SIMULATION OF IBM/37O INPUT/OUTPUT
by

Antonio C. Gellineau

SB, Massachusetts Institute of Technology
(1974)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE DEGREE OF
MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February, 1976

Signature of Authorcc0ieeiec.n.. tecceccassssacanas
Department of Electrical Englneerlng and
Computer Science, January 21, 1976

Certified DY cevirteeeecreanasacssasscacanss cecececseenns .
Thesis Supervisor

Accepted) .o
Chairman, Departmental Committee on Graduate Students

SIMULATICN OF 13:/370 INPUT/CUTPUT
by

ANTONIO C. GLLLINEAU

Submitted to the Department of Electrical Engineering and
Computer Science on January 20, 1976 in partial fulfillment of

the requirement for the degree of l[laster of Science,

ABSTRACT

Simulators are useful in allowing user to develop or invest-
igate operating systews programs which they would normally ove
unable to run due to lack of availadble equipment or privileged
instruction restrictions, Through simulation of I/0 devices and
1/0 instructions the user programs can include channel programs
to the devices as if the equipment were actually attached to the
system he is using., Having the privileged I/0 related instructions,
which are more than one third of all priviledged instructions,
at his disposal, gives tne user much greater flexibility in tre
study of operating systems programs,

This document describes simulation of the input/output sys-
tem for an IBQ/37O type machine, It is part of a simulator of a
complete machine now being used for running student programs, The
I/0 simulator is software simulating S/370 hardware done on a
S/370 machine, '

THESIS SUPERVISCR: Stuart E, sadnick
TITLEs Professor of iianagement Science

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to
Professor Stuart Madnick for his patience and encouragement,
and his suggestion that I work on this project.

To my loving wife and typist, Jo-Ann, I give special
thanks for standing by me this past tough year.

Finally,to my son, Antonio C. Gellineau Jr.,with whom
I've had so little time to spend,I hope that some day you

will understand my efforts and surpass them in every way.

Table of contents

1. Introduction page

1.1 Previous Simulation

2. Users' View

2.1 Overview of I/O System

2.2 The Complete Simulator

2.2.1
2.2.2
2.2.3

2.2.4

Events

I/0 Interaction

Interrupt System

Debugging System

2.3 System Configuration and Creation

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6

2.3.7

Configuration Card
CPU Card

CHAN Card

CU Card- -

Dev Card

Data Card

MEMORY, TIME, and INSTRUC Cards

3. I/0 Structure

3.1 Data Bases

3.1.1

3.1.2

3.1.3°

3.1.4

3.2 Event

CPU

Channel-and Subchannel
Control;Unit

Devices

Queue

10
10
10
11
11
12
13
13
14
14
14
15
15
16
16
17
17
17
20
22
22

24

3.2.1

Queue Element

4. Program Operation

4.1 Major Routines

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8

4.1.9

MASTER DRIVER

CPU_SIM

SIO

I/0 Start Up

CU_SIM

TIO

I/0 DATA_SfATUS_TRANSFER
Printer Routine

Card Reader Routine

4.1.10 I/0 Interrupts

4.2 System Structure and Flow

4.3 Sequence of Events for I/O Operation

5. Conclusions

5.1 Suggestions for Improvement

Appendix A - Direct Access Storage Device

Appendix B - System Creation

References

26
28
28
28
30
33
35
38
42
42
51
59
64
66
66
70
70
71
76

77

List of Figures

CPU Data Base

Channel Data Bases
Device Data Base

SIO Routine

Test CAW

I/0 Start Up Routine
Fetch CCW

Get First IDAW

CU_SIM Routine

TIO ﬁoutine

I/0 Data_Status Transfer
Check Device End

Check Interrupts

Do Data Transfer.

Get Next IDAW

1403 Printer Routine
Periorm Data Transfer
Card Reader Routine

I/0 Portion of ACCEPT Routine

Subroutine Interconnections

page

19

23

25

31

34

36

39

40

41

43

44

48

49
50
52
53
57
60
65

67

1, Introduction

A simulator provides a system that accurately reflects the
behavior of all or part of the system being simulated that is
necessary for the purpose of investigation and teaching, A
simulator is very useful in enabling evaluation before allocation
of resources (ie, money). iajor design tradeoffs and performance
can be evaluated before ovtaining or building costly hardware., A
simulator also allows a programmer to get at the "bare machine"
and run operating systems programs, An excellent example is pro-
vided by the simulator described in this paper,

[,I,T, Sloan School's U3 (Family of Operating Systems) Group
is in the process of completing a portion of an I5u/370 type sium-
ulator, The simulator can handle the IBM/B?O machine instructions,
has multiple CPU's, has a debugging package and handles all types
of interrupts., This paper describes an 7/0 system design and im-
plemented by the author to provide the simulator with a general
facility for handling input/output functions. A fair amount of
knowledge about I/0 is assumed and a review of the pertinent sec-
tions in S/370 Principles of Operation under the main heading

entitled "Input/Output Operations" may be helpful,

1,1 Previous Simulators and Simulation Techniques

Two previous simulators written to simulate IBil Systems
are SIu360 and TRIBBLE, The former written in PL/i to simulate
IBM System/360 for running student programs and software develop-

ment, and the latter written in Fortan IV to simulate Idwm System/

370, SIi360 operates under a batch enviornment and TRIBBLE is
designed to operate interactively. TRIR3LE is the more powerful
simulator as it simulates the more powerful machine, The I/0
simulator follows the method cf handling 1/G used in TRIBBLE.

Virtual machines, which give each user the appearance of
having his own machine is one approach to having the prograummer
work with a bare machine. But, until 1972, when IBi. Vii/370 was
announced, one needed to have an expensive 13./370 model 67
available, 3ut even the Vi./370, which operates on any IBw/370
with Dynamic Address Translation, does not accurately reflect
the timing and behavior of the simulated computer in the area
of I/0 operations and priviledged instructions., This is unfortunate
since this area 1s the focus of interset in operating systeus
programs,

Emulators are another approach to simulation, These are
specific hardware units built into a computer which causes the
system to acceét certain software programs and routines and appear
as if it were another system, such as 7094 software running
on an IBii/360 computer without translation, The restriction of
specific hardware designed for specific systems as compared to
a PL/1 simulator is clear,

Some of the advantages to be gained from a simulator are
as follows:

--A11 priviieged fe;tures may be used directly

~--3Sophisticated debugging and program statistics
recording features may be provided

~-An arbitrary configuration may be simulated
(number and types oi devices, their interconnections, etc.)

--iiay be as accurate as necessary

--Is easily modified (editing source file rather than rewiring).
o

-10-

2. Users' View

2.1 Overview of I/0 System

The I/C system will handle all input/output operations. The
operations of the channel, subchannel, control unit, and 1/0 devices
are simulated, Facilities for requesting and accepting of I/0 in=-
terrupt are provided and device timing characteristics are also
accurately reflected., Presently the system is capable of handling
IBM $403 type printers and IBW 3505 type card readers. Detalls on
how to implement a direct access storage device (an IBw 2305 type
drum with rotational position sensing) is given in appendix A,

The overall strategy is to have the I/O system structured as
general as possible, To this end a mechanism, "Division of Function",
is employed., Each CPU and channel are simulated as separate units
as are control units and I/C devices. Then, to add a specific new
device simply requireé the addition of a device simulation routine
for the device. A particular simulation routine will be for a part-
icular type of device (ie.,CPU,channel, control units, printers, etc.)
rather than a specific instance of that device in the simulated
configuration.\In this way, the I/0 simulator will be a general
scheme for doing I/0 independent of the devices used. And because
of the!devision of function, changes in the nature of one simulated

componehf (ie. CPU) have limited effects on the rest of the system,

2.2 The Complete Simulator

The FOS (Family of Operations Systems) simulator provides a

-11-

whigh fidility" simulation of a computer system not unlike an IBu —
360/370 or a PDP 11. The simulation includes instruction timing,
interrupt generation and handling, multiple CPU's, CPU timers, Trace
and debug package, channels and device control units, and a built

in direct linking loader.

The simulation is divided into subsystems, one for each of the
simulation functions, Global data bases provide for communication
between subsystems. A subsystem will ususally consist of several
.program modules and several entry points, Subsystems include the
trace and debug systems, instruction interpretation, I/C systém,

and interrupt system,

2.2,1 Events

A central theme to the simulateér is the notion of an event.
An event is an action of a specific type which is scheduled to
occur at a specific time Euring the simulation, Typical events in-
clude executiondof an instruction by a particular CPU, execution
of an I/0 instruction by a particular channel, handling of an in-
terrupt, (ie. I/O, program, SVC, external or machine check), decre-.
menting of the interval timer, etc. The execution of a particular

event often results in the scheduling of another even‘t.l

2.2.2 I/0 Interaction

The user will attempt to initiate I/0 through a SIO(START I1/0)
or an STOF (START 1/0 Fast Release) instruction to a given device,

When the CPU event (which signals simulation of next instruction

-12-

on the given CPU) for the SI0 or SICr is popped off the event

queue and decoded, the 1/0 system will be entered to initiate the
1/0. If the device is not busy and a path exists to the device using
the specified channel, the device will begin operation. It is assumed
that the user has suppliéd the channel program, its address, an 1/0
interrupt handler (in case some unusual status i8S detected), and

its address, If I/0 cannot be initiated and there exists some unusual
status it is indicated in a stored channel status word (CSW). If
subsequent to initiation of I/0 an unusual status condition is de-
tected the channel can request an I/0 interrupt.

—

2.2.3 Interrupt System

The interrupt structure is divided into two pieces. One
part, under the entry point REQUEST, is concerned with indicating
in the state of a CPU that there is a request for an interrupt., Tue
second piece is enteréd vefore the execution of an instruction by
a CPU, 1t checké'the CPU state, comparing requested interrupts
against interrupt masks to decide which, if any, interrupts should
be accepted. 3y keeping track of PSW swaps the system traps interrupt
loops. If two interrupts of the same class (ie. a two program in-
terrupt), are accepted without a LPSW being executed in between, a
weak interrupt loop is detected. An error message is printed and
simulation terminates. If two interrupts of the same class occur,
separated by a LPSW but nof a LPSW from the old PSW for that class,
iég. two program interrupts separated only by a LPSW SVC CLDPSW, a

strong interrupt leoop is detected. In this case a message is printed

-13-

but simulation continues,

2.2.4 Debueging System

The debugging system allows the user to monitor the progress
of the simulation by diSplaying status information to inputted trace
requests, There are two phases to the system, The first phase reads
debug requests, intexprets them, and sets up tables for phase two,
The sécond phase executes requests and displays information when
a particular traceable event occurs, |

In connection with I/0 system things that can be looked at
through the TRACE facility include the old and new PSW, CaW, CAW,

CHANNEL STATUS and DEVICE STATUS,

2.3 System Configuration and Creation

A user, if he w;shes, may specifyvan arbitary configuration
as mentioned eaplier (tﬁewdetails of the system creation are describ-
ed in Appendix»B)., If he does not want to write his own system config-
uration file then he can select a standard system from a set of .
system configuration files that exist on disk or tape.

Any Legal S/370 type configuration may be specified, with
the following restrictions : 1) no more than 32 channels on any one
G, 2) device sharing by switching between control units only, 3)
it must contain only those 1/0 devices provided by the simulator,
eg., at present only the IBM 1403 printer and the 3505 card reader,
In addition to lege®> S/370 configurations, many configurations .
which are not considered legal in Principles of Operation for the

S/370 may be specified (ie, Channel 0 need not be byte multiplexer),

-14~-

and although they will usually operate as expected, caution is ad-

The following "simulation contrcl cards" control the initial-

ization of the system configuration,

2.3.1 Conficuration Card

The CONFIG card indicates the number of CPU's to be used in
the current simulation. This number is used to contrrl the reading
of CPU cards (see next section). If the CONIIg card is missing, an

error message is printed,

Each CPU card gives the simulator certain characteristics of
a CPU, such as starting address/unit number, and number of attached
channels which is used to control reading of CHAN cards (see nex.
section). For each CPU card, instances of CPU_CNTL:STRUC the gen-
eral registers, and control registers are allocated, and the I/O
‘system associated with it is initialized (ie., channel, subchannel,
control units and device data bases). The instruction address field
of the P3W 1is sptjto the starting address and other variables in
the control structure are initialized. If too many or too few CPU

cards are read an error message is printed,

2.3.3 CHAN Card

Each CHAN card provides information such as channel type, and
number of attached control units, The latter controls the reading

of CU cards (see next section),

~15-

For each CHAN card instances of CH_CNTL_ STRUC and CH_Wn_REG
are allocated, If it is a selector channel the subchannel control
structure (SUBCH_CI'TL_STkUC) is also allocated., 1f not, one SUBCIL_

CNTL_STRUC is allocated for each CU card since for multiplexer
channels there is a one-to-one correspondence between subchannel
and confrol units while selector channels have only one subchannel,
If an incorrect number of CHAN cards are read, an error message 1is

printed,

2.3.4 CU Cards

The CU card will give the lowest and highest address that the
control unit will recognize, and will indicate whether or not the
attached devices will be accessible to other control units by giv-
ing the number of a Device Set Switching Unit (DSSU)., This DSSU
will be responsible for‘cgntroling which control unit a device set
will be using. The CU card will also provide the number of attached
devices to control reading of DEV call,(see next section).

For each CU card, instaices of the CU_CNTL_STRUC and the CU_
WK_REG are allocatedAand if the CU is attached to the multiplexer
channel the SUBCH_CNTL_STRUC is allocated and appropriate pointers
set. If a new DSSU ID number is given a DSSU_CNTL_STRUC is allocated
and initialized, Again if an incorrect number of CU.cards is detected

an error message is printed,

2.3.5 DEV Cards

Eacgh DEV card will contain the DEVICE TYPE, the mode in which

-16-

data is to be transferrced, and any device dependent information

that is necessary, For example, the input or output file, print

EY

time, delay time, etc, Instances of DiV_CHTL_STRUC and DEV_Wrx_REG

are allocated for each DEV card.

2.3.6 DATA Cards

DATA cards are used to insert hexadecimal data directly into
simulated menory. The location given on the data ~ ‘ card is
converted to an actual hexadecimal value andvthen stored in the
memory location, If the location is greater than the size of memory,

an error is printed,

2.3.7 LEMORY, TINE,and INSTRUC Cards

. The [E.ORY card indicates the size of the memory (in bytes)
for the current sinulation, The INSTRUC card is used to limit the
number of instructions which are executed during the simulation,

The TINME card is used to set a maximum time for the simulation.

-17-

3., I/C Structure

This section deals with the I/0 structure in the sense of how
data bases are siructured and interconnected, The section should
provide the reader with a flavor for the type of information that
will be flowing in the I/C system and where bits of information
might be used, (ie. by the channel, by the control unit, by iiie
device, etc.), or found, (ie, in the subchannel, device data base,
etc.);,The section should also facilitate reading of the detail
program operation given in section 4 which describes how the 1/0

system operation through analysis of the major routines, Data base

examples are provided throughout this section,

3.1 Data Bases

The CPU Control Structure is quite long and containg many items
that have nothing to do with the I/0 system, I have therefore, in this
case only, presented a short form of the priginal data base with

all information pertinent to this paper.

3.1.1 CPU

To access CPU's there exist the following PL1 déritared struc---

ture which holds pointers to the CPU control structures,

DCL 1 AREA_STRUC BASED .(CPU_AREA_PTR)
@ I FIXED BIN,
2 CPU_AREA (CPU_NUil REFER(AREA_STKUC.I))PTR;

-18-

CPU_NUM is the total number of CPU's, which has been specifiedorn
the CONFIG card (see section 2.3.1)

Y

The CPU data base contains the following information:

CPU control structure (CPU_CNTIL_STRUC)-
-~ Pointer to working registers
-- Pointer to structure which holds pbinters to attached channels
-- Pointer to associated queue element
-- Current Program Status Wofd (PSwW)
-- 1/0 request word (IORW)

-~ Loop I'lags

The I/0 request word (32 bits) will indicate which channels,
if any, are requesting interrupf if the corresponding bit positions
are nlu .

A CPU data base‘ exéﬁple is given in figure 3.1,

3,1,1,1 Loop Flags

Loop Flags keep track of interrupt loop. It is one byte long

(8 bits) initialized to zero with bit assignment as follows:

(@
i

program loop

[N

- strong program loop

external loop

strong external loop

W N
!

-19-

CAU_AREA CHAMMEL -
ALEA
‘ POINTERS
To
) CHANNELS
Event Queue
o N) START
BITAD
c",cr';'g:"' CPY SViENT
For epPV O
POINTERS
o
LHANMNELS
Aerv 4 Ifo EvewT
CHANMM L~ o
ARz A o COV EvenT
' . For ¢AV 4
POINTERS
TCO
CHANNELS
YY) . INTEARUPT
i | - EVvepr
COy EViEwr
VrFor cop R

.

* & oo
~

- -
) S

E~vO
BiEAD

FIGURE 3.1 - CPU Data Base

-20-

4 - I/0 Loop
5 = Strong 1/0 loop

6-7 Unassigned

Both bits associated with an interrupt class are set en when-
ever PSW's are swapped (ie, when an interrupt is accepted). Any -
LPSW turns off one of each pair while an LPSW from some old in-
terrupt PSW location also turns off the other bit for that interrupt
class, Thus, if an interrupt is about to be accepted but it is
found that one of the loop flags bits corresponding to the class
is on, a strong interrupt loop has been detected, and if both bits

are on, a weak interrupt loop has been detected.

3.1.2 Channel and Subchannel

To access channels there exist the following PL1 declared

structure which holds pointers to the channel control structure,

DCL 1 CH_AREA_STRUC BASED (CH_AREA_PTR)
@ I FIXED BIN,
2 CH_AREA (CH_NUM ATFTER (CH_AREA_STRUC.I)) PTR,

CH_NUN is the total number of channels attached to the given CFPU,
and is specified by the CPU card (see section 2,3.2)

The channel data base contains the following information:

Channel Control Structure (CH_CNTL_STRUC) =

-21-

-~ Pointer to working register
-- Pointer to CPU to which channel is attached
-- Pointer to first attached control unit (one with lowest

address)

Channel Type
The working register will contain the following:

-~ The state of the channel (ie. available, interrupt pend-
ing or working)

-- A pointer to the subchannel associated with the current
operation

-- A pointer to the subchannel for the next interruption
The subchannel data base contains the followings

Subchannel Control Sructure (SUBCH_CNTL_STRUC)=-
~- The state of the subchannel (ie. available, interrupt oend-
ing, or working)
-- I/0 address
-- Current Channel Command Word (CCW)
-~ Next Indirect Address Word (IDAW) address

-~ Interrupt pointer:

The I/0 address associated with the current I/0 operation is

the channel and device address, as specified in a SIO or TICO, etc.

-22-

instruction, Interrupt pointer is needed in case it becomecs neces-
sary to clear a pending interrupt condition, :»¢e example, turn-
ing off a bit in the IORY or rewnovin. the assoclated interrupt event
from the event gueue,

A data basge example is given in figure 3.2

o

3,1.3 Control Unit

The control unit data base ccntains the following information:

Control Unit Control Structure (CU_CNTL_STRUC)=
-~ Pointer to woriking registers
-~ Pointers to next control unit
-~ Pointers to CH_CNTL_STRUC to which CU‘is attached
-- Lowest device address the control unit will recognize
-- Highest device address the control unit will recognize
-- Pointer to the subchannel with which the CU is associated
- Pointerﬁto Device Set Switching Unit (DSSy)

-- Pointer to farst attached device

The CU working register contains a pointer to the device control
structure that is currently being used, Device sharing among control
units is controled by the DSSU which keeps track of which control
unit: is attached to and making use of a given device set,

.-

3.1.4 Devices

The device data base contains the following informations:

=

CHANNE +
AKRCA

-23-

A WORKING RE&ys

TER

STATE = \WIT

SURCHANNMEL

rrR

INTEARVAT PTR

N CHAMNNEL O

SUACHANMNNEL

SUBCHANNCE

SUSCIHANNT: L

STATE= starr= L STATES W
{0 AoDR /2 ADRR Iio ADOR
Csw csw C5w
cLew cCw cew

ACHANN L 4.

CNTL UViT

CNnTL vaiT

CMTL UMIT ‘j—>

WORKING RiZelsTaR

STATES

Available
Working

Interrupt
Pending

CHANNEL 2

SUBLHANN (.

SUBLHANMKEL

STATE= A STATE= A

I/6 A0OR Tfo AooR

- CSsw c 5w
cew cew

FIGURE 3.2

CNTL UNIT

CNTL UNIT

- Channel Data Bases

-24-

Device Control Structure (DEV_CNTL_STKUC)-
-~ Pointer to working registers

~-- Pointer to next device

Pointer to D3SSU to which device is attached

-~ Device type

-~ Static device-dependent information

Static deviée-dependent information are constant characteristics
of the associated device, for example print time or whelier infor-
mation should be transferred in burst or byte-interleave mode.

The working registers contain dynamic characteristics as device
status, data count, sense byte, etc. A data base example is shown

in figure 3.3.

3.2 Event Queue

Event sequen01né 1s.accompllshed by means of an event queue
ordered prlmarlly by time and secondarily by event priority, which
is determined from the kind of event, Gﬁhus, for instance, in the
case of simultaneous interrupt requests and simulation events, the
interrupt requests will be recognized before the instruction is
started), The maximum time at which an event can be scheduled to
start is the simulation time limit specified by the user. Any
event which is to start after that is not placed on the queue.

The first aﬁd last beads on the queue have time and status
such that no queue element cpulkd possibly belong before and after

them, respectively, In addition, there is an element scheduled to

Cowrpoe ©X#IT

ASSL . svntH

MEXT

~25~

Cowrnoe vasr

FIARST_peEV

et

DSSV_PTR

ASsC_suse

Pivoesmre st

Typz

WK_RCL iR

(e e

CecwrproL vwiT

ASSL_SuncH

\y/

DSS VYV

pf;‘V~CNTL,>lJ

¥

TyrsE

wK_REGC PTR

—J————» DEV_eNTL ST

TYPE

WE-RE6C PTR

7 Covrro. vl

Assc_svacn

FIGURE 3.3

h 4

0z

Vacewmre.s __l—_)

.

PDEV-CNTL.5T] l ?

TyPz

WE_REE PTR

TYPE

WA_RZEG PTR

- Device Data Base

~26-

occur at the simulation time limit which, when executed, cause
termination due to timer runout,

Other elements are placed at the proper place in the queue by
entry INSERT in procedure 3L.UTI, This expects to find the queue
element to be inserted pointed to by CURR_Q_EL in PSTRUC., If the
event is to occur too late to be scheduled, the back pointer

LAST is set to NULL and a completion code of 1 is returned.

3.2,1 Queue Llement

A queue element is defined as follows:

DCL 1 Q_EL1 Based (CURR_Q_EL)
2 NEXT PIR,
2 LAST PTR,
2 TINE,
3 A FIXED BIN (31),
3 B FIXED BIN (31),

CLASS FIXED BIN (31),

2

2 TYPE FIXED BIN (31),
2 DEST ?TR,

2 SOUCE PTR,

2 DATA PTR;

NEXT and LAST are pointerg.to the next and previous queue ele-

ment respectively. TIME is the scheduled time for occurance., CLASS
tells what this particular element i1s concerned with, Associated
with the I/0 system there are i+ 1/0 events, class 12; 1/0 interrupts,

class 6; device events, class 14 for printers, TYPE provides addtion-

-27~

al information for the specific class, ror an I/0 event, type can
be 1,2, or 3 where "1" is "i,/0 to Begin" which signals that an SIO
instruction has been detected and the channel needs to be awaken.
w2v is an I/0 start up event wnich signals that a SICF has been
initiated, "3" indicates command chaining is to take place., ror I/C
interrupt events TYPE is ihe nuwoer of the channel requesting an
interrupt. ror a printer event type can be *1", or "2" indicating
a data transfer or that a device end is to be sent to the channel,
respectively, DEST is a destination pointer and when used points
at a subchannel control structure., It is not used for 1/0 event

of Type "1", Source pointer in a multiprogramming envipzhment will
provide information as to which program the event 1s associated
with or it may point at a CPU control structure. DATA is a point-
er to a section that provides any other data that is necessary to
process the event, For DEVICE EVENTS, for example, it would point

at the associated device control structure.

-28-

Ly, Proegram Cperation

This section describes in detail how the I/0 simulation has
been handled and implemented. Section 4,1 describes the major rou-
tines and section 4.2 shows how they interact. Section 4.3 gives
the sequence of events for sample 1/0 operations, It is hoped that
this break down will provide the reader with a simple and clear

picture of the program operation,

4,1 liajor Routines

The first two routines described are not 1/0 routines in the
sense of only being used during I/0. These are routines which help
control and direct the entire simulator. All other routines are in
the I/0 system and are only used in connection with I/0. The first
two routines give a feeling for how and when the I/0 system will be

entered,

4,1,1 ¥ASTER DRIVER

Events are executed by a loop in MASTER_DRIVER located in
SIMMAIN, After an event has gone to completion, the next event to
be handled is the element on the top of the queue (unless sim-
ulation has been terminated). Handling the event involves remov-
ing the element from the queue, making the CPU the current one,
getting the associated general registers, and doing some event
dependent proceséing.

For a CPU simulation event, the CPU simulation routine, CPU_

Sii, is called, If it returns normally, a new CPU simulation event

-29-

is scheduled for the time at which the current one is finished,
If the return indicates that an interrupt loop has been detected,
simulation is terminated. The returns are 1

0 = normal

1 - CPU inactive

-1 - interrupt loop
For returns 0,1 a completion code of 0 is returned to the top of
the loop in WMASTER_DRIVER,

When the users specify some type of 1/0 opefation, (ie. SI0,
710, HIO, etc.,) it will appear in the event queue as a CPU simu-
lation event not an I1/0 event (see section 3.2.1 for events spec-
ifically associated with the I/0 system). It is not until after
CPU_SIN has been called and the op code for the instruction has
been decoded, that the appropriate I/0 system subroutine (ie. SIO,
TIO0, etc.) will be called.

For an interrup% event, the interrupt class and type are re-
moved from the queue element and placed in INT_CLASS and INT_TYPE
in the static external structure WISTRUC. DATA_PTR is also copied
into MISTRUC to save anything that might be hung off of it. The
queue elementiis then freed. REQUEST is called to mark the request-
ed interrupt in the current CPU state, and since REQUEST has no
abnormal returns, 0 is returned to the top of the loop by default.

If the timer runout event 1s executed, "SIMULATION TIMER HAS
BEEN EXCEEDED " is written onto SYSPRIIT and simulation is term-

inated.

-30-

4.,1.2 CPU SIu

The CPU simulator, CPU_SIi, is activated by the event sequen-
cer LASTER_DRIVER when it recognizes a CPU simulation event., If
the CPU in question is enabled for any requested interrupts, they
are accepted by calling the entry ACCEPT, located in INTKPT, which
accepts interrupts in order of priority as specified in I3i System/
370 Principles of Operation. If, after accepting these interrupts,
the CPU is in the walt state, CPU_SIi passes the completion code
of 1 back to WASTER_DRIVER, while if an interrupt ig detected loop
is detected a completion code of -1 is sent back. For a normal
return from ACCEPT, CPU_SIi continues on to execute an instruction.

If there is a specification exception due to an odd instruc-
tion address, the request is marked in CPU_CNTL_STRUC and accepted
by looping vack to the interrupt aécepting stage, Otherwise, the
instruction is fetched by calling entry LOG located in SIMUT1 once,
unless the instructipn straddles a memory boundary, in which case
two calls are necessary. If accessing exceptions are raised in the
instruction fetch, the interrupts are requested by LOG and accepted
by looping to the interrupt accepting state.

The instruction itself is simulated by calling one of a group
of routines which contain entry points.lateled with the mnemonic
op codes of the instructions they simulate. l'or example, if the
instruction had been a START I/0 to a printer, SIO wouldrbe called,
These use the qﬁantitieéﬁsuch as R1, R2, ADDR1, ADDRZ2 computed dur-
ing the instruction fetch, On return from the instruction routines,

CPU_STi. updates the CPU simulation timer by the appropriate amount

-31-

SCHEOUVLE
PRo6 RAM

INTERRVAT

RETUARN

CHANMFMEL

WOoeRKING

CHANY =4
LNTERRVAT

PErVDir
A 7

SUBCWAMUEL

ce= &

CompLET
= O

AVAILABLE

(RETURN)'

FIGURE 4.1 - SIO Routine
(continued on next page)

SAVE
epv

EVENVT

SCHENUVLIZ
“Ilo To BEGW'
IEVENMT

CompPLETE
= 4

‘ RETURWV)

FEICH Awo
TEST
CAW

SCHEDVLE
] 5,0/: 1z
EVErT

e = O

COMPLETE
= Q0

(RerTuvrewv)

-32-

|

SET
SUBCHAMNVEL
Busy

STORE STATW
A

csw

cec=1

CoMPLETE
= O

.- RETURN
CPV EvErT
Te QeEve

L/e

CaLL

RovrTive

START vpP

1~ A/Eaesg,.m]

‘ RETUVUARN ’

FIGURE 4.1 - Continued

cc = O
COMPLETE
= 0O

SCHED VLIZ
rer
IF WECESSAR

RETvR NV
CPy EVENT

To QuEvE
IF NECIZ55AA

(KETUNN’)

~33-

of time which elasped while the instruction was being executed

and passes control back to HMASTER_DRIVER,

L,1.,3 SIC

The START I/0 (SIO) routine (flowcharted in figure 4.1) is
branched to from the CPU_SIi routine when an SI0O or SIOF instruc-
tion is detected, and branched to from wASTER_DRIVER when an "1/0
to Begin" event is detected. Thus when a SIO instr@ction is detect-
Aed and a branch is made to the SIO routine, this routine will then
schedule an event, to occur immediately, that wakes up the chan-
nel and reports éﬁat there is "I/0 to 3egin". A return code of 1
is returned to indicate to MASTER_DR1Veh that the original CrU in-
struction (SI0 in this case) has not been completed and not to
schedule another one for that specific CPU, If the instruction was
"a SIOF or an I/0 to Begin event, the scheduling does not cccur and
processing continues.,

The CPU is checked to make sure that it 1is operating in the
supervisor state. If the channel is busy or the subchannel is not
availéble then the condition code is set to BUSY and COwPLETE is
set to zero indicating to MASTER_DRIVER that processing of the in-
struction 1is ;omplete. Otherwise, the CAW is fetched and tested,

Testing the CAW (see figure 4,2) is just making sure that
bits 4-7 (not used) and‘29—31 (insures double word boundary) are
zero, E

The subchannel state is set to working and a check is made

to see if the instruction being worked on is an SIOI', If so, the

-34~

SET
PROGRAM
CHECK

STORE STAFUS
Ty

¢ sw

l

¢c6= 1

COMPLETE

Yes

CONTIMNVE

RETvR NV
CPU [ZvEwMT
To Queve

(ReTvReNnm)

FIGURE 4.2 - Test CAW

-35-~

condition code indicates that 1/0 has been initiated and a SIUr
event is scheduled. If not, or if it is inhibited (ie. Block
multiplexinz bit off) then a normal SIC is perforumed.

I/0 STARTUP is called and if upon return the subchannel is
not BUSY, it is an indication that the SIO attempt was unsucess-
ful. The unit status is OR'ed into the CSW, the subchannel is
made available (ie. previous interrupt condition cleared) and the
condition code huﬁcateg that a CSW has been stored, If the sub-
channel is BUSY upon return, then the SIO was successful and the
condition code indicates I/0 has been initiated, If the PCL bit is

on, an interrupt is scheduled and we're done.

L,1,4 I/0 START UP

The I/0 START UP routine (flowcharted in figure 4,3) loads
necessary data into the subchannel, sets fhe channel to 3USY if
BURST mode 1s specifﬁed,”and sends orders to the control unit
(CU_SIM). If, ﬂpon return from CUSIi, there is no unusual status
we'rédoné,lf unusual status is detected and we are not trying
to: initiate an SIO instruction then an I/0 interrupt is scheduled,
while for an ?IO instruction the CSW would indicate the interrupt
conditions, If PCI is the onlj\bit on in the unit status we can
still initiate I/0 and therefore we simply return, Otherwise,
there must be some unusual status and the BUSY bit is cleared in
the channel and éubchannél to. indicate to the SIU routine that
the 1/0 attempt was unsucessful, If SIOF was specified, the

-36-

ffo sTarr uvF

FETcH
cew

WoAK A

183 REpLae
WiTH AVOTHER AL

=1

RETVAN

{

GCET FIRST

ITpAwW
Mo
Mo
NOo coop
! N yes

LoAp ZOAW
ADDREsSs AND
PATA AOPRESS
NTO SvuB L KA iE

v UPDATIE EBDAW
ADDRESS

FIGURE 4.3 - I/0O Start Up Routine
(continued on next page)

-37~

SET CHANNEL
Busy

CALL
Cvsim
RouTvE

RE TRV

NO 600D

SCHEDUVLE
INTERRvAT

yes

N

PCI
<.
Norld/ni:

CLEZAR A4 vsy
v CHANVaMEL
AVDO SUBCHAAMNMIEL

RETVRN

QEFERRED

ce= 4

! ‘ RETuRN
CompreTiz = O

FIGURE 4.3 - Continued

-38~-

deferred condition code 1is set to indicate that unusual status
has been detected, and CU:iPLETE =0 indicates to mASTER_DKIVER

that the CPU event can be rescheduled,

L,1.4,1 Fetch CCW

The "Fetch CCW" routine is flowcharted in figure 4.4,
Before actually getting the CCW checks are made to see if its
address 1s on a double word boundary, that its address is avall-
able to the channel, and that the keys match. After getting
the CCW and it is verified that bits 38 and 39 are zero, a
test for TIC (Transfer in Channel) is made., If a TIC is speci-
fied, it must not be in the first CCW of an SIO(F) operation
nor can it have been specified in the previous CCW. If no
program or protection check conditions are raised, the CCW is
‘'put into the subchannel, and the PCI bit is turned on in

CH_STATUS if necessary.

L,1.4.2 Get IMirst IDAW

Before the first IDAW is fetched (see figure 4.5), checks
are made to see if the Indirect Data Address (IDA) is on a
- full work‘bouﬁdary,if the IDA is available to the channel,

and if the keys match, Bits 0-7 of the IDAW must be zero,

4,1,5 CU_SIV

It is the job of CU_SIi (flowcharted in figure 4.6) to

make sure that the addresgssed device exists and to send orders

-39~

FETCH cew

3

W CROER
&0 Nop

Birs or ctw
A0 DR LSS
z.:_;&n

IMNDICATE

PRoTECTION CHECK)
IN SUBCHAMNMEL

GET CccwW

INRICATE

PROCRAM CHECK

in su‘,cﬂAuAlEL.
8TATvS

PuT NEW Ciw

ADPRESS Iv
SuBs CHANMNN EL.

No Gcoop

SIATUS

No ¢ooo0

S

INDICATE

PROLRAM CHECK

N SUBCHANMNVEL
STAsvs

No 6oop

Loao ccow

FETCH ¢cw Twaiears

.

W SUBLHAMMEL
STATvVS

Pcr

AvD UPOATE
Cew ADDRESS

FIGURE 4.4 - Fetch CCW

Niv SUBCHAMVEL

CoMTivve

-40-

Low O0RBER

BiTS o IDA

EERO
1

Mo

AVAILABLE Ne

TNMNRICATE

PROTECTION CHECK

IN SVUBLHANNMEL
STAT VS

< NO Goob }

GET LTDAW
Birs
o~7
ZERO
7
INMDIcATE
PROGRAM CHIECK
CONTINV E IN SVBCHANNEL
STATVS
NO Goo0

FIGURE 4.5 - Get First IDAW

-41-

SET IT OUsy
Avp

FiX POINTERS

STATUS =

AusyY + STATVs
MooirFiEe

CALL DEVICE

SUnRov rive

STATYS
= pusy

[RETURN)

r g

FIGURE 4.6 - CU_SIM Routine

a

CALL Z/o
DATA - STATVS
TRAWVSFER

(RETURN)

-42-

to the device, Orders are sent only if the control unit is
working with the addressed device, or if the control unit 1is
available and the specified device is not working under
another control unit through the device switching unit., Other-
wise, the appropriate status is sent to the channel.

Note that this routine is entered directly from the TiC

subroutine.

L,1,6 TIO

When a TEST I/0 (TIO) instruction is detected the TIC
routine (flowcharted in figure 4.7) is entered, If the
channel or subchannel 1s busy or the subchannel is interrupt-
pending with other than the. addressed device, a condition code
of busy is returned. Otherwise, if the channel is available
"PIQ" orders are sent to CU_SIi, If upon return from CU_Slu
there is no uﬁusual étatdé, the condition code will indicate
that the devicémis available and a return is made, COWPLETE =0
provides an indicatim to MASTER_DRIVER that processing has
gone to normal completion, If the subchannel is interrupt-
pending with the address device, the interrupt condition is
cleared, Then, and also if any unusual status has been
detected, the subchannel state is set to available and the

congition code indicates that the CSW has been stored.

L,1,7 I/0 DATA STATUS TRANSFER

1/0 Data_Status Transfer (flowcharted in figure 4.8)

handles data transfers and the transferring of status to the

-4 3~

é HAMNE L
on yes

SUNt HAMVME L
wal KiVé-

Vo S SUBCHAM

SUBCHA
LINMTERRVAT

INTERRVAT
PINPIVG

g

WITH

ADORESsED NMe

RsVIicE
1

CANCiEL
SCHEVVLE

IvTERRUATS

STATULS ..

FIGURE 4.7

SET SUBCLHAN
AVAILABLE
AnvDd

ce=1

SToRE
Csw

(RETURN)

- TIO Routine

SvACH
WERAINC-

Wirt Averhe&
D Bvics
7

REAPLACE
= 1

§ET SYBLHAN
INTEREVR]
STATuUsS

SET SvALHAN
TrTELRvAT
STATUS

SET k&y, CC,
Ccw AddRESS,

-44-

CHAV
Workwe
wirh AVOTHER
DeEVitz
K

ves REPLACLE =]

‘ RETURN)

SET
IMCERAECT
LErveTH

TERMIMATEE

x/o

Anmp BYyTE cover
To ZE€o v/
SUNLHAM ESW

CHECK
I~vTERRVPTS

CHECK
DEvice 2n0

FIGURE 4.8 - I/0 Data_Status_Transfer
(continued on next page)

CLEAR
CHANVNNVIZEL BrD
BIir

-45-

> SET
Avp Mo SLT INMCORRERCT
LENVN¢TH
Commavy
CHAIWING
yeés
CLEAR
WORK /e)N
SURCHANIMEL
CLEAR
WoLKiMe- N
CHAavN EL

FIGURE 4.8 - Continued

-46-

channel., REPLACE =1 is an indication to LASTEX DKIVEK that
the event must be retried and it is replaced on the queue to
be tried at a given incremental time later, If status needs
to be transferred and the subchannel is available, we know
ghat we are in the midst of executing a T1¢ instruction. The
status field of the CSW in the subchannel is set from the

device status and the other fields are set to zero, Wie can then
check to see if any interrupt need scheduling and fhen return., If
the subchannel is not available, status is COR'ed into the CSw sta-
tus in the SUBCHANNEL,

Next a check is made to see if a channel end or device end
(see section 4.1,7.1) condition exists. A channel end conditon
signals that the channel has completed its-currcfit task and is
able to take on another, If it exists, a check is made for in-
correct lengthuénd command chaining (indicates there is another
CCW to follow). If the command chaining bit (in previous CLW) is
ofY or there are conditions to suppress it (ie. unusual status
exist), the 3USY bit in the subchannel is cleared, If operation
is in burst mode the BUSY bit in the channel is also cleared., If
command chaining;exist without any conditions to suppress it then

the channel end bit is cleared.

-47-

L. 1,7.1 Checlk Device End

If a device end is present and the subchannel state is 3USY,
then command chaining is indicated and the device end bit is
cleared if no unusual status is detected (see figure 4,9)., A

command chaining event is then scheduled, 1f some unusual status

is present the BUSY bit in the subchannel, and channel if necessary,

are cleared, and then a check for interrupts is made,

L,1,7.2 Check Interrupts

"Check Interrupts", flowcharted in figure 4,10, checks for
any unusual statuslor if PCI = 1, If so, and we are not in the
midst of a SIO, TIO, or SICF instruction, then I (indicating in-
terrupt is pending) is set in the subchannel state, and an 1/0

interrupt event is scheduled,

4,1,7.3 Do Data Transfer

If the I/O Data Status Transfer routine had been entered in
order\to have a data transfer performed and the byte count and
channel status conditionsgare "all right" then the data transfer,
flowcharted in figure 4.11,can.be performed, A byte of data is
fetched from or stored at the specified data address, If the SKIP

flap is on in the CCW, no transfer is performed, If there is no

CLEAR DEvis
Ervo

-48-

ChEck
DEVICLE EMD

SULCHAMVED

Ny

WoR KING

SCHENDUVLEZ
COMMAND

CHAIW EveryT

RETuUAN

CONMPITIONS

CLEAR
WOoRK IV IN

SUBC HALVAVEL.

CH
Wo LK Ve

Mo

MvIiTH THS
OEVICE
7

yes

CLEAR
WoRKING IN

CHANMWVEL

FIGURE 4.9 - Check Device End

CHECK

INTERRVPTS

-49-

CHECK
Ivrercvers

UNIT
STATVS5=0 ves
AvD pLI=0
-7

yes

SeT I

IV 3uB8cnAMVES

SCHEDVLE
[. I/o TrrerRueT
EviEMT

(RETURN)

FIGURE 4.10 - Check Interrupts

-50-

DO LATA
TRANS FER

READ
OPERATICN

?

FETCH DByre o
AT DATA
ADPRESS

STerr BYrZE
AT DPATA
ADPLRESS

N

EXCerTion

SET PrROGRAM

ClhECK 1~/ VPODATEE OATA

SUBCHANV EL ADPRRESS ANO 3&7‘ NEXT
PR CREMENMSMT IDAW

BYrre Covnwr

(TERMINATE) ' .
I/O VTWWeREMEMT
“" TOAw APORIESS,

loAD VEW DATA

AppA/ESSs, ANV

OEerrEMEwT PITI3
CoveT

FETCH CCw

SET working
IV CHAMVE)

cHiEek
IMNTERRVPTS

FIGURE 4.11 - Do Data Transfer

-5]1-

Indirect Data Address (IDA) the data address is updated and the
byte count in the subchannel is decremented, If the count goes
to zero and the DATA CHAIN flag is on, the next CCW is fetched,
If this is the first byte transferred then the BUSY bit in the

channel is set according to the transfer mode,

4.1.7.3.1 Get Next IDAW

' If IDA was present and a page boundary is reached then
the next IDAW is fetched (see figure 4,12), The data addresé
must be available to the channel, the keys must match; bits 0-7
of the IDAW must be zero, and bits 21-31 of the IDAW wmust be zeros
(ones for a read backwards ccmmand) to specify top (or bottom)

of page. . !

L,1,8 Printer Routine

The printer routine, flowcharted in figure 4,13, is entered
for a DeVicé ﬁnd event, for continued execution of a command chain-
ing event,a $I0, a STOF or a TIO instruction, or for handling
a data transfer‘gyent. A:devicé end event indicatés that the allot-
ed time for'handling of a‘CCW.operatibn at the device has terminated

and it is available to go on to something else, The DEVICE END

-52-

CET NEXT
IoAW

ZOA

AVAILADLE
To CHAMVEL,

TVDBICATE
PROTECT N

CHEEK M
SUBCHANMNEL

STATUVS

TERMINATE ,
I /o
GET ZDAW

1

Covrmwue

IvpitATE

PRocprAMm CHECK

IV SOUBLHANNCEY
STATCS

TERMIVATE

FIGURE 4.12 - Get Next IDAW /0

S&Ewvse =0
OEVILE STATUS
= Busy

Fsocnls >
Low ORDIER HIFS
oF Ccw com-
MArVD CoirE

CovTInvVE

-53-

PR{40>

oR CoMMAND
CHAINIVE
?

CALL To_ 05T

DEV

STATUS =

nosy
2

CErvn PRESEP
o STRTYS

SET |

DEVICE [£rp

RELEASE

b pssv 1f

VECESSAKY

PEvicis STATVS
= DEVICE STATOS

ANDZD wilh 303

DEVIC 2
sTATUs = O

RETURN

FIGURE 4.13 - 1403 Printer Routine

(continued on next page)

PERFOLM
DPATA
T RANMSIEE

-54—

yes

0[0/.{041 oy
G
7

CoMmmann ReETEer
firso AVp

STATvs = vmviIr
CHIZECE

2

CALL Zo.PST

MOOIFIiER
BiTs = O

?

PAOPIFIER
Birs Ok
/7

RECEASE
Dssv /f
NECESSARY

SET DATA

Loinr/=R To
SEMSE B YIS Aso

Byre covwr= 1

PEVICE

SCATvs = O veés

SeHEpVLE
L SCUHIEOUVLIZ
FIRST DATA

RETURN ODATA TRAVS
T FER EVENT
TRANS FER EVenr]
(RETURN) STATVS
= O HAMNEL

E~VD

| ,

" ‘ RET VR)

OR pEviee
. Ewp iMTO TR
CaLL Lo 0ST X Do tewtroL
- Zo-os STATVS

l

RELeAasE '
D550 1F NEE, RETvAN

OEVICZ $TATUS
=0

FIGURE 4.13 - Continued

-55-~

bit is turned on in the status for the devices., If we do not have

a data transfer or a device end event, the device status is checked,
If the status is zero then the indication is to decode the CCW
command code and executé it.

The BUSY bit in the device status is turned on and the three
low-order bits of the command code (bits 0-7 in the CCW) are
decoded to see what the command is, If decoding gifés 000 for
the three low-order bits, the routine will know that it is in
the midst of performing a TIO, Since 1t is already known that
the device status has nothing unusual, the BUSY bit is clear,
the D3SSU is released if necessary, and a return is made, This is
similar to what would occur if the invalid command 010, 101, 110,
or 111 is detected e%cepf-that a unit check condition is sent to
thé channel andpthe command reject bit is set in the SEN3ZE byte.

If the chree low-order bits decode to a write (001) or a
control (011) operation the modifier bits (first 5 bits of command
code) must have a value between 0 and 3 or between 17 and 28, Ior
a write command, a printer event is scheduled to perform the first

data transfer. For a control operation, a channel end condition

is indiééted in the device status, If it is a NO-0OP then the device

-56-

end condition is also indicatved in the device staus, and the
status is sent to the charnel, Otherwise, the specified control
operation is performed (see figure 4,1%4),

If, originally, there was a non-zero status then it is sent
to the channel, If BUSY is th; only bit on, a return is made,
otherwise, a check is made for the presence of the device'end
condition and if found, no bit is left on inwthe device status,If
it is not found only the BUSY bit is left on in the status for

the device.

L4,1.8,1 Perform Data Transfer

This subroutine, flowcharted in figure 4,14, is entered when
a byte of data needs.to be transfered to, or from, main memory.
If there is some unusual status a‘af the device (le. status other
than BUSY) then that status is sent to the channel, If the DEVICE
END bit is on the device status is cleared, 1f neces=:ary the DSSU
is released and a return is made.

If there is no unusual status and the byte count'is 2ero
then one of two things happens., 1f the sense byte has just been
transfered then Channel End and Device End are indicated in the
device status aﬁd.the aéfion described above for unusual status
is taken., Otherwise, the chanhel end condition is sent to the

channel, the buffer is written into an output file along with

any specified control motion (ie, line skips), and a device end

-57-~

CET wNMEXT
nDYr:zs

Byre

e. SCNVIK

CALL

ZTO_0sT

PERFORM
DATA
TRANSFER

NO

SEND STATVYS
Execpr 'pusy’
TO6 CHAVNMEL,
CALL To.05T

OR CH- EVND

ArD
REVIEE EvD

STATVS

wrTe 0EVICE

CRAVMNE

STATUs =

L Erg

RETURN

W REVIZ
STATUS
2

NiEvics

1€3

PYTE CtovwT
(@)

—

a

SCHEDUL

OATA TRANSFER

Cvervi

RETVRN

STATvs
T ORVie)Z STATVS

ANDEQD wiTh HBYSY

DO cowmwrrcoL

RELEASE
Dssv iF wNvic.
DEVICE sTATUS

o

UPLPATE CoveT

RETveAN

. SToke BYre
W BUFFER

Ao PATA
PoIvT R

SCHELVLE
NEXT PATA
TRANMSFER

FIGURE 4.14 - Perform Data Transfer
(continued on next page)

x4

RETURN

-58-

po cowvTROL

CALL Xo.pst

OR CHAMVEL
JEMB IMTO PEVICIE
STATYVS

GET Fler
NAME Awrp W IT
PURAFER IXM]0
FlLE

PETERMiNVvE
RMO PER Fotr
MoTrrow

CARRIALE SET-
Teiwve rmmiz= =
MAX(AcTvAL TME
esT) T MeTron
+ PRIVT TiMI=

SCHEDVLE
DEVILI: EMA
EvErT FoR
NMEW CST

o s RETURN .

FIGURE 4.14 - Continued

~59-~

event is scheduled,.

If the byte count is not zero the data transfer is periorimed
and the byte fetched during the call to I1/0 DATA_STATUS TRANSrEK
is stored in a buffer, Since the sense command is treated by 1/0
DATA_STATUS TRANSKFER as a read operation (ie, storing the byte at
an appropriate address) it should be noted that there is no need
to store it in a buffer. The count and data address are updated,
the next data transfer is scheduled and a returﬁlis made.,

To terminate I/0 the byte count is set to zero and another
data transfer is scheduled, At the next attempt at a data transfer,

the zero will be detected and I/0 will go to a normal termination,

4,1.9 Card Reader Routine
| The flowchart for a simulated 3505 type card reader is
given in figu:e 4,15, The throughput rate simulated is 600 cards
per.minute (75 ms/cyole);’The clutch access time is incorporated
by taking intovéccount the clutch decision print (CDP) where the
CDP is the point in time after which a delay of 25 ms will occur
before the start of the next feed.

This routine is entered for the same conditions as the print-
er routine and, as can be seen, there is much overlap between the
two routines in how data is handled and status-is transferred.
Upon decoding the three- low order bits of the command code if we
find a sense command four bytes of data will be transferred to
memory as compared to one with the printer., For a feed, select

stacker command, first a sequence check is made, This command must

-60-

READER_3ISOY

DATA

DEVICE
STATVs =0
?

QEVICE STATYS

=RBusy CALL T0-PST

SENmsSIE = O

Excevre

TRANVNSFER

STATUS =

PEVICE B

D cowis

COMMAND
CopE

DaEVICIE

STATUS =

3usy
! CALL £0-05T

RETVAN

A&ma&

ENP PREsENT

DEVICLE STATVS

S ROEVICIE STATVS

ANDERN WITH
nRvsy

RELEASE
D Ssvu IF NEC,

DEVICE STAJvS
=0

FIGURE 4.15 - Card Reader Routine
(continued on next page)

=4

RETVRN

-61-

yes

4

CorMMman s
REJEeT pir=14

Arp STATVS =
Urir EAECK

CALy To-psT

RELEASE
Dssv 1<
NECCSSALYy

OEcConZ
CormMAND
consez

ca.vmb\
Cooz= 004,

loi
o‘l '“/ oR
e
z

PEVICE
STATVs =0

SET OATA
Posvrz R o i2IRsT]
SENMsiE BYTE
AMVD BYTiE covnvy
= 4

SCHEDULE

EveEnvr

| DATA TRAVSFEA

READP %0 BBYTES
1 imTO0 REVICS
BUFEFER

CALL Fo.osT

SCHEPVLE.
DPiZviC &
=70

.

RETUANM

SET vwmir
CHECK AMR SCEW
BIT oNE

CALL FO-03T

COMMANMND
L OoniE=

000
7

YES

RELEASE

DSS U 17 NIZC,

RPREV ez sFATvS
=0

FECO,
SELEET
STrckER

yes

M.
STATLS T
CHAVMAEL

E~n

|

|

Rzrvaw

yes

OR DiEViIcZ

A i[O
STATYS
RELEASE l
Pssy iF NMVe,
— caLL Zo.wsT

PEvVICE STATUS

=0

FIGURE 4.15

- Continued

(continued on next page)

FEED-AFTER
=1

-62-

RiEAap G0 BYyres

INTO DEVICE
BeAPER

CHECK
SEQUENrLE

Mo

READ
oLy

SCHEDVL £
PDATA

TRANS PR

FIGURE 4.15 - Continued
(continued on next page)

V€4

SET Jir ek
Arvia SENMSE AIT

CALL To_ ST

‘ RETLr)

4

-63-

EXECvre
TRANS FER

Dievic &
STATVS
= BUsy

SAME AS N

9

GET NEXT
BYyre

FlevRIE 4. iy

res

CALL To.0sT

~#1ro

OR CHAMNELY
2o NAND
DEviIci 1IEM0] .
PEVILE
STATvS

STATVS =

CHAMAEL EPD

BYT= covar
Fe]

CALL Fo-0sT

SCHEpVL /=
PATA TRAAS-
FER [veaT

RETunrs

REPLACE

=4
(74
KETU:»N Mo
OR eBAxrEL
- Brp jmT0 OEVILKE
STOoRE BYTE
yes NO AT STATUS
OATA ADPRIESYH
SCHEDYL A
PEviee Ewp
. R EVE~ST
, .
VROATE CovNT

SCHEPUVLE

AND DOATA MEXT DATA

POINTER

FIGURE 4.15 - Continued

-64-

follow a read only command and cannot be the first command given
to the reader. Next, a Channel End is sent to the channel and a
'card' &0 bytes of data, is put in the device buffer, 1f there
is no error a device end is scheduled to occur 67 ms from the
present time plus any clutch access time needed. 0f course this
depends on the time the previous Tfeed command ended which is saved..
in the device working register,

If we have a read command the sequence check is again made,
A read only command follows a read, feed, select stacker command,
a feed select stacker command or itself without command reject
occuring, but if it follows itself, a unit check is indicated and
unusual command sequence (sense bit 6 bytes 0) 1s returned on a
subsequent sense operation, A read, feed, select stackér conmand
can only follow feed, select stacker command or itself, If it
follows a read only command unit check and sense blt six of byte
0 are set..FEED_AFTEé, when set equal to one indicates we have a
read, feed, seiéct stacker command, It is stored in the device
working register. The data transfer is then scheduled,.

Upon completion of the data transfer (ie, byte count 0)
CH_END conditions are sent to the channel and for a read only a
device end is also indicated. For the read, feed select stacker

a device end is scheduled.

4,1,10 1/0 Interrﬁpts

Figure 4,16 indicates what is done in the ACCEPT portion of

the interrupts routines as far as I/0 is concerned. Checks are

INSERT pEVIcE

AND CHAMNEL |

ADDRESS IV
Psw

-65-

Z/0
REQUEST

ACCEPT

CHECK For
O HIZ R T7ﬂ & orF
REQUESTS '

PUT Z&ERos AT
LocATion 99
CHArNMEL ALDAESY

AT +oecATIO
187

PUT DEVItE
ADORESS AT
LocArion 187

GET NVew
Psw F~RoM
LocaTion 20

STORE oLo
Psw AT “0cAlwqy
5¢ Avo eSw AT

LOCATION 64

(RETURN)

FIGURE 4.16 - I/0 Portion of ACCEPT Routine

-66-

made to see whether operation is currently in basic or extend-
ed control mode (BC or EC). Depending on the control mode the
action taken is that which is described in S/370 Principles of

Operation in the section "Input/Output Interruptions".

4,2 System Structure and Flow

Figure 4,17 gives a feel for how the above describes routines

are interconnected,

L,3 Sequence of Events for I/0 Operation

Given below is what the sequence of events surrounding a

SI0, TIO, and SIOF instruction would look like,

I'or a SIO:

1) An element is taken off of the queue and it
is determined that it calls for CPU execution
of an instuction,

2) Any outstanding interrupts are handling ny
calling "~he ACCEP" routine,

3) It is determined that the CPU instruction is
a SI0 instruction and a branch is made to the
SI0 routine,.

~ . k) The SIO routine will schedule an "I/U to Begin"

event and the CPU event will not be rescheduled
yet.
5) The "1/0 to Begin" event is eventually detected

and a branch is again made to the SIC routine.

-67-

MASTZER
DRIVER
4
CPUL SiM
Sio TI10O
GET
FlRsT
(Ljo START vP |~ T AW
FETCH
cew
Cu-siM
)/

PRIVTER g
RoOuTIVE ROVTINIE

CHECK

! DEVICE
IENO

PO DATA
TRANSFER

CET FETeH C HEEK
NEXT ccw INTERRVOM
LPAW

FIGURE 4.17 - Subroutine Interconnections

6)

7)

8)

9)

-68-

The channel and subchannel are tested for avail-
ability, and the CAW is fetched and tested. The
1/0 START UP routine is then called and upon
return success or failure is indicated in the
condition code and possibly the CSw.

The I/0 START UP routine will fetch and test
the CCW, and load it into the subchannel, JUSIlw
will be called to send orders to the device,
CUSLi checks the control unit and calls the
approriate device routine,

For example, the printer routine would periorm
control operations or schedule the first data

transfer and return,

For a SIOF instruction 1 and 2 would be the same and tuncit:

3)

)

Itlis determined thnat the CIU instrucclos is &
SI0K igstruction and a branch is made to the

SIO routine,

The channel and subchannel are tected for svail-
ability, and the CA%W is fetched and tested. Then
a "SIOF" event 1s scheduled,.

The "SICF" event is eventﬁally detected and a
branch is made to the I/0 START UP routine.

The I/G START UP routine will fetch and test

the CCW, and load it into the subchannel, CUSIk

is then called and upon return if anything is

wrong an interrupt is scheduled and the deferred

-69-

condition code is set.

7) CUSINM checks the control unit and calls the
appropriate device routine.

For a TIO instruction, steps 1 and 2 are again the same and
thens

3) It is determined that the CPU instruction is
a TIO and branch is made to the TIO routine,

L) The TIO routine tests the channel and subchannel
for availability and then calls CUSIi routine
to send orders to the device.

5) CUSIi checks the control unit and calls the

“appropriate device routine,

-70-

5. Conclusions

The I/0 simulator provides much greater flexibility in the
usefulness of the complete IBM S/370 type simulator. Increased
operation at the bare ﬁachine level is readily available and
should prove a useful improvement in the use of the simulator as

a teaching aid and in the study of operating systems in general.

5.1 Suggestions for Improvenent

1) Incorporating the idea of keys and the associated
instructions (ie. IPK, ISK, SPKA, and SSK).

2) Implementing the suggested DASD.

-71-

Appendix A - Direct Access Storage Device

This description is not intended to be complete but rather
to provide the reader or a person intending to implement the
device with a neat and clear approach to the changes and addi-
tions necessary to add the DASD to the simulator. A detailed
understanding of the IBM Systems Reference Manual for IBM 2835
Storage Control and IBM 2305 Fixed Head Storage Module is a
prerequisite to implementation and more than a passing knowl-
edge of direct access device operation has been assumed in the
writing of this description.

The direct access storage device chosen for this example
is the IBM 2305 Fixed Head Disk storage facility. The facility
consists of an IBM 2835 Storage Control (control unit) and an
IBM 2305 Fixed Head Storage Module. The 2835 interprets and ex-
ecutes commands from the channel, controls the channel and disk
storage interface, furnishes status to the system, and performs
error detection and correction. The 2305 responds to commands
from the 2835, selects head, and reads or writes data. There
are two models available, one having two read heads per track
with approximately 5.4 million bytes per module, and the other
having one read head per track with about 11.2 million bytes
per module.

The major concern of the simulation routine for this de-
vice will be simﬁlating éhe disk. The user must be able to for-
mat the tracks and have direct access to records. The system
should require a minimum amount of the simulated disk in main

memory in order to find any given record. In PL/1l, record-ori-

-72-

ented transmission of input/output is well suited to these re-
quirements, though for any given system suitable capabilities
may be lacking and implementation of this type of device may be
more difficult.

This discussion will only deal with the 2305 Model 2 which
has 768 addressable recording tracks that the user sees as 96
cylinders having 8 tracks each. There can be a maximum of 47
recofds per track. For initial implementation in tﬁe simulated
system, one might start with a scheme to simulate 10 cylinders
with 8 tracks each and limit the number of records per track to
10. The record size could then be 1k - 14k bytes and the maxi-
mum number of records for the simulated module would be 800.
These limits can easily be extended if necessary.

The working registers for the device would contain such
information as the ﬁile_mask, the 24 sense bytes, a buffer, the
last cylinder address, the last track address, the last record
address, the status for the device, and interrupt pointers. The
device control block would nave a pcinter to the working regis-
ters along with such static information as track rotation time
(10 ms), number of sectors (180), byte transfer rate (1.5 mil-
lion bytes per second), device starting time, etc. The file
mask is associated with the set file mask command which speci-
fies the‘type of‘operaEiOns that can be performed in the given
channel program. It is reset to zero after each chain of com-
mands.

In creating or accessing a record, the use of keys plays

-73-

a major role. The key would be one of two things. First, it
could be the key specified by the CCW during formatting of the
track or, secondly, it could be the record ID which contains
the cylinder, track, and record number. One of these two char-
acter strings will be the key that the device routine uses to
access a record through keyed record-oriented transmission.
Thus, when a track is formatted, the key that is used will al-
ways.be the key that is specified in the formattiné write com-
mands unless none is giveh, in which case the record ID will
be used as the key. The keyé are stored in the following array

.structure.

DCL 1 TRACK (80),
2 AREA (10),
3 KEY CHARACTER (255) VARYING,
3 EXIST FIXED BIN(31) INITIAL ((10)0),
3 COUNT FIXED BIN(31),

3 SECTOR FIXED BIN(31);

If EXIST is zero the corresponding record does not exist. If it
is less than zero then the record has no specified key and the
record ID is used as a key. This structure makes the search of
a track for a régord a éimple matter and avoids the need of ex-
plicit index points for singlé track searches (on the 2305, if
two index points are detected without completing a search then

unit check is indicated along with channel and device end).

-74-

Similarly multi-track searches present no problems.

SECTOR, calculated during formatting of the track, is used
with the read sector command and in rotational position sensing
(RPS). RPS is easily implemented if one assumes that the track
head was at sector zero at the start of the simulation and the
start time is stored in the device control block. Then from a
knowledge of the starting time, the present time, the rotation
time; and the total number of sectors, the sector humber at any
given time can be determined. As an example of a procedure
which uses RPS and contributes to increased channel utilization

~consider the following:

1) A set sector commands is given to indicate which
sector number it is desired to reach.

2) The channel is freed until that sector is reached.

3) When the ‘third sector in front of the desired one
is reached (to allow for a channel reseiection de-
lay) a special device end is sent to the channel.

4) If upon detection of the device end the channel is
available then the device end is accepted and the
cﬂannel reconnected. If the channel is busy then
the device end is rescheduled.

5) If the channel is still busy after the reselection
delay has past then the device end is rescheduled
for the next revolution.

6) The record is now ready to be read or written (ie.

thé next CCW can be executed).

-75-

Upon detection of a seek command, the seek address (cvl-
inder and/or track number) is stored in the device working
register and a channel end along with a device end are sent to
the channel. For a search command, the key or record ID is
saved in the working register and the array structure is
checked to see if the record exists. If the search key command
is specified, the cylinder and track number at which the scan
through the array will start are those stored in the working
register (last cylinder and last track address). Upon termina-
tion of the search a device end is scheduled for an appropriF
ate time to reflect the simulated search (the device will ap-
pear busy to inquiries until that time) and the appropriate
status is stored so that it can be indicated along with the
device end when it occurs. |

Of course other items as command prerequisites and file
mask settings -are very explicit and must be checked for during
certain commands and appropriate status indicated, but the im-
portant point to note is that no actual input/output needs to
be done for any of the validity checking or operations associ-
ated with the control, search, or sense commands. Operations
are performed and device ends are scheduled solely from knowl-
edge about the device and from information on hand. Only with
the read and wfite comﬁénds need I/O actually be performed,
and these operations can be handled in essentially the same
manner as the printer and reader, previously described, han-

dled them.

-76-

Appendix B - System Creation

To add a new device should present no difficulty. As seen
previously, I/O devices have the same calling sequence and op-
erate in basically the'same manner with respect to data trans-
fer to and from main storage. Since the other aspects of device
operation can differ greatly, a clear understanding of both the
I/0 system, as described in this document and in S/370 Princi-
ples of Operation, and the device itself, through SRL publica-
tions, will be needed.

The format of the I/0 System Configuration Cards is given
below. It is assumed that the reader is familiar with the sec-
tions "Input/Output Device Addressing" andv"Attachment of In-
put/Output Devices" in S/370 Principles of Operation.

l) CPU Card - (Card Type, Unit Number, Start Address,
- Trace information, prefixing informa-

tion, Number of Channels)

2) CHAN Card - (Card Type, Channel Type, Number of
Control Units)

3) CU Ccard - (Card Type, Low Address, High Address,
DSSU Identification Number, Number of
Devices)

4) DEV Card - n_(Card Type, Device Type, Mode, First
Device Dependent Information, Second

Device Dependent Information)

-77-

References

1 Simulator Program Logic Manual - L. Goodman and S. Madnick.

Operating Systems - S. Madnick and J. Donavan, McGraw Hill, 1974.

Simulation of a Multiple Processor IBM System/370 With
Associated I/0O Equipment - Thesis, W. Silver, May, 1975.

SIM360: A S/360 Simulator - Thesis, Wm. Mc Cray, May, 1972.

IBM System/370: Principles of Operation - Form GA22-7000-4.
IBM 1403 Printer Component Description - Form GA24-3073-9.

IEM 2821 Control Unit Component Description - Form GA24-3312-8.

IBM 3504 Card Readef/IBM 3505 Card Reader and IBM 3525 Card
Punch Subsystem - Form GA21-9124-5.

0S PL/1 Checkout and Optimizing Compilers: Language Reference
Manual - Form GC33-0009-3.

Reference Manual for IBM 2835 Storage Control and IBM 2305
Fixed Head Storage Module - Form GA26-1589-3.

