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Abstract

Classical Bayesian mechanism design is “centralized”, that is, the designer is assumed to know the
distribution D from which the players’ type profile has been drawn. We instead investigate a very “de-
centralized” Bayesian model, where the designer has no knowledge at all, and each player only has some
probabilistic information about D.

For this decentralized model and many contexts of interest, where the goal is to maximize revenue,
we show that, for arbitrary type distributions D (in particular, correlated ones), it is possible to design
mechanisms matching to a significant extent the performance of the optimal centralized mechanisms.

Our results are “existential” for a broad class of contexts (including combinatorial auctions) and “con-
structive” for auctions of a single good.
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1 Introduction

In a game, the players’ utilities are determined by their (utility) types, and each player knows his own type.
In most real games, however, the players do not exactly know the types of their opponents. It is thus both
traditional and natural to model such uncertainty by means of probabilistic distributions.1

At the core of Bayesian mechanism design is the assumption that the true type profile of the players, θ, has
been drawn from a distribution D over Θ, the set of all possible type profiles. But then different assumptions
are made about who knows how much about D. Most mechanisms are defined under the following

Centralized-Bayesian Assumption: The Designer knows D.

Broadly speaking, we are interested in investigating how well the performance of these mechanisms can be
approximated under decentralized Bayesian assumptions, that is, when all knowledge about D is assumed to
lie with the players themselves. Such assumptions are more realistic whenever the players “know each other
more than the designer knows them” (e.g., when the designer is a judge allocating an inheritance among
family members). Some examples of decentralized-Bayesian assumptions are

Decentralized Assumption 1: D is common knowledge among the players; and
Decentralized Assumption 2: Each player knows D.

Weaker and more sophisticated decentralized assumptions envisage that each player, rather than knowing D,
has only some partial, probabilistic knowledge about D. In particular, this is the case for the following

Decentralized Assumption 3: Each player i’s knowledge coincides with the conditional distribution D|θi.
That is, i’s knowledge coincides with D conditioned on the event {t ∈ Θ : ti = θi}. Note that Decen-
tralized Assumption 3 is indeed weaker than Decentralized Assumption 2, because i can deduce D|θi from
his knowledge of D and θi, but not vice-versa, as in principle i may know D|θi without knowing D itself.
Also note that Decentralized Assumption 3 is the one underlying most Bayesian mechanisms using Bayesian-
Nash equilibria as their solution concept. We are actually interested in investigating the power of a weaker
decentralized-Bayesian assumption.

1.1 Our Conservative-Bayesian Model

Notice that a Bayesian mechanism designed under Decentralized Assumption 3 works if and only if each
player’s distributional knowledge is so coarse as to coincide precisely with D conditioned on “his own true
type and nothing more.” Should a player be able to further refine the conditional distribution D|θi (e.g., by
acquiring additional information about his opponents), he might have all the reasons in the world to deviate
from his strategy in a typical Bayesian-Nash equilibrium. We thus wish to design decentralized-Bayesian
mechanisms that achieve their desiderata no matter how more refined the distributional knowledge of the
players may be. Let us explain.

Call a partition P of Θ i-consistent if for any set S in P and any type profiles t and t′ in S, ti = t′i.

Conservative-Bayesian Assumption: There exists a profile P of partitions of Θ such that: (1) Pi is
i-consistent for each i, and (2) when θ is randomly selected according to D, each player i’s knowledge is
D′i , D|Si, where Si is the unique set in Pi containing θ.

That is, each D′i is a “separate and arbitrary refinement of D|θi”. For concreteness we only assume that
each D′i is described by finitely many bits. Note that our conservative-Bayesian assumption

(a) makes no restriction on D: indeed, D may be any member of ∆(Θ), the set of all distributions over Θ
(in particular, the players’ types can be arbitrarily correlated);

1In the most general Bayesian setting, each player has his own, arbitrary belief, that is, he considers the types of his opponents
drawn from a probability distribution Di. Such beliefs may be “unrelated to the truth,” and beliefs of different players may be
inconsistent with each other. It is hard, however, to design mechanisms that can guarantee desirable outcomes in such a setting.
In particular, it would be helpful for the players’ beliefs to be consistent with the truth, and thus with each other.
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(b) is totally decentralized: indeed the designer may know (arbitrarily little or even) nothing about D; and
(c) is weaker than other decentralized assumptions: in particular, it is weaker than Assumptions 1, 2, and

3.

1.2 Assignment Contexts

Recall that a game consists of a context, describing the outcomes and the players’ types, knowledge, and
utilities, and a mechanism, describing the strategies available to the players and how these strategies lead to
outcomes. We focus on a class of contexts general enough to include as special cases all types of auctions,
from single-good to combinatorial. We refer to this class as “assignment contexts.” In essence, an assignment
is an allocation whose different components may overlap, and in our contexts —as in typical auctions— the
set of possible assignments is “downward-closed.” More formally,

An assignment context consists of

• A finite set of players N = {1, . . . , n}.
• A finite set X of (assignable) items.
• A set of (possible) assignments: A ⊂ (2X)n such that (A1, . . . , Ai−1, ∅, Ai+1, . . . , An) ∈ A ∀A ∈ A, i ∈ N .
• A profile Θ of possible types, where each Θi is the set of all functions t from 2X to Z+ such that t(∅) = 0.
• The set of outcomes, Ω = A× Rn.

The utility of a player i in an outcome (A,P ) is θi(Ai)− Pi.
For finiteness, we assume that each type t actually maps 2X to [B] = {0, . . . , B − 1}, for some integer B.

1.3 Our Results

Informal Notation
• We call a mechanism “classical DST” if, for each player i, i’s strategy space is Θi and it is dominant-

strategy for him to announce his own true type.
• We call a mechanism “two-step DST” if, for each player i, i’s strategy space is Θi×∆(Θ) (i.e., his utility

type and his knowledge) and i maximizes his own utility by (1) announcing his own true utility type
regardless of the strategies of the others; and (2) announcing his true knowledge, given that all the other
players announce their own true utility types. (Note that “two-step DST does not imply normal-form.”)
• Let M be a decentralized-Bayesian mechanism. Then, by rev(M,C,D) and opt(C,D) we denote the

expected revenue —in an execution where the type-distribution is D, the actual context C, and each
player is truthful— respectively generated by M and the optimal classical DST centralized-Bayesian
mechanism for D. (Each expectation is taken over all possible random choices, that is, over D and the
coin tosses of the corresponding mechanism, if probabilistic.)

1.3.1 An Existential Result for General Assignments

We show that conservative-Bayesian Mechanisms are in principle as powerful as centralized-Bayesian ones.

Theorem 1. For any ε > 0, there exists a two-step DST conservative-Bayesian mechanism M such that, for
all n-player assignment contexts C and type-distributions D,

rev(M, C,D) > (1− 1
n

)opt(C,D)− ε.

While quite general, we consider this result “existential” because our proof is non-constructive. That is,
we always guarantee the existence of the required M, but cannot always explicitly construct it.
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1.3.2 A Constructive Result for Single-Good Auctions with Arbitrary Type-Distributions

For single-good auction contexts, we constructively provide a lower bound to the power of conservative-
Bayesian mechanism design, for all possible type-distributions, in terms of the following benchmark.

The Revenue Benchmark S In a single-good auction with (arbitrary) type-distribution D and realized
type-profile θ, letting the star player —denoted by ?— be the lexicographically first player having the highest
valuation for the good, the star benchmark, S , is informally defined to consist of the maximum expected
revenue obtainable by

1. Choosing a price p? given inputs D, ?, and θ−?, and
2. Collecting payment p? whenever p? ≤ θ?.

(For a formalization of S see Section 3.) For this benchmark we prove the following

Theorem 2. For any ε, δ > 0 there exists an explicit, probabilistic, two-step DST, conservative-Bayesian
mechanism M such that, for all single-good auction contexts C and type-distributions D,

rev(M , C,D) ≥ (1− δ)S − ε.

1.3.3 Constructive Comparisons with Optimal Mechanisms

Theorems 1 and 2 have non-trivial implications for the relative performance of constructive conservative-
Bayesian mechanisms and optimal ones in each of three possible scenarios for auctions of a single good.

1. Players with Arbitrarily Correlated Types

When D is an arbitrary joint distribution, no optimal centralized-Bayesian mechanisms are known, and
Myerson’s mechanism [11] does not guarantee any significant revenue. Yet, Theorem 2 implies the following

Corollary 1. For any ε, δ > 0 there exists an explicit, two-step DST, conservative-Bayesian mechanism
M such that for all single-good auction contexts C and type-distributions D,

rev(M,C,D) ≥ 1− δ
2

opt(C,D)− ε
Indeed, Ronen [13] proves that, for the single-good case, Vickrey auctions with monopoly reserve prices

give at least 1
2 of the optimal revenue, even when valuations are allowed to be correlated. In our parlance:

S ≥ opt(C,D))/2 for all C and D.

2. Players with Independently Distributed Types

In auctions of a single good where D is a product distribution, that is, when D = D1× · · · ×Dn, the optimal,
classical DST, centralized-Bayesian mechanism is well known: namely, it is Myerson’s mechanism [11].

Theorem 1 automatically guarantees that the performance of Myerson’s mechanism can be essentially
matched by a conservative-Bayesian mechanism M. As stated, Theorem 1 only guarantees the existence
of M. But our proof of Theorem 1 actually guarantees that M can be explicitly constructed for all type-
distributions D for which the optimal, classical DST, centralized-Bayesian mechanism has been explicitly
constructed. In the case at hand, therefore, our proof of Theorem 1 immediately yields the following

Corollary 2. For any ε > 0, there exists an explicit, two-step DST, conservative-Bayesian mechanism M ′

such that, for all n-player single-good auction contexts C and all product distributions D = D1 × · · · ×Dn,

rev(M ′, C,D) > (1− 1
n

)opt(C,D)− ε.2

2We note that our result more generally applies to all “single-parameter downward-closed environments.”
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Our small degradation in performance may perhaps be excused. After all, Myerson’s mechanism is
centralized, and thus has access to the product distribution D for free, while our M ′ is very decentralized,
and thus sacrifices some revenue in order to “extract” D from the “collective” knowledge of the players.

To be sure, other explicit and decentralized-Bayesian mechanisms have already been proposed for single-
good auctions, but only in the more specialized scenario discussed below.

3. Players with Identically and Independently Distributed Types

In single-good auctions where D is “iid”, that is, when D = D× · · · ×D, explicit and decentralized-Bayesian
mechanisms have been proposed by Segal [14] and Baliga and Vohra [1]. Informally speaking, their mecha-
nisms estimate D using the valuations reported by the players and then run Myerson’s mechanism. As the
number of players goes to infinity, the estimated distribution becomes closer to D, and the auction’s revenue
approximates the optimal one. Baliga and Vohra also make a similar analysis for double auctions, where the
auctioneer is a broker that matches buyers and sellers.

As already said, our explicit mechanism M ′ of Corollary 2 is two-step DST and does not need the players’
types to be iid. Yet, when restricting our attention to the latter case, a main difference separates our
mechanism from theirs. Namely, their mechanisms approximate well the optimal revenue asymptotically but
not, for all values of n. By contrast, the revenue of M ′ is always arbitrarily close to a fraction n−1

n of the
optimal revenue.

1.4 Computation and Techniques

Although computational efficiency is not the primary goal of this paper, we note that our mechanisms M
and M ′ of Corollaries 1 and 2 are always computationally tractable when the players’ valuations have small
range, an important setting in which our mechanisms still retain their advantages over all previous ones. In
addition, if we were just content to guarantee our players positive utility in expectation rather than “in all
possible cases”, then

• M is always computationally tractable, and
• If the optimal mechanism is computationally tractable, or has a computationally tractable approximation

satisfying some mild technical conditions, then M ′ too is always computationally tractable.

Our techniques are conceptually simple. In essence, we integrate Vickrey auctions and scoring rules (a
technique from statistics, mostly applied in prediction markets). Although overlooked, this is a powerful
integration, and we believe and hope that it will enable all of us to reach many other desirable goals.

2 Other Related Work

Attribute-Based Mechanisms For downward-closed single-parameter contexts, Dhangwatnotai, Rough-
garden, and Yan [5] show how to obtain approximately optimal revenue when (1) the players are assumed to
be described by some attribute a, (2) all players with this attribute have a one-dimensional valuation drawn
from a distribution Da, and (3) for every attribute a there exist at least two players described by a.

Prior-Free Mechanisms in Digital-Good Auctions Goldberg, Hartline, Karlin, Saks and Wright [8]
consider non-Bayesian auctions of digital goods. (A good g is called “digital” if an unlimited number of copies
of g can be generated at no additional cost, and the value that each player may have for any copy of g is
the same.) For such auctions, they put forward a DST mechanism whose expected revenue, for any possible
type profile θ, is guaranteed to be at least a fraction 1

4 of the following benchmark: F2(θ) = maxi≥2 i · θ(i)

where θ(i) is the ith highest valuation in θ. (Since their context is not Bayesian, the expectation is taken
solely over the mechanism’s coin tosses.) Using this framework, Goldberg and Hartline [7] propose a quite
different mechanism, again for auctions of digital goods, achieving a fraction 1

3.39 of the same benchmark.
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Simple Mechanisms Neeman [12] shows that English Auctions are approximately optimal, performing an
analysis similar to Ronen’s work on Vickrey auctions. Hartline and Roughgarden [10] extend Ronen’s results
to downward-closed and matroid environments, under the assumptions that the distribution of valuations
are independent and satisfy some regularity properties.

Posted-Price mechanisms Chawla, Hartline, Malec and Sivan [3] show a sequential-posted price mech-
anism that achieves a constant-factor approximation of the optimal revenue even in multiple-parameter
settings. In particular, they consider the case where agents desire only one good, but may have different
valuations for different goods.

3 Preliminaries

3.1 Our Star Benchmark

In a single-good context with an arbitrary type-distribution D, the star benchmark S consists of
n∑
i=1

∑
t∈[B]n−1

Pr
θ←D

(? = i, θ−? = t) max
p

(
p · Pr

θ←D
(θ? ≥ p|? = i, θ−? = t−i)

)
.

3.2 Our Two Building Blocks

We describe our mechanisms in a modular way using the following two building blocks.

Knowledge Aggregator. We define the knowledge aggregator, AGG, to be the function mapping the identity
of a player i and a distribution subprofile DK−i to another distribution as follows.

AGG(i,DK−i)
0. For each j 6= i, set Sj to be the support of DKj .
1. Set S = ∩j 6=iSj and j′ = min{j : j 6= i}.
2. If S = ∅, then output DKj′ .
3. Else, set DK′ to be DKj′ |S, and output DK′.

In essence, AGG interprets each DKj as the distributional knowledge of player j in a conservative-Bayesian
model with type-distribution D, and aggregates the individual knowledge of the players in −i so as to
reconstruct a refined distribution for i’s type. Notice that in AGG, if the knowledge of players in −i disagrees
with each other in an apparent way (that is, when S = ∅), then the function’s output can actually be
arbitrary. Also notice that the choice of the player j′ can be arbitrary, because when the input DK is the
“true knowledge” of the players, any choice of j′ will lead to the same output DK′. Here by “true knowledge”
we mean that, each DKj is obtained from the true distribution D by first conditioning on some event that is
consistent with the true valuation profile, and then conditioning on the true valuation subprofile of players
in −i.

Brier’s Scoring Rule [2]. Let Ω be a state space and let ∆(Ω) be the set of probability distributions over Ω.
A scoring rule S is a function, S : Ω×∆(Ω)→ R. A scoring rule S can be used to reward individuals reporting
their knowledge (or beliefs) about the world: in particular, giving an individual reporting a probability
distribution D ∈ ∆(Ω) a reward equal to S(ω,D) whenever the realized state is ω ∈ Ω. A scoring rule S is
proper if an individual maximizes his expected reward by announcing his true knowledge about the world.
That is, for any two different probability distributions D,P ∈ ∆(Ω),

Eω←D[S(ω,D)] ≥ Eω←D[S(ω,P)].
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A recent paper by Gneiting and Raftery is a good survey of proper scoring rules [6]. We call scoring rule S
strictly proper if the above inequality is strict. In our mechanisms we use Brier’s scoring rule [2] for discrete
domains, which is strictly proper. This scoring rule, denoted by BSR, is defined as follows. For each s ∈ Ω,
letting D(s) be the probability assigned to s by D, and letting δω,s be the indicator function, that is δω,s = 1
if s = ω and 0 otherwise, then

BSR(ω,D) = −
(∑
s∈Ω

(δω,s −D(s))2

)
= 2D(ω)− ‖D‖22 − 1.

Note that Brier’s scoring rule is always bounded: indeed, BSR(ω,D) ∈ [−2, 0] for all ω and D. (In contrast,
Good’s [9] more popular logarithmic scoring rule LSR(ω,D) = log(D(ω)) is unbounded.)

4 Proof of Theorem 1

Fixing ε > 0 we now prove the existence of the required conservative-Bayesian mechanism M. Our M
first obtains from a player a distribution over the types of the other players, and then runs the optimal
centralized-Bayesian, DST mechanism for this (n − 1)-player distribution. Since the latter mechanism is in
general unknown, our proof is “non-constructive.” But it is a valid “existential” one, because in the worst
case, such mechanism can always be found via an exhaustive search in a space that is finite by definition. (In
essence our construction of M is a reduction, explicit whenever the optimal mechanism is explicitly known.)

In our description below, numbered steps are taken by the players, and steps marked by letters are steps
taken by the mechanism/auctioneer.

Mechanism M

a. Choose a player i uniformly at random from {1, ..., n}.
Comment. Player i will receive the empty allocation and get a price of zero, but he will be rewarded
according to his knowledge. Choosing i deterministically does not affect incentives, but might reduce
revenue. We do not know how to make M two-step DST without “removing one player”.

1. Player i announces a distribution F over Θ−i.
Comment. Allegedly, F represents his true knowledge D′i restricted to the domain Θ−i.

2. Each player j 6= i announces a valuation function vj ∈ Θj.
Comment. Allegedly, vj is j’s true valuation.

b. LettingM be the optimal mechanism for the (n−1)-player distribution F , runM(v−i,F) so as to obtain
an allocation A−i = (A1, A2, ..., Ai−1, Ai+1, ..., An), and a price vector P−i = (P1, P2, ..., Pi−1, Pi+1, ...Pn).
Comment. The allocations and prices of the players in −i are determined by M.

c. Set Ai = ∅, reward i by setting Pi = − ε
2(2 + BSR(v−i,F)), and output outcome (A,P ).

Comment. Although player i gets no allocation, he gets a reward according to Brier’s scoring rule. The
negative price indicates that the mechanism transfers money to player i. Since we insist that our players
do not incur negative utilities ex post, the boundedness of Brier’s scoring rule is crucial here.

Notation. Since a direct (possibly randomized) centralized-Bayesian assignment mechanism M may be
conceptualized as receiving (the description of) a type-distribution D as a separate input, we use a slightly
different notation to denote M ’s revenue than the one used for decentralized-Bayesian mechanisms. Namely,
if M always flips ` coins, then letting v be a type profile and r ∈ {0, 1}`, M(v,D, r) denotes the unique
outcome (A,P ) computed by M on inputs v and D when using coin tosses r; rev(M(v,D, r)) =

∑n
i=1 Pi;

rev(M(v,D)) = Er←{0,1}`rev(M(v,D, r)); and rev(M(D)) = Ev←DEr←{0,1}`rev(M(v,D, r)).
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Lemma 1. The mechanism M is two-step DST.

Proof. Let i be the player chosen in step a of the mechanism. First we prove that each player j 6= i maximizes
his utility by announcing his true valuation in step 2, regardless of the other players’ strategies. Indeed, player
j gets allocation Aj and price Pj , which are determined by running the optimal classical-DST mechanism
M(v−i,F). Since M is classical DST, player j maximizes his utility θj(Aj)− Pj by announcing vj = θj , no
matter what v−{i,j} and F are. (Notice that it does not even matter whether F is the true distribution from
which θ−i is drawn, because for M to be classical DST, the players must maximize their utilities by being
truthful regardless of the distribution.) Since player j has the same utility in M and in M, truthfulness in
M implies truthfulness in M (about his utility type).

Now we prove that, given that all players j 6= i reveal their true utility types, player i maximizes his
expected utility by announcing his true knowledge D′i. Indeed, player i’s expected utility from announcing
distribution F is Ev−i←D′i [

ε
2(2 + BSR(v−i,F))]. Since Brier’s scoring rule is strictly proper, this expectation

is maximized if and only if F = D′i.

Lemma 2. For all assignment contexts C and distributions D,

rev(M, C,D) ≥ (1− 1
n

)opt(C,D)− ε.

Proof. Consider the following mental experiment. Fix a valuation profile v drawn from the distribution D,
and (if the mechanism is randomized), fix a sequence r of coin flips. Let M(v,D, r) be an execution of the
optimal mechanism that produces some outcome (A,P ). For any player i, let (Ai, P i) be an outcome such
that Aii = ∅, P ii = 0, Ai−i = A−i, and P i−i = P−i. That is, player i gets the empty allocation and pays zero,
and all the other players get the same price and allocation as in (A,P ). Define the mechanism Mi which,
given a valuation profile v, coin flips r, and distribution D, runs M(v,D, r) but gives player i the empty
allocation and charges him zero. That is, Mi produces the outcome Mi(v,D, r) = (Ai, P i). Note that the
average revenue of the Mi mechanisms (taken over the choice of i) is

1
n

n∑
i=1

rev(Mi(v,D, r)) =
1
n

n∑
i=1

∑
j 6=i

Pj =
n− 1
n

n∑
j=1

Pj =
n− 1
n

rev(M(v,D, r)).

Taking expectation over all v ← D and all sequences of coin flips r, we get that

1
n

n∑
i=1

rev(Mi(D)) =
n− 1
n

rev(M(D)) =
n− 1
n

opt(C,D).

Since the mechanism M is classical-DST, and each Mi does not change the outcomes for any player
j 6= i, we must have that Mi is dominant-strategy truthful for all players j 6= i. Furthermore, it has the
property that it produces an allocation Ai such that Aii = ∅, an allocation that does not serve player i.

Now let’s restrain ourselves to outcomes that do not serve player i. Since the mechanism M is optimal,
the maximum expected revenue of classical-DST mechanisms not serving player i is obtained by running M
on inputs v−i,D−i, where v−i is the profile of valuations of all players except i, and D−i is the distribution of
v−i induced by restricting D to Θ−i. In particular, this generates more expected revenue than running Mi,
which is also a classical-DST mechanism that does not serve player i. We can conclude that

rev(M(D−i)) ≥ rev(Mi(D)).

To continue, we observe that the expected revenue of optimal mechanisms increases with the precision of
their type-distributions. That is, modelling them as a single universal mechanism M receiving the relevant
type-distribution as a separate input; letting P be a partition of the type-space Θ into events; and assuming
that, when the true-type profile θ is randomly selected from D, M’s separate input is D|E —where E is the
unique set in P containing the realized θ— we have
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∑
E∈P

Pr
θ←D

(θ ∈ E) · opt(C,D|E) ≥ opt(C,D).

Accordingly, we must have that the revenue ofM does not decrease when given player i’s true knowledge
D′i, which is D|Si whenever θ ∈ Si ∈Pi. That is,

rev(M,−i) ,
∑

Si∈Pi
Prθ←D(θ ∈ Si) · rev(M((D|Si)−i)) ≥ rev(M(D−i)),

where (D|Si)−i is the distribution of θ−i induced by restricting D|Si to Θ−i.
The mechanism M generates revenue by choosing a player i at random and running M(θ−i,D′i) —when

the players are truthful, v−i = θ−i and F = D′i. Thus the expected revenue (despite the reward in step c) of
M is

1
n

∑n
i=1 rev(M,−i),

which, based on previous inequalities, is greater than or equal to

1
n

n∑
i=1

rev(M(D−i)) ≥ 1
n

n∑
i=1

rev(Mi(D)) =
n− 1
n

opt(C,D).

Taking into account the reward given in step c, which is at most ε, we can conclude that the expected
revenue of M is ≥ n−1

n opt(C,D)− ε, as desired.

Theorem 1 follows directly from Lemmas 1 and 2. Q.E.D.

Computational Remarks In our proof of Theorem 1, we use the optimality of mechanism M only to
derive two inequalities: namely inequalities rev(M,−i) ≥ rev(M(D−i)) and rev(M(D−i)) ≥ rev(Mi(D)).
The first can be interpreted as the following condition: “the more precise the type-distribution known toM,
the better M’s revenue performance.” The second inequality can be interpreted as the following condition:
“M generates more revenue when running with all players but i, than when running on all players and then
throwing away i’s payment.” Thus, if M satisfies the above two conditions and is approximately optimal,
with approximation ratio β, then M will also be approximately optimal, with approximation ratio n−1

n β.
When our mechanism M is explicit, it needs to evaluate Brier’s scoring rule. For this, we need to have

access to F(v−i) and to compute the norm ‖F‖22, which might be computationally expensive when F is
correlated and/or the range of the players’ valuations is big. By contrast, a variant of Good’s logarithmic
scoring rule, LSRa,b(v−i,F) = a+ b log(F(v−i)) with a, b > 0, is still strictly proper, but only requires access
to F(v−i). However, although always providing positive utility in expectation for suitable values of a and
b, it has the disadvantage that, for some distributions F and some valuation subprofiles v−i, it can give
arbitrarily negative rewards, giving player i negative utility. If positive utility in expectation is good enough,
then LSRa,b is a perfectly suitable scoring rule.

5 Proof of Theorem 2

The high-level structure of our mechanism M is very simple. Essentially, the players act only twice.
The first time, they secretly transmit their true types to M . There will be enough incentives so that

they do so truthfully, and thus M can publicly announce (1) the identity of the (alleged) star player, and (2)
the (alleged) true valuations of the other players.

(Note that the above secret transmission makes M a mechanism of imperfect information. Indeed, we do
not know how to provide incentives sufficient to guarantee that M is two-step DST if —say— the players
simultaneously but publicly announced their own valuations.)

The second time, each player i not identified as the star player deduces from his original knowledge D′i,
his true type θi, and the announcement of M , a more refined distribution about the star player’s valuation,
which he then announces to M . Again, there will be enough incentives so that this time too the involved
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players will be truthful. At this point, M aggregates all the received distributions so as to get a much
more refined distribution about the star player’s valuation. From this distribution, assuming that this were
the only information it had about the star player, M computes the best take-it-or-leave-it offer to the star
player, as if he were the only player around. It also computes another possible offer to the star player: namely
the (allegedly) second-highest valuation it previously learned. Finally, it chooses the higher offer, and then
decides whether to allocate the good to the star player, and how to charge him, by simulating his acceptance
or rejection of the higher offer using his secretly transmitted (alleged) true valuation.

Let us now fix δ and ε arbitrarily in (0, 1/4), and provide M ’s details. Again, numbered steps are taken by
the players, and steps marked by letters are steps taken by the mechanism/auctioneer. Since we are dealing
with single-good auctions, we simplify our notation by letting an allocation A be a number in {0, 1, . . . , n}:
A = 0 means that the good is unsold, A = i 6= 0 means that the good is assigned to player i.

Mechanism M

a. Set (A,P ) to be the empty outcome, that is, A = 0 and Pi = 0 for each i.
Comment. (A,P ) will be the final outcome of M .

1. Each player i secretly transmits to the auctioneer an integer vi ∈ [B].
Comment. Allegedly vi is i’s true valuation.

b. The auctioneer flips a biased coin C1, such that C1 = Heads with probability δ.
c. If C1 = Heads, the auctioneer does the follows.

c1. Choose a player r ∈ {1, ..., n} and a price p ∈ [B] uniformly at random.
c2. If vr ≥ p, then A = r and Pr = p− ε.
c3. The mechanism ends.

Comment. If vr < p then the good is unsold. Steps b and c help to ensure that a player is strictly
better-off to be truthful about his valuation.

d. If C1 = Tails, let ∗ = argmaxi vi. The auctioneer publicly announces (∗, v−∗).
Comment. Ties are broken lexicographically. Player ∗ is the only candidate for winning the good. The
auctioneer informs the players the identity of ∗ and the values announced by the other players.

2. Each player j 6= ∗ simultaneously announces to the auctioneer a probabilistic distribution Pj over [B].
Comment. Allegedly Pj is j’s knowledge about the distribution of player ∗’s true valuation.

e. The auctioneer computes the following:

e1. sp = argmaxj 6=∗ vj.
Comment. Ties are broken lexicographically. Player sp is the “second-valuation” player.

e2. If sp > ∗ then CP = vsp, otherwise CP = vsp + 1.
Comment. CP is the “classical price”. Essentially it is the “second price”, but because of the way
to break ties, the value of CP depends on which one is lexicographically first, player ∗ or player sp.

e3. P̂ = AGG(∗, (P1, . . . ,P∗−1,P∗+1, . . . ,Pn)).
Comment. Allegedly P̂ is the aggregated knowledge about the distribution of ∗’s true valuation
given the other players’ knowledge.

e4. KR = maxp∈[B]

(
p · Pr

V←P̂ [V ≥ p]).
Comment. KR is the “known revenue”, allegedly the maximum expected revenue that can be
generated from ∗ given the aggregated knowledge about him.

e5. KP = argmaxp∈[B]

(
p · Pr

V←P̂ [V ≥ p]).
Comment. KP is the “best known price”, allegedly the price that should be used to charge ∗ in
order to generate expected revenue KR.

f . The auctioneer allocates the good and decides ∗’s price with the following rule:
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f1. If CP ≥ KR then A = ∗ and P∗ = CP − ε.
f2. Else, if v∗ ≥ KP then A = ∗ and P∗ = KP − ε.

Comment. Otherwise (that is, CP < KR and v∗ < KP ), the good is unallocated.
g. For each j 6= ∗, Pj = − δε

3nB (2 + BSR(v∗,Pj)).
Comment. Each player j 6= ∗ is rewarded according to his announced knowledge about ∗.

Analysis of M . The analysis of M (unlike that of M!) is quite complex and thus given in our Appendix.

Remarks.

• The worst case for M ’s revenue is when D′i = D|θi. In this case, in fact, the revenue lower bound
of Theorem 2 is tight. However, the actual expected revenue generated by M grows nicely with the
quality of the players’ knowledge. In particular, when the players “collectively know θ”, that is, when
the distributions D′i are so refined that the intersection of their supports contains a single type profile
(necessarily θ), then M ’s revenue is arbitrarily close to θ?, the maximum revenue ever possible.

(Again, notice that for the players to collectively know θ, it is not necessary that θ is common knowledge,
nor that each player individually knows θ.)

• Mechanism M trivially accommodates the case when the designer himself has some distributional
knowledge about the star player, or the underlying distribution D.

6 Conclusions

By relying on an assumption weaker than traditional Decentralized Assumptions 1, 2, or 3, conservative-
Bayesian mechanisms are both more realistic and more challenging. We believe and hope that, given more
theoretical attention, they will prove useful in more applications.

Future challenges include dealing with players whose knowledge is approximate and/or represented in
algorithmic form, with approximate scoring rules, with continuous valuations, with aggregation of the knowl-
edge of all players, and with broader classes of contexts. We have already started making progress in some
of them. Fortunately there is a lot to do!
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Appendix:
Analysis of M

We first provide some convenient notions that will be used throughout the analysis. For any strategy
profile γ, and any variable x used in the mechanism M (e.g., vi, C1, r, p, etc), we denote by x(γ) the value
of this variable in the execution of γ. So vi(γ) is the value announced by player i in Step 1, C1(γ) is the coin
flipped in Step b, r(γ) and p(γ) are the player and the price chosen in Step c1, in the execution of γ. When
the strategy profile γ is clear from the analysis, we may omit it and talk about vi, C1, r, p, etc, directly.

We state and prove three lemmas about our mechanism, which together directly imply Theorem 2.

Lemma 3. It is strictly dominant for each player i to announce his true valuation in Step 1 (i.e., vi = θi).

Proof. We show that for any true valuation profile θ and any pure strategy σi which announces vi 6= θi in
Step 1, there exists a pure strategy σ̂i which strictly dominates σi, that is, for all pure strategy subprofiles
τ−i,

E[ui(σ̂i t τ−i)|θ]− E[ui(σi t τ−i)|θ] > 0,

where the expectations are taken over the coins tossed by M . Since the true valuation profile θ is always
fixed, and every event and every expectation are conditioned on θ, we omit the conditioning on θ in the
analysis below, for a more succinct presentation.

Strategy σ̂i works as follows. In Step 1, player i announces θi. In Step 2 (whenever reached by the
mechanism and whenever ∗ 6= i), denoting the valuations announced by the auctioneer about the other players
as v−{∗,i}, player i announces P i to be the same as what σi would have announced given the announcement
of the auctioneer in Step d being (∗, vi t v−{∗,i}) (according to σi, player i announced vi instead of θi in Step
1).

Let σ = σit τ−i and σ̂ = σ̂it τ−i. Notice that for any strategy profile γ, the expected utility of player i is

E[ui(γ)] = Pr[C1(γ) = Heads] · E[ui(γ)|C1(γ) = Heads] + Pr[C1(γ) = Tails] · E[ui(γ)|C1(γ) = Tails]

=
δ

nB
·
vi(γ)∑
k=0

(θi − k + ε) + (1− δ) · E[ui(γ)|C1(γ) = Tails]. (1)

According to Equation 1, we have that

E[ui(σ̂)]− E[ui(σ)]

=

 δ

nB
·
vi(σ̂)∑
k=0

(θi − k + ε) + (1− δ) · E[ui(σ̂)|C1(σ̂) = Tails]


−
 δ

nB
·
vi(σ)∑
k=0

(θi − k + ε) + (1− δ) · E[ui(σ)|C1(σ) = Tails]


=

δ

nB
·
vi(σ̂)∑

k=0

(θi − k + ε)−
vi(σ)∑
k=0

(θi − k + ε)


+(1− δ) · (E[ui(σ̂)|C1(σ̂) = Tails]− E[ui(σ)|C1(σ) = Tails]) .

Thus to prove E[ui(σ̂)]− E[ui(σ)] > 0, it suffices to prove that

vi(σ̂)∑
k=0

(θi − k + ε)−
vi(σ)∑
k=0

(θi − k + ε) ≥ ε, (2)
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and that
E[ui(σ̂)|C1(σ̂) = Tails]− E[ui(σ)|C1(σ) = Tails] > − δε

nB
. (3)

To prove Equation 2, notice that vi(σ̂) = θi by definition of σ̂i. If vi(σ) < θi, then the left-hand side of
Equation 2 becomes

θi∑
k=vi(σ)+1

(θi − k + ε) ≥ θi − θi + ε = ε.

If vi(σ) > θi, then the left-hand side of Equation 2 becomes

vi(σ)∑
k=θi+1

(k − θi − ε) ≥ θi + 1− θi − ε = 1− ε > ε,

where the last inequality is because ε ∈ (0, 1/4). Thus Equation 2 holds.

To prove Equation 3, we distinguish four cases.
Case 1. ∗(σ̂) 6= i and ∗(σ) 6= i.

In this case, since for any other player j, j’s strategy is τj in both σ̂ and σ, we have that vj(σ̂) = vj(σ),
and thus ∗(σ̂) = ∗(σ). Therefore P i(σ̂) = P i(σ), by definition of σ̂. Accordingly, the reward player i
receives in Step g is the same in both σ̂ and σ, that is, Pi(σ̂) = Pi(σ), implying that the left-hand side
of Equation 3 is precisely 0, and that Equation 3 holds.

Case 2. ∗(σ̂) = ∗(σ) = i.
In this case, for any other player j, vj(σ̂) = vj(σ), and thus the announcements of the auctioneer in Step
d are the same in both σ̂ and σ. Therefore we have that:
Pj(σ̂) = Pj(σ),
sp(σ̂) = sp(σ),
CP (σ̂) = CP (σ) ≤ θi (no matter whether the “second-valuation” player is before or after player i),
KR(σ̂) = KR(σ), and
KP (σ̂) = KP (σ).

Accordingly, when CP (σ) ≥ KR(σ), or when CP (σ) < KR(σ) and KP (σ) > max{θi, vi(σ)}, or when
CP (σ) < KR(σ) and KP (σ) ≤ min{θi, vi(σ)}, the expected utilities of player i in the execution of σ̂
and in the execution of σ are the same, and thus the left-hand side of Equation 3 is precisely 0.
When CP (σ) < KR(σ) and min{θi, vi(σ)} < KP (σ) ≤ max{θi, vi(σ)}, player i’s expected utilities are
different in the execution of σ̂ and in the execution of σ. Indeed, in this situation, if θi > vi(σ), then i
gets the good and pays a price which is at least ε less than his true valuation according to σ̂, while gets
nothing and pays nothing according to σ. Thus we have that

E[ui(σ̂)|C1(σ̂) = Tails] ≥ ε and E[ui(σ)|C1(σ) = Tails] = 0.

If θi < vi(σ), then i gets nothing and pays nothing according to σ̂, while gets the good and pays at least
1− ε more than his true valuation according to σ. Thus we have that

E[ui(σ̂)|C1(σ̂) = Tails] = 0 and E[ui(σ)|C1(σ) = Tails] < −1 + ε.

Thus Equation 3 always holds.
Case 3. ∗(σ̂) = i and ∗(σ) 6= i.

In this case, similar to Case 2, in the execution of σ̂, no matter what the other players do in Step 2, player
i never pays more than his true valuation when he gets the good — indeed, CP (σ̂) ≤ vi(σ̂) = θi due to
the way to break ties and the way to set the value of CP ; and i pays KP (σ̂)− ε only if KP (σ̂) ≤ vi(σ̂).
Thus we have that

E[ui(σ̂)|C1(σ̂) = Tails] ≥ 0.
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While in the execution of σ, the only utility player i gets is the reward he receives in Step g, which is
always less than δε

nB since the Brier scoring rule is always in [−2, 0], implying that

E[ui(σ)|C1(σ) = Tails] = −Pi(σ) <
δε

nB
.

Thus Equation 3 holds.
Case 4. ∗(σ̂) 6= i and ∗(σ) = i.

This case implies that vi(σ) > θi. Further, it implies that CP (σ) > θi — indeed, if sp(σ) < i then
θi ≤ vsp(σ)(σ) = CP (σ)−1, while if sp(σ) > i then θi < vsp(σ)(σ) = CP (σ). Because both θi and CP (σ)
are integers, we have that CP (σ) ≥ θi + 1. Accordingly, when σ is played, whenever player i gets the
good, his price is at least CP (σ)− ε, which is at least 1− ε more than his true valuation. Thus we have
that

E[ui(σ)|C1(σ) = Tails] ≤ 0.

While when σ̂ is played, player i pays nothing but gets some small reward in Step g, thus we have that

E[ui(σ̂)|C1(σ̂) = Tails] > 0.

Therefore Equation 3 holds.
In sum, Equations 2 and 3 both hold, implying that E[ui(σ̂)]− E[ui(σ)] > 0.

Lemma 4. If all players are truthful in Step 1, then in Step 2 it is strictly dominant for each player i 6= ∗
to truthfully report his knowledge about ∗. That is, to report P i = D′i|(∗, v−∗), D′i conditioned on ∗ = ? and
θ−∗ = v−∗.3

Proof. Let Σt be the profile of strategy sets such that for each player j, Σt
j consists of all strategies of player

j that always announce θj in Step 1, no matter what the value of θj is (recall that in a Bayesian setting, a
strategy of a player j must specify what player j does for any possible value of θj). Consider an arbitrary
pure strategy σi ∈ Σt

i such that there exists a player k 6= i and valuation subprofile w−k ∈ [B]n−1 satisfying
the following: (1) wi = θi; (2) Prθ←D′i [(?, θ−?) = (k,w−k)] > 0; and (3) σi announces P i 6= D′i|(k,w−k) in
Step 2 when the announcement of the auctioneer in Step d is (k,w−k). We prove that there exists another
pure strategy σ̂i ∈ Σt

i which strictly dominates σi over Σt, that is, for any pure strategy subprofile τ−i ∈ Σt
−i,

E[ui(σ̂i t τ−i)] > E[ui(σi t τ−i)],
where the expectations are taken over the choice of θ according to D′i, and the coins used by M . Notice that
differently from the analysis of Lemma 3, here the expectation really depends on the distribution of θ from
i’s point of view, that is, depends on D′i.

Strategy σ̂i works as follows. In Step 1, player i announces θi. In Step 2 (when reached), if the announce-
ment in Step d is not (k,w−k) then i announces the same as σi would have announced in this case; otherwise
i announces D′i|(k,w−k).

Let σ = (σi t τ−i) and σ̂ = (σ̂i t τ−i). Notice that for any strategy profile γ, player i’s expected utility is

E[ui(γ)] = Pr
θ←D′i

[(?, θ−?) 6= (k,w−k)]E[ui(γ)|(?, θ−?) 6= (k,w−k)]

+ Pr
θ←D′i

[(?, θ−?) = (k,w−k)]E[ui(γ)|(?, θ−?) = (k,w−k)] (4)

When (?, θ−?) 6= (k,w−k), the execution of σ̂ and that of σ coincide with each other — in particular, every
player announces his true valuation in Step 1, the auctioneer announces (?, θ−?) in Step d (when reached),
and player i announces P i(σ̂) = P i(σ) in Step 2. Thus

E[ui(σ̂)|(?, θ−?) 6= (k,w−k)] = E[ui(σ)|(?, θ−?) 6= (k,w−k)],
3Recall that given the true valuation profile θ, ? = argmaxi θi with ties broken lexicographically.
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which together with Equation 4 implies

E[ui(σ̂)]− E[ui(σ)]
= Pr

θ←D′i
[(?, θ−?) = (k,w−k)] {E[ui(σ̂)|(?, θ−?) = (k,w−k)]− E[ui(σ)|(?, θ−?) = (k,w−k)]} .

Because Prθ←D′i [(?, θ−?) = (k,w−k)] > 0 by hypothesis, to prove E[ui(σ̂)] > E[ui(σ)], it suffices to prove

E[ui(σ̂)|(?, θ−?) = (k,w−k)] > E[ui(σ)|(?, θ−?) = (k,w−k)].

Further notice that player i announces θi in Step 1 in both σ̂ and σ, thus his expected utility when C1 = Heads
is the same, that is,

E[ui(σ̂)|(?, θ−?) = (k,w−k), C1(σ̂) = Heads] = E[ui(σ)|(?, θ−?) = (k,w−k), C1(σ) = Heads].

Since Pr[C1(σ̂) = Heads] = Pr[C1(σ) = Heads] = δ, it suffices to prove that

E[ui(σ̂)|(?, θ−?) = (k,w−k), C1(σ̂) = Tails] > E[ui(σ)|(?, θ−?) = (k,w−k), C1(σ) = Tails]. (5)

To prove Equation 5, notice that in both σ̂ and σ, player i’s utility solely comes from the reward he receives
in Step g, which solely depends on the values of v∗ and P i. Thus it suffices to prove that

E
[
δε

nB
(2 + BSR(v∗(σ̂),P i(σ̂)))

∣∣∣∣ (?, θ−?) = (k,w−k), C1(σ̂) = Tails

]
> E

[
δε

nB
(2 + BSR(v∗(σ),P i(σ)))

∣∣∣∣ (?, θ−?) = (k,w−k), C1(σ) = Tails

]
,

that is, to prove that

E
[
BSR(v∗(σ̂),P i(σ̂))|(?, θ−?) = (k,w−k), C1(σ̂) = Tails

]
> E

[
BSR(v∗(σ),P i(σ))|(?, θ−?) = (k,w−k), C1(σ) = Tails

]
. (6)

Notice that in both executions, ∗ = ? = k, v−∗ = θ−? = w−k, and v∗ = θ?. Therefore the fact
that the auctioneer announces (∗, v−∗) in Step d is equivalent to the fact that player i is informed with
(?, θ−?) = (k,w−k). Thus P i(σ̂) = D′i|(∗, v−∗) = D′i|(k,w−k) = D′i|(?, θ−?), which is the true distribution of
θ?, and thus of v∗(σ̂) and v∗(σ), from player i’s point of view. Accordingly, to prove Equation 6 it suffices to
prove that

Eθ?←D′i|(?,θ−?)[BSR(θ?,D′i|(?, θ−?))] > Eθ?←D′i|(?,θ−?)[BSR(θ?,P i(σ))]. (7)

Notice that the coins used by the mechanism have been removed, since the distribution of true valuations
does not depend on the mechanism.

While Equation 7 follows directly from the fact that the Brier scoring rule is strictly proper. Therefore
E[ui(σ̂)] > E[ui(σ)], and Lemma 4 holds.

Lemma 5. When the players are truthful in both Step 1 and Step 2, M ’s expected revenue is greater than
or equal to (1− δ) · (S − 2ε).

Proof. Let τ be the truthful strategy profile, and E[rev(M (τ))] be the expected revenue generated by M
under τ , where the expectation is taken over D and the coins used by M . When C1 = Heads, which happens
with probability δ, the (expected) revenue that M gets is non-negative. Therefore it suffices to prove that
when C1 = Tails, the expected revenue that M gets is at least S − 2ε, that is, to prove that

E[rev(M (τ))|C1 = Tails] ≥ S − 2ε.
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Because

E[rev(M (τ))|C1 = Tails] =
n∑
i=1

∑
t∈[B]n−1

Pr
θ←D

(? = i, θ−? = t) · E[rev(M (τ))|C1 = Tails, ? = i, θ−? = t],

and

S =
n∑
i=1

∑
t∈[B]n−1

Pr
θ←D

(? = i, θ−? = t) max
p

(
p · Pr

θ←D
(θ? ≥ p|? = i, θ−? = t−i)

)
,

it suffices to prove that for any player i and any t ∈ [B]n−1 such that Prθ←D(? = i, θ−? = t) > 0,

E[rev(M (τ))|C1 = Tails, ? = i, θ−? = t] ≥ max
p

(
p · Pr

θ←D
(θ? ≥ p|? = i, θ−? = t−i)

)
− 2ε. (8)

Letting S(i, t) = {θ ∈ Θ : ? = i, θ−? = t}, and letting D(i, t) be the marginal distribution of θi according
to D|S(i, t), the right-hand side of Equation 8 becomes

max
p

(
p · Pr

θi←D(i,t)
(θi ≥ p)

)
− 2ε.

Letting p(i, t) = argmaxp
(
p · Prθi←D(i,t)(θi ≥ p)

)
, which depends only on (i, t) but not the precise value of

θi, the above formula further becomes

p(i, t) · Pr
θi←D(i,t)

(θi ≥ p(i, t))− 2ε. (9)

Below we derive another formula for the left-hand side of Equation 8, so that the two sides can be
compared easily. Notice that conditioned on ? = i and θ−? = t, the announcement of the auctioneer in Step
d in the execution of τ is (i, t), and thus each player j 6= i is informed that ? = i and θ−? = t. Accordingly,
player j’s knowledge about θ, and in particular about θi, is further refined.

Indeed, letting M(i, t) be S(i, t) projected on the i-th component, there exists a partition Pj(i, t) of
M(i, t) such that Pj(i, t) is obtained by first intersecting S(i, t) with each set in Pj and then projecting on
the i-th component. When θi is randomly selected from D(i, t), letting Sj be the unique set in Pj containing
θi t t, player j’s knowledge about θ is

D′j |S(i, t) = (D|Sj)|S(i, t) = D|(Sj ∩ S(i, t)) = (D|S(i, t))|(Sj ∩ S(i, t)).

Therefore j’s knowledge about θi isD(i, t)|Sj(i, t), where Sj(i, t) is Sj∩S(i, t) projected on the i-th component,
which is the unique set in Pj(i, t) containing θi. Because player j is truthful in Step 2 in the execution of τ ,
we have that

Pj = D(i, t)|Sj(i, t).
By definition of the aggregator AGG, we have that in the execution of τ ,

P̂ = D(i, t)| ∩j 6=i Sj(i, t).

Indeed, there exists another partition P(i, t) of M(i, t) such that: (1) P(i, t) is obtained by intersection all
Pj(i, t)’s together, and (2) when θi is randomly selected from D(i, t),

P̂ = D(i, t)|E(i, t),

where E(i, t) = ∩j 6=iSj(i, t) with each Sj(i, t) being the unique set in Pj(i, t) containing θi, and thus E(i, t)
is the unique set in P(i, t) containing θi.
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With respect to P(i, t), the left-hand side of Equation 8 can be rewritten as∑
E(i,t)∈P(i,t)

Pr
θi←D(i,t)

(θi ∈ E(i, t)) · Eθi←D(i,t)[rev(M (τ))|C1 = Tails, θi ∈ E(i, t), θ−i = t],

which is equal to∑
E(i,t)∈P(i,t)

Pr
θi←D(i,t)

(θi ∈ E(i, t)) · Eθi←D(i,t)|E(i,t)[rev(M (τ))|C1 = Tails, θi, θ−i = t]. (10)

Notice that the expectation is only taken over the distribution of θi, since conditioned on C1 = Tails, the
mechanism is deterministic.

Recall that the right-hand side of Equation 8 is equal to Equation 9, which can be rewritten as∑
E(i,t)∈P(i,t)

Pr
θi←D(i,t)

(θi ∈ E(i, t)) ·
(
p(i, t) · Pr

θi←D(i,t)|E(i,t)
(θi ≥ p(i, t))− 2ε

)
.

Therefore combining with Equation 10 we have that, to prove Equation 8, it suffices to prove that for each
E(i, t) ∈P(i, t) such that Prθi←D(i,t)(θi ∈ E(i, t)) > 0,

Eθi←D(i,t)|E(i,t)[rev(M (τ))|C1 = Tails, θi, θ−i = t] ≥ p(i, t) · Pr
θi←D(i,t)|E(i,t)

(θi ≥ p(i, t))− 2ε. (11)

To prove Equation 11, notice that when θi is selected fromD(i, t)|E(i, t), we always have P̂ = D(i, t)|E(i, t),
and thus

KR = max
p

(
p · Pr

θi←D(i,t)|E(i,t)
(θi ≥ p)

)
≥ p(i, t) · Pr

θi←D(i,t)|E(i,t)
(θi ≥ p(i, t)). (12)

Therefore by solely selling the good to i and charging him KP whenever KP ≤ vi(= θi), the mechanism
would have already generated expected revenue ≥ KR − 2ε, where one ε is the discount given to i, and the
other ε is an upper bound on the total reward given to other players in Step g.

Further notice that conditioned on ? = i and θ−? = t, the second-valuation player sp and thus the classical
price CP are totally determined. Therefore the comparison between CP and KR in Step f does not alter
the distribution from which θi is drawn, that is, D(i, t)|E(i, t). In fact, CP is the lowest value of θi for i to
be the star player given θ−i = t: CP = θsp if sp > i, and CP = θsp + 1 if sp < i. Accordingly, for any θi in
the support of D(i, t) and thus in the support of D(i, t)|E(i, t), we have that θi ≥ CP , which implies that

KR ≥ CP · Pr
θi←D(i,t)|E(i,t)

(θi ≥ CP ) = CP · 1 = CP.

Thus even by comparing CP with KR and selling the good to i accordingly, the mechanism still generates
expected revenue ≥ KR− 2ε. Indeed, if CP = KR then with probability 1 the revenue generated is at least
CP − 2ε = KR− 2ε, otherwise the expected revenue generated is at least

(KP − ε) · Pr
θi←D(i,t)|E(i,t)

(θi ≥ KP )− ε ≥ KR− 2ε.

Accordingly,
Eθi←D(i,t)|E(i,t)[rev(M (τ))|C1 = Tails, θi, θ−i = t] ≥ KR− 2ε,

which together with Equation 12 implies Equation 11, and thus the revenue lower bound in Lemma 5.

At this point Theorem 2 can be proven directly. First of all, Lemmas 3 and 4 imply that M is two-step
DST. Second, although the revenue lower bound to be proven according to Theorem 2 is (1− δ)S − ε, and
given parameters δ and ε the expected revenue of M according to Lemma 5 is ≥ (1 − δ)(S − 2ε), such a
mismatch can be easily solved, because the parameters of M can be chosen to be arbitrarily small. More
precisely, taking δ′ < δ and ε′ < ε

2(1−δ′) and running M with parameters δ′ and ε′, the expected revenue
generated is at least (1− δ′)(S − 2ε′) = (1− δ′)S − 2(1− δ′)ε′ > (1− δ)S − ε, as desired. Q.E.D.
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