
SIMULATION OF IBM/370 INPUT/OUTPUT

by

Antonio C.

SB, Massachusetts In

(197

Gellineau

stitute of Technology

4)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February, 1976

Signature of
Department

Certified by

Author
of Electrical Engineering and

Computer Science, January 21, 1976

Thesis Supervisor

Accepted by. ..
Chairman, Departmental Committee on Graduate Students

SIhULATION OF I31/370 INPUT/CUTPUT

by

ANTONIO C. GELLINEAU

Submitted to the Department of Electrical Engineering and

Computer Science on January 20, 1976 in partial fulfillment of

the requirement for the degree of Plaster of Science.

ABSTRACT

Simulators are useful in allowing user to develop or invest-

igate operating systemis programs which theyr would normally 'e

unable to run due to lack of available equipmnent or privileged

instruction restrictions, Through simulation of I/0 devices and

I/0 instructions the user programs can include channel programs

to the devices as if the equipment were actually attached to the

system he is using. Having the privileged I/0 related instructions,

which are more than one third of all priviledged instructions,

at his disposal, gives the user much greater flexibility in the

study of operating systems programs.

This document describes simulation of the input/output sys-

tem for an IBMv/370 type machine. It is part of a simulator of a

complete machine now being used for running student programs. The

I/0 simulator is software simulating S/370 hardware done on a

S/370 machine,

THESIS SUPERVISOR: Stuart E. Mtadnick

TITLE: Professor of Mvanagement Science

-3-

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to

Professor Stuart Madnick for his patience and encouragement,

and his suggestion that I work on this project.

To my loving wife and typist, Jo-Ann, I give special

thanks for standing by me this past tough year.

Finally,to my son, Antonio C. Gellineau Jr.,with whom

I've had so little time to spend,I hope that some day you

will understand my efforts and surpass them in every way.

-4-

Table of contents

1. Introduction

1.1 Previous Simulation

2. Users' View

2.1 Overview of I/O System

2.2 The Complete Simulator

2.2.1 Events

2.2.2 I/O Interaction

2.2.3 Interrupt System

2.2.4 Debugging System

2.3 System Configuration and Creation

2.3.1 Configuration Card

2.3.2 CPU Card

2.3.3 CHAN Card

2.3.4 CU Card-

2.3;5 Dev Card

2.3.6 Data Card

2.3.7 MEMORY, TIME, and INSTRUC Cards

3. I/O Structure

3.1 Data Bases

3.1.1 CPU

3.1.2 Channel and Subchannel

3.1.3 Control'Unit

3.1.4 Devices

3.2 Event Queue

page 7

7

10

10

10

11

11

12

13

13

14

14

14

15

15

16

16

17

17

17

20

22

22

24

-5-

3.2.1 Queue Element 26

4. Program Operation 28

4.1 Major Routines 28

4.1.1 MASTERDRIVER 28

4.1.2 CPUSIM 30

4.1.3 SIO 33

4.1.4 I/O Start Up 35

4.1.5 CU SIM 38

4.1.6 TIO 42

4.1.7 I/O DATASTATUSTRANSFER 42

4.1.8 Printer Routine 51

4.1.9 Card Reader Routine 59

4.1.10 I/O Interrupts 64

4.2 System Structure and Flow 66

4.3 Sequence of Events for I/O Operation 66

5. Conclusions 70

5.1 Suggestions for Improvement 70

Appendix A - Direct Access Storage Device 71

Appendix B - System Creation 76

References 77

-6-

List of Figures

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

- CPU Data Base

- Channel Data Bases

- Device Data Base

- SIO Routine

- Test CAW

- I/O Start Up Routine

- Fetch CCW

- Get First IDAW

- CUSIM Routine

- TIO Routine

- I/O DataStatus Transfer

- Check Device End

- Check Interrupts

- Do Data Transfer-

- Get Next IDAW

- 1403 Printer Routine

- Perform Data Transfer

- Card Reader Routine

- I/O Portion of ACCEPT Routine

- Subroutine Interconnections

page 19

23

25

31

34

36

39

40

41

43

44

48

49

50

52

53

57

60

65

67

-7-

1. Introduction

A simulator provides a system that accurately reflects the

behavior of all or part of the system being simulated that is

necessary for the purpose of investigation and teaching. A

simulator is very useful in enabling evaluation before allocation

of resources (ie. money). 1Iajor design tradeoffs and performance

can be evaluated before obtaining or building costly hardware. A

simulator also allows a programmer to get at the "bare machine"

and run operating systems programs. An excellent example is pro-

vided by the simulator described in this paper.

M.I.T. Sloan School's FOS (Family of Operating Systems) Group

is in the process of completing a portion of an IBii/370 type sim-

ulator. The simulator can handle the IBM/370 machine instructions,

has multiple CPU's, has a debugging package and handles all types

of interrupts. This paper describes an T/O system design and im-

plemented by the author to provide the simulator with a general

facility for handling input/output functions. A fair amount of

knowledge about I/O is assumed and a review of the pertinent sec-

tions in S/370 Principles of Operation under the main heading

entitled "Input/Output Operations" may be helpful.

1.1 Previous Simulators and Simulation Techniques

Two previous simulators written to simulate IBM Systems

are SL1360 and TRIBBLE. The former written in PL/1 to simulate

IBM System/360 for running student programs and software develop-

ment, and the latter written in Fortan IV to simulate I1n System/

-8-

370. SI360 operates under a batch enviornment and TRIB3LE is

designed to operate interactively. TRiB3LE is the more powerful

simulator as it simulates the more powerful machine. The I/O

simulator follows the method of handling I/O used in TRIBBLE.

Virtual machines, which give each user the appearance of

having his own machine is one approach to having the programmer

work with a bare machine. But, until 1972, when IBM. VM4/370 was

announced, one needed to have an expensive IB,/370 model 67

available. 3ut even the Vb/370, which operates on any IB1 /370

with Dynamic Address Translation, does not accurately reflect

the timing and behavior of the simulated computer in the area

of I/o operations and priviledged instructions. This is unfortunate

since this area is the focus of interset in operating systems

programs.

Emulators are another approach to simulation. These are

specific hardware units built into a computer which causes the

system to accept certain software programs and routines and appear

as if it were another system, such as 7094 software running

on an IBM/360 computer without translation. The restriction of

specific hardware designed for specific systems as compared to

a PL/1 simulator is clear.

Some of the advantages to be gained from a simulator are

as follows:

--All privileged features may be used directly

--Sophisticated debugging arid program statistics
recording features may be provided

-9-

-- An arbitrary configuration may be simulated
(number and types of devices, their interconnections, etc.)

--.May be as accurate as necessary

--Is easily modified (editing source file rather than rewiring),

-10-

2. Users' View

2.1 Overview of I/O System

The I/C system will handle all input/output operations. The

operations of the channel, subchannel, control unit, and 1/0 devices

are simulated. Facilities for requesting and accepting of I/o in-

terrupt are provided and device timing characteristics are also

accurately reflected. Presently the system is capable of handling

IBMI,'1403 type printers and IBM 3505 type card readers. Details on

how to implement a direct access storage device (an 1Biwi 2305 type

drum with rotational position sensing) is given in appendix A.

The overall strategy is to have the I/o system structured as

general as possible. To this end a mechanism, "Division of Function",

is employed. Each CPU and channel are simulated as separate units

as are control units and I/0 devices. Then, to add a specific ne:

device simply requires th6 addition of a device simulation routine

for the device. A particular simulation routine will be for a part-

icular type of device (ie.,CPU,channel, control units, printers, etc.)

rather than a specific instance of that device in the simulated

configuration. In this way, the I/O simulator will be a general

scheme for doing I/O independent of the devices used. And because

of the devision of function, changes in the nature of one simulated

component (ie. CPU) have.limited effects on the rest of the system.

2.2 The Complete Simulator

The FOS (Family of Operations Systems) simulator provides a

-11-

"high fidility" simulation of a computer system not unlike an IBi

360/370 or a PDP 11. The simulation includes instruction timing,

interrupt generation and handling, multiple CPU's, CPU timers, Trace

and debug package, channels and device control units, and a built

in direct linking loader.

The simulation is divided into subsystems, one for each of the

simulation functions. Global data bases provide for communication

between subsystems. A subsystem will ususally consist of several

program modules and several entry points, Subsystems include the

trace and debug systems, instruction interpretation, I/0 system,

and interrupt system,

2.2.1 Events

A central theme to the simulator is the notion of an event,

An event is an action of a specific type which is scheduled to

occur at a specific time during the simulation. Typical events in-

clude execution of an instruction by a particular CPU, execution

of an 1/0 instruction by a particular channel, handling of an in-

terrupt, (ie. I/0, program, SVC, external or machine check), decre-

menting of the, interval timer, etc. The execution of a particular

event often results in the scheduling of another event.

2.2.2 IL/ Interaction

The user will attempt to initiate I/0 through a SIO(START I/0)

or an STOF (START I/O Fast Release) instruction to 'a given device.

When the CPU event (which signals simulation of next instruction

-12-

on the given CPU) for the SI or SICF is popped off the event

queue and decoded, the I/0 system will be entered to initiate the

I/0. If the device is not busy and a path exists to the device using

the specified channel, the device will begin operation. It is assumed

that the user has supplied the channel program, its address, an I/o

interrupt handler (in case some unusual status is detected), and

its address. If I/0 cannot be initiated and there exists some unusual

status it is indicated in a stored channel status word (CSW). If

subsequent to initiation of I/O an unusual status condition is de-

tected the channel can request an I/O interrupt.

2.2.3 Interrupt System

The interrupt structure is divided into two pieces. One

part, under the entry point REQUEST, is concerned with indicating

in the state of a CPU that there is a request for an interrupt. Te

second piece is entered before the execution of an instruction by

a CPU. It checks the CPU state, comparing requested interrupts

against interrupt masks to decide which, if any, interrupts should

be accepted. By keeping track of PSW swaps the system traps interrupt

loops. If two interrupts of the same class (ie. a two program in-

terrupt), are accepted without a LPSW being executed in between, a

weak interrupt loop is detected. An error message is printed and

simulation terminates. If. two interrupts of the same class occur,

separated by a LPSW but not a LPSW from the old PSW for that class,

eg. two program interrupts separated only by a LPSW SVC OLDPSW, a

strong interrupt loop is detected. In this case a message is printed

-13-

but simulation continues.

2.2.4 Debugging System

The debugging system allows the user to monitor the progress

of the simulation by displaying status information to inputted trace

requests. There are two phases to the system. The first phase reads

debug requests, interpret them, and sets up tables for phase two.

The second phase executes requests and displays information when

a particular traceable event occurs.

In connection with I/O system things that can be looked at

through the TRACE facility include the old and new PEW, CLW, <CAW,

CHANNEL STATUS and DEVICE STATUS.

2.3 System Configuration and Creation

A user, if he wishes, may specify an arbitary configuration

as mentioned earlier (the details of the system creation are describ-

ed in Appendix),B). If he does not want to write his own system config-

uration file then he can select a standard system from a set of

system configuration files that exist on disk or tape.

Any Legal. S/370 type configuration may be specified, with

the following restrictions : 1) no more than 32 channels on any one

Q~d, 2) device sharing by switching between control units only, 3)

it must contain Only those I/0 devices provided by the simulator,

eg. at present only the IBM 1403 printer and the 3505 card reader.

In addition to legaall S/370 configurations, many configurations

which are not considered legal in Principles of Operation for the

S/370 may be specified (ie. Channel 0 need not be byte multiplexer),

-14-

and although they will usually operate as expected, caution is ad-

vised.

The following "simulation control cards" control the initial-

ization of the system configuration.

2.3.1 Configruration Card

The CONFIG card indicates the number of CPU's to be used in

the current simulation. This number is used to control the reading

of CPU cards (see next section). If the CC1FIG card is missing, an

error message is printed,

2.3.2 CPU Card

Each CPU card gives the simulator certain characteristics of

a CPU, such as starting address unit number, and number of attached

channels which is used to control reading of CHAN cards (see nex

section). For each CPU card, instances of CPUCNTLSTRUC the gen-

eral registers, and control registers are allocated, and the 1/o

system associated with it is initialized (ie. channel, subchannel,

control units and device data bases). The instruction address field

of the PSW is set to the starting address and other variables in

the control structure are initialized. If too many or too few CPU

cards are read an error message is printed.

2.3.3 CHTAN Card

Each CHAN card provides information such as channel type, and

number of attached control units. The latter controls the reading

of CU cards (see next section),

-15-

For each CHAN card instances of CH_CNTL__STRUC and CHWKREG

are allocated. If it is a selector channel the subchannel control

structure (SUDCH_CIVTLSTIRU) is also allocated, if not, one SUBCI_

CNTL STUC is allocated for each CU card since for multiplexer

channels there is a one-to-one correspondence between subchannel

and control units while selector channels have only one subchannel.

If an incorrect number of CHAN cards are read, an error message is

printed.

2.3.4 CU Cards

The CU card will give the lowest and highest address that the

control unit will recognize, and will indicate whether or not the

attached devices will be accessible to other control units by giv-

ing the number of a Device Set Switching Unit (DSSU). This DSSU

will be responsible for controling which control unit a device set

will be using. The CU card will also provide the number of attached

devices to control reading of DEV call,(see next section).

For each CU card, instances of the CUCNTLSTRUC and the CU_

WKREG are allocated and if the CU is attached to the multiplexer

channel the SUBCH CNTL STRUC is allocated and appropriate pointers

set. If a new DSSU ID number is given a DSSU_CNTL_STRUC is allocated

and initialized._Again if an incorrect number of CU cards is detected

an error message'is printed.

2.3.5 DEV Cards

Each DEV card will contain the DEVICE TYPE, the mode in which

-16-

data is to be transferred, and any device dependent information

that is necessary. For example, the input or output file, print

time, delay time, etc. Instances of DEV CNTL STRUC and DEV WKREG

are allocated for each DEV card.

2.3.6 DATA Cards

DATA cards are used to insert hexadecimal data directly into

simulated menory. The location given on the data card is

converted to an actual hexadecimal value and then stored in the

memory location. If the location is greater than the size of memory,

an error is printed.

2.37iEORY, TI 1E,and IN,STRUC Cards

- The I.E1ORY card indicates the size of the memory (in bytes)

for the current simulation. The INSTRUC card is used to limit the

number of instructions which are executed during the simulation.

The TIME card is used to set a maximum time for the simulation.

-17-

3. I/C Structure

This section deals with the I/0 structure in the sense of how

data bases are structured and interconnected. The section should

provide the reader with a flavor for the type of information that

will be flowing in the I/0 system and where bits of information

might be used, (ie. by the channel, by the control unit, by 1iie

device, etc.), or found, (ie, in the subchannel, device data base;,

etc.), ,The section should also facilitate reading of the detail

program operation given in section 4 which describes how the I/O

system operation through analysis of the major routines. Data base

examples are provided throughout this section.

3.1 Data Bases

The CPU Control Structure is quite long and contains many i't-ems

t-hat have nothing to do with the I/0 system. I have therefore, in this

case only, presented a short form of the priginal data base with

all information pertinent to this paper.

3.1,1 CPU

To access CPU's there exist the following PL1 deckared struc-

ture which holds pointers to the CPU control structures.

DCL 1 AREASTRUC BASED (CPUAREAPTR)

2 I FIXED BIN,

2 CPUAREA (CPUNUil REFER(AREASTRUC..))PTR

-18-

CPU NUM is the total number of CPU's, which has been specifiedonn

the CONFIG card (see section 2,3.1)

The CPU data base contains the following information:

CPU control structure (CPUCNTLSTRUC)-

-- Pointer to working registers

-- Pointer to structure which holds pointers to attached channels

-- Pointer to associated queue element

-- Current Program Status Wdod (PSW)

-- I/o request word (IORW)

-- Loop Flags

The I/O request word (32 bits) will indicate which channels,

if any, are requesting interrupt if the corresponding bit positions

are "1".

A CPU data base example is given in figure 3.1.

3.1,1.1 Loop FlagFs

Loop Flags keep

(8 bits) initialized

track of interrupt loop. It is one byte long

to zero with bit assignment as follows:

0 - program loop

1 - strong program loop

2 - external loop

3 - strong external loop

-19--

Event Queue

FIGURE 3.1 - CPU Data Base

-20-

4 - I/O Loop

5 - Strong 1/o loop

6-7 Unassig-ned

Both bits associated with an interrupt class are set an when-

ever PSW's are swapped (ie. when an interrupt is accepted). Any

LPSW turns off one of each pair while an LPSW from some old in-

terrupt PSW location also turns off the other bit for that interrupt

class. Thus, if an interrupt is about to be accepted but it is

found that one of the loop flags bits corresponding to the class

is on, a strong interrupt loop has been detected, and if both bits

are on, a weak interrupt loop has been detected.

3_.J2 Channel and Subchannel

To access channels there exist the following PL1 declared

structure which holds poifnters to the channel control struc-ture.

DCL 1 CHAREASTRUC BASED (CHAREAPTR)

@ I FIXED BIN,

2 CH_AREA (CH_NUM AFTER (CH_AREASTRUC.I)) PTR,

CHNUi is the total number of channels attached to the given CPU,

and is specified by the.CPU card (see section 2.3.2)

The channel data base contains the following information:

Channel Control Structure (CHCNTLSTRUC)-

-21-

-- Pointer to working register

-- Pointer to CPU to which channel is attached

-- Pointer to first attached control unit (one with lowest

address)

-- Channel Type

The working register will contain the following:

-- The state of the channel (ie. available, interrupt pend-

ing or working)

-- A pointer to the subchannel associated with the current

operation

-- A pointer to the subchannel for the next interruption

The subchannel data base contains the following:

Subchannel Control Sructure (SUBCHCNTLSTRUC)-

-- The state of the subchannel (ie. available, interrupt oend-

ing, or working)

-- I/0 address

-- Current Channel Command Word (CCW)

-- Next Indirect Address Word (IDAW) address

-- Interrupt pointer'

The I/0 address associated with the current I/0 operation is

the channel and device address, as specified in a SIC or TI0, etc.

-22-

instruction. Interrupt pointer is needed in case it becomes neces-

sary to clear a pending interrupt condition. 1. example, turn-

ing; off a bit in the I0RW or reroving thc associated interrupt event

from the event queue.

A data base example is given in figure 3.2

3.1._3 Control Unit

The control unit data base contains the following information:

Control Unit Control Structure (CUCNTLSTRUC)-

-- Pointer to working registers

-- Pointers to next control unit

-- Pointers to CH CNTL STRUC to which QU is attached

-- Lowest device address the control unit will recognize

-- Highest device address the control unit will recognize

-- Pointer to the subchannel with which the CU is associated

-- Pointer to Device Set Switching Unit (DSSU)

-- Pointer to first attached device

The CU working register contains a pointer to the device control

structure that is currently being used. Device sharing among control

units is controled by the DSSU which keeps track of which control

unit-- is attached to and.making use of a given device set,

3,1.4 Devices

The device data base contains the following information:

STATES

A = Available

W = Working

I = Interrupt
Pending

FIGURE 3.2 - Channel Data Bases

-23-

-24-

Device Control Structure (DEV_CNTL_STRUC)-

-- Pointer to working registers

-- Pointer to next device

-- Pointer to DSSU to which device is attached

-- Device type

-- Static device-dependent information

Static device-dependent information are constant characteristics

of the associated device, for example print time or whether infor-

mation should be transferred in burst or byte-interleave mode.

The working registers contain dynamic characteristics as device

status, data count, sense byte, etc. A data base example is shown

in figure 3.3.

3.2 Event Que-,e

Event sequencing is accomplished by means of an event queue

ordered primarily by time and secondarily by event priority, which

is determined from the kind of event. (Thus, for instance, in the

case of simultaneous interrupt requests and simulation events, the

interrupt requests will be recognized before the instruction is

started). The maximum time at which an event can be scheduled to

start is the simulation time limit specified by the user. Any

event which is to start after that is not placed on the queue.

The first and last beads on the queue have time and status

such that no queue element could -possibly belong before and after

them, respectively. In addition, there is an element scheduled to

-25-

FIGURE 3.3 - Device Data Base

. 0 &

a . a

-26-

occur at the simulation time limit which, when executed, cause

termination due to timer runout.

Other elements are placed at the proper place in the queue by

entry INSERT in procedure SliUTI. This expects to find the queue

element to be inserted pointed to by CURR_Q_EL in PSTRUC. If the

event is to occur too late to be scheduled, the back pointer

LAST is set to NULL and a completion code of 1 is returned.

3.2.1 Queue Element

A queue element is defined as follows:

DCL 1 Q_EL1 Based (CURR_Q_EL)

2 NEXT PTR,

2 LAST PTR,

2 T IfE,

3 A FIXED BIN (31),

3 B FIXED BIN (31),

2 CLASS FIXED BIN (31),

2 TYPE FIXED BIN (31),

2 DEST PTR,

2 SOUCE PTR,

2 DATA PTR;

NEXT and LAST are pointers. to the next and previous queue ele-

ment respectively. TIB&E is the scheduled time for occurance. CLASS

tells what this particular element is concerned with. Associated

with the I/O system there are : 1/0 events, class 12; I/o interrupts,

class 6; device events, class 14 for printers. TYPE provides addtion-

-27-

al information for the specific class. Lor an I/O event, type can

be 1,2, or 3 where "1" is !1 0 tO Begin" which signals that an SIG

instruction has been detected and the channel needs to be awaken.

"2" is an I/O start up event which sig-nals that a SIGF has been

initiated. "3" indicates comimiand chaining is to take place. ±or I/0

interrupt events TYPE is the number of the channeL requesting an

interrupt, For a printer event type can be "1", or "2" indicating,

a data transfer or that a device end is to be sent to the channel,

respectively. DEST is a destination pointer and when used points

at a subchannel control structure, It is not used for I/O event

of Type "1". Source pointer in a multiprogramming envipnment will

provide information as to which program the event is associated

with or it may point at a CPU control structure. DATA is a point-

er to a section that provides any other data that is necessary to

process the event. For DEViCE EVENTS, for example, it would point

at the associated device'~control structure.

-28-

4. Program Operation

This section describes in detail how the I/0 simulation has

been handled and implemented. Section 4.1 describes the major rou-

tines and section 4.2 shows how they interact. Section 4.3 gives

the sequence of events for sample I/o operations. It is hoped that

this break down will provide the reader with a simple and clear

picture of the program operation.

4.1 Iajor Routines

The first two routines described are not 1/0 routines in the

sense of only being used during I/0. These are routines which help

control and direct the entire simulator. All other routines are in

the I/O system and are only used in connection with I/0. The first

two routines give a feeling for how and when the I/0 system will be

entered.

4.1.1 MASTER DRIVER

Events are executed by a loop in iASTER_DRIVER located in

SIMMAIN. After an event has gone to completion, the next event to

be handled is the element on the top of the queue (unless sim-

ulation has been terminated). Handling the event involves remov-

ing the element from the queue, making the CPU the current one,

getting the associated general registers, and doing some event

dependent processing.

For a CPU simulation event, the CPU simulation routine, CPU

SIMi,is called. If it returns normally, a new CPU simulation event

-29-

is scheduled for the time at which the current one is finished.

If the return indicates that an interrupt loop has been detected,

simulation is terminated. The returns are

0 - normal

1 - CPU inactive

-1 - interrupt loop

For returns 0,1 a completion code of 0 is returned to the top of

the loop in MASTER_DRIVER.

When the users specify some type of I/O operation, (ie. SIJ,

TIO, HIO, etc.) it will appear in the event queue as a CPU simu-

lation event not an I/O event (see section 3.2.1 for events spec-

ifically associated with the I/0 system). It is not until after

CPUSIM,, has been called and the op code for the instruction has

been decoded, that the appropriate I/O system subroutine (ie. SIO,

TIO, etc.) will be called.

For an interrupt event, the interrupt class and type are re-

moved from the queue element and placed in INTCLASS and INTTYPE

in the static external structure MISTRUC. DATAPTR is also copied

into MISTRUC to save anything that might be hung off of it. The

queue element is then freed. REQUEST is called to mark the request-

ed interrupt in the current CPU state, and since REQUEST has no

abnormal returns, 0 is returned to the top of the loop by default.

If the timer runout event is executed, "SLIhULATION TIviER HAS

BEEN EXCEEDED " is written onto SYSPRIUT and simulation is term-

inated.

-30-

4.1.2 CPU SlI

The CPU simulator, CPUSI, is activated by the event sequen-

cer iASTER_DRIVER when it recognizes a CPU simulation event. If

the CPU in question is enabled for any requested interrupts, they

are accepted by calling the entry ACCEPT, located in 1INTRPT, which

accepts interrupts in order of priority as specified in I3' System/

370 Principles of Operation. If, after accepting these interrupts,

the CPU is in the wait state, CPU_SI. passes the completion code

of 1 back to NASTER_DRIVER, while if an interrupt is detected loop

is detected a completion code of -1 is sent back. For a normal

return from ACCEPT, CPUSI1'i continues on to execute an instruction.

If there is a specification exception due to an odd instruc-

tion address, the request is marked in CPUCNTLSTRUC and accepted

by looping back to the interrupt accepting stage. Otherwise, the

instruction is fetched by calling entry LOG located in SIVUT1 once,

unless the instruction straddles a memory boundary, in which case

two calls are necessary If accessing exceptions are raised in -the

instruction fetch, the interrupts are requested by LOG and accepted

by looping to the interrupt accepting state.

The instruction itself is simulated by calling one of a group

of routines which contain entry pointsilaCeIed with the mnemonic

op codes of the instructions they simulate. For example, if the

instruction had been a START I/0 to a printer, SIO would be called.

These use the quantities such as R1, R2, ADDR1, ADDR2 computed dur-

ing the instruction fetch. On return from the instruction routines,

CPU_SIR updates the CPU simulation timer by the appropriate amount

-31-

FIGURE 4.1 - SIO Routine
(continued on next page)

-32-

FIGURE 4.1 - Continued

-33-

of time which elasped while the instruction was being executed

and passes control back to MASTERDRIVER.

4.1.3 SIo

The START I/O (SIO) routine (flowcharted in figure 4.1) is

branched to from the CPUSIM routine when an SIG or SICF instruc-

tion is detected, and branched to from MASTER DRIVER when an "I/0

to Begin" event is detected. Thus when a SIC instruction is detect-

ed and a branch is made to the SIO routine, this routine will then

schedule an event, to occur immediately, that wakes up the chan-

nel and reports that there is "I/0 to Begin". A return code of 1

is returned to indicate to MASTERDRlVbix that the original CPJ in-

struction (SIC in this case) has not been completed and not to

schedule another one for that specific CPU. If the instruction was

a SIOF or an I/O to Begin event, the scheduling does not occur and

processing continues. --

The CPU is- checked to make sure that it is operating in the

supervisor state. If the channel is busy or the subchannel is not

available then the condition code is set to BUSY and COMPLETE is

set to zero indicating to MASTER DRIVER that processing of the in-

struction is complete. Otherwise, the CAW is fetched and tested.

Testing the CAW (see figure 4.2) is just making sure that

bits 4-7 (not used) and 29-31 (insures double word boundary) are

zero.

The subchannel state is set to working and a check is made

to see if the instruction being worked on is an SICF. If so, the

-34-

FIGURE 4.2 - Test CAW

-35-

condition code indicates that i/o has been initiated and a SIi-

event is scheduled. If not, or if it is inhibited (ie. Block -

multiplexing bit off) then a normal SIC is performhed.

I/0 STARTUP is called and if upon return the subchannel is

not BUSY, it is an indication, that the SIO attempt was unsucess-

ful. The unit status is CR'ed into the CSW, the subchannel is

made available (ie. previous interrupt condition cleared) and the

condition code indicates that a CSW has been stored. If the sub-

channel is BUSY upon return, then the SI was successful and the

condition code indicates I/o has been initiated. If the PCI bit is

on, an interrupt is scheduled and we're done.

4.1.4 I/o START UP

The I/0 START UP routine (flowcharted in figure 4.3) loads

necessary data into the subchannel, sets the channel to BUSY if

BURST mode is specif'ied,'~and sends orders to the control unit

(CUSIM). If, upon return from CUSIld, there is no unusual status

we're'don If unusual status is detected and we are not trying

toiinitiate an SIO instruction then an I/C interrupt is scheduled,

while for an SIO instruction the CSW would indicate the interrupt

conditions. If PCI is the only bit on in the unit status we can

still initiate I/O and therefore we simply return. Otherwise,

there must be some unusual status and the BUSY bit is cleared in

the channel and subchannel to.indicate to the SIC routine that

the I/0 attempt was unsucessful. If SIOF was specified, the

-36-

LOAD XIAW

ADDarI-s6s AA/D

DATn A A6/IR ss5

IA/ fo SV/n &H AwAl

FIGURE 4.3 - I/O Start Up Routine
(continued on next page)

-37-

FIGURE 4.3 - Continued

-38-

deferred condition code is set to indicate that unusual status

has been detected, and COMIPLETE =0 indicates to i.ASTER DRIVER

that the CPU event can be rescheduled.

4.1.4.1 Fetch CCW

The "Fetch COW" routine is flowcharted in figure 4.4.

Before actually getting the CCW checks are made to see if its

address is on a double word boundary, that its address is avail-

able to the channel, and that the keys match. After getting

the COW and it is verified that bits 38 and 39 are zero, a

test for TIC (Transfer in Channel) is made. If a TIC is speci-

fied, it must not be in the first CCW of an SIO(F) operation

nor can it have been specified in the previous COW. If no

program or protection check conditions are raised, the CCW is

put into the subchannel, and the PCI bit is turned on in

CH-_STATUS if necessary.

4.1.4.2 Get First IDAW

Before the first IDAW is fetchud (see figure 4.5), checks

are made to see if the Indirect Data Address (IDA) is on a

full work boundary, if the IDA is available to the channel,

and if the keys match. Bits 0-7 of the IDAW must be zero,

4.1'.5 CU_ SI DM

It is the job of CU_SIM' (flowcharted in figure 4.6) to

make sure that the addressed device exists and to send orders

-39-

Co4 rw ef

FIGURE 4.4 - Fetch CCW

-40-

FIGURE 4.5 - Get First IDAW

-41-

FIGURE 4.6 - CU SIM Routine

-42-

to the device. Orders are sent only if the control unit is

working with the addressed device, or if the control unit is

available and the specified device is not workingj under

another control unit through the device switching unit. Other-

wise, the appropriate status is sent to the channel.

Note that this routine is entered directly from the T10

subroutine.

4.1.6 TIC

When a TEST I/0 (TIO) instruction is detected the TIC

routine (flowcharted in figure 4.7) is entered, If the

channel or subchannel is busy or the subchannel is interrupt-

pending with other than the. addressed device, a condition code

of busy is returned. Otherwise, if the channel is available

"TIC" orders are sent to CUSIll. If upon return from CUSI

there is no unusual status, the condition code will indicate

that the device is available and a return is made. COM1PLETE =0

provides an indicaticn to 2ASTERDRIVER that processing has

gone to normal completion. If the subchannel is interrupt-

pending with the address device, the interrupt condition is

cleared, Then, and also if any unusual status has been

detected, the subchannel state is set to available and the

condition code indicates that the CSW has been stored.

4.1.7 I/O DATA STATUS TRANSFER

I/0 DataStatus Transfer (flowcharted in figure 4.8)

handles data transfers and the transferring of status to the

-43-

FIGURE 4.7 - TIO Routine

-44-

sEr kIy CC/
Ccw AldeEss,
AA/o A 1TE Com

ro zee A1

FIGURE 4.8 - I/O Data Status Transfer
(continued on next page)

-45-

FIGURE 4.8 - Continued

-46-

channel. REPLACE =1 is an indication to lASTEi,_DRIVIER that

the event must be retried and it is replaced on the queue to

be tried at a given incremental time later. If status needs

to be transferred and the subchannel is available, we know

that we are in the midst of executing a TIO instruction. The

status field of the CSW in the subchannel is set from the

device status and the other fields are set to zero. We can then

check to see if any interrupt need scheduling and then return. If

the subchannel is not available, status is GR'ed into the CSVv sta-

tus in the SUBCHANNEL.

Next a check is made to see if a channel end or device end

(see section 4.1.7.1) condition exists. A channel end conditon

signals that the channel has completed its current task and is

able to take on another, If it exists, a check is made for in-

correct length and command chaining (indicates there is another

CCW to follow). If the command chaining bit (in previous CCW) is

off or there are conditions to suppress it (ie. unusual status

exist), the 3USY bit in the subchannel is cleared. If operation

is in burst mode the BUSY bit in the channel is also cleared. If

command chaining-exist without any conditions to suppress it then

the channel end bit is cleared.

-47-

4.1.7.1 Check Device End

If a device end is present and the subchannel state is BUSY,

then command chaining is indicated and the device end bit is

cleared if no unusual status is detected (see figure 4.9). A

command chaining event is then scheduled, If some unusual status

is present the BUSY bit in the subchannel, and channel if necessary,

are cleared, and then a check for interrupts is made.

4.1,7.2 Check Interrupts

"Check Interrupts", flowcharted in figure 4.10, checks for

any unusual status or if PCI = 1. If so, and we are not in the

midst of a SIO, TIO, or SIGF instruction, then I (indicating in-

terrupt is pending) is set in the subchannel state, and an 1/0

interrupt event is scheduled.

4.1.7.3 Do Data Transfer

If the I/0 Data Status Transfer routine had been entered in

order to have a data transfer performed and the byte count and

channel status condition's are "all right" then the data transfer,

flowcharted in figure 4.11,can be performed. A byte of data is

fetched from or stored at the specified data address. If the SIP

flap is on in the CCW, no transfer is performed. If there is no

-48-

FIGURE 4.9 - Check Device End

-49-

FIGURE 4.10 - Check Interrupts

-50-

110 ADD/
,iOAO JV4 r~4

ApkC , AMAPPAaM2W1 A"
c c3u7'

ye5

SE 7 Wo.nAbI

IA/ CIAMMELA...

FIGURE 4.11 - Do Data Transfer

-51-

Indirect Data Address (IDA) the data address is updated and the

byte count in the subchannel is decremented. If the count goes

to zero and the DATA CHAIN flag is on, the next CCW is fetched.

If this is the first byte transferred then the BUSY bit in the

channel is set according to the transfer mode.

4.1.7.3.1 Get Next IDAW

If IDA was present and a page boundary is reached then

the next IDAW is fetched (see figure 4.12). The data address

must be available to the channel, the keys must match, bits 0-7

of the IDAW must be zero, and bits 21-31 of the IDAW must be zeros

(ones for a read backwards command) to specify top (or bottom)

of page.

4.1,8 Printer Routine

The printer routine, flowcharted in figure 4.13, is entered

for a Device End event, for continued execution of a command chain-

ing event, a SIO, a SIOI or a TIO instruction, or for handling

a-data transfer -event. A'-device end event indicates that the allot-

ed time Jor handling of a OCW operation at the device has terminated

and it is available to go on to something else. The DEVlCE END

-52-

FIGURE 4.12 - Get Next IDAW

-53-

ye,

/.Ow 0/'1to'. 15i
or-c- C -w to

MA A'") CO/-

FIGURE 4.13 - 1403 Printer Routine

(continued on next page)

-54-

SrET DArA

10o0iv r/--. ro0
£EL s n yr6 Aifl

SyrE5 coewr = A.
yes

K rL 4 S c

Osc-vic,. srAras
= C

FIGURE 4.13 - Continued

-55-

bit is turned on in the status for the devices. If we do not have

a data transfer or a device end event, the device status is checked.

If the status is zero then the indication is to decode the CCW

command code and execute it.

The BUSY bit in the device status is turned on and the three

low-order bits of the command code (bits 0-7 in the CCW) are

decoded to see what the command is. If decoding gives 000 for

the three low-order bits, the routine will know that it is in

the midst bf performing a TIC. Since it is already known that

the device status has nothing unusual, the BUSY bit is clear,

the DSSU is released if necessary, and a return is made. This is

similar to what would occur if the invalid command 010, 101, 110,

or 111 is detected except that a unit check condition is sent to

the channel and the command reject bit is set in the SENSE byte.

If the three low-order bits decode to a write (001) or a

control (011) operation the modifier bits (first 5 bits of command

code) must have a value between 0 and 3 or between 17 and 28. For

a write command, a printer event is scheduled to perform the first

data transfer. For a control operation, a channel end condition

is indicated in the device status. If it is a NO-OP then the device

-56-

end condition is also indicated in the device staus, and the

status is sent to the channel. Otherwise, the specified control

operation is performed (see figure 4,14),

If, originally, there was a non-zero status then it is sent

to the channel. If BUSY is the only bit on, a return is made,

otherwise, a check is made for the presence of the device end

condition and if found, no bit is left on in the device status.If

it is not found only the BUSY bit is left on in the status for

the device.

4.1.8.1 Perform Data Transfer

This subroutine, flowcharted in figure 4.14, is entered when

a byte of data needs~to be transfered to, or from, main memory.

If there is some unusual status E at the device (ie. status other

than BUSY) then that status is sent to the channel. If the DEVICE

END bit is on the device status is cleared, if necessary the DSSU

is released and a return is made.

If there'is no unusual status and the byte count is zero

then one of two things happens. If the sense byte has just been

transfered then Channel End and Device End are indicated in the

device status and the action described above for unusual status

is taken. Otherwise, the channel end condition is sent to the

channel, the buffer is written into an output file along with

any specified control motion (ie. line skips), and a device end

-57-

AD- V 40- jS 5 TA rVS

FIGURE 4.14 - Perform Data Transfer
(continued on next page)

-58-

,Ale 0i1 ba sc-T -

rdawc r im/-=

M AX (Aer,,At i

e sr) + ,-jo -/w>A
+ AI ~ r /m j.

FIGURE 4.14 - Continued

-59-

event is scheduled.

If the byte count is not zero the data transfer is performed

and the byte fetched during the call to I/0 DATA_STATUS TRANSFER

is stored in a buffer. Since the sense command is treated by I/o

DATASTATUS TRANSFER as a read operation (ie. storing the byte at

an appropriate address) it should be noted that there is no need

to store it in a buffer. The count and data address are updated,

the next data transfer is scheduled and a return is made.

To terminate I/O the byte count is set to zero and another

data transfer is scheduled.At the next attempt at a data transfer,

the zero will be detected and I/O will go to a normal termination.

4.1.9 Card Reader Routine

The flowchart for a simulated 3505 type card reader is

given in figure 4.15. The throughput rate simulated is 800 cards

per minute (75 ms/cycle). The clutch access time is incorporated

by taking into account the clutch decision print (CDP) where the

CDP is the point in time after which a delay of 25 ms will occur

before the start of the next feed.

This routine is entered for the same conditions as the print-

er routine and, as can be seen, there is much overlap between the

two routines in how data is handled and status-is transferred.

Upon decoding the three-low order bits of the command code if we

find a sense command four bytes of data will be transferred to

memory as compared to one with the printer. For a feed, select

stacker command, first a sequence check is made. This command must

-60-

J0155U jF Ale-e-

FIGURE 4.15 - Card Reader Routine
(continued on next page)

-61-

FIGURE 4.15 - Continued
(continued on next page)

-62-

A 1a
-- e I-

FIGURE 4.15 - Continued
(continued on next page)

-63-

FIGURE 4.15 - Continued

-64-

follow a read only command and cannot be the first command given

to the reader. Next, a Channel End is sent to the channel and a

'card' 80 bytes of data, is put in the device buffer. l there

is no error a device end is scheduled to occur 67 ms from the

present time plus any clutch access time needed. Of course this

depends on the time the previous feed command ended which is saved,

in the device working register.

If we have a read command the sequence check is again made.

A read only command follows a read, feed, select stacker command,

a feed select stacker command or itself without command reject

occuring, but if it follows itself, a unit check is indicated and

unusual command sequence (sense bit 6 bytes 0) is returned on a

subsequent sense operation. A read, feed, select stacker comiand

can only follow feed, select stacker command or itself. If it

follows a read only command unit check and sense bit six of byte

0 are set. FEEDAFTER, when set equal to one indicates we have a

read, feed, select stacker command. It is stored in the device

working register. The data transfer is then scheduled.

Upon completion of the data transfer (ie. byte count-0)

CHEND conditions are sent to the channel and for a read only a

device end is also indicated. For the read, feed select stacker

a device end is scheduled.

4.1.10 1/0 Interrupts

Figure 4.16 indicates what is done in the ACCEPT portion of

the interrupts routines as far as I/o is concerned. Checks are

-65-

FIGURE 4.16 - I/O Portion of ACCEPT Routine

-66-

made to see whether operation is currently in basic or extend-

ed control mode (BC or EC). Depending on the control mode the

action taken is that which is described in S/370 Principles of

Operation in the section "Input/Output Interruptions".

4.2 System Structure and Flow

Figure 4.17 gives a feel for how the above describes routines

are interconnected.

4.3 Sequence of Events for I/O Operation

Given below is what the sequence of events surrounding a

SIC, TIC, and SIOF instruction would look like.

For a SIO:

1) An element is taken off of the queue arid it

is, determined that it calls for CPU execution

of an instuction.

2) Any outstanding interrupts are handling ny

calling --he ACCEP routine.

3) It is determined that the CPU instruction is

a SI instruction and a branch is made to the

SIO routine.

4) The SIC routine will schedule an "I/0 to Begin"

event bnd the CPU event will not be rescheduled

yet.

5) The "I/C to Begin" event is eventually detected

and a branch is again made to the SIC routine.

-67-

FIGURE 4.17 - Subroutine Interconnections

-68-

6) The channel and subchannel are tested for avail-

ability, and the CAW is fetched and tested. The

I/O START UP routine is then called and upon

return success or failure is indicated in the

condition code and possibly the CSW.

7) The I/O START UP routine will fetch and test

the CCW, and load it into the subchannel. CUSli

will be called to send orders to the device.

8) CUS1I checks the control unit and calls the

approriate device routine.

9) For example, the printer routine would perform

control operations or schedule the first data

transfer and return.

For a SIOF instruction 1 and 2 would be the same and ta:

3) it is deteriined tat tlhe Cit instruc ei;

SIoF instruction and a branch is made to the

SIO routine.

4) The channel and subchannel are tested for Evail-

ability, and the CAW is fetched and tested. Then

a "SIOF" event is scheduled.

5) The "SICF" event is eventually detected and a

branch is made to the I/O START UP routine.

6) The I/O START UP routine will fetch and test

the CCW, and load it into the subchannel. CUSIbi

is then called and upon return if anything is

wrong an interrupt is scheduled and the deferred

-69-

condition code is set.

7) CUSIIn checks the control unit and calls the

appropriate device routine.

For a TIO instruction, steps 1 and 2 are again the same and

then:

3) It is determined that the CPU instruction is

a TIC and branch is made to the TIC routine.

4) The TIO routine tests the channel and subchannel

for availability and then calls CUSLi routine

to send orders to the device.

5) CUSIi checks the control unit and calls the

appropriate device routine.

-70-

5. Conclusions

The I/O simulator provides much greater flexibility in the

usefulness of the complete IBM S/370 type simulator. Increased

operation at the bare machine level is readily available and

should prove a useful improvement in the use of the simulator as

a teaching aid and in the study of operating systems in general.

5.1 Suggestions for Improvement

1) Incorporating the idea of keys and the associated

instructions (ie. IPK, ISK, SPKA, and SSK).

2) Implementing the suggested DASD.

-71-

Appendix A - Direct Access Storage Device

This description is not intended to be complete but rather

to provide the reader or a person intending to implement the

device with a neat and clear approach to the changes and addi-

tions necessary to add the DASD to the simulator. A detailed

understanding of the IBM Systems Reference Manual for IBM 2835

Storage Control and IBM 2305 Fixed Head Storage Module is a

prerequisite to implementation and more than a passing knowl-

edge of direct access device operation has been assumed in the

writing of this description.

The direct access storage device chosen for this example

is the IBM 2305 Fixed Head Disk storage facility. The facility

consists of an IBM 2835 Storage Control (control unit) and an

IBM 2305 Fixed Head Storage Module. The 2835 interprets and ex-

ecutes commands from the channel, controls the channel and disk

storage interface, furnishes status to the system, and performs

error detection and correction. The 2305 responds to commands

from the 2835, selects head, and reads or writes data. There

are two models available, one having two read heads per track

with approximately 5.4 million bytes per module, and the other

having one read head per track with about 11.2 million bytes

per module.

The major concern of the simulation routine for this de-

vice will be simulating the disk. The user must be able to for-

mat the tracks and have direct access to records. The system

should require a minimum amount of the simulated disk in main

memory in order to find any given record. In PL/l, record-ori-

-72-

ented transmission of input/output is well suited to these re-

quirements, though for any given system suitable capabilities

may be lacking and implementation of this type of device may be

more difficult.

This discussion will only deal with the 2305 Model 2 which

has 768 addressable recording tracks that the user sees as 96

cylinders having 8 tracks each. There can be a maximum of 47

records per track. For initial implementation in the simulated

system, one might start with a scheme to simulate 10 cylinders

with 8 tracks each and limit the number of records per track to

10. The record size could.then be lk - 14k bytes and the maxi-

mum number of records for the simulated module would be 800.

These limits can easily be extended if necessary.

The working registers for the device would contain such

information as the file mask, the 24 sense bytes, a buffer, the

last cylinder address, the last track address, the last record

address, the status for the device, and interrupt pointers. The

device control block would have a pcinter to the working regis-

ters along with such static information as track rotation time

(10 ms), number of sectors (180), byte transfer rate (1.5 mil-

lion bytes per second), device starting time, etc. The file

mask is associated with the set file mask command which speci-

fies the type of operations that can be performed in the given

channel program. It is reset to zero after each chain of com-

mands.

In creating or accessing a record, the use of keys plays

-73-

a major role. The key would be one of two things. First, it

could be the key specified by the CCW during formatting of the

track or, secondly, it could be the record ID which contains

the cylinder, track, and record number. One of these two char-

acter strings will be the key that the device routine uses to

access a record through keyed record-oriented transmission.

Thus, when a track is formatted, the key that is used will al-

ways be the key that is specified in the formatting write com-

mands unless none is given, in which case the record ID will

be used as the key. The keys are stored in the following array

structure.

DCL 1 TRACK (80),

2 AREA (10),

3 KEY CHARACTER(255) VARYING,

3 EXIST FIXED BIN(31) INITIAL ((10)0),

3 COUNT FIXED BIN(31),

3 SECTOR FIXED BIN(31);

If EXIST is zero the corresponding record does not exist. If it

is less than zero then the record has no specified key and the

record ID is used as a key. This structure makes the search of

a track for a record a simple matter and avoids the need of ex-

plicit index points for single track searches (on the 2305, if

two index points are detected without completing a search then

unit check is indicated along with channel and device end).

-74-

Similarly multi-track searches present no problems.

SECTOR, calculated during formatting of the track, is used

with the read sector command and in rotational position sensing

(RPS). RPS is easily implemented if one assumes that the track

head was at sector zero at the start of the simulation and the

start time is stored in the device control block. Then from a

knowledge of the starting time, the present time, the rotation

time, and the total number of sectors, the sector number at any

given time can be determined. As an example of a procedure

which uses RPS and contributes to increased channel utilization

*consider the following:

1) A set sector commands is given to indicate which

sector number it is desired to reach.

2) The channel is freed until that sector is reached.

3) When the third sector in front of the desired one

is reached (to allow for a channel reselection de-

lay) a special device end is sent to the channel.

4) If upon detection of the device end the channel is

available then the device end is accepted and the

channel reconnected. If the channel is busy then

the device end is rescheduled.

5) If the channel is still busy after the reselection

delay has past then the device end is rescheduled

for the next revolution.

6) The record is now ready to be read or written (ie.

the next CCW can be executed).

-75-

Upon detection of a seek command, the seek address (cyl-

inder and/or track number) is stored in the device working

register and a channel end along with a device end are sent to

the channel. For a search command, the key or record ID is

saved in the working register and the array structure is

checked to see if the record exists. If the search key command

is specified, the cylinder and track number at which the scan

through the array will start are those stored in the working

register (last cylinder and last track address). Upon termina-

tion of the search a device end is scheduled for an appropri-

ate time to reflect the simulated search (the device will ap-

pear busy to inquiries until that time) and the appropriate

status is stored so that it can be indicated along with the

device end when it occurs.

Of course other items as command prerequisites and file

mask settings -are very explicit and must be checked for during

certain commands and appropriate status indicated, but the im-

portant point to note is that no actual input/output needs to

be done for any of the validity checking or operations associ-

ated with the control, search, or sense commands. Operations

are performed and device ends are scheduled solely from knowl-

edge about the device and from information on hand. Only with

the read and write commands need I/O actually be performed,

and these operations can be handled in essentially the same

manner as the printer and reader, previously described, han-

dled them.

-76-

Appendix B - System Creation

To add a new device should present no difficulty. As seen

previously, I/O devices have the same calling sequence and op-

erate in basically the same manner with respect to data trans-

fer to and from main storage. Since the other aspects of device

operation can differ greatly, a clear understanding of both the

I/O system, as described in this document and in S/370 Princi-

ples of Operation, and the device itself, through SRL publica-

tions, will be needed.

The format of the I/O System Configuration Cards is given

below. It is assumed that the reader is familiar with the sec-

tions "Input/Output Device Addressing" and "Attachment of In-

put/Output Devices" in S/370 Principles of Operation.

1) CPU Card - (Card Type, Unit Number, Start Address,

Trace information, prefixing informa-

tion, Number of Channels)

2) CHAN Card - (Card Type, Channel Type, Number of

Control Units)

3) CU Card - (Card Type, Low Address, High Address,

DSSU Identification Number, Number of

Devices)

4) DEV Card - (Card Type, Device Type, Mode, First

Device Dependent Information, Second

Device Dependent Information)

-77-

References

1 Simulator Program Logic Manual - L. Goodman and S. Madnick.

Operating Systems - S. Madnick and J. Donavan, McGraw Hill, 1974.

Simulation of a Multiple Processor IBM System/370 With

Associated I/O Equipment - Thesis, W. Silver, May, 1975.

SIM360: A S/360 Simulator - Thesis, Wm. Mc Cray, May, 1972.

IBM System/370: Principles of Operation - Form GA22-7000-4.

IBM 1403 Printer Component Description - Form GA24-3073-9.

IBM 2821 Control Unit Component Description - Form GA24-3312-8.

IBM 3504 Card Reader/IBM 3505 Card Reader and IBM 3525 Card

Punch Subsystem - Form GA21-9124-5.

OS PL/l Checkout and Optimizing Compilers: Language Reference

Manual - Form GC33-0009-3.

Reference Manual for IBM 2835 Storage Control and IBM 2305

Fixed Head Storage Module - Form GA26-1589-3.

