valid phase

parameter of the specified phase of that

stream type.

4) Each expression should be evaluatable before

the execution of that command.

EXAMPLE: sp s (feed) (rate = 500 'scf/m') p1 (ratio = .2);

Parameter "rate" of phase zero and parameter "ratio" of

phase one will be assigned.

III. SPECIFY COMPONENTS

FUNCTION: To supply data about components.

GENERAL FORMAT: specify components (<component-list>)

(<parameter-specification-list>) [<if-clause>];

GENERAL RULES: 1) The specified components must exist, and all

must be of the same type.

2) Each specified parameter must be a valid

parameter of that component type.

568

3) Each expression should be evaluatable before

the execution of the command.

EXAMPLE: sp c (k2so4) (density = 2,

%p4=2.4*c.k2so4.density); $if c.k2so4.density is

unspecified the command is in error.$

IV. SPECIFY FLOW

FUNCTION: To specify the flow parameters of the components

flowing in a stream.

GENERAL FORMAT:

specify flow (<stream-list>)

[phase-field] (<flow-parameter-specification-list>)

((phase-field] (<flow-parameter-specification-list>)]*

[<if-clause>];

GENERAL RULES: 1) The specified streams must exist, and all must

be of the same type.

2) The specified components must be present in

all streams.

3) If phase-field is not specified the default

would be phase 0 (total stream).

4) Each parameter must be a valid flow parameter

of the specified phase of that stream type.

5) Each expression should be evaluatable before

the execution of that command.

EXAMPLE: sp flow (FEED) (C02(f=200));

Flow parameter "f" of component C02 in phase 0 of

stream feed is equal to 200.

569

VX. SPECIFY FUNCTIONS

FUNCTION: To supply data about pre-defined functions.

GENERAL FORMAT: specify functions (<function-list>)

(<parameter-specification-list>)

[<if-clause>];

GENERAL RULES: 1) All the specified functions must:

a) exist,

b) be pre-defined, and

c) be the same type.

2) Each specified parameter must be a valid

parameter of that function type.

3) Each expression should be evaluatable before

the execution of the command.-

EXAMPLE: specify fn (t) (ao = 1, al = 2);

parameters aO and al of pre-defined function t are

assigned.

Y. SPECIFY VARIABLES

FUNCTION: To supply data about qualified variables or to create

(if non-existing) simple variables and supply data for

them.

GENERAL FORMAT: specify variables

(<variable>=<expression>['dimension']

[,<variable>=<expression>['dimension']]*

[<if-clause>];

GENERAL RULES: 1) The variable could be simple or qualified.

2) Valid dimensions are optional for qualified

variables.

570

3) Each expression should be evaluatable before

the execution of the command.

4) If a simple variable does not exist it will be

created and its value will be assigned.

EXAMPLE:

a) sp v(u.a.t=10, x=u.a.t);

If u.a.t is unspecified, the command is in error,

otherwise both u.a.t and x will be set to 10.

b) sp v(z=20, y=z);

If z is unknown, the command is in error, otherwise the

value of z and y will be set to 20.

c) sp v (w=35) if (-1);

No action will be taken. If w is unknown, it will remain

unknown.

STOP COMMAND

FUNCTION: To indicate the end of a repetitive execution of a

group of commands headed by a repeat command.

GENERAL FORMAT: stop;

GENERAL RULES: 1) There must be an unterminated repetitive group

of commands.

2) The execution of the corresponding group

will terminate and that group will be deleted.

EXAMPLE: repeat for X = (10,20,30);

repeat for Y = (20,30,40);

stop;

571

The internal group of commands is only executed once (X=10,

y = 20) and the group is deleted from the command sequence.

TERMINATE COMMANDS

These commands are used to terminate (delete) component private files

and process files. Terminate commands are grouped to the two following

commands.

I. TERMINATE COMPONENT

FUNCTION: To terminate one or more component private files.

GENERAL FORMAT: terminate component file (<file-list>);

GENERAL RULES: 1) For every specified file the user will be

prompted to enter the pathname of the file.

2) Every file which the user has the required

access will be terminated.

3) Every file which the user has not the required

access will produce an informatory system

message.

4) Every file which does not exist produces a

warning message.

5) If a specified file is opened it will be

closed and then terminated.

II. TERMINATE PROCESS

FUNCTION: To terminate one or more process files.

GENERAL FORMAT: terminate process file (<file-list>);

GENERAL RULES: 1) For every specified file the user will be

prompted to enter the pathname of the file.

572

2) Every specified file which the user has the

required access will be terminated.

3) Every specified file which the user has not

the required access will produce an

informatory system message.

4) Every specified file which does not exist

produces a warning message.

5) If a specified file is opened it will be

closed and then terminated.

EXAMPLE: terminate pr file (A,B);

UNSPECIFY COMMANDS

Unspecify commands are used to unspecify parameters and variables.

The unspecify commands can be grouped into the following five commands:

j. UNSPECIFY UNITS

FUNCTION: To unspecify data about units.

GENERAL FORMAT: Type 1: unspecify units(<unit-list>)

{all|(<parameter-list>)};

Type 2: unspecify units all;

GENERAL RULES: 1) Each unit in the list must exist.

2) All units in the list must be the same type.

3) All the specified parameters must belong to

the unit type.

4) For each unit in the list the parameters in

the list will be unspecified.

5) For Type 2, all parameters of all units will

be unspecified.

573

EXAMPLE: unsp u all; All parameters of all units will be

unspecified.

II. UNSPECIFY STREAMS

FUNCTION: To unspecify phase (stream) parameters.

GENERAL FORMAT: Type 1: unspecify streams (<stream-list>)

[phase-field) {(<parameter-list>)|all}

[[phase-field] {(<parameter-list>)|all}]*;

Type 2: unspecify streams all;

GENERAL RULES: 1) All the streams in the list must exist.

2) All the streams in the list must be of the

same type.

3) If a phase-field is not specified phase 0

(total stream) will be assumed.

4) All parameters in the list must belong to the

specified phase of the stream type.

5) For each stream in the list and for each

specified phase, the parameters in the list

will be unspecified.

6) For Type 2, all phase parameters of all

streams will be unspecified.

EXAMPLE: unspecify s(feed) phase 1 all;

All parameters of phase 1 of stream feed will be unspecified.

III. UNSPECIFY COMPONENTS

FUNCTION: To unspecify data about components.

GENERAL FORMAT: Type 1: unspecify components (<component-

list>) {(<parameter-list>)jall};

574

GENERAL RULES:

EXAMPLE: unsp

Type 2: unspecify components all;

1) All components in the list must exist.

2) All components in the list must be of the same

type.

3) All the specified parameters must belong to

the component type.

4) For each component in the list the parameters

in the list will be unspecified.

5) For Type 2, all parameters of all components

will be unspecified.

c (chO (to,pc);

IV. UNSPECIFY FLOW

FUNCTION: To unspecify flow parameters.

GENERAL FORMAT: Type 1: unspecify flow (<stream-list>) [phase-

field] {(<flow-parameter-list>)|all} [[phase-

field] {(<flow-parameter-list)|all}]*;

Type 2: unspecify flow all;

GENERAL RULES: 1) All streams in the list must exist and must be

of the same type.

2) If a phase-field is not specified phase 0

(total stream) will be assumed.

3) All specified components must be present in

each specified stream.

4) all specified parameters must be valid flow

parameters of the specified phase of the

stream type.

575

5) For each stream in the list and for each phase

in the list the given flow parameters of the

specified components will be unspecified.

6) For Type 2, flow parameters of all components

in all phases of all streams will be

unspecified.

EXAMPLE: unsp flow (s) (co2 (rate),co all);

Flow parameter "rate" of component co2 and all

flow parameters of component co in the phase 0 of

streams will be unspecified.

Y.. UNSPECIFY VARIABLES

FUNCTION: To unspecify data about qualified variables and delete

simple variables.

GENERAL FORMAT: unspecify variables {(<variable-list>)Iall};

GENERAL RULES: 1) For the "all" option all existing simple

variables will be deleted.

2) For the list option all variables must exist.

EXAMPLE: unsp variables (X,u.HEAT.A) ;

Simple variable X will be erased and parameter A of

unit HEAT will be unspecified.

Y. UNSPECIFY FUNCTIONS

FUNCTION: To unspecify data about pre-defined functions.

GENERAL FORMAT:. Type 1: unspecify functions (<function-list>)

{allt(<parameter-list>)} ;

Type 2: unspecify functions all;

GENERAL RULES: 1) All specified functions must

576

a) exist,

b) be pre-defined, and

c) be the same type.

2) Each specified parameter must be a valid

parameter of that function type.

3) For each function in the list the specified

parameters in the list will be unspecified.

4) For Type 2, all parameters or all pre-defined

functions will be unspecified.

EXAMPLE: unsp fn (h) all;

USE COMMAND

FUNCTION: To allow the user to instruct the system to use the

specified methods of physical properties estimations.

GENERAL FORMAT: Type 1: use print;

Type 2: use [property-name=<integer-number>]*;

Type 3: use default;

GENERAL RULES: 1) For Type 1; all options in effect will be

printed.

2) For Type 2; the integer-number represents the

method to be used for estimating a physical

property.

3) For Type 2; the system will override the

already specified or default options and the

specified procedures are in effect until:

a) overrided by another use command,

577

b) initialized to default options when

creating a new process (clear and leave

commands result in creation of a new

process).

c) initialized to those of a new process

when loading a process. Note that when

saving a process the options in effect

are also saved.

4) For Type 3; all options will be initialized to

default options.

Default options are established by the TBS

system administrator.

EXAMPLES: use pvap=2 fvap=4;

use print;

use default;

578

D.6 PEL MESSAGES

NOTATIONS IN MESSAGES

Many of the messages produced in this section contain symbols

indicating where the system will insert information when it prints the

messages. These symbols and notations are as follows:

t,tlt2,t3

n

<object>

<command-verb>

<file>

(value-status>

<clause>

<msg>

Text up to 16 characters

An integer number

unit, component, function, stream, flow,

variable, or process

A command verb such as create, delete, etc.

public or private

unspecified, assumed, specified, or calculated

The name of the clause such as "if", "by",

"to", etc.

A message printed by Multics System.

579

D.6.1 WARNING MESSAGES

D.6.1.1 INFORMATORY WARNING MESSAGES

WARNING i 1 <object> "t" does not exist

ExamAle:

**COMMAND: delete u(A);

**COMMAND: delete u(A,B);

WARNING i 1 Unit "A" does not exist.

WARNING

WARNING

"*WARNING***

i 2 <object> "t" already exists.

Example:

**COMMAND: crt c(C1);

**COMMAND: load c(C1);

WARNING i 2 component "C1" already exists.

i 3 component "t" cannot be erased. It is present in one

or more of existing streams.

Example

**COMMAND: crt flow (S1)(C02,CO);

**COMMAND: delete component (C02,CO);

WARNING i 3 component "C02" cannot be erased. It is

present in one or more of existing streams.

WARNING i 3 component "CO" cannot be erased. It is

present in one or more of existing streams.

i 4 function "It" cannot be erased. It is referred in an

existing user-defined function.

Example

580

**COMMAND: art fn (H(X1, X2)=X1/X2);

"COMMAND: art fn (G(Y1,Y2)=H(Y1/Y2,Y2/Y1)+4);

"COMMAND: delete fn (H,G);

WARNING i 4 function "H" cannot be erased. It is

referred in an existing user-defined function.

**COMMAND: delete fn (H);

**COMMAND:

"'WARNING*** i 5 variable "t" have been already unspecified in this

command.

ExamDle

**COMMAND: unsp v(u.A.T,X,Y,X);

WARNING i 5 variable "X" have been already

unspecified in this command.

WARNING*** i 6 maximum number of components (n) have been created. No

more components including "t" can be created.

Example

**COMMAND: art a (C3,C5,C12);

WARNING i 6 maximum number of components (20) have

been created. No more components including "C5" can be

created.

Explanation

Maximum number of components has been set to 20 by the user

at the time of initiation of this process. 19 components

have already been created ,so this command only has created

component C3.

581

WARNING* i 7 component "t" is not present in stream "t"

Examole

**COMMAND: delete f(S1)(C02);

WARNING i 7 component "C02" is not present in stream

"Si".

"*WARNING*** i 8 component "t" is already present in stream "t1I".

Example

**COMMAND: crt f(Sl)(CO);

WARNING i 8 component "CO" is already present in

stream "S1"l.

WARNING* i 9 stream "t" does not accept component type. "t1".

Example

**COMMAND: crt c(C10) type=XYZ;

**COMMAND: crt f(S1)(C10);

WARNING i 9 stream "Si" does not accept component

type "XYZ".

'WARNING* i 10 unit is already disconnected at "t"

ExamDle

**COMMAND: disconnect u A at all;

**COMMAND: disconnect u A at (IN);

WARNING i 10 unit is already disconnected at "IN".

582

WARNING

WARNING*

WARNING

i 11 unit is already connected at "t" to stream "t1i".

Example

**COMMAND: onct u A at IN=S1 IN=S2;

WARNING i 11 unit is already connected at "IN" to

stream "S1".

i 12 stream "It" is of type "t1". A stream of type "t1" is

required for connection "t3".

Examole

**COMMAND: crt s(S9) type=XYZ;

**COMMAND: cnct u A at all=,S9;

WARNING i 12 stream "S9" is of type "IXYZ". A stream

of type "std" is required for connection "IN2"

Exolanation

The above command requests that stream S9 to be connected to

the 2nd connection of unit A which is "IN2". That con-

nection can only accept a stream of type "std".

i 13 stream "t" is already connected at destination to "t1"

of unit "t2".

Example

**COMMAND: cnct u B at IN=S1;

**COMMAND: cnct u C at IN2=S1;

WARNING i 13 stream "1i" is already connected at

destination to "IN" of unit "B".

583

WARNING

WARNING*

WARNING*

i 14 stream "t" is already connected at source to "ti" of

unit "t2".

Example

"COMMAND: cnct u B at OUT1=S3, OUT2=S3;

WARNING i 14 stream "S3" is already connected at

source to "OUT1" of unit "B".

i 15 this external repeat command is not executable.

Example

**COMMAND: r for X from (10) to (1);

WARNING i 15 this external repeat command is not

executable.

i 16 component "t" type "ti" is present in private file

"t2" and override option is not specified.

.Example

**COMMAND: load c (C1,C2,C3) type=XYZ public;

**COMMAND: save c (C1,C4);

WARNING i 16 component "C1" type "XYZ" is present in

private file "xxx" and override option is not specified.

584

WARNING

WARNING

WARNING

WARNING

i 17 component "t" type "t1" is not found in <file> file

"t2".

Example:

**COMMNrD: load c (c10,c2);

WARNING i 17 component "c10" type "xyz" is not found

in private file "xxx".

i 18 one or more parameters of component "t" are

unspecified. Component cannot be saved.

Example

**COMMAND: unspecify c (cl,c2)(tc,pc);

**COMMAND: save c (c3,cl);

WARNING i 18 one or more parameters of component

"c1" are unspecified. Component cannot be saved.

i 19 process file "t" does not exist.

Example:

**COMMAND: terminate pr (x);

(User is prompted for the pathname of the process file

"x".)

WARNING i 19 process file "x" does not exist.

i 20 no room is left for adding any component including

"t" to the private file "t1I".

585

Example:

"COMMAND: save c (cl,c2,c3,c10);

WARNING i 20 no room is left for adding any

component including "c3" to the private file "xxx".

WARNING i 22 maximum number of component types (n) has been added

to the private file "t". Therefore no more components of

the new type "t1" can be added to the file.

Examples:

**COMMAND: save c (c10, c12);

WARNING i 22 maximum number pf component types (20)

has beend added to the private file "xxx". Therefore no

more components of the new type "yyy" can be added to the

file.

*Component 10 is not saved.

**COMMAND: inc c (c11,c12,c13) type = yyy;

WARNING i 22 maximum number of component types (20)

has been added to the private file "xxx". Therefore no

more components of the new type "yyy" can be added to the

file.

Explanation:

At the time of creating private file "xxx" maximum number

of component types has been specified to be 20. Therefore

only the maximum of 20 component types can be added to the

file.

586

WARNING

WARNING

WARNING

i 23 process "t" already exists and override option is not

specified.

Example:

**COMMAND: save pr test;

WARNING i 23 process "test" already exists and

override option is not specified.

i 24 process It" is not found.

Example:

**COMMAND: delete (test, test1);

WARNING i 24 process "test 1" is not found.

i 25 comment terminator, "$", is missing. One is assumed.

Example:

**COMMAND: crt u $ this is a comment.

WARNING i 25 comment terminator, "1$", is missing.

One is assumed.

**Continue: (A,B);

WARNING i 26 stream

contain any

Example:

**COMMAND:

**COMMAND:

"t" is of type "t1" which is not allowed to

component.

crt s (feed) type = air;

crt f (feed) (CO,C02);

587

WARNING i 26 stream "feed" is of type "air" which is

not allowed to contain any component.

WARNING*

WARNING

i 27 text following the ";" is ignored.

Example:

**COMMAND: crt u (A,B); this is extra.

WARNING i 27 text following the I;II is ignored.

i 28 argument "t" has not been referred to in expression

defining function "t1i".

Example:

**COMMAND: crt fn (xyz(xl,x2,x3) = x1 + x2);

WARNING i 28 argument "x3" has not been referred to

in expression defining function "xyz".

588

D.6.1.2 SEVERE WARNING MESSAGES

The general format of severe warning messages is as follows:

WARNING s n in evaluating{the <clause> clause oft an-expression in}

the <command-verb> [<object>] command, the following has

been detected:

---Message n---

The result of the expression has been assumed to be 0.0

where: s indicates that the message is of severe type. n is

the severe warning message number.

Message n is one of the following:

1. The absolute value of the argument of acos or asin

built-in function is greater than 1.

2. The absolute value of the argument of atanh built-in

function is not less than 1.

3. The argument of log, log2, or log10 built-in function is

not greater than 0.

4. The second argument of mod built-in function is 0.

5. The argument of sqrt built-in function is negative.

6. Both arguments of atan or atand built-in function are 0.

7. A division by 0.

8. An overflow.

9. An underflow.

10. Zero has been raised to a non-positive number.

11. One or more parameters of pre-defined function "t" are

unspecified.

589

Example:

**COMMAND: repeat for y from (1) to (-1) by (-1).

COMMAND: sp v (x = sqrt(y)2);

**COMMAND: p v(y,x);

y= 1

x= 1

**COMMAND: loop;

y =0
x= 0

WARNING s 5 in evaluating an expression in the

specify variable command the following has been detected:

The argument of sqrt built-in function is negative.

The result of the expression has been assumed to be 0.0.

y = -1

x = 0

590

D.6.2 ERROR MESSAGES

D.6.2.1 INFORMATORY ERROR MESSAGES

ERROR i 1 bad input or line greater than n characters.

Explanation:

When inputting a line, either a transmission error has

been detected or line size is greater than n characters.

The value of the n depends on the nature of the input

line. A command may consist of an unlimited number of

lines but each line should be less than 262 characters.

Component file's remark should be less than 100 characters.

Example:

**Continue: (user has entered a line greater than 262

characters)

ERROR i 1 bad input or line greater than 262

characters.

**Reenter the line:

ERROR i 2 illegal qualified variable. First element is not

valid.

Example:

**COMMAND: sp v(d.t.f = 2);

sp v(d.t.f = 2);

ERROR i 2 illegal qualified variable. First element

is not valid.

**Reenter the input: sp v(u.t.f = 2);

591

Explanation:

d is invalid as a first element of a qualified variable.

First element of a qualified variable should be one of the

following:

u, unit, units

c, component, components

fn, function, functions

s, stream, streams

f, flow

ERROR

***ERROR** *

i 3 the closing " is missing.

Example:

**COMMAND: crt u ("HEAT EXCHANGER);

ERROR i 3 the closing " is missing.

**Reenter the line: crt u ("HEAT EXCHANGER");

i 4 exponent is greater than 127 or less than -128.

Example:

**COMMAND: sp v(x = 12.4e+129);
sp v(x 12.4e+129);

ERROR i 4 exponent is greater than 127 or less than

-128

**Reenter the line:

592

ERROR*

ERROR

i 5 illegal qualified variable. Excess point or missing

element, or one of the elements is an invalid identifier.

Example:

"COMMAND: sp v(x = u.t.f);
sp v(x = u.t.f);

ERROR i 5 illegal qualified variable. Excess point

or missing element, or one of the elements is an invalid

identifier.

i 6 identifier, number, or dimension is more than 16

characters.

Examples:

1. crt u ("A VERY LONG IDENTIFIER");
$

2. 100 'A VERY LONG DIMENSION';

3. sp v(x = 123456789.12345e+2);

Explanation:

1. Identifier more than 16 characters.

2. Dimension more than 16 characters.

3. Number more than 16 characters.

ERROR i 7 empty dimension field or identifier field.

Example:

1. crt u ("",A);

2. sp v(U.A.T = 10'');

593

Explanation:

1. An identifier which is enclosed in a pair of double

quotation marks or a dimension field should satisfy the

following restrictions:

1. Should not be null.

2. Should not contain any tab settings.

3. All blanks following the last non-blank character

should be ignored.

4. Except for the trimmed blanks, they can only contain 1

to 16 characters.

ERROR i 8 illegal unit qualified variable. Number of elements

should be 3.

Example:

*4COMMAND: sp v(u.UNAME.UPARM.XTRA =4);

Explanation:

The above qualified variable has 4 elements. A unit

qualified variable should have 3 elements. First element

should be u, unit, or units. The second element is the

unit identifier. The third element is the referred

parameter.

ERROR i 9 illegal component qualified variable. Number of

elements should be 3.

594

Example:

**COMMAND: sp v(component.C02.TC.XTRA);

Explanation:

The above qualified variable has 4 elements. A

qualified variable should have 3 elements. The

element should be c, component, or components.

element is the component identifier. The third

the referred parameter.

ERROR

ERROR

component

first

The second

element is

i 10 illegal function qualified variable. Number of

elements should be 3.

Example:

**COMMAND: sp v(FN.A =4);

Explanation:

The above qualified variable has 2 elements. A function

qualified variable should have 3 elements. The first

element should be fn, function, or functions. The second

element is the function identifier. The third element is

the referred parameter (coefficient).

i 11 illegal stream qualified variable. Number of

elements should be 4.

Example:

**COMMAND: sp v(x = s.SNAME.s.PHASEPARM.XTRA)

595

Explanation:

The above qualified variable has 5 elements. A stream

qualified variable should have 4 elements. The first

element should be s, stream, or streams. The second

element is the stream identifier. The third element

represents the phase.field. The fourth element is the

referred parameter.

ERROR

ERROR

i 12 illegal flow qualified variable. Number of elements

should be 5.

Example:

**COMMAND: sp v(f.SNAME.O.C02 = 3);

Explanation:

The above qualified variable has 4 elements. A flow

qualified variable should have 5 elements. The first

element should be f or flow. The second element is the

stream identifier. The third element represents the phase

field. The fourth element is the desired component. The

fifth element is the referred flow parameter.

i 13 illegal appearance of not sign (A). It is only

allowed in combination with equal sign (A=).

Example:

**COMMAND: sp v(x = 1) if (A2)

596

ERROR i 14 an identifier or dimension is not allowed to contain

any tab settings.

Example:

**COMMAND: crt u (" A");

**COMMAND: sp v(U.A.T. = 2 ' DIM');

Explanation:

An identifier enclosed in a pair of' " or a dimension

enclosed in a pair of ' cannot contain any tab settings.

ERROR

ERROR

i 15 the closing ' is missing.

Example:

**COMMAND: sp v(U.A.T = 'DIM);

i 16 "t" is an invalid integer number. A valid integer

number consists of 1 to 5 digits.

Example:

**Enter maximum number of components: 20.

ERROR i 16 "20." is an invalid integer number. A

valid integer number consists of 1 to 5 digits only.

**Reenter the number: 20

Explanation:

This error occurs when inputting an integer number and the

number does not consist of 1 to 5 digits.

597

ERR0R

ERROR*

ERR0R

ERROR

i 17 the number should be not greater than n.

Example:

**Enter maximum number of components (0 to 200): 250

ERROR i 17 the number should be not greater than 200.

*Reenter the number:

Explanation:

This error occurs when inputting an integer number and the

number is greater than a preset maximum limit.

i 18 "t" is an invalid number.

Example:

**C0MAND: read v(x);

x:12.A4

ERROR i 18 "12.A4"? is an invalid number.

**Reenter the input:

i 19 your response should be yes or no.

Example:

**If you wish to continue enter yes, otherwise no: what

ERROR i 19 your response should be yes or no.

**Reenter please:

i 20 dimension It' is not allowed for variables or

dimensionless parameters.

598

Example:

**COMMAND: read v(x,u.A.T);

**Enter the following variables:

x: 10 IDEGK'

ERROR i 20 dimension tDEGK' is not allowed for

variables or dimensionless parameters.

**Reenter the input:

ERROR

ERROR* i

i 21 It' is an invalid dimension for the specified

parameter.

Example:

**COMMAND: read v(u.A.T);

**Enter the following variables:

u.A.T = 10 'DEG-DUMMY'

ERR0R i 21 'DEG-DUMMY' is an invalid dimension for

the specified parameter.

**Reenter the input:

22 text beginning "t" is excess.

Example:

**COMMAND: reada v(x);

**Enter the following variables:

x: 10 20 A

ERR0R i 22 text beginning "20" is excess.

**Reenter the input:

599

D.6.2.2 SEVERE ERROR MESSAGES

ERROR s 1 "t". After "t1" a "1;"1 is expected.

Example:

**COMMAND: crt u(A,B) HEATEX;

ERROR s i "HEAT EX"1. After ")" a "?;"t is expected.

*Command ingored.

**COMMAND: crt u(A,B) type = HEATEX

**Continue: $ or if HEATEX is the default type $

**Continue: $ it is equivalent to crt u(A,B); $

**Continue:

**COMMAND:

ERROR

ERROR

s 3 "t". After "It1" a "," is expected.

Example:

**COMMAND: crt u(A B);

ERROR s 3 "1B". After "A" a "," is expected.

*Command ignored.

**COMMAND: crt u(A,B);

s 5 "t". After "t1" a "1)" is expected.

Example:

**COMMAND: sp v(x = 10) if (y > 12, x < 3;

ERROR s 5 "" After "12" a ")" is expected.

*Command ignored.

**COMMAND: sp v(x 10) if (y > 12 & x < 3;

600

ERROR s 5 ";". After "3", a ")" is expected.

*Command ignored.

**COMMAND: sp v(x = 12) if (y > 12 & x < 3);

**COMMAND:

ERROR

ERROR

s 6 "t" is an invalid option for t. It must be a non-zero

integer number not greater than n.

Example:

**COMMAND: use FLIQ = 6;

ERROR s "16"1 is an invalid option for FLIQ. It must

be a non-zero integer number not greater than 4.

s 7 "It" is an invalid argument. It must be an integer

number not greater than 99999.

Example:

**COMMAND: calculate unit (A(+3));

ERROR: s 7 "+" is an invalid argument. It must be

an integer number not greater than 99999.

*Command ignored.

**COMMAND: calculate u(A(3));

s 8 "t" is an invalid dimension type. It must be an

integer number not greater than n.

Example:

601

**COMMAND: print dimension A;

ERR0R s 8 "A" is an invalid dimension type. It must

be an integer number not greater than 20

ERROR

ERROR*

ERROR s

s 9 "t" is an invalid property type. It must be a

non-zero integer number not greater than n.

Example:

**COMMAND: print property B;

ERROR s 9 "B" is an invalid property type. It must

be a non-zero integer number not greater than 6.

s 10 "t". After "t1" a "=" is expected.

Example:

**COMAND: sp v(x 12, y 20);

ERROR s 10 "12". After "x" a "=" is expected.

*Command ignored.

**COMMAND: sp v(x = 12, y 20);

ERROR s 10 "20". After "y" a "=" is expected.

*Command ignored.

**COMMAND: sp v(x = 12, y = 20);

**COMMAND:

16 "t". After "t1" a "(" is expected.

Example:

**COMMAND: crt u A;

ERROR s 15 "A". After "u" A "(" is expected.

*Command ignored.

602

**COMMAND: crt U(A);

**COMMAND:

ERROR

ERROR

ERROR

s 19 "t". After "t1" "at" is expected.

Example:

**COMMAND: cnct unit A IN = S1;

ERROR s 19 "IN". After "A" "at" is expected.

*Command ignored.

**COMMAND: cnct unit A at IN = Si;

**COMMAND:

s 20 "t". After "t1" "for" is expected.

**COMMAND: repeat x from (1) to (10);

ERROR s 20 "x". After "repeat" "for" is expected.

**COMMAND: repeat for x from (1) to (10);

s 21 "t". After "t1" "to" is expected.

Example:

**COMMAND: r for x from (1) by (2) to (10);

ERROR s 21 "by". After ")" "to" is expected.

*Command ignored.

**COMMAND: r for x from (1) to (10) by (2);

**COMMAND:

603

ERROR

ERROR

ERROR

ERROR

s 23 It". After "t1" "file" is expected.

Example:

**COMMAND: open c (x);

ERROR s 23 T(". After "c"l "file" is expected.

*Command ignored.

**COMMAND: open c file (x);

s 25 "t". After "t1" an identifier is expected.

Example:

**COMMAND: crt u(A,B,);

ERROR s 25 ")". After ","1 An identifier is expected.

*Command ignored.

**COMMAND: crt u(A,B,C);

s 26 "t" is an unknown level number for calculation of

<object> t.

Example:

**COMMAND: calc u(A(10,1));

ERROR s 26 "10" is an unknown level number for

calculation of unit A.

*Command ingnored.

**COMMAND:

s 27 "t" is an unknown unit.

Example: ,

604

**COMMAND: sp v(x = u.E.T);

ERROR s 27 "E" is an unknown unit.

*Command ignored.

**COMMAND:

ERROR

ERROR

s 28 "It" is an unknown component.

Example:

**COMMAND: sp c(cl,c2) (tc = 2, pc = 4);

ERROR s 28 "el1" is an unknown component.

*Command ignored.

**COMMAND:

s 29 "t" is an unknown pre-defined function.

Example:

**COMMAND: print fn(A,B) all;

ERROR s 29 "A" is an unknown pre-defined function.

*Command ignored.

**COMMAND:

s 30 "t" is an unknown stream.

Example:

**COMMAND: sp s(sl,s2)(t = 100);

ERROR s 30 "s1" is an unknown stream.

*Command ignored.

605

ERROR s

ERROR*

ERROR

32 It" is an unknown variable.

Example:

**COMMAND: print v(xx,yy);

ERROR s 32 "IZ" is an unknown variable.

*Command ignored.

s 34 "It" is an invalid <object> type.

Example:

**COMMAND: crt u(A) type = ADUMMY;

ERROR s 34 "ADUMMY" is an invalid unit type.

*Command ingored.

**COMMAND: crt u(A) type = HEATEX;

s 35 "t" is a pre-defined function which may not appear

in an arithemtic expression.

Example:

**COMMAND: sp(x = H(2,3) + 4);

ERR0R s 35 "H" is a pre-defined function which may

not appear in an arithmetic expression.

Explanation:

There is no evaluating routine associated with this type

of pre-defined function.

606

ERROR s 38 "ti is an invalid unit parameter.

Example:

**COMMAND:

ERROR

sp u(Ul)(TT = 200);

s 38 "TT" is an invalid unit parameter.

ERROR

ERROR

ERROR s

ERROR

s 39 "t" is

Example:

**COMMAND:

ERROR

s 40 't" is

Example:

**COMMAND:

ERROR

41 "t" is an

Example:

**COMMAND:

ERROR

s 42 "t" is

Example:

**COMMAND:

ERROR

an invalid component parameter.

sp v(c.C02.TK = 10);

s 39 "TK" is an invalid component parameter.

an invalid function parameter.

sp fn(K,K2)(AKI = 10);

s 40 "AKI" is an invalid function parameter.

invalid stream parameter.

sp s(sl,s2)(TT = 25);

s 41 "TT" is an invalid stream parameter.

an invalid flow parameter.

unspecify flow (S1,S2)(CO2(FF,X));

s 42 "FF" is an invalid flow parameter.

607

**ERROR*"

"*ERROR*"

"*ERROR*"

***ERROR*"

"ERROR"

s 43 "t" is an invalid connection of unit type ti.

Example:

"COMMAND: connect u A at INN=S1;

ERROR* s 43 "INN" is an invalid connection of unit

type HEATEX.

s 44 "t" is an invalid property name.

Example:

"COMMAND: use FFLIQ = 2;

"*ERROR*" s 44 "FFLIQ" is an invalid property name.

s 45 "t" is an invalid profile parameter.

Example:

"COMMAND: profile S = 14;

*"ERROR*** s 45 "S" is an invalid profile parameter.

s 46 "t" is an invalid print option for <object>.

Example:

**COMMAND: print unit (A,B)PARM;

"ERROR s 46 "PARM" is an invalid print option for

unit.

s 47 "t" is an invalid phase field. Valid phase fields

are: pn, phasen, s, stream, and streams, where n is an

integer number less than or equal to the number of phases

608

of the specified stream type.

Example:

**COMMAND: sp v(x = s.SNAME.PP.T);

ERROR s 47 "PP" is an invalid phase field. Valid

phase fields are pn, pahsen, s, stream, and streams, where

n is an integer number less than or equal to the number of

phases of the specified stream type.

ERROR

ERROR

ERROR

s 49 't" already has been created.

Example:

**COMMAND: crt fn (ADD (x,y) = x + y);

ERROR s 49 "ADD" already has been created.

*Command ignored.

s 50 "t" has appeared more than once in the list.

Example:

**COMMAND: crt fn(SUB(x,y) = x - y, SUB(x,xx) = x-xx);

ERROR s 50 "SUB" has appeared more than once in the

list.

*Command ignored.

s 51 "t" is not the same type as "t1i".

Example:

**COMMAND: sp u(U1,U2)(t = 100);

ERROR s 51 "U2" is not the same type as "U1".

609

ERROR

ERROR

ERROR

ERROR

ERROR

s 52 "t" is an unknown function.

Example:

**COMMAND: sp v(x = xyz(10,11));

ERROR s 52 "xyz" is an unknown function.

s 55 "t" is an invalid command verb.

Example:

**COMMAND: command;

ERROR s 55 "command" is an invalid command verb.

s 56 "t" is an invalid command object for t1 command.

Example:

**COMMAND: describe crt ff;

ERROR s 56 "ff" is an invalid command object for crt

command.

s 57 dimension 't' is an invalid dimension for the

specified parameter.

Example:

**COMMAND: sp v(u.a.t = 10 'deg-dummy');

ERROR s 57 dimension 'deg-dummy' is an invalid

dimension for the specified parameter.

s 58 dimension 't' is not allowed for variables, or

dimensionless parameters.

610

Example:

**COMMAND: sp v(x = 10 'degf');

ERR0R s 58 dimension ?degf? is not allowed for

variables, or dimensionless parameters.

ERROR

ERROR

ERROR

s 59 component "t" is not present in stream "t1".

Example:

**COMMAND: sp v(x = f.sl.po.co2.x);

ERROR s 59 component "co2" is not present in stream

"s 1?.

s 60 transfer point "t" does not appear earlier in the

list.

Example:

**COMMAND: calculate u(a,b,v(1,d));

ERROR s 60 transfer point "d" does not appear

earlier in the list.

s 61 routine for calculating <object> t is not implemented

yet.

Example:

**COMMAND: calc u(a,b);

ERR0R s 61 routine for calculating unit b is not

implemented yet.

611

ERROR

ERROR

ERROR*

ERROR*

a 62 this command is not allowed to appear inside the

repeat-loop group.

Example:

*COMMAND: r for x from (1) to (u.a.t);

**COMMAND: delete u (a);

ERROR s 62 this command is not allowed to appear

inside the repeat-loop group.

*Command ignored.

a 63 no active repeat command precedes this command.

Example:

**CONMAND: loop;

ERROR s 63 no active repeat command precedes this

command.

a 64 incorrect number of arguments for <object> t. It

requires at least n arguments.

Example:

**COMMAND: calc u(b,c(1,2,b));

ERROR s 64 incorrect number of arguments for unit

c. It requires at least 3 arguments.

s 65 incorrect number of arguments for <object> t. It is

allowed to have n arguments or less.

Example:

612

**COMMAND: calc unit (a(1,2,3,4));

ERROR s 65 incorrect number of arguments for unit

a. It is allowed to have 2 arguments or less.

ERROR

ERROR

ERROR s

ERROR

s 66 sdigit must be a non-zero integer number not greater

than 14.

Example:

**CONMAND: prof sdigit = 16;

ERROR s 66 sdigit must be a non-zero integer number

not greater than 14.

s 67 ddigit must be an integer number not greater than

sdigit.

Example:

**COMMAND: prof ddigit = 14 sdigit = 12;

ERROR s 67 ddigit must be an integer number not

greater than sdigit.

68 dflag must be 0, 1, 2, or 3.

Example:

**COMMAND: prof dflag = +1;

ERROR s 68 dflag must be 0, 1, 2, or 3.

s 69 output must be 0 or 1.

Example:

613

**COMMAND: profile output = 2;

ERROR s 69 output must be 0 or 1.

ERROR

ERROR

ERROR

ERROR

a 70 input must be 0 or 1.

Example:

"COMMAND: profile input = 2;

ERROR s 69 input must be 0 or 1.

a 71 invalid expression.

Example:

**COMMAND: sp v(x = a b);

ERROR s 71 invalid expression.

s 72 invalid expression. One or more ")" is missing.

Example:

**COMMAND: sp v(x = (a*b)/(a-b, z =2);

ERROR s 72 invalid expression. One or more ")"1 is

missing.

s 73 invalid expression. Unspecified qualified variable.

Example:

**COMAND: sp v(x = u.a.t).

ERROR s 73 invalid expression. Unspecified qualified

variable.

614

"'ERROR***

ERROR*

"*ERROR***

s 74 invalid expression. Wrong number of arguments for

function "t".

Example:

**COMMAND: crt fn(xyz(xl,x2) = x1 + x2);

**COMMAND: sp v(x = xyz(1,2,3) + 4.2);

ERROR s 74 invalid expression. Wrong number of

arguments for function "xyz".

s 75 no< object> type exists.

Example:

**COMMAND: crt fn(wxyz);

ERROR s 75 no function type exists.

Explanation:

The above command requests that a pre-defined function of

type wxyz be created. And since there is no pre-defined

function type the above error message has resulted.

s 76 number of specified parameters in "all" option

exceeds the number of parameters, or excess ",".

Example:

**COMMAND: sp u(A) (all = 1,2,3,4,5,6);

ERROR s 76 number of specified parameters in "all"

option exceeds the number of parameters or excess ",".

Explanation:

Unit A has only 4 parameters while 6 parameters have been

specified in all option.

615

"*ERROR*"

'ERROR"

ERROR*

**ERROR"*

s 77 number of specified streams in all option exceeds the

number of connections, or excess ",

Example:

"COMMAND: unit u a at all = s1,,,s4,s5,s6,,s8,,S10;

**ERROR*" s 77 number of specified streams in all option

exceeds the number of connections or excess "

s 90 no component <file> file is opened.

Example:

"COMMAND: close c private file;

"COMMAND: include c (c1,c2,c3);

"*ERROR*" s 90 no component private file is opened.

s 91 no process file is opened.

Example:

"COMMAND: close process file;

"COMMAND: load pr test;

ERROR s 91 no process file is opened.

s 92 component type "t" is not found in <file> file t1

Example:

"COMMAND: open c private file (xxx);

(User is prompted for the pathname of the file.)

"COMMAND: load c (cl,c2,c3) type = xyz private;

"*ERROR** s 92 component type "xyz" is not found in

private file xxx.

616

D.6.2.3 CALCULATING ERROR MESSAGES

ERROR c 1 for level n calculation of unit "t" it should{ benot

be} connected at "ti".

Example:

**COMMAND: calc u(a,b);

*Entering routine aaa for level 1 calculation of unit "a"

ERROR c 1 for level 1 calculation of unit "b", it

should be connected at "in3".

*Due to above error(s) the execution of this command has

been terminated.

**COMMAND:

ERROR

ERROR

c 2 for level n calculation of <object> "t" parameter "ti"

of <object> "t" should not be <value-status>

Example:

**COMMAND: calc unit (a(2));

ERROR c 2 for level 2 calculation of unit "a"

parameter "x" of unit "a" should not be unspecified.

.c 3,for level n calculation of <object> "t" parameter "ti"

of phase n1 of stream "t2" should not be <value-status>

Example:

**COMMAND: calc u(A);

ERROR c 3 for level 1 calculation of unit "a"

parameter "t" of phase 0 of stream "x" should not be

617

specified.

Explanation:

Stream "x" is connected to unit A and parameter "It" of the

stream is output of the unit calculation.

ERROR*

ERROR*

c 4 for level n calculation of< object >"t" flow parameter

"t1" of component "t2" in phase n1 of stream "t3" should

not be <value-status>

Example:

**COMMAND: calc u(A);

ERROR c 4 for level 1 calculation of unit "a" flow

parameter "f" of component "nc4" in phase-O of stream "x"

should not be unspecified.

ERROR c 4 for level 1 calculation of unit "a" flow

parameter "f" of component "nc5" in phase 0 of stream "x"

should not be unspecified.

*Due to above error(s) the execution of this command has

been terminated.

**COMMAND:

c 5 for level n calculation of <object> "t" parameter "t1"

of component "tt2I should not be <value-status>

Example:

**COMMAND: calc unit (b);

ERROR c 5 for level 1 calculation of unit "b"

618

parameter "to" of component "nc4" should not be

unspecified.

Explanation:

Component "nc4l" is flowing in a stream connected to unit

"lb".

ERROR*

ERROR

c 6 for level n calculation of <object> "t" one or more

errors are detected by the calculating routine t1.

*COMMAND: calc unit (b,a);

*Entering routine bbb for level 1 calculation of unit "b"

*Entering routine aaa for level 1 calculation of unit "a"

AAA: method of convergence has failed.

ERROR c 6 for level 1 calculation of unit "a" one or

more errors are detected by the calculating routine aaa.

c 7 for level n calculation of <object> "t" an error has

been detected during the execution of the calculating

routine which has not been handled by that routine.

Example:

**COMMAND: calc unit (c);

*Entering routine ccc for level 1 calculation of unit "c"

ERROR c 7 for level 1 calculation of unit "c" an

error has been detected during the execution of the

calculating routine which has not been handled by that

routine.

Explanation:

619

The error may be due to underflow, overflow, zero divide

or a similar condition in the calculting routine.

ERROR c 8 for level n calculation of <object> 't" user has

interrupted the execution.

Example:

**COMMAND: calc unit (a,b);

*Entering routine aaa for level 1 calculation of unit "a"

(user has hit the interrupt button)

(MULTICS ready message)

(user enters "pi" to return to system)

ERROR c 8 for level 1 calculation of unit "a" user

has interrupted the execution.

*Due to above error(s) the execution of this command has

been terminated.

620

D.6.3 SYSTEM MESSAGES

D.6.3.1 INFORMATORY SYSTEM MESSAGES

SYSTEM i 1 component private file "It" does not exist. cdbsys: msg

Example:

**COMMAND: terminate c file (xx).

(User is prompted for the pathname of the file.)

SYSTEM i 1 component private file "xx" does not

exist.

cdbsys: entry not found.

SYSTEM i 2 component file "t" is not compatible with current

TBS. Number of parameters for component type "t1" is n1

in this file while it is n2 in the current TBS.

Example:

**COMNMAND: save components (c2);

SYSTEM i 2 component private file "xyz" is not

compatible with current TBS. Number of parameters for

component type "std" is 5 in this file while it is 6 in

the current TBS.

*Component "c2" is not saved.

**COMMAND:

SYSTEM i 3 you have deleted segment "t" outside of this program.

pobsys: msg.

Example:

621

**COMMAND: delete pr test;

SYSTEM i 3 you have deleted segment "xtest1.GPES"

outside of this program. pdbsys: entry not found.

**COMMAND: load pr test10;

SYSTEM i 3 you have deleted segment xtest101.GPES

outisde of this program. pdbsys: entry not found.

*Command ignored.

**COMMAND:

SYSTEM

SYSTEM

SYSTEM

i 4 no text is given for "t"

Example:

**COMMAND: describe unit;

SYSTEM i 4 no text is given for "unit".

i 5 invalid argument "t". Valid arguments are: brief or

bf.

Example:

When entering the system: pel b

SYSTEM i 5 invalid argument "b".

Valid arguments are: brief or bf.

i 6 invalid pathname or no access for terminating

component file "t". cdbsys: msg.

Example:

**COMMAND: terminate component file (xx);

622

(User is prompted for the pathname of the file);

SYSTEM i 6 invalid pathname or no access for

terminating component file "xx"t. cdbsys: bad syntax in

the pathname

SYSTEM* i 7 invalid pathname or no access for terminating process

file "t". pdbsys: msg.

Example:

Similar to that given for the above message.

623

D.6.3.2 SEVERE SYSTEM MESSAGES

"*SYSTEM* s 1 unit type "t" is not present in current TBS.

Example:

**COMMAND: load pr test4;

*Process "test4" has been created at: 4/27/78 1141.7 est thu

by system: GPES SerialNo: 1 Compatlevel: 1

and TBS: test Serial No: 1 Compat-level: 1

and has not been accessed by any other imcompatible system

since.

**SYSTEM"* s 1 unit type "xyz"' is not present in current

TBS.

*Command ignored.

Explanation:

The current generation of the TBS does not contain the

template of unit type xyz and hence is incompatible with the

one under which process test4 was created. The TBS

Administrator has failed to update the Compatlevel of the

new version of the TBS so that the system can recognize this

incompatibility earlier.

SYSTEM s 2 component type "t" is not present in current TBS.

Example:

**COMMAND: load pr test4;

*Process "test4l" has been created at: 4/27/78 1141.7 est thu

624

by system: GPES SerialNo: 1 Compatlevel: 1

and TBS: test SerialNo: 1 Compatlevel: 1

and it has been accessed by other incompatible systems

since.

Therefore it may not be compatible with current system:

GPES SerialNo: 1 Compatlevel: 1

and TBS: test Serial No: 3 Compat level: 2.

**If you wish to continue loading enter yes, otherwise no:

yes

SYSTEM s 2 component type "xzy" is not present in

current TBS

*Command ignored.

**COMMAND:

SYSTEM

SYSTEM

SYSTEM

s 3 function type "t" is not present in current TBS.

Example:

Similar to one given for s1 or s2.

s 4 stream type "t" is not present in current TBS.

Example:

Similar to one given for s1 or s2.

s 5 segment "stext" is not found or you are not authorized

to use the system. pel: msg.

Example:

625

This message may be produced at the beginning of the

session: pel brief

SYSTEM s 5 segment "stext" is not found or you are

not authorized to use the system. pel: entry not found.

*If you are an authorized user contact the GPES system

administrator. Goodbye now!

s 6 segment "t" is not found ormyou are not authorized to

use this TBS. pel: msg.

Example:

*Beginning of attachment process.

**Enter the name of the TBS you wish to use now: xyz

SYSTEM s 6 segment "ctl info.syscopy" is not found

or you are not authorized to use this TBS. pel: entry

not found.

**If you desire another TBS enter yes, otherwise no: yes

**Enter the name of the TBS you wish to use now:

User response:

If the user is an authorized user of the TBS, he should

contact its system administrator.

s 7 routine "t" which calculates <object> "t1" is not

found or you are not authorized to use it. pel: msg.

Example:

**COMAND: calculate u(a);

*SYSTEM***

626

SYSTEM s 7 routine aaa which calculates unit "al is

not found or you are not authorized to use it. pel:

entry not found.

*Command ignored.

User response:

If he is an authorized user of the routine, it may be that

the routine is not in his search rules list. He should

add the directory containing the routine to his search

rules and try again.

Example:

**COMMAND: escape;

**multics command: asr...

(enter a blank line to return to system)

**COMMAND: calculate u(a);

*Entering routine aaa for level 1 calculation of unit "a".

**COMMAND:

s 8 routine "t" which evaluates pre-defined function "t1"

is not found or you are not authorized to use it. pel:

msg.

Example:

**COMMAND: sp v(x = f1(1,2)+4);

SYSTEM s 8 routine "fff" which evaluates pre-defined

function "f1" is not found or you are not authorized to

use it. pel: entry not found.

*Command ignored.

627

SYSTEM

SYSTEM

SYSTEM

SYSTEM

s 9 you are not authorized to use this TBS.

Example:'

**Enter the name of the TBS you wish to use now: xyz

SYSTEM s 9 you are not authorized to use this TBS.

**If you desire another TBS enter yes, otherwise, no:

s 10 component public file "t" does not exist or you are

not authorized to use it. cdbsys: msg.

Example:

**COMMAND: open c public file (ddd);

(user is prompted for the pathname of the file)

SYSTEM s 10 public file "ddd" does not exist or you

are not authorized to use it. cdbsys: entry not found

s 11 this TBS does not exist or currently is not in

operation.

Example:

**Enter the name of the TBS you wish to use now: xyz

SYSTEM s 11 this TBS does not exist or currently is

not in operation.

s 12 you have created segment "t" outside of this

program. Process cannot be saved under this same.

pdbsys: msg.

Example:

628

**COMMAND: save pr test8;

SYSTEM s 12. You have created segment

"xtest81.GPES" outside of this program. Process cannot be

saved under this name.

SYSTEM

SYSTEM

SYSTEM

s 13 a new segment cannot be created. pdbsys: msg.

Example:

**COMMAND: save pr test12;

SYSTEM s 13 a new segment cannot be created.

pdbsys: msg.

s 14 invalid access for storing a process into the current

process file.

Example:

**COMMAND: save pr test2;

SYSTEM s 14 invalid access for storing a process

into the current process file.

s 15 invalid access for deleting a process of the current

process file.

Example:

**COMMAND: delete pr(dl,d2);

SYSTEM s 15 invalid access for deleting a process of

the current process file.

629

SYSTEM

SYSTEM

s 16 invalid pathname or no access for opening process

file lIt".

Example:

**COMMAND: open pr file (xx);

(User is prompted for the pathname of the file)

SYSTEM s 16 invalid pathname or no access for

opening process file "xx".

s 17 you have deleted segment "It" outside of this program

or you may not have the proper access for this segment.

pdbsys: msg.

Example:

**COMMAND: load pr test;

SYSTEM s 17 you have deleted segment "xtest1.GPES"

outside of this program or you may not have the proper

access for this segment. pdbsys: entry not found.

s 18 invalid pathname or no access for opening component

file "t". cdbsys: msg.

Example:

*COMMAND: open c private file (x);

(User is prompted for the pathname of the file)

SYSTEM s 18 invalid pathname or no access for

opening component file "x". cdbsys: bad syntax in the

pathname.

630

SYSTEM s 19 invalid access for storing, deleting, copying, or

including operation on component private file t.

Example:

**COMMAND: save c (c1, c3);

SYSTEM s 19 invalid access for storing, deleting,

copying, or including operation on component private file

x.

631

APPENDIX E

LITERATURE CITATIONS

1. Andrew, S.M. "Computer Flowsheeting Using Network 67: An
Example," Trans. Inst. Chem. Eng., 46 (4), T123-T132 (1968).

2. Arab-Ismaili, M.S., "A Ph.D. Proposal for Design of an Interactive
Computer System for Engineering of Chemical Processes,"
Massachusetts Institute of Technology (April 1975).

3. ASPEN, "Computer-Aided Industrial Process Design," First Quarterly
Progress Report, MIT Report No. 2295T9-1 (August 1976).

4. ASPEN, "Computer-Aided Industrial Process Design," Second
Quarterly Progress Report, MIT Report No. 2295T9-2 (November 1976).

5. ASPEN, "Computer-Aided Industrial Process Design," Third Quarterly
Progress Report, MIT Report No. 2295T9-3 (February 1977).

6. ASPEN, "Computer-Aided Industrial Process Design," First Annual
Report, MIT Report No. 2295T9-4 (June 1977).

7. ASPEN, "Computer-Aided Industrial Process Design," Fifth Quarterly
Progress Report, MIT Report No. 2295T9-5 (September 1977).

8. ASPEN, "Computer-Aided Industrial Process Design," Sixth Quarterly
Progress Report, MIT Report No. 2295T9-6 (December 1977).

9. ASPEN, "Computer-Aided Industrial Process Design," Appendix I to
the Sixth Quarterly Progress Report, MIT Report No. 2295T9-7
(December 1977).

10. ASPEN, "Computer-Aided Industrial Process Design," Seventh
Quarterly Progress Report, MIT Report No. 2295T9-8 (April 1978).

11. Barkley, R.W. and Motard, R.L., "Decomposition of Nets," Chem.
Eng. J., 3 (3), 265 (1972).

12. Barnes, J.G.P., "Network 67: A General Description," Imperial
Chemical Industries, Ltd., London, England (1967).

13. Batstone, D.B., Fenton, G. and Price, R.G.H., "The Steady State
Digital Simulation of Chemical Plant of Arbitrary Configuration,"
Paper B2 Presented at IFAC Symposium of Digital Simulation of
Continuous Processes, GYOR, Hungary (1971).

14. Briddell, E.T., "Process Design by Computer, Part 1," Chem. Eng.,
81, (3) 60 (1974a).

632

15. Briddell, E.T., Part 2, Chem. Eng., 81, (5) 113 (1974b).

16. Briddell, E.T., Part 3, Chem. Eng., 81, (7) 77 (1974c).

17. Briggs, D.E., Carnahan, B. and Lopez, L.A., "DYSCO: An
Interactive Exeuctive Program for Dynamic Simulation and Control
of Chemical Processes," Paper presented at the AIChE 78th Nat.
Meeting, August 18-21, Salt Lake City (1974).

18. Cavett, R.H., "Flowtran Physical Properties," 49th NGPA Annual
Convention, preprint, Natural Gas Producers' Association, Denver,
Colorado (March 17-19, 1970).

19. Cavett, R.H., "Monsanto Physical Data System," AIChE 65th Annual
Meeting, New York (1972).

20. Chueh, C.F. and Stein, T.W., "A Comprehensive Thermal and Physical
Properties Information System-Halcon Physical Properties System,"
Chemical Engineering Computing, Vol. 2, AIChE Workshop Series
(1972).

21. CONCEPT - Mark III, Computer Aided Design Center, Cambridge, U.K.
(1973).

22. Crowe, C.M., Hamielec, A.E., Hoffman, T.W., Johnson, A.I.,
Shannon, P.T. and Woods, D.R., Chemical Plant Simulation, Prentice
Hall, New Jersey (1971).

23. Davies, C. and Perris, F.A., "Experience in the Industrial
Application of Generalized and Special-Purpose Computer Programs
for the Steady-State Design and Stimulation of Complete Chemical
Processes," Paper D1 presented at IFAC Symposium of Digital
Simulation of Continuous Processes, GYOR, Hungary (1971).

24. Debrosse, C.J. and Westerberg, A.W., "A Feasible Point Algorithm
for Structured Design Systems in Chemical Engineering," AIChE J.,
19, (2) 251 (1973).

25. Dodrill, W.H., "Using GIFS in the Analysis and Design of Process
Systems," Proceedings of the Fall Joint Computer Conference, Vol.
22, pp. 275-279, American Federation of Information Processing
Services, Philadelphia, Pa. (1962).

26. Donovan, J.J., Systems Programming, McGraw-Hill, New York (1972).

27. Edie, F.C. and Esterberg, A.W., "Computer Aided Design, Part 3,
Decision Variable Selection to Avoid Hidden Singularities in
Resulting Recycle Calculation," Chem. Eng. J., 2, 114 (1971).

633

28. Elzy, E., "DISCOSSA," Department of Chemical Engineering, Oregon
State University, Corvallis, Ore. (1969).

29. Evans, L.B., "Chemical Process Systems Analysis," a set of
unpublished class notes, Massachusetts Institute of Technology
(1975).

30. Evans, L.B., Joseph, B., and Seider, W.D., "Computer Aided
Industrial Process Simulation and Design," Paper presented at the
Conference on Mathematical Modeling of Coal Conversion Processes,
Washington, D.C., November 1976.

31. Evans, L.B., and Seider, W.D., "The Proposal to Develop IEPES:
Response from Industry," Report (January 22, 1976).

32. Evans, L.B., Joseph, B., and Seider, W.D., "Systems Structures for
Process Simulation," AIChE Journal, 23 (5) 658 (1977).

33. Evans, L.B., and Seider, W.D., "The Requirements for an Advanced
Computing System," CEP, 72 (6) (1976).

34. Evans, L.B., Steward, D.G. and Sprague, C.R., "Computer Aided
Chemical Process Design," Chem. Eng. Progr., 64 (4), 39-46 (1968).

35. Fay, J.E., "A Prototype System for On-Line Computer-Aided Process
Design of Heat Exchange Networks," Sc.D Thesis, Massachusetts
Institute of Technology, Cambridge, Mass. (1971).

36. Flower, J.R. and Whitehead, B.D., "Computer-Aided Design: A
Survey of Flowsheeting Programs. Part 1," Chem. Eng., (London),
272, 208 (1973a).

37. Flower, J.R. and Whitehead, B.D., "Computer-Aided Design: A
Survey of Flowsheeting Programs. Part 2," Chem. Eng., (London),
273, 271 (1973b).

38. FLOWPACK - User's Manual, 1970 (Runcorn; I.C.I. Ltd., CIRL).

39. Forder, G.J., and Hutchinson, H.P., "The Analysis of Chemical
Plant Flowsheets," Chem. Eng. Sci., 24, 771-785 (1969).

40. Franks, R.G.E., Modeling and Simulation in Chemical Engineering,
Wiley-Interscience, New York (1972).

41. Gaddy, J.L., "The Use of Flowsheet Simulation Programs in Teaching
Chemical Engineering Design," Chem. Eng. Ed., 8 (3), 124 (1974).

634

42. Garcia-Gamboa, E., "Estimation of Physical Properties for
Coal-Derived Liquids," M.S. Thesis, Chem. Eng. Dept, MIT (1977).

43. General Electric Company, "User's Guide, Process Design System --
GEPDS (Version 2)," Information Services Department, Bethesda, Md.
(1970).

44. Goodson, P.D., "The Applicability of Flowtran to Coal Conversion
Process Analysis," M.S. Thesis, University of Wisconsin (1976).

45. Gray, G.C., "Compound Data Structure for Computer-Aided Design: A
Survey," Proceedings of 22nd ACM National Meeting, Vol. 22, pp.
355-367, Association for Computing Machinery,.Washington, D.C.
(1967).

46. Ham, P.G., "The Transient Analysis of Integrated Chemical
Processes," Ph.D. Dissertation, University of Pennsylvania,
Philadelphia (1971).

47. Hankinson R.W. and Cantwell, K.R., "The Phillips Petroleum Company
Computer Stored Physical Data System," Chemical Engineering
Computing, Vol. 2, AIChE Workshop Series (1972).

48. Hanyak, M.E. and Kalus, R.L., "Use of Translator Writing Systems
in the Development of Problem Oriented Languages," Paper presented
at AIChE 66th Annual Meeting, Philadelphia, Pa. (1973).

49. Henley, E.J. and Rosen, E.M., Material and Energy Balance
Computations, Wiley, New York (1969).

50. Himmelblau, D.M., Basic Principals and Caluclations in Chem Eng,
3rd Ed., Prentice-Hall (1974).

51. Himmelblau, D.M., and Bischoff, K.B., Process Analysis and
Simulation, John Wiley (1968).

52. Holland, C.D., Multicomponent Distillation, Prentice-Hall,
Englewood.Cliffs, New Jersey (1968).

53. Honeywell Information Systems Inc., MULTICS PL/1 Language
Specifications, Order No. AG94 (1976).

54. Honeywell Information Systems Inc., MULTICS PL/1 Reference Manual,
Order No. AM83 (1976).

55. Honeywell Information Systems Inc., MULTICS Programmers' Manual,
Commands and Active Functions, Order No. AG92 (1976).

635

56. Honeywell Information Systems Inc., MULTICS Programmers' Manual,
Introduction, Order No. AG90 (1973).

57. Honeywell Information Systems Inc., MULTICS Programmers' Manual,
Reference Guide, Order No. AG91 (1975).

58. Honeywell Information Systems Inc., MULTICS Programmers' Manual,
Subroutines, Order No. AG93 (1976).

59. Honeywell Information Systems Inc., MULTICS Programmers' Manual,
Subsystem Writers' Guide, Order No. AK92 (1977).

60. Hughes, R.R., Singer, E. and Souders, M., "Machine Design of
Refineries," Sixth World Petroleum Congress, Section VII, Paper
17, pp. 93-102, Frankfurt, W. Ger. (1963).

61. Hughson, R.V. and Steymann, E.H., "Computer Programs for Chemical
Engineers," Chem. Eng., 78 (14), 66 (1971).

62. Hughson, R.V. and Steymann, E.H., "Computer Programs for Chemical
Engineers, 1973, Part 1" Chem. Eng., 80 (19), 121 (1973a).

63. Hughson, R.V. and Steymann, E.H., "Computer Programs for Chemical
Engineers, 1973, Part 2" Chem. Eng., 80 (21), 127 (1973b).

64. Ingels, D.M., "A System for Simulating Chemical Process Dynamics
and Control, " Ph.D Dissertation, University of Houston (1970).

65. International Business Machines Corporation, "IBM System/360
Operating System PL/1(F) Language Reference Manual," Form
GC28-8201-4, IBM Corp., White Plains, New York (1972).

66. International Business Machines Corporation, "IBM System/360
Operating System PL/1(F) Programmer's Guide," Form GC28-6594, IBM
Corp., White Plains, New York (1972).

67. International Business Machines Corporation, "Problem Language
Analyzer (PLAN): Program Description Manual" Technical
Publications Department, White Plains, New York (1969).

68. Jain, Y.V.S. and Eakman, J.M., "Identification of Process Flow
Networks," Paper presented at AIChE 69th National Meeting,
Houston, Texas (1971).

69. James, J.L., Gardner, N.F., Reinhart, L.R. and Hellenack, L.J.,
"Economic Design by Flexible Flowsheet Analysis," I. Chem. E.
Symposium Series, Vol 18., pp. 11-18, Institution of Chemical
Engineers, London, England (1966).

636

70. Johnson, A.I., "The Modular Approach Applied to the Unsteady State
Behavior of Systems," Brit. Chem. Eng., Proc. Tech., 17 (3) 217
(1972a).

71. Johnson, A.I., "Computer Aided Process Analysis and Design - A
Modular Approach," Brit. Chem. Eng. Proc. Tech., 17 (1) 28 (1972b).

72. Johnson, A.I., and Toong, T., "The Modular Approach to System
Analysis and Design," (GEMCS Manual), McMaster University (1968).

73. Johnson, A.I., and Toong, T., "GEMCS General Electric/Mcmaster
Simulator: Information Handling Program for Analysis and Design
of Engineering and Management Systems," Department of Chemical
Engineering, McMaster University, Hamilton, Ont., and Canadian
General Electric Company, -Toronto, Ont. (1968).

74. Joseph, B., Evans, L.B. and Seider, W.D., "The Use of PLEX DATA
Structure in Process Simulation," Computers and Chemical
Engineering, Pergamon Press, to be published.

75. Kehat, E. and Shacham, M., "Chemical Process Simulation
Programs-1," Process Technol., 18 (1/2), 35 (1973a).

76. Kehat, E. and Shacham, M., "Chemical Process Simulation
Programs-2, Partitioning and Tearing System Flow Sheets" Process
Technol., 18 (3), 115 (1973b).

77. Kehat, E. and Shacham, M., "Chemical Process Simulation
Programs-3, Solution System of Nonlinear Equations" Process
Technol., 18 (4/5), 181 (1973c).

78. Kenny, L.N. and Prados, J.W., "A Generalized Digital Computer
Program for Performing Process Material and Energy Balances,"
University of Tennessee, Knoxville, Tenn. (1966).

79. Kesler, M.G. and Griffiths, P.R., "A Computer System for Process
Simulation," Proceedings of the American Petroleum Institute,
Section III, Vol. 43, pp. 49-56 (1963).

80. Kesler, M.G. and Kessler, M.M., World Petrol., 29, 60 (1958).

81. Kevorkian, A.K. and Snoek, J., "Decomposition of Large Scale
Systems, Theory and Applications in Solving Large Sets of
Non-Linear Simulations Equations," in Himmelblau, D.M. (ed),
Decomposition of Large Scale Problems, North Holland/American
Elsevier, Amstterdam (1973).

637

82. King, C.J., Foss, A.S., Grens, E.A., Lynn, S. and Rudd, D.F.,
"Chemical Process Design and Engineering," Chem. Eng. Ed., 7 (2),
72 (1973).

83. Kliesch, H.C., "An Analysis of Steady-State Process Simulation:
Formulation and Convergence," Ph.D. Thesis, Tulane University, New
Orleans, La. (1967).

84. Klumpar, I.V., "Process Economics by Computer," Chem. Eng., 77
(1), 107 (1970a).

85. Klumpar, I.V., "Process Economics by Computer," Chem. Eng., 77
(14), 76 (1970b).

86. Kwon, Y.J., "Asymptotic Convergence Technique and Executive
Concept for Steady-State Process Systems Analysis," Ph.D. Thesis,
Oregon State University, Corvallis, Ore. (1969).

87. Lederman, P.B., "Flowsheet Simulation and Beyond," Chem. Eng., 75
(25), 127-132 (1968).

88. Leesley, M.E., "Process Plant Design by Computer," Process
Technol., 18, (11) 403 (1973).

89. Loibl, J.M., Camp, D.T. and Wilkins, G.S., "The Dynamic Analysis
of Chemical Processes with a User-Oriented Executive Program,"
Proc. 1973 Summer Computer Simulation Conference, July 17-19,
Montreal Canada (1973).

90. Louis, J.F. et al., "Open Cycle Coal Burning MHD Power Generation,
an Assessment and a Plan for Action," R&D Report No. 64, U.S.
Department of Interior, Office of Coal Research (February 1972).

91. Louis, J.F. et al., "Open Cycle Coal Fired MHD Generation,"
MIT-ERDA Report No. 1209-1 (July 1975).

92. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-ERDA Report No. 2215-1 (September 1975).

93. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-ERDA Report No. 2215-2 (December 1975).

94. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-ERDA Report No. 2215-3 (March 1976).

95. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-ERDA Report No. 2215-4 (July 1976).

96. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-ERDA Report No. 2215-5 (September 1976).

638

97. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-ERDA Report No. 2215-6 (December 1976).

98. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-ERDA Report No. 2215-7 (March 1977).

99. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-ERDA Report No. 2215-8 (June 1977).

100. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-ERDA Report No. 2215-9 (October 1977).

101. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-U.S. Department of Energy Report No. 2215-10
(December 1977).

102. Louis, J.F. et al., "Critical Contributions in MHD Power
Generation," MIT-U.S. Department of Energy Report No. 2215-11
(March 1978).

103. Macable, W.L. and Smith, J.C., Unit Operations in Chemical
Engineering, McGraw-Hill, New York (1967).

104. Madnick, S.E. and Donovan, J.J., Operating Systems, McGraw-Hill,
New York (1974).

105. Maejima, T., "Computer-Aided Chemical Process Design," M.S.
Thesis, Massachusetts Institute of Technology, Cambridge, Mass.

(1970).

106. Maejima, T. and Shindo, A., "System Structure of a Computer Aided
System for Process Engineering," Proc. 1973 Summer Computer
Simulation Conference, July 17-19, Montreal, Canada (1973).

107. Mah, R.S.H., "Recent Development in Process Design," Symposium on

Basic Questions of Design Theory, Columbia Univ., (May 30-31,
1974).

108. Mah, R.S.H., "Structure Decomposition in Chemical Engineering
Computation, AIChE 72nd National Meeting, St. Louis, Mo. (1972).

109. Mah, R.S.H. and Rafal, M., "Automatic Program Generation in

Chemical Engineering Computation, Trans. Instn. Chem. Eng. 49, 407
(1971).

110. Meadows, E.L., Jr., "AIChE Physical Properties Project,"
Proceedings of the American Petroleum Institute, Section III, Vol.
44, pp. 300-303 (1964).

639

111. Meadows, E.L., Jr., "Estimating Physical Properties: The AIChE
System," Chem. Eng. Progr., 61 (5), 93-95 (1965).

112. Moore, J.F., Bonner, J.S., and Karvelas, L.P., "Unit Operations
Simulator," Bonner and Moore Engineering Associates, Houston, Tex.
(1960)

113. Mosler, H.A., "PACER -- A Digital Computer Executive Program for
Process Simulation and Design," M.S. Thesis, Purdue University,
Lafayette, Ind. (1964).

114. Motard, R.L., "Optimization of Natural Gasoline Plant Operation,"
in "Computers in Engineering Design Education," Vol. II, pp.
36-70, University of Michigan, Ann Arbor, Mich. (1966).

115. Motard, R.L., Lee, H.M., Barkely, R.W., and Ingels, D.M., "CHESS,
Chemical Engineering Simulating System, System Guide," Technical
Publications Co., Houston, Tex. (1968).

116. Motard, R.L., Lee, H.M., "CHESS, Chemical Engineering User's
Guide," 3rd Ed., University of Houston (1971).

117. Motard, R.L., Shacham, M., and Rosen, E.M., "Steady State Chemical
Process Simulation," AIChE J., 21 (3), pp. 417-4 36 (1975).

118. Myers, A.L. and Seider, W.D., Introduction to Chemical Engineering
and Computer Calculations, Prentice-Hall, New Jersey, 1976.

119. Nagiev, M.F., "Material Balance in Complex and Multistage Recycle
Chemical Processes," Chem. Eng. Progr. 53, 297-303 (1957).

120. Naphtali, L.M., "Process Heat and Material Balance," Chem. Eng.
Progr., 60 (9), 70-74 (1964).

121. Newman, W.M., "A System for Interactive Graphical Programming,"
Proceedings 1968 Spring Joint Computer Conference, Vol. 33, pp.
47-54, American Federation of Information Processing Societies,
Washington, D.C. (1968).

122. Norris, R.C., "Estimating Physical Properties - Route Selection,"
CEP, 61, 5, 96-101 (May 1965).

123. Nott, H.D., "SLED: Simplified Language for Engineering Design - A
Computerized System for the Design of Chemical Processes," Ph.D.
Dissertation, University of Michigan (1971).

124. Nuttal, H.E., Jr. and Himmelblau, D.M., "Interactive Reactor
Simulation," Proc. 1973 Summer Computer Simulation Conference,
July 17-19, Montreal, Canada.

640

125. PACER 245 User Manual, Hanover, New Hampshire: Digital Systems
Corporation (197.1).

126. Peiser, A.M. and Kessler, M.M., "The Computer Approach to
Optimizing Plant Design," Refining Eng., 32 C7-C9 (1960).

127. Perry, R.H., Chemical Engineers' Handbook, 5th Edition,
McGraw-Hill, New York (1973).

128. Peters, N. and Barker, P.E., "PEETPACK - A Non-Proprietary
Flowsheeting Program," Chem. Engr., (London), pp. 763-768,
(December 1974).

129. Peters, N. and Barker, P.E., "An Appraisal of the Use of PACER,
GEMCS and CONCEPT for Chemical Plant Simulation and Design,"
Chemical Eng., (London), 283, 149 (1974).

130. Peterson, J.N., "Survey of Software for Computer-Aided Chemical
Process Design," M.S. Thesis, Department of Chemical Engineering,
MIT, January 1977.

131. Petroleum Consultants, "An Introduction to the Chem. E.
Simulator," Petroleum Consultants, Houston, Tex.

132. Pho, T.K. and Lapidus, L., "Topics in Computer Aided Design; Part
1 An Optimum Tearing Algorithm for Recycle Systems," AIChE J., 19
(6), 1170 (1973).

133. Porter, J.H., "Computer-Aided Process Design: An Exercise in
Dynamic Man-Machine Communication," Paper presented at the Annual
Meeting of AIChE, Los Angeles (December 1969).

134. Powers, G.J., "Heuristic Synthesis in Process Development," Chem.
Eng. Prog., 68 (8) (1972).

135. Poznanovic, D.S., and Seider, W.D., "A Physical Property
Information System for Undergraduate Education," Chemical
Engineering Computing, Vol. 1, AIChE Workshop Series (1972).

136. PPDS - Physical Property Data System, The Institution of Chem.
Eng., London (1971).

137. Ramirez, W.F. and Vestal, C.R., "Algorithms for Structuring Design
Calculations," Chem. Eng. Sci., 27, 2243 (1972).

138. Ravicz, A.E., and Norman, R.L., "Heat and Mass Balancing on a
Digital Computer," Chem. Eng. Progr., 60 (5), 71-76 (1964).

641

139. Reid, R.C. and Evans, L.B., "Design Data for Industry, Property
Prediction with Computer System," AIChE Today Series, AIChE, New
York (1970).

140. Reid, R.C., Prausnitz, J.M. and Sherwood, T.K., The Properties of_
Gases and Liquids, 3rd Ed., McGraw-Hill, New York (1977).

141. Rinard, I.H. and Ripps, D.L., "The Steady State Simulation of
Continuous Chemical Processes," Chemical Engineering Progress
Symposium Series No. 55, Vol. 61, pp. 34-51 (1965).

142. Ross, D.T., The AED Approach to Generalized Computer-Aided Design,
Proceedings A.C.M. National Meeting (1967).

143. Rubin, D.I., "Generalized Material Balance," Chemical Engineering

Progress Symposium Series No. 37, Vol. 58, pp. 54-61 (1962).

144. Rudd, D.F., "The Synthesis of System Designs: I. Elementary
Decomposition Thery," A.I.Ch.E. Journal, 14 (2), 343-349 (1968).

145. Rudd, D.F. and Watson, C.C., Strategy of Process Engineering,
Wiley (1968).

146. Sargent, R.W.H., "Integrated Design and Optimization of
Processes," Chem. Eng. Progr., 63 (9), 71-78, (1967).

147. Sargent, R.W.H., "Developments in Computer-Aided Process Design,
The Chem. Eng., (224), CE424-CE427 (1968).

148. Sargent, R.W.H. and Westerberg, A.W., "'Speed-Up' in Chemical
Engineering Design," Trans. Inst. Chem. Eng., 42, T190-T197 (1964).

149. Seader, J.D., Seider, W.D., and Pauls, A.C., "FLOWTRAN
Simulation: An Introduction - CACHE Committee," Ulrich's
Bookstore, Ann Arbor, Michigan (1974).

150. Seider, W.D. (MOD), "Computer Aided Analysis and Design Packages,"
Chemical Engineering Computing, Vol. 2, AIChE Workshop Series
(1972).

151. Seider, W.D., Evans, L.B., Joseph, B., Wong, E., "Routing in
Process Simulation," Paper presented at the 69th Annual Meeting of
the AIChE, Chicago, Illinois (November 1976).

152. Service Bureau Corporation, "GIFS -- Generalized Interrelated Flow
Simulation User's Manual," Service Bureau Corporation, New York,
N.Y. (1962).

642

153. Service Bureau Corporation, "Chemical Engineering Information
Processing System -- CHIPS 2 -- User's Manual," Computing Services
Division, New York, N.Y. (1968).

154. Shannon, P.T. and Frantz, D.R., "The PACER System Manual,"
Dartmouth College, Hanover, N.H. (1966).

155. Shannon, P.T., Johnson, A.I., Crowe, C.M., Hoffman, T.W.,
Hamielec, A.E., and Woods, D.R., "Computer Simulation of a Contact
Sulfuric Acid Plant," Chem. Eng. Progr., 62 (6), 49-59 (1966).

156. Smith, B.D., Design of Equilibrium and Stage Processes,
McGraw-Hill (1963).

157. Soylemez, S. and Seider, W.D., "The Chemical Engineering-Process
Analysis and Design Interface," Chemical Engineering Computing,
Vol. 2, AIChE Workshop Series (1972).

158. Steward, D.G., "A Survey of Computer-Aided Chemical Process
Design," M.IS. Thesis, Massachusetts Institute of Technology,
Cambridge, Mass. (1967).

159. Tsubaki, M., "Computer Aided Process Analysis and Design," Chem.
Eng. Progr., 69 (9), 78 (1973).

160. Uhde, Freidrich, Thermophysical Properties Program Package, GMBH,
Dortmund, Germany (1973).

161. Vora, K.T., "The Template Data Base System and Process Module
Interface Design for the Interactive Chemical Process Engineering
System," M.S. Thesis, MIT, Cambridge, Mass. (June 1977).

162. Wells, G.L. and Robson, P.M., Computation for Process Engineers,
Wiley, New York (1973).

163. Westerberg, A.W., "Decomposition Methods for Solving Steady State
Process Design Problems,"- p. 379 in Himmelblau, D.M. (ed),
Decomposition of Large Scale Problems, North Holland/American
Elsevier, Amsterdam (1973).

164. Westerberg, A.W., "generalized Symbolic Programme for the Analysis
of Interlinked Chemical Engineering Processes," Ph.D. Thesis,
University of London, London, England (1964).

165. White, G.L., "Steady-State Simulation of the Hygas Coal
Gasification Process," M.S. Thesis, Chem. Eng. Dept., MIT (1977).

166. Wong, E., "Routing of Estimation Methods for Calculating Physical
Properties," M.S. Thesis, MIT, Cambridge (June 1976).

643

167. Worley,'F.L., Jr. and Motard, R.L., 'Information Systems in
Chemical Engineering Design," Chemical Engineering Computation,
Vol. 2, AIChE Workshop Series (1972).

168. Worley, F.L., Jr. and Motard, R.D., CEDA - Control Equipment
Design and Analysis, University of Houston, Texas (1976).

644

BIOGRAPHICAL SKETCH

Mohammad Sharif Arab-Ismaili was born on February 10, 1949 in

Shahrood, Iran, the son of Ali-Mohammad and Jalileh Arab-Ismaili. He

received his formal education in the public school system of that city.

The author then entered Abadan Institute of Technology, majoring in

Chemical Engineering. He earned a B.S. with honors in September 1971,

and was class valedictorian. While attending A.I.T., he held summer jobs

at the Abadan Oil Refinery, the B.F. Goodrich Rubber Company, the Abadan

Petrochemical Company, and the Computer Information Services of the

Iranian Oil Operating Companies. Upon graduation he spent two years wih

the Iranian Oil Operating Companies as a computer systems analyst.

Entering the Massachusetts Institute of Technology in September

1973, the author began work toward his Ph.D. in the Department of

Chemical Engineering. On December 20, 1976 he married Mitra Khademi, and

they have an eight-month-old daughter, Neda Arab-Ismaili.

The author's immediate plan is to complete his studies toward the

degree of Master of Science in Management at MIT's Sloan School of

Management.

May 1978

