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Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme

that accounts for the dominant power law dependence on the factorization scale in the operator product

expansion. We introduce the ‘‘MSR scheme’’ which achieves this in a Lorentz and gauge invariant way

and has a very simple relation toMS. Results in MSR depend on a cutoff parameter R, in addition to the�

of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.)

higher-order perturbative corrections (much like � inMS). We give two examples at three-loop order, the

ratio of mass splittings in the B�-B and D�-D systems, and the Ellis-Jaffe sum rule as a function of

momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work

well even for Q� 1 GeV, and power corrections are reduced compared to MS.

DOI: 10.1103/PhysRevD.82.011501 PACS numbers: 12.38.Aw, 11.10.Gh, 11.15.Bt, 12.38.Bx

I. INTRODUCTION AND FORMALISM

The operator product expansion (OPE) is an important
tool for QCD. In hard scattering processes two important
scales are Q, a large momentum transfer or mass, and
�QCD, the scale of nonperturbative matrix elements. The

Wilsonian OPE introduces a factorization scale �f, where
�QCD <�f < Q, and expands in �QCD=Q. Consider a

dimensionless observable � whose OPE is

� ¼ CW
0 ðQ;�fÞ�W0 ð�fÞ þ CW

1 ðQ;�fÞ�
W
1 ð�fÞ
Qp þ . . . (1)

The CW
0;1 are dimensionless Wilson coefficients containing

contributions from momenta k >�f with perturbative ex-
pansions in �s, and �W0;1 ¼ hO0;1iW are nonperturbative

matrix elements with mass dimensions 0 and p, containing
contributions from k <�f. If CW

0;1ðQ;�fÞ are expanded

they contain an infinite series of terms, ð�f=QÞn, modulo
lnmð�f=QÞ terms, and this reflects the fact that CW

0;1 only

include contributions from momenta k >�f. The
Wilsonian OPE provides a clean separation of momentum
scales, but can be technically challenging to implement. In
particular, it is difficult to define �f and retain gauge
symmetry and Lorentz invariance, and perturbative com-
putations beyond one-loop are atrocious.

A popular alternative is the OPE with dimensional regu-

larization and the MS scheme, which preserves the sym-
metries of QCD and provides powerful techniques for
multiloop computations. In this case, Eq. (1) becomes

� ¼ �C0ðQ;�Þ ��0ð�Þ þ �C1ðQ;�Þ
��1ð�Þ
Qp þ . . . ; (2)

where � is the renormalization scale and bars are used for

MS quantities. In MS, the �Ci are simple series in �s,

�C iðQ;�Þ ¼ 1þ X1
n¼1

bn

�
�

Q

��
�sð�Þ
ð4�Þ

�
n
; (3)

with coefficients bnð�=QÞ ¼ P
k¼0bnkln

kð�=QÞ contain-
ing only powers of lnð�=QÞ. We will always rescale � and
the matrix elements ��i such that �Ci ¼ 1 at tree level. In

MS, all power law dependence onQ is manifest and unique
in each term of Eq. (2). Also simple renormalization group
equations (RGEs) in �, like

d ln �C0ðQ;�Þ
d ln�

¼ ��½�sð�Þ�; (4)

can be used to sum large logs in Eq. (2) if Q � �QCD.

CW
i ðQ;�fÞ and �CjðQ;�Þ are perturbatively related to

each other, so Eqs. (1) and (2) are just the same OPE in two

different schemes. The renormalization scale � in MS
plays the role of �f. This is precisely true for logarithmic
contributions, ln� $ ln�f, and here the Wilsonian picture
of scale separation in CW

i and �Wi carries over to �Ci and ��i
inMS. The same is not true for power law dependences on

�f. MS integrations are carried out over all momenta, so
the �Ci contain some contributions from arbitrary small
momenta, and the ��i have contributions from arbitrary
large momenta. For the power law terms there is no explicit

scale separation in MS, and correspondingly no powers of
� appear in Eq. (3). While this simplifies higher-order
computations, it leads to factorial growth in the perturba-
tive coefficients. For the dominant terms in �C0, one has
bnþ1ð�=QÞ ’ ð�=QÞpn!½2�0=p�nZ at large n [1], with
constant Z. In practice this sometimes leads to poor con-
vergence already at one- or two-loop order in QCD. This
poor behavior is canceled by corresponding instabilities in
��1, and is referred to as an order-p infrared renormalon in
�C0 canceling against an ultraviolet renormalon in ��1 [2–4].

The cancellation reflects the fact that the OPE in the MS
scheme does not strictly separate momentum scales. In
Ref. [5] a convenient model to parametrize ��1 was pro-
vided based on the assumption that it is entirely related to
the low energy behavior of the strong coupling.
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The OPE can be converted to a scheme that removes this
poor behavior, but still retains the simple computational

features of MS. Consider defining a new ‘‘R scheme’’ for
C0 by subtracting a perturbative series

C0ðQ;R;�Þ ¼ �C0ðQ;�Þ � �C0ðQ;R;�Þ;

�C0ðQ;R;�Þ ¼
�
R

Q

�
p X1
n¼1

dn

�
�

R

��
�sð�Þ
ð4�Þ

�
n
;

(5)

with

dnð�=RÞ ¼ X
k¼0

dnkln
kð�=RÞ: (6)

If for large n the coefficients dn are chosen to have
the same behavior as bn, so dnþ1ð�=RÞ ’
ð�=RÞpn!½2�0=p�nZ, then the factorial growth in
�C0ðQ;�Þ and �C0ðQ;R;�Þ cancel,

C0ðQ;R;�Þ �
�
�p

Qp �
Rp

Qp

�p

Rp

�X
n

n!

�
2�0

p

�
n
Z: (7)

Thus the R scheme introduces power law dependence on
the cutoff, ðR=QÞp, in C0ðQ;R;�Þ, which captures the
dominant ð�f=QÞp behavior of the Wilsonian CW

0 . In

practice, this improves the convergence in C0 even at low
orders in the�s series. The dominant effect is compensated
by a scheme change to ��1, ��1ð�Þ ¼ �1ðR;�Þ �
½Qp�C0ðQ;R;�Þ� ��0ð�Þ. This new �1 remains Q indepen-
dent and will exhibit improved stability. In the R scheme
the OPE becomes

� ¼ C0ðQ;R;�Þ ��0ð�Þ þ �C1ðQ;�Þ�1ðR;�Þ
Qp

þ �C0
1ðQ;�Þ�

0
1ðR;�Þ
Qp þ . . . ; (8)

where �01 ¼ ½Qp�C0� ��0 and �C0
1 ¼ 1� �C1 � �s. Both C0

and �1 are free of order-p renormalons. The severity of an
ambiguity can be quantified by the singularity structure in
the Borel transform, and we will neglect �C0

1�
0
1 which only

contributes a subdominant cut.
To setup an appropriate R scheme it remains to define

the dn. In the renormalon literature such scheme changes
are well known for heavy quark masses [6,7]. For OPE
predictions a ‘‘renormalon subtraction’’ (RS) scheme has
been implemented in Ref. [8]. In the RS scheme an ap-
proximate result for the residue of the leading Borel re-
normalon pole is used to define the dn, which adds a source
of uncertainty. The approach of Ref. [9] for event shape
distributions is based on powerlike subtractions derived
from the assumption that the power corrections are related
to the low energy behavior of the strong coupling. This is a
model for QCD power corrections. Since this setup lies
outside the strict OPE framework, the uncertainties intro-
duced by the model dependent assumptions are unclear and
could have the same size as the subtracted pieces. The issue
of large logarithms in the subtraction series is also not
addressed. The R evolution that we propose in this work
implements subtractions completely in the framework of

the OPE and also resums large logarithms in the
subtractions.
For our analysis we define the ‘‘MSR’’ scheme for C0 by

simply taking the coefficients of the subtraction to be

exactly the MS coefficients. In general, it is more conve-
nient to use ln �C0 rather than �C0, since this simplifies
renormalization group equations. Writing the series as

ln �C0ðQ;�Þ ¼ X1
n¼1

an

�
�

Q

��
�sð�Þ
ð4�Þ

�
n
; (9)

with anð�=QÞ ¼ P
k¼0ankln

kð�=QÞ we define the MSR
scheme by the series

lnC0ðQ;R;�Þ � X1
n¼1

�
an

�
�

Q

�
� Rp

Qp an

�
�

R

��
�n
s ð�Þ

ð4�Þn : (10)

This definition still cancels the order-p renormalon for
large n, as in Eq. (7). It yields the very simple relation

C0ðQ;R;�Þ ¼ �C0ðQ;�Þ½ �C0ðR;�Þ��ðR=QÞp ; (11)

which must be expanded order-by-order in �sð�Þ to re-
move the renormalon. Thus, the coefficient C0ðQ;R;�Þ for
the MSR scheme is obtained directly from the MS result.
Note C0ðQ;Q;�Þ ¼ 1 to all orders. The appropriate p is

obtained from the MS OPE by p ¼ dimension ð ��1Þ �
dimension ð ��0Þ. MSR preserves gauge invariance, Lorentz

symmetry, and the simplicity of MS.
The appropriate values for R in Eqs. (5), (8), and (11) are

constrained by power counting and the structure of large
logs in the OPE. The power counting ��1 ��p

QCD implies

�1 ��p
QCD, so for the matrix element we need R ¼ R0 �

� * �QCD (meaning a larger value where perturbation

theory for the OPE still converges), which minimizes
lnð�=�QCDÞ and lnð�=RÞ terms in �1ðR;�;�QCDÞ. On
the other hand, C0ðQ;R;�Þ has lnð�=QÞ and lnð�=RÞ
terms, and for R��QCD no choice of � avoids large

logs. For R ¼ R1 ���Q we can minimize the logs in
C0ðQ;R;�Þ, but not in �1ðR;�;�QCDÞ. When the OPE is

carried out inMS this problem is dealt with using a� RGE
to sum large logs between Q and �QCD. For MSR we must

use R evolution, an RGE in the R variable [10], to sum logs
between R1 and R0. The appropriate R RGE is formulated
with � ¼ 	R and 	� 1 to ensure there are no logs in the
anomalous dimension. For C0 and 	 ¼ 1,

R
d

dR
lnC0ðQ;R; RÞ ¼ ��½�sðRÞ� �

�
R

Q

�
p
�½�sðRÞ�; (12)

where ��½�s� ¼ P1
n¼0 ��n½�sðRÞ=4��nþ1is the familiar

MS-anomalous dimension and

�½�s� ¼
X1
n¼0

�n

�
�sðRÞ
4�

�
nþ1

(13)

is the R-anomalous dimension with

�n�1 ¼ pan0 � 2
Xn�1

m¼1

mam0�n�m�1: (14)
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Here we are using the MS � function, �ðd=d�Þ�sð�Þ ¼
� �2

s ð�Þ
2�

P1
n¼0 �n½�sð�Þ=4��n. The choice in Eq. (10)

keeps Eq. (12) simple. In cases where �� is absent, we
expect Eq. (12) to converge at lower R scales than are
typical for the� RGE due to the ðR=QÞp factor multiplying
�. For R1 >R0 the solution of Eq. (12) is

C0ðQ;R0; R0Þ ¼ C0ðQ;R1; R1ÞURðQ;R1; R0ÞU�ðR1; R0Þ;
(15)

where U� is a usual MS evolution factor and UR is the R

evolution. For p ¼ 1, the complete solution for UR was
obtained in Ref. [10]. It is straightforward to generalize this
to any p. The RGE solution is independent of a choice 	 �
1 up to higher-order terms. At Nkþ1LL order the (real)
result is

URðQ;R1; R0Þ ¼ exp

���ðkÞ
QCD

Q

�
p Xk
j¼0

Sjð�pÞjei�pb̂1pðpb̂1Þ

� ½�ð�pb̂1 � j; pt0Þ
� �ð�pb̂1 � j; pt1Þ�

�
; (16)

with �ðc; tÞ the incomplete gamma function and t0;1 ¼
�2�=ð�0�sðR0;1ÞÞ. Here �ð0Þ

QCD ¼ Ret, �ð1Þ
QCD ¼

Retð�tÞb̂1 , and �ð2Þ
QCD ¼ Retð�tÞb̂1e�b̂2=t are evaluated at

a very large reference R with t ¼ �2�=ð�0�sðRÞÞ such
that they exhibit their R independence, and

b̂ 1 ¼ �1=ð2�2
0Þ; b̂2 ¼ ð�2

1 � �0�2Þ=ð4�4
0Þ;

b̂3 ¼ ð�3
1 � 2�0�1�2 þ �2

0�3Þ=ð8�6
0Þ:

(17)

Defining ~�n ¼ �n=ð2�0Þnþ1, the coefficients ofUR needed
for the first three orders of R evolution are

S0 ¼ ~�0; S1 ¼ ~�1 � ðb̂1 þ pb̂2Þ~�0;

S2 ¼ ~�2 � ðb̂1 þ pb̂2Þ~�1

þ ½ð1þ p̂b1Þb̂2 þ pðpb̂22 þ b̂3Þ=2�~�0:

(18)

Then Eq. (8) becomes

� ¼ C0ðQ;R1; R1ÞURðQ;R1; R0ÞU�ðR1; R0Þ�0ðR0Þ

þ �1ðR0; R0Þ
Qp þ . . . ; (19)

and this result sums logs between R1 �Q and R0 ��QCD.

This gives natural R scales for the coefficients and matrix
elements in the OPE. The use of R evolution allows us to
sum these logs while, at the same time, maintaining the
independence of the factorization of scales from the lead-
ing renormalon.

In Eq. (15), R0 is the scale at which renormalon con-
tributions are subtracted from the leading power perturba-
tive series and from a power suppressed matrix element.
The variation of R0 gives an estimate of the size of these
power corrections if they are left out of the analysis. If the
power corrections are included then the R0 dependence
cancels out between the leading power perturbative term
and the power correction matrix element. As explained

above, the choice of R0 is not arbitrary, we must have R0 �
�QCD to avoid enhancing power corrections, and R0 >
�QCD to maintain perturbation theory in �sðR0Þ. Thus,
the natural choice for R0 is around 1 GeV, which is close
to the confinement scale, but still in the perturbative re-
gime. In Eq. (15), the variation of R1 has the meaning of the
usual � variation in the OPE, i.e., its variation gives an
estimate of the size of the higher-order perturbative cor-
rections. In order to reliably compute C0ðQ;R1; R1Þ in
fixed order perturbation theory one must take R1 �Q.

II. HEAVY MESON MASS SPLITTINGS IN MSR

The MS OPE for the mass splitting of heavy mesons,
�m2

H ¼ m2
H� �m2

H for H ¼ B, D, is given by

�m2
H ¼ �CGðmQ;�Þ�2

Gð�Þ þX
i

�CiðmQ;�Þ 2

3
i ð�Þ

3mQ

þOð�3
QCD=m

2
QÞ; (20)

where mQ ¼ mb or mc. Here �2
G ¼

�hBvj �hvg���G
��hvjBvi=3 is the matrix element of the

chromomagnetic operator, and 
3
i for i ¼ �G, A, LS, ��G

are Oð�3
QCDÞ matrix elements [11], with 
3

��G
ð�Þ ¼

ð3=2Þ ���2
Gð�Þ. At the order of our analysis, tree level

values for the �Ci suffice, so with ��
ð�Þ ¼ 2=3½
3
�Gð�Þ þ


3
Að�Þ � 
3

LSð�Þ þ 
3
��G
ð�Þ�, we have

�m2
H ¼ �CGðmQ;�Þ�2

Gð�Þ þ ��
ð�Þ=mQ þ . . . (21)

Taking the ratio of mass splittings r ¼ �m2
B=�m

2
D gives

r ¼
�CGðmb;�Þ
�CGðmc;�Þ þ

��
ð�Þ
�2

Gð�Þ
�
1

mb

� 1

mc

�
þ . . . (22)

The first term in this OPE gives a purely perturbative
prediction for r. �CG is known to suffer from an
Oð�QCD=mQÞ infrared renormalon ambiguity [11], with a

corresponding ambiguity in ��
ð�Þ. The three-loop com-

putation of Ref. [12] yields,

r ¼ 1� 0:1113j�s
� 0:0780j�2

s
� 0:0755j�3

s
(23)

at fixed order with � ¼ mc, and

r ¼ ð0:8517ÞLL þ ð�0:0696Þ�NLL þ ð�0:0908Þ�NNLL
(24)

where (N)LL refers to (next-to) leading logarithmic order
in RG-improved perturbation theory, etc. There is no sign

of convergence in either case. In MS these leading power
predictions are unstable due to the p ¼ 1 renormalon in
�CG.
Lets examine the analogous result in the MSR scheme

�m2
H ¼ CGðmQ; R;�Þ�2

Gð�Þ þ �
ðR;�Þ
mQ

þ . . . (25)

Since p ¼ 1 the MSR definition in Eq. (11) gives
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CGðmQ; R;�Þ � �CGðmQ;�Þ½ �CGðR;�Þ��R=mQ; (26)

where �CGðm;�Þ is obtained from Ref. [12] and we expand
in �sð�Þ. The OPE in MSR at a scale R0 * �QCD gives

r ¼ CGðmb; R0; R0Þ
CGðmc; R0; R0Þ þ

�
ðR0; R0Þ
�2

GðR0Þ
�
1

mb

� 1

mc

�
: (27)

Large logs in CGðmQ; R0; R0Þ can be summed with the R
RGE in Eqs. (15)–(18). For simplicity, we integrate out the
b and c quarks simultaneously at a scale R1 ’ ffiffiffiffiffiffiffiffiffiffiffiffi

mbmc
p �

R0 ’ �QCD. This scale for R1 keeps lnðR1=mb;cÞ small.

With R evolution and UR from Eq. (16) we have

r ¼ CGðmb; R1; R1ÞURðmb; R1; R0Þ
CGðmc; R1; R1ÞURðmc; R1; R0Þ
þ �
ðR0; R0Þ

�2
GðR0Þ

�
1

mb

� 1

mc

�
: (28)

This expression is independent of R1 and R0. Order-by-
order, varying R1 about

ffiffiffiffiffiffiffiffiffiffiffiffi
mbmc

p
yields an estimate of

higher-order perturbative uncertainties, much like varying

� in MS. For R0 the dependence cancels between the first
term in r and the �
 power correction. In MSR, the term

�
ðR0; R0Þ is ��3
QCD and can have either sign. There can

also be a R0 value where �
ðR0; R0Þ vanishes. Thus, keep-
ing only the first term in Eq. (28) and varying R0 � 1 GeV
by an amount* �QCD yields an estimate for the size of this

power correction. This technique goes beyond the dimen-

sional analysis estimates used in MS.
Figure 1 gives perturbative predictions for r at different

orders using the first terms in Eqs. (22) and (28) withmb ¼
4:7 GeV, mc ¼ 1:6 GeV, �sð ffiffiffiffiffiffiffiffiffiffiffiffi

mbmc
p Þ ¼ 0:2627, and the

four-loop � function. The solid lines are from the MSR
scheme, plotted as functions of R0. The dashed lines are the

fixed orderMS results with� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
mbmc

p
. The MSR results

exhibit a dramatic improvement in convergence over MS
for a wide range of R0 values. Varying R1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

mbmc
p

=2 to

2
ffiffiffiffiffiffiffiffiffiffiffiffi
mbmc

p
at N3LL ðMSRÞ gives �r ’ �0:008, which is a

significant improvement over � variation in the same

range for N3LOðMSÞ where �r ’ �0:068. (An alternate
estimate is varying 0:8< 	< 3 to get �r ¼ �0:009. This
is consistent.) The MSR results converge to an R0 depen-
dent curve, whose dependence cancels against �
ðR0; R0Þ,
so the residual R0 dependence provides a method to esti-
mate the size of this power correction. The range R0 ¼ 0:7
to 1.2 GeV keeps R0 below mc and above �QCD and yields

r ¼ 0:860� ð0:065Þ�

� ð0:008Þpert:: (29)

This estimate for the �
 power correction in MSR is in

good agreement with experiment, rexpt ¼ 0:886

ðDð�Þ
u;d; B

ð�Þ
u;dÞ and 0.854 ðDð�Þ

s ; Bð�Þ
s Þ. MSR achieves a conver-

gent perturbative prediction for r at leading order in the
OPE, and a 1=mQ power correction of moderate size,

�0:065, significantly smaller than the dimensional analy-

sis estimate of �QCDð1=mc � 1=mbÞ � 0:200 in MS.

III. ELLIS-JAFFE SUM RULE IN MSR

In MS, the Ellis-Jaffe sum rule [13] for the proton in
deep inelastic scattering with momentum transfer Q is

M1ðQÞ ¼
�
�CBðQ;�Þ�B þ �C0ðQ;�Þ â0

9

�
þ

��1ð�Þ
Q2

: (30)

�CB;0ðQ;�Þ are known at three loops [14]. Despite the �
arguments displayed here, the two leading order terms are
being written so that both coefficients and matrix elements
are separately � independent: �B ¼ gA=12þ a8=36 is
given by the axial couplings gA ¼ 1:2694 and a8 ¼
0:572 for the nucleon and hyperon, while â0 is a Q and

� independent MS matrix element. ��1 denotes all 1=Q2

power corrections with their Wilson coefficients at tree

level. The MS coefficients are affected by a p ¼ 2 renor-
malon [15], which is removed in the MSR scheme.
Switching to MSR with Eq. (11) gives [i ¼ B, 0]

CiðQ;R; RÞ � �CiðQ;RÞ½ �CiðR; RÞ��R2=Q2
: (31)

With R evolution, the MSR OPE prediction is

M1ðQÞ ¼
�
CBðQ;R1; R1ÞUB

RðQ;R1; R0Þ�B

þ C0ðQ;R1; R1ÞU0
RðQ;R1; R0Þ â09

�
þ �1ðR0; R0Þ

Q2
;

(32)

where UB;0
R are given by Eq. (16) with p ¼ 2 and the

corresponding ðan0ÞB;0 determine the appropriate ð�nÞB;0.
Figures 2 and 3 show perturbative predictions for the

Ellis-Jaffe sum rule at leading power in 1=Q, compared
with proton data from Ref. [16]. We use �sð4 GeVÞ ¼
0:2282, and the four-loop � function with four flavors. In

Fig. 2, we show order-by-order results for the MS scheme
at � ¼ Q, and for the resummed MSR scheme with

FIG. 1 (color online). Perturbative predictions at leading order
in 1=mQ for the ratio r of the B-B� and D-D� mass splittings in

the MSR scheme (solid curves) versus MS (dashed curves). The
R0 dependence of the solid red curve provides an estimate for the
power correction, independent of the comparison with the ex-
perimental data. Neither R1 nor � variation is shown in the
figure.
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R1 ¼ Q and R0 ¼ 0:9 GeV. We fix â0 ¼ 0:141 so that

both MS and MSR agree with the data for Q ’ 5 GeV.

MS agrees well with the data for largeQ, but turns away at
Q & 2 GeV and no longer converges. In contrast, the MSR
results still converge quickly and exhibit excellent agree-
ment with the data over a wide range of Q’s. The NLL
MSR result already has the right curvature and, at NNLL
and N3LL the agreement for Q 	 0:6 GeV improves. We
also display predictions in the RS scheme with subtraction
scale �f ¼ 1:0 GeV from Fig. 3(d) of Ref. [8], which

improve slightly over the MS results, but may not be
capturing the dominant power law dependence on the
factorization scale.

In Fig. 3, we show uncertainties for the three-loop results

in the MS and MSR schemes for the OPE. The dashed red

curve is theMS prediction, and the blue band estimates the
higher-order perturbative uncertainties varying � in the
range �minðQÞ<�< 2Q. For Q> 1:5 GeV, �min ¼
Q=2, while for Q< 1:5 GeV, �min ¼ 1:3Q=ð1:1þ
Q=ð1 GeVÞÞ. The red solid line is the MSR prediction,
the red band is the perturbative uncertainty from varying

R1 in the same range as was done for � in MS, and the
green band estimates the 1=Q2 power correction by vary-
ing R0 ¼ 0:7 to 1.2 GeV. (Varying 0:8< 	< 3 gives
�M1=M1 & 0:8% at N3LL for Q 	 0:8 GeV, which is
smaller than varying R1.) Figure 3 implies

� 0:01 GeV2 & �1ðR0; R0Þ & 0:01 GeV2 (33)

in MSR, which is a much smaller power correction than the
�0:10 GeV2 estimate from naive dimensional analysis in

MS.
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