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Abstract

Optical Flow Switching (OFS) is a key enabler of future scalable optical networks.
In the past decade, the OFS architecture has been studied to build an all-optical
data plane to provide an end-to-end, cost-effective data transport to users with large
transactions. Flow switching provides low-cost service to high-end users by relieving
the IP routers on the edge of wide area networks from large transactions. However,
the scheduling process of OFS presents possible queuing delays of several transaction
durations. For some special applications with urgent time deadlines, the users want
to bypass the queuing and pay more to use the network as soon as possible.

In this thesis, we propose a fast scheduling algorithm which utilizes a probing
approach to enable OFS to set up end-to-end connections for users with urgent trans-
actions with a delay of slightly more than one round-trip time. A central control
manager is used to periodically collect from network regions their most recent en-
tropy evolutions of the network states and broadcast this information across the
whole network in the control plane. With this information, fast setups of end-to-end
all-optical connections for OFS are achieved by probing independent paths between
source and destination, and reserving the available light paths along the way. A
modified Bellman-Ford algorithm is designed to select the paths with the least block-
ing probabilities. By grouping details of network states into the average entropy,
we can greatly reduce the information collected and disseminated by the central-
ized controller, making the network management and control system scalable to large
networks.

Since our algorithm makes no assumptions about network models or traffic statis-
tics, it is robust against model variations, and any future changes in network topolo-
gies and traffic patterns. The technique can also be used in heterogeneous networks,
in which networks from different domains are interconnected to provide a broader
coverage.

Thesis Supervisor: Vincent W.S. Chan
Title: Joan and Irwin Jacobs Professor of Electrical Engineering and Computer Sci-
ence
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Chapter 1

Introduction

With the invention and development of optical fibers in the 1970s, they have been

used as a replacement for copper links to provide a tremendous amount of bandwidth,

about 30 THz per fiber. However, as the network architecture is still optimized for

traditional electronics communications and switching, the achievable capacity of op-

tical networks is constrained by the speed of electronics at network nodes and far

less than fully-utilized. Since the 2000s, driven by exponential growth in bandwidth

demand, enabled by advancement of optical network devices like wavelength division

multiplexer (WDM), Erbium-doped fiber amplifier (EDFA), optical cross connect

(OXC), etc, in conjunction with Generalized Multi-Protocol Label Switching (GM-

PLS), traffic going though the wide area network (WAN) has been enabled to bypass

the expensive electronic core routers and instead use optical tunnels through the

WAN [25]. Nevertheless, users are still restrained from access to the vast bandwidth

provided by the optical backbone network because of the use of electronically switched

metropolitan area network (MAN) and access network. To realize the high rate and

low cost of optical networks, a new architectural design that takes full advantage of

the properties of optical devices is necessary.

In [1, 4-6,8-10,14,18-25], the authors have proposed and explored a new optical

transport mechanism, Optical Flow Switching (OFS), to provide end-users with direct

and cost-effective access to the core network bandwidth. To efficiently use network

resources and make the network management and control system scalable, service



holding times of wavelength channels are required to be on the order of hundreds of

milliseconds or longer. Small transactions are assumed to be sent via conventional IP

packet switching. All flows go though the schedulers to request for transmission and

will be held from transmission until the network is free for the transaction. Scheduling

leads to high network utilization albeit with some queuing delay. However, there

are some special applications that have tight time deadlines and will not like to go

through the normal scheduling process which may result in a transmission delay of

several transaction times. Thus, there are users that are willing to pay more to use

the network as soon as possible.

The demand of fast transport of large transactions with low delay calls for a new

flow switching algorithm that bypasses per flow scheduling but still obtains a clear

connection with high probability. In [7], the authors proposed a new fast connection-

setup algorithm for OFS which utilizes a probing approach with little more than one

round-trip delay time. To differentiate the new algorithm from the normal scheduling

algorithm of OFS, which utilizes schedulers on the edges of WAN, we call it "fast

scheduling". Their "fast scheduling" algorithm has the drawback that the network

management system needs to periodically broadcast the states of all links. Moreover,

they assumed a particular traffic model, homogeneous Poisson traffic arrival and

exponential or deterministic departure processes. In this thesis, we propose a vastly

simplified algorithm which will make "fast scheduling" robust to traffic models, and

scalable to large networks and heterogeneous networks with multiple administrative

domains. [27]

1.1 Optical Flow Switching

OFS is a key enabler of future scalable optical networks [10]. It was first introduced

in [1]. It is a scheduled, end-to-end transport service, in which user-to-user all-optical

connections are set up prior to transactions upon end users' requests, to provide them

with cost-effective access to the core network bandwidth [8,12,20-23]. In particular,

OFS is intended for users with large transactions, which are expected to increasingly



contribute to future traffic volume [25]. In addition to improving the quality of

service of its direct users, OFS also lowers access costs for other users by relieving

all network routers from serving large transactions. OFS can be readily implemented

through today's device technologies [15].

1.1.1 Scheduling in Optical Flow Switching

OFS provides a scheduled, all-optical, end-to-end transport service to users with

large transactions. To achieve scalable network management and control, service

holding times of light paths in OFS are required to be on the order of hundreds of

milliseconds or longer [14,20]. Upon user's flow-based request, end-to-end connections

are established by negotiations between the schedulers at both the ingress and egress

MANs. The user is held from transmission until an all-optical end-to-end light path

connection is available.

Access Scheduler
network of two users' -.. x

--- BostOn X
Santa .,. --- WAN AN

LA elmont
Optical1

51 M N,,..switch _L" coln R

X urban

S2

Figure 1-1: A schematic diagram of the scheduling of transactions for Optical Flow

Switching. [17]

Figure 1-1 shows an example of two users' scheduled transactions across the WAN

without colliding with each other. As shown in the figure, user S1 in Santa Monica

wants to send a large data file to user RI in Belmont; user S2 in Burbank wants to

send a large data file to user R2 in Lincoln. Both S1 and S2 send their requests of

.......................................................................



transmissions to the scheduling node at LA. The LA scheduler then negotiates with

the Boston scheduler on times, routes, and wavelength channels for the transmissions.

When decisions are made, the LA and Boston schedulers notify S1/R1 and S2/R2,

respectively, of the results of the negotiation. At the agreed times, all-optical, end-

to-end connections are set up, and transmissions follow immediately. The scheduling

resolves contention and prevents collision, resulting in high link utilization. [17]

1.1.2 Probing in Optical Flow Switching

Since in OFS all flows go through the MAN schedulers to request transmissions and

are held until the network is ready, these procedures normally present queuing delays

via admission control at the senders. Some special applications, however, have tight

time deadlines and are willing to pay more to gain immediate access. Examples

that use OFS as a fast transport could be grid computing, cloud computing, and

distributed sensor data ingestion. The demand of fast transport of large transactions

with low delays calls for a new flow switching algorithm that bypasses scheduling but

still obtains a clear connection with high enough probability.

In [7], the authors designed and analyzed fast scheduling algorithms for OFS that

meet setup times only slightly longer than one round-trip time. The connection is

set up by probing independent candidate paths as announced periodically by the

scheduler from source to destination and reserving the available paths along the way.

To make the analysis of determining the number of paths to probe tractable, they

assumed statistical models of homogeneous Poisson traffic arrival and exponentially

distributed departure processes for all the paths connecting source and destination.

This is unrealistic and not robust to model variations. For the heterogeneous traffic

case, they assumed complete statistics of every link are updated periodically in the

control plane. This control traffic itself can be large (-32 Gbps) in a network of

the size of the US backbone network [7]. In addition, their algorithms are highly

dependent on the statistical models of arrivals and service times.



1.2 Probing-Enabled Fast Scheduling for Optical

Flow Switching

In this work, we have designed a fast scheduling algorithm for OFS which also utilizes

the probing approach but does not depend on the assumptions of the statistics of

the traffic. As shown in Figure 1-2, a central network manager is used in the control

plane to periodically broadcast the set of available links and the information about the

evolution of the network states to all nodes. To reduce the amount of state information

that has to be sensed and disseminated, the evolution of the network state of each

network domain is grouped into one measurable parameter: the average entropy. We

chose entropy as the metric because entropy is a good measure of uncertainties. In

particular, the higher the entropy, the less certain we are about the state of the

network. In addition, average mutual information is used to capture the correlation

between neighboring links. Higher mutual information reflects higher correlation

between neighboring links. On the other hand, since we only know the average entropy

of a group of paths, instead of the detailed blocking probability of each individual

path, the paths in one group are considered as having a distribution of blocking

probabilities consistent with the reported average entropy. The blocking probability

of each path in one group is considered as an independently and identically distributed

random variable in our problem formulation. This modeling makes sense, since we

do not assume to have a detailed model of the traffic and the blocking probabilities

of the paths are not sensed and disseminated.

To capture an available light path for transmission, the algorithm employs a dis-

tributed approach in which the source node sends out probing signals along multiple

pre-computed paths, with assistance of the broadcast information from the central

network manager, to detect and reserve the available paths. We do not want to probe

too many paths as the amount of reservation traffic will be too high; we may also

end up reserving more than enough resources while taking them out of the pool of

available light paths during the booking period. Thus, we want to probe just enough

paths to achieve a certain target blocking probability.



- Set of available paths
-Entropy evolution of
-network states

Figure 1-2: A schematic diagram of the relationship between the control plane and

networks. In the control plane transport, the set of available paths and entropy
evolutions are broadcast to each node in the network.

1.2.1 Broadcasts at Two Time Scales

In the control plane transport, time evolutions of entropy and mutual information

and the set of available paths are broadcast periodically at two different time scales

as shown in Figure 1-3. The evolutions of entropy (and mutual information) are

broadcast with a period of their coherence time (that can range from several minutes

to several hours, depending on the actual traffic statistics), whereas the set of available

paths is broadcast with a period of 0.3 to 0.5 of the average transaction time (>

1S). With the evolution of entropy (and mutual information), we can get a close

approximation of the average entropy (and mutual information) at any time in the

next interval between state broadcasts.

1.2.2 The Probing Approach in Our Algorithm

The probing approach in our algorithm is similar to the one in [7]. When there is

a transaction to be made, the source node calculates the number of paths to probe

based on the broadcast information about the network states. It randomly selects

the calculated number of paths from the set of available paths and sends out probing

.............
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Figure 1-3: A schematic diagram of the broadcast at two time scales. Entropy evo-
lution is broadcast at the coarse time scale; the set of available paths is broadcast at
the fine time scale.

signals to the nodes residing on these paths. Available paths will be reserved during

the forward part of the probing process. When the destination node is reached, if

there is only one path reserved, the destination node sends an ACK to the source

node, notifying it with the chosen path. If there are multiple paths reserved, the

destination node decides which path to use. It again sends an ACK to notify the

source node of the selected path, and also sends release messages along the other

reserved paths to release them from the reservations. Once the source node receives

the ACK, it starts transmission immediately along the selected path. If no path is

reserved, failure of probing is declared. The source node then picks a different set of

paths and starts the probing process all over again.

1.3 Key Contributions and Results

Entropy and mutual information are used, for the first time, to quantify the network

states and traffic statistics. Entropy is used to quantify the uncertainty of the net-

work states. Higher entropy implicates higher uncertainties. By grouping details of

network states into average entropy, we have avoided having to make detailed as-

sumptions about the statistical model of the traffic. Mutual information is used to

capture the correlation between neighboring links. Higher mutual information reflects

.. ............ .... ..... ..' __ '. - - I .......... . ...... ... 11 - 6 - wimaiNONN"" - .............



higher correlation between neighboring links. By employing the concept of mutual

information, we have eliminated the need to use detailed probabilistic models to take

into account mid-span traffic merging and diverging.

Time evolution of entropy and mutual information estimated from online networks

is used to predict the network states in the future. Faster increase of entropy evolution

implicates more dynamically changing network traffic.

A modified Bellman-Ford algorithm is used to pick paths that are most likely to

be available (lowest entropy) to probe.

Broadcasts at two time scales are used in the control plane as shown in Figure

1-3. Entropy evolution is broadcast with a period of its coherence time (that can

range from several minutes to several hours, depending on the actual change in traffic

statistics). The set of available paths is broadcast with a period of 0.3 to 0.5 of the

average transaction time (>1S).

Our algorithm is robust against future changes in network topologies and traffic

patterns. Instead of using detailed knowledge of network topologies and traffic statis-

tics, we aggregate the information about the internal states of one network domain

into one single average entropy, and the correlations between neighboring network do-

mains into mutual information. Therefore, our algorithm is not dependent on detailed

assumptions of the models and is much more robust. Furthermore, we have shown

that a slight increase in number of paths to probe is well worth the big reduction in

network management and control efforts.

Our algorithm reduces control traffic to 1/M at the coarse time scale, where M

is the number of paths over which we average the evolutions of entropy and mutual

information. In [7], detailed traffic statistics of each link in the network is encoded

into a control packet, and is broadcast through the control plane transport to each

nodes of the network. In contrast, in our algorithm we group the traffic statistics

of paths connecting the same pair of nodes into the average evolutions of entropy

and mutual information. The average evolutions of entropy and mutual information

can be quantized and encoded into a single control packet. By grouping M paths

together, we can reduce the control traffic in unit of packets at the coarse time scale



into y of that in [7]. In particular, in the wide area network that is going to be

discussed in Chapter 4, there can be as many as 100 fiber links connecting one pair

of nodes, and for each fiber link there may be about 200 wavelength channels. For

such a case, M is about 2000. By grouping the traffic statistics in the 2000 channels

into one scalar, the average entropy evolution, we can reduce the amount of control

traffic in packets at the coarse time scale by three orders of magnitude.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

In Chapter 2, we analyze the characteristics of the evolution of entropy by studying

idealized Markov Process models. We start with the study of a single link. Then

we proceed with the study of entropy evolution of a path with L links, assuming

independence among the links. Lastly, we discuss how average entropy evolves with

time for these two simple cases.

In Chapter 3, we formulate and analyze the problem of determining the number of

paths to probe based on the value of entropy for a simple network. First, the problem

is formulated based on a simple network model as a Linear Programming problem.

Then we obtain a tight upper bound of the expected number of paths to probe given

the value of the average entropy. Finally, the tightness of this upper bound is checked

against simulation results.

In Chapter 4, we extend the algorithm to a general network which can be a mesh

network with multiple-hop paths connecting the nodes. Information Theory tech-

niques enable us to achieve fast-scheduling in a general network without introducing

models of traffic statistics while maintaining the capability of including statistical

dependencies of the states of neighboring links. Simulation results are provided to

verify this algorithm. In addition, a modified Bellman-Ford algorithm is designed to

determine the path with the least blocking probability.

In Chapter 5, we discuss the methods to collect in real time the required informa-

tion: E[H(t)], the expected entropy evolution of each link, and E[I(t)], the expected



time evolution of mutual information of two neighboring links.

Finally, in Chapter 6, we conclude the thesis with a summary of our contributions

and discussions of promising future areas of research.



Chapter 2

Evolution of Entropy with Time

In our proposed algorithm, we use the average entropy of links in the set of connections

between the same source and destination as a summary of their states. In addition,

we use the evolution of the entropy collected from samples of the network states to

estimate the link states in the future broadcast intervals. To understand how entropy

of the link states evolves with time, in this chapter we start with studying the entropy

evolution of a single link using a Markov Process model. We then proceed with the

study of entropy evolution of a path with L links, assuming independence among the

links. Finally, we discuss how average entropy evolves with time for the two simple

cases.

2.1 Entropy Evolution of a Single Link

There are two states for any path: blocked or available. Let X(t) be the probability

that the path is blocked at time t. Then we can define the binary entropy of the path

at time t to be:

Hb(t) -X(t) log2 (X(t)) - (1 - X(t)) log2 (1 - X(t)). (2.1)

If the path is available at time t = 0, Hb(0) equals to zero. As time passes, we

become less and less certain about the availability of the path, and Hb(t) increases;



until when we totally lose track of the state of the path, Hb(t) reaches its maximum

and can no longer give us any useful information about the path's current state except

for its long term average load. Take for example, a path with a Poisson traffic arrival

process with arrival rate A and exponential service distribution time with mean y as

shown in Figure 2-1(a). Assume the state of the link is 0 if it is available to serve

traffic, and is 1 if it is otherwise blocked. We can model the link states with a two-

state Markov Process, as shown in Figure 2-1(b), with a matrix of transition rate

A = AA -
^N0 1

(a) (b)

Figure 2-1: The two-state Markov Process model of a single link. (a) A single link

with Poisson traffic arrival rate A and mean service time p. (b) The Markov Process
model of the link states.

The Markov Process is in state 1 if the link is blocked. Therefore, the proba-

bility that the Markov Process is in state 1 is X(t), and the probability that the

[1 - X(t)1
Markov Process is in state 0 is 1 - X(t). Let P(t) = -, we can write the

X(t)

Kolmogorov backward equation [13, Chap. 6] of this Markov Process as:

d[P(t)] = A x P(t) ; t > 0. (2.2)
dt

With initial condition P(0) [1 0 ]T, the solution to (2.2) is:

+
P(t) = e-AtP(O) = +IL .A (2.3)

A 2 e8(A+A~t
L A±_+p Aj

28



Denote p = A/p as the loading factor of the link. The entropy of the Markov

Process, which is also the entropy of the link states, can be obtained as:

H (t) Xt) log2 (X(t)) - (1 - X(t)) log2 (1 - X(t))

S 1+ +ie - i+Pt) X log 2 ( 1 + e-+P)1Pt)

P _ P e(l-+p)t) X log2( - e-(1+A't (2.4)

p+1 ~+1 p+)lo2~ 1  p +1e +)i)

The entropy evolution of one link is shown in Figure 2-2 and 2-3, in log-log scale

and normal scale, respectively. At time zero, we know the Markov Process is in state

0, and H(0) equals to zero. Observed from both figures, as time passes, we are less

confident that the Markov Process is in state 0, and consequently, H(t) increases. If

p is smaller than or equal to one, H(t) keeps increasing until it reaches its maximum

of one. If p is greater than one, H(t) first increases to its maximum of one and

then decreases to its steady state value. This corresponds to the cases where links

are overloaded. For a heavily loaded link, (e.g., p = 30 in the two figures), H(t)

quickly reaches its maximum and then settles to its steady state value. To see why

this happens, we consider the Markov Process in Figure 2-1(b). At time zero, the

Markov Process is in state 0. Since the transition rate from state 0 to state 1 (A)

is much larger than the transition rate from state 1 to state 0 (p,), there is a high

probability for the transition from state 0 to state 1 to happen right after the initial

state, and H(t) reaches its maximum quickly. As the transition happens quickly, we

are overly confident that the Markov Process is in state 1 compared to the confidence

level at steady state. On the other hand, if we wait for a longer time, the probability

that the Markov Process is in state 1 is determined by the steady state probabilities.

Therefore, H(t) decreases to its steady state value once it soars to its maximum.
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Figure 2-2: Entropy evolution H(t) of one link with loading factor p =

1/3,0.6, 1,3 and 30 in log-log scale. The loading factor p is taken as the ratio of
the traffic arrival rate A and the mean service time p, that is, p = A/p.
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Figure 2-3: Entropy evolution H(t) of one link with loading factor p =

1/3,0.6,1,3 and 30 in normal scale. The loading factor p is taken as the ratio of

the traffic arrival rate A and the mean service time p, that is, p = A/p.
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2.1.1 Entropy at Steady State

By letting t go to infinity, the entropy H(t) of the Markov Process at steady state

can be obtained as

Ho = lim H(t)
t-~Oo

= - 1 log2 ( )
p+1 p+l

p
p+1

p
log2 ( )

p+1
(2.5)

Ho, is only a function of p, and is the same if we replace p by . Therefore, if we

know whether the link is overloaded or not, we know the loading factor from HO.

2.1.2 Time for H(t) to Reach the Maximum

Define tmax as the amount of time H(t) takes to increase from zero to its maximum.

To get tmax, we take the first derivative of H(t) with respect to t:

H'(t) = Ae- x log 2 + Ae(A+)t
H'(t = A-(A~~t Xlog2 - Ae-(AX+P)t ). (2.6)

By setting H'(t) = 0, tmax can be calculated as:

x { , log( 2 )
tmax = P+1 P-1

oo

if p > I

if p < 1
(2.7)

Therefore, for non-overloaded case (i.e., p < 1), H(t) increases to its steady state

value at t = oc, while for overloaded case (i.e., p > 1), H(t) increases to its steady

state value at t = - 1 log(2p).

Figure 2-4 shows the amount of time for H(t) to increase from zero to its maximum

for p > 1, normalized to the same p. We can see tmax decreases as p increases. This

is because larger loading factors correspond to larger traffic arrival rates; if the initial

state is 0, we lose track of the state transitions more quickly for larger arrival rates.
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X
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Figure 2-4: The amount of time H(t) takes to reach its maximum, tmax, with respect
to the loading factor p (p = ), normalized to the same mean service time p, in
log-log scale.
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2.2 Entropy Evolution of a Path with L Indepen-

dent Links

In real networks, a path is usually composed of several links. The path is available

only when all the links are available and is blocked when there is at least one blocked

link. To study the entropy evolution of a path with L links (see Figure 2-5), we

assume the state of each link is independent of each other, and each of them can be

modeled as the same Markov Process in Figure 2-1 (b).

L links

p p p p -- e

Figure 2-5: A path with L links. The traffic arrival and departure processes of each
link are independent Poisson processes with arrival rate A and departure rate p.

Similarly, we denote XL(t) as the blocking probability of the path at time t. If all

links are available at time zero, XL(t) can be calculated as

XL(t) =1- p0 (t))L

= 1 - + e(+)t)L. (2.8)
A+ A + p

Therefore, applying (2.1), the binary entropy of the state of the path is

HL(t) = ( + e-(+P)!It)L log2 [( 1 + e- +p)t)L]

p+ + 1p+1 p
- [1 - ( + e-+p)t)L] . log2 [1 - ( I + e

p+1i p+1i p+1i p+1i

(2.9)

Figure 2-6 and 2-7 show the entropy evolution for a path with different number

of independent links, one in log-log scale and one in normal scale. From both figures,

the entropy of a path with a larger loading factor p reaches its maximum faster than



that of a path with a smaller p. Also, the entropy of a path with a larger L increases

faster than that of a path with a smaller L. This can be easily explained as more links

brings in more randomness for a path, thus the entropy of the whole path increases

faster.

100

0

0

L

Cw
10-3

10~414

10 4 10-3 10-2
time gt

10-1 100

Figure 2-6: Entropy evolution HL(t) of one path with L = 1, 3, and 5 in log-log scale
for p = 0.6 and 1.2. L is the number of links in a path. p is the loading factor for
each link.

--p=0.6, L=1
asymptote

-- p=0. 6 , L=3
asymptote

- p=0. 6, L=5
asymptote

- - -p=1.2, L=1

asymptote
- - - p=1.2, L=3

asymptote
-- - p=1. 2 , L=5

asymptote

AM M M M M M M M M M M M M M M M -M M M M M - M M M M WWOMM M i i M M M M M M M MMM M MM M M M M M M M M M M M M M M M M M -M MM-M



0.9-1

4-a

0.8 - ..... ......p=0.6, L=1 _
asymptote

a 0.7 ---- p=0.6, L=3 -

0.7

asymptote
c 0.6 --- p=0.6, L=5 -

-W % asymptote
>0.5 --- p=1.2, L=1

asymptote
W 043L - --- p=1.2, L=3

-444
C:0. asymptote .

w 0.3 %- - -p=1.2, L=5

0.2 .... asymptote -

0.1

01

0 1 2 3 4 5
time gt

Figure 2-7: Entropy evolution HL(t) of one path with L = 1, 3, and 5 in normal scale
for p = 0.6 and 1.2. L is the number of links in a path. p is the loading factor for
each link.



2.2.1 Entropy at Steady State

Letting t go to infinity, the asymptote of HL(t) can be obtained as:

HLOO lim HL(t)
t-oo

1 ( L
= -- I (i)L]log 2p+109 2.0)L

(2.10)

which is a function of p and L.

2.2.2 Time for HL(t) to Reach the Maximum

Define tLmax be the amount of time for HL(t) to increase from zero to its maximum.

Similarly as for tmax, tLmax can be obtained as:

log 1 P -
tLmax j p+0 2T(p+l)-1

oo0

if p> 2L - 1

ifp< 2L -1

For large loading factor p, the asymptote of tLmax is:

1 1
ta = lim tLmaz = - - log 2.

P-oo0 (p +1)L p

Figure 2-8 depicts tLmax with respect to p for L = 1, 2 and 3, normalized to the

same p. tLmax decreases as p and L increases. For large p, tLmax can be approximated

by IL - log 2.

2.3 Summary of Chapter 2

In the previous two sections, we studied entropy evolution of a single link and a

single path with L independent links. For both cases, if we are certain about the

initial state of the link (or path), as time passes, its entropy either increases to its

maximum value and stays there, or first increases to its maximum value and then

log 2 (+1 ~L
p~)L

- 1 -

(2.11)

(2.12)
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decreases to its steady state value. With the same traffic statistics for each link,

entropy of a path with more than one independent links increases faster than entropy

of a single link.

However, in real-life networks, usually traffic statistics of two neighboring links are

dependent on each other. If the correlations between any two neighboring links of a

path are one, the path can be considered as a single link. If the correlations between

any two neighboring links of a path are smaller than one, this can be considered

as an intermediate case between the two extremities of a single link and a path

with L independent links. Therefore we can argue that the entropy of the path with

correlations among its constituent links also increases from zero to its maximum value

as time passes.

At the maximum value, entropy loses its ability of inferring the state of the path.

Therefore, entropy evolution should be updated before it reaches its maximum. To

reduce the complexity for updating and broadcasting entropy evolutions, we do not

broadcast H(t) for every path. Instead, we broadcast the set of available links and

the average entropy evolution of the group. The average entropy evolution will also

starts from zero and keeps increasing within one update broadcast interval.
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Chapter 3

Fast Scheduling Algorithm for a

Simple Network

Chapter 2 studied how entropy of a path evolves with time. If at the beginning of the

fine broadcast interval we know the set of available paths, as time evolves we are less

and less certain about the availability of these paths, and the average entropy of the

states of these paths increases. Assume for now the evolution of this average entropy

can be estimated by online sampling of the networks and is broadcast periodically

to each node with a period of the coherence time of the traffic. As discussed in

Chapter 1, within one fine broadcast interval, our algorithm picks a number of paths

at random from the available set to probe and reserve the paths that are open. When

the probing messages reach the destination, if at least one open path has been found,

the destination node picks one open path and sends an ACK back to the source,

notifying the sender and all the nodes along the chosen reserved light path. It also

sends release signals to the nodes along the rest of the reserved paths to release the

additional reservations. If no open path is found, the destination node informs the

sender on the failure of reservation, and the process is repeated with a new set of

paths. On the one hand, we do not want to probe too many paths as we may over

reserve resources during probing. On the other hand, we do not want to probe too

few paths as we may end up with no open path. Therefore, the problem here is: how

to determine the number of paths to be probed to meet a target blocking probability?



In this chapter, we study the problem of determining the number of paths to probe

from the entropy evolution for a simple network. We start by introducing a network

model in Section 3.1. We then cast the problem as a Linear Programming problem

and solve for the upper bound of the expected number of paths to probe. Finally, we

verify this upper bound by simulation results.

3.1 Network Model

As discussed in Chapter 1, in our algorithm, we only use the average entropy of a

group of paths, instead of the detailed blocking probability of each individual path.

Therefore, the paths in one group are considered as having a distribution of blocking

probabilities consistent with the reported average entropy. The blocking probability

of each path in one group is considered as an independently and identically distributed

random variable in our problem formulation.

Figure 3-1 shows the model of a simple network of one source-destination pair with

m paths. The blocking probability of each path is an independently and identically

distributed random variable X. Set A is the set of available paths. N(A) is the

cardinality (size) of A. Within the N(A) paths, we randomly pick N of them such

that their total blocking probability is smaller than or equal to the target blocking

probability PB.

X

m paths

Figure 3-1: A simple network of one source-destination pair with m links in-between.
The blocking probability of each link is an independently and identically distributed
random variable X.



3.2 Problem Formulation

Mathematically, to meet the target blocking probability PB, we select N paths out of

A to probe, such that
N-I

Xi < PB < Xi,
i=1

which is equivalent to

N N-1

log102 Xi < log2 PB < )7,1g2 Xi.

Taking expectation of both sides,

N- E[log 2 X] < log 2 PB < (N - 1) -E[log 2 X].

Therefore, the expected number of path to probe is bounded by

- log 2 PB +
E[-log2 (X)]

- 1g 2 PB
- E[-log 2 (X)]

The average entropy of the network is

- H+ H 2 --- + HN(A)

N(A)

Taking expectation of both sides, we get

H1+ H2+ -+ HN(A) E[H]
N( A)

Therefore, for the network model in Figure 3-1, the expected average entropy of all

links is equal to the expected entropy of one link. Given the expected average entropy

E[H], we want to determine the number of paths to probe in terms of the upper and

lower bounds of N. Since, from (3.1), -log2 PB can be less than N by at most one,E[ l0g2 (X)]

in the following study we approximate N E by log2 .)

Let fx(x) be the density function of the blocking probability X. Since we only

(3.1)



pick paths out of the available set A, and within one fine broadcast interval, the

entropy H(t) is increasing, we know the blocking probabilitie of each path in A is

smaller than 0.5. Therefore, we have the following conditions for fx(x):

fx(x) > 0, for x E [0,0.5],

fx(x)dx = 1, (3.2)

E[Hb(X) ] = ho,

where ho is the value of the entropy at time t seconds after the last update.

Let C be the set of all density functions fx(x) that satisfy the above conditions.

We formulate the following problem to find the lower bound Nmin and upper bound

Nmax of N.

Problem 3.1 The lower bound of N is determined by:

Nmin = min g2 (3.3)
fx(x)c E[ -log 2 (X)]

Problem 3.2 The upper bound of N is determined by:

S- logs FB
Nmax = max . (3.4)

fx(x)cc E[- log 2 (X)](

3.2.1 Lower Bound of N

To find the lower bound of N in Problem 3.1, we need to find maxfx(x)ec E[- log 2(X)].

Clearly, for a density function such as

fx(x) = (1 - ho)6(x) + ho6(x - 0.5).

fx(x) E C and E[- log2 (X)] = oc. As a result, we have Nmin = 0. This is degenerate

and a trivial lower bound. We are more interested in Nmax as a working parameter

for the algorithm.



3.2.2 Upper Bound of N

Nmax in Problem 3.2 can be obtained by first solving the following optimization

problem.

Problem 3.3 The minimum of E[- log2(X)] over fx(X) E C is determined by

E[-log2 (X)]min = min E[-log2 (X)]. (3.5)
fx(x)Ec

Problem 3.3 is an optimization problem over the set of continuous functions

fx(x) E C, which is not easy to solve. But as illustrated in the following discus-

sions, the optimization problem over the discrete counterpart of fx (x), Px (x), is a

Linear Programming problem. More importantly, as will be discussed later, the min-

imum of E[- log 2(X)] we get from the Linear Programming problem is also optimum

for the optimization over the continuous case of fx(x).

To optimize (3.5) over Px(x), let x 1, X2 , ... , zn be any n different possible values

for X in [0, 0.5], and y1, y 2 , ... , yn be the probability weights for X1 , x2 , .--, Xn ( i.e.,

Px(xi) = yi). Then the conditions in (3.2) can be rewritten as

EIi

i=1
n

E yiH(xi) = ho, (3.6)
i=1

yi 0, for i E {1, ... , n}.

Subjecting to the above conditions, we want to minimize E= 1 y[-1og2 (Xi)].

To further transform the conditions and the problem, we define the following

vectors:

e1= [ 1 I ... 1 I

y = [y1y2 ... Yn ] > 0

. h = [ Hb(x1) Hb(X2) ... Hb(X) ]I T 0



* g [ -log 2 (Xi) -log 2 (x 2 ) ... -log 2 (Xz) ]T 0

Now the conditions in (3.6) are equivalent to:

1T y= 1,

hTy = ho, (3.7)

yi 2 0, for i E {l, ... ,n}.

Let Y be the polyhedron defined by y under the conditions in (3.7). With the

new representations, the discrete case of Problem 3.3 is:

Problem 3.4 The minimum of E[-log2 (X)] over the discrete case of fx(x) (i.e.

probability weights represented by y E Y), is determined by

E[- log 2 (X)]min = min gTy. (3.8)

Problem 3.4 is an Linear Programming problem. For the Linear Programming

problem of minimizing gTy over y E Y, if there exists an optimal solution, there exists

a basic feasible optimal solution [3, Chap. 2], denoted by y*. For a basic feasible

solution, there are n linearly independent active constraints on y*. In conditions

(3.7), we already have two such constraints, 1 Ty = 1 and hTy = ho. Therefore, we

need (n - 2) yi's such that yi = 0. Intuitively, since g > 0 and y 0, the minimum

of gTy is achieved by letting the (n - 2) yi's for the largest (n - 2) gi's equal to zero.

As a consequence, for any chosen set of discrete values of X, the optimization

problem 3.4 can always reduces to a problem where only two of the y*'s are greater

than or equal to zero. What's more, the optimum result obtained by having only

two of the y*'s are greater than or equal to zero in Problem 3.4 is also optimum for

Problem 3.3, as illustrated by the following theorem.

Theorem 3.1 Let Xe be a continuous random variable with probability density func-

tion fx,(x) E C. Let Xj be the discrete random variable that achieves optimum

solution in Problem 3.4. Then, E[- log 2 (Xe)] > E[- log 2 (X)].



The proof of the above theorem is shown in A.1. Therefore, one fx(x) that

optimizes Problem 3.3 can be written as:

fx(X) = ao(X - XI) + (1 - a)6(X - X2),

where a E (0,1), x1 E (0,0.5), and X2 E (0, 0.5). As a result, Problem 3.3 can be

transformed to the following problem.

Problem 3.5 The minimum of E[-log2 (X)] over fx(x) E C is determined by

E[-log2 (X)]min min - a log 2 (Xi) - (1 - a) log 2 (X2)
ac[0,1],21,X2C [0,0.5] (3.9)

subject to: - alHb(x1) - (1 - a)Hb(X2) = ho.

With this transformation, the optimal solution to Problem 3.3 can be readily

solved as (see A.2):

E[192 () ]- log2 [H- 1 (ho)] if ho < hA
(1 -ho)_ log 2 [H- 1

(ho)]}+ho -hA if ho > hA1-hA

where H -1 (ho) is the inverse function of Hb(x) = ho for x E (0, 0.5). hA is the solution

to h-1 -1 - log2Hj-1(h) - 1 = 0 and, numerically, hA ~ 0.4967.
Hb 1(h)log2- log2  H (h)

Figure 3-2 depicts E[- log2 (X)]min in (3.10) for PB = 10-4. As discussed earlier,

E[-log2 (X)]min equals to -log 2 [H- 1(ho)] for ho smaller than or equal to hA, and is

smaller for ho greater than hA. However, from the figure, we can see - log2 [H-(ho)]

is a close approximation for E[- log2 (X)]mn even when ho is greater than hA. We

will discuss more on the justification of this approximation of E[- log2 (X)]min using

- log 2 [H-17(ho)] later.

Now substituting (3.10) into (3.4), we obtain Nmax in Problem 3.2 as:

-log92 (B) if ho < hA
R = -lo2{H-l(ho)]

ANmax blg[1 'h) fh (3.11)

-log 2 (PB)-(1-hA) if ho > hA
(1-ho){-log 2[H-'(ho)]}+ho-hA
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Figure 3-2: E[- log2(X)]min and its approximation for PB = 104. PB is the target

blocking probability.

Similar to the approximation of E[- log2 (X)]mIn using - log2[H--1 (ho)], Nmax can be

approximated by Na,,, which is defined as

Napp = 10g 2 (PB)
log 2 [H 1 (ho)]

Figure 3-3 plots Nmax and Rapp with respect to the expected average entropy.

Napp is the same as Nmax for ho <; hA and is smaller than Nmax for ho > hA. Both

Nap and Nmax increase as ho increases. For ho smaller than 0.1, we know the paths

in A have low blocking probabilities. Therefore the average number of paths we need

to probe is only one or two, i.e. Nmax < 2. For ho close to 1, we are less certain about

the availability of the paths in A. Thus, we end up with probing more of them. The

largest difference between Rmax and Rapp occurs at point B in Figure 3-3, where Na,

is smaller than Nmax by:
Nmax - Nap, _ 0.145.

Nmax

......................... . ........ ...... -



This leads to a difference of only one or two paths for PB = 10-, for which case Na,

can be taken as a good approximation of Nmx. In fact for the entropy technique to

be useful, most of the time the network will be operating with entropy less than hA,

where the two expressions are equal.

0.2 0.4 0.6 0.8
Expected average entropy, h

Figure 3-3: Nmax and 9a,. for PB = 104 .Nmax, defined in (3.11), is the maximum of
the expected number of paths to probe given the expected average entropy is ho. Napp,
defined in (3.12), is the approximation of Nmax.

probability.
PB = 10-' is the target blocking

The number of paths to probe is an integer. This can be obtained by rounding up

Nmax to the integer ceiling of Nmax. Figure 3-4 shows the ceilings of Nmax and Napp

for PB = 10'.

............ I .. .... .... .... ............................



U)

CU 12- r
a N

app _-

- - -celing of N
10 max

E- - - ceiling of Napp

D8- BC A

(D

6-2 - --

0

M:4-

0A

CL

0
0 0.2 0.4 0.6 0.8 1

Expected average entropy,

Figure 3-4: Nmax and Napp and their ceilings for PB = 104. Ceiling of Nmax is taken

as the integer ceiling of Nmax. Similarly, ceiling of Na,, is the integer ceiling of Nap.

3.3 Simulation Results and Theoretical Bounds

To evaluate the performance of the proposed method of determining the number of

paths to probe based on the expected average entropy value, computer simulation

results are presented in this section. The simulation was based on the model in

Figure 3-1. The basic idea is to simulate a simple network of one source-destination

pair with m links in between. In our algorithm, we only use the average entropy to

determine the average number of paths to probe. In order to compare the performance

of our algorithm with the actual average number of paths to probe, each link in

the simulation is assigned with a randomly drawn blocking probability according to

the same probability density function. Based on these randomly assigned blocking



probabilities, we can calculate the average entropy and thus the theoretical bound of

the expected number of paths to probe. We can also find the actual average number

of paths to probe if the paths are randomly chosen in the simulation. Therefore, the

comparison can be carried out.

Two density functions were used to generate blocking probabilities, uniform and

truncated Gaussian. Section 3.3.1 discusses the simulation results with blocking prob-

abilities drawn from uniform distributions, while Section 3.3.2 discusses the simulation

results with blocking probabilities drawn from truncated Gaussian distributions.

3.3.1 Uniform Distribution of Blocking Probability X

Based on the model in Figure 3-1, we simulated a simple network of one source-

destination pair with m links in between. A randomly drawn blocking probability

with uniform distribution in [0, 0.5] is assigned to each path. As shown in Figure 3-5,

two forms of N as functions of the average entropy value ho, N, and No, are plotted.

To get N,, a sequence of paths are randomly selected from the pool of m available

paths until the total blocking probability of the selected paths is smaller than the

target blocking probability PB. N, is taken as the average of the numbers of paths of

such repeated processes. On the other hand, to get N0, paths are picked in ascending

order of their blocking probabilities, that is, the path with lowest blocking probability

is picked first, followed by the one with the second lowest blocking probability, etc.,

until their total blocking probability is smaller than PB. Then, in the same manner

as for Nr, N0 is taken as the average number of selected paths over many runs. In

particular, N0 can be considered as the analogue of the case from [7] for heterogeneous

traffic arrival and departure processes. Since N assumes knowing the individual

blocking probabilities of each path and N, does not, our algorithm will choose Nmax

paths to probe, which is very close to Nr.

Figure 3-5 shows the simulation results of N, and N in comparison with Nmax,

Nmax +1 and /app. Figure 3-6 shows the numbers of paths and their ceilings. In both

figures, we observe that Rmax + 1 is the upper bound for N,, and Nmax and Napp are

close approximations of N,. In Figure 3-5, N, is bounded by Nmax for h > 0.83, and
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Figure 3-5: Simulation results of average number of paths to probe given E[H] = ho
to achieve PB =i10, for the case of uniformly-distributed blocking probability for
each link. Nmaz, defined in (3.11), is the theoretical upper bound of the expected

number of paths to probe. Na,,,defined in (3.12), is the approximation of Nmax. Nr

is the simulated average number of paths to probe when only the average entropy is

given and paths are selected randomly. N0 is the simulated average number of paths

to probe when detailed blocking probability of each path is given. PB = 104 is the

target blocking probability.
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Figure 3-6: Simulation results of average number of paths to probe with ceilings
given E[R] = ho to achieve PB = 10-, for the case of uniformly-distributed blocking
probability for each link. R is defined in (3.11). a,,p is defined in (3.12). N, is
the simulated average number of paths to probe when only the average entropy is
given and paths are selected randomly. N0 is the simulated average number of paths
to probe when detailed blocking probability of each path is given. PB = 10 ' is the
target blocking probability. Ceiling of Nmax is the integer ceiling of Nmax. Ceilings

of other lines are obtained similarly.
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is slightly larger than Nmax for h < 0.83. However, the latter case can be justified

by the approximation applied in the problem formulation in Section 3.2, where Nmax

is actually confined by (3.1). Indeed, observing Figure 3-5, even when N, is larger

than Nmax, N, is always smaller than Nmax + 1. Therefore, Nmax + 1 is a good upper

bound for N, and Nmas is very close to Nr. In addition, Napp is no smaller than

N, by one for all h values, which suggests it is a good approximation to N, as well.

On the other hand, N, is smaller than N, for all h E (0, 1), and is only half of N,

for h E (0.4, 0.78). Nevertheless, this is understandable as we have to sacrifice some

performance in order to avoid detailed assumptions of network statistics and to reduce

the amount of network control and management messaging.

Figure 3-7 and 3-8 show the results of simulations for different target blocking

probabilities, PB = 10-2, 104, and 10-6. The parameters defined are the same as

those in Figure 3-5 and 3-6. From the figures we can see the average number of paths

to probe increases linearly with - log 2 PB. For smaller PB, N, is bounded by Nmax

in a wider range of entropy ho, while N, is always bounded by Nmax + 1. This is

due to the rounding-up effect incurred when the actual blocking probability of N + 1

paths is smaller than PB but the total blocking probability of N paths is greater than

PB. When PB is larger, it is easier to overshoot the blocking probability requirement

with fewer number of paths. Therefore, the rounding-up effect is larger for larger

PB. However, N, is bounded by Nmax + 1 for all values of PB, which can be clearly

observed from the figures.

3.3.2 Truncated Gaussian Distribution of Blocking Probabil-

ity X

Similarly to the case of uniformly distributed blocking probability for each link, we

simulated the simple network in Figure 3-1 with each link assigned a randomly drawn

blocking probability with truncated Gaussian distributions. The Gaussian distribu-

tions used in the simulation are truncated to be within interval [0, 0.5], with means

varying from zero to 0.5 and standard deviation 0.1. This ensures us to get a wide
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Figure 3-7: Average number of paths to probe given E[H] = ho to achieve the target
blocking probabilities PB = -10-4iO, n 10-6 in the simulation of uniformly-
distributed blocking probability for each link. Nr is the simulated average number
of paths to probe when only the average entropy is given and paths are selected
randomly. N0 is the simulated average number of paths to probe when detailed
blocking probability of each path is given. PB is the target blocking probability.
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range of average entropy value. Figure 3-9 and 3-10 show two forms of N, N, and No,

which are obtained in similar ways as discussed in the previous section. Figure 3-10

shows the same simulation results as Figure 3-9 except with ceilings of the numbers

of paths.

0.2 0.4 0.6 0.8 1
Average entropy, %

Figure 3-9: Simulation results of average number of paths to probe given E[H] =
ho to achieve PB = 10', for the case of truncated Gaussian-distributed blocking

probability for each link. , defined in (3.11), is the upper bound of the expected

number of paths to probe given the expected average entropy. N,,pp, defined in (3.12),
is the approximation of NVa2. N, is the simulated average number of paths to probe

when only the average entropy is given and paths are selected randomly. N is the

simulated average number of paths to probe when detailed blocking probability of

each path is given. PB is the target blocking probability.

From Figure 3-9 and 3-10, we also observe that Nmx + 1 is a good upper bound

for N,; Nma2 and NaIp are close approximations to N,. With detailed information,

we only need to pick on average N number of paths, which is smaller than N, as

expected.

Figure 3-11 and 3-12 show the results of simulations for different target blocking

................... .... ..
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Figure 3-10: Simulation results of average number of paths to probe and their ceilings
given E[I] = ho to achieve PB = 10-, for the case of truncated Gaussian-distributed
blocking probability for each link. Nmax, defined in (3.11), is the upper bound of the
expected number of paths to probe given the expected average entropy. Napp, defined
in (3.12), is approximation of Nmax. N, is the simulated average number of paths to
probe when only the average entropy is given and paths are selected randomly. N, is
the simulated average number of paths to probe when detailed blocking probability
of each path is given. PB is the target blocking probability.



probabilities PB = 102, 10-, and 10-6. We observe similar results as in Figure 3-7

and 3-8. The average number of paths to probe increases linearly with - log 2 PB-

N, is bounded by Nmax and Napp in a wider range of ho for smaller PB due to less

rounding-up effects. And N, is always bounded by Nmax + 1 for all values of PB.
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Figure 3-11: Average number of paths to probe given E[H] = ho to achieve the target
blocking probabilities PB = 10-2, _1 , and 10-6 in the simulation of truncated
Gaussian-distributed blocking probability for each link. N, is the simulated average
number of paths to probe when only the average entropy is given and paths are
selected randomly. N is the simulated average number of paths to probe when
detailed blocking probability of each path is given.
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3.4 Summary of Chapter 3

In this chapter, we studied how to determine the number of paths to probe given the

expected average entropy of a simple network. We formulated a Linear Programming

problem and solved it to obtain the upper bound for the expected number of paths

to probe. In particular, this upper bound is close to the actual average number of

paths to probe in our simulations. Although we sacrifice some performance in terms

of probing more paths than if we are given detailed network statistics, we have greatly

reduced the amount of network management and control efforts.
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Chapter 4

Fast Scheduling Algorithm for a

General Network

We have studied the fast scheduling algorithm employing the probing method with the

average entropy of a simple network. As shown in Figure 3-1, this simple network is

composed of paths with only one link. However, real networks usually have multiple

links in a path. Take an example of the optical backbone network of the United

States, with its topology shown in Figure 4-1 and parameters described in Table 4.1.

The US backbone network in Figure 4-1 is a mesh network composed of 60 nodes.

Each link in the figure represents about 100 fiber links, and for each fiber link there

are about 200 wavelength channels. The average number of hops of an end-to-end

connection is four. The average node degree is 2.6, while the largest node degree is five

and the least node degree is two. Therefore, a typical path in the backbone network

comprises four links on the average, and there are interconnections at the connecting

nodes, which introduce traffic merging and diverging. These mid-span traffic merging

and diverging incur dependency among neighboring links, adding more complexity to

network modeling.

For this setting, the problem arises: how can we extend our analysis in Chapter

3 to a general network which can be as complex as the one in Figure 4-1? On the

one hand, we do not want to naively simplify the problem too much by assuming

independencies between neighboring links, which is clearly unrealistic. On the other



hand, we do not want to introduce complicated models of the networks and traffic

statistics which are intractable for a large scale network. One can suggest adding

dependency among links in the modeling. This may be tractable for a network with

four or five nodes, but definitely not for a large-scale network as the US backbone

network. Besides, it is almost impossible for us to get a precise model of the traffic

statistics in a real world large-scale network.

In this chapter, we discuss how we extend the fast-scheduling algorithm to a

general network without introducing models of traffic statistics and at the same time

still maintain the capability of including statistical dependencies between neighboring

links. In Section 4.1, by introducing mutual information among neighboring links, we

study what useful results can be drawn from Information Theory. In Section 4.2 we

extend the fast-scheduling algorithm to mesh networks. We first study the method

on a network with two-hop paths in Section 4.2.1. Simulation results validated the

method. Then we construct a modified Bellman-Ford algorithm to pick the path

that is most likely to be available from a mesh network and further extend the fast-

scheduling method to a general mesh network in Section 4.2.2. Finally, we conclude

this chapter in Section 4.3.

Parameter Value

Number of nodes 60
Number of links 77
Average node degree 2.6
Largest node degree 5
Least node degree 2
Average link length 450 km
Number of wavelength channels per fiber link 200
Average number of hops of an end-to-end connection 4

Table 4.1: Important parameters for the US backbone network and their values,
adapted from [16, Tbls. 8.1 and 8.2].
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Figure 4-1: Optical backbone network of the United States. Reproduced from [16, Fig.
8.1].

4.1 Information Theoretical Analysis

Consider a path with two links L1 and L2 as shown in Figure 4-2. The blocking

probability of link L1 is a random variable X1, and the blocking probability of link

L2 is a random variable X 2. For L 1, it has two states, either 0 or 1, where 0 means

that the link is available and 1 means the link is blocked. Thus, P{L1 = 1} = X1.

The entropy of L1 can be easily calculated as H(L1 ) = Hb(X1). Similarly, entropy of

L2 is H(L2) = Hb(X2).

L1 L2
SO OOD

Figure 4-2: A path with two links L1 and L 2 -

From Information Theory [11], the total entropy of Li and L 2 is

H(L1, L 2 ) = H(L1 ) + H(L2) - I(L1; L 2). (4.1)



I(LI; L 2) is the mutual information between L1 and L 2. Given the joint probability

mass function (PMF) of Li and L 2 (PLL 2 ), and their marginal PMFs (PL, and PL2 ),

I(LI; L2 ) can be written as

I(Li; L 2 ) = E (PL1 L2 (ll2) x log 2( )
L1,L2~ PL1 (11) PL2 (2)

(4.2)

H(L1,L2)

H(L1) H(L2)

Figure 4-3: Graphical
tual information I(Li;

representation of entropies H(L1 ), H(L2), H(L1 , L2) and mu-
L 2 ). [11, Figure 2.2.]

I(Li; L2 ) can be interpreted as the correlation between L1 and L2. The relation-

ship among H(Li), H(L2), H(L1, L2) and I(Li; L2 ) is illustrated in Figure 4-3. In the

figure, the area of each circle represents the entropy of the states of each correspond-

ing link (H(L 1 ) or H(L 2)); the overlapping area represents the mutual information

I(Li; L2 ); and the total area circumscribed by the two circles represents the total

entropy of L1 and L 2, H(L 1, L2). There are two extreme cases for the dependency

between Li and L2, independent and fully dependent (correlation equals to one). For

the case where Li and L2 are independent, there is no overlapping between the two

circles; therefore, I(Li; L2) equals to zero. For the case where the state of L 2 can be

fully determined by that of L 1, or vice versa, the two circles totally overlap with each



other; as a result, I(LI; L2 ) = H(LI) = H(L 2). For intermediate cases where the cor-

relation between Li and L2 is between zero and one, the area of overlapping increases

with increase of the correlation between Li and L 2. Thus, I(L1; L 2) increases with

increase of the correlation between L1 and L2.

Define a new random variable M 2 to represent the state of the whole path. M 2 is

0 if the path is available and M2 is 1 if the path is blocked, corresponding to either

L1 or L2 is blocked, or both of them are. Then we have the following theorem.

Theorem 4.1 The entropy of the state of a two-hop path is smaller than or equal to

the entropy of the states of its two constituent links. That is

H(M 2) < H(LI) + H(L 2) - I(L1; L 2 ) = H(L 1, L 2 ). (4.3)

Theorem 4.1 is proven in B.1. It can be easily extended to a path with three or

more links in Figure 4-4. Similarly, we define a random variable M, to represent the

state of the whole path. Then we have the following theorem.

Theorem 4.2 The entropy of the state of a n-hop path is smaller than or equal to

the entropy of the states of its n constituent links. That is

n n-1

H(Mn) < > H(Lj) - E I(Li; Li,). (4.4)

L1 L2 Ln

Figure 4-4: A path with n links L 1, L 2 , ... , and Ln.

The proof is given in B.2.

Therefore, we can get an upper bound of the entropy of the state of a path from

the entropy of states of its constituent links and the mutual information among them.



4.2 Entropy-Assisted Probing in a General Net-

work

With the study in Section 4.1, we can obtain the upper bound of the entropy of a

path. We can then use this upper bound in (3.11) to obtain an upper bound of the

expected number of paths to probe. In the following analysis, we first work on a

network with two-hop paths, and then extend the algorithm to a mesh network.

4.2.1 Extension to a Network with Two-Hop Paths

As discussed in Section 1.2, the evolution of entropy of groups of links and the evolu-

tion of mutual information of neighboring groups of links are broadcast periodically

at the coarse time scale in the control plane. Consider the network represented in

Figure 4-2, at any time t we can get a close approximation of E[H(Li)], E[H(L2)],

and E[I(Li; L2)]. Assume E[H(L1 )] = hi, E[H(L2)] = h2, and E[I(Li; L 2 )] = i, then

we have E[H(M2)] < E[H(Li) + H(L2) - I(Li; L2 )], that is, E[H(M2)] < hi+h 2 - i.

Substituting ho = hi+h2 -i into (3.11), we can obtain the upper bound of the average

number of paths to probe for this network. In particular, larger mutual information

between L1 and L 2 corresponds to smaller upper bound of E[H(M2)], thus the upper

bound of the average number of probing paths is tighter.

Simulations were carried out to test the probing method for paths with two hops.

Correlation between Li and L2 was introduced by defining the following conditional

probability:

Px2 xl (X2|Xi) =if X2  X (4.5)
1 -# if x 2  X1

Figure 4-5 shows the simulation results and Figure 4-6 shows the same results

with ceilings. As shown in Figure 4-5, three cases with different # values were tested

to achieve the same target blocking probability PB = 10-. Nmax. defined in (3.11),

is the upper bound of the expected number of paths to probe using hi + h2 - i as

the upper bound of the entropy of the path. In contrast, Ni is the simulated average



number of paths to probe for 3 = 0.9, N2 is for # = 0.99 and N3 is for 3 = 0.999.
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Figure 4-5: Average number of paths to probe, given HM2, to achieve PB = 10-5 in the
simulation of a network with two-hop paths. # represents the amount of dependency
between the two links for one path, which is defined in (4.5). Nma. is the theoretical
upper bound for the expected number of paths to probe as defined in (3.11). N1 is
the simulation result of the actual average number of probing paths for 3 = 0.9. N2
is the one for 3 = 0.99. N3 is the one for 3 = 0.999.

As expected, Nmax, is a tight bound of N3 and N2 for which # equals to 0.999

and 0.99, respectively. For the cases of # = 0.9, as we lose track of the states of

the network when H(M2) exceeds one, we should operate at the region where H(M2)

is small. For example, even if H(L1 ) = 0 for # = 0.9, the bound of H(M2) is

H(L2 |L1) = Hb(0.9) = 0.469. Therefore, the line of N1 starts from H(M2) = 0.469.

For this case, we should operate at the region of H(M2) E [0.47,0.8], and re-broadcast

the necessary information when H(M2) exceeds 0.8.
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Nmax is the theoretical upper bound for the expected number of paths to probe as

defined in (3.11). Ni is the simulation result of the actual average number of probing
paths for # = 0.9. N2 is the one for # = 0.99. N3 is the one for 0 = 0.999.
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4.2.2 Extension to a Mesh Network

The above described method of determining the number of probing paths can be

easily extended to paths with three or more links. However, in the mesh network

as shown in Figure 4-7, each link in the graph can represents a group of links that

connects the same pair of nodes, and there can be multiple groups of paths between

the source and destination nodes. For such a case, we first need to decide which

group of paths is the most likely to be available. Then we can determine the number

of paths that need to be probed from that group of paths using the same method

described in Section 4.2.1. The group of paths that is most likely to be open can be

obtained through a modified Bellman-Ford algorithm.

Bellman-Ford algorithm [13, Chap. 5] computes shortest paths from each node

to the destination node in a weighted graph with no negative cycles. The algorithm

starts with searching for the shortest path from each node to the destination node

with only one hop. It then iterates over the number of hops h to search for the

shortest paths within h hops. It stops at the step when for each node the shortest

path within h - 1 hops is the same as the one within h hops. Define dij to be the

weight of link between node i and node j and dij = oc if there is no link between

them. Define D4 to be the length of the shortest path from node i to the destination

node within h hops. With these definitions, the Bellman-Ford algorithm is described

in Table 4.2, with node 1 being the destination node.

Algorithm The Bellman-Ford algorithm
Initialize

D = 0 for all h
D' = dii for all i 7 1

Repeat
D h+1 = ming [d.. + Dj]

Until D4 = Dh-1 for all i

Table 4.2: The Bellman-Ford algorithm.

Take the mesh network in Figure 4-7 for example, we want to find the path with

the smallest expected average entropy from the source node S to the destination node

D. Inspired by the Bellman-Ford algorithm, the length of each link in the graph is
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Figure 4-7: A mesh network.

taken as the expected average entropy , that is, dij = E[Hij]. dij = oc if there is

no link between node i and node j. Similarly, D' is defined as the length of the

shortest path from node i to node 1 within h hops. However, the Bellman-Ford

algorithm cannot be directly applied here because the mutual information should be

deducted from the neighboring links for any path and this cannot be pre-assigned

into the weights of links before the shortest path is determined. Instead, the mutual

information should be taken into account at each iteration step. Assuming we have

already obtained D at step h, then at each node i, Dh1
l can be obtained by selecting

the shortest path among dij + D - E[I3 k], where k is the node to which node j is

linked to in D4, and hIjk is the mutual information between Link ij and Link jk.

The value of dii + D' - E[Iijk] is always non-negative since mutual information is

always smaller than or equal to the entropy of each link. Therefore, the path with the

smallest expected average entropy from the source node S to the destination node D

in Figure 4-7 can be obtained by the modified Bellman-Ford algorithm, described in

Table 4.3.

After running the algorithm to find the shortest path from source to destination,

we can take the "length" (as defined in the modified Bellman-Ford algorithm) of the

shortest path between them as the approximation of the upper bound of the average

entropy. Then we can determine how many paths we need to probe along the shortest

path using (3.4).



Algorithm The modified Bellman-Ford algorithm
Initialize

D = 0 for all h
D' = dil for all i $ 1

Repeat
Dj h1= min [dij - E[Ij3k] + D] for all i # 1 and h > 0,
where k is the node to which node j is linked to in Di
and lijk is the mutual information between Link ij and Link jk

Until D = Dh- for all i

Table 4.3: The modified Bellman-Ford algorithm.

4.3 Summary of Chapter 4

In this chapter, we discussed how to extend the fast-scheduling algorithm to a general

network. Mutual information among neighboring links was introduced to capture the

dependencies among them. With that, we were able to extend the fast-scheduling al-

gorithm to general mesh networks without introducing models of traffic statistics.

Simulation results were shown to verify the method for a network with two-hop

paths. A modified Bellman-Ford algorithm was designed to extend the fast-scheduling

method from a simple network to a general mesh network.

Note that the algorithm discussed in Section 4.2.2 did not assume any specific net-

work topology or models of traffic statistics. It is applicable to any network configu-

rations, such as the US backbone network in Figure 4-1 or multiple-domain networks.

This is because we have relaxed the requirement of network statistics to only the av-

erage entropy and average mutual information between neighboring links. Therefore,

our algorithm is universal and robust against network models and traffic statistics

with only a small sacrifice in performance.
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Chapter 5

Measurement of Information of

Network States

In the preceding chapters we have discussed the fast scheduling algorithm for OFS

utilizing the probing method with the assistance of the entropies of network domains.

We assumed that the entropies and mutual information can be estimated from sam-

pling the states of the networks. In this chapter we discuss the methods to measure

the required information: E[H(t)], the expected entropy evolution of each link, and

E[I(t)], the expected time evolution of mutual information of two neighboring links.

5.1 Measuring the Entropy H(t)

As H(t) starts from zero at time zero, we work on a set of paths that are all available

at t = 0. We continue working on the same set to measure how the number of blocked

paths increases with time, and thus we can find H(t).

We assume there are many links between two nodes. The blocking probability

for each link is an independently and identically distributed random variable X, as

shown in Figure 3-1. To gather the necessary statistics for H(t), we sample the

network periodically with a time interval r. Suppose at time zero we sample each

path of the network, and from the sample results we can divide those paths into two

sets, A and B. A is the set of available paths. B is the set of blocked paths. We work



on A for the following sampling epochs. At the ith sampling epoch from t = 0, the

number of occupied paths in A are noted as Nb(i-r). Then the blocking probability

X(i-r) can be estimated from the following theorem.

Theorem 5.1 Given there are Nb(iT) number of blocked paths in A at the ith sam-

pling epoch, the maximum likelihood estimate of the blocking probability at the ith

sampling epoch is

ZTr) =51
N( A)(51

Theorem 5.1 is proved in C.1. Therefore, entropy at the epoch iT can be obtained

as

H(i-) = Hb(X(ir-)). (5.2)

The H(t) obtained in this way is noisy as we only sample paths from one set

A. The fluctuations can be averaged out by taking a running time average of H(t)

over a period less than the coherence time of the traffic statistics. We define another

sampling time interval 6, and for every 6 seconds, we start with a new set A of

available paths, and keep sampling it to get H(t). Using Hj(t) for the jth H(t)

obtained starting from t = j6, R(t) can be obtained by averaging the past k H(t)'s:

-1 H,(t - j6)
H (t) = .jo (5.3)k

From the Strong Law of Large Number [2, Chap. 5],

k*- 1Hj (t - jo)
P lim E " = E[H(t)]I = 1. (5.4)

( k-*oo k

Thus, assuming the number of sampled H(t) we take the average over, k, is large

enough, we can approximate E[H(t)] by H(t).

We also assume the length of the averaging period k is much smaller than the co-

herence time of H(t) (e.g., less than one tenth of it) so that H(t) is a good predication

for the H(t) in the next broadcast interval.



5.2 Measuring the Mutual Information 1(t)

1(t) can be obtained in a similar way. We work on a set of neighboring links that are

all available at time zero and continue working on the same set to measure how the

connectivity of these paths changes with time, and thus we can find 1(t). The only

difference is, instead of sampling the availability of each link, we need to sample the

traffic configurations at the node connecting two neighboring links.

Take for example the network fragment shown in Figure 5-1 (a). LG, LR and LB

with subscripts G, R, and B are used to indicate the green, red and blue link groups

(no relations to the color of the wavelength) in the figure. In the following discussion,

we show how the mutual information between groups of links LG and LR, IGR(t), is

estimated. Define a random variable YG (YR) to denote the state of a link in the link

group LG (LR). YG equals to 1 if the link is blocked, and 0 if it is available. IGR(t) is

function of the joint PMF , PyG,yR, of YG and YR. At time zero, we sample the node

in Figure 5-1 (a) and note down the sets of available links in LG/LR as AG/AR- If

AG and AR are not of the same size, then randomly drop some links in the larger set

to make their sizes equal, so that N(AG) = N(AR). Continue to sample these two

sets periodically at time interval T and record the traffic configurations defined in the

following parameters:

Nui(ir): the number of links in AG that are serving traffic going through both LG

and LR

Nio(iT): the number of occupied links in AG that are serving traffic going through

LG but NOT LR

Noi (iT): the number of occupied links in AR that are serving traffic going through

LR but NOT LG

N0 0 (iT): the remaining number of links that are available in both AG and AR, which

equals to N(AG) - Nii(it) - Nio(iT) - Nio(iT)

For example, for the traffic configuration shown in Figure 5-1 (b), we have N11 = 2,

N10 = 2, N01 1 and N00 = 7.
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Figure 5-1: Sampling of traffic configurations to estimate I(t). (a) Sampling at a
node connecting three links. (b) The microscopic view of the traffic configuration at
the sampling point at the node.
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Using the maximum likelihood estimate, we estimate the joint PMF PyG,yR by its

empirical distribution, that is,

PYGRT, (i)(YG,YR NYyG iT). (5.5)

As such, the joint information at the epoch iT can be obtained as

Py,, R(i7) (YG, YR)
IGRT PYG,YR(iT)(yG, YR) -log 2  , Y (5.6)

YGYRCO,1 FYG(i7)(YG) PYR(')(YR))

where PyG (iT) and PyR(ii) are the marginal PMFs of YG and YR obtained from

PYG, YR(z7

Similarly to H(t), the I(t) obtained from one pair of available sets for two neigh-

boring groups of links (e.g., AG and AR) is noisy. We should take a running time

average of 1(t) over a period less than the coherence time of the traffic statistics to

average out the fluctuations in 1(t). Similarly, every 3 time, we start with a new

pair of available sets, and keep sampling it to get 1(t). Using Ij(t) for the jth I(t)

obtained starting from t = j6, 1(t) can be obtained by averaging the past k I(t)'s:

k_-1 ij (t - j6)
1(t) = .13 k (5.7)

k

Again, from the Strong Law of Large Number,

k - Is i(t - j6)
P lim Ej=o E[IMt] =1. (5.8)

(k-oo k

Therefore, we can obtain a close approximation of E[I(t)] by have a large enough

k. We also assume the length of the averaging period k is much smaller than the

coherence time of 1(t) so that 1(t) is a good predication for the 1(t) in the next

broadcast interval.



5.3 Summary of Chapter 5

In this chapter, we studied how the required information, E[H(t)] and E[I(t)], are

measured from online networks.

To obtain E[H(t)], links in a network are sampled periodically. The link blocking

probability at each sampling epoch is estimated using its empirical value. With

this estimated blocking probability, binary entropy at each sampling epoch can be

calculated. A running time average of H(t) is taken to obtain E[H(t)].

To obtain E[I(t)], traffic configurations are sampled periodically at the nodes in

the network periodically. The joint PMF of the two random variables representing

the states of two neighboring links is estimated by its corresponding empirical values

at each sampling epoch. The mutual information is obtained from the estimated joint

PMFs. A running time average of 1(t) is taken to obtain E[I(t)].

We assume the length of the averaging period for both E[H(t)] and E[I(t)] is

much smaller than their coherence times so that E[H(t)] and E[I(t)] are good ap-

proximations for those in the next broadcast interval.



Chapter 6

Conclusion

With the invention and development of optical fibers in the 1970s, they have been

used as a replacement for copper links to provide a tremendous amount of bandwidth,

about 30 THz per fiber. However, as the network architecture still uses features that

are mostly optimized for traditional electronics communications and switching, the

capacity provided by optical networks has been constrained by the speed and the

cost of electronics at network nodes. Therefore, it is far less than fully-utilized.

In the past decade, the OFS architecture has been studied to build an all-optical

data plane to provide an end-to-end, cost-effective data transport to users with large

transactions. In spite of the low-cost service provided to high-end users and the relief

of MAN/WAN IP routers from large transactions, there is an inherent constraint

carried by the scheduling process of OFS: the possible long delays when users are

scheduled to wait in a queue at the entrance of the network.

In this thesis, we present a fast scheduling algorithm for OFS employing the

probing approach to set up an end-to-end connection with slightly more than one

round-trip delay time.

6.1 Summary of Contributions

In the introductory chapter of this thesis, we briefly described the normal scheduling

algorithm for OFS and the rather fast connection setup method employing the prob-



ing approach by others previously. We presented the motivations of our study of a

new fast scheduling algorithm for OFS, and outlined how our algorithm works. In

particular, we explained why our algorithm can greatly reduce the amount of sensing

and information dissemination by the network management and control system, and

why it is robust to network models and traffic statistics.

Chapter 2 demonstrated entropy evolution of a single link, and entropy evolution

of a single path with L independent links. For both cases, with the initial state of

the link (or path) known, as time passes, its entropy either increases to the maximum

and stays there, or first increases to the maximum and then decreases to its steady

state value. With the same traffic statistics at each link, entropy of a path with

more than one independent link increases faster than entropy of a single link. If the

correlations between any two neighboring links of a path are smaller than one, this

can be considered as the intermediate case between two extremities of a single link

and a path with L independent links, of which the entropy also increases from zero as

time passes. The average entropy evolution also starts from zero and keeps increasing

within one broadcast interval.

Chapter 3 provided a detailed analysis on how to determine the number of paths

to probe if we are given the expected average entropy of a simple network. A Linear

Programming problem was formulated and solved to obtain an upper bound for the

expected number of paths. In particular, this upper bound turned out to be very close

to the actual average number of paths to probe in our simulations. Although some

performance is sacrificed in terms of probing more paths than if detailed network

statistics are given, the amount of network management and control information

passed and processed is greatly reduced.

Chapter 4 presented how to extend the fast-scheduling algorithm to a general

network. Mutual information among neighboring links was introduced to capture any

dependencies among them. With that, the fast-scheduling algorithm was extended

to general mesh networks without introducing models of traffic statistics. Simulation

results were shown to verify the method for a network with two-hop paths. A modified

Bellman-Ford algorithm was designed to extend the fast-scheduling method from a



simple network with only one source-destination pair to a general mesh network.

Lastly, Chapter 5 showed how the required information, E[H(t)] and E[I(t)], are

collected from online networks.

6.2 Future Work and Challenges

One challenge will be the fine-tuning of our algorithm for heterogeneous networks.

Since for different kinds of networks, they have different intrinsic properties. For

example, there are fading problems in free-space optical links, multi-path problems

for wireless radio frequency links, while fiber links are much more reliable and robust.

The entropy for wireless networks may increase much faster than that of the optical

fiber networks. The mutual information between two such heterogeneous networks

might not be the best candidate to take into account this vast difference in properties

between them. Instead, some additional parameter might be introduced to better

model the heterogeneity.

Another direction for future work lies in the incorporation of our algorithm, which

is blind to network models and traffic statistics, with some special information of traf-

fic statistics. For example, if somehow we can predict the traffic arrival and departure

processes in the network are Poisson processes, we should exploit this information to

improve the performance of our algorithm. For regions with predictable traffic pat-

terns, a hybrid algorithm should be able to give a better performance.
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Appendix A

Proofs and Derivations for Chapter

3

A.1 Proof of Theorem 3.1

Theorem 3.1 is restated below:

Theorem Let X, be a continuous random variable with probability density function

fx (x) G C. Let Xj be the discrete random variable that achieves optimum solution

in Problem 3.4. Then, E [- log 2 (Xc)] E [-log2(X*)].

The proof is done by contradiction.

Proof: Assume E[- 1og 2 (Xc)] < E[- log 2 (Xd)] and c = E[- log2(Xd)]-E[- log 2 (Xc)].

Let Y be a sequence of discrete random variables defined by

Yn = LnXcj for n =

Then, we have Y, < Yn+1 for any n > 1 and

Yn -+ Xc almost surely. (A.1)

Since log2 (x) and Hb(b) are both monotonic functions of x for x E (0, 1/2), by mono-



tone convergence theorem [26, Chapter 5], we have

E[- 1og 2 (Yn)] -+ E[- log2 (Xc)], and

E[Hb(Yn)] -+ E[Hb(Xc)] = ho.

Now, define another sequence of discrete random variables

- ' 1
En = Yn + (- - Y.)a.yQ~2

Let gn (a) = E[Hb(Yn)]. Then gn(a) is a continuous and monotonically increasing

function of a, and we have

gn(O) = E[H(Yn)], and (A.5)

gn(1) = E[Hb( )] = 1. (A.6)

Because Y, < Xc, gn(O) = E[H(Y)] < ho. Therefore, there exists a* E [0, 1], such

that gn(C*) = ho.

* 0.

Therefore, we have

However, as gn(0) = E[H(Y)] -+ E[H(X)] = ho, we have

E[-log2 (ZYa)] -+ E[- log2 (Yn)], (A.7)

which implies

E[-1og2 (Yfj)] -+ E[-log 2 (Xc)]. (A.8)

Now we have constructed a sequence of discrete random variables Y* that converges

to Xc. Therefore, we can find an N such that

E[-log 2(Yk )] < E[- log 2 (X)] + c = E[- log 2 (X*)]. (A.9)

But Y]Nis a discrete random variable, so we must have E[-log2(E )] ; E[- log2(X))],

leading to contradiction of the assumption. Q.E.D.

(A.2)

(A.3)

(A.4)



A.2 Derivation of (3.10)

Equation (3.10) is the solution to Problem 3.5, which is equivalent to Problem 3.3,

in Section 3.2. We restate Problem 3.5 below.

Problem 3.5 The minimum of E[- log2 (X)] over fx(x) G C is determined by

E[-log2 (X)]mn = min - a log2 (Xi) - (1 - a) log 2 (X2 )
aE [0,1],xi,x2EC[0,0.5] (A. 10)

subject to: - alHb(xl) - (1 - ae)Hb(x2) = ho.

Next we are going to show that the solution to Problem 3.5 is given in (3.10),

which is re-illustrated here:

E[-log2(X)]min =
-log 2 [HC1 (ho)]
(1-ho){-1082 [H- 1 (ho)]}+ho-hA

1-hA

where HC1 (ho) is the inverse function of Hb(x) = ho for x C (0, 0.5). hA is the solution

to hA-i 1 H 1(h) - log2H 1(h) - 1 = 0 and, numerically, hA ~ 0.4967.
H- 1(h)log2'og

2 H- (h)

Proof: First we transform (A.10) into:

E[- log 2 (X)]min = mmaC[O,1],hi,h 2 E[O,1)
- a log 2(H 1(hi)) - (1 - a) log 2 (HC (h 2 ))

subject to: ahi + (1 - az)h 2 = ho.

Define function f(h) to be

f(h) = - log2 (H 1(h)) for h C (0, 1).

if ho <; hA

if ho > hA

(A.11)

(A.12)

(A.13)



Then,

df 1

dh (log 2) -H 1(h) log 2 1 Hb"(h) (A.14)
1= - and

(log 2)x log 2 1x

_ i(-V~ 1-H-'(h) i

d2 f (1H (h)) 1og2 Hb
1

(h) iog2

dh2  (log 2)(H (h))2( - H ))og 2  (h)) 3  (A.15)
-H ()1\/ H b '(h)(A15

(1 - X) log2 -x 1

(log 2)x 2 (1 - X)(log 2 1y )
3'

where x = HC-1(h), and x E (0, 0.5).

From the above two equations, we can show t is smaller than zero for h E (0, 1),

and f is a monotonically decreasing function for h C (0, 1). Figure A-1 plots

d and f with respect to h. From the figure we can see L first increases to its
dh dh 2  dh

maximum at hc, and then decreases for h > hc, where hc can be solved from

(1 -H7(h)) log2  
1 (h) - = 0 and numerically, hC - 0.7561.

(I HC1 ( )) 092 Hb 1 (h) log 2

Therefore, f(h) is convex for h E (0, hc), and concave for h E (hc, 1). f(h) is plotted

in Figure A-2 and Line AB is the tangent line of f(h) that passes points B (1,1) and

A (hA, f(hA)). Realizing (A.11) and (A.12) are linear combinations of either f(h) or

h of the same ratio, it is clear that when ho < hA, the minimum happens exactly at

point (ho, f(ho)), and when ho > hA, the minimum falls on the tangent line AB (See

Figure A-2).

To solve for hA, we define the slope of the line passing through (h, f(h)) and B(1,1)

to be k, that is

k __log 2 [H I(h)] - 1 (A.16)
h -- 1

Taking the first derivative of k with respect to h, we have

h-i -LHb (h) +Iog 2(HC(h)) + 1
dk Hb (h)log(2)-log2( H (h)

H. (h(A.)
dh (h-i)2

.(.7
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hA can be solved by letting 4 equal to zero, that is

h - 1 1
(h) - log2H 1 (h) - 1 = 0. (A.18)

Hb-1(h) log 2 log2 H

Numerically, hA ~ 0.4967.

Since Line AB can be expressed as (1-ho){--1og 2[H- '(ho)]}+ho-hA the solution to Problem

3.5 is

S I -log 2[H -1(ho)] if ho < hA
(1-ho){-1og

2 [H-1(ho)]}+ho-hA if ho > hA1-hA

Q.E.D.



Appendix B

Proofs and Derivations for Chapter

4

B.1 Proof of Theorem 4.1

Theorem 4.1 is restated here:

Theorem The entropy of the state of a two-hop path is smaller than or equal to

the entropy of the states of its two constituent links. That is

H(M 2) < H(L 1 ) + H(L 2) - I(L1; L2 )= H(L 1, L2 ).

Proof: The right hand side of (B.1) can be written as

H(L 1, L 2) =- Y Poi,X2(xi, x 2)108 2(PX1 ,X2 ( XI, X2)),
XiC{O,1} x2E{0,1}

(B.1)

(B.2)



The left hand side H(M 2) can be written as:

H(M2) = - PX1 ,X2 (0, 0) - log2(P 1,22(0, 0))

- (PX 1 ,X2(0, 1) + PX1,X2(1, 0) + PX1 ,X2(1, 1)). (B.3)

log 2(Px1 ,X2 (0, 1) + PX1,2 (1, 0) + Po1,x2(1, 1))

Define function g(x) = -x log2 X. Since

g"(x) x log 2'
(B.4)

g"(x) < 0 for x E (0, 0.5). Thus g(x) is convex for x E (0, 0.5). As a result, we have

-PX 1,X2(1, 0) - log2 (P 1,X2(1, 0)) <; - (PX1 ,J2(1, 0) + PX1,J2(0, 1))'

log 2 (Px1 ,X2 (1, 0) + P 1,X2 (0, 1))

- [-P 1 ,X2(0, 1) - log2(PX1,X2 (0, 1))],
(B.5)

with equality when P 1 ,X2 (1, 0) = 0.

-P 1,X2(1, 1) ' log2 (P 1,X2(1, 1)) < - (PX1,X2(1, 0) + PX1,X2(0, 1) + PX1 ,X2(1, 1)).

log 2(PX1,X2(1, 0) + P 1,X2(0, 1) + P 1,X2(1, 1))

-o[-(PX1,X2(1, 0) + PX1 ,X2(0, 1))-

log2 (Pos1,(1, 0) + Poi,X2 (0, 1))),

with equality when Poi,X2(1, 1) = 0.

(B.6)

Summing up (B.5) and (B.6), we obtain

--[Px1 ,X2(0, 1) + Poi,X2(1, 0) + Po1,X2(1, 1)] ' log 2 [P 1,X2 (0, 1) + PX1,X2 (1, 0) + PX1,X2 (1, 1)]

< - {PiX2 (Xi, x2) log2[PX1,X2(Xi, x2)1},
(X1,X2)/(0,O)



with equality when only one of the

P 1 ,X2 (Xi, X2 ) E {P 1 ,X2 (Xi, X2); X1 E {0, 1}, X2 C {O, 1} and (X1, X2) $ (0, 0)}

is not equal to zero.

Therefore, H(M 2) < H(L 1 ) + H(L 2) - I(LI; L 2 ).

Q.E.D.

B.2 Proof of Theorem 4.2

We restate Theorem 4.2 here:

Theorem The entropy of the state of a n-hop path is smaller than or equal to the

entropy of the states of its n constituent links. That is

n n-1

H(Mn) < S H(L) -5
i=1i=

(B.7)

Proof: The right hand side of (B.7) equals to H(L 1 , L 2 , , Ln), which can be

written as

SE
1,x2," ,XnEfo'1l

Xn).
(B.8)

The left hand side of (B.7) is

(B.9)
H (M n) = -PXI,X2,--.,Xn (0, ,--,0) - log92 EX1,X2,---,Xr(0, 0, - - - , 0)

-[1 - P 1,2--x ( ,0 --- ,0) - log2 [1 - PX1,X2,---,Xn(0, 0, -. - ,0)].

Following the same argument as in B.1, we have H(Mn) < H(L 1 , L 2, - , Ln)

Q.E.D

I(Lj; Li+1).

H(L1, L2,'', Ln) = -

log2 EX1,X2,..., Xn(X1i, 22,- - , zn)].-
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Appendix C

The Proof for Chapter 5

C.1 Proof of Theorem 5.1

Theorem 5.1 is restated below:

Theorem Given there are Nb(ir) number of blocked paths in A at the ith sampling

epoch, the maximum likelihood estimate of the blocking probability at the ith sampling

epoch is
Nb (iT)

(iNr) = .A) (C.1)

Proof: The blocking probability of each path in A at the ith sampling epoch is

an unknown parameter X(iT). Define the random variable Ni, to be the number

of blocked paths in A at time iT. Then NiT is a binomial random variable with

parameter N(A) and X(ir). Therefore, the likelihood that there are Nb(iT) number

of occupied paths in A is

N(A) X(ir)Nb(iT)(1 - X(T))N(A)-Nb(iT)

Nb(iT) )
(C.2)PNj, (Nb(T); X(ir )) =



Then the maximum likelihood estimate [2, Chap. 9] of X(i-r) is

X(ir) = argmax PNi,(Nb(iT) ; X(i ))
X(ir)

= arg max
N(A)

Nb (iT)

(C.3)
X(ir)Nb(i)(1 - X(ir))N(A)-N 6 (i-r)

Taking the logarithm of the likelihood function in (C.2), we get the log-likelihood

function [2, Chap. 9],

L = log PN, (Nb (iT); X (ir-))

= log (
N(A)

Nb (iT)

(C.4)

) + Nb(ir) log X(ir) + (N(A) - Nb(iT)) log(1 - X(iT)).

and from the monotonic-increasing property of the log function, we have

X(ir) = arg max log PNi, (Nb(iT); X(ir)).
X(iT)

Since

dL
dX (iT)

d2L
dX (iT) 2

N(iT)

X(iT)

Nb(i')

X(iF)2

N(A) - Nb(iT)

1 - X(i-)
and

N(A) - Nb(i'r)

(1 - X(ir))
2

X(ir) can be obtained by letting aiaT = 0. Therefore, XZ(ir) =

Q.E.D.

(C.5)

(C.6)

(C.7)
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