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ABSTRACT

Simulators are useful in allowing user to develop or invest-
igate operating systews programs which they would normally ove
unable to run due to lack of availadble equipment or privileged
instruction restrictions, Through simulation of I/0 devices and
1/0 instructions the user programs can include channel programs
to the devices as if the equipment were actually attached to the
system he is using., Having the privileged I/0 related instructions,
which are more than one third of all priviledged instructions,
at his disposal, gives tne user much greater flexibility in tre
study of operating systems programs,

This document describes simulation of the input/output sys-
tem for an IBQ/37O type machine, It is part of a simulator of a
complete machine now being used for running student programs, The
I/0 simulator is software simulating S/370 hardware done on a
S/370 machine, '
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1, Introduction

A simulator provides a system that accurately reflects the
behavior of all or part of the system being simulated that is
necessary for the purpose of investigation and teaching, A
simulator is very useful in enabling evaluation before allocation
of resources (ie, money). iajor design tradeoffs and performance
can be evaluated before ovtaining or building costly hardware., A
simulator also allows a programmer to get at the "bare machine"
and run operating systems programs, An excellent example is pro-
vided by the simulator described in this paper,

[,I,T, Sloan School's U3 (Family of Operating Systems) Group
is in the process of completing a portion of an I5u/370 type sium-
ulator, The simulator can handle the IBM/B?O machine instructions,
has multiple CPU's, has a debugging package and handles all types
of interrupts., This paper describes an 7/0 system design and im-
plemented by the author to provide the simulator with a general
facility for handling input/output functions. A fair amount of
knowledge about I/0 is assumed and a review of the pertinent sec-
tions in S/370 Principles of Operation under the main heading

entitled "Input/Output Operations" may be helpful,

1,1 Previous Simulators and Simulation Techniques

Two previous simulators written to simulate IBil Systems
are SIu360 and TRIBBLE, The former written in PL/i to simulate
IBM System/360 for running student programs and software develop-

ment, and the latter written in Fortan IV to simulate Idwm System/



370, SIi360 operates under a batch enviornment and TRIBBLE is
designed to operate interactively. TRIR3LE is the more powerful
simulator as it simulates the more powerful machine, The I/0
simulator follows the method cf handling 1/G used in TRIBBLE.

Virtual machines, which give each user the appearance of
having his own machine is one approach to having the prograummer
work with a bare machine. But, until 1972, when IBi. Vii/370 was
announced, one needed to have an expensive 13./370 model 67
available, 3ut even the Vi./370, which operates on any IBw/370
with Dynamic Address Translation, does not accurately reflect
the timing and behavior of the simulated computer in the area
of I/0 operations and priviledged instructions., This is unfortunate
since this area 1s the focus of interset in operating systeus
programs,

Emulators are another approach to simulation, These are
specific hardware units built into a computer which causes the
system to acceét certain software programs and routines and appear
as if it were another system, such as 7094 software running
on an IBii/360 computer without translation, The restriction of
specific hardware designed for specific systems as compared to
a PL/1 simulator is clear,

Some of the advantages to be gained from a simulator are
as follows:

--A11 priviieged fe;tures may be used directly

~--3Sophisticated debugging and program statistics
recording features may be provided



~-An arbitrary configuration may be simulated
(number and types oi devices, their interconnections, etc.)

--iiay be as accurate as necessary

--Is easily modified (editing source file rather than rewiring).
o



-10-

2. Users' View

2.1 Overview of I/0 System

The I/C system will handle all input/output operations. The
operations of the channel, subchannel, control unit, and 1/0 devices
are simulated, Facilities for requesting and accepting of I/0 in=-
terrupt are provided and device timing characteristics are also
accurately reflected., Presently the system is capable of handling
IBM $403 type printers and IBW 3505 type card readers. Detalls on
how to implement a direct access storage device (an IBw 2305 type
drum with rotational position sensing) is given in appendix A,

The overall strategy is to have the I/O system structured as
general as possible, To this end a mechanism, "Division of Function",
is employed., Each CPU and channel are simulated as separate units
as are control units and I/C devices. Then, to add a specific new
device simply requireé the addition of a device simulation routine
for the device. A particular simulation routine will be for a part-
icular type of device (ie.,CPU,channel, control units, printers, etc.)
rather than a specific instance of that device in the simulated
configuration.\In this way, the I/0 simulator will be a general
scheme for doing I/0 independent of the devices used. And because
of the!devision of function, changes in the nature of one simulated

componehf (ie. CPU) have limited effects on the rest of the system,

2.2 The Complete Simulator

The FOS (Family of Operations Systems) simulator provides a
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whigh fidility" simulation of a computer system not unlike an IBu  —
360/370 or a PDP 11. The simulation includes instruction timing,
interrupt generation and handling, multiple CPU's, CPU timers, Trace
and debug package, channels and device control units, and a built

in direct linking loader.

The simulation is divided into subsystems, one for each of the
simulation functions, Global data bases provide for communication
between subsystems. A subsystem will ususally consist of several
.program modules and several entry points, Subsystems include the
trace and debug systems, instruction interpretation, I/C systém,

and interrupt system,

2.2,1 Events

A central theme to the simulateér is the notion of an event.
An event is an action of a specific type which is scheduled to
occur at a specific time Euring the simulation, Typical events in-
clude executiondof an instruction by a particular CPU, execution
of an I/0 instruction by a particular channel, handling of an in-
terrupt, (ie. I/O, program, SVC, external or machine check), decre-.
menting of the interval timer, etc. The execution of a particular

event often results in the scheduling of another even‘t.l

2.2.2 I/0 Interaction

The user will attempt to initiate I/0 through a SIO(START I1/0)
or an STOF (START 1/0 Fast Release) instruction to a given device,

When the CPU event (which signals simulation of next instruction
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on the given CPU) for the SI0 or SICr is popped off the event

queue and decoded, the 1/0 system will be entered to initiate the
1/0. If the device is not busy and a path exists to the device using
the specified channel, the device will begin operation. It is assumed
that the user has suppliéd the channel program, its address, an 1/0
interrupt handler (in case some unusual status i8S detected), and

its address, If I/0 cannot be initiated and there exists some unusual
status it is indicated in a stored channel status word (CSW). If
subsequent to initiation of I/0 an unusual status condition is de-
tected the channel can request an I/0 interrupt.

—

2.2.3 Interrupt System

The interrupt structure is divided into two pieces. One
part, under the entry point REQUEST, is concerned with indicating
in the state of a CPU that there is a request for an interrupt., Tue
second piece is enteréd vefore the execution of an instruction by
a CPU, 1t checké'the CPU state, comparing requested interrupts
against interrupt masks to decide which, if any, interrupts should
be accepted. 3y keeping track of PSW swaps the system traps interrupt
loops. If two interrupts of the same class (ie. a two program in-
terrupt), are accepted without a LPSW being executed in between, a
weak interrupt loop is detected. An error message is printed and
simulation terminates. If two interrupts of the same class occur,
separated by a LPSW but nof a LPSW from the old PSW for that class,
iég. two program interrupts separated only by a LPSW SVC CLDPSW, a

strong interrupt leoop is detected. In this case a message is printed
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but simulation continues,

2.2.4 Debueging System

The debugging system allows the user to monitor the progress
of the simulation by diSplaying status information to inputted trace
requests, There are two phases to the system, The first phase reads
debug requests, intexprets them, and sets up tables for phase two,
The sécond phase executes requests and displays information when
a particular traceable event occurs, |

In connection with I/0 system things that can be looked at
through the TRACE facility include the old and new PSW, CaW, CAW,

CHANNEL STATUS and DEVICE STATUS,

2.3 System Configuration and Creation

A user, if he w;shes, may specifyvan arbitary configuration
as mentioned eaplier (tﬁewdetails of the system creation are describ-
ed in Appendix»B)., If he does not want to write his own system config-
uration file then he can select a standard system from a set of .
system configuration files that exist on disk or tape.

Any Legal S/370 type configuration may be specified, with
the following restrictions : 1) no more than 32 channels on any one
G, 2) device sharing by switching between control units only, 3)
it must contain only those 1/0 devices provided by the simulator,
eg., at present only the IBM 1403 printer and the 3505 card reader,
In addition to lege®> S/370 configurations, many configurations .
which are not considered legal in Principles of Operation for the

S/370 may be specified (ie, Channel 0 need not be byte multiplexer),
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and although they will usually operate as expected, caution is ad-

The following "simulation contrcl cards" control the initial-

ization of the system configuration,

2.3.1 Conficuration Card

The CONFIG card indicates the number of CPU's to be used in
the current simulation. This number is used to contrrl the reading
of CPU cards (see next section). If the CONIIg card is missing, an

error message is printed,

Each CPU card gives the simulator certain characteristics of
a CPU, such as starting address/unit number, and number of attached
channels which is used to control reading of CHAN cards (see nex.
section). For each CPU card, instances of CPU_CNTL:STRUC the gen-
eral registers, and control registers are allocated, and the I/O
‘system associated with it is initialized (ie., channel, subchannel,
control units and device data bases). The instruction address field
of the P3W 1is sptjto the starting address and other variables in
the control structure are initialized. If too many or too few CPU

cards are read an error message is printed,

2.3.3 CHAN Card

Each CHAN card provides information such as channel type, and
number of attached control units, The latter controls the reading

of CU cards (see next section),
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For each CHAN card instances of CH_CNTL_ STRUC and CH_Wn_REG
are allocated, If it is a selector channel the subchannel control
structure (SUBCH_CI'TL_STkUC) is also allocated., 1f not, one SUBCIL_

CNTL_STRUC is allocated for each CU card since for multiplexer
channels there is a one-to-one correspondence between subchannel
and confrol units while selector channels have only one subchannel,
If an incorrect number of CHAN cards are read, an error message 1is

printed,

2.3.4 CU Cards

The CU card will give the lowest and highest address that the
control unit will recognize, and will indicate whether or not the
attached devices will be accessible to other control units by giv-
ing the number of a Device Set Switching Unit (DSSU)., This DSSU
will be responsible for‘cgntroling which control unit a device set
will be using. The CU card will also provide the number of attached
devices to control reading of DEV call,(see next section).

For each CU card, instaices of the CU_CNTL_STRUC and the CU_
WK_REG are allocatedAand if the CU is attached to the multiplexer
channel the SUBCH_CNTL_STRUC is allocated and appropriate pointers
set. If a new DSSU ID number is given a DSSU_CNTL_STRUC is allocated
and initialized, Again if an incorrect number of CU.cards is detected

an error message is printed,

2.3.5 DEV Cards

Eacgh DEV card will contain the DEVICE TYPE, the mode in which
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data is to be transferrced, and any device dependent information

that is necessary, For example, the input or output file, print

EY

time, delay time, etc, Instances of DiV_CHTL_STRUC and DEV_Wrx_REG

are allocated for each DEV card.

2.3.6 DATA Cards

DATA cards are used to insert hexadecimal data directly into
simulated menory. The location given on the data ~  ‘ card is
converted to an actual hexadecimal value andvthen stored in the
memory location, If the location is greater than the size of memory,

an error is printed,

2.3.7 LEMORY, TINE,and INSTRUC Cards

. The [E.ORY card indicates the size of the memory (in bytes)
for the current sinulation, The INSTRUC card is used to limit the
number of instructions which are executed during the simulation,

The TINME card is used to set a maximum time for the simulation.
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3., I/C Structure

This section deals with the I/0 structure in the sense of how
data bases are siructured and interconnected, The section should
provide the reader with a flavor for the type of information that
will be flowing in the I/C system and where bits of information
might be used, (ie. by the channel, by the control unit, by iiie
device, etc.), or found, (ie, in the subchannel, device data base,
etc.);,The section should also facilitate reading of the detail
program operation given in section 4 which describes how the 1/0

system operation through analysis of the major routines, Data base

examples are provided throughout this section,

3.1 Data Bases

The CPU Control Structure is quite long and containg many items
that have nothing to do with the I/0 system, I have therefore, in this
case only, presented a short form of the priginal data base with

all information pertinent to this paper.

3.1.1 CPU

To access CPU's there exist the following PL1 déritared struc---

ture which holds pointers to the CPU control structures,

DCL 1 AREA_STRUC BASED .(CPU_AREA_PTR)
@ I FIXED BIN,
2 CPU_AREA (CPU_NUil REFER(AREA_STKUC.I))PTR;
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CPU_NUM is the total number of CPU's, which has been specifiedorn
the CONFIG card (see section 2.3.1)

Y

The CPU data base contains the following information:

CPU control structure (CPU_CNTIL_STRUC)-
-~ Pointer to working registers
-- Pointer to structure which holds pbinters to attached channels
-- Pointer to associated queue element
-- Current Program Status Wofd (PSwW)
-- 1/0 request word (IORW)

-~ Loop I'lags

The I/0 request word (32 bits) will indicate which channels,
if any, are requesting interrupf if the corresponding bit positions
are nlu .

A CPU data base‘ exéﬁple is given in figure 3.1,

3,1,1,1 Loop Flags

Loop Flags keep track of interrupt loop. It is one byte long

(8 bits) initialized to zero with bit assignment as follows:

(@
i

program loop

[N

- strong program loop

external loop

strong external loop

W N
!
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CAU_AREA CHAMMEL -
ALEA
‘ POINTERS
To
) CHANNELS
Event Queue
o N ) START
BITAD
c",cr';'g:"' CPY SViENT
For epPV O
POINTERS
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LHANMNELS
Aerv 4 Ifo EvewT
CHANMM L~ o
ARz A o COV EvenT
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- -
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FIGURE 3.1 - CPU Data Base
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4 - I/0 Loop
5 = Strong 1/0 loop

6-7 Unassigned

Both bits associated with an interrupt class are set en when-
ever PSW's are swapped (ie, when an interrupt is accepted). Any -
LPSW turns off one of each pair while an LPSW from some old in-
terrupt PSW location also turns off the other bit for that interrupt
class, Thus, if an interrupt is about to be accepted but it is
found that one of the loop flags bits corresponding to the class
is on, a strong interrupt loop has been detected, and if both bits

are on, a weak interrupt loop has been detected.

3.1.2 Channel and Subchannel

To access channels there exist the following PL1 declared

structure which holds pointers to the channel control structure,

DCL 1 CH_AREA_STRUC BASED (CH_AREA_PTR)
@ I FIXED BIN,
2 CH_AREA (CH_NUM ATFTER (CH_AREA_STRUC.I)) PTR,

CH_NUN is the total number of channels attached to the given CFPU,
and is specified by the CPU card (see section 2,3.2)

The channel data base contains the following information:

Channel Control Structure (CH_CNTL_STRUC) =
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-~ Pointer to working register
-- Pointer to CPU to which channel is attached
-- Pointer to first attached control unit (one with lowest

address)

Channel Type
The working register will contain the following:

-~ The state of the channel (ie. available, interrupt pend-
ing or working)

-- A pointer to the subchannel associated with the current
operation

-- A pointer to the subchannel for the next interruption
The subchannel data base contains the followings

Subchannel Control Sructure (SUBCH_CNTL_STRUC)=-
~- The state of the subchannel (ie. available, interrupt oend-
ing, or working)
-- I/0 address
-- Current Channel Command Word (CCW)
-~ Next Indirect Address Word (IDAW) address

-~ Interrupt pointer:

The I/0 address associated with the current I/0 operation is

the channel and device address, as specified in a SIO or TICO, etc.
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instruction, Interrupt pointer is needed in case it becomecs neces-
sary to clear a pending interrupt condition, :»¢e example, turn-
ing off a bit in the IORY or rewnovin. the assoclated interrupt event
from the event gueue,

A data basge example is given in figure 3.2

o

3,1.3 Control Unit

The control unit data base ccntains the following information:

Control Unit Control Structure (CU_CNTL_STRUC)=
-~ Pointer to woriking registers
-~ Pointers to next control unit
-~ Pointers to CH_CNTL_STRUC to which CU‘is attached
-- Lowest device address the control unit will recognize
-- Highest device address the control unit will recognize
-- Pointer to the subchannel with which the CU is associated
- Pointerﬁto Device Set Switching Unit (DSSy)

-- Pointer to farst attached device

The CU working register contains a pointer to the device control
structure that is currently being used, Device sharing among control
units is controled by the DSSU which keeps track of which control
unit: is attached to and making use of a given device set,

.-

3.1.4 Devices

The device data base contains the following informations:
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Device Control Structure (DEV_CNTL_STKUC)-
-~ Pointer to working registers

~-- Pointer to next device

Pointer to D3SSU to which device is attached

-~ Device type

-~ Static device-dependent information

Static deviée-dependent information are constant characteristics
of the associated device, for example print time or whelier infor-
mation should be transferred in burst or byte-interleave mode.

The working registers contain dynamic characteristics as device
status, data count, sense byte, etc. A data base example is shown

in figure 3.3.

3.2 Event Queue

Event sequen01né 1s.accompllshed by means of an event queue
ordered prlmarlly by time and secondarily by event priority, which
is determined from the kind of event, Gﬁhus, for instance, in the
case of simultaneous interrupt requests and simulation events, the
interrupt requests will be recognized before the instruction is
started), The maximum time at which an event can be scheduled to
start is the simulation time limit specified by the user. Any
event which is to start after that is not placed on the queue.

The first aﬁd last beads on the queue have time and status
such that no queue element cpulkd possibly belong before and after

them, respectively, In addition, there is an element scheduled to
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occur at the simulation time limit which, when executed, cause
termination due to timer runout,

Other elements are placed at the proper place in the queue by
entry INSERT in procedure 3L.UTI, This expects to find the queue
element to be inserted pointed to by CURR_Q_EL in PSTRUC., If the
event is to occur too late to be scheduled, the back pointer

LAST is set to NULL and a completion code of 1 is returned.

3.2,1 Queue Llement

A queue element is defined as follows:

DCL 1 Q_EL1 Based (CURR_Q_EL)
2 NEXT PIR,
2 LAST PTR,
2 TINE,
3 A FIXED BIN (31),
3 B FIXED BIN (31),

CLASS FIXED BIN (31),

2

2 TYPE FIXED BIN (31),
2 DEST ?TR,

2 SOUCE PTR,

2 DATA PTR;

NEXT and LAST are pointerg.to the next and previous queue ele-

ment respectively. TIME is the scheduled time for occurance., CLASS
tells what this particular element i1s concerned with, Associated
with the I/0 system there are i+ 1/0 events, class 12; 1/0 interrupts,

class 6; device events, class 14 for printers, TYPE provides addtion-
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al information for the specific class, ror an I/0 event, type can
be 1,2, or 3 where "1" is "i,/0 to Begin" which signals that an SIO
instruction has been detected and the channel needs to be awaken.
w2v is an I/0 start up event wnich signals that a SICF has been
initiated, "3" indicates command chaining is to take place., ror I/C
interrupt events TYPE is ihe nuwoer of the channel requesting an
interrupt. ror a printer event type can be *1", or "2" indicating
a data transfer or that a device end is to be sent to the channel,
respectively, DEST is a destination pointer and when used points
at a subchannel control structure., It is not used for 1/0 event

of Type "1", Source pointer in a multiprogramming envipzhment will
provide information as to which program the event 1s associated
with or it may point at a CPU control structure. DATA is a point-
er to a section that provides any other data that is necessary to
process the event, For DEVICE EVENTS, for example, it would point

at the associated device control structure.
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Ly, Proegram Cperation

This section describes in detail how the I/0 simulation has
been handled and implemented. Section 4,1 describes the major rou-
tines and section 4.2 shows how they interact. Section 4.3 gives
the sequence of events for sample 1/0 operations, It is hoped that
this break down will provide the reader with a simple and clear

picture of the program operation,

4,1 liajor Routines

The first two routines described are not 1/0 routines in the
sense of only being used during I/0. These are routines which help
control and direct the entire simulator. All other routines are in
the I/0 system and are only used in connection with I/0. The first
two routines give a feeling for how and when the I/0 system will be

entered,

4,1,1 ¥ASTER DRIVER

Events are executed by a loop in MASTER_DRIVER located in
SIMMAIN, After an event has gone to completion, the next event to
be handled is the element on the top of the queue (unless sim-
ulation has been terminated). Handling the event involves remov-
ing the element from the queue, making the CPU the current one,
getting the associated general registers, and doing some event
dependent proceséing.

For a CPU simulation event, the CPU simulation routine, CPU_

Sii, is called, If it returns normally, a new CPU simulation event
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is scheduled for the time at which the current one is finished,
If the return indicates that an interrupt loop has been detected,
simulation is terminated. The returns are 1

0 = normal

1 - CPU inactive

-1 - interrupt loop
For returns 0,1 a completion code of 0 is returned to the top of
the loop in WMASTER_DRIVER,

When the users specify some type of 1/0 opefation, (ie. SI0,
710, HIO, etc.,) it will appear in the event queue as a CPU simu-
lation event not an I1/0 event (see section 3.2.1 for events spec-
ifically associated with the I/0 system). It is not until after
CPU_SIN has been called and the op code for the instruction has
been decoded, that the appropriate I/0 system subroutine (ie. SIO,
TIO0, etc.) will be called.

For an interrup% event, the interrupt class and type are re-
moved from the queue element and placed in INT_CLASS and INT_TYPE
in the static external structure WISTRUC. DATA_PTR is also copied
into MISTRUC to save anything that might be hung off of it. The
queue elementiis then freed. REQUEST is called to mark the request-
ed interrupt in the current CPU state, and since REQUEST has no
abnormal returns, 0 is returned to the top of the loop by default.

If the timer runout event 1s executed, "SIMULATION TIMER HAS
BEEN EXCEEDED " is written onto SYSPRIIT and simulation is term-

inated.
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4.,1.2 CPU SIu

The CPU simulator, CPU_SIi, is activated by the event sequen-
cer LASTER_DRIVER when it recognizes a CPU simulation event., If
the CPU in question is enabled for any requested interrupts, they
are accepted by calling the entry ACCEPT, located in INTKPT, which
accepts interrupts in order of priority as specified in I3i System/
370 Principles of Operation. If, after accepting these interrupts,
the CPU is in the walt state, CPU_SIi passes the completion code
of 1 back to WASTER_DRIVER, while if an interrupt ig detected loop
is detected a completion code of -1 is sent back. For a normal
return from ACCEPT, CPU_SIi continues on to execute an instruction.

If there is a specification exception due to an odd instruc-
tion address, the request is marked in CPU_CNTL_STRUC and accepted
by looping vack to the interrupt aécepting stage, Otherwise, the
instruction is fetched by calling entry LOG located in SIMUT1 once,
unless the instructipn straddles a memory boundary, in which case
two calls are necessary. If accessing exceptions are raised in the
instruction fetch, the interrupts are requested by LOG and accepted
by looping to the interrupt accepting state.

The instruction itself is simulated by calling one of a group
of routines which contain entry points.lateled with the mnemonic
op codes of the instructions they simulate. l'or example, if the
instruction had been a START I/0 to a printer, SIO wouldrbe called,
These use the qﬁantitieéﬁsuch as R1, R2, ADDR1, ADDRZ2 computed dur-
ing the instruction fetch, On return from the instruction routines,

CPU_STi. updates the CPU simulation timer by the appropriate amount
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of time which elasped while the instruction was being executed

and passes control back to HMASTER_DRIVER,

L,1.,3 SIC

The START I/0 (SIO) routine (flowcharted in figure 4.1) is
branched to from the CPU_SIi routine when an SI0O or SIOF instruc-
tion is detected, and branched to from wASTER_DRIVER when an "1/0
to Begin" event is detected. Thus when a SIO instr@ction is detect-
Aed and a branch is made to the SIO routine, this routine will then
schedule an event, to occur immediately, that wakes up the chan-
nel and reports éﬁat there is "I/0 to 3egin". A return code of 1
is returned to indicate to MASTER_DR1Veh that the original CrU in-
struction (SI0 in this case) has not been completed and not to
schedule another one for that specific CPU, If the instruction was
"a SIOF or an I/0 to Begin event, the scheduling does not cccur and
processing continues.,

The CPU is checked to make sure that it 1is operating in the
supervisor state. If the channel is busy or the subchannel is not
availéble then the condition code is set to BUSY and COwPLETE is
set to zero indicating to MASTER_DRIVER that processing of the in-
struction 1is ;omplete. Otherwise, the CAW is fetched and tested,

Testing the CAW (see figure 4,2) is just making sure that
bits 4-7 (not used) and‘29—31 (insures double word boundary) are
zero, E

The subchannel state is set to working and a check is made

to see if the instruction being worked on is an SIOI', If so, the
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condition code indicates that 1/0 has been initiated and a SIUr
event is scheduled. If not, or if it is inhibited (ie. Block
multiplexinz bit off) then a normal SIC is perforumed.

I/0 STARTUP is called and if upon return the subchannel is
not BUSY, it is an indication that the SIO attempt was unsucess-
ful. The unit status is OR'ed into the CSW, the subchannel is
made available (ie. previous interrupt condition cleared) and the
condition code huﬁcateg that a CSW has been stored, If the sub-
channel is BUSY upon return, then the SIO was successful and the
condition code indicates I/0 has been initiated, If the PCL bit is

on, an interrupt is scheduled and we're done.

L,1,4 I/0 START UP

The I/0 START UP routine (flowcharted in figure 4,3) loads
necessary data into the subchannel, sets fhe channel to 3USY if
BURST mode 1s specifﬁed,”and sends orders to the control unit
(CU_SIM). If, ﬂpon return from CUSIi, there is no unusual status
we'rédoné,lf unusual status is detected and we are not trying
to: initiate an SIO instruction then an I/0 interrupt is scheduled,
while for an ?IO instruction the CSW would indicate the interrupt
conditions, If PCI is the onlj\bit on in the unit status we can
still initiate I/0 and therefore we simply return, Otherwise,
there must be some unusual status and the BUSY bit is cleared in
the channel and éubchannél to. indicate to the SIU routine that
the 1/0 attempt was unsucessful, If SIOF was specified, the
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deferred condition code 1is set to indicate that unusual status
has been detected, and CU:iPLETE =0 indicates to mASTER_DKIVER

that the CPU event can be rescheduled,

L,1.4,1 Fetch CCW

The "Fetch CCW" routine is flowcharted in figure 4.4,
Before actually getting the CCW checks are made to see if its
address 1s on a double word boundary, that its address is avall-
able to the channel, and that the keys match. After getting
the CCW and it is verified that bits 38 and 39 are zero, a
test for TIC (Transfer in Channel) is made., If a TIC is speci-
fied, it must not be in the first CCW of an SIO(F) operation
nor can it have been specified in the previous CCW. If no
program or protection check conditions are raised, the CCW is
‘'put into the subchannel, and the PCI bit is turned on in

CH_STATUS if necessary.

L,1.4.2 Get IMirst IDAW

Before the first IDAW is fetched (see figure 4.5), checks
are made to see if the Indirect Data Address (IDA) is on a
- full work‘bouﬁdary,if the IDA is available to the channel,

and if the keys match, Bits 0-7 of the IDAW must be zero,

4,1,5 CU_SIV

It is the job of CU_SIi (flowcharted in figure 4.6) to

make sure that the addresgssed device exists and to send orders
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to the device, Orders are sent only if the control unit is
working with the addressed device, or if the control unit 1is
available and the specified device is not working under
another control unit through the device switching unit., Other-
wise, the appropriate status is sent to the channel.

Note that this routine is entered directly from the TiC

subroutine.

L,1,6 TIO

When a TEST I/0 (TIO) instruction is detected the TIC
routine (flowcharted in figure 4.7) is entered, If the
channel or subchannel 1s busy or the subchannel is interrupt-
pending with other than the. addressed device, a condition code
of busy is returned. Otherwise, if the channel is available
"PIQ" orders are sent to CU_SIi, If upon return from CU_Slu
there is no uﬁusual étatdé, the condition code will indicate
that the devicémis available and a return is made, COWPLETE =0
provides an indicatim to MASTER_DRIVER that processing has
gone to normal completion, If the subchannel is interrupt-
pending with the address device, the interrupt condition is
cleared, Then, and also if any unusual status has been
detected, the subchannel state is set to available and the

congition code indicates that the CSW has been stored.

L,1,7 I/0 DATA STATUS TRANSFER

1/0 Data_Status Transfer (flowcharted in figure 4.8)

handles data transfers and the transferring of status to the
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channel., REPLACE =1 is an indication to LASTEX DKIVEK that
the event must be retried and it is replaced on the queue to
be tried at a given incremental time later, If status needs
to be transferred and the subchannel is available, we know
ghat we are in the midst of executing a T1¢ instruction. The
status field of the CSW in the subchannel is set from the

device status and the other fields are set to zero, Wie can then
check to see if any interrupt need scheduling and fhen return., If
the subchannel is not available, status is COR'ed into the CSw sta-
tus in the SUBCHANNEL,

Next a check is made to see if a channel end or device end
(see section 4.1,7.1) condition exists. A channel end conditon
signals that the channel has completed its-currcfit task and is
able to take on another, If it exists, a check is made for in-
correct lengthuénd command chaining (indicates there is another
CCW to follow). If the command chaining bit (in previous CLW) is
ofY or there are conditions to suppress it (ie. unusual status
exist), the 3USY bit in the subchannel is cleared, If operation
is in burst mode the BUSY bit in the channel is also cleared., If
command chaining;exist without any conditions to suppress it then

the channel end bit is cleared.
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L. 1,7.1 Checlk Device End

If a device end is present and the subchannel state is 3USY,
then command chaining is indicated and the device end bit is
cleared if no unusual status is detected (see figure 4,9)., A

command chaining event is then scheduled, 1f some unusual status

is present the BUSY bit in the subchannel, and channel if necessary,

are cleared, and then a check for interrupts is made,

L,1,7.2 Check Interrupts

"Check Interrupts", flowcharted in figure 4,10, checks for
any unusual statuslor if PCI = 1, If so, and we are not in the
midst of a SIO, TIO, or SICF instruction, then I (indicating in-
terrupt is pending) is set in the subchannel state, and an 1/0

interrupt event is scheduled,

4,1,7.3 Do Data Transfer

If the I/O Data Status Transfer routine had been entered in
order\to have a data transfer performed and the byte count and
channel status conditionsgare "all right" then the data transfer,
flowcharted in figure 4.11,can.be performed, A byte of data is
fetched from or stored at the specified data address, If the SKIP

flap is on in the CCW, no transfer is performed, If there is no
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Indirect Data Address (IDA) the data address is updated and the
byte count in the subchannel is decremented, If the count goes
to zero and the DATA CHAIN flag is on, the next CCW is fetched,
If this is the first byte transferred then the BUSY bit in the

channel is set according to the transfer mode,

4.1.7.3.1 Get Next IDAW

' If IDA was present and a page boundary is reached then
the next IDAW is fetched (see figure 4,12), The data addresé
must be available to the channel, the keys must match; bits 0-7
of the IDAW must be zero, and bits 21-31 of the IDAW wmust be zeros
(ones for a read backwards ccmmand) to specify top (or bottom)

of page. . !

L,1,8 Printer Routine

The printer routine, flowcharted in figure 4,13, is entered
for a DeVicé ﬁnd event, for continued execution of a command chain-
ing event,a $I0, a STOF or a TIO instruction, or for handling
a data transfer‘gyent. A:devicé end event indicatés that the allot-
ed time for'handling of a‘CCW.operatibn at the device has terminated

and it is available to go on to something else, The DEVICE END
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bit is turned on in the status for the devices., If we do not have

a data transfer or a device end event, the device status is checked,
If the status is zero then the indication is to decode the CCW
command code and executé it.

The BUSY bit in the device status is turned on and the three
low-order bits of the command code (bits 0-7 in the CCW) are
decoded to see what the command is, If decoding gifés 000 for
the three low-order bits, the routine will know that it is in
the midst of performing a TIO, Since 1t is already known that
the device status has nothing unusual, the BUSY bit is clear,
the D3SSU is released if necessary, and a return is made, This is
similar to what would occur if the invalid command 010, 101, 110,
or 111 is detected e%cepf-that a unit check condition is sent to
thé channel andpthe command reject bit is set in the SEN3ZE byte.

If the chree low-order bits decode to a write (001) or a
control (011) operation the modifier bits (first 5 bits of command
code) must have a value between 0 and 3 or between 17 and 28, Ior
a write command, a printer event is scheduled to perform the first

data transfer. For a control operation, a channel end condition

is indiééted in the device status, If it is a NO-0OP then the device
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end condition is also indicatved in the device staus, and the
status is sent to the charnel, Otherwise, the specified control
operation is performed (see figure 4,1%4),

If, originally, there was a non-zero status then it is sent
to the channel, If BUSY is th; only bit on, a return is made,
otherwise, a check is made for the presence of the device'end
condition and if found, no bit is left on inwthe device status,If
it is not found only the BUSY bit is left on in the status for

the device.

L4,1.8,1 Perform Data Transfer

This subroutine, flowcharted in figure 4,14, is entered when
a byte of data needs.to be transfered to, or from, main memory.
If there is some unusual status a‘af the device (le. status other
than BUSY) then that status is sent to the channel, If the DEVICE
END bit is on the device status is cleared, 1f neces=:ary the DSSU
is released and a return is made.

If there is no unusual status and the byte count'is 2ero
then one of two things happens., 1f the sense byte has just been
transfered then Channel End and Device End are indicated in the
device status aﬁd.the aéfion described above for unusual status
is taken., Otherwise, the chanhel end condition is sent to the

channel, the buffer is written into an output file along with

any specified control motion (ie, line skips), and a device end
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event is scheduled,.

If the byte count is not zero the data transfer is periorimed
and the byte fetched during the call to I1/0 DATA_STATUS TRANSrEK
is stored in a buffer, Since the sense command is treated by 1/0
DATA_STATUS TRANSKFER as a read operation (ie, storing the byte at
an appropriate address) it should be noted that there is no need
to store it in a buffer. The count and data address are updated,
the next data transfer is scheduled and a returﬁlis made.,

To terminate I/0 the byte count is set to zero and another
data transfer is scheduled, At the next attempt at a data transfer,

the zero will be detected and I/0 will go to a normal termination,

4,1.9 Card Reader Routine
| The flowchart for a simulated 3505 type card reader is
given in figu:e 4,15, The throughput rate simulated is 600 cards
per.minute (75 ms/cyole);’The clutch access time is incorporated
by taking intovéccount the clutch decision print (CDP) where the
CDP is the point in time after which a delay of 25 ms will occur
before the start of the next feed.

This routine is entered for the same conditions as the print-
er routine and, as can be seen, there is much overlap between the
two routines in how data is handled and status-is transferred.
Upon decoding the three- low order bits of the command code if we
find a sense command four bytes of data will be transferred to
memory as compared to one with the printer., For a feed, select

stacker command, first a sequence check is made, This command must
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follow a read only command and cannot be the first command given
to the reader. Next, a Channel End is sent to the channel and a
'card' &0 bytes of data, is put in the device buffer, 1f there
is no error a device end is scheduled to occur 67 ms from the
present time plus any clutch access time needed. 0f course this
depends on the time the previous Tfeed command ended which is saved..
in the device working register,

If we have a read command the sequence check is again made,
A read only command follows a read, feed, select stacker command,
a feed select stacker command or itself without command reject
occuring, but if it follows itself, a unit check is indicated and
unusual command sequence (sense bit 6 bytes 0) 1s returned on a
subsequent sense operation, A read, feed, select stackér conmand
can only follow feed, select stacker command or itself, If it
follows a read only command unit check and sense blt six of byte
0 are set..FEED_AFTEé, when set equal to one indicates we have a
read, feed, seiéct stacker command, It is stored in the device
working register. The data transfer is then scheduled,.

Upon completion of the data transfer (ie, byte count 0)
CH_END conditions are sent to the channel and for a read only a
device end is also indicated. For the read, feed select stacker

a device end is scheduled.

4,1,10 1/0 Interrﬁpts

Figure 4,16 indicates what is done in the ACCEPT portion of

the interrupts routines as far as I/0 is concerned. Checks are
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made to see whether operation is currently in basic or extend-
ed control mode (BC or EC). Depending on the control mode the
action taken is that which is described in S/370 Principles of

Operation in the section "Input/Output Interruptions".

4,2 System Structure and Flow

Figure 4,17 gives a feel for how the above describes routines

are interconnected,

L,3 Sequence of Events for I/0 Operation

Given below is what the sequence of events surrounding a

SI0, TIO, and SIOF instruction would look like,

I'or a SIO:

1) An element is taken off of the queue and it
is determined that it calls for CPU execution
of an instuction,

2) Any outstanding interrupts are handling ny
calling "~he ACCEP" routine,

3) It is determined that the CPU instruction is
a SI0 instruction and a branch is made to the
SI0 routine,.

~ . k) The SIO routine will schedule an "I/U to Begin"

event and the CPU event will not be rescheduled
yet.
5) The "1/0 to Begin" event is eventually detected

and a branch is again made to the SIC routine.
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The channel and subchannel are tested for avail-
ability, and the CAW is fetched and tested. The
1/0 START UP routine is then called and upon
return success or failure is indicated in the
condition code and possibly the CSw.

The I/0 START UP routine will fetch and test
the CCW, and load it into the subchannel, JUSIlw
will be called to send orders to the device,
CUSLi checks the control unit and calls the
approriate device routine,

For example, the printer routine would periorm
control operations or schedule the first data

transfer and return,

For a SIOF instruction 1 and 2 would be the same and tuncit:

3)

)

Itlis determined thnat the CIU instrucclos is &
SI0K igstruction and a branch is made to the

SIO routine,

The channel and subchannel are tected for svail-
ability, and the CA%W is fetched and tested. Then
a "SIOF" event 1s scheduled,.

The "SICF" event is eventﬁally detected and a
branch is made to the I/0 START UP routine.

The I/G START UP routine will fetch and test

the CCW, and load it into the subchannel, CUSIk

is then called and upon return if anything is

wrong an interrupt is scheduled and the deferred
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condition code is set.

7) CUSINM checks the control unit and calls the
appropriate device routine.

For a TIO instruction, steps 1 and 2 are again the same and
thens

3) It is determined that the CPU instruction is
a TIO and branch is made to the TIO routine,

L) The TIO routine tests the channel and subchannel
for availability and then calls CUSIi routine
to send orders to the device.

5) CUSIi checks the control unit and calls the

“appropriate device routine,
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5. Conclusions

The I/0 simulator provides much greater flexibility in the
usefulness of the complete IBM S/370 type simulator. Increased
operation at the bare ﬁachine level is readily available and
should prove a useful improvement in the use of the simulator as

a teaching aid and in the study of operating systems in general.

5.1 Suggestions for Improvenent

1) Incorporating the idea of keys and the associated
instructions (ie. IPK, ISK, SPKA, and SSK).

2) Implementing the suggested DASD.



-71-

Appendix A - Direct Access Storage Device

This description is not intended to be complete but rather
to provide the reader or a person intending to implement the
device with a neat and clear approach to the changes and addi-
tions necessary to add the DASD to the simulator. A detailed
understanding of the IBM Systems Reference Manual for IBM 2835
Storage Control and IBM 2305 Fixed Head Storage Module is a
prerequisite to implementation and more than a passing knowl-
edge of direct access device operation has been assumed in the
writing of this description.

The direct access storage device chosen for this example
is the IBM 2305 Fixed Head Disk storage facility. The facility
consists of an IBM 2835 Storage Control (control unit) and an
IBM 2305 Fixed Head Storage Module. The 2835 interprets and ex-
ecutes commands from the channel, controls the channel and disk
storage interface, furnishes status to the system, and performs
error detection and correction. The 2305 responds to commands
from the 2835, selects head, and reads or writes data. There
are two models available, one having two read heads per track
with approximately 5.4 million bytes per module, and the other
having one read head per track with about 11.2 million bytes
per module.

The major concern of the simulation routine for this de-
vice will be simﬁlating éhe disk. The user must be able to for-
mat the tracks and have direct access to records. The system
should require a minimum amount of the simulated disk in main

memory in order to find any given record. In PL/1l, record-ori-
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ented transmission of input/output is well suited to these re-
quirements, though for any given system suitable capabilities
may be lacking and implementation of this type of device may be
more difficult.

This discussion will only deal with the 2305 Model 2 which
has 768 addressable recording tracks that the user sees as 96
cylinders having 8 tracks each. There can be a maximum of 47
recofds per track. For initial implementation in tﬁe simulated
system, one might start with a scheme to simulate 10 cylinders
with 8 tracks each and limit the number of records per track to
10. The record size could then be 1k - 14k bytes and the maxi-
mum number of records for the simulated module would be 800.
These limits can easily be extended if necessary.

The working registers for the device would contain such
information as the ﬁile_mask, the 24 sense bytes, a buffer, the
last cylinder address, the last track address, the last record
address, the status for the device, and interrupt pointers. The
device control block would nave a pcinter to the working regis-
ters along with such static information as track rotation time
(10 ms), number of sectors (180), byte transfer rate (1.5 mil-
lion bytes per second), device starting time, etc. The file
mask is associated with the set file mask command which speci-
fies the‘type of‘operaEiOns that can be performed in the given
channel program. It is reset to zero after each chain of com-
mands.

In creating or accessing a record, the use of keys plays
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a major role. The key would be one of two things. First, it
could be the key specified by the CCW during formatting of the
track or, secondly, it could be the record ID which contains
the cylinder, track, and record number. One of these two char-
acter strings will be the key that the device routine uses to
access a record through keyed record-oriented transmission.
Thus, when a track is formatted, the key that is used will al-
ways.be the key that is specified in the formattiné write com-
mands unless none is giveh, in which case the record ID will
be used as the key. The keyé are stored in the following array

.structure.

DCL 1 TRACK (80),
2 AREA (10),
3 KEY CHARACTER (255) VARYING,
3 EXIST FIXED BIN(31) INITIAL ((10)0),
3 COUNT FIXED BIN(31),

3 SECTOR FIXED BIN(31);

If EXIST is zero the corresponding record does not exist. If it
is less than zero then the record has no specified key and the
record ID is used as a key. This structure makes the search of
a track for a régord a éimple matter and avoids the need of ex-
plicit index points for singlé track searches (on the 2305, if
two index points are detected without completing a search then

unit check is indicated along with channel and device end).
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Similarly multi-track searches present no problems.

SECTOR, calculated during formatting of the track, is used
with the read sector command and in rotational position sensing
(RPS). RPS is easily implemented if one assumes that the track
head was at sector zero at the start of the simulation and the
start time is stored in the device control block. Then from a
knowledge of the starting time, the present time, the rotation
time; and the total number of sectors, the sector humber at any
given time can be determined. As an example of a procedure
which uses RPS and contributes to increased channel utilization

~consider the following:

1) A set sector commands is given to indicate which
sector number it is desired to reach.

2) The channel is freed until that sector is reached.

3) When the ‘third sector in front of the desired one
is reached (to allow for a channel reseiection de-
lay) a special device end is sent to the channel.

4) If upon detection of the device end the channel is
available then the device end is accepted and the
cﬂannel reconnected. If the channel is busy then
the device end is rescheduled.

5) If the channel is still busy after the reselection
delay has past then the device end is rescheduled
for the next revolution.

6) The record is now ready to be read or written (ie.

thé next CCW can be executed).



-75-

Upon detection of a seek command, the seek address (cvl-
inder and/or track number) is stored in the device working
register and a channel end along with a device end are sent to
the channel. For a search command, the key or record ID is
saved in the working register and the array structure is
checked to see if the record exists. If the search key command
is specified, the cylinder and track number at which the scan
through the array will start are those stored in the working
register (last cylinder and last track address). Upon termina-
tion of the search a device end is scheduled for an appropriF
ate time to reflect the simulated search (the device will ap-
pear busy to inquiries until that time) and the appropriate
status is stored so that it can be indicated along with the
device end when it occurs. |

Of course other items as command prerequisites and file
mask settings -are very explicit and must be checked for during
certain commands and appropriate status indicated, but the im-
portant point to note is that no actual input/output needs to
be done for any of the validity checking or operations associ-
ated with the control, search, or sense commands. Operations
are performed and device ends are scheduled solely from knowl-
edge about the device and from information on hand. Only with
the read and wfite comﬁénds need I/O actually be performed,
and these operations can be handled in essentially the same
manner as the printer and reader, previously described, han-

dled them.



-76-

Appendix B - System Creation

To add a new device should present no difficulty. As seen
previously, I/O devices have the same calling sequence and op-
erate in basically the'same manner with respect to data trans-
fer to and from main storage. Since the other aspects of device
operation can differ greatly, a clear understanding of both the
I/0 system, as described in this document and in S/370 Princi-
ples of Operation, and the device itself, through SRL publica-
tions, will be needed.

The format of the I/0 System Configuration Cards is given
below. It is assumed that the reader is familiar with the sec-
tions "Input/Output Device Addressing" andv"Attachment of In-
put/Output Devices" in S/370 Principles of Operation.

l) CPU Card - (Card Type, Unit Number, Start Address,
- Trace information, prefixing informa-

tion, Number of Channels)

2) CHAN Card - (Card Type, Channel Type, Number of
Control Units)

3) CU Ccard - (Card Type, Low Address, High Address,
DSSU Identification Number, Number of
Devices)

4) DEV Card - n_(Card Type, Device Type, Mode, First
Device Dependent Information, Second

Device Dependent Information)
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