
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-058 December 8, 2010

Heracles: Fully Synthesizable
Parameterized MIPS-Based Multicore System
Michel Kinsy and Michael Pellauer

Heracles: Fully Synthesizable Parameterized MIPS-Based
Multicore System

Michel Kinsy
Massachusetts Institute of Technology

77 Massachusetts Ave.
Cambridge, MA 02139
mkinsy@mit.edu

Michael Pellauer
Massachusetts Institute of Technology

77 Massachusetts Ave.
Cambridge, MA 02139

pellauer@csail.mit.edu

ABSTRACT
Heracles is an open-source complete multicore system writ-
ten in Verilog. It is fully parameterized and can be recon-
figured and synthesized into different topologies and sizes.
Each processing node has a 7-stage pipeline, fully bypassed,
microprocessor running the MIPS-III ISA, a 4-stage input-
buffer, virtual-channel router, and a local variable-size shared
memory. Our design is highly modular with clear interfaces
between the core, the memory hierarchy, and the on-chip
network. In the baseline design, the microprocessor is at-
tached to two caches, one instruction cache and one data
cache, which are oblivious to the global memory organiza-
tion. The memory system in Heracles can be configured as
one single global shared memory (SM), or distributed shared
memory (DSM), or any combination thereof. Each core is
connected to the rest of the network of processors by a pa-
rameterized, realistic, wormhole router. We show different
topology configurations of the system, and their synthesis
results on the Xilinx Virtex-5 LX330T FPGA board. We
also provide a small MIPS cross-compiler toolchain to assist
in developing software for Heracles.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Processor Ar-
chitecture - Single-instruction-stream, multiple-data-stream
processors (SIMD); B.5.1 [Hardware]: Register-Transfer-
Level Implementation- Design.

General Terms
Design, Experimentation, Performance

Keywords
Multicore Architecture Design, FPGA, Shared-Memory, Dis-
tributed Shared Memory, Network-on-Chip, RISC, MIPS,
Virtual Channel, Wormhole Router, NoC Routing Algo-
rithm.

1. INTRODUCTION
Multicore architectures have become mainstream comput-
ing platforms. These systems typically consist of processing
elements (PEs or cores), a memory subsystem, and an in-
frastructure for inter-core communications. Traditionally,
buses have been used in establishing communications be-
tween cores, but because of the increasing complexity of
these designs and the lack of scalability of wired connec-
tions between cores, network-on-chip (NoC) architectures
have been introduced as an effective data communication
infrastructure [7, 11]. It has been shown that the overall
performance of multicore systems is often defined by their
communication limits in terms of bandwidth, speed and con-
currency [15, 4, 27], and not by the individual computation
power of the cores. Therefore, simple reduced instruction
set computing (RISC) cores are often used in these architec-
tures.

In this paper, we present a new open-source FPGA-based
system for designing multicore architectures called Heracles.
A complete multicore system written in Verilog, fully param-
eterized, that can be reconfigured into different topologies
and sizes. The main contribution of our work is the fact
that Heracles is designed with a high degree of modularity
to support exploration of future multicore processors of dif-
ferent topologies, routing schemes, processing elements or
cores, and memory system organizations. Figure 1 shows
the top level view of Heracles multicore system arranged in
2D-mesh topology, and Figure 2 shows two different views
of the network switch local to a node.

There has been a large body of work on implementing multi-
core architectures on FPGAs. In contrast, there seems to be
very little on complete, modular, multicore system, with re-
configurable network topology, where processing core, mem-
ory system, and on-chip network are fully self-containing.

Heracles presents designers with a global and complete view
of the inner workings of a multiprocessor machine cycle-by-
cycle from instruction fetches at the microprocessor core at
each node to the flit arbitration at the routers, with RTL
level correctness. A flit is the smallest unit of information
recognized by the flow control method [8]. This enables
the designer to explore different implementation approaches:
core micro-architecture, levels of caches, cache sizes, routing
algorithm, router micro-architecture, distributed or shared
memory, network interface, and to quickly evaluate their
impact on the overall system performance.

!"#$%

&"'$%()*'+,-%.&%

%%%%%%%%%%%%*,#%

/"0+,-%1*23$%4*)*%

56.(78*9$#%.'":$99;,-%%

%%%%%%%%%%<3$=$,)%

5$="'>%(029>9)$=%

*,#%%

%%/"0)$'%

Figure 1: 2D-Mesh Topology Heracles Architecture.

!"#$%&'(&)**%&'

+%,"&-'.-/$%,'(&)**%&'

0"1)2'3"&%'45$%&6)1%'

!"#$%&'

7)8'9:*)5;%;'<=%>'"6'+%,"&-'?=%&)&1@-' 7A8'9:*)5;%;'<=%>'"6'!"#$%&'(&)**%&'

'3)1@%'.-/$%,'

B;;&%//'!%/"2#C"5'0"D=1'

+%,E.-/$%,E(&)**%&'

!"#$%&'(&)**%&'

0"1)2'+%,"&-'

F)1G%CH%&'

+4F.IJ)/%;'F&"1%//=5D''

''''''''''92%,%5$'

+%,"&-'.#A/-/$%,'

)5;''

''!"#$%&'

Figure 2: Network Switch Expanded Views.

Section 2 describes an integer-based 7-stage MIPS process-
ing element (PE), and its usage in forming a node in the
network. Section 3 presents our structure for supporting
an arbitrary memory organization, and details about the
network interface. Section 4 deals with the router micro-
architecture and supports for various routing algorithms.
Section 5 shows different Heracles topologies, their FPGA
utilization, and performance analysis results. Related work
is summarized in Section 6. Section 7 concludes the paper.

2. PROCESSING ELEMENT MODULE
The processing element in Heracles consists of an integer-
based 7-stage MIPS Core. MIPS (Microprocessor without
Interlocked Pipeline Stages) is a register based RISC archi-
tecture widely used in commercial products and for teaching
purposes [20]. Our implementation is a standard Verilog im-
plementation of the micro-architecture described by Patter-
son and Hennessy [20], with some modifications for FPGAs.
For example, the adoption of a 7-stage pipeline, due to block
RAM access time on the FPGA.

Figure 3 shows the core architecture, a 7-stage pipeline ar-
chitecture, fully bypassed, with no branch predictor or branch
delay slot, running MIPS-III instruction set architecture (ISA)
without floating point. Instruction and data caches are im-
plemented using block RAMs, when instruction fetch and
data memory access take two cycles. Instruction address is
issued at I-Fetch 1 stage and on cache hit, the actual instruc-
tion appears in the I-Fetch 2 stage. Instruction decode and
register read stage and the execution stage remains function-
ally the same as described [20]. Stall and bypass signals are
modified to support the extended pipeline. Data memory

Used Available Utilization
Registers 1,635 207,360 under 1%

Lookup Tables 2,529 207,360 1%

Critical Path (ns) 6.151
Clock Rate (MHz) 162.564

Table 1: Processing Element Synthesis Results

(cache) is done over D-Memory 1 and D-Memory 2 stages.
For a read, the memory address is presented to the cache in
the D-Memory 1 stage and the data on a cache hit appears
in the D-Memory 2 stage. On memory write, we also check
in the D-Memory 2 stage that there is a cache hit before
continuing execution. Instructions are issued and executed
in-order, the data memory accesses are also in-order.

The core is synthesized using Xilinx ISE Design Suite 11.5,
with Virtex-5 LX330T as the targeted board. Table 1 gives a
brief summary of the synthesis results and the clocking speed
of the design. As shown in Table 1, our 7-stage pipeline core
architecture runs at 162.5 MHz, and has an FPGA resource
utilization of around 1% on the Virtex-5 LX330T. Due to the
modular design of Heracles, any core with the same memory
interface can be plugged into the system.

3. MEMORY SYSTEM ORGANIZATION
The memory system in Heracles is completely parameter-
ized, and can be setup in various ways, independent of the
rest of the system. Figure 4 shows the block composition of
the memory system at a node. The key components are the

IR IR IR

31

PC

nop

nop

addr
inst

Inst
Memory

IR

A

B

Y

MD1 MD2

Imm
Ext

ALU

rd1

GPRs

rs1

rs2

ws
wd

rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

R

!"#$%

&'()*++% ,"#$%

%%%%%%%%%%%%%-'./)$0%1%%%%%%-'./)$0%2%%%%%%%%%%%%%%%%%%%%%%%%%%%-3()#4$563%7/$68/%%%%%%%%%%%%%%%%%%%%%%%%%%%%9:/$4)/%%%%%%%%%%7'%;/<6#=%1%%%%%%%%%%%%7'%;/<6#=%2%%%%%%%%%%%%%%%%>!%

PC PC

IR

0x4

Add

br

rind
jabs

pc+4

IR C CCC
n

PCSrc

?/#6%

Figure 3: Integer-based 7-stage MIPS processing element (PE).

!"#$%&!'()*&+!

,--.&))!/&)012304!5067$!

8&+9'()*&+9:.#;;&.!

/02*&.!:.#;;&.!

50$#1!8&+0.(!

<#$=&3>&.!

?!!!!!!!!@#6!!!!!!!!!!!!!!!!!!!!!!!!!A#*#!

B"#$%&!

?!!!!!!!!@#6!!!!!!!!!!!!!!!!!!!!!!!!!A#*#!

A"#$%&!

Figure 4: Local View of Memory Subsystem at a
Core.

cache system, the local memory, and the network interface.

3.1 Cache System
In Heracles, we implement 1-level cache system composed of
a direct-mapped instruction cache and a direct-mapped data
cache, which can be extended to more cache levels. Each
cache can be independently configured. The INDEX BITS
parameter controls the number of blocks or cache-line in the
cache. The OFFSET BITS parameter determines the cache
block size.

The direct-mapped cache is implemented using block RAM,
where on a hit, the data appears on the output port in the
following cycle. Since block RAMs on the FPGA are con-
strained resources, we also implement a direct-mapped cache
using registers and lookup tables, but at a high FPGA re-
source cost.

The cache system, like the core, is oblivious to the system
level memory organization and network topology. This de-
coupling is archived through the Address Resolution Logic,
which sits outside the cache system and interacts with the
rest of the memory structure, as shown in figure 4.

3.2 Local Memory Distribution
The memory system in Heracles is constructed to allow dif-
ferent memory space configurations. The local memory is
parameterized and has two very important attributes: its
size can be changed on a per core-basis, and it can service a
variable number of caches at round-robin.

For a Shared Memory (SM) implementation, where all pro-
cessors share a single large memory block, the local mem-
ory size is simply set to zero at all nodes except one. At
the nodes with no local memory, the Address Resolution
Logic directly sends all cache system traffic into the network,
where it crosses to the target node.

In Distributed Shared Memory (DSM), where each process-
ing element has its own private memory. In this scheme,
local memory size can be set the same across all the nodes
or with different values. For example, in a mesh network,
our experiments show that for a large class of routing algo-
rithms locating larger blocks of memory at the center nodes,
can improve network congestion. The LOCAL ADDR BITS
parameter is used to set the size of the local memory size.

The fact that the local memory is parameterized to han-
dle requests from a variable number of caches allows us to
present to the local memory the traffic coming into the node
from other cores through the network , just as another cache
communication. This illusion is created through the network
packetizer. Local memory can also be viewed as a memory
controller. Heracles, at the moment, provides no cache co-
herence protocol. However the design of the system is set up
to support a cache coherence scheme, if one is implemented.

3.3 Network Interface
The Address Resolution Logic works with the Packetizer
module to get the caches and the local memory to interact
with the rest of the system. All cache traffic goes through
the Address Resolution Logic, which determines if a request
can be served at the local memory, or if the request needs to
be sent over the network. In Heracles, an address contains
two fields, where the lower order bits represent the real ad-
dress, and the the higher order bits identify the home core

!"#$%&!'()*&+!

,--.&))!/&)012304!5067$!

8&+9'()*&+9:.#;;&.!

/02*&.!:.#;;&.!

50$#1!8&+0.(!

<#$=&3>&.!

50$#1!"#$%&!'()*&+!?4*&.@#$&!50$#1!8&+0.(!?4*&.@#$&!

<#$=&3>&.!57*&!

8&+0.(!/&);04)&! 8&+0.(!/&A2&)*!

"#$%&!'()*&+!/&);04)&! "#$%&!'()*&+!!/&A2&)*!

B2*60746!C7*! ?4$0+746!C7*!

Figure 5: Network Interface Packetizer.

Used Available Utilization
Registers 2,695 207,360 under 1%

Lookup Tables 5,562 207,360 2%
Block RAM/FIFO 75 324 23%

Critical Path (ns) 6.471
Clock Rate (MHz) 155.825

Table 2: Processing Element with Caches and Mem-
ory Synthesis Results

for that particular address. These two fields are automati-
cally identified based on the LOCAL ADDR BITS and the
ADDRESS BITS parameters. If the home core of an address
is not the core that generated the address, the Address Res-
olution Logic forwards the request to the network, through
the Packetizer .

Inside the Packetizer module, there are three submodules
as shown in Figure 5. The Local Memory Interface uses a
cache-like protocol to interact with the local memory. In our
baseline design, the Local Memory Interface simply acts as
a third cache on the local memory side. The Local Cache
System Interface uses a memory-like protocol to interact
with the cache system like a second larger memory lock.
The Packetizer Lite is responsible for converting data traf-
fic, such as a load, coming from the local memory and the
cache system into packets or flits that can be routed inside
the Network-on-chip (NoC), and for reconstructing packets
or flits into data traffic at the opposite side when exiting the
NoC. The Packetizer Lite directly connects to the network
router.

Table 2 gives a brief summary of the synthesis results and
the clocking speed of our 7-stage pipeline MIPS core with
2 caches (I-Cache and D-Cache), 2KB each, and 262KB of
local memory.

4. ROUTER ARCHITECTURE
To provide scalability, Heracles uses network-on-chip (NoC)
architecture for its data communication infrastructure. An
NoC architecture is defined by its topology (the physical
organization of nodes in the network), its flow control mech-
anism (which establishes the data formating, the switching
protocol and the buffer allocation), and its routing algo-

rithm (which determines the path selected by a packet to
reach its destination under a given application). This sec-
tion discusses the router micro-architecture, and its support
for different network topologies and routing algorithms.

4.1 Router Micro-Architecture
Figure 6 illustrates the virtual-channel router used in Hera-
cles. The router fairly conforms, in its architecture and op-
eration, to conventional virtual-channel routers [8, 18, 21].
It has some input buffers to store flits while they are waiting
to be routed to the next hop in the network. The routing
operation takes four steps or phases, namely routing (RC),
virtual-channel allocation (VA), switch allocation (SA), and
switch traversal (ST), where each phase corresponds to a
pipeline stage in our router. When a head flit (the first flit
of a packet) arrives at an input channel, the router stores
the flit in the buffer for the allocated virtual channel and
determines the next hop for the packet (RC phase). Given
the next hop, the router then allocates a virtual channel in
the next hop (VA phase). Finally, the flit competes for a
switch (SA phase), if the next hop can accept the flit, and
moves to the output port (ST phase).

The switch allocation (SA) stage is the critical path in our
router design, due to the complexity of the arbiter. During
the SA stage, the arbiter grants switch traversal to all input
ports requesting output ports for which they have priority. If
an input port is requesting an output port, and the priority
holder on that outgoing port is either idle or requesting a
different output port, it has to compete with all other input
ports requesting the same output port. The arbiter is also
responsible for adjusting priorities to promote fairness and
avoid starvation. The synthesis of the router shows a delay
of 14.016 nanosecond, with 24 levels of logic on the critical
path.

4.2 Route Computation and Virtual Channel
Allocation

Algorithms used to compute routes in network-on-chip (NoC)
architectures, generally fall under two categories: oblivi-
ous and dynamic [19]. The router implemented in Hera-
cles primarily supports oblivious routing algorithms using
either fixed logic or routing table. Fixed logic is provided
for dimension order routing (DOR) algorithms [24], which
are vastly popular and have many desirable properties. For
example, they generate deadlock-free routes in mesh or hy-
percube topologies [6, 23]. Either using XY-Ordered Rout-
ing or YX-Ordered Routing, each packet is routed along
one dimension in its first phase followed by the other di-
mension. On the other hand, table-based routing provides
greater programmability and flexibility, since routes can be
pre-computed and stored in the routing tables before exe-
cution. Table-based routing supports for both minimal and
non-minimal routing algorithms. In this routing scheme, at
the beginning of the program, routing tables are updated;
and during execution each packet has a flow ID, which is
used to address the routing table to determine the packet’s
outgoing port. The RT ALG parameter is used to select the
proper routing algorithm for a given application and topol-
ogy.

!"#$%&'#!

($)#!

*
+
,
-
.
/
!0+

/
%1!"

.
2
!3)

$
4'
!

5%#&,)4!67)..'48!

*+,&'#!9#)::'#!

;'<+#=!>=8&'<!9#)::'#!

0+1)4!6+#'!?.&'#@)1'!

*+,&'#!

Figure 6: Router Micro-Architecture.

Used Available Utilization
Registers 2,806 207,360 1%

Lookup Tables 2,058 207,360 1%

Critical Path (ns) 14.016
Clock Rate (MHz) 71.345

Table 3: Virtual-Channel Router Synthesis Results

Heracles provides support for both static and dynamic vir-
tual channel allocation. When static allocation is used, the
routing table stores the outgoing port of the packet along
with the virtual channel to be used in the next node. There
is no additional hardware cost for supporting static vir-
tual channel allocation, since the entry into the table is
also used during dynamic allocation. The number of vir-
tual channels per port and their size are variable parameters
(VC PER PORT and VC DEPTH).

4.3 Network Topology Configuration
The parameterization of the number of input ports and out-
put ports on the router and the table-based routing capa-
bility give Heracles a great amount of flexibility and the
ability to metamorphose into different network topologies;
for example, k-ary n-cube, 2D-mesh, 3D-mesh, hypercube,
ring, or tree. A new topology is constructed by changing
the IN PORTS, OUT PORTS, and SWITCH TO SWITCH
parameters and reconnecting the routers. In the case of the
3D-mesh, the IN PORTS and OUT PORTS parameters are
set to 2, one to connect the router to the local core and a
second one to connect the router to the third dimension. Ta-
ble 3 gives a brief summary of the synthesis results and the
clock frequency of our virtual-channel router in 2D-meshes.
It runs at 71 MHz, with the limiting factor being logic com-
plexity of the arbiter.

For a fat-tree [16] topology, routers at different levels of the
tree have different sizes, in terms of crossbar and arbitration
logic. The root node contains the largest router, and con-
trols the clock frequency of the system. Figure 7 shows an
unbalanced fat-tree topology, and Table 4 shows the sum-
mary of the synthesis results and the clock frequency of the
fat-tree multicore system.

Used Available Utilization
Registers 166,726 207,360 80%

Lookup Tables 165284 207,360 80%

Critical Path (ns) 33.246
Clock Rate (MHz) 30.079

Table 4: Unbalanced Fat-Tree Topology Synthesis
Results

0

50000

100000

150000

200000

250000

2x2 Mesh 3x3 Mesh 4x4 Mesh

Used Lockup Tables

Total Lockup Tables

0

50000

100000

150000

200000

250000

2x2 Mesh 3x3 Mesh 4x4 Mesh

Used Registers

Total Registers

Figure 8: FPGA Register Resource Used Per Mesh
Size.

5. FPGA 2D-MESH TOPOLOGY SYSTEMS
A large number of cores can be implemented on a modern
FPGA. Moreover, having a simple RISC core, MIPS in our
case, for the processing element (PE) allows for a good size
multicore system. This section presents three different sizes,
2×2, 3×3, and 4×4, of the complete Heracles multicore ar-
chitecture arranged in 2D-mesh topology. Figure 1 shows
the 3×3 mesh topology. Table 5 summarizes the key archi-
tectural characterastics of the multicore system. The system
is running at 71 MHz, which is the clock frequency of the
router, regardless of the size of the mesh. The whole system
speed will increase if a less complex arbitration scheme is
adopted.

In our experiments, using a mesh topology, we are unable
to fit more than 16 cores on the Virtex-5 LX330T FPGA
board. In the 2×2 configuration, the local shared memory
is set to 260 KB per core. Where for the 3×3 configuration
the size of the local shared memory is reduced to 65KB per
core, due to limited FPGA block RAM. The local memory
in the 4×4 configuration is set to 32KB. Figure 8 shows the

!"#$%&'(&)**%&'

+%,"&-'.-/$%,'(&)**%&'

0"1)2'3"&%'45$%&6)1%'

!"#$%&'

'3)17%'.-/$%,'

899&%//'!%/"2#:"5'0";<1'

+%,=.-/$%,=(&)**%&'

!"#$%&'(&)**%&'

0"1)2'+%,"&-'

>)1?%:@%&'

+4>.AB)/%9'>&"1%//<5;''

''''''''''C2%,%5$'

+%,"&-'.#D/-/$%,'

)59''

''!"#$%&'

!""$'

3"&%'.$)&:5;'>3'

'''''''''''')59'

!"#:5;'E)D2%'F)$)'

''CG*)59%9'H<%I'"6'+%,"&-'J<%&)&17-' '''CG*)59%9'H<%I'"6'!"#$%&'(&)**%&'

Figure 7: Unbalanced Fat-Tree Topology with Expanded Views of the Root.

Heracles
Core

ISA 32-Bit MIPS
Multiply/Divide Software
Floating Point Software
Pipeline Stages 7
Bypassing Full
Branch policy Always non-Taken
Outstanding memory requests 1
Address Translation None

Level 1 Instruction/Data Caches
Associativity Direct
Size 16KB
Outstanding Misses 1

On-Chip Network
Topology 2D-Mesh
Routing Policy DOR and Table-based
Virtual Channels 2
Buffers per channel 8

Table 5: 2D-mesh Heracles Multicore Architecture
Specification

!

"!!!!

#!!!!!

#"!!!!

$!!!!!

$"!!!!

$%$&'()* +%+&'()* ,%,&'()*

-)(.&/01234&5678()

50968&/01234&5678()

!

"!!!!

#!!!!!

#"!!!!

$!!!!!

$"!!!!

$%$&'()* +%+&'()* ,%,&'()*

-)(.&:(;<)9(=)

50968&&:(;<)9(=)

!

"!!!!

#!!!!!

#"!!!!

$!!!!!

$"!!!!

$%$&'()* +%+&'()* ,%,&'()*

-)(.&/0 123&4567()

40857&/0 123&4567()

!

"!!!!

#!!!!!

#"!!!!

$!!!!!

$"!!!!

$%$&'()* +%+&'()* ,%,&'()*

-)(.&9(:;)8(<)

40857& 9(:;)8(<)

0

0

!

"!!!!

#!!!!!

#"!!!!

$!!!!!

$"!!!!

$%$&'()* +%+&'()* ,%,&'()*

-)(.&/0 123&4567()

40857&/0 123&4567()

!

"!!!!

#!!!!!

#"!!!!

$!!!!!

$"!!!!

$%$&'()* +%+&'()* ,%,&'()*

-)(.&9(:;)8(<)

40857& 9(:;)8(<)

0

0

Used Lookup Tables 

Total Lookup Tables 

Figure 9: FPGA Lookup Table Resource Used Per
Mesh Size.

0

50

100

150

200

250

300

350

2x2 Mesh 3x3 Mesh 4x4 Mesh

Used RAMs

Total RAMs

Figure 10: FPGA RAM/FIFO Resource Used Per
Mesh Size.

usage of FPGA registers per mesh size. Figure 9 shows the
usage of FPGA lookup tables per mesh size. Finally, Figure
10 shows the usage of FPGA RAMs per mesh size, based on
the local memory configuration above.

We are releasing Heracles with a small open-source software
toolchain to assist in developing software for the system.
Figure 11 shows the basic tool flow for compiling a C pro-
gram into the compatible MIPS instruction code that can
be executed on the system. This toolchain is built around
a MIPS cross-compiler. When mips-gcc is executed on a C
program an assembly file is generated. GNU C version 3.2.1.
is used. The assembly code is then run through isa-checker,
the checker’s role is to:

• remove all memory space primitives
• replace all pseudo-instructions
• check for floating point instructions

Also at this stage, a small kernel-like assembly code is added
to the application assembly code for workload distribution.
The assembler is then called by executing mips-as on the
checked assembly code. The object file is then disassembled
using the mips-objdump command. Finally, the construc-
tor script is called to transform the dump file into Verilog
memory file format.

Here we present a brief analysis of a simple Fibonacci number
calculation program, to highlight the impact of number of

Compiler
[mips-gcc]

Architecture
Compatible
assembly code
e.g., fibonacci.asm

Source code file
e.g., fibonacci.c

Assembly code file
e.g., fibonacci.s

Compatibility
checker

[isa-checker]

Object code file
e.g., fibonacci.o

Assembler
[mips-as]

Workload
Distribution
(Still a manual
process)

Diassembler
[mips-objdump]

Dump file
e.g., fibonacci.dump

Verilog hex
memory file
e.g., fibonacci.mem

Constructor
[dump2vmh]

Figure 11: Software Toolchain Flow

1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Number of Cores

C
om

pl
et

io
n

C
yc

le
s

 Effect of Memory Organization on Fibonacci Computation under Heracles

XY−Ordered
SSM

XY−Ordered
DSM

Figure 12: Fibonacci: Effect of Memory Organiza-
tion on Performance in 2D-Mesh Heracles

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Number of Cores

C
om

pl
et

io
n

C
yc

le
s

Effect of Routing Algorithm on Fibonacci Computation under Heracles

XY−Ordered
SSM

XY−Ordered
DSM

BSOR
SSM

BSOR
DSM

Figure 13: Fibonacci: Effect of Routing Algorithm
on Performance in 2D-Mesh Heracles

1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4
x 10

9

Number of Cores

C
om

pl
et

io
n

C
yc

le
s

 Effect of Memory Organization on 197.parser/CINT2000 under Heracles

XY−Ordered
SSM

XY−Ordered
DSM

Figure 14: 197.parser: Effect of Memory Organiza-
tion on Performance in 2D-Mesh Heracles

1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4
x 10

9

Number of Cores

C
om

pl
et

io
n

C
yc

le
s

Effect of Routing Algorithm on 197.parser/CINT2000 under Heracles

XY−Ordered
SSM

XY−Ordered
DSM

BSOR
SSM

BSOR
DSM

Figure 15: 256.bzip2: Effect of Memory Organiza-
tion on Performance in 2D-Mesh Heracles

cores, memory system organization, and routing scheme on
performance in Heracles. We also examine the performance
of two SPEC CINT2000 benchmarks, namely, 197.parser
and 256.bzip2 on Heracles. We modify and parallelize these
benchmarks to fit into our evaluation framework. For the
197.parser benchmark, we identify three functional units:
file reading and parameters setting as one unit, actual pars-
ing another unit, and error reporting as the third unit. When
there are more than three cores, all additional cores are used
in the parsing unit. Similarly, 256.bzip2 is divided into three
functional units: file reading and cyclic redundancy check,
compression, and output file writing. The compression unit
exhibits a high degree of data-parallelism, therefore we ap-
ply all additional cores to this unit for core count greater
than three.

Figure 12 shows that with single shared-memory, using XY-
Ordered routing, increasing the number of cores does very
little to improve performance. Because the single shared-
memory is the main bottleneck in the system. Figure 13
shows the direct impact of the routing algorithm on the over-
all system performance, by comparing completion cycles of
XY-Ordered routing and BSOR [13]. BSOR, which stands
for Bandwidth-Sensitive Oblivious Routing, is a table-based
routing algorithm that minimizes the maximum channel load
(MCL) or maximum traffic across all network links in the
effort to maximize application throughput.

1 2 3 4 5 6 7
5.5

6

6.5

7

7.5

8

8.5

9
x 10

9

Number of Cores

C
om

pl
et

io
n

C
yc

le
s

Effect of Memory Organization on 256.bzip2/CINT2000 under Heracles

XY−Ordered
SSM

XY−Ordered
DSM

Figure 16: 197.parser: Effect of Routing Algorithm
on Performance in 2D-Mesh Heracles

1 2 3 4 5 6 7
5.5

6

6.5

7

7.5

8

8.5

9
x 10

9

Number of Cores

C
o

m
p

le
tio

n
 C

yc
le

s

Effect of Routing Algorithm on 256.bzip2/CINT2000 under Heracles

XY−Ordered
SSM

XY−Ordered
DSM

BSOR
SSM

BSOR
DSM

Figure 17: 256.bzip2: Effect of Routing Algorithm
on Performance in 2D-Mesh Heracles

Figures 14 and 15 show 197.parser and 256.bzip2 bench-
marks under single shared-memory (SSM) and distributed
shared-memory (DSM), using XY-Ordered routing. Increas-
ing the number of cores does improve performance for both
benchmarks; it also exposes the memory bottleneck encoun-
tered in the single shared-memory scheme. Routing algo-
rithm has little or no effect on the performance of these
benchmarks, as shown in Figures 16 and 17, because of the
traffic patterns in these applications.

Heracles Verilog files and software toolchain for building
MIPS code to run on the system can be found at

http://web.mit.edu/mkinsy/Public/Heracles

6. RELATED WORK
Implementation of multicore architecture on FPGA has been
the subject of several research projects. In [9] Del Valle et
al present an FPGA-based emulation framework for multi-
processor system-on-chip (MPSoC) architectures. LEON3
[1], a synthesizable VHDL model of a 32-bit processor com-
pliant with the SPARC V8 architecture, has been used in
implementing multiprocessor systems on FPGA. Andersson
et al [2], for example, use the LEON4FT microprocessor to
build their Next Generation Multipurpose Microprocessor
(NGMP) architecture, which is prototyped on the Xilinx

XC5VFX130T FPGA board. However, the LEON architec-
ture is fairly complex, and difficult to instantiate more than
two or three on a medium size FPGA. Clack et al [5] in-
vestigate the use of FPGA, as a prototyping platform for
developing multicore system applications. They use Xilinx
MicroBlaze processor for the core, and a bus protocol for
the inter-core communication. James-Roxby et al [12] shows
similar FPGA design in their proposed architecture for sup-
porting a single program multiple data model of parallel
processing.

Other FPGA-based multicore architectures are more appli-
cation specific. Ravindran et al [22] demonstrate the fea-
sibility of FPGA-based multicore systems for high perfor-
mance applications, through the implementation of IPv4
packet forwarding using Xilinx Virtex-II Pro FPGA. Wang
et al [26] propose a multicore architecture on FPGA for
large dictionary string matching. Similarly, Tumeo et al [25]
present FPGA-based multicore shared memory for dual pri-
ority scheduling algorithm for real-time embedded systems.

Some designs focus primarly on the Network-on-chip (NoC).
Lusala et al [17], for example, propose a scalable implemen-
tation of NoC on FPGA using torus topology. Genko et al
[10] also present an FPGA-based flexible emulation environ-
ment for exploring different NoC features. A VHDL-based
cycle accurate RTL model for evaluating power and per-
formance of NoC architecture is presented in Banerjee et
al [3]. Other designs make use of multiple FPGAs. The
RAMP Blue project [14] has developed a set of reusable de-
sign blocks to emulate multicore architectures on FPGAs.
The system consists of 768-1008 MicroBlaze cores in 64-84
Virtex-II Pro 70 FPGAs on 16-21 BEE2 boards.

7. CONCLUSION
We have presented a complete, realistic, fully parameter-
ized, synthesizable, modular, multicore architecture. The
system, called Heracles, uses a component-based design ap-
proach, where the processing element or core, the router
and the network-on-chip, and the memory subsystem are
independent building blocks, and can be used in other de-
signs. The baseline system has a 7-stage integer-based MIPS
core, a virtual-channel wormhole router, with support for
both shared memory and distributed shared memory, imple-
mented on the Xilinx Virtex-5 LX330T FPGA board. We
have introduce a small software toolchain for compiling C
programs onto the system.

We have shown a 2D-Mesh topology and an unbalanced fat-
tree topology implementation of Heracles, to demonstrate
the flexibility and the robustness of the system. Heracles
can serve as a simulator in testing routing algorithms, flow
controls, topologies, memory controller organizations, or it
can be used as an accelerator when simulating a network-
on-chip (NoC) by removing the MIPS cores from the design
and placing only the NoC on the FPGA.

Future work will involve adding a small kernel binary code
to each core on start up for handling exceptions and proper
interrupts for peripheral communications. Multi-threading
will also be added, and dynamic runtime workload manage-
ment among the cores will be explored.

8. ACKNOWLEDGMENTS
We thank Srini Devadas, Joel Emer, Li-Shiuan Peh, Omer
Kan, Myong Hyon Cho, and Noah Keegan for interesting
discussions throughout the course of this work.

9. REFERENCES
[1] A. G. AB. Leon3 processor. Available at:

http://www.gaisler.com.

[2] J. Andersson, J. Gaisler, and R. Weigand. Next
generation multipurpose microprocessor. Available at:
http://microelectronics.esa.int/ngmp/NGMP-
DASIA10-Paper.pdf,
2010.

[3] N. Banerjee, P. Vellanki, and K. Chatha. A power and
performance model for network-on-chip architectures.
volume 2, pages 1250 – 1255 Vol.2, feb. 2004.

[4] L. Benini and G. De Micheli. Networks on chips: a
new soc paradigm. Computer, 35(1):70–78, Jan 2002.

[5] C. R. Clack, R. Nathuji, and H.-H. S. Lee. Using an
fpga as a prototyping platform for multi-core
processor applications. In WARFP-2005: Workshop
on Architecture Research using FPGA Platforms,
Cambridge, MA, USA, feb. 2005.

[6] W. J. Dally and C. L. Seitz. Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks.
IEEE Trans. Computers, 36(5):547–553, 1987.

[7] W. J. Dally and B. Towles. Route Packets, Not Wires:
On-Chip Interconnection Networks. In Proc. of the
38th Design Automation Conference (DAC), June
2001.

[8] W. J. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2003.

[9] P. Del valle, D. Atienza, I. Magan, J. Flores, E. Perez,
J. Mendias, L. Benini, and G. Micheli. A complete
multi-processor system-on-chip fpga-based emulation
framework. pages 140 –145, oct. 2006.

[10] N. Genko, D. Atienza, G. D. Micheli, J. M. Mendias,
R. Hermida, and F. Catthoor. A complete
network-on-chip emulation framework. In DATE ’05:
Proceedings of the conference on Design, Automation
and Test in Europe, pages 246–251, Washington, DC,
USA, 2005. IEEE Computer Society.

[11] A. Ivanov and G. D. Micheli. The Network-on-Chip
Paradigm in Practice and Research. Design & Test of
Computers, 22(5):399–403, 2005.

[12] P. James-Roxby, P. Schumacher, and C. Ross. A single
program multiple data parallel processing platform for
fpgas. In FCCM ’04: Proceedings of the 12th Annual
IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 302–303, Washington,
DC, USA, 2004. IEEE Computer Society.

[13] M. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk,
and S. Devadas. Application-Aware Deadlock-Free
Oblivious Routing. In Proceedings of the Int’l
Symposium on Computer Architecture, June 2009.

[14] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling,
and P.-Y. Droz. Ramp blue: A message-passing
manycore system in fpgas. pages 54 –61, aug. 2007.

[15] K. Lahiri, A. Raghunathan, and S. Dey. Evaluation of
the traffic-performance characteristics of
system-on-chip communication architectures. pages
29–35, 2001.

[16] C. E. Leiserson. Fat-trees: universal networks for
hardware-efficient supercomputing. IEEE Trans.
Comput., 34(10):892–901, 1985.

[17] A. Lusala, P. Manet, B. Rousseau, and J.-D. Legat.
Noc implementation in fpga using torus topology.
pages 778 –781, aug. 2007.

[18] R. D. Mullins, A. F. West, and S. W. Moore.
Low-latency virtual-channel routers for on-chip
networks. In Proc. of the 31st Annual Intl. Symp. on
Computer Architecture (ISCA), pages 188–197, 2004.

[19] L. M. Ni and P. K. McKinley. A survey of wormhole
routing techniques in direct networks. Computer,
26(2):62–76, 1993.

[20] D. Patterson and J. Hennessy. Computer Organization
and Design: The Hardware/software Interface.
Morgan Kaufmann, 2005.

[21] L.-S. Peh and W. J. Dally. A Delay Model and
Speculative Architecture for Pipelined Routers. In
Proc. International Symposium on High-Performance
Computer Architecture (HPCA), pages 255–266, Jan.
2001.

[22] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer. An
fpga-based soft multiprocessor system for ipv4 packet
forwarding. pages 487 – 492, aug. 2005.

[23] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and
M. Thottethodi. Near-optimal worst-case throughput
routing for two-dimensional mesh networks. In Proc.
of the 32nd Annual International Symposium on
Computer Architecture (ISCA), pages 432–443, 2005.

[24] H. Sullivan and T. R. Bashkow. A large scale,
homogeneous, fully distributed parallel machine, i.
SIGARCH Comput. Archit. News, 5(7):105–117, 1977.

[25] A. Tumeo, M. Branca, L. Camerini, M. Ceriani,
M. Monchiero, G. Palermo, F. Ferrandi, and
D. Sciuto. Prototyping pipelined applications on a
heterogeneous fpga multiprocessor virtual platform. In
ASP-DAC ’09: Proceedings of the 2009 Asia and
South Pacific Design Automation Conference, pages
317–322, Piscataway, NJ, USA, 2009. IEEE Press.

[26] Q. Wang and V. K. Prasanna. Multi-core architecture
on fpga for large dictionary string matching. In FCCM
’09: Proceedings of the 2009 17th IEEE Symposium on
Field Programmable Custom Computing Machines,
pages 96–103, Washington, DC, USA, 2009. IEEE
Computer Society.

[27] C. A. Zeferino, M. E. Kreutz, L. Carro, and A. A.
Susin. A study on communication issues for
systems-on-chip. In SBCCI ’02: Proceedings of the
15th symposium on Integrated circuits and systems
design, page 121, Washington, DC, USA, 2002. IEEE
Computer Society.

