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Abstract

Dynamic plan execution strategies allow an autonomous agent to respond to uncertainties,
while improving robustness and reducing the need for an overly conservative plan. Executives
have improved robustness by expanding the types of choices made dynamically, such as selecting
alternate methods. However, in some approaches to date, these additional choices often induce
significant storage requirements to make flexible execution possible. This paper presents a novel
system called Drake, which is able to dramatically reduce the storage requirements in exchange
for increased execution time for some computations.

Drake frames a plan as a collection of related Simple Temporal Problems, and executes the
plan with a fast dynamic scheduling algorithm. This scheduling algorithm leverages prior work in
Assumption-based Truth Maintenance Systems to compactly record and reason over the family
of Simple Temporal Problems. We also allow Drake to reason over temporal uncertainty and
choices by using prior work in Simple Temporal Problems with Uncertainty, which can guarantee
correct execution, regardless of the uncertain outcomes. On randomly generated structured
plans with choice, framed as either Temporal Plan Networks or Disjunctive Temporal Problems,
we show a reduction in the size of the solution set of around four orders of magnitude, compared
to prior art.
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1 Introduction

Model-based executives strive to elevate the level of programming for autonomous systems to
intuitive, goal-directed commands, while providing guarantees of correctness. Using a model-based
executive, a user can provide a specification of the correct behavior of the robot and leave it to a
program, the executive, to determine an appropriate course of action that will meet those goals.
Likewise, temporal plan executives take input specifications of the timing requirements of a plan
and then compute a strategy for executing the plan according to the requirements. In both cases,
engineers can develop a general executive and tailor it to individual systems by specifying goals
appropriately, rather than needing to program a specific set of routines for each robot.

Ideally, model-based executives should be reactive to disturbances and faults. One useful strat-
egy for creating executives that are robust to disturbances is to delay decision making until run-time.
This allows an executive to make decisions with the benefit of knowing what happened during earlier
portions of that plan. In contrast, a system that makes all decisions before execution cannot adjust
if something unexpected happens. Therefore, delaying decision making and following a strategy of
least commitment can improve system robustness, improve guarantees of correctness, and reduce
unnecessary conservatism.

Muscettola, Morris, and Tsamardinos developed a technique for dynamically executing temporal
plans whose events are related through simple temporal constraints [13]. At the core is a dynamic
scheduling algorithm for Simple Temporal Problems (STPs). Morris, Muscettola and Vidal ex-
tended their execution model to handle Simple Temporal Problems with Uncertainty (STPUs),
providing guarantees of robustness to modeled, finite bounded uncertainty [11]. In order to handle
richer families of choices, later authors introduced different types of choices that the executive is
allowed to make, and developed new executives to handle these models. For example, Tsamardinos,
Pollack, and Ganchenv developed an executive for Disjunctive Temporal Problems, a relative of
STPs that includes disjunctive constraints [24]. Kim, Williams, and Abramson introduced Kirk,
an executive that dynamically select sub-plans while resolving resource conflicts that might arise
during sub-plans [9]. Shah and Williams developed Chaski, an executive that can dynamically
allocate tasks between agents [16].

One key feature of these executives is that they can delay making choices until run-time. De-
laying decisions is useful because making decisions later means that more information is available,
allowing the executive to react to real-world outcomes and make decisions with less uncertainty.
This reduces the conservatism required to guarantee correctness. Furthermore, when uncertainty
is explicitly modeled, dynamic executives can correctly execute plans that a static executive can-
not [11]. The challenge, however, is that the executive must make decisions quickly enough to
satisfy the demands of real-time execution, while guaranteeing that it does not violate any of the
constraints set forward in the original plan.

The executives generally employ two primary strategies to efficiently reason about possible
choices at run-time. First, Muscettola showed that the temporal constraint reasoning performed
by an on-line executive can be made efficient by a pre-processing step referred to as compilation [13].
A dispatcher then uses the compiled form of the problem to make decisions at run-time. Essentially,
the compilation step makes explicit the consequences of different courses of action available to the
dispatcher, allowing it to swiftly make decisions without a risk of overlooking indirect consequences
of the input plan. Tsamardinos follows a similar strategy to handle disjunctive choices, expanding
all the possible choices at compile time and determining the implications of any choices the executive
might make. Second, Kirk uses an incremental strategy to efficiently explore the perturbations to
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the plan induced by any particular choice at run-time. Chaski uses a hybrid approach, making
pre-compilation more efficient by exploring the options with incremental reasoning.

This work develops Drake, a novel plan executive for plans with choice and uncertainty. Es-
sentially, Drake frames the scheduling problem in the plan as a collection of Simple Temporal
Problems differentiated by choices, and uses a pre-compilation strategy, reducing the problem to a
dispatchable form. A dispatchable form is defined as a representation where scheduling decisions
can be accurately made with only one-step constraint propagations at run-time. Once in this form,
the plan is executed by a dispatcher. Drake’s primary innovation is the use of techniques derived
from the Assumption-based Truth Maintenance System (ATMS) to compactly encode the plan
and perform reasoning at compile-time and run-time. Drake uses these techniques to delay the
scheduling of events and the selection of discrete choices until run-time. Drake’s compact encoding
provides a reduction in the size of the plan used by the run-time executive by about four orders of
magnitude for problems with around 10,000 component STPs, as compared to Tsamardinos’s work.
This compactness results in run-time latency that is two to three orders of magnitude slower for
large problems, but is still tractable for real systems. These improvements are possible because the
ATMS provided a straight-forward way to augment Muscettola’s non-disjunctive STP algorithms
to reason over choices in a compact way.

Section 1.1 provides an intuitive overview of Drake’s techniques. Section 1.2 discusses related
work.

1.1 Overview of the Method

Our objective is to develop a system that can dynamically execute plans with choice, represented
as families of STPs, or STPUs if there is a model of uncertainty. This section gives an overview
of our method by walking through the essential steps of preparing and dynamically executing the
problem from Example 1.1, below. Furthermore, it illustrates the compact representation that
underlies this work and provides an intuition for why the representation is compact. For simplicity,
we do not include uncertainty in this description.

1.1.1 Problem Statement

The Drake executive is designed to schedule temporal plans with a general notion of choice. This
allows Drake to express important constructs for autonomous systems, including non-overlapping
intervals, choices between sub-plans, and resources. Without choices, the executive necessarily has
a single course of action it may follow. While temporal flexibility is useful, allowing discrete choices
provides a new level of capability. For example, the executive may exchange possible sub-plans
based on timing considerations. Another common use would be to indicate that two activities must
occur, but cannot overlap. Without dynamic choices, the order of these two events would need to
be set in advance, even if it is not useful to do so. Another important reason for disjunctions is
handling resources, other non-temporal constraints on activities that may overlap. Drake does not
currently include algorithms for determining the implications of resource choices, but the model is
rich enough to express the temporal consequences of resource choices.

Input temporal plans are mapped into a Labeled-STP or STPU, which we introduce formally
later, but which specify the constraints and choices of the plan in a compact way that is useful for
the reasoning the executive performs. After a pre-processing step, Drake then executes the plan
from the Labeled-STP representation.
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Throughout this paper, we use the following simple example, which includes a choice between
sub-plans.

Example 1.1 A rover has 100 minutes to work before a scheduled contact with its operators.
Before contact, the rover must traverse to the next landmark, taking between 30 and 70 minutes.
To fill any remaining time, the rover has two options: collect some samples or charge its batteries.
Collecting samples consistently takes 50 to 60 minutes, whereas charging the batteries can be
usefully done for any duration up to 50 minutes. �

The executive is responsible for executing the plan correctly, delaying decisions where possible.
More specifically, it is responsible for selecting the times to schedule events, making decisions just
before the events are actually scheduled. Additionally, it must instruct the physical system when to
perform activities, and the durations the activities should take. For example, consider the following
execution sequence for the rover problem. In this example, we neglect the decision-making strategy
to focus on the outputs required from the executive.

Example 1.2 The executive begins the plan, arbitrarily denoting the begin time as t = 0. At that
time, it instructs the system to begin the drive activity, indicating that the drive should take 40
minutes. The executive then waits until the system responds that that the drive has completed,
at time t = 45. Then Drake selects the sample collection option, which had not been determined
before, and initiates the activity with a duration of 50 minutes. At t = 95, the sample collection
completes, finishing the plan within the time limit of 100 minutes. �

1.1.2 Labeled Distance Graphs and Compilation

For Simple Temporal Problems, creating a dispatchable form simply requires computing the All-
Pairs Shortest Path graph of the distance graph associated with the input STP [13]. Adding discrete
choices complicates compilation because the dispatchable form must then include the implications
of both the temporal decisions and the discrete choices. In the rover example, the discrete choice
is between collecting samples and charging the batteries. Additionally, the executive has flexibility
over the precise start and end times of the activities. Each set of possible discrete choices implies
a single component STP, which can be dispatched with standard STP techniques. A simple way
to consider the consequences of the discrete choices, and the technique adopted by Tsamardinos,
is to separately record the component STP for every combination of discrete choices [24]. This
method is easily understood, but inefficient, because it assumes that every combination of choices
is completely different from all others; this is rarely the case.

Instead, Drake introduces the Labeled-STP, a single, compact representation that contains all
the constraints for all the choices. It exploits the fact that groups of choices may imply the same
consequences, allowing Drake to collect a set of choices and treat them as a single entity during
storage and reasoning [10]. These collections of choices are environments, and annotate, or “label,”
constraints within the Labeled-STP with the choices that imply the constraint [3]. Although there
may be multiple possible constraints between any two events, the Labeled-STP allows them to
coexist within a single representation because the environments unambiguously distinguish when
each constraint is implied. This later strategy is leveraged from the ATMS [3].

This labeled representation is especially powerful because it allows Drake to keep the essential
form of an STP: a single network of events and constraints. It is then relatively straight-forward
to generalize the non-disjunctive algorithm to handle disjunctive information.
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Figure 1.1 shows how Tsamardinos’s prior work independently records every constraint for every
complete combination of choices [24]. Although the redundancy between the components STPs in
Figure 1.1 is limited because there are only two component STPs, the number of copies can scale
exponentially with the number of choices. Furthermore, this redundancy is carried through the
compilation and dispatching algorithms, leading to a great deal of redundant work and storage.

To reduce the repetition evident in this encoding, Drake builds a Labeled-STP representation
of the choices and the constraints. This representation stores the values on edges in labeled value
sets, applying the general framework of labeling and environments provided by the ATMS. In the
rover scenario, we can record the constraint that the entire plan take less than 100 minutes only
once. Where necessary, the implications of the choice between collecting samples and charging
the batteries are given by constraints with environments. The resulting Labeled-STP is shown in
distance graph form in Figure 1.2. In this figure, we use assignments to the variable x to denote
the possible outcomes of the choice. The annotation in curly brackets, for example, {x = 1},
is an environment specifying that the attached constraint corresponds to a certain assignment to
the variables representing the choices. In this case, {x = 1} represents collecting samples. This
formalism allows us to create a compact representation of the temporal constraints and easily
modify the existing algorithms to work on the compact representation.

Figure 1.1: The component STN distance graphs of the TPN in Figure 2.1.
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After creating the Labeled-STP encoding of the plan, we need to compile it. In Tsamardinos’s
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Figure 1.2: The labeled distance graph corresponding to Example 1.1. All edges not drawn are
implicitly valued (∞, {}). The variable x denotes the choice and has domain {1, 2}.
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approach, each explicitly enumerated STP is independently compiled. Drake directly performs an
equivalent compilation on the Labeled-STP. For example, it uses edge (A, F ), with weight (100, {}),
and the collecting samples activity on edge (C, B), (−50, {x = 1}) to derive the restriction that the
drive duration may only be up to 50 minutes if sample collection is selected. These two constraints
have different environments, so the union of the environments is placed on the new constraint,
(50, {x = 1}), stored as a weight on edge (A, B) (not drawn). There are now two constraints
between events (A, B), which is necessary because the new constraint is tighter than the old one,
but is only implied by some choices of the other constraint; thus, both constraints are useful.
Specifically, the sample collection option implies a weight of 50, and the charging option implies
a weight of 70. Generally, Drake would remove any constraints that are not useful. The result
of the compilation is a dispatchable Labeled-STP , which directly records all the constraints the
dispatcher needs to obey at run-time, as described in the next sub-section.

1.1.3 Dispatching the Dispatchable Labeled-STP

Dispatching using Labeled-STPs requires updating the non-disjunctive STP dispatching algorithm
so that it handles the labels; this is a straightforward process. The following example demonstrates
a few steps of Drake’s dispatching process on this example in order to demonstrate the difference.

Example 1.3 Assume that the start event, A, in Figure 1.2, is scheduled at t = 0, the beginning
of dispatching the plan. At some later time, t = 40, the executive needs to determine if it should
schedule an event. Next, Drake considers scheduling the immediate successors of event A. An
event cannot be scheduled until its predecessors have been scheduled, and must be assigned a
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value consistent with the temporal constraints. Event A is B’s only predecessor, hence B may be
scheduled when the interval constraints are satisfied. The other events have B as a predecessor
and must wait for it to execute. Thus, at time t = 40, Drake considers executing B. This time
satisfies both constraints on B’s execution, given by edges (A, B), (70, {}) and (50, {x = 1}) (not
drawn). Therefore, B can be executed at t = 40 without any consideration of whether the rover
will collect samples or charge. More generally, the time an event is scheduled must lie within the
interval constraint for some environment. If the event is scheduled outside of some possible interval
constraints, the executive may need to remove some choices from consideration. However, in this
case, scheduling B at t = 40 is consistent with all possible options, so Drake maintains all its future
options.

For example, if Drake repeated the same decision process at t = 60, it would notice that the
constraint for collecting samples was violated, because 60 > (50, {x = 1}). Therefore, collecting
samples is no longer possible, and Drake would know that it must charge the batteries and follow
all remaining constraints for that option. �

1.2 Related Work

As a dynamic executive, Drake is derived from prior research on dynamic execution of TPNs and
DTPs. The STP and DTP literature provides the underlying framework for dynamic execution
[4, 13, 24]. Further work has developed more efficient methods for compiling STPs [15].

There are numerous extensions of the STP literature to create more capable scheduling frame-
works. Most importantly, STPUs include a model of uncertainty which the executive can compile
or dispatch in polynomial time [11]. Venable and Yorke-Smith added uncertainty to DTPs [25].
Tsamardinos introduced a probabilistic formulation of STPs [21]. Muscettola developed a tech-
nique for computing the impacts of resources on a temporal plan [12]. Khatib, Morris, Morris, and
Rossi introduced a formulation including preferences for temporal scheduling decisions [8].

Kirk is a dynamic executive for TPNs [9]. Kirk performs optimal method selection just before
run-time, assigning the discrete choices and then dispatching the resulting component STP. If some
outcome invalidates the STP that Kirk chose, then Kirk selects a new STP consistent with the
execution thus far. Further research developed incremental techniques to allow Kirk to re-plan
with lower latency [17, 1].

Shah et al. approached the problem of dispatching Temporal Constraint Satisfaction Problems, a
special case of DTPs, by removing redundant storage and calculations performed by Tsamardinos’s
algorithm [16, 24]. Shah points out that the component STPs of real-world TCSPs often differ by
only a few constraints, allowing a compact representation. They record all the component STPs
by storing a single relaxed STP and maintaining a list of modifications to the relaxed STP that
recover each of the original component STPs [19]. This technique, although distinct, bears some
resemblance to an Assumption Based Truth Maintenance System (ATMS). Shah describes Chaski,
an executive that uses these techniques. By avoiding redundant records of shared constraints,
Shah’s results show dramatic improvements in performance [16]. Our work is partially inspired by
this success, and we further explore the connection to the ATMS.

The rest of this paper is organized as follows. Section 2 reviews the plan specifications and
scheduling frameworks Drake uses. Section 3 develops our compact representation and the compi-
lation algorithm for the deterministic case. Section 4 develops the dispatching algorithm for the
deterministic case. Section 5 applies the ideas behind the deterministic compact representation to
extend Drake to handle finite, bounded temporal uncertainty. Finally, we present some performance
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benchmarks in Section 6 and some conclusions in Section 7.
The appendices provide additional detail on some topics. Appendix A describes the conversion

algorithm from TPNs and DTPs into labeled distance graphs. Appendix B describes the structured,
random problem generators used in the experimental validation. Appendix C provides more detailed
algorithms for the uncontrollable problem algorithms. Finally, Appendix D contains proofs of
theorems presented throughout the text.
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2 Temporal and Plan Representations

Drake builds upon prior work in plan representation for temporal reasoning and dispatchable exe-
cution. This section briefly provides some formal definitions and introduces the reader to the terms
used in the literature. More details of the prior work are given in later sections, as needed.

First, Section 2.1 discusses Simple Temporal Problems, the underlying scheduling framework
for this work. Second, Section 2.2 introduces Disjunctive Temporal Problems, one of the input
formats employed by Drake. Finally, Section 2.3 defines Temporal Plan Networks, the other input
format.

2.1 Simple Temporal Problems

Simple Temporal Problems provide a framework for efficiently reasoning about a limited form of
temporal constraints and are the basis of the dynamic execution literature our work builds upon.
A simple temporal network is defined as a set of events and temporal constraints among them [4].

Definition 2.1 (Event) An instantaneous event in a plan is represented as a real-valued variable,
whose value is the execution time of the event. �

The time of execution of these events is constrained through a collection of pairwise simple
interval constraints.

Definition 2.2 (Simple Interval Constraint) A simple interval constraint between two events
X and Y requires that l ≤ y − x ≤ u, denoted [l, u]. �

By convention, u is non-negative. The lower bound, l may be positive if there is a strict ordering
of the events, or negative if there is not a strict ordering. Positive or negative infinities may be
used in the bounds to represent an unconstrained relationship. Now we can define STPs.

Definition 2.3 (Simple Temporal Problem) The Simple Temporal Problem (STP) is a set of
events V and a collection of simple interval constraints constraints between them, with exactly
one constraint per pair of events. A solution is a scheduling of the events that satisfies all the the
simple interval constraints. If and only if at least one solution exists, the STP is consistent. �

Dechter showed that STP reasoning can be reformulated as shortest path problems on an
associated weighted distance graph [4].

Definition 2.4 (Distance Graph of an STP) A distance graph associated with an STP is a
pair 〈V,W 〉 of vertices V and weights W . The vertices exactly correspond to the events of the STP.
The weights are a map V × V → R where the directed edge (A, B) has weight wAB representing
the inequality from the STP B −A ≤ wAB. �

Informally, computing the distance graph creates two edges for each simple interval constraint:
one in the forward direction with weight u and one in the reverse direction with weight −l. Following
Dechter’s work, Drake primarily works with the distance graph form of the Labeled-STP.

Dechter proved that an STP is consistent if and only if its associated distance graph has no
negative cycles, since such cycles correspond to an unsatisfiable constraint [4]. This condition can
be tested efficiently by computing the Single Source Shortest Path (SSSP) or All-Pairs Shortest
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Path (APSP) graph. We focus on the Floyd-Warshall APSP algorithm in Section 3.5 because it is
a necessary component of the dispatching process [4, 13].

Muscettola showed that the APSP form of the STP’s associated distance graph is a dispatch-
able form, where all constraints implicit in the original problem are made explicit, so that the
network can be dispatched with only one-step propagations [13]. Since the run-time algorithm
avoids inference over the entire graph, it is fast enough to use at run-time.

During execution, the dispatcher tracks execution windows that summarize the constraints on
each event, which are updated by local propagations. Some edges imply a strict ordering on which
events must be executed first, creating a predecessor and successor relationship between some
events; we call these enablement constraints. At each step of dispatching, the dispatcher attempts
to finds an event whose predecessors have all been executed and whose execution window includes
the current time [13].

Muscettola et al. showed that the APSP contains redundant information, in that groups of
edges are guaranteed to propagate the same bound, causing extra work for the dispatcher. These
redundant edges may be trimmed, resulting in a minimal dispatchable network [13].

2.2 Disjunctive Temporal Problems

A formalism that directly modifies STPs to allow discrete choices is the Disjunctive Temporal
Problem (DTP). We use DTPs as one of the input specification for Drake.

Definition 2.5 (Disjunctive Temporal Problem) A Disjunctive Temporal Problem is a col-
lection of events V and a collection of disjunctive constraints. Each disjunctive constraint Ci is of
the form

ci1 ∨ ci2 ∨ ... ∨ cin, (1)

where n may be any integer and each cij is a simple interval constraint. There may be more than one
simple interval constraint between any given pair of events. A solution to a DTP is an assignment
to each event V so that for each Ci, at least one simple interval constraint cij is satisfied. A DTP
is consistent if and only if at least one solution exists. �

The disjunctions expand the language of constraints expressible in STPs, allowing new concepts
to be expressed, e.g. non-overlapping intervals. As before, a solution is a set of assignments to each
time point in V while meeting at least one simple interval clause of each disjunction in C.

Most modern approaches for determining consistency of DTPs are derived from the observation
that a DTP can be viewed as a set of component STPs, where the DTP is consistent if and only
if at least one of the component STPs is consistent [20, 14, 23]. The component STPs are formed
by selecting exactly one simple interval constraint from each disjunctive constraint in the DTP.
A solution to any of the component STPs is a solution of the DTP because it satisfies the simple
interval constraints selected from the disjunctions to create the component STP. Therefore, testing
the consistency of a DTP can be understood as searching through the possible combinations of
disjuncts for a consistent component STP.

Tsamardinos presented a flexible dispatcher for DTPs, which first enumerates all consistent
component STPs and then uses them in parallel for decision making [24]. At run-time, the dis-
patcher propagates timing information in all STPs simultaneously. The dispatcher may make
scheduling decisions that violate timing constraints in some of the component STPs, making it
impossible to use the corresponding choices, as long as it never invalidates all remaining possible
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Figure 2.1: This TPN depicts the example from Example 1.1. The rover needs to drive, then collect
samples or charge its batteries within a certain time limit.

Drive [30, 70]

[0, 100]

[0, 0]

Collect Sam-
ples [50, 60] [0, 0]

Charge [0, 50] [0, 0]

STPs, thus removing all possible choices from the DTP. Drake inherits this strategy for selecting
between choices.

2.3 Temporal Plan Networks

A Temporal Plan Network is a graphical representation for contingent temporal plans introduced
by Kim, Williams, and Abramson [9]. The primitive element in a TPN is an activity, comprised of
two events connected by a simple interval constraint and an executable activity description.

Networks are then created by hierarchically composing sub-networks of activities in series, in
parallel, or by providing a choice between them. TPNs allow resource constraints in the form of
“ask” and “tell” constraints on activities, although Drake does not include algorithms to perform
this resource de-confliction. It is also possible, although less common, to place constraint edges
between arbitrary nodes in the graph. A TPN therefore provides a rich formalism for expressing
plans composed of choices, events, temporal constraints, and activities.

The rover example is depicted as a TPN in graphical form in Figure 2.1. Each of the activities
is placed on an arc between the circles, representing events. The double circle node represents
a choice between outgoing paths, meaning that one set of following activities and events, in the
form of a sub-TPN, must execute according to the constraints. The left-most node is the start
node and both outgoing arcs denote necessary constraints, representing the drive activity and the
overall duration limit. Throughout, the flexible durations are labeled with the [l, u] notation for the
lower and upper bound, respectively. The arcs on the right labeled with [0, 0] connect simultaneous
events and are included to conform to the hierarchical structure of a TPN.

The next section builds upon the work reviewed in this chapter to develop Drake’s compact
representation and compilation algorithms.

11



3 Compilation of Plans with Choice

Recall that Drake is a dynamic scheduling algorithm that can be employed to execute Temporal
Plan Networks (TPN) or schedule Disjunctive Temporal Problems (DTP). In both these cases,
Drake dynamically schedules events and chooses between alternatives, for example, disjunctive
constraints or choice nodes. Drake does this efficiently by converting either TPNs or DTPs into a
Labeled-STP, and then compiling it into a dispatchable form off-line. This section defines Labeled-
STPs, distance graphs, and presents an algorithm for compilation. The new compilation algorithm
adapts Muscettola’s STP compilation algorithm to Labeled-STPs by incorporating environment
propagation algorithms from the ATMS [3].

To provide a high-level overview of the compilation algorithm we begin with the top-level
pseudo-code, presented in Algorithm 3.1. The input to the algorithm is a DTP or TPN, converted
to a Labeled-STP and represented internally as a labeled distance graph described by events V ,
edges W , and variables X. The output of the algorithm is either a reformulation this graph
into a minimal dispatchable form or a signal that the plan is infeasible. First, Line 2 prepares a
data structure to hold the conflicts of the labeled distance graph, which are environments used
to specify inconsistent choice. Second, Line 3 compiles the distance graph into dispatchable form
with the Labeled-Floyd-Warshall algorithm, revealing all implicit constraints of the problem.
Finally if there are still some consistent component STPs, Line 7 filters the dispatchable graph of
unnecessary edges. This section carefully defines both of these phases of the compilation process,
which are directly taken from Muscettola [13]. We begin with a discussion of environments and the
associated algorithms, then develop the compilation algorithms.

Algorithm 3.1 Compilation algorithm for Labeled Distance Graphs

1: procedure Compile(V,W,X)
2: S ← InitConflictDatabase(X)
3: W, S ← Labeled-Floyd-Warshall(V,W, S)
4: if ¬EnvironmentsRemain?(S) then
5: return null
6: else
7: W ← FilterSTN(V,W )
8: return W, S
9: end if

10: end procedure

3.1 Introduction to Value Sets and Labeling

We observe that for real problems, the edge weights of the distance graph encoding each component
STP are typically not unique for each set of choices. Rather, the values are loosely coupled to the
choices selected for the plan. Therefore, we can avoid the explicit representation of each complete
component STP and condense the possible weights for each edge into a single structure called a
labeled value set. Then we represent the entire family of component STPs as a single graph, where
each edge has a labeled value set instead of a single numeric weight. We could reconstruct the
component STPs from the Labeled-STPs if necessary, but this is typically not helpful. By providing
generic methods for operating on the labeled value sets, we can easily modify the standard STP
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compilation routine developed by Muscettola to simultaneously derive the implicit constraints of
the problem and the implications of any discrete choices in the plan.

The labeled value sets are made compact by introducing ideas from the Assumption-based Truth
Maintenance System (ATMS) [3]. Each numeric value is labeled with an environment, as developed
by the ATMS, that specifies the minimal conditions that logically entail the value. Therefore, we
can avoid repetitively recording a value that is implied by only a subset of choices. For example,
if there are variables X and Y with domains {1, 2}, and some value depends only on X, we can
represent the value with two entries, one for each value of X, rather than four entries, one for each
pair of values X and Y might have.

Our implementation of labeled value sets needs to define three basic operations: adding a value,
querying for a value, and performing a binary operation on two value sets. During the addition of
new values, our implementation maintains minimality of the value set, by pruning the set of any
values that the query operator can no longer return. The ability to perform computations directly
on the labeled value sets during compilation and dispatch, and then store them minimally, is crucial
for labeled value sets to form the basis of our compact representation.

3.2 Defining Labeled-STPs and Labeled Distance Graphs

This section presents an encoding for the choices contained in the input problem and defines
the Labeled-STP and the labeled distance graph, the top level representations used in Drake’s
compilation technique. The following section then defines environments, which are used by the
Labeled-STP and distance graph.

Both types of input problems of interest, TPNs and DTPs, are defined in terms of choices
among temporal constraints. Drake uses choice variables to encode the choices.

Definition 3.1 (Choice Variables) Each choice of the input problem is denoted by a finite do-
main variable xi. The variable associated with a choice has one domain element dij for each possible
outcome. X is the set of all the variables for a particular problem and includes a description of the
domains. �

The Labeled-STP represents the scheduling problem and any choices in the input problem.

Definition 3.2 (Labeled-STP) A Labeled-STP is a set of events, V and a collection of con-
straints. Each constraint is a simple interval constraint between some pair of events of V , labeled
with an environment. The environment is constructed of assignments to the choice variables de-
scribed in X (see Definition 3.4). �

Note that there may be an arbitrary number of labeled constraints between pairs of events.
We now define labeled distance graphs, which Drake uses to store Labeled-STPs and on which

we define Drake’s algorithms. The representation essentially consists of the weights of the labeled
constraints in distance graph form.

Definition 3.3 (Labeled Distance Graph) A labeled, weighted distance graph G is a triple
〈V,W,X〉. V is a list of vertices and W is a set of labeled value sets (see Definition 3.11) with
domination function f(a, a′) := (a < a′) (see Definition 3.9). The labeled value sets represent
the weight function that maps the ordered vertex pair and an environment (see Definition 3.4) to
weights: V × V × E → R, for any vertex pair (i, j) ∈ V × V and environment e ∈ E . X is the

13



description of the choices variables. The set of edges E contains those pairs of events (i, j) where
w(i, j) 6= ∞, for some environment. All the labeled value sets in W are initialized with the pair
(∞, {}). �

Similarly to the unlabeled versions, weights in a labeled distance graph represent inequalities in
the Labeled-STP. Only the tightest inequalities contribute to the reasoning (e.g. if x ≤ 5 ≤ 6, the
six contributes no useful information), hence the domination function f is the less-than inequality.
We define domination functions for labeled value sets carefully in the next section, but the key idea
is that the labeled value set exploits the importance of small values to improve efficiency.

Converting input TPNs and DTPs into Labeled-STPs is a relatively simple process, requiring
the annotation of constraints with environments that specify when they hold. The details are left
to Appendix A. Converting a Labeled-STP into a labeled distance graph, as in the unlabeled case,
requires converting the upper bound of the interval constraints into forward weighted edges and
the negative of the lower bound of the interval constraints into backward weighted edges.

3.3 Environments and Conflicts

This section defines environments and describes the essential operations performed on them. Drake
uses environments to specify the minimal set of choices that imply a constraint. They are also used
in the process of deriving the dependence of new constraints on the choices. The definitions in this
section exactly follow de Kleer’s work and are necessary background to develop the efficient imple-
mentation of labeled value sets described in Section 3.4 [3]. Additionally, we discuss the concept
of conflicts, which compactly record infeasible solutions, and describe the conflict manipulation
routines Drake uses.

Given a set of choice variables and their corresponding domains, an environment is an as-
signment to a subset of the choice variables that summarizes the sufficient conditions for some
derivation or computation to hold. Drake builds environments exclusively with assignments to
choice variables. Consistent environments assign at most one value to each variable.

Definition 3.4 (Environment) Given a set of variables X and their domains, an environment e
is a list of assignments to a subset of the variables in X, written e = {xi = dij , ...}. An environment
must have at most one assignment to each variable to be consistent. Thus, an environment of the
form {xi = dij , xi = dij′ , ...} is always inconsistent if dij and dij′ are distinct. A complete envi-
ronment provides exactly one assignment to each variable in X. An empty environment provides
no assignments and is written {}. We denote the set of possible environments as E and the set of
complete environment as Ec. The length of an environment is the number of assigned variables,
denoted |e|. �

In the ATMS, a proposition may be labeled by a set of environments, where each environment
logically entails that proposition [3]. For example, in labeled distance graphs each edge weight value
w corresponds to a proposition x− y ≤ w, where x and y are the events the edge connects. Drake
gives each proposition exactly one environment, but the proposition may occur multiple times
with different environments. This design decision is made for ease of implementation, and while
sufficient for our purposes, is not required. In fact, de Kleer’s ATMS maintains unique propositions
because they simplify some ATMS operations and may provide performance benefits. Therefore,
reintroducing unique propositions into our work is an avenue for future research.
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Subsumption and union are the fundamental operations Drake performs on environments. Sub-
sumption is used to determine if one environment entails another. Union is the primary way to
combine environments to create new ones for logical consequences of propositions

Definition 3.5 (Subsumption of Environments) An environment e subsumes e′ if for every as-
signment {xi = dij} ∈ e, the same assignment exists in e′, denoted {xi = dij} ∈ e′. �

Example 3.6 An environment {x = 1, y = 2, z = 1} is subsumed by {x = 1, z = 1} because the
assignments in the later environment are all included in the former. �

Subsumption is generally used in practice to determine whether a proposition applies in some
scenario or if one labeled proposition is redundant to another one.

The union operation is used when performing an operation on labeled values, because the union
creates a new environment that contains the assignments of both environments.

Definition 3.7 (Union of Environments) The union of environments, denoted e ∪ e′ is the
union of all the assignments of both environments. If e and e′ assign different values to some
variable xi, then there is no valid union and ⊥ is returned instead. This value signifies that there
is no environment where both e and e′ hold simultaneously. �

Example 3.8 Most commonly, unions are used to compute the dependence of new derived values.
If A = 2 when {x = 1} and B = 3 when {y = 2}, then C = A + B = 5 when {x = 1} ∪ {y = 2} =
{x = 1, y = 2}. �

An important function of an ATMS is the ability to track inconsistent environments. In our
case, an inconsistent environment signals an inconsistent component STP. Drake must keep track
of choices that are inconsistent with one another and which choices are still possible. The standard
strategy in an ATMS is to keep a list of minimal conflicts, also referred to as no-goods [3].

A conflict is an environment that entails an inconsistency [27]. For example, the compilation
process might determine that x1 = 1 and x2 = 1 are contradictory choices, and cannot be selected
together during any execution. Then, {x1 = 1, x2 = 1} is a conflict of the system. By definition, all
environments subsumed by this conflict also contain the inconsistency and are invalid. Therefore,
conflicts are used to summarize the inconsistent environments.

The other important function of the conflict database is to determine if all the complete en-
vironments have been invalidated, that is, determined inconsistent, or if a certain conflict would
invalidate all environments. For example, assume there is a variable x1 ∈ {1, 2}. If both {x1 = 1}
and {x1 = 2} are conflicts, then regardless of any other variables in the problem, there are no
complete assignments possible, because neither possible assignment for x1 is feasible. Therefore,
the entire Labeled-STP is inconsistent. During compilation and dispatch, Drake keeps track of
what choices have not been invalidated as part of the reasoning.

Our algorithms use a database of conflicts to determine if an environment is known to have
been invalidated. In our pseudo-code, we call the conflict database data structure S. This database
keeps a set of minimal conflicts and is updated as conflicts are added. We now define the functions
Drake uses to interact with the conflict database, but leave details of the algorithms required to
Williams et al. [27].

The two fundamental operations in Drake are testing an environment for consistency and adding
conflicts. EnvironmentValid?(S, e) tests whether a given environment is known to be inconsis-
tent given the current conflicts. AddConflicts(S, e) adds the environment e as a conflict. It
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returns true if all possible environments are inconsistent after adding the conflict, otherwise it
returns false.

The function EnvironmentsRemain?(S) returns true if any complete environments have not
been invalidated. ConflictsPossible?(S, l) queries the database, returning true if making con-
flicts from the environments in list l would not invalidate all the complete environments. This
function allows Drake to avoid eliminating all its remaining options. The function takes a list of
environments because the dispatcher may need to test whether it is allowed to add multiple conflicts
simultaneously.

CommitToEnv(S, e) modifies the conflict database to ensure that all the remaining consistent,
complete environments are subsumed by e. To accomplish this, the function creates conflicts to
invalidate non-subsumed environments.

The function InitConflictDatabase(X) simply initializes a new conflict database to have
no conflicts for variable descriptions X.

Environments provide a technique for Drake to succinctly state the dependence of a proposition
on the choices of the plan and to manipulate those dependencies during reasoning. With this
formalism defined, we can explain the implementation of labeled value sets.

3.4 Labeled Value Sets

This section defines labeled value sets and describes Drake’s implementation of them. We describe
this implementation carefully before moving on to the compilation algorithm because the compact
representation is the core contribution of this work. The purpose of labeled value sets is to allow
Drake to compactly map from choices in the input plan to constraints implied by those choices.
With the tools from this section, the derivation of the compilation algorithm in the remaining
sections proceeds naturally.

Section 3.2 informally explained that the labeled value sets only need to keep the tightest
constraints, which are given by the smallest edge weights. Each edge weight represents an inequality,
where for some pair of events A and B and an edge weight l, B − A ≤ l. If there are two bounds
l and l′, where l < l′, then l′ specifies a looser constraint and is not needed. This feature of
handling inequalities in an ATMS is developed by Goldstone, who hibernates propositions that are
unnecessary, keeping them from redundantly entering into computations [7]. We use the same idea
to prune weaker inequalities, when permitted by the environments that are associated with the
inequalities.

Labeled distance graphs only need the less-than inequality, but at dispatch, execution windows
also require labeled value sets with the greater-than inequality to keep the tightest lower bound,
which is the largest value. Therefore, we define a general domination function that specifies the
inequality to use on a given labeled value set. We say that a tighter value dominates a looser value.

Definition 3.9 (Domination Function) The domination function f(a, a′) provides a total or-
dering over all possible values of a, returning true if a dominates a′. f(a, a) returns false. For any
pair of distinct values a and a′, exactly one of f(a, a′) or f(a′, a) must return true. �

Drake uses strict inequalities for the domination function, which provide a total ordering over
all real numbers.

Example 3.10 The most important use of domination functions is determining whether a value
is redundant. If we derive two potential values for an edge weight, say, 3 or 5, the domination
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function reveals which one we need to keep. Edge weights are ordered with f(a, a′) = a < a′, so
f(3, 5) = >. Thus, the 3 is the value we need to keep. �

Now we can present the definition of a labeled value set. Intuitively, it is a list of values that
are labeled with environments.

Definition 3.11 (Labeled Value Set) A labeled value set for domination function f(a, a′) is a
set A of pairs (a, e) where a is a value and e ∈ E is an environment. �

Example 3.12 A variable that has value 3 when x = 1, and is 5 otherwise, is represented by the
labeled value set {(5, {}), (3, {x = 1})}. �

Drake interacts with labeled value sets by querying for a value, adding a value, and by performing
binary operations on two labeled value sets. Binary operations are used to derive new labeled value
sets from existing ones.

The query operator is designed to find the dominating value that is appropriate for some
environment. A value may be returned if its environment subsumes the input environment. Of the
possible values, the dominant value is returned. Formally:

Definition 3.13 (Labeled Value Set Query) The query operator A(e) returns ai from the pair
(ai, ei) ∈ A where ei subsumes e and f(ai, aj) = >, for all ej present in any pair (aj , ej) ∈ A where
ej subsumes e. If no environment ej subsumes e, then A(e) returns ∅. �

Adding to the labeled value sets simply requires placing the new labeled value into the set and
remove any newly redundant entires.

Definition 3.14 (Adding to Labeled Value Sets) Adding the labeled value (a, e), with value
a and environment e to the value set, requires updating the labeled value set A ← A ∪ (a, e). We
also prune any values from A that are redundant, meaning that no query can return them. �

After new values are added to the labeled value set, the set may not be compact because the set
might contain redundant values. The following example illustrates how the structure of domination
and subsumption is used to prune the value set. We then use this structure to design an algorithm
to add values to the labeled value set that also maintains the minimality of each set.

Example 3.15 Consider variables x1, x2 with domains (1, 2) where A uses

f(a, a′) := a < a′

and is initialized to A = {(5, {})}. A call to A(e) for any environment e ∈ E produces five because
every environment is subsumed by the empty environment. Then suppose we add to the value set
that x1 = 1 is a sufficient condition for the value to be three. Adding the value produces

A = {(3, {x1 = 1}), (5, {})}.

Any query environment that contains x1 = 1 is subsumed by both environments in the labeled
value set, making both values possible candidates values to return from the query. However, three
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dominates five, and is therefore returned. Now imagine that we add the labeled value (2, {x1 = 1}).
Similarly, the new pair is added to the set, resulting in

A = {(2, {x1 = 1}), (3, {x1 = 1}), (5, {})}

Notice that A(e) would not return three for any input environment e, because any e subsumed by
the environment of three is also subsumed by the two’s identical environment, and two dominates
three. The value A can be accurately represented with only the two and five terms, consequently
saving space and search time for queries. Hence, we remove the value three and its environment.�

It is guaranteed that this form answers queries with no loss of information and prove the
correctness of the uniqueness criteria.

Theorem 3.16 (Minimality of Value Sets) A valued label set may be pruned of all subsumed
non-dominant values, leaving a minimal set, without changing the result of any possible query
A(e). �

Algorithm 3.2 provides an incremental update rule for adding values to labeled value sets,
maintaining a minimal representation by removing all values that cannot be returned by any query,
as motivated by Theorem 3.16. The input to the function AddCandidateValues is an existing
labeled value set A, the new labeled value set B, which may be non-minimal, and the domination
function f for A. The output is the updated labeled value set, which may have new values inserted,
and if so, may be pruned of some old values that the new values make unnecessary. The outer loop
simply processes each value of the new value set B.

Algorithm 3.2 Add new elements to a labeled value set, maintaining minimality.

1: procedure AddCandidateValues(A, B, f) . Add labeled values in B to A
2: for (bi, ei) ∈ B do . Loop over new values
3: for (aj , ej) ∈ A do . Test if new value is subsumed
4: if (ej subsumes ei)&&(f(aj , bi) == >) then
5: continue A . Not subsumed, continue to next value
6: end if
7: end for

8: for (aj , ej) ∈ A do . Check all old values
9: if (ei subsumes ej)&&(f(bi, aj) == >) then

10: A← A \ (aj , ej) . Old value is subsumed, prune
11: end if
12: end for
13: A← A ∪ (bi, ei)
14: end for
15: return A
16: end procedure

To illustrate this algorithm, reconsider the last step of Example 3.15. In that example, the
labeled value set is {(3, {x1 = 1}), (5, {})} and we need to add the value (2, {x1 = 1}). The
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algorithm proceeds in two steps. First, Lines 3 - 7 search through the existing set and make sure
that the new value’s environment is not subsumed by the environment of any dominant values. If
so, the new value is not needed and the algorithm returns without modifying A. The environment
of the new value, {x1 = 1} is subsumed by the identical environment in the labeled value set, but
the value 3 is not dominant over 2, so this condition is not triggered and the value is useful, and
should be added to the set.

If the value is not subsumed, Lines 7 - 12 find and remove any pairs whose environments are
subsumed by the new value’s environment and dominated by the new value. In this example,
the new labeled value subsumes the environment and dominates the value of pair (3, {x1 = 1}),
because the environments are identical, and 2 < 3. Therefore, this value is removed from the
labeled value set after the new value is added. The labeled value (5, {}) remains because {x1 = 1}
does not subsume {}. Finally, Line 13 adds the new value to the possibly reduced set, and returns,
producing the expected result given in Example 3.15.

Drake uses this function whenever values are added to labeled value sets to maintain the com-
pactness of their representation.

We conclude by defining arbitrary binary operations on labeled value sets. During compilation,
Drake uses the value sets to store edge weights and needs to compute C = A + B. However, we
develop this operation generally because Section 5 uses it to apply several different propagation
rules. First, we show a technique for performing operations on individual pairs of values with
environments taken from [3].

Lemma 3.17 (Operations on Values with Environments) For some pair of labeled values
(a, ea) and (b, eb) from the labeled value sets A and B, any deterministic function of two inputs g
produces a labeled pair (g(a, b), ea ∪ eb). �

Applying binary operations to entire labeled value sets requires taking the cross product of the
input sets. This is justified by Theorem 3.18.

Theorem 3.18 (Binary Operations on Labeled Values) For two labeled value sets A and B,
a set C = g(A, B) for some deterministic function g is defined by the set of candidate values
(g(ai, bj), eai ∪ ebj) for all i, j. �

To perform a binary operation g on labeled value sets, we compute the candidate values by
applying g to the cross product of the values of the two input sets and incrementally add the
candidate values to a new set. Algorithm 3.3 implements this technique for labeled value sets,
computing all the terms of the cross product with a double loop and adding each value with a valid
environment into a minimal set. Line 2 initializes C with an empty value set.

To illustrate this algorithm, consider performing the operation

{(5, {}), (3, {x = 1})}+ {(6, {}), (5, {x = 1}), (3, {y = 1}), (2, {x = 2})}

where the domination function is f :=< and {x = 1, y = 1} is a conflict of the system. Lines
3-11 loop over all pairs of values from A and B to create the cross product of values. The actual
candidate value provided by the function g and the union of the environments are computed on
Lines 5-6. In this case, the candidates are:
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Algorithm 3.3 Calculate the results of a binary operation on a minimal dominant labeled value
set.

1: procedure LabeledBinaryOp(A, B, f, g, S) . Compute C ← g(A, B)
2: C ← {}
3: for (ai, ei) ∈ A do
4: for (bj , ej) ∈ B do
5: cij = g(ai, bj) . Calculate the candidate
6: eij = ei ∪ ej

7: if (eij 6= ⊥) ∧EnvironmentValid?(eij) then . Keep if valid. Sec 3.3
8: C ←AddCandidateValues(C, {(cij , eij)}, f) . Alg. 3.2
9: end if

10: end for
11: end for
12: return C
13: end procedure

(11, {}), (10, {x = 1}), (9, {x = 1}), (8, {x = 1}), (7, {x = 2}), (8, {y = 1}), (5,⊥), (6, {x = 1, y = 1})

The next step is to ensure that we only add values to the new set if the environment is not known
to be invalid. In this example, the value (6, {x = 1, y = 1}) has an environment that subsumes
the conflict of the system, so this value is discarded. Additionally, inconsistent environments are
also removed, so (5,⊥) is removed at this stage. Line 7 checks both these conditions before Line
8 updates C. Finally, the candidates are added to the new labeled value set, discarding some
unnecessary values. Therefore, the final result is:

C = {(11, {}), (8, {x = 2}), (7, {x = 2}), (8, {y = 1})}

This section has defined labeled value sets, a compact representation for values that depend on
assignments to discrete values. The operations we have defined here allow us to simply integrate
this data structure into existing algorithms.

3.5 Labeled All-Pairs Shortest Path

Next, we consider how to compute the dispatchable form of a labeled distance graph. The im-
plicit constraints between events are exposed by applying a variant of the Floyd-Warshall All-Pairs
Shortest Path algorithm, which is developed in this section [2]. The input labeled distance graph
is a compact representation of all the initial component STPs, hence a single run of Labeled-
Floyd-Warshall compactly computes all the compiled component STPs, replacing Tsamardi-
nos’s approach of compiling them individually. The standard Floyd-Warshall algorithm is almost
sufficient to perform these computations; we only modify it to interact with the labeled value sets
using the operators developed in Section 3.4.

One important aspect of Tsamardinos’s technique is that some of the component STPs may be
marked invalid if negative cycles are found by the APSP algorithm, because a negative cycle implies
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an inconsistency in the constraints such that the component STP has no solution. Drake identifies
these inconsistencies on the fly and creates conflicts for them. This allows Drake to terminate
immediately if all the possible choices are invalidated. Additionally, Drake avoids performing
computations that are only relevant to choices that are known to be inconsistent, as is standard
for improving efficiency in an ATMS [3].

Algorithm 3.4 Labeled APSP Algorithm

1: procedure Labeled-Floyd-Warshall(V,W, S)
2: for i ∈ V do . Cycle through triangles
3: for j, k ∈ V do
4: Cjk ←Wji + Wik . Apply “+” with Alg. 3.3
5: if j == k then . Self-loop update
6: S ← CheckForNegCycles(Cjk, S)
7: else . Non-self-loop update
8: Wjk ← AddCandidateValues(Wjk, Cjk,

′<′) . Alg. 3.2
9: end if

10: end for
11: end for
12: return W, S
13: end procedure

14: procedure CheckForNegCycles(Cjk, S)
15: for (ai, ei) ∈Wjk where ai < 0 do . for all negative cycles
16: AddConflict(S, ei) . find inconsistent environments, Sec. 3.3
17: if ¬EnvironmentsRemain?(S) then . Sec. 3.3
18: signal inconsistent DTP
19: end if
20: RemoveFromAllEnv(ei)
21: end for
22: return S
23: end procedure

The Labeled All-Pairs Shortest Path Algorithm is based on the Floyd-Warshall and is shown
in Algorithm 3.4. Recall that the Floyd-Warshall algorithm updates the shortest paths by looking
for a route j → i → k that provides a smaller weight than the weight on the existing edge j → k.
The Labeled-Floyd-Warshall algorithm is nearly identical to the standard Floyd-Warshall
algorithm [2]. There are three differences. First, the addition required to derive new path lengths
is computed on labeled value sets, so the labeled value set operation is used. Second, self-loops,
edges i → i, are not stored, but are checked for negative cycles to find inconsistent component
STPs. Third, the non-self-loop candidate edge weights are added to existing labeled value sets
with the AddCandidateValues operation.

We can illustrate this algorithm by compiling the small distance graph in Figure 3.1 with a
single choice x ∈ {1, 2}. Stepping through each step of the Floyd-Warshall algorithm is tedious for
even three nodes, so we only present selected steps. The outer for-loops iterate through triangles
of the graph, deriving shorter path lengths. Line 4 computes the path lengths that two sides of

21



Figure 3.1: A simple example of running Labeled-Floyd-Warshall. Unlabeled values have an
implicit empty environment. For example, 10 represents (10, {})

(a) Input labeled distance graph

A B

C

5

0, (−2, {x = 1})

3
4, (3, {x = 2})

10

(3, {x = 2}), 4
(2, {x =

1}),

(b) Output APSP labeled distance graph

A B
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0, (−2, {x = 1})

3
4, (3, {x = 2})

8

(3, {x = 2}), 4
(2, {x = 1}),

the triangle imply for the third with the labeled binary operation function given by LabeledBi-
naryOp, instead of the scalar operation. Line 6 checks for negative cycles when creating self-loops
to detect inconsistencies. Finally, Line 8 stores any derived values not on self-loops, by updating
the old labeled value set with the newly derived values.

In our example, consider the non-self-loop update steps. Only the labeled value sets on edges
(A, C) and (C, A) are revised. First, w(A, C) is revised with w(A, B)+w(B, C). The only candidate
pair is (8, {}), which has a shorter path than the existing value (10, {}), while having the same
environment, so the old value is replaced. Now w(C, A) is revised with w(C, B) + w(B, A). Each
of those weights has two labeled values, leading to the candidate values in the following table

Source (wCB, lCB) Source (wBA, lBA) Candidate (wCA, lCA)
(4, {}) (0, {}) (4, {})

(3, {x = 2}) (0, {}) (3, {x = 2})
(4, {}) (−2, {x = 1}) (2, {x = 1})

(3, {x = 2}) (−2, {x = 1}) (1,⊥)

The first line shows the derivation of a 4 with an empty environment, where the empty envi-
ronment is inherited from both the inputs. The second and third line show the propagation of a
labeled value through a value with an empty environment, producing a labeled value with the sum
of the values and the same non-empty environment. The final line does not receive an environment
because the two input environments give competing values for x and their union is therefore in-
consistent. The remaining three pairs are first stored in Cjk and are then merged into the labeled
value set for w(C, A). Note that the value of 4 in the table is not strictly necessary, because the
executive will eventually select a value for x, and thereafter either 2 or 3 is returned in response to
a query. Since both values of x have dominating entries in the table, no actual component STP uses
the value of 4. Therefore, (4, {}) is not necessary in a minimal representation, but our algorithms
do not identify this, because this conclusion requires reasoning about more than two labeled values
simultaneously. This is future work, and can be handled with a multi-resolution rule.

No further propagations update any of the labeled value sets and the updated graph is shown
in Figure 3.1. To illustrate the self-loop update, consider computing the self-loops for C created by
following the path to B. This path induces weights (7, {}) and (6, {x = 2}) self-loop candidates for
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C. Since neither one is negative, there are no inconsistencies found by CheckForNegCycles. If
there was a negative edge weight, Line 16 would make a conflict for it, and then return failure if
all the environments are inconsistent. If there remain consistent environments, signaling that some
component STPs may be dispatchable, then Line 20 calls RemoveFromAllEnv, which we do
not provide pseudo-code for, but which searches every labeled value set and removes every labeled
value whose environment is subsumed by the new conflict. This process avoids storing information
about inconsistent STPs.

This variant of the Floyd-Warshall algorithm does not have polynomial run-time because the
number of pairs in the labeled value sets is not polynomially bounded. Instead, the worse case
bound is the number of component STPs of the input plan, multiplied by the O

(
N3

)
of Floyd

Warshall.

Theorem 3.19 The Labeled-Floyd-Warshall function shown in Algorithm 3.4 produces a
labeled representation of the APSP of all the consistent component STPs of the input DTP. �

Having completed our presentation of the labeled APSP algorithm, it is instructive to re-
interpret Tsamardinos’s algorithm within the new terminology. Tsamardinos’s technique separates
the representation of the STP for each complete environment, removing any need to explicitly rep-
resent the environments. The benefit of handling the environments in the new method, however,
is that each calculation done with a partial environment derives the same information as repeat-
ing that propagation in all the component STPs whose complete environments are subsumed by
the incomplete environment. In general, this can lead to exponential savings in the number of
computations, where the exponent is the number of unassigned variables in the partial environ-
ment. Therefore, we can think of each propagation performed by the labeled algorithm on a partial
environment to be equivalent to a batch of operations across the component STPs.

3.6 Pruning the Labeled Distance Graph

Muscettola et al. developed a post-processing step for dispatchable networks to prune redundant
edges [13]. Although the APSP form of the graph is dispatchable, at run-time, many edges are
guaranteed to re-propagate the same values in a way that can be identified at compile time. Pruning
these edges can drastically reduce the space needed to store the solution and the number of prop-
agations necessary at run-time, without affecting the correctness of the dispatcher. This section
develops a direct extension of this useful technique for the labeled graphs [13].

Simply put, Muscettola proves that an edge is dominated, and may be removed, whenever its
weight is exactly propagated by the other two sides of a triangle in the graph.

We generalize the prior work to the following theorem governing domination in the presence of
environments.

Theorem 3.20 (Labeled Edge Domination) Consider a consistent labeled distance graph that
satisfies the triangle inequality. Consider a triangle of edge weights, (wAB

i , eAB
i ) ∈W (A, B), (wAC

j , eAC
j ) ∈

W (A, C), and (wBC
k , eBC

k ) ∈W (B, C).

1. A non-negative, non-zero edge weight wAC
i is upper-dominated by another positive, non-zero

edge weight wBC
k if and only if wAB

i + wBC
k = wAC

j and (eAB
i ∪ eBC

k ) subsumes eAC
j

2. A negative, non-zero edge weight wAC
i is lower-dominated by another negative, non-zero edge
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j and (eAB
i ∪ eBC

k ) subsumes eAC
j �
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Intuitively, A → C is upper dominated and may be removed if it has a positive weight, which
is exactly propagated through some other path A→ B → C, and if the propagation is guaranteed
to create the bound in time for the executive to enforce it. The non-negativity ensures that the
propagation from B to C actually happens before it is needed. Lower domination is the inverse. The
APSP form of the dispatchable graph always satisfies the triangle rule, so after running Labeled-
Floyd-Warshall, the theorem’s hypothesis is satisfied and the domination test for edge pruning
applies.

Muscettola also provides a search algorithm which identifies all possible prunings with a marking
scheme, before removing any edges, which ensures that maximal pruning occurs [13]. This search
algorithm is suitable without modification, so we do not repeat it here.

Example 3.21 We illustrate the filtering algorithm by continuing from the APSP labeled distance
graph shown in Figure 3.1. For space considerations, we only identify the dominated edges. First,
W (C, A) = (8, {}) is dominated by the path C → B → A because the weights are the same and all
the environments are empty. Likewise, the 4 on (C, B) and the 0 on (B, A) dominate the 4 on (C, A).
Considering the labeled edges, the weight 3 on (C, A) is dominated by the 0 on (B, A) and the 3
on (C, B) because the weights satisfy the triangle inequality and ({}∪{x = 2}) subsumes {x = 2}.
Each of these edges is not mutually dominated, so each is marked during the search process and
then deleted at the end. As in this case, it is common for many of the derived weights of the labeled
APSP graph to be removed through this filtering process, resulting in Figure 3.2. �

Figure 3.2: The filtered DTP from Example 3.21.

A B

C

5

0, (−2, {x = 1})

3
4, (3, {x = 2})(2, {x = 1})

Note that there is another, more complex algorithm for STPs, which interleaves the APSP
computation and edge filtering. This algorithm avoids the expansion and contraction that is char-
acteristic of the APSP and filtering process and provides a lower run-time bound [22]. This other
algorithm could likely be modified with our labeling technique in future work. This filtering process
completes our development of a compilation algorithm for labeled distance graphs.
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4 Dispatching Plans with Choice

In this section, we describe how to take the original STP dispatcher developed by Muscettola, Morris
and Tsamardinos, and update it to work with labeled value sets and labeled distance graphs [13],
yielding Drake’s dispatching algorithm for deterministic problems. This dispatcher uses labeled
value sets to compactly encode both the compiled problem and the bounds computed at run-time.
This chapter also modifies Muscettola’s STP dispatcher to schedule activities, which are components
of TPNs used to represent some real-world processes [9]. Activities require a minor departure from
the STP formalism, but are more realistic in some cases, because they specify that durations might
need to be scheduled ahead of time, rather than after the duration is already complete.

Tsamardinos performs dispatching on a DTP by maintaining every compiled STP in memory
and by updating them all in parallel, explicitly recording the consequences of the choices. Thereby,
the executive can begin the execution with all its options available, and incrementally select between
them as the execution unfolds. Drake adopts this broad strategy, but implements it more efficiently
by using labeled distance graphs and value sets.

This section presents Drake’s dispatching algorithm for deterministic problems. This algorithm
takes as input a dispatchable labeled distance graph, and dynamically executes it, assigning times
and choices on the fly. At the end of execution, Drake will have selected a single component
STP from the labeled distance graph whose constraints are satisfied, but avoids committing to a
particular STP sooner than necessary. Finally, the dispatcher restricts itself to local reasoning steps
to keep dispatching tractable, as both Muscettola’s and Tsamardinos’s dispatchers do.

We present Drake’s dispatching algorithms by first reviewing standard STP dispatching, adapt-
ing these techniques to handle labels, and then describing the modifications necessary for activities.

4.1 Dispatching Overview

Muscettola proved that an STP dispatcher can guarantee the correct execution of a compiled STP
through a greedy reasoning process that only performs one-step propagation of temporal bounds
[13]. This top level algorithm is quite simple. Essentially, it loops, searching for events to schedule,
until either every event is scheduled or a failure is detected. Determining if an event is schedulable
only requires determining if the constraints between the event and its neighbors are satisfied, which
is performed in two steps: testing that the inequalities encoded in the distance graph are satisfied
and testing that the ordering constraints are satisfied.

The dispatcher efficiently tracks the times when an event may be executed by computing execu-
tion windows for each event. Execution windows are the tightest upper and lower bounds derived
for each event through the one-step propagation of execution times. Checking that the current time
is within an event’s execution window is sufficient to ensure the temporal constraints encoded in
the distance graph are satisfied, if the ordering constraints are also satisfied.

Testing whether the predecessors of an event have been executed is called testing for enablement.
A simple temporal constraint may imply a strict ordering between two events, which the dispatcher
must explicitly test to ensure that an event is not scheduled before an event that must precede it.

Drake’s dispatcher relies on these two fundamental tests, developed by Muscettola, for whether
an event is executable. Drake adds support for storing the dispatchable graph in a labeled distance
graph and stores the execution windows in labeled value sets. Drake also adds reasoning steps
to allow it to consider the possible choices available and to select between them. Finally, it adds
support to find and execute activities.
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Algorithm 4.1 provides pseudo-code for Drake’s top level dispatcher, called DispatchLabeled-
DGraph. The dispatcher uses functions developed throughout this chapter. The input to the
dispatcher is the dispatchable version of the input problem, and is specified by the events V , the
labeled value sets representing the edge weights, W , and the conflict database, S. It also takes a
representation of the activities, Act, which is defined fully in Section 4.5. The activity structure
specifies which intervals of the original plan are activities, their environments, and some identifier
of what physical activity it represents. The result of dispatching is that either the events and
activities are executed according to the constraints implied by one set of choices, or that an error
is detected and signaled. We use the following example to walk through the dispatching process.

Example 4.1 Let us consider dispatching the labeled distance graph corresponding to the rover
example, given in Example 1.1 and shown in Figure 1.2. Although this graph has not been compiled
into dispatchable form, which is generally a prerequisite for the dispatcher, it is simpler to draw
and still allows us to walk through the algorithm. Recall that the edge (A, B) is the drive activity
of this plan, which would be encoded in the Act data structure. �

The first step of the algorithm, Line 2, initializes sets to hold the events that have been executed
and events that are still waiting on activities to be executed. Also, the initial time is set to zero,
without loss of generality, as is typical in the literature. Lines 4-7 initialize the upper and lower
bounds for all events to provide no restrictions on their execution times. For example, the start
event, A, is given a lower bound of (−∞, {}) and an upper bound of (∞, {}), as are all the other
events. The last initialization step is to execute the start event, A in our example, as shown on
Line 8 by calling ExecuteIfPossible. Although the start event is executable by definition, this
function is used to first determine if an event is executable and greedily executes it if that is the case.
Execution is greedy because this function immediately executes any event it proves is executable.

The function ExecuteIfPossible is responsible for selecting events to execute and for schedul-
ing them. First, Line 24 calls EventExecutable?, developed in Section 4.3. At any time, exe-
cuting a particular event at that time might be consistent with all the possible choices, none of the
choices, or some of the choices, which the function determines through operations on the conflict
database. If executing the event at the current time is not consistent with any of the choices, then
it cannot be executed and the algorithm and moves on to the next possible event. For example, if
the start event A is executed at time t = 0, then B is not executable at time t = 10, because the
lower bound implied by the edge weight (−30, {}) is not met, yet is required for all possible choices.

If scheduling the event at the given time is consistent with all remaining possible choices, then
no conflicts are added and the event may be executed without making any commitments. If the
scheduling decision is only consistent with some of the remaining choices, then conflicts are added
to the database to represent those choices excluded by the time assigned to the current event. For
example, event C must follow B in the rover example, if the rover collects samples. However, it
can create a conflict for sample collection, {x = 1}, and then disregard the ordering constraint and
schedule C before B.

If the event is deemed executable, ExecuteIfPossible continues with the steps required to
actually execute the event. First, Line 25 updates the execution windows of all neighboring events
using a propagation algorithm developed in Section 4.2.

Now the dispatcher executes activities that begin with the start event, A. Line 26 calls Begi-
nActivities, developed in Section 4.5, which is responsible for finding any events that begin with
the event currently being scheduled and are consistent with the choices available. In this case, the
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Algorithm 4.1 The top level dispatching algorithm.

1: procedure DispatchLabeledDGraph(V,W, S, Act, ∆t)
2: Vexec, Vwaiting ← ∅ . Initialize event sets
3: t← 0
4: for i ∈ V do . Initialize execution windows
5: Bu

i ← (∞, {})
6: Bl

i ← (−∞, {})
7: end for

8: (B, S, Vexec, v)← ExecuteIfPossible(V,W, Vexec, S,B, Vstart, 0) . Execute start event
9: Vwaiting ← Vwaiting ∪ v

10: while V 6= Vexec do
11: S ← CheckUpperBounds(V,W, Vexec, S,B, t) . Alg. 4.4, find violated upper bounds
12: Vfinished ← GetFinishedActivities()
13: Vwaiting ← Vwaiting \ Vfinished

14: for i ∈ V \ Vexec \ Vwaiting do . Try to events
15: (B, S, Vexec, v)← ExecuteIfPossible(V,W, Vexec, S,B, i, t)
16: Vwaiting ← Vwaiting ∪ v . store starting activities
17: end for

18: t← t + ∆t . Increment time
19: wait ∆t
20: end while
21: end procedure

22: procedure ExecuteIfPossible(V,W, Vexec, S,B, i, t)
23:

24: if Sremoved ← EventExecutable?(V,W, Vexec, S,B, i, t) then . Alg. 4.3
25: B ← PropagateBounds(V, Vexec, W, S,B, i, t) . Alg. 4.2
26: (S, Vwaiting)← BeginActivities(V, Vexec, W, S,B, i, t) . Alg. 4.5
27: Vexec ← Vexec ∪ i . Store execution
28: end if
29: return B, S, Vexec, Vwaiting

30: end procedure
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dispatcher finds the drive activity, which must begin with the start event regardless of which choices
the dispatcher makes. Drake tells the system to concurrently begin the drive activity, using the
smallest possible time duration of 30 time units, and to return event B when the drive is complete.
Activities are executed concurrently, so the dispatcher may continue to schedule events while this
activity occurs, but adds B to the list Vwaiting, because that event cannot be executed until the
drive activity is done. Later, Line 12 performs a system call that polls whether any activities are
complete, signaled by returning B. Once this occurs, Line 13 removes the returned event B from
Vwaiting, allowing the system to execute it.

The final step of ExecuteIfPossible is to add the newly executed event to Vexec to indicate
that is has been executed.

Returning to the top level function DispatchLabeledDGraph, the remainder of the function
is a while loop that allows time to pass until all the events are scheduled. At each time step, several
functions are run. First, Line 11 determines whether any choices have become invalid because of a
missed upper bound on an event, meaning that the current time is beyond the upper bound of an
execution window for the event. One reason for this might be an unexpected delay in an activity
that prevents an event from being executed on time. When an upper bound is missed, it may
eliminate possible choices or may cause dispatch to fail. The function CheckUpperBounds is
developed in Section 4.3. For example, if Drake failed to execute B within 70 minutes of executing
event A, it has missed an upper bound that causes the execution to fail because the bound is
necessary for every possible choice. Then Drake checks for finished activities as mentioned above.
The block beginning on Line 14 searches through the events that might be executable, specifically,
those that have not been executed and are not waiting on activities to finish, and executes them
if possible. Finally, the time is incremented and the dispatcher waits for time to elapse before
beginning again.

In this example, between times t = 0 and t = 30, no events may be executed, because only B
has all its ordering constraints met, but it is still waiting for the drive to complete. If the activity
completes at t = 32, then B is removed from Vwaiting, and is scheduled at the same time step.
Its execution time is then propagated to its neighbors. Then this sequence repeats until all the
the other events are executed. Note that all events are executed, even though the two paths in
this example are considered mutually exclusive in a TPN. This is acceptable because the activities,
which specify real actions, are only initiated after checking whether the activity’s environment has
been invalidated. Therefore, while the events for unselected paths become unconstrained, since
the dispatcher does not enforce constraints labeled with invalidated environments, and may be
executed at arbitrary times, they remain within the dispatcher for book-keeping purposes only and
the dispatcher does not accidentally start any real actions because of them. For example, if event
C is executed out of turn, this invalidates the option to collect samples. Therefore, when B is
executed, the dispatcher does not initiate that activity because its environment is inconsistent. See
Section 4.5 for a more detailed development of the activity reasoning algorithms. The remaining
sections fill in the details of this top level algorithm.

4.2 Labeled Execution Windows

Drake requires a labeled analogue to execution windows, developed by Muscettola, to dispatch
events. In an STP dispatcher, the execution windows are maintained as a single upper and lower
bound on each event’s execution time [13]. In a DTP, Tsamardinos computed and stored bounds
independently for each component of STP [24]. Drake modifies these strategies to use labeled
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value sets, in order to compactly represent the bounds for all component STPs. These labeled
execution windows are directly computable by propagating an execution time through an edge of
a labeled distance graph, producing a labeled value set. This representation shows the dependence
of the execution windows on the choices, which the dispatcher uses to determine if an event can be
executed at a particular time.

As with the constraints expressed on edges, Drake only needs to maintain the tightest bounds
for each possible choice, making them naturally expressible through our concept of dominance.
The upper and lower bounds have different dominance conditions for their labeled value sets; the
temporal reasoning Drake performs is only affected by the lowest known upper bound and the
highest known lower bound, hence the dominance functions are < and >, respectively. The initial
bounds are set as loose as possible, positive and negative infinity for the upper and lower bounds,
respectively.

Definition 4.2 (Labeled Execution Windows) For a labeled distance graph G, Drake repre-
sents the times each event may be executed with labeled value sets Bl

i and Bu
i for the lower and

upper bounds, respectively. For each event i ∈ V , Bl
i is a labeled value set with f(a, a′) := (a > a′)

and Bu
i is a labeled value set with f(a, a′) := (a < a′). The bounds are collectively referred to as

B. All bounds are initialized with Bl
i = (−∞, {}) and Bu

i = (∞, {}). �

Example 4.3 An event might have Bl = ((5, {x = 1}), (2, {x = 2})) and Bu = ((10, {x =
1}), (4, {x = 2})). In this case, there are two possible execution windows. If the executive se-
lects {x = 1}, the event may be executed in the window [5, 10], otherwise if {x = 2}, then the
window is [2, 4]. �

When an event is executed, Drake updates the execution windows of neighboring events, re-
flecting the constraints represented in the graph. In an STP, executed event times are propagated
through outgoing edges to update the upper bounds of neighboring events and through incoming
edges to update lower bounds [13]. Drake performs the same propagations, substituting labeled
operations as necessary. Algorithm 4.2 performs this operation, updating the structure containing
the execution windows, B, with the consequences of executing event i at time t. The other inputs
specify the labeled distance graph, V , W , and S, and the current state of the execution, Vexec and
B. To illustrate this algorithm in action, consider the scenario presented by the following example.

Example 4.4 Consider the dispatchable labeled distance graph from Example 3.21, computed in
Section 3 and shown in Figure 3.2. Assume that event A is the first event to execute, at t = 3, and
propagateBounds is called. We also assume that all the bounds begin with their initial infinite
values. The upper and lower bounds for events A, B, and C are summarized in Table 4.1, before
and after the function call, and are derived below. �

As the first step of PropagateBounds, Line 2 sets the upper and lower bound for the executed
event to be the execution time with an empty environment, {}, meaning that the execution time
holds for all choices. In this example, since event A is executed at time t = 3, its upper and lower
bound are both replaced with (3, {}). Next, Lines 3-6 loop through every other non-executed event,
updating the lower and upper bounds. The addition or subtraction operations are carried out with
LabeledBinaryOp, as appropriate for labeled value sets. MergeCandidates from Algorithm
3.4 ensures that all of the bounds represented are useful for some possible execution, according to
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Table 4.1: The execution windows before and after the update for Example 4.4.

Bound Before After
Bl

A (−∞, {}) (3, {})
Bu

A (∞, {}) (3, {})
Bl

B (−∞, {}) ((5, {x = 1}), (3, {}))
Bu

B (∞, {}) (8, {})
Bl

C (−∞, {}) ((−∞, {}), (1, {x = 1}))
Bu

C (∞, {}) (∞, {})

the conflict database S. Note that the domination functions Drake uses to merge values differs for
upper and lower bounds, as specified in Definition 4.2.

In our example, the for-loop block updates the upper and lower bounds of events B and C in
turn. First consider updating the lower bound of event B. The lower bound is updated with the
edge weight on (B, A), subtracted from the execution time. We can perform the computation of
the new bounds as

(3, {})− ((0{}), (−2, {x = 1})) = ((3, {}), (5, {x = 1})) (2)

This new labeled value set is merged with the existing one, (−∞, {}), by the function Merge-
Candidates, replacing the old value with the new one. The newly computed pair (3, {}) replaces
the old negative infinity because it has the same environment and is strictly a tighter constraint.
The value of five dominates three, but the environment is more specific, so the five does not allow
us to prune the three. The upper bound of B is computed as the sum of two values with empty
environments, {}, producing the value of (8, {}) that replaces the old infinity.

Only the lower bound of event C is updated during this function call, because there is no edge
(A, C) to update the upper bound. The lower bound adds a new pair (1, {x = 1}) to the labeled
value set, but does not remove the old value (−∞, {}), because the environment {x = 1} does not
subsume the empty environment.

Algorithm 4.2 Propagate bounds for an executed event.

1: procedure PropagateBounds(V, Vexec, W, S,B, i, t)
2: Bl

i = Bu
i = (t, {})

3: for j 6= i, j ∈ V \ Vexec do
4: Bl

j ←MergeCandidates(Bl
j , B

l
i −Wji, S,>) . Alg. 3.2 and Alg. 3.3

5: Bu
j ←MergeCandidates(Bu

j , Bu
i + Wij , S,<) . Alg. 3.2 and Alg. 3.3

6: end for
7: return B
8: end procedure

Theorem 4.5 (Compact Execution Windows) The labeled value sets stored in B and com-
puted with Algorithm 4.2 provide a compact representation for the execution windows stored on the
component STPs. This representation provides the same information as if the STPs were dispatched
individually. �
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We can prove this by arguing that the labeled distance graph is a compact representation of
the constraints, and that our operations on labeled value sets are correct. Therefore, the labeled
propagations derive the correct bounds.

This algorithm provides a way to compute and store execution windows using Drake’s compact
representation of the distance graph. Labeled value sets allow us to avoid representing the bound
independently for each component STP, but instead we can compactly record the dependence of
the bounds on choices.

4.3 Selecting Events to Execute

This section develops EventExecutable? in Algorithm 4.3, which is the function that Drake
repeatedly calls to determine if a particular event is executable at the current time, given the
dispatchable form of the input plan and the execution sequence thus far. The execution criteria
that Drake uses are essentially Muscettola’s criteria for executing events in STPs, combined with
Tsamardinos’s technique for selecting choices.

Drake can select between different possible choices at run-time, which might be contradictory,
such that no execution can satisfy all of them. Typically, as an execution unfolds, Drake must make
incremental commitments, narrowing from a large array of initially feasible choices, down to one, or
a few, that it actually executes and satisfies all its constraints. It is possible that Drake might reach
the end of an execution having satisfied the constraints of several component STPs, having some
choices that are unresolved, but we consider that a happy coincidence the system does not care
about. To make these decisions while guaranteeing correctness, we use Tsamardinos’s strategy in
the following sense: Drake is allowed to execute an event at any time that is consistent with at least
one of the remaining choices. After scheduling the event, the choices that are inconsistent with this
schedule are removed from consideration by creating conflicts. If only one choice remains, Drake
must follow it exactly. If, because of some external event or unexpected delay all remaining choices
are invalidated, then the execution has failed and Drake throws an error, requiring re-planning at
a higher level.

The prior literature provides sufficient guidance for how to make the execution decisions at
run-time; we simply need a strategy for performing this reasoning correctly and efficiently with our
compact encodings.

Example 4.6 Let us return to Example 4.3, where we consider a single event. There is one choice,
x, with two possible options. If the executive selects {x = 1}, the event must be executed in the
window [5, 10]; otherwise if {x = 2}, then the window is [2, 4]. These two execution windows are
mutually exclusive, so, loosely speaking, dispatching this event requires the executive to make a
decision between them. In practice, Drake will identify that it can schedule the event at some time,
say, t = 3, and will schedule the event. It also notes that this decision violates the lower bound for
the window corresponding to {x = 1}, thus invalidating the possibility of satisfying the constraints
for that choice. Therefore, Drake records this invalidation by creating a conflict for {x = 1}. �

This example illustrates that the dispatcher narrows the possible choices at run-time, by creating
conflicts when it violates constraints. There are two types of constraints that might be violated:
activation constraints that specify a strict ordering of event executions and execution windows.
For example, the rover has an ordering constraint indicating that the end of the drive, B, may not
execute before the start of the drive, A. If Drake violates a constraint at run-time, the environments
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of those violated constraints become conflicts. For instance, violating the window [5, 10] from
the example above requires creating the conflict {x = 1}, because this is the environment for
the violated constraint. The conflict exactly summarizes which choices are invalidated by that
execution. Instead of finding the choices where a particular execution is allowed, Drake determines
whether it can create all necessary conflicts for that execution without invalidating all possible
environments. Determining if an event is schedulable, then, requires collecting the environments of
activation constraints and execution windows that would be violated by scheduling the event, and
testing whether they can all be removed as potential options.

Example 4.7 We continue the execution process for Example 4.4. The execution windows, after
event A is executed, are summarized in Table 4.1. Assume that A was executed at t = 3. If
we executed B at t = 4, that would violate the lower bound (5, {x = 1}) on B. Recall that
this constraint states that if {x = 1}, then the execution time of B must come later than t = 5.
Executing B at time t = 4, therefore, implies that the dispatcher must not select {x = 1}, which
we would note by creating a conflict.

We may schedule this event and create the corresponding conflict, if doing so leaves us at least
one possible option. If there is not at least one remaining option, then the scheduling decision
requires making all remaining component STPs inconsistent, causing the execution to fail. In this
case, {x = 2} remains a viable option. Therefore, we are free to execute B at t = 4 and create the
conflict. Since {x = 2} is the only remaining option, the dispatcher needs to satisfy all associated
constraints.

Instead of executing B at t = 4, we might consider a later time, t = 9. However, every possible
choice requires the upper bound of 8, so waiting until a time later than t = 8 would invalidate every
possible choice. Therefore, the dispatcher cannot select that time. �

Algorithm 4.3 performs the complete task of testing whether an event is executable at the
current time. The function EventExecutable? is called on an event just before it might be
executed, and asks whether the dispatcher may execute the event at the current time. Its inputs
are the dispatchable labeled distance graph, the list of executed nodes, the constraint database,
the bounds, the event in question, and the current time. The output is either true, signaling that
the event should be executed at the current time and that the conflict database has been updated
accordingly, or false, signaling that the event may not be executed yet. Essentially, the algorithm
finds all the conflicts it would need to create to schedule the input event at the current time,
and then determines whether or not it can do so without invalidating all possible choices, before
the system actually schedules the event. During the discussion of the pseudo-code, we reconsider
Example 4.7, determining whether event B may be executed at time t = 4.

The first phase of the algorithm is to identify all constraints that would be violated if Drake
went ahead with scheduling event i at time t. Line 2 initializes eviolated, a set that will hold the
environments of violated constraints. Then, Lines 3-8 goes through through the upper bounds on
the event i and stores the environments for bounds lower than t. For example, the lower bound on
B is (8, {}), which is not violated by executing B at t = 4. Similarly, the subsequent block, Lines
8-12 perform the same operation on the lower bounds. In our example, this process finds that while
the bound (3, {}) is not violated, (5, {x = 1}) is, because executing B at time 4 is sooner than the
lower bound. Therefore, the environment {x = 1} is added to the set of violated environments.

To complete the first phase, Lines 13-19 find any events that must be scheduled before the
event under consideration, which have not yet been scheduled. It does so by looking for negative
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Algorithm 4.3 Determine if an event is executable.

1: procedure EventExecutable?(V,W, Vexec, S,B, i, t)
2: eviolated ← {}
3: for (aj , ej) ∈ Bu

i do . Test upper bounds
4: if aj < t then
5: eviolated ← eviolated ∪ ej

6: end if
7: end for

8: for (aj , ej) ∈ Be
i do . Test lower bounds

9: if aj > t then
10: eviolated ← eviolated ∪ ej

11: end if
12: end for

13: for j ∈ V \ Vexec do . Test activation
14: for (ak, ek) ∈Wij do
15: if ak < 0 then
16: eviolated ← eviolated ∪ ek

17: end if
18: end for
19: end for

20: if ConflictsPossible?(eviolated) then . Test for remaining solutions
21: AddConflicts(eviolated)
22: return true
23: else
24: return false
25: end if
26: end procedure
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outgoing weights from i to non-executed events, as these imply strict ordering constraints that are
not currently met. The environments of any weights it finds are recorded. For example, B requires
that A is executed first if {x = 1}, because of the negative value (−2, {x = 1}) on the edge (B, A).
However, A was previously executed, hence no constraint is violated.

Having collected all the environments of violated constraints, the second phase of the algorithm
determines if these environments would invalidate all possible choices if they became conflicts.
Line 20 queries the conflict database to perform this test. If that returns true, then the conflicts
are created and the algorithm returns true, indicating that the event should be scheduled at the
current time. Otherwise, the event cannot be scheduled at the current time, and the algorithm
signals this by returning false. Since the event will not be scheduled at the current time, the
environments collected are not conflicts, and are not added to the conflict database. Completing
our example, eviolated has only the environment {x = 1}. No conflicts have been created yet, and
there is another possible option if {x = 1} is a conflict, so ConflictsPossible? returns true on
Line 20. Therefore, the dispatcher creates a conflict for environment {x = 1} on Line 21, and then
commits to scheduling the event B at t = 4 by returning true. This action commits the dispatcher
to select the only other option, {x = 2}.

Empty environments correspond to constraints that apply universally, hence, making {} a con-
flict necessarily invalidates all possible environments. Therefore, the dispatcher is never allowed to
violate a constraint with an empty environment.

EventExecutable? is the core reasoning method used to schedule events, as the dispatcher
can repeatedly query whether the events are executable as time passes and execute each one when
the function indicates they can. We need to prove that following this algorithm produces correct
executions.

Theorem 4.8 (Event Selection) The algorithm for EventExecutable? indicates that the
input event is executable if and only if it is executable in one of the consistent component STPs. �

Note that this theorem specifies that Drake replicates the dispatching decisions of an STP
dispatcher, indicating that Drake inherits the guarantees that an STP dispatcher can successfully
execute a dispatchable STP.

There is an important design decision implicit in this algorithm, however, in that it gener-
ally commits to scheduling an event at the earliest time that it is possible to do so. Although
Tsamardinos provides methods to determine whether a delay is possible or when the event might
be scheduled in the future, Drake simply schedules events as soon as possible, in order to simplify
the activity algorithm, discussed in Section 4.5. While we do not explore the possibility here, it
should be possible mirror Tsamardinos’s approach to reasoning about future execution times.

This section presented the algorithm for determining if an event may be scheduled at the current
time and for pruning conflicting choices. It closely follows the strategies provided by Muscettola
and Tsamardinos for performing the reasoning, while adapting the steps to our representations.

4.4 Finding Violated Bounds

When selecting events to execute, the dispatcher is allowed to directly violate the constraints within
some component STPs as long as there exists some alternative choice where no constraints are
violated. However, in a dynamic execution system, there may be unexpected delays that prevent
the system from scheduling events when they should occur, violating constraints that Drake would
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not intentionally disregard. Therefore, the dispatcher needs to routinely check whether the any
such delays have occurred and note any violated constraints. As was the case for event selection,
violated constraints induce conflicts to represent the invalid choices. However, since the dispatcher
is not in control of these violated constraints, it is possible that all remaining component STPs
would be invalidated, thus signaling a failure.

Specifically, as time passes, the upper bound of some event might pass, signaling an invalidated
STP or possibly that the execution has failed. At every time step, Drake checks for upper bounds
that have been violated and prunes them from future consideration. The function CheckUp-
perBounds, called every iteration from the top level dispatcher and presented in Algorithm 4.4,
performs this test. Note that the code is similar in structure to the algorithm for EventExe-
cutable?.

Algorithm 4.4 Find and prune violated upper bounds.

1: procedure CheckUpperBounds(V,W, Vexec, S,B, t)
2: eviolated ← {}
3: for i ∈ V \ Vexec do
4: for (aj , ej) ∈ Bu

i do . Test upper bounds
5: if aj < t then
6: eviolated ← eviolated ∪ ej

7: end if
8: end for
9: end for

10: if AddConflicts(eviolated) then . Test for remaining solutions
11: signal failure
12: else
13: return
14: end if
15: end procedure

Lines 3-9 searches through the list of non-executed events and look for upper bounds that have
been violated by the passing of time. The environments for any violated bounds are collected to
create conflicts, in a nearly identical fashion as in EventExecutable?. The crucial difference
from EventExecutable? occurs at the end of the function: these constraints have already been
violated by the passage of time and the inaction of the dispatcher, hence there is no decision about
whether or not to proceed in this fashion. Therefore, AddConflicts is called immediately on
eviolated, without testing whether those conflicts make all the complete environments inconsistent.
If the new conflicts invalidate all complete environments, the algorithm must signal that the dispatch
has failed, shown on Line 11. Otherwise, it returns and dispatch continues.

Example 4.9 Consider Example 4.7 again, where event A was executed at t = 3. Event B has
an upper bound (8, {}). If the dispatcher waited until t = 9 without executing event B, it would
discover the failure when it called CheckUpperBounds at that time-step. The label of the
violated bound is an empty environment, which subsumes every possible complete environment,
invalidating all of them. Therefore, there are no remaining consistent STPs, and there is no possible
execution. �
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This section presented a simple, but important addition to the dispatching procedure. Although
this additional check for missed execution windows is not necessary if Drake completely controls
all the scheduled durations, it provides a crucial feedback mechanism for real world applications,
in which there may be unexpected delays in the system. This check allows Drake to notice that a
choice is no longer valid and to switch to alternate choices if some alternate is possible, or to notice
plan failure as quickly as possible, allowing a re-planning step to determine a new plan.

4.5 Dispatching Activities

Dispatching a temporal networks with activities requires different temporal semantics than Simple
Temporal Problems, because an activity’s duration must be set when it begins. Within a temporal
plan, activities are typically modeled with a start and an end event. When temporal plans are
scheduled with an STP dispatcher, the dispatcher assumes that all time points can be instanta-
neously scheduled if its requirements are met, giving the dispatcher complete flexibility to execute
the end event of a process once the minimum time bound and other requirements are met. This
assumption is not realistic in all cases; often the duration of physical activities need to be deter-
mined when they start and cannot be terminated arbitrarily at run-time. For example, in the rover
example, the drive activity cannot arbitrarily end with the rover at the goal location, but must
be scheduled in advance. In light of the general need to model activities, this section proposes a
method for modifying an STP based dispatcher, such as Drake, to handle this case. Specifically,
we develop a function BeginActivities, which is called when an event is scheduled, and whose
purpose is to select the durations of activities at their start time. Essentially, we select the dura-
tions following a strategy of “hurry up and wait,” which selects the shortest possible duration and
then inserts waits as necessary.

The following example highlights the issue with executing activities under an STP dispatcher.

Example 4.10 The running rover example begins with a drive, which demonstrates the incom-
patibility of STP dispatchers and activities. If the drive ends with the rover at a pre-determined
destination, the flexibility in the drive activity implies that the rover might be able to go faster
or slower. Thus, the STP dispatcher may schedule the end event at any time between 30 and 70
minutes. However, to accomplish these feasible end times, the rover needs to select a duration at
the beginning of the drive so it may select a drive speed appropriately. �

In early research on STP dispatching, Vidal refers to the two types of controllable intervals
as End Controllable and Begin Controllable, denoting whether the dispatcher selects the duration
of the activity at the end of the interval or whether it must do so at the beginning, respectively
[26]. Later on, STP dispatchers adopted end controllable durations throughout, but many physical
systems can only be reasonably modeled with begin controllable durations. Drake only allows
begin controllable activities, but since end controllable semantics are exactly those used by STPs,
it would be simple to schedule them without the advance duration selection we now propose.

Definition 4.11 (Activities) An activity in a temporal plan is a duration that has some activity
the executive must execute. The activity connects a start and end event. Its duration may range
from l to u, the lower and upper bounds, but the duration is set when the start event is scheduled.
The activity may be labeled with some environment, e, representing the choices the dispatcher
must make to execute this activity. Finally, there is some primitive, which describes the actual
activity to execute. �
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The activities of a temporal plan are summarized in the data structure Act, which is simply a
list of the activities, where each element of the list has a field for each description of the activity
given in the definition. Note that the simple interval constraint represented by the activity is also
encoded directly into the Labeled-STP.

Example 4.12 In the rover example, the Act data structure would specify that the first activity
specifies a drive, with duration [30, 70], and an empty environment, since it must always happen.�

We need a way for Drake to dynamically select the durations of activities at their beginning,
without assuming that the activity will complete in exactly the expected time. Therefore, we
change the interpretation of activities to separate the end of the actual physical process from the
end of the activity, as shown in Figure 4.1, in a strategy we refer to as “hurry up and wait.” We
insert a node between the start and end of the activity, which represents when the physical process
completes. In this model, the dispatcher selects the duration of the activity at the start, and then
adjusts the wait duration to accommodate any delays in the execution. This allows us to select the
duration of the actual activity when the start event is executed, without giving up flexibility on
the execution time of the end event. Once the activity is complete, the end event of the activity is
executed as soon as is feasible. Timing propagations from other events cannot cause this strategy
to fail, because aiming for the shortest possible execution means that any updates to the execution
windows that happen during the activity can only require that the end be delayed, which the wait
allows the dispatcher to do. Note that Drake never performs this transformation on the distance
graph, but implicitly assumes this transformation.

There are two important properties of this technique. First, it assumes that requiring the
activity to idle is feasible; while this is reasonable in many cases, it is not universally applicable.
Second, it cannot necessarily adapt to arbitrary delays in the system, instead it allows the system to
make a good-faith effort to adjust to disturbances, which is an improvement over fixed schedules that
fail with any disturbance whatsoever. If guarantees of success are needed, or significant disturbances
are expected, an explicit model of the uncertainty, as described in Section 5, is necessary.

Figure 4.1: An illustration of Drake’s interpretation of activities, the “hurry up and wait” model.

(a) STP activities

start end

activity, [l, u]

(b) Modified activities

start complete end
activity, [l, u] wait

[0, u]

Definition 4.13 (Activity Execution) Consider an activity between events X and Y , specifying
that the duration Y − X ∈ [l, u], where u ≥ l ≥ 0. The activity is correctly executed if the
texec ∈ [l, u] and texec + twait ∈ [l, u], where texec is the time from the beginning of the start event to
when the actual activity ends and twait is the duration between the end of the activity and when
the end event Y executes. �
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The lower bound of the activity is required to be positive so that it provides a strict ordering,
so that X is the start event of the activity and precedes Y , the end event. The definition states
that the activity duration must be within the [l, u] interval, and also that the duration plus any
wait inserted must lie within the [l, u] interval.

Example 4.14 Consider the drive activity from the rover example, which has temporal bounds
[30, 70]. If the drive actually takes 40 minutes, the dispatcher may wait up to 30 minutes to schedule
the event that signals the end of the drive. However, the drive cannot take 20 minutes and then
be padded with a 10 minute wait, because then the activity itself would not have been within the
activity’s constraint. �

With this relaxed definition, we can prove the correctness of a method for selecting the execution
time of activities.

Theorem 4.15 (Dynamically Selecting Earliest Activity Completion) Consider a dispatcher
committed to executing an activity between events X and Y , meaning that all choices that do
not include the activity have been invalidated. This activity specifies duration Y − X ∈ [l, u],
where u ≥ l ≥ 0. Then, without loss of generality, the dispatcher may always select texec =
max(l, lower bound(Y ) − tcurr) when X is scheduled. If there is no current lower bound for Y ,
simply set texec = l. �

This theorem specifies that the dispatcher always chooses the shortest activity duration. We
can only suggest that while not applicable to all situations, proceeding as quickly as possible is
a reasonable choice. The proof requires that the dispatcher is committed to the activity, because
otherwise, the temporal constraints might allow the dispatcher to reverse its decision to begin
the activity, which we cannot allow. If the activity is part of a choice, the dispatcher can satisfy
this requirement by committing to the choice when the activity begins. Normally the dispatcher
only commits to choices by discarding intervals, but when the executive begins an activity, it has
naturally committed itself to any choices necessary for that activity.

Example 4.16 Consider a pair of events X and Y with an activity between them with duration
constraint [5, 10]. If X is executed at time tcurr = 4 and at that time Y has a lower bound of 11,
then the duration between them must be at least seven. Therefore, Drake can minimize the wait
time by starting the activity with length seven. �

This technique for selecting execution times is summarized in Algorithm 4.5. Its inputs are the
dispatchable labeled distance graph, the summary of the activities, and the execution windows. It
outputs the revised conflict database and any events that are the end of activities that have started.
This function may also begin some activities. This function is called when event i is executed, at
time t. The function loops over all activities that begin with this event, on Line 3.

The algorithm determines if each activity should execute, and if so, how long it should take.
Line 4 tests that the environment is still consistent. If so, the activity can be executed and the
first step is to commit to its environment on Line 5 by calling CommitToEnv. For example, when
beginning an execution of the rover problem, the dispatcher would see that the empty environment
attached to the drive activity is still valid, and that committing to it has no effect. In contrast,
beginning the charge activity when B executes requires committing to {x = 2}.

Next, the function determines the correct activity execution time. The execution time is either
the lower bound of the activity from the original problem or the least restrictive valid lower bound
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Algorithm 4.5 A function to begin activities starting with a given event.

1: procedure BeginActivities(V, Vexec, W, S,B, i, t, Act)
2: Vwaiting ← ∅

3: for acts.t.(act.start = i) ∈ Act do
4: if EnvironmentValid?(S, act.e) then
5: CommitToEnv(S, act.e) . Commit to activity

6: texec ←∞

7: for (a, e) ∈ Bl
act.end do . Find the loosest lower bound

8: if EnvironmentValid?(e) then
9: texec ← min(texec, a)

10: end if
11: end for

12: texec ← max(texec − t, act.e)

13: BeginActivity(act, texec, act.end) . Start the activity
14: Vwaiting ← Vwaiting ∪ act.end
15: end if
16: end for
17: return S, Vwaiting

18: end procedure
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on the end event, whichever is greater. This is computed on Lines 6 - 12. In the rover problem, the
execution duration is the lower bound of the activity, 30 time units. No other edges could tighten
the lower bound of the end event of the drive, so Drake only needs to consider the duration of the
activity.

Line 13 calls the function BeginActivity, which tells the system to actually execute activity
act with a duration of texec, and to return event act.end to the top level dispatcher when the activity
completes, releasing the end event for execution. Finally, Line 14 marks that the event act.end is
the end of an ongoing activity and that the dispatcher must wait for it to complete. Here we assume
that this activity is the only one ending at this event.

4.6 Conclusion

This section completes our presentation of Drake’s deterministic dispatching algorithm. When
paired with the compilation techniques from Chapter 3, we have provided sufficient tools to dy-
namically dispatch a TPN, or DTP, as desired by this work. The dispatching algorithm handles
the reasoning on temporal elements and the choices available by efficiently storing the constraints
in minimal dominant labeled value sets. This section provided algorithms for temporal constraint
propagation, event selection, constraint updates, and activity selection. The dispatcher handles
activities and simplifies reasoning by greedily selecting the fastest options available.
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5 Plans with Choice and Uncertainty

Morris et al. introduced a dispatcher with a model of uncertainty that demonstrated that the great
strength of compilation and dispatchable execution is its ability to provide explicit guarantees
about whether the executive can successfully execute a plan, even if some of the durations are
not controllable by the executive [11]. Furthermore, reasoning about set-bounded uncertainty in
this model is possible in polynomial time. Specifically, this prior work extended Simple Temporal
Problems to include bounded uncertain durations in the problem specification, creating Simple
Temporal Plans with Uncertainty (STPU). The work also introduced a compilation algorithm
that can analyze a problem in order to determine whether a dispatcher can execute the plan
correctly, thus guaranteeing robustness to the modeled uncertainty. This section outlines techniques
to replace Labeled-STPs with Labeled-STPUs as Drake’s underlying temporal model, allowing
Drake to dynamically select between a family of STPUs, thus providing a guarantee of robustness
to the uncertain outcomes for the component STPUs. Since most of the algorithmic insights are
identical to those used in the previous sections, we focus on an overview of the approach and leave
details to Appendix C.

Adding explicitly modeled uncertainty into the problem is another way of handling activities
and other uncertainties that arise when the executive interacts with the real world. Providing
this guarantee requires the executive to be extremely conservative because it assumes that every
uncontrollable duration resolves in the least favorable way. This conservatism is evident in both
the limited scope of problems that are found feasible and in the execution time selected. However,
as a designer of autonomous systems, it is a valuable tool to be able to specify particular uncertain
outcomes and have a guarantee that the dispatcher cannot fail because of those outcomes.

Example 5.1 (Rover Example with Uncertainty) To illustrate the utility of uncertainty in
dynamic execution, we can make the drive activity of the rover scenario of Example 1.1 uncon-
trollable. This modeling choice makes sense because at the outset of the drive, the rover does not
know how many obstacles it will encounter or how quickly surface conditions will allow it to drive.
Therefore, we indicate that any outcome in the range [30, 70] is possible and must be handled by the
system. The charging option provides enough flexibility to meet the deadline constraint regardless
of the outcome of the drive duration. This is because it allows any duration from 0 to 50 minutes
and can fill any duration remaining before the deadline of 100 minutes. In contrast, sampling is
only acceptable if the drive is short, because sampling takes at least 50 minutes and the drive might
take 70, which does not fit into the 100 minute deadline. �

This example illustrates the approximation Drake makes: instead of compiling the DTPU as
a whole, Drake flexibly chooses between options implying consistent component STPUs. In this
case, Drake would discard the option to collect samples at compile time, conservatively restricting
its options. This solution is somewhat limited, because collecting samples is not totally useless and
need not be discarded completely: if the drive resolves quickly, this option is actually feasible, and
charging provides an acceptable backup if the drive is slow. However, this approximation allows
us to develop the Labeled-STPU and leverage the work of the previous sections. A Labeled-STPU
is defined similarly to a Labeled-STP, except that some edges are marked as uncontrollable. As
before, all edges are labeled with environments.

This section outlines Drake’s approach to reasoning about families of related STPUs, facilitating
an approximate dynamic controllability and dispatching algorithm for plans with uncertainty. As in
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the deterministic case, our strategy is to modify the existing algorithms to use labeled value sets. In
this case, we modify Stedl’s fast dynamic controllability algorithm [18]. This requires introducing
mechanisms for conditional constraints, which are created by the STPU compilation process. These
are constraints that specify an edge weight that the dispatcher must enforce until an uncontrollable
event executes, but the constraint is removed once the uncontrollable event executes.

5.1 Background on Simple Temporal Problems with Uncertainty

We begin with an intuitive overview of Drake’s compile-time and run-time processes. An STPU
compiler is similar to a STP compiler, except that the compiler must prove that at run-time, the
dispatcher never needs to restrict the execution time of the uncontrollable durations. Instead, the
dispatcher must be able to solve the STPU regardless of what value nature selects for the uncontrol-
lable durations. At run-time, the dispatching algorithm is nearly identical to the STP dispatcher,
except that handling the uncontrollable durations requires an additional type of constraint, called
a conditional constraint, and which requires a minor addition to the dispatching routine.

Informally, a STPU is an STP where some of the constraints are marked as representing uncon-
trollable durations. This means that after the start of the constraint occurs, the end event occurs
sometime during the feasible duration, but is outside the control of the dispatcher. We illustrate
the types of reasoning required at compile-time with the following example.

Example 5.2 Again, consider converting the drive activity of the rover example into an uncontrol-
lable duration. To execute this uncontrollable duration correctly, the dispatcher must not restrict
the times when the end event may execute beyond the restriction imposed by the [30, 70] constraint.

There are two possible ways the executive might restrict the execution time of the end event.
First, at compile time, computing the dispatchable form of the graph might tighten the weights of
the edges from [30, 70] to some tighter value. Arbitrarily, say the edges representing this constraint
are tightened to [35, 60]; this modification is not allowed because the executive cannot dictate
this duration, and cannot guarantee that the duration will fall within these bounds at run-time.
However, if this tightening is an unavoidable consequence of the constraints of the plan, then
the plan is infeasible according to the requirements of dispatchable execution for this model of
uncertainty. Checking for this type of problem is called testing for pseudo-controllability [11].

The second type of restriction an executive might impose is tightening the execution window
of the end event at run-time. Assume that the start of the drive occurs at t = 10. Propagating
this execution time through the activity’s constraint leads to the conclusion that the end event
must occur in the interval [40, 80]. If some other propagation attempted to tighten this window,
for example, tightening the window to [40, 70], that would signal another unacceptable restriction,
although this type happens at run-time. To determine that a problem is dynamically dispatchable,
meaning that the executive can successfully execute the plan with uncertainty, the compilation
process must prove that neither of these types of restrictions on the execution of uncontrollable
durations can occur. �

The dispatch algorithms are largely similar to those presented in Section 4 because most of
the burden imposed by the uncontrollability is undertaken by the compiler. Drake adapts the
algorithms designed for STPUs to consider the impact of discrete choices by representing families
of related STPUs with the labeled data structures developed in this work and augmenting the prior
work to function on this representation.
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5.2 Compiling Plans with Uncertainty

Drake’s compilation algorithm is, in essence, an update of Stedl’s dynamic controllability algorithm
to use labeled data structures [19]. Stedl’s algorithm proceeds in essentially two steps. First, it
computes the APSP form of the distance graph, ignoring the fact that some intervals are uncon-
trollable. Second, it performs additional reasoning, called back-propagation, that ensures that the
types of tightenings discussed above cannot occur at run-time. The propagations in the second
phase may create conditional constraints.

Definition 5.3 (Conditional Constraint) A conditional constraint of the form 〈t, B〉 on di-
rected edge (C, A) specifies that either B must execute before C or else A− C ≤ t. �

Morris demonstrated that the addition of conditional constraints, which were first formulated
as wait constraints, into the compiled form is sufficient to perform this reasoning and dispatch
dynamically controllable STPUs. Wait constraints are the same as conditional constraints, except
that the weight is negated. The compilation process for a STPU terminates with a distance graph
that may include some conditional constraints. The key innovation of this section is the compact
encoding defined below as Conditional Labeled Distance Graphs with Uncertainty. Drake maintains
a separate labeled value set for each triple of events in order to store any conditional constraints,
indicating the start, end, and conditional events of the constraint.

Definition 5.4 (Conditional Labeled Distance Graph with Uncertainty) A conditional la-
beled distance graph G is a tuple 〈V,W,C〉. V is a list of vertices representing the events. W is a set
of labeled value sets for the weights and the marking of the controllability of the edge. The labeled
value sets store pairs (a, b), where a is the weight and b is either C for controllable or U for uncon-
trollable, with domination function f((a, b), (a′, b′)) ← (a < a′). This set of value sets represents
the weight function that maps vertex pairs and an environment to a weight and a controllability
annotation: V × V × E → R × {U, C} for any vertex pair (i, j) ∈ V × V and environment e ∈ E .
The set of edges E contains those pairs of events (i, j) where w(i, j) 6= ∞, for some environment.
All the labeled value sets for weights are initialized with the pair ((∞, C), {}). C is a group of
conditional constraints mapping triples (i, j, k) ∈ V × V × V of events into labeled value sets. The
first two indicate the direction of the inequality, and the third what the edge is conditional on. The
conditional constraints are initialized with no elements. �

Adapting the compilation algorithm itself follows the same procedure as earlier sections, namely,
apply operations with the labeled function and handle any detected inconsistencies by creating
conflicts. We use the following example to illustrate the compilation algorithm.

Example 5.5 Consider the drive activity from the rover example, while making the drive an
uncontrollable duration. We also add a requirement that the rover warm up the science package,
but not more than 10 minutes before the drive ends, to avoid wasting power. This fragment of the
plan is depicted in Figure 5.1a. Event A starts the drive, event B ends the drive, and C issues the
command to warm up the science package. Controllable edges are denoted with open arrows and
uncontrollable constraints are drawn with filled arrows. The event on the end of the drive, B, is
uncontrollable, denoted by the square node.

The initial problem, is first compiled into the APSP form shown in Figure 5.1a and then the
back-propagation and filtering produce the result in Figure 5.1c. �
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The APSP computation is unchanged from the previous algorithm. Reviewing the complete set
of back-propagation rules, introduced by Stedl, in detail is beyond the scope of this paper, but it
is helpful to explain the derivation of a conditional constraint in this example [19].

Example 5.6 The conditional constraint is derived as follows. The drive might last between 30
and 70 minutes and the time between warming up the science package and the drive ending must
not be more than 10 minutes. The drive might end at any time during the allowable uncertain
duration. Therefore, scheduling the warming event 40 minutes into the drive might cause an error
as the executive cannot guarantee that the drive will end less than 50 minutes into the execution.
Once the rover is 60 minutes into the drive the executive may conclude that it can warm up
the science package because the drive is guaranteed to end in less than 10 minutes, so all the
requirements will be met, regardless of the possible remaining outcomes. However, if the drive does
end at some earlier time, the executive need not be so conservative; once the drive is over, this
constraint is satisfied and the science package warm-up may be scheduled at any time, subject to
other constraints of the plan. A conditional constraint is created to encode this knowledge: after
the drive it started, the executive must not start warming up the science package until either 60
minutes have passed or the drive completes, whichever is first, denoted 〈−60, B〉. The dashed line in
Figure 5.1c depicts this new constraint. Previous literature used wait constraints, which invert the
duration, encoding the same constraint instead as 〈60, B〉 instead [13]. Stedl changed the notation
into conditional constraints to make it consistent with the semantics of the distance graph, which
we adopt here. �

All possible such derivations are formalized in a set of back-propagation rules that Stedl’s algo-
rithm applies recursively to update the distance graph with the consequences of the uncontrollable
durations. Using these back-propagation rules on labeled values simply involves placing the union
of the two input environments on the new value. In the above example, say the 70 minute constraint
had an empty environment, {}, and the 10 minute constraint had environment {x = 1}. Then the
resulting conditional constraint, 〈−60, B〉, would have their union, {x = 1}, as its environment.
The back-propagation rules are applied to edges with the function LabeledBinaryOp, presented
in Algorithm 3.3, which performs this environment operation.

This completes our description of the compilation algorithm for problems with temporal un-
certainty. We have explained a strategy for adapting Stedl’s technique for STPU compilation to
consider the effects of choices through a labeling scheme. The compilation algorithm is built from
the same APSP algorithm and filtering algorithm used for the controllable case and two new steps:
testing for pseudo-controllability and back-propagating the uncontrollable constraints. More details
on our updated version of Stedl’s controllability algorithm are provided in Appendix 5.2. As we
have seen, given the techniques and data structures developed for the controllable case, extending
Drake’s compilation process is a relatively simple process.

5.3 Dispatching Plans with Uncertainty

Morris et al. proved that dynamically dispatching a compiled STPU requires two simple modifica-
tions to the STP dispatcher that Drake mimics [11]. First, some events are not directly controllable
and the system must wait for them to complete; this is exactly the same as waiting for the end events
of activities to complete and is essentially already handled by the pseudo-code for Drake. Second,
the dispatcher needs to respect the conditional constraints at dispatch time. These additional con-
straints add another type of constraint that might be violated, which EventExecutable? must
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Figure 5.1: An example of an uncertain duration and a conditional constraint that results. Depicts
Examples 5.5 and Example 5.6.
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be modified to find and collect the environments for, determining whether conflicts can be created
without invalidating all possible choices. Otherwise, these extra constraints do not change dis-
patching. We also slightly modify the activity selection algorithm so it does not attempt to control
the durations of uncontrollable activities. The top level routines and propagation techniques are
identical to those presented in Section 4, except that they must call the two modified functions. At
this stage, these modifications pose little technical difficulty and do not provide any new insight.
Therefore, we delay a detailed discussion until Appendix C.3.

5.4 Conclusions

This section completes the presentation of Drake’s technical innovations. Previous sections have
developed labeled value sets as a simple and efficient technique for applying non-disjunctive tem-
poral reasoning to disjunctive problems. This section provided an interesting case study, because
adapting the existing STPU algorithms only required the basic techniques already developed for
Drake’s deterministic algorithms. Labeled value sets are versatile enough to provide the backbone
of the representation for the new conditional constraints and readily accept the new operations
necessary to propagate uncontrollable durations. The ATMS was intended as a framework for sup-
porting general problem solving engines, and we see some of this generality, specialized to weighted
graphs.
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6 Experimental Results

This section presents an experimental validation of Drake’s compilation and dispatch algorithms on
randomly generated, structured problems. First, we develop a suite of random structured DTPs and
TPNs. Then we compile and dispatch the suites of problems twice, once with Drake and once by
explicitly enumerating all the component STNs, following techniques developed in Tsamardinos’s
work [24]. Finally, we compare the compiled size of the problems, the compilation time, and
the execution latency. We find that, in general, Drake’s performance on TPNs, DTPs, TPNUs,
and DTPUs are remarkably similar, regardless of the differences in structure or the presence of
uncontrollable durations. The data shows that Drake’s labeled distance graph representation,
which we developed as a compact form of the component STP(U)s, is compact in practice, with
respect to direct enumeration. We see a consistent decrease in the compiled size of the problems
compared to Tsamardinos’s explicit enumeration, up to around four orders of magnitude for the
largest problems, containing over 10,000 consistent component STPs. Drake’s compilation time
is often faster than the explicit enumeration process of Tsamardinos, but sometimes takes longer
by up to two orders of magnitude. Finally, Drake’s execution latencies are typically slower than
Tsamardinos’s work, sometimes by several orders of magnitude for large problems, but still take
less than a second for most moderately sized problems, with a few thousand component STPs.
Overall, Drake’s techniques successfully trade off compiled space for processing time at compile
and dispatch.

We generated a suite of random DTPs, DTPUs, TPNs, and TPNUs, with generators docu-
mented in Appendix B. Our test suite includes DTPs and DTPUs with up to thousands of com-
ponent STPs. Specifically, we generated 100 consistent problems at each parameter size, varying
between each of 1-13 activities with 2 clauses per disjunctive constraint and each of 1-9 activi-
ties with 3 clauses per disjunctive constraint. We stopped increasing the activity size when the
benchmarking time increased to several days per parameter value. We generated TPNs and TP-
NUs recursively, creating 100 consistent TPNs of depths one, two, and three. These problems are
smaller than many of the DTPs, but increasing the depth to create larger TPNs also takes days to
run. For all types of problems, inconsistent instances were discarded.

To characterize the performance of Drake, we used it to compile and dispatch the test suites of
controllable and uncontrollable TPNs and DTPs, created as explained above. Drake is implemented
in Lisp, and all the evaluations were run in a single thread on a four core Intel i7 processor with 8
Gb of memory. Our implementation deviates slightly from the algorithms presented, however, the
differences are largely superficial and there is a direct correspondence between operations performed
by our implementation and our pseudo-code. The main difference is that the code does not use
labeled value sets by name, instead, it uses multiple edges between any pair of events and places
environments on those edges. Although organized differently, the operations required to insert
values and perform operations are essentially identical. Also worth noting is that some of the
environment operations are memoized with a size limited hash table, which distinctly improves the
computation times. As a point of reference for comparison, we also implemented a compilation
system that explicitly enumerates all the consistent STPs, as directed in Tsamardinos’s work. We
collected data on the compiled size of the problem, compilation time, and run-time latency, which
we now present and discuss.

Throughout this section, our plots use the number of consistent STPs as the horizontal axis
because it seems to explain the variations in the data more clearly than the number of disjunc-
tive constraints, which is the controllable independent variable of our generators. We believe it
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provides cleaner data trends because the fraction of feasible component problems varies dramati-
cally. Therefore, a problem with many disjunctive constraints, but only a few feasible component
problems might be easier to store than one with fewer disjunctive constraints, but all the compo-
nents are feasible. Also, we developed Drake to avoid the costs that result from explicitly creating
component STPs, hence it seems reasonable to study whether our method scales better than prior
work against this variable. Our analysis of the data suggests that this variable provides the clearest
indicator of the difficulty of the problem, in that it almost completely separates Drake from the
explicit enumeration technique for the size metric we collected.

We begin with the size of the compiled representation, because it provides the clearest and
most favorable results. The size is computed as a platform independent metric, counting all the
important data structure elements stored by each representation. Drake’s size metric counts the
number of events, values in all the labeled value sets on the edges, and the overhead of the conflict
database, measured as the number of conflicts and kernels. The STP enumeration metric counts the
number of events and edges, summed over all the consistent, component STPs. Figure 6.1 presents
scatter plots of the four types of problems, DTPs, DTPUs, TPNs, and TPNUs, on separate log-log
scales, showing the compiled size versus the number of consistent STPs or STPUs in the problem.
We selected a log-log scale to make the data visible over the large range of both axes.

The compiled size for all four types of problems show a similar trend: Drake’s method provides a
consistent and significant reduction in the size of the compiled problem, typically ranging from one
to four orders of magnitude in savings as the problem size increases. In fact, the qualitative shape of
the graphs are identical across all four types, and the scales and slopes are relatively similar across
all the graphs. Recall that our TPN generator creates smaller problems than the DTP generator
and has less parameters, meaning that there are fewer data points and less variation in the number
of component STPs within those data points. Even so, the TPN data scale essentially the same as
the DTP data. The DTP graphs show that varying the number of disjuncts per disjunctive clause
does not change the trend, as the two sets of data are completely mixed. Instead, the number
of consistent options is the primary factor. Furthermore, the presence of uncontrollable durations
has little influence on the graph. These graphs clearly show that storing the component STPs
or STPUs of a problem using labeled distance graphs reduces the number of events and edges as
compared to the requirement for storing each component separately. Additionally, the additional
cost of storing STPUs is simply the space needed to store any additional conditional constraints
required for dispatch, which are similar in form to the simple interval constraints. This result
validates our primary claim of the compactness of Drake’s representation in comparison to direct
enumeration.

The second metric we collected is the time required to compile the problem to dispatchable form,
measured in seconds. Drake was timed while it compiled the entire problem and the direct enu-
meration strategy was timed while it compiled only the consistent component problems. Although
explicit enumeration was under-counted by only timing while it counts the consistent component
problems, the fraction of consistent components was never vanishingly small and should not move
the points qualitatively on a logarithmic scale. The plots are shown in Figure 6.2, shown on log-log
plots as before. Again, the results are remarkably similar throughout the four types of problems.
Directly enumerating the STPs is a very consistent process and it clearly costs polynomial time with
respect to the number of consistent component problems, just as we expect. Drake’s performance,
on the other hand, varies considerably. For many DTP or DTPU problems, Drake either matches or
dramatically outperforms Tsamardinos’s strategy. However, there is a small, yet noticeable fraction
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Figure 6.1: The compiled size of random problems as a function of the number of component
STP(U)s.

(a) The compiled size of DTPs.
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(b) The compiled size of DTPUs.
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Figure 6.1: The compiled size of random problems as a function of the number of component
STP(U)s (cont).

(c) The compiled size of TPNs.
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(d) The compiled size of TPNUs.
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Figure 6.2: The compile time of random problems as a function of the number of component
STP(U)s.

(a) The compile time of DTPs.
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(b) The compile time of DTPUs.
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Figure 6.2: The compile time of random problems as a function of the number of component
STP(U)s (cont).

(c) The compile time of TPNs.
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(d) The compile time of TPNUs.
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where Drake’s compilation time is an order of magnitude or two worse than Tsamardinos’s strategy.
We believe that the savings is representative of reduced redundancy in the computations during
compilation for closely related problems, which is also something we hoped to see in the data.
Unfortunately, in some problems, the computations involving the environments induce significant
overhead, which we expect is correlated with component STPs that are relatively dissimilar. The
TPN and TPNU graphs appear quite mixed and we cannot draw conclusions about one method
outperforming another, but the results are consistent with the data seen in the DTPs and DTPUs
with few component STP(U)s. Finally, we observed qualitatively, but cannot support numerically,
that the filtering process is often the most expensive part. We believe this is because that algorithm
searches over all pairs of values on intersecting edges, which is especially slow on the APSP form
of the labeled distance graph.

The final metric we present is execution latency. To collect this data, Drake simulated running
the plans once, of which we recorded the longest decision making period, during which Drake
selected events to execute and performed propagations. The STP enumeration strategy was timed
for the first dispatch step, which is not an upper bound on the execution time, but is representative
because the number of STPs generally decreases during successive execution steps, and the work
required to dispatch each one is relatively constant without environments to manage. The results
are shown in Figure 6.3. The values at 10−3 were actually reported by Lisp’s timing functions as
zero, so we inflate them to place them on the logarithmic scale; the clear floor in the data at 10−2

is the minimum reported non-zero time.
Generally, Drake takes significantly more time to make decisions for large problems than

Tsamardinos’s approach, which we believe is because of the extra labeled operations required at
run-time. Although the increase in latency is sometimes two or three order of magnitude worse,
the absolute speed of Drake’s execution is generally not problematic. For small and medium sized
problems, up to a few hundred component STPs, most execute with less than 0.1 seconds of la-
tency. Even for the largest problems tested, many of the problems execute with less than a second
of latency. Unfortunately, a few DTPs do suffer from latency in the tens of seconds for at least
one reasoning step. Essentially all the TPNs execute with unmeasurable latency with explicit enu-
meration and the minimum measurable time for our timing functions with Drake, excepting one
outlier, because the TPNs we tested are all small or medium sized. Similarly small latencies are
visible in the small DTP and DTPU problems.

The overall conclusion we draw from these results is that Drake’s compact encoding is indeed
compact for several types of input problems, but also that it trades space for processing time in a
manner that is typically favorable. However, we hesitate to draw more specific conclusions about the
performance on any individual problem, because we cannot guarantee that the structured random
problems we experimented with are representative of most real-world problems. The uniform results
on two vastly different types of problems, including the time-line structure of our DTPs and the
strict hierarchy of the TPNs, do lend credibility that these trends are relatively insensitive to some
changes in the problem structure. However, future work is required to determine the distribution
of compiled sizes, compile times, and run-time latencies a system could expect on real problem
structures and constraints.
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Figure 6.3: The execution latency of random problems as a function of the number of component
STP(U)s.

(a) The execution latency of DTPs.
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(b) The execution latency of DTPUs.
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Figure 6.3: The execution latency of random problems as a function of the number of component
STP(U)s (cont).

(c) The execution latency of TPNs.
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(d) The execution latency of TPNUs.
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7 Conclusions

We presented Drake, a flexible executive for plans with choice. Drake is designed to take input
plans with temporal flexibility and discrete choices, specifically DTPs or TPNs, potentially with
uncontrollable durations, and decide the execution times and make discrete decisions at run-time
[4, 9]. Building upon prior work on the ATMS, Drake introduces a new compact encoding, called
labeled distance graphs, to encode and efficiently reason over alternate plans [3]. This representation
is especially useful because it requires relatively minor changes to non-disjunctive graph algorithms,
in order to reason over the discrete choices. Drake’s compilation algorithm successfully compresses
the dispatchable solution by up to around four orders of magnitude relative to Tsamardinos’s prior
work, often reducing the compilation time, and typically introducing only a modest increase in
execution latency. However, there are some cases where Drake performs poorly either at compile
time or at dispatch time, relative to Tsamardinos’s approach.

There are some broad lessons we can take from the development of Drake and the technique
it uses. STP reasoning is largely made efficient by reformulating the STP questions into graph
problems. We desired a system that could natively perform those same reasoning steps while
considering the impact of discrete choices. Therefore, we developed labeled distance graphs and
specifically designed analogues to the APSP algorithm and a few other graph queries, such as
dominance. Taking this work a step further, we could envision an entire graph package, with all
the standard graph algorithms, but based on labeled value sets. We expect there are other uses
in autonomous systems, such as path planning, or other fields, such as communications, where a
labeled graph package could simply provide a compact encoding and an algorithmic strategy to
interleave reasoning over choices with other existing algorithms.

In conclusion, Drake provides a new dynamic executive for TPNs and DTPs. It finds a new
use for the representations underlying the prior work in ATMSs, compactly encoding solution sets
for related families of STPs, without forcing us to derive completely new algorithms for temporal
reasoning. This ability to dynamically make discrete choices from a compact representation will
help robots to be more flexible and reactive in the future.
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A Forming Labeled Distance Graphs

Building upon the definition, we now explain how to create a labeled distance graph representing
a TPN. Recall that a TPN consists of a set of events, constraints, and choices. Algorithm A.1
converts a TPN into a labeled distance graph. First, Line 2 creates the nodes of the graph to be
the same as the nodes of the TPN. Second, Line 3 creates one choice per choice node, and a value
for each corresponding to the outgoing arcs from those choice nodes. Finally, Lines 4-6 encode
each simple interval constraint into the labeled weight function. As usual, each temporal constraint
[l, u], where l and u are real numbers, produces one forward edge with weight u and one backward
edge with weight −l.

The difference between this algorithm and the process of converting a STP into its distance
graph is that here we add environments to each edge. Section 3.3 defines environments formally,
but an environment specifies a partial set of choices from which the constraint logically follows.
Setting the environments in the initial encoding allows the algorithms to carry the choices through
the later steps. Remembering that TPNs are generally hierarchical, the environment for an edge
must specify the assignment for all choices that occur higher in the hierarchy. This technique
ensures that the entire sub-plans of a choice are mutually exclusive, as required by a TPN.

Algorithm A.1 Convert a TPN into a labeled distance graph

1: procedure TPNToDGraph(TPN)
2: V ← events of TPN
3: X ← CreateChoiceVariables(TPN)
4: for each temporal constraint in TPN do
5: add weights to W, labeled with all choices higher in the hierarchy
6: end for
7: return V,W, S, X
8: end procedure

Continuing our example from the rover TPN, we demonstrate running TPNToDGraph on it.

Example A.1 The first step of compiling the TPN in Figure 2.1 is to transform it into a labeled
distance graph. The final result is shown in Figure 1.2. The choice node requires a variable, denoted
x, with possible values x = 1 corresponding to collecting samples, and value x = 2 for charging. The
constraints are transformed into distance graph edges in the usual way: upper bounds are positive
distances in the forward direction and lower bounds are negated on backward edges. However,
edges along the path of choices are labeled with the environment for the choice that activates those
edges. Therefore, edges (B, C) and (C, E) are labeled with x = 1, and edges (B, D) and (D,E) are
labeled with x = 2. The other edges are not conditioned on any choices and are given an empty
label to indicate that they represent constraints that must hold regardless of the which option is
selected. Both of the component distance graphs in Figure 1.1 can be recovered from this compact
form, yet there are no duplicated constraints. �

Converting a DTP into a labeled distance graph requires a nearly identical process. The choices
from a DTP are created from the disjunctive clauses. A DTP uses inclusive-or operators, indicating
that the executive needs to enforce at least one disjunct for the execution to be correct. We can
accommodate by creating a variable for each disjunctive clause and one value for that variable for
each disjunct. For example, if some DTP has a disjunction
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(A−B ≤ 5) ∨ (A−B ≥ 3) ∨ (A− C ≤ 3) (3)

then we could create a single variable x for this choice, with a domain {1, 2, 3}, for each disjunct,
respectively. The choice variable notation implies an exclusive choice, implying that it must commit
to a single disjunct, which is not implied by a DTP. This strategy is correct, however, because the
choice selects the single disjunct, Drake satisfies to ensure correctness, without prohibiting any of
the other disjuncts from being satisfied incidentally. For example, if x = 1, then Drake commits
to satisfying the first constraint, which does not generally prohibit Drake from satisfying the third
constraint. If the executive needed to explicitly reason over satisfying multiple disjuncts from a
disjunctive clause, we could instead create a value for each combination of satisfied clauses. For
example, we could create domain values {4, 5, 6} to explicitly consider satisfying pairs of disjuncts,
although Drake does not do this.

With the variables defined, the constraints from DTPs are simply converted into the labeled
distance graph. Non-disjunctive constraints are labeled with empty environments, specifying that
they must always be satisfied. Each disjunctive clause is labeled with an environment specifying
the single variable and value that corresponds to that disjunct.

B Generating Random Problems

B.1 Generating Random DTPs

To generate random structured Disjunctive Temporal Problems, we modify Stedl’s random struc-
tured STP generator [18]. His generator provides relatively fine-grained control over the size of the
resulting problems, and is we used to generate a large test suite of problems.

We give a brief overview of the generation algorithm. Stedl’s generator first creates activities,
where each activity is specified as a strictly ordered duration between two events. These activities
are randomly assigned coordinates of a grid, with each event having a unique coordinate, where
the start event of an activity is directly to the left of the end event. This coordinate grid is wider
than it is tall, so that the activities give the feel of a time-line when drawn. Since the generated
activities do not share events, the generator then adds more constraints to connect the activities.
These extra constraints are added by randomly selecting an event, then selecting another event
that is nearby on the coordinate grid and adding a simple temporal constraint, where the bounds
are selected randomly from a range proportional to the distance between the two events. This
scaling of constraints provides structure, and is the key feature of the technique, because some
events are placed closely on the grid and constrained to occur at similar times, while others are
widely separated and therefore remain loosely coupled. We add to this technique by generating
disjunctive constraints in a similar fashion. For each disjunctive constraint, the algorithm selects
an event to focus on and selects the desired number of constraints from the existing constraints
near the selected event. These constraints then appear in the disjunctive clauses. If the generator
selects a constraint that is already in a disjunctive clause, it creates another constraint for the
disjunct, placed between the same events, with newly generated bounds.

This generator produces problems where the events are naturally understood as existing on a
type of time-line, making them reminiscent of problems humans might create. It also provides
flexibility over the size of the problems created. We tie together several of the size parameters to
create two basic controls. The first control scales the number of clauses per disjunctive constraint.
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Figure B.1: This TPN fragment is the fundamental unit used by the random generation algorithm.
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The second control scales the number of disjunctive constraints in the problem, which determines
several other parameters. The number of activities is the same as the number of disjunctive con-
straints, so the increased number of disjunctive constraints do not become cluttered. The number
of events is fixed at double the number of activities, as each activity gets independent start and
end nodes. Finally, the number of non-activity constraints, added after the activities are created, is
roughly three times the number of disjunctive constraints. This parameter, along with the scaling
of the random temporal values and some other fine parameters of Stedl’s algorithm, are chosen
empirically so that most of the problems are consistent, and many of the component STPs are
consistent.

When generating uncertain problems, each activity has a fifty percent chance of being marked
as uncontrollable. Otherwise, the generation process is identical to the deterministic case.

B.2 Generating Random TPNs

Our TPN generator is based on the one presented by Effinger [5]. The algorithm creates a hier-
archical plan by first creating a binary tree up to the desired depth, connected with [0, 0] simple
temporal constraints. Then each node is replaced with the TPN fragment shown in Figure B.1. The
two activities in the fragment are randomly generated durations where 0 ≤ ui ≤ 10 and 0 ≤ li ≤ ui.
Each node in the binary tree and the left-most node of the TPN fragment is then converted into a
choice with a probability of one half. Finally, the generator creates an end node for the TPN and
connects the bottom of the tree, closing off the hierarchies and inserting new nodes appropriately.

As with the DTP generator, when generating uncertain problems, each activity has a fifty
percent chance of being uncontrollable. Otherwise, the generation process is identical.
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C Supplement to Plans with Uncertainty

C.1 Defining Plans with Uncertainty

In this section we define uncontrollable extensions for both TPNs and DTPs, both of Drake’s basic
representations. These uncontrollable varieties are denoted TPNUs and DTPUs, respectively.

A TPNU is a TPN where some of the activities are marked as uncontrollable 1. To perform
constraint reasoning, we transform the TPNUs and DTPUs into labeled distance graphs with
uncertainty. We now define Disjunctive Temporal Problem with Uncertainty, following Venable
and Smith [25]. The deterministic DTP definition is augmented with uncontrollable events and
edges. Prior literature often uses alternate terminology, referring to durations as requirement or
contingent links.

Definition C.1 (Disjunctive Temporal Problem with Uncertainty [25]) A DTPU is a tu-
ple 〈Vc, Vu, Rd, Ru, C〉, where Vc and Vu are the controllable and uncontrollable events, respectively.
Rc and Ru are the controllable and uncontrollable edges and C is the finite disjunctive constraints
of the edges. �

We view both these formats as a means for specifying a family of related component STPUs.
Converting from an input TPNU or DTPU to a conditional labeled distance graph with uncer-

tainty is almost identical to the method for deterministic plans, given in Appendix A. The only
difference for uncontrollable plans is that some events and constraints are annotated as uncon-
trollable in the conditional labeled distance graph. An event is considered uncontrollable if any
uncontrollable duration, with any environment, ends at that event.

In the controllable problems, we developed the activity data structure to help the dispatcher
reason about when activities begin, whether events are waiting for an activity to complete, and
whether the dispatcher is committed and should begin an activity. Since uncontrollable durations
are similar in spirit to activities, and these same considerations apply, it is convenient to treat
all uncontrollable durations as activities, where we augment the act data structure from Section
4.5, with a controllable? field, containing a Boolean value that indicates whether the activity is
controllable. This mechanism simplifies our code by avoiding unnecessary duplication of steps.

C.2 Compiling Plans with Uncertainty

Morris showed that a STPU can be reformulated into a dispatchable form through a polynomial
time algorithm that transforms the input plan, replacing uncontrollable durations with controllable
durations and conditional constraints that prevent squeezing of the uncontrollable durations at run-
time [11]. This process is completed by repeatedly modifying certain pre-defined small sub-graph
structures, thereby propagating the effects of the uncontrollability throughout the constraint graph.
Stedl developed an efficient technique for achieving the same result by re-ordering the propagations
and by modifying the rules for altering the graph [18]. This section presents the application of
Stedl’s method to our compact representation for families of STPUs, conditional labeled distance
graphs with uncertainty. We do not change the core algorithm from Stedl’s work, except to replace
the operations with their labeled equivalents and by adding steps to record conflicts specifying

1We assume that discrete choices are always controllable. See Effinger et al. for TPNs with uncontrollable discrete
choices [6].
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infeasible component problems. Therefore, we give an overview of the strategy and some algorithms
here, but other details are omitted for brevity.

Stedl’s top level fast dynamic controllability algorithm for STPUs works to compile families of
STPUs, with only modifications for storing the edge weights in labeled value sets. The pseudo-code
is shown in Algorithm C.1. The method proceeds in two main phases: (1) compile the problem,
treating every constraint as controllable, and test for pseudo-controllability, and then (2) propagate
the effects of the uncontrollable durations. It takes as input a conditional labeled distance graph
with uncertainty, formed from an input DTPU or TPNU, and either compiles it to dispatchable
form or finds it infeasible.

Algorithm C.1 Compilation algorithm for Labeled Distance Graphs with Uncertainty

1: procedure CompileUncertain(Vc, Vu, W, S,C)
2: W, S ← Labeled-Floyd-Warshall(V,W )
3: if (¬EnvironmentsRemain?(S)) ∨ ¬PseudoControllable?(V,W, S) then . Alg. C.2
4: return null
5: end if
6: W ← FilterSTN(V,W ) . See Section 3.6

7: for v ∈ Vu do . propagate uncontrollable
8: if ¬BackPropagateInit(V,W, S, C, v) then . See [18].
9: return null

10: end if
11: end for

12: if ¬PseudoControllable?(V,W, S) then . Alg. C.2
13: return null
14: end if
15: W ← FilterSTN(V,W ) . See Section 3.6

16: return W, S
17: end procedure

The first phase of the algorithm produces a dispatchable network for the fully-controllable ver-
sion of the STPU and tests it for pseudo-controllability. A STPU is pseudo-controllable if the
implicit constraints of the network do not prohibit any values from the uncertain durations. This
condition is necessary but not sufficient for dynamic controllability because the executive cannot se-
lect which value any the uncontrollable duration receives, and the executive must allow any possible
value. To test pseudo-controllability, Line 2 runs LabeledAPSP on the graph to explicitly reveal
all the implicit constraints of the problem. If APSP finds a negative cycle, then the component
STPU is inconsistent, as before, because re-introducing the uncertainty makes the problem strictly
harder and is certainly still inconsistent. Then Line 3 performs the pseudo-controllability check
on the compact representation of all the STPUs, invalidating any component STPUs that contain
restricted uncontrollable durations. Assuming that at least some of the component STPUs are still
feasible, the first phase concludes by filtering the network of redundant edges on Line 6, producing
a minimal dispatchable form of the STPUs that passes pseudo-controllability, as needed for the
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next step. The filtering step must follow the pseudo-controllability check because the reason for
running the APSP algorithm is to expose all the constraints and filtering removes them, potentially
hiding the evidence that the problem is not pseudo-controllable.

The result of running the labeled APSP algorithm on Example 5.5 is shown in Figure 5.1b. The
input graph has few edges, so only one new edge, (A, C) is created. No negative cycles are found,
so the algorithm continues. The uncontrollable durations are not squeezed by any new edges, so
the problem is pseudo-controllable. After testing for pseudo-controllability, the graph is pruned,
and edge (A, C) is pruned, because it is dominated by the other two. A controllable edge may be
dominated by an uncontrollable edge. In contrast, we cannot remove any uncontrollable edges from
the graph at this stage, because they need to be propagated in the next step.

The second phase of compilation considers the effects of propagating timing information at run-
time and ensures that the dispatcher will never tighten the uncontrollable durations incorrectly.
Stedl developed a set of back-propagation rules that specify a method for updating a network
to maintain dispatchability when a constraint changes. Line 8 performs the primary reasoning
step. This step changes the uncontrollable durations, which the first phase treated as controllable,
back into uncontrollable ones, and recursively propagate the necessary timing changes throughout
the network. We do not review the back-propagation rules in detail, but leave their derivation
to the literature [18]. The back-propagation rules detect inconsistencies caused by the revisions
to the network that are performed to avoid execution window tightening, creating conflicts for
violating component STPUs, as usual. Afterward, Line 12 re-checks that pseudo-controllability
was not violated during back-propagation. Finally, the compact, dispatchable representation of the
consistent STPUs is pruned of redundant edges on Line 15. At this stage, uncontrollable durations
may be pruned, as any uncontrollable durations the dispatcher needs are stored in the activity data
structure.

Since pseudo-controllability is an important part of STPU compilation, we provide Algorithm
C.2, which demonstrates the minor adaptation necessary for the labeled representation. The essen-
tial idea is that in all valid STPUs, the uncontrollable durations must not be replaced by tighter
durations. Line 2 loops over every uncontrollable duration in the original specification, searching
for violations. The inner loop on Line 3 considers every edge between the same events as the un-
controllable one under investigation. Any smaller weights indicate a tightening that might violate
pseudo-controllability. The tighter weight means that the dispatcher cannot simultaneously satisfy
the environment of the uncontrollable duration and the lower weight edge. Therefore, Line 4 com-
putes the union of those two environments and invalidates it by creating a conflict. Finally, Line
10 returns that the problem is controllable if at least some complete environments remain valid.

Example C.2 Figure C.1 shows two small graph segments we use to illustrate the pseudo-controllability
algorithm. First, Figure C.1a has exactly one uncontrollable edge. The algorithm would look for
any violating edges, immediately finding the only other edge from event A to B, which has a smaller
weight. Therefore, the environments of the edge weight {x = 1} is now a conflict. However, the
DTPU is still valid if there are other complete environments.

Figure C.1b shows an interesting similar case, with the same edge weights, suggesting that some
solutions should be marked as invalid. However, the uncontrollable edge and the tighter bound do
not co-occur in any environments because they differ in their assignment to the variable x. The
algorithm determines this incompatibility by computing that {x = 2} ∪ {x = 1} 6= ∅. Therefore,
the algorithm draws no new conclusions from this fragment. �

62



Algorithm C.2 Algorithm for testing pseudo-controllability on Drake’s compact representation
and updating valid set of environments.

1: procedure PseudoControllable?(V,W,S)
2: for every uncontrollable edge (w, e) from event i to j do
3: for (wij , eij) ∈Wij do
4: if (wij < w) ∧ (e subsumes eij) then
5: AddConflicts(S, eij) . Section 3.3
6: RemoveFromAllEnv(eij)
7: end if
8: end for
9: end for

10: if ¬EnvironmentsRemain?(S) then . return true if some STPUs are left
11: return false
12: else
13: return true
14: end if
15: end procedure

Figure C.1: Graph fragments demonstrating pseudo-controllability.

(a) A tighter edge invalidating {x = 1}

A B

(5, {x = 1})

(3, {})
(b) A tighter edge with no effect

A B

(5, {x = 1})

(3, {x = 2})

C.3 Dispatching Algorithms for Uncontrollable Plans

The most important update to the dispatcher is to modify the event selection routine to respect
conditional constraints, meaning that to execute an event with a conditional constraint, either the
conditional event has executed or the difference constraint is satisfied. In the labeled version, as
before, the executive may execute an event at a certain time if it can invalidate all the environments
of violated constraints without removing all possible complete environments. The conditional con-
straints are now just another source of violated constraints the executive must search for. Algorithm
C.3 handles this extra consideration. Note that it is otherwise identical to Algorithm 4.3. Lines
20-28 loop over all the triples of conditional constraints that might restrict this event. Note that
conditional constraints are always negative and point out from the constrained event. Therefore,
the outer loop is over the end of the edges and the middle loop is over non-executed events. This
algorithm only needs to find violated constraints, so we need not test any constraints where the
conditional event is executed and satisfies the constraints by definition, so the middle loop only
searches over non-executed events. Otherwise the inequality constraint is tested, ensuring that the
other event has actually been executed and if so, that the difference constraint is met. The operator
Time(j) refers to the time of execution of event j. If either of these tests fail, the environment of
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Algorithm C.3 Determine if an event is executable.

1: procedure EventExecutableU?(V,W, Vexec, S,B,C, i, t)
2: eviolated ← {}
3: for (aj , ej) ∈ Bu

i do . Test upper bounds
4: if aj < t then
5: eviolated ← eviolated ∪ ej

6: end if
7: end for

8: for (aj , ej) ∈ Bl
i do . Test lower bounds

9: if aj > t then
10: eviolated ← eviolated ∪ ej

11: end if
12: end for

13: for j ∈ V \ Vexec do . Test activation
14: for (ak, ek) ∈Wij do
15: if ak < 0 then
16: eviolated ← eviolated ∪ ek

17: end if
18: end for
19: end for

20: for j ∈ V do . Test conditional events
21: for k ∈ V \ Vexec do
22: for (am, em) ∈ Ci,j,k do
23: if (j /∈ Vexec) ∧ (am < Time(j)− t) then
24: eviolated ← eviolated ∪ em

25: end if
26: end for
27: end for
28: end for

29: if ConflictsPossible?(eviolated) then . Test for remaining solutions
30: AddConflicts(eviolated)
31: return true
32: else
33: return false
34: end if
35: end procedure
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the conditional constraint is added to those that must be discarded and the algorithm proceeds as
before.

Figure C.2: A fragment of a labeled conditional distance graph with uncertainty.

A B

C

(70, {})

Drive, (−30, {})

Warm-up,
(10, {x = 1})

(〈−60, B〉, {x = 1})

Example C.3 Consider executing the labeled conditional distance graph depicted in Figure C.2.
Assume that event A was executed at t = 0. At the current time, t = 10, event B has not
executed yet. If the dispatcher considers executing event C, it finds the conditional constraint.
The constraint would be violated if Drake schedules event C at t = 10 because event B has not
executed, nor have 60 minutes elapsed since event A executed. Therefore, the executive must create
a conflict from the conditional constraint’s environment, {x = 1}, in order to execute event C at
t = 10. �

The modification to the activity selection algorithm is simple. If the activity the function
commits to is not controllable, it calls BeginActivityU on Line 16, which does not attempt to
set a duration for uncontrollable durations. Therefore, it also skips the computation of duration
of the activity. Otherwise, the function is unchanged, identifying activities that should begin and
computing execution times for controllable activities. We create activities for the uncontrollable
durations because the two concepts are semantically related, and it provides a convenient way to
re-use the code that delays the execution of events until real-world activities allow it. Also, it
ensures that pruning cannot remove the uncontrollable edges and therefore makes the dispatcher
unaware of the uncontrollable duration that is ongoing. As before, our mechanism for waiting is
simplistic, requiring that only one uncontrollable duration ends at each event. We can work around
this restriction by either noting which activities must complete for a given event to execute or by
adding extra events constrained with a [0, 0] edge, requiring that they happen simultaneously.

At the top level of the code, it is sufficient to remove the end event from the waiting list
when uncontrollable duration completes, because our dispatcher executes events as soon as they
are executable. The compiler guaranteed that the end event of any uncontrollable duration is
executable at any possible outcome of that duration, so we can rely on the existing procedures to
execute the end event on the first time step after the duration completes.
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Algorithm C.4 A function to begin activities starting with a given event.

1: procedure BeginActivitiesU(V, Vexec, W, S,B, i, t, Act)
2: Vwaiting ← ∅

3: for acts.t.(act.start = i) ∈ Act do
4: if EnvironmentValid?(S, act.e) then
5: CommitToEnv(S, act.e) . Commit to activity

6: if act.controllable? then . select a duration
7: texec ←∞

8: for (a, e) ∈ Bl
act.end do . Search bounds

9: if EnvironmentValid?(e) then . Sec. 3.3
10: texec ← min(texec, a)
11: end if
12: end for

13: texec ← max(texec − t, act.e)

14: BeginActivity(act, texec, act.end) . Start the controllable activity
15: else
16: BeginActivityU(act.end) . Start the uncontrollable activity
17: end if
18: Vwaiting ← Vwaiting ∪ act.end
19: end if
20: end for
21: return S, Vwaiting

22: end procedure
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D Proofs

Proof (Theorem 3.16) For a labeled value set A, assume for contradiction that there is some
pair (ai, ei) that fails the uniqueness criteria, but cannot be discarded because it is required to
correctly answer the query A(e). If it fails the uniqueness criteria then there is another pair (aj , ej)
where ej subsumes ei and f(aj , ai) = T. The i pair can only influence the query if it provides
the correct returned value. If ai is the proper returned value, then by definition, ei subsumes e.
However, ej must also subsume e because subsumption is transitive, as is easily demonstrated
by considering the assignments implied by subsumption. Then, both ai and aj are candidates
responses, and we would select the dominant value, aj . Since ai would not be selected for any
environment e, it could have been discarded, which contradicts the assumption. �

Proof (Theorem 3.17) If ea is an environment for a, meaning that ea entails a, and likewise eb

is an environment for b, then any deterministic function of a and b is entailed by the union of all
the assignments in ea and eb. �

Proof (Theorem 3.18) Since the list of values ai and bj are the only possible values under any
environment, the output of a deterministic function must come from the evaluation of the cross
product of those lists. As given in Theorem 3.17, the union of their environments is the environment
for each new value. Alternatively, the definition of the correct values for C is

C(e) = g(A(e), B(e))

where for an input environment e we query for the correct values of A and B, then compute function
g. To pre-compute the result for all environments, setting e = eai ∪ ebj puts the least possible
requirements on e while being certain that the input values are entailed by the environment of the
result. �

Proof (Theorem 3.19) The computation of the APSP form of the graph depends only upon
the correctness of the Floyd-Warshall algorithm and on the operations of labeled value sets. The
requirement to derive the shortest paths by definition means that all edge weights are dominant
with f(a, a′)← a < a′. The only operation required on labeled sets is addition, which is correctly
computed, as shown by Theorem 3.17. All the invalid component STPs are identified and discarded
by negative self-loop edge weights, as in the unlabeled case. �

Proof (Theorem 3.20) The edge is dominated if the triangle equality is exactly met under
all necessary environments. Since we seek to dominate edge (A, C), in both cases we need the
environment of the sum to subsume the environment for the value of (A, C), so that the sum
holds in at least all the component STPs where the dominated edge holds. As shown previously,
the environment of the sum of two labeled values is given by the union of their environments.
Subsumption tests whether this union holds for all the necessary labels. �

Proof (Theorem 4.5) Theorem 3.19 shows that the labeled distance graph is a compact rep-
resentation of all the constraints of the compiled, component STPs created by Tsamardinos’s ap-
proach. Therefore, our propagation step begins with all the necessary constraints. The time of
execution is correctly given an empty environment because the execution time is fixed without
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requiring any assumptions about which choices are selected. The propagation computation per-
forms addition or subtraction on the labeled value sets, which is proved correct by Theorem 3.18,
calculating the same candidates as performing the simple addition or subtraction for each com-
ponent STP. Finally, the candidate bounds are stored in labeled value sets, which are lossless by
3.16. The bounds of the component STPs are recoverable by querying the labeled value sets with
the complete environments associated with the component STPs, so the bounds structures are a
complete, compact representation of the execution windows. �

Proof (Theorem 4.8) The labeled distance graph and the execution windows are a condensed
version of all the weights and execution bounds of all the component STPs, as proved by The-
orem 3.19 and Theorem 4.5. The algorithm finds all the violated constraints and collects their
environments. If the event is executed at time t, then the environments of the violated constraints
are conflicts, because every component STP whose complete environments is subsumed by one of
the violated environments contains a violated constraint. The function EventExecutable? only
returns that the event is executable if constraint database reports that there are still valid complete
environments, meaning that there is at least one STP where the execution decision is legal. �

Proof (Theorem 4.15) If the plan is dispatchable and the activity is necessary for the completion
of the plan, when X = tcurr, then by definition of the compiled form and the dispatching execution
windows Y − tcurr ≥ max(l, lower bound(Y ) − tcurr). Although parallel threads may change the
bounds on Y , the lower bound can only be raised during execution, meaning that this strategy
always produces a duration that is too short, allowing the dispatcher to insert waits correctly.
Therefore, the theorem’s choice of texec does not remove any flexibility from the plan and Y may
be scheduled according to the STP based dispatcher. The maximization step is necessary because
the actual edge weight representing the activity might have been pruned from the labeled distance
graph. This step ensures that it is considered correctly. �
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