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APPLICATIONS OF LINEAR TRANSFORMATION THEORY
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by
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partial fulfillment of the requirements for the degree of Doctor of
Science.

A new approach to the synthesis of active nonbilateral linear
networks is presented in this thesis - the linear transformation
theory approach. The idea of using linear transformations as an aid
in the analysis and synthesis of active nonbilateral linear networks
is due to Guillemin(l,2). By analysis of an active nonbilateral
network through linear transformations it is meant a method whereby
the dynamic variables of the network are expressed in terms of those
of passive bilateral network by means of linear transformations. The
synthesis procedure is the inverse of the analysis procedure. One
starts with a passive bilateral linear network and through the agency
of linear transformations of dynamic variables converts the passive
bilateral network into an active nonbilateral one with certain desired
network properties. In addition to presenting new results on the
synthesis of active nonbilateral networks, new results are presented
on the analysis of linear networks and the properties of driving point
and transfer functions of active nonbilateral linear networks.

A method of analysis of linear networks is presented that is
applicable to networks whose elements may have any number of terminals.
This analysis me hd was arrived at as a generalization of a method
due to Guillemin 2). It has been found that the method of analysis
presented in this thesis is very similar to a special case of Kronts(16)
method of analysis which involves "tearing networks". The similarity
is evidenced by making a correspondence between "torn networks" in his
method and the multiterminal-pair network element of the analysis method
of this thesis. Whereas the "torn network" of Kron may contain internal
sources, the multiterminal-pair element is assumed to be homogeneous,
i.e., to exhibit no terminal-pair voltages and currents when unexcited
externally. An advantage of the analysis method of this thesis is its
simplicity. No tensor algebra or notation are involved and in fact the
method requires little more knowledge in its application than an
ability to write conventional loop and node equationswhen mutual induc-
tance is present. Some attention is given in the section on network
analysis to the special situation in which the equilibrium matrix of a
network composed of MTP (multiterminal-pair) elements may be found by
a simple addition of the parameter matrices of the component MTP ele-
ments. The Additive Class of networks is defined. An Additive network
has the property that not only loop and node but also mixed equilibrium
matrices may be evaluated by addition of matrices describing the
behavior of component MTP elements.



Both real and complex (frequency dependent) linear transformations
are considered as an aid in obtaining synthesis techniques for active
nonbilateral linear networks. Specific attention is given to RC net-
works containing active nonbilateral resistive MTP elements. Certain
difficulties are found in using real linear-transformations and final syn-
thesis techniques are developed only with the use of complex linear
transformations. As a preliminary to the development of synthesis
techniques using complex linear transformations jan investigation is
made into the complex natural frequencies caused by the introduction
of an active nonbilateral three terminal resistive device into a
passive bilateral RC network. The approach used is general from the
point of view that three terminal (or multiterminal) active nonbilateral
devices may be handled that do not have a description on either an
impedance or admittance basis but only on a mixed basis. It is shown
that the zeroes of a certain Characteristic Determinant are the complex
poles of the network. A new expression is given for the driving point
impedance of a network consisting of a passive bilateral network with
an embedded multiterminal active nonbilateral device.

With the aid of complex linear transformations three new trans-
fer function synthesis techniques are derived. Each technique involves
2 two terminal-pair passive bilateral RC-networks and one three ter-
minal active nonbilateral resistive device. The first two synthesis
techniques will synthesize any stable transfer function to within a
constant multiplier. The third synthesis technique is somewhat
restricted with regard to the complex pole locations of the relevant
transfer function. However, this third synthesis technique is of con-
siderable theoretical interest since the three terminal active non-
bilateral device involved may, without loss of generality, be special-
ized to a Gyrator. Since a Gyrator is passive (in fact, lossless),
the "activity" of the active nonbilateral resistive device is not a
necessary requirement to obtain complex natural frequencies in an
RC network. Further support is given to this statement when it is

demonstrated that an RC network with embedded active bilateral resis-
tive devices must have its natural frequencies constrained to the

o axis. Thus, in fact, it is the nonbilaterality rather than the

activity of the embedded active nonbilateral resistive device that
allows the natural frequencies of an "active" RC network to become
complex.

An effective analytic approach to the study of the fundamental
properties of driving point and transfer functions of passive bilateral
networks is based upon expressing the network functions in terms of the

energy functions associated w th the network. This approach was
initially formulated by Brune 17) and further elaborated upon by
Guillemin(3,18). This thesis presents a number of new properties of

active nonbilateral networks which are derived by extending the energy
function approach to active nonbilateral linear networks.

Thesis Supervisor: Ernst A. Guillemin
Title: Professor of Electrical Engineering
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CHAPTER I

INTRODUCTION

1.1 Introduction

The work in this thesis is concerned primarily with the appli-

cation of linear transformation theory to the synthesis of active-

nonbilateral linear networks. New results are also presented on the

frequency domain properties of such networks and the general problem

of linear network analysis. The idea of using linear transformation

theory as an aid both in the analysis and synthesis of active-

nonbilateral linear networks is due to Guillemin(1,2) A brief dis-

cussion of his results and others in this area will be found in

Section 1.4 after a discussion of the class of networks dealt with

in this thesis in Section 1.2, and a discussion of recent results

in the synthesis of active-nonbilateral networks using nontrans-

formation theory approaches in Section 1.3. In Section 1.5 there

is presented the method of approach used in this thesis to synthesize

active-nonbilateral networks by means of linear transformation

theory and a discussion is given of the resulting types of problems

that arise. Finally Section 1.6 gives a brief summary of the thesis.

1.2 The Class of LLF Networks

The active-nonbilateral class of networks considered in this

thesis may be regarded as a logical extension of the class of net-

works commonly designated as LLFPB(3) (linear, lumped, finite,

passive, bilateral). An LLFPB network is conveniently defined as

any network consisting of an interconnection of resistances,

12



inductances, and capacitances. These elements are all positive and

yield symmetric, positive-definite parameter matrices. If the

resistances, inductances, and capacitances are allowed to take on

negative as well as positive values, the network may lose its passive

character but must still remain bilateral. The branch parameter

matrices are still symmetrical but they no longer define positive

definite quadratic forms. The mathematical significance of a non

positive-definite resistance parameter matrix is that under some

conditions of network excitation, the net average power into the

network may become negative. Physically, this means that the network

is delivering average power into the circuit external to itself

rather than absorbing average power from it. The mathematical

significance of non positive-definite capacitance and inductance

parameter matrices is that under some conditions of network excita-

tion the net stored capacitive or inductive energy may become nega-

tive. Physically, this means that the inductive or capacitive

portion of the network is delivering average energy into the network

external to itself rather than absorbing average energy from it.

We might properly denote this class of networks as LLFB (linear,

lumped, finite, bilateral) dropping the letter P from LLFPB because

the network may no longer be called passive, but retaining the

letter B since the network is still bilateral.

We may now drop the bilaterality restriction in the following

way. Consider that in addition to the resistances, inductances, and

Capacitances of the LLFPB network we add three types of multiterminal

black boxes - capacitive, inductive, and resistive. Thus the



capacitive black box would be described by a s.c. admittance matrix

equal to the product of a real. matrix and s (the complex frequency

variable). The real matrix need be neither bilateral nor define a

positive definite quadratic form. Entirely analogous statements

apply to the inductance and resistance boxes. Through a method

suggested by Guillemin(2) these black boxes may be handled as far

as network analysis is concerned like ordinary resistances, inductances,

and capacitances. When this is done one finds that the inductance.,

resistance, and capacitance parameter matrices of a network containing

such black boxes become non-symmetrical and do not define positive

definite quadratic forms. We will use the letters LLF (linear,

lumped, finite) to denote such a network, i.e., a network consisting

of positive inductances, resistances, and capacitances plus resis-

tance, capacitance, and inductance black boxes of the type described

above. It will be convenient to have an abbreviation for each of

these types of boxes. The following definitions appear to be appro-

priate:

R-LLF: Active-Nonbilateral Resistance Box

L-LLF: Active-Nonbilateral Inductance Box

C-LLF: Active-Nonbilateral Capacitance Box

It would be convenient to have a further notation for an LLFPB

network containing black boxes of only one or two of the types-above.

We will use the following notation:

LLF:X: A network consisting of positive resistances,:inductances,
capacitances and black boxes of the types X-LLF where X
may be one of the letters R, L, or C.

LLF:XY: A network consisting of positive resistances, inductances,
capacitances and black boxes of the two types X-LLF and
Y-LLF when X, Y may be any two of the letters R,L,C.

14



If all three types of boxes are involved the letters LLF will be

used. Thus the class of networks which contain positive RL,C plus

active-nonbilateral resistance boxes would be designated by LLF:R.

The question naturally arises at this point as to the corres-

pondence between the class of active-nonbilateral linear networks

defined above and the physical active-nonbilateral networks appearing

in practice. It is clear immediately that just as with LLFPB net-

works, delay lines or any other elements are omitted if they have

impedances or -admittances:that are non-rational functions of the

complex frequency variable s.

This follows from the more or less obvious fact that the

inclusion of black boxes of the type described in an otherwise

LLFPB network leaves the rational character of network functions

unchanged. It should be noted also that we have been confining

ourselves right from the start, to a discussion of time invarient

linear systems, i.e., systems whose behavior is described by linear

differential equations with constant coefficients

Excluding the above classes of networks, the remaining possi-

bility for linear active-nonbilateral networks appearing in practice

is the class of networks that may be formed by interconnecting

resistances, inductances, and capacitances with vacuum tubes and

transistors. It is assumed that the latter elements are being

operated under small signal conditions so that the incremental

behavior of the devices are linear. If one is concerned with a

range of operating frequencies that is sufficiently low one may

regard the vacuum tube and transistor to be active-nonbilateral



resistance boxes and thus members of the class R-LLF. For frequencies

above this range one finds that shunt capacitances across terminal

pairs come into play. Thus for a large range of frequencies circuits

containing vacuum tubes and transistors still belong to the class

LLF:R even though the individual vacuum tubes and transistors do not

belong to R-LLF. This comes about from the fact that in this range

of frequencies, the active-nonbilateral character of these devices

is resistive rather than inductive or capacitive in character. Of

course if the operating frequency of the vacuum tube or transistor

is pushed too high then transit time effects come into play. This

causes the vacuum tube or transistor to be no longer representable

as an R-LLF device with lumped terminal capacitances.

It appears then that from a practical point of view the class

of networks LLF:R warrants our first consideration as far as the

development of synthesis methods is concerned. Furthermore it will

be demonstrated in Chapter 4 that the black boxes belonging to L-LLF

and C-LLF may be synthesized from networks of the class.LLF:R. Thus

both from a theoretical and a practical point of view there does not

appear to be any justification for giving anything but a passing

glance at the other classes of LLF networks defined above. This is

Just the attitude that will be taken in this thesis even though

some of the results would require small modification to be applicable

to the classes of LLF networks other than LLF:R.

If a network consists of only resistances and capacitances

plus R-LLF devices we will designate it an RC-LLF:R network. The

extension of this notation to other two element kind combinations is

clear.



1.3 Previous Results

In this section we will discuss some previous results in the

synthesis of active-nonbilateral linear networks that have been

arrived at using a non-transformation theory approach. We will

confine our attention to synthesis methods involving a small number

of R-LLF devices.

Networks containing vacuum tubes, transistors, resistors,

inductors, and capacitors have had a wide variety of applications

in communications technology. Some of the important ones are listed

below:

1. Amplification of signals

2. Compensation of existing non-ideal characteristics of
system such as with feedback amplifiers.

3. Simplification of linear transfer function synthesis due
to the isolating property of vacuum tubes

4. Compensation for parasitic dissipation in passive elements.
Examples are afforded by the Q-multiplier and to stretch
a point - the oscillator

5. The general ability to relax various restrictions imposed
on the driving point and transfer functions of LLFPB
Networks. In particular the ability to make two-element
kind network functions behave as general as three-element
kind network functions.

Items 1 through 4 are familiar applications. But item 5 is

relatively new and perhaps represents the most fascinating item to

a network theorist like the author who has only recently left the

warm shelter of LLFPB network theory. It is demonstrated in this

latter discipline that the natural frequencies of RC (and RL) net-

works are confined to the negative-real axis. This is unfortunate

since the theoretical capacitive element is far closer to the physical

17



capacitive element than is the theoretical inductance to its physical

counterpart. This non-ideal behavior of the physical inductor is

especially noticeable at low frequencies. Thus a design of an RC

network based on ideal R and C for low frequency applications will

be much more likely to yield the results predicted than a similar

design involving inductances. In addition the inductors required

for low frequency application become bulky and costly.

Linvill(4) was apparently the first person to demonstrate the

general character obtainable for the transfer function of an active-

nonbilateral RC network. He developed a general transfer impedance

synthesis method involving two passive bilateral RC networks in a

cascade connection separated by a negative impedance converter.

By this connection any specified stable transfer function can be

realized to within a constant multiplier. The negative impedance

converter is an ideal two terminal-pair element that yields at one

terminal pair the negative of the impedance connected at the other

terminal pair. Subsequent work by others(5,6) has produced very

good practical negative impedance converters. In the realization

of the negative impedance converter two or more vacuum tubes or

transistors are required. The total number of elements in the RC

networks is of the order of magnitude of the number of elements that

would be required to synthesize the specified transfer function by

an RLC network and thus the synthesis method does not require an

increase in network complexity.

Following Linvill, Horowitz (7 modified Linvill's method so

that the negative impedance converter was not explicitly used. His

method involves the manipulation of dependent sources leading to a

18



realization of the active element directly in terms of at most two

transistors. The final result is as general as Linvill's.

Recently Yanagisawa(8) presented a general transfer admittance

synthesis method which involves a negative impedance converter plus

two RC networks in a parallel type rather than a cascade type of

connection. The advantage of this method over Linvills lies in the

fact that the RC networks can be so simple that an L type network

configuration is sufficient. The final result is that four driving

point impedances are required to be synthesized rather than two two

terminal-pair RC networks with complex transmission zeroes (in the

general case) as with Linvill's method.

We should also mention the work of DeClaris 9 He has shown

that any stable (denominator polynomial Hurwitz) driving point

function can be realized with R's, L's, C's, and a two terminal-pair

device called a "controlled" source. When considered as a grounded

two terminal-pair device, the "controlled" source may be regarded as

an ideal vacuum tube. An ideal vacuum tube is defined here as an

incremental model of a vacuum tube which has infinite plate resistance

and no interelectrode capacitance. (There is a dual controlled source

which he mentioned, but this has no realization in terms of an ideal

vacuum tube). Some of his synthesis methods require that an ungrounded

two-terminal pair "controlled" source be used. In this case one

cannot use the ideal vacuum tube alone. A possible theoretical reali-

zation for the ungrounded two-terminal pair controlled source is an

ideal vacuum tube in cascade with an ideal transformer. In particular

he gave a synthesis method for a driving point impedance in terms of

R's, C's and one controlled source. However, although it was not

19



explicitly stated, the method will only work if the "controlled"

source is an ungrounded two terminal-pair network.

According to well-informed sources Kinnarawalla* has developed

a method of synthesizing any p.r. driving point impedance using one

negative impedance converter plus associated resistances and capa-

citances. Unfortunately there appears to be no published record

of this method.

The above researchers have clearly demonstrated that an RC

network with an embedded R-LLF device (assuming we can call a nega-

tive impedance converter an R-LLF device) may have driving point

and transfer functions of a general character. However none of

these people have investigated the following general question:

how do the parameters of an arbitrary embedded R-LLF device influence

the locations of the complex natural frequencies of an RC-LLF:R

network? In the work mentioned above either the R-LLF device or the

network configuration or both are frozen a-priori. Both the negative

impedance converter and the "controlled" source have given general

results. Is there something special about these devices? Are there

other devices that will do as well? Are there other types of network

configurations that will yield as general results as those used by

Linvill, Horawitz, and Yanagisawa? These questions have been inves-

tigated in this thesis using a linear transformation theory approach

to the study of active nonbilateral networks. It is believed that

considerable light is shed upon the above questions. A synthesis

procedure is given involving an ideal vacuum tube plus two two

terminal-pair RC networks that allows the synthesis of an arbitrarily

*Bell Telephone Lab., Murray Hill, N.J.
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specified stable transfer impedance or voltage ratio to within a

constant multiplier (no pole at infinity). Another general synthesis

procedure is given for synthesizing any one of the four possible

transfer functions (impedance, admittance, voltage, and current).

This method involves the same configuration as Linvill used with

the negative impedance converter but involves a new R-LLF device.

It is also shown that fairly general transfer functions may be

realized using a gyrator although complete generality is not obtain-

able here.

1.4 Linear Transformation Theory and Linear Active-Nonbilateral
Networks

The concept of applying linear transformation theory as an aid

to the analysis and synthesis of active-nonbilateral linear networks

is due to Guillemin.,2) His initial impetus for considering the

application of linear transformations to the study of active-

nonbilateral linear networks came from a consideration arising in

the formulation of equilibrium equations for LLFPB networks. He

noted that if, for example, one cut-set y is used to define node-

pair voltage variables and another cut-set a is used to formulate

Kirchoff current equations, then the equilibrium equations on the

node basis become unsymmetrical. If the cut set a is used both for

defining an independent set of node pair voltages and for formulating

Kirchoff's current equations, the node equilibrium matrix becomes

Symmetrical. One may readily show that the node-pair voltages for

the symmetrical formulation of equilibrium equations are related to

those for the unsymmetrical formulation through a real non-singular
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transformation matrix. Thus we have a situation in which an LLFPB

network is characterized by an unsymmetrical admittance matrix by

effecting an appropriate linear transformation of node pair voltage

variables. The intriguing possibility then suggested itself to

Guillemin that if LLFPB networks could be characterized by non-

symmetrical impedance or admittance matrices through a linear

transformation of dynamic variables, active-nonbilateral linear

networks might well be characterizable in terms of symmetrical

impedance or admittance matrices through use of a linear transforma-

tion of variables. Or, more to the point, perhaps the dynamic

variables of an active-nonbilateral network could be expressed

either in terms of those of an LLFPB network, or else in terms of

those of a simpler active-nonbilateral network. Guillemin has

demonstrated this supposition to be true in at least one general

sense. He demonstrated the following fact. Let there be given a

network of the class LLF:R excited in some particular fashion. To

be specific let us apply current sources at a set of independent

node pairs. Let the response quantities be node pair voltages.

Then we can find an LLFPB network (there are actually an infinite

number) with the same set of current sources applied whose node pair

voltages are related to those of the LLF:R network through a real

non-singular transformation matrix. However, in addition to the

current sources applied to the LLFPB network there must also be

voltage sources applied in all the links. Moreover these voltage

sources are dependent rather than independent. Specifically the link

voltage sources are related to the LLFPB node pair voltage through

a real transformation matrix. Thus while such a representation
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allows the dynamic variables of an LLF:R network to be expressed in

terms of those of an LLFPB network one must contend with dependent

sources in the LLFPB network.

A rather interesting result was derived by Guillemin(2) using

a linear transformation of network variables wherein the elements

of the transformation matrix are functions of the complex frequency

variable s. Specifically, he represented the node pair voltages

of a multistage transistor amplifier as a linear transformation of

those of a multistage vacuum tube amplifier. This transformation

theory approach leads to a synthesis technique wherein one may design

a multistage transistor amplifier to have the same transfer impedance

as the multistage vacuum tube amplifier. Masenten (10) elaborated

upon this result in his Masters Thesis.

Another, more specialized, synthesis method using real trans-

formations has been derived by Nashed and Stockham(12). This

method allows gain to be inserted in the transfer functions of a

network, if certain conditions with regard to network configuration

are satisfied. Nashed's method of approach is more general than

Stockham's. However an examination of his results and Stockham's

show an inconsistency. Namely, the network configuration which

Stockham proved allows gain insertion is not in the class of networks

that Nashed claims allows gain insertion. This inconsistency has

been resolved by the author as a byproduct of some general investi-

gations of the application of linear transformation theory to the

study of active-nonbilateral linear networks. The result arrived at

is more general than those of Nashed and Stockham both with regard

to approach and with regard to possible network configurations which

allow gain insertion by applying linear transformation theory.
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1.5 Linear Transformation Approach Used in This Thesis

1.5.1 General Approach

In this section the general approach will be presented that is

used in this thesis for applying linear transformation theory to

the synthesis of LLF:R networks. It is an approach which is inva-

riably used when one starts developing design or synthesis methods

for any new field. An appropriate name for this approach might be

"synthesis through analysis". It proceeds in the following way.

First existing methods of analysis are studied or, possibly, new

methods of analysis are developed. In general, different techniques

of analysis will be found to be particularly effective with different

classes of systems. Thus one finds a pairing of analysis techniques

with system classes perhaps on the basis of ease of analysis or a

simplicity of viewpoint that allows a good understanding of the basic

physical mechanisms involved. Having found these pairs an attempt

is made to develop synthesis methods by an appropriate inversion

of the results of analysis.

Applying the above thougts to using linear transformation theory

to synthesize LLF:R networks one must study existing methods of

analysis or else develop new methods of analysis. By analysis we

mean in our case the process by which the dynamic variables of an

LLF:R network are represented in terms of those of an LLFPB network

by means of some nonsingular transformation matrix. The transforma-

tion matrix may be either real or complex (i.e. a function of

a + jo). Next we must attempt to find LLF:R network configurations

and techniques of analysis that, in combination, allow as simple an
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interpretation as possible of the physical processes involved, i.e.

of the mechanism by which in retrospect the linear transformation

effects a conversion of network passivity and bilaterality into non-

passivity and nonbilaterality. Presuming that we have found such

analysis techniques we carry through an analysis of some specific

configurations. Examination of the results of this analysis will

hopefully point to methods whereby one may reverse the process and

say, synthesize a transfer function otherwise unobtainable by an

LLFPB network.

Exactly how the above ideas were put into use in this thesis

will be discussed in this and the following section. First let it

be noted that, in the large, no new methods of linear transformation

theory analysis of LLF:R networks were developed. Rather existing

methods, all due to Professor Guillemin, were either specialized,

modified, or extended. In particular a search was made for those

methods of analysis which did not lead to dependent sources embedded

in the LLFPB reference network, since it was felt that the presence

of dependent sources could only occlude an understanding of the

basic physical processes involved in the transformation theory

approach. Thus Guilemin's general analysis method was studied only

with respect to determining the conditions under which dependent

sources do not appear. As a result of this investigation a rather

general result was discovered. This result is discussed in detail

in Chapter 3, Section 3.2. In brief, if an LLF:R network with open

circuit impedance matrix Z satisfies certain conditions with regard

to topology, then we may express its voltages and currents in terms
A

of those of an LLFPB network with impedance matrix Z and no dependent

sources will appear.



Further investigations along different channels than the above.

were carried out to determine linear transformation theory analysis

techniques that allowed a representation of an LLF:R network in

terms of an LLFPB network without dependent sources. The results

of these further investigations are reported in Sections 3.3 and

3.4 of Chapter 3. Both complex and real linear transformations are

considered. The complex transformation methods discussed lead to

easily interpretable results when the embedded R-LLF device has a

small number of terminals. Some interesting results were found

with real transformations. It is shown in Section 3.3.1 that the

method arrived at by specializing Guillemin's branch transformation

analysis method so that no dependent sources appear is a special

result of a quite different approach. This latter approach also has

resolved the viewpoints of Nashed and Stockham, as discussed in

Section 1.4, with regard to inserting gain.

Following the above general investigations of analysis tech-

niques in Chapter 3, analysis of particular network configurations

is carried through in Chapters 4 and 6. In particular the methods

of analysis were applied to LLF:R networks consisting of an RC-LLFPB

network of a general character in conjunction with one three-terminal

R-LLF device. The motivation for such a restriction should be

apparent from the discussion of Section 1.3. In the following section

a general discussion is given of the difficulties that arise in

designing synthesis methods through applying the "synthesis through

analysis" method to synthesis of active-nonbilateral linear networks

by linear transformation theory.
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1.5.2 Specific Approach

Let us suppose that we have analyzed an LLF:R network into an

LLFPB network and a set of linear transformations. We will confine

ourselves here, for illustrative purposes, to discussion of the

situation in which current sources are the excitation and the node

pair voltages are the responses. Let it now be assumed that through

some method of linear transformation analysis we obtain

A
Qi, = i

e = Pe (1.5.1)

A A
where the pairs i,,e and i ,e, all column matrices (or vectors),

represent the current excitation and node pair voltage response of

the LLF:R network and the corresponding quantities for the LLFPB

reference network, respectively. The transformation matrices P,Q

are assumed to be nonsingular but not necessarily real, i.e., they
A

may be a function of s = a + jo. If Z and Z denote the o.c. impedance

matrix of the LLF:R network and the LLFPB reference network, then

by definition

e Zi (1.5.2)

and

A' AA
e = Zi (1.5.3)

If Eq. 1.5.3 is premultiplied by Q and Eq. 1.5.1 are used we find that

A
e = (PZQ)i, (1.5.4)
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from which we deduce that

Z = PZQ (1.5.5)

Thus the pair of transformations (1.5.1) cause the LLF:R o.c. im-

pedance matrix to be expressed as the result of a premultiplication

and postmultiplication of nonsingular matrices upon the o.c. impedance

matrix of the LLFPB network. Conversely, if an LLF-R o.c. impedance

matrix is expressible in the form (1.5.5) then its current excitation
A A

vector i and voltage response vector e are related to those of the

LLFPB network with o.c. impedance matrix through the transformations

(1.5.1).

Let us restate the assumptions relating to the specific example

we shall discuss. We have available an active-nonbilateral network

consisting of an RC-LLFPB network with one embedded multi-terminal

RLLF device. This RC-LLF:R network has an o.c. impedance matrix Z

defined for a certain set of accessible terminal pairs. Through

analysis by linear transformation theory it is presumed that we have

found an RC-LLFPB network with o.c. impedance matrix Z such that

Eq. 1.5.5 is satsified.

We may make one general observation at this point. If P and Q

are real then the o.c. impedance poles of the RC-LLF:R network are

identical to those of the RC-LLFPB network. This comes about from

the fact that each element of the Z matrix is expressed by (1.5.5)

as linear combinations of the elements of the Z matrix. Thus without

further manipulation of some type real transformations appear to lead

to rather restricted results for RC-LLF:R networks. One possible

approach to extend the usefulness of real transformation is based
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upon the following thought. While real transformations of the type

in Eq. 1.5.1 leave the poles of the open circuit driving point

impedances constrained to the negative real axis, the zeroes of the

impedances are not so constrained. This comes about from the fact

that through the agency of real transformations, the RC-LLF:R driving

point impedances are expressed not only as linear combinations of

RC-LLFPB o.c. driving point impedances but also of RC-LLFPB transfer

impedances. Since a short circuit constraint placed at a terminal

pair with impedance zeroes at complex frequencies will yield a network

with natural frequencies at these same complex frequencies we may

achieve through the intermediary of real transformations upon an

RC-LLFPB network an RC-LLF:R network with natural frequencies in the

complex plane. These ideas are put to use in Chapter 4.

If the transformation matrices P and Q are functions of s then

the o.c. impedance poles may lie anywhere. The poles of Z are, in
A A

general, the poles of P,Z, and Q. While the poles of Z must lie

along the negative real axis the poles of P and Q need not be

constrained in this way. In the methods of synthesis derived in this

thesis that use complex linear transformations, the elements of P and
A

Q are also functions of the elements of Z. In such a case the ele-

ments of Z will, as a rule, be nonlinear functions of the elements
A

of Z.* In addition they will be functions of the parameters of the

multi-terminal R-LLF device of the RC-LLF:R network. From observation

*It may appear that an inconsistency exists at this point since linear transforma-
tions of the network variables have produced RC-LLF:R driving point a nd transfer
functions which are nonlinear functions of those of the RC-LLFPB reference net-
work. However there is no inconsistency here since Eq. 1.5.1 which define analysis
by linear transformation theory show that e and i are linearly related to e and
i respectively whether or not P and Q involve the elements Z.
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of the elements of Z it is possible to determine driving point and

transfer functions which clearly exhibit the possibility of complete

generality in the location of zeroes and poles. For purposes of

discussion, suppose that examination of Z shows that the o.c. driving

point impedance at terminal pair 1(z11 ) has the form

az 34 (1.5.6)
bz33 - cz 1 2

-- - -I

where z3, zl2 , and z34 are open circuit impedances for the LLFPB

reference network and a,b,c are constants dependent upon the R-LLF

device embedded in the RC-LLF:R network. It-is important to note

that the specifications on the RC-LLFPB network involve four terminal

pairs as shown below.

Figure 1.5.1. LLFPB Reference Network

What one would like to do with z11 is synthesize it for an

arbitrarily prescribed set of poles and zeroes. Having an ex-

pression for z11 of the form of Eq. 1.5.6 in which it can be recog-

nized that z11 has the potentiality of complete generality in

location of poles and zeroes is far from having a synthesis method.



Before one can synthesize z11 to specification, the following steps

must be completed in order.
A A

1. Sufficient conditions for realizability of z33, z1 2, and
A
S34 must be determined so that one can be sure a specified

set of these network functions come from a 4 terminal-pair
RC-LLFPB network

2. An Algorithm must be found such that one may go in a step
by step procedure from a sjecifjed pgle-zero pattern for
z 1to a set of functions z3 3, z1 2, z34 that satisfy the

sufficient conditions established in item 1.

3. The RC-LLF:R network must be synthesized

Let us discuss these problems in order. First we note from

Eq. 1.5.6 that if we are to synthesize z11 we must be able to specify

A A A
a set of functions z33 z1 2, and z34 which may actually come from a

4 terminal-pair RC network. It will be presumed that the RC-

network does not contain ideal transformers. The reason for this

is that the LLF:R networks considered in this thesis have LLFPB

subnetworks intimately related if not identical, to the corresponding

reference LLFPB networks. In such a case, the synthesis of the

LLF:R network involves also the synthesis of the LLFPB reference

network. No attempt is made in this thesis to use ideal trans-

formers in synthesizing RC-LLF:R networks since it is felt that by

so doing one has defeated the original purpose of studying such net-

works. After all, an ideal transformer is a limiting form of a pair

of mutually coupled coils. Inclusion of such elements in RC networks

makes them in effect RLC networks since any practical realization

involving transformers will actually introduce inductance.

A A A
To find sufficient conditions for specifying z33, zl2, and z

we must put ourselves in the position of synthesizing the 4 terminal



RC Network of Fig. 1. The general problem of multiterminal-pair

synthesis of RC-LLFPB networks without ideal transformers is a

presently unsolved problem of network synthesis. Exactly what can

be done without ideal transformers is summarized in Fig. 1.5.2 for

RC Networks.

Any RC Any RC May Not Be
Specified

A A- A A
yli(y 2 2) y1 2 (to within a constant) y2 2(y11 )multiplier

0

4-')
cr3

AA A Az 1 (z 2 2 ) zl2 (to within a constant) z22(z)multiplier 11

A A A
Yll Y22 1

z z22  z12

Figure 1.5.2. Constructible Specifications on
Two Terminal-Pair RC Networks
Without Ideal Transformers

We will call the specifications of Fig. 1.5.2 constructible

specifications for obvious reasons.

Reference to Fig. 1.5.2 indicates that we may synthesize for

one driving point admittance (impedance) and a transfer admittance

(impedance). There is a maximum constant multiplier(13) that may

be specified in the transfer function. The following dilemma thus

arises - we need to synthesize a four terminal-pair RC-LLFPB network

for certain prescribed driving point and transfer functions but we

only have available synthesis methods which allow a synthesis of two

terminal-pair networks for the specifications of Fig. 1.5.2. Since
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it is not the intent of this thesis to develop methods of multiterminal-

pair RC-LLFPB network synthesis no significant work in this direction

was accomplished. Rather, the following obvious approach to a

possible solution of the dilemma is followed. The multiterminal-pair

RC-LLFPB network is restricted to a makeup of two terminal-pair

RC-LLFPB networks. In our illustrative example we would interconnect

a number of two terminal-pair RC networks to form a four terminal-

pair RC network. We attempt to arrange the two terminal-pair
A A A

component networks so that the quantities z33 , z1 2, and z34 become

functions of constructible component network functions as indicated

in Fig. 1.5.2. Thus, for example, if for some arrangement of

A
component RC networks we find that z12 is a function of both driving

point impedances z , z22,and the transfer impedance z a of an

RC component network, a, we will be in trouble unless we can specia-

lize this latter RC network to a T , T, or L type configuration of

driving point functions. This latter type of specialization is

sometimes effective but frequently such a specialization restricts
A
z1 2 considerably in character and prevents a final realization of

z 1with completely general specifications. Such a method of syn-

thesizing a four terminal-pair RC-LLFPB network is clearly a "cut

and try" method which requires a certain degree of ingenuity for its

effective use.

Let us suppose that we have managed to subdivide the 4 terminal-

pair RC-LLFPB reference network into two terminal-pair component

subnetworks such that z11 becomes expressed in terms of network

functions involving "constructible" specifications. Suppose for



example that two subnetworks are involved. If we have completed

step 1 one possible form for z11 is

z f~a za b b(157= f(z 1 ,zl2 'y22'y12 ) (1.5.7)

where f is some rational function of its argument. We now turn our

attention to step 2. This involves finding a realizable set z a
a b b
zl2 ' y22 ' y12 when z is initially specified. It is the first step

at which the process of analysis is reversed i.e., the process of

synthesis becomes initiated. One must find an Algorithm such that

given z11 one may find in a step by step procedure a realizable set

of RC-LLFPB two terminal-pair driving point and transfer functions

a a b b
z11 ,z1 2 'y22 'y1 2 '

The solution of the last problem is subdivided into two parts.

One part involves synthesizing the RC-LLFPB portion of the RC-LLF:R

network and the other part involves synthesizing the R-LLF portion

of the RC-LLF:R network. It would be well to recall that we initially

started with the RC-LLF:R network. This was "analyzed" into an

RC-LLFPB network and a set of linear transformations of dynamic

variables. Thus the RC-LLF:R network configuration is known a-priori.

The synthesis of the RC-LLFPB portion of the RC-LLF:R network will

in general be a difficult task since this will be a multiterminal-

pair RC network. Fortunately in the networks discussed in this thesis

the RC-LLFPB portion of the RC-LLF:R network is closely related to

or identical to the reference RC-LLFPB network. This results in the

fortuitous result that a solution of step 1 above is also a solution
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of the first part of step 3. With regard to the second part of

step 3, we note that there is no general practical method available

at present for synthesizing a multiterminal-pair R-LLF device for

prescribed s.c. conductance matrix. By practical it is meant a

synthesis method which involves components which are commercially

available transistors and vacuum tubes in addition to positive re-

sistance. In Chapter 4 there is presented a theoretical method

which involves positive and negative resistances plus ideal vacuum

tubes. From a practical point of view one would prefer to use a

synthesis technique which involves an R-LLF device with as few

terminals as possible. The minimum number which can produce general

results in z11 is three. This arises from the fact that a two

terminal R-LLF device is only a negative or positive resistance

and, as demonstrated in Chapter 7, a network consisting of positive

and negative resistances plus positive capacitances cannot have

natural frequencies off the real axis. The various synthesis tech-

niques have thus involved only a three-terminal R-LLF device in order

to keep the R-LLF portion of the RC-LLF:R network as simple as

possible.

1.6 Summary of Thesis Results

In this section we will summarize the new results afforded by

the thesis. We will consider subjects in the order in which they

appear in the thesis. The work falls into three categories:

(1) Analysis of linear networks

(2) Synthesis of transfer functions through application of
linear transformation theory

(3) Properties of driving point and transfer impedances of
LLF networks
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1.6.1 Analysis

A method of analysis of linear networks is presented that is

applicable to networks whose elements may have any number of terminals.

The method is conventional in that it involves a formulation of

equilibrium equations and their subsequent solution for the desired

network properties. This is in contrast to methods like those of

Mason (14) and Percival(15) for instance which might be termed

"purely" topological in nature. By a "purely topological method"

it is meant that the desired network properties are found by operations

upon a suitably constructed network graph.

The analysis method described in Chapter 2 was arrived at as a

(2)generalization of a method due to Guillemin(. In Guillemin's

method the network elements are R's, L's, C's and multiterminal

active-nonbilateral resistive devices. Each multiterminal-pair

device, which is assumed to have node-to-datum terminal pairs

assigned, is represented for purposes of analysis by a tree of

branches and a set of linear equations with real coefficients rela-

tively the voltage and currents of the branches. Once the multi-

terminal pair resistive devices are replaced by a tree of branches

conventional methods of network analysis are found applicable. In

Chapter 2 the network elements are all MTP (multiterminal-pair)

devices which are not necessarily resistive in character. The only

requirement is that the terminal-pair voltages and currents be

related by linear equations. The definition of terminal pairs for

each MTP element is arbitrary. To each definition of terminal pairs

there corresponds a different branch representation. The concept of

the associated MP (multiple) network is introduced as the physical
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network corresponding to a MTP element but with no assignment of

terminal pairs. Since a network with a given number of nodes may

have terminal pairs assigned in a large number of ways, each MP

network is said to be describable by a large number of MTP elements -

one for each different assignment of terminal pairs. The relation-

ship between the impedance and admittance matrices is given for those

MTP elements that describe the same associated MP network.

Some attention is given to the special situation in which the

equilibrium matrix of a network composed of MTP elements may be

found by simple addition of the parameter matrices of the component

MTP elements. The Additive class of networks is defined. An

Additive network has the property that not only loop and node

equilibrium matrices but also mixed equilibrium matrices may be

evaluated by addition of matrices describing the behavior of the

MTP elements. The Additive class of networks is found in Chapters

5 and 6 to be of particular importance in the application of

complex linear transformations to the synthesis of LLF networks.

It has been found that the method of analysis of Chapter 2

is very similar to a special case of Kron's(16) method of analysis

which involves "tearing networks" if we make a correspondence between

"torn networks" in this method and the MTP element in Chapter 2.

Where as the "torn network" of Kron may contain internal sources

the MTP element is assumed to be homogenous, i.e., to exhibit no

terminal pair voltages and currents when unexcited externally. An

advantage of the method of Chapter 2 is its simplicity. No Tensor

algebra or notation are involved and in fact the method requires

little more knowledge in its application than an ability to write

conventional loop and node equations when mutual inductance is present.
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1.6.2 Synthesis

In Chapter 3 some particular techniques of LLF:R network analysis

through linear transformation theory are presented. The techniques

involve both real and complex linear transformations. In Chapters

4 and 6 these analysis procedures are reversed in accordance with

the "synthesis through analysis" procedure outlined in Section 1.5.

Chapter 4 deals with real transformations and Chapter 6 with complex

transformations. The synthesis methods arising from real trans-

formations had the general difficulty of being unable to meet the

"constructible" specifications requirement discussed in Section

1.5.2. One particular case was found to meet the constructible

specifications requirement. However attempts at finding an Algorithm

as required in step 2 of Section 1.5.2 have not been successful.

Chapter 6 considers the use of the complex linear transformation

techniques of Chapter 3 in order to use the "synthesis through

analysis" method to synthesize transfer functions of RC-LLF:R net-

works. As groundwork for the material of Chapter 6, Chapter 5 in-

vestigates the complex natural frequencies caused by the introduction

of an R-LLF three terminal device into an RC-LLFPB network. It is

shown that the zeroes of a certain Characteristic Determinant are

the complex poles of the network. Attention is given to conditions

on the R-LLF device and the RC-LLFPB network such that the Charac-

teristic Determinant involves RC-LLFPB network functions that con-

stitute constructible specifications on two terminal pair networks.

This is done as an aid in developing potentially acceptable transfer

functions (i.e. those having the possibility of general pole-zero

locations) which involve only constructible specifications. The
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approach used is general from the point of view that R-LLF devices

may be handled that do not have a description on either an impedance

or admittance basis but only on a mixed basis.

The following question is investigated for some specific R-LLF

devices. Can an RC-LLFPB network be found such that when the R-LLF

device is embedded in the RC-LLFPB network, the resulting RC-LLF:R

network will have a prescribed set of natural frequencies? A

number of R-LLF devices are found to allow an arbitrary assignment

of complex natural frequencies. The gyrator, a passive R-LLF device,

is found to allow a fairly general assignment of complex natural

frequencies. Thus the "activity" of the R-LLF device is not a

necessary requirement to obtain complex natural frequencies.

Support is given to this statement in Chapter 7 where it is demon-

strated that an RC-LLFPB network with embedded active bilateral

resistive devices is constrained to have a axis natural frequencies.

Thus in fact it is the nonbilaterality of the R-LLF device rather

than its activity which allows the natural frequencies of an RC-LLF:R

network to become complex.

At the close of Chapter 5 a new expression is given for the

driving point impedance of a network consisting of a passive network

with an embedded MTP R-LLF device. Particular expressions are given

for the cases in which the R-LLF device has three terminals and is

only describable in one of four possible ways (impedance, admittance,

and two mixed cases).

In Chapter 6 three new general transfer function synthesis

techniques are presented that involve two two terminal-pair RC-LLFPB

networks and one three terminal R-LLF device. Two of these techniques
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will synthesize any stable transfer function to within a constant

multiplier. The R-LLF devic-e: involved in the third technique

includes the gyrator as a special case and does not allow a com-

pletely general assignment of poles. The R-LLF device involved in

the second technique is an ideal vacuum tube and that in the third

technique an R-LLP device involving a singular short circuit admit-

tance matrix. Since the primary emphasis of this thesis is to

present a new approach to the synthesis of LLF:R networks, the

linear transformation approach, no special attention is given to

the practical design of the R-LLF devices involved. References are

given in the literature to cases where practical realizations are

discussed fortparticular cases of the R-LLF devices 'of Synthesis Tech-

niques 1 and 3.

1.6.3 Properties

An effective analytic approach to the study of the fundamental

properties of driving point and transfer functions of LLFPB networks

is based upon expressing the network functions in terms of energy

functions associated with the network. This approach was initially

formulated by Brune (17) and further elaborated upon by Guillemin(3,18)

Chapter 7 presents a number of new properties of LLF networks which

are derived by extending the energy function approach discussed above

to LLF networks. In making this extension it is found that the so

called energy functions.F0 , T and V of Reference ,3 become complex.
0 0

When they are resolved into real and imaginary parts the interesting

result appears that the real parts are a function only of the sym-

metric portions and the imaginary parts are a function only of the
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skew-symmetric portions of the parameter matrices of the embedded

R-LLF, L-LLF, and C-LLF devices.

Rather than listing here specific properties derived in Chapter

7, the reader is referred to the statement of these properties in

Chapter 7.
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CHAPTER 2

ANALYSIS OF LINEAR NETWORKS

2.1 Introduction

In this chapter a method of analyzing linear networks is

presented that is applicable to networks whose elements may have any

number of terminals. The method is conventional in that it involves

a formulation of equilibrium equations and their subsequent solution

for the desired network properties. This is in contrast to methods

like those of Mason (14) and Percival(15), for instance which might be

termed "purely topological" in nature. By a "purely topological

method" it is meant that the desired network properties are found by

operations upon a suitably constructed network graph without the

intermediary operation of formulating equilibrium equations.

In the method of analysis proposed here each multi-terminal

element is represented, for purposes of defining voltage and current

variables, by a tree whose nodes are the terminals of the multi-

terminal element. The tree is constructed by creating branches

between those terminal pairs at which node pair voltages are defined.

By this artifice we see that the number of ways independent node

pair voltages may be assigned at the terminals of a multi-terminal

element of n nodes is just the number of different trees that may be

n -2
formed from n nodes. This number is n

Since each node-pair voltage exists across a branch and since

the driving current at a node pair may be identified with the

corresponding branch current we may regard the s.c. admittance matrix
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(or o.c. impedance matrix) as a "generalized" branch parameter matrix

of the multi-terminal element. Each of the possible nn-2 branch

parameter matrices are related by simple congruent transformations.

It is clear that a graph of the interconnection of these branches

together with the branch parameter matrix is sufficient to character-

ized the multi-terminal element. In fact, we may say that the multi-

terminal element has been represented with regard to terminal behavior

by a set of mutually coupled branches. These branches differ from a

set of mutually coupled inductors in only two respects: the coupling

coefficients are functions of s (the complex frequency variable) and

the coupling between branches is not necessarily bilateral. Conven-

tional methods of network solutions are found to be applicable despite

these differences. As far as dependent sources are concerned there

is no more need to include them in the analysis than there is to

include them in the analysis of LLFPB networks with mutually coupled

inductances.

After each multi-terminal device has been represented by a set of

branches, according to the dictates of necessity or convenience, one

may use the conventional methods of defining voltage and current

variables to analyze the network. The construction of cut-set and

tie-set matrices proceeds as in networks wherein the coupling between

branches is purely bilateral. Just as with the purely bilateral case

one may write the equilibrium equations at the outset by using the

loop method or the node method of analysis. Herein lies the advantage

of this method over Shekel's (19) It is well known that some problems

are better suited to the loop method than the node method. With

43



Shekel's method we are not only constrained to use the node basis but

we must use the node to datum variables. What is claimed for the

method of analysis presented in this section is a much greater degree

of flexibility than is present in Shekel's method.

In Section 2.4 some attention is given to the special situation

in which equilibrium matrices may be found by addition of branch

parameter matrices of component multiterminal network elements. The

additive class of networks is defined. An additive network has the

property that not only loop and node equilibrium matrices but also

mixed equilibrium matrices may be evaluated by addition of component

branch parameter matrices.

The flexibility in the proposed method of analysis has been found

very useful in problems associated with applying linear transformation

theory to the synthesis of LLF:R networks.

In the following section we will discuss the characterization

of the multiterminal-pair network element as a set of mutually coupled

branches.

2.2 The Multiterminal-Pair Network Element

In this section it will be shown that a multiterminal-pair
*

homogeneous linear network may be completely characterized, as far as

terminal-pair behavior is concernedby a tree (or a number of trees)

of mutually coupled branches. The quickest way to understand this

characterization is to start with a tree of mutually coupled induct-

ances and represent it as a multiterminal-pair network.
* A homogeneous multiterminal-pair linear network is defined as a linear network
which exhibits zero terminal-pair voltages and currents when not excited
externally by voltage or current sources.

44
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D V2

93
(b)(a)

Fig. 2.2.1 Representation Of Tree Of Coupled Inductances
As A Multiterminal Pair Network

Figure 2.2.1a depicts three mutually coupled inductances arranged in

a tree. The positive reference directions are indicated for the

branch voltages (- to + in direction of arrow) v1 , v2 ' v3 and branch

currents j1 , j2, and j3.

are related as follows

sL11sL12sLl3

sL13 sL2 3sL33

These branch voltages and branch currents

j3

(2.2.1)

The matrix

L L12 L13

L12 L22 L23

13 L23L33

(2.2.2)

is the branch inductance parameter matrix for the three inductances

of Fig. 2.2.la. If thp matrices v and j are defined as
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v

v v2  J 4 2  (2.2.3)

v3 j3

then Eq. 2.2.1 becomes

v = sLj (2.2.4)

Let us suppose that someone has presented us with a three terminal

pair black box and desires to know the open circuit impedance matrix.

This black box is shown in Fig. 2.2.lb. Terminal pairs 1, 2, and 3 are

defined unambiguously by the arrows denoting the positive reference

directions for the corresponding terminal pair voltages v , v2, and v 3 .

A similar claim may be made for the arrows denoting the positive

reference directions for the terminal pair currents but this is some-

what more difficult to see because of the sharing of a common node by

adjacent terminal pairs. When measurements are made at the terminal-

pairs of the black box to determine the relationship between the

te4minal-pair voltages and currents it is found that

v = Zj (2.2.5)

where

Z = sL (2.2.6)

The matrix Z is the open circuit impedance matrix of the three

terminal-pair device and L is given by Eq. 2.2.2. It is clear that if

the black box of Fig. 2.2.1b were embedded in some linear network we

would not disturb the operation of this network if the black box were

replaced by the tree of mutually coupled coils of Fig. 2.2.2a.
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Fig. 2.2.2 Representation of Three Terminal-Pair Device
By Three Mutually Coupled Branches

In making this replacement we need only.be sure that each coil replaces

the correct terminal pair. Then the current through coil s (s =.1,2,3)

and the voltage across coil s become identical to the current cir-

culating on terminal pair n and the voltage across terminal pair n

respectively.

Generalizing the above ideas, it is proposed that the three

terminal-pair device of Fig. 2.2.2a with o.c. impedance matrix

zz
z Szl2zl3

Z = z 2 (2.2.7)
21 22 23

z3 1 z 3 2 Z 3 3

(where zjk does not necessarily equal zkj) may be replaced in any

network by the three coupled branches of Fig. 2.2.2b. The branch

impedance parameter matrix of these coupled branches is just the

matrix Z. It may be worthwhile to summarize the general procedure

followed in replacing the multiterminal-pair element by a group of

coupled branches:



1. A branch is created across each terminal-pair of the MTP
(multiterminal-pair) element such that branch s is across
the ath terminal pair.

2. The voltage and current of the sth branch are defined to be
identical to the voltage across the sth terminal pair and
the current circulating on the sth terminal-pair,
respectively.

3. The MTP network is removed leaving a set of mutually coupled
branches with branch impedance parameter matrix defined
identical to the open circuit impedance matrix of the MTP
network.

A black box with a number of terminals sticking out has been

called an MP (multipole) network(20). By pairing the terminals or

nodes of a given MP network one may generate a large number of MTP

networks. If the MP network has n + 1 nodes one may select at most

n independent terminal pair voltages. We may readily understand

this fact from the branch representation of an MTP network, since it

is well known that a network containing n + 1 nodes has at most n

independent branch voltages which moreover are those belonging to a

tree of branches. Thus if an MTP network contains n terminal pairs

and n + 1 nodes, the set of mutually coupled branches representing

it will form a tree. If the number of nodes is greater than n + 1

the branches will form a group of isolated trees. It will be

convenient to regard an MTP network as being formed from an associated

MP network which is physically the same device as the MTP network but

which has no defined terminal pairs.

The following two definitions will be used:

1. The associated MP network will be said to be completely
described by the MTP network if the equivalent branches
of the MTP form a single tree.

2. The associated MP network will be said to be partially
described by the MTP network if the equivalent branches
of the7MTP form more than one isolated tree.



It will be recalled that these MTP network elements are to be

interconnected in an arbitrary fashion to form a larger network. In

general, the final network can be solved only if the MTP elements

completely describe their associated MP networks. This should be

obvious since if an MTP element only partially describes its

associated MP network, there are undefined terminal pairs which may

be excited when the MTP element is connected into a larger network.

A common example of an MTP element which partially describes

its associated MP network is the ungrounded two terminal-pair as

shown in Fig. 2.2.3 with its coupled branch representation.

v1 V2 Ij 1 2 j2

MTP ELEMENT COUPLED BRANCHES
Fig. 2.2.3 An MTP Element Which Provides A Partial

Description of It's Associated MP Network

Unless specifically stated to the contrary it will be assumed in

the subsequent discussions that the MTP elements dealt with completely

describe their associated MP networks.

The number of MTP elements that may be formed from a single MP

network of n nodes is just equal to the number of different trees

that may be constructed to connect all n nodes. This number may be

shown to be equal to nn-2. Thus in our example of Fig. 2.2.2 the

associated MP network has 4 nodes so that 42 or 16 different MTP

elements may be formed from it. Two such elements and their coupled

tree branch representations are shown in Fig. 2.2.4. For clarity of

presentation the positive reference directions are shown only for
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terminal pair voltages. The arrow on a branch indicates the positive

direction of branch voltage.

V V

V 3

Fig. 2.2.4

2

3

Two MTP Elements For the Same Associated MP Network

The question naturally arises as to the relationship between the

branch impedance (or admittance) parameters of each of the nn-2 MTP

elements having the same associated MP network. This question will

be answered in Section 2.3.3.

2.3 Formulation of Equilibrium Equations

2.3.1 Systematic Approach

It is presumed that a network is to be analyzed which consists

of an interconnection of MTP elements. The first step consists of

replacing each MTP element by a tree of coupled branches. When this

is done the network becomes composed of two-terminal elements. The

selection of an independent set of voltage and current variables

proceeds as with LLFPB networks(18). Let us presume that we are



going to formulate equilibrium equations on the loop basis. The

network is assumed to have n + 1 nodes, b branches, and /links. By

the usual methods a tie set matrix is found which defines an

independent set of loop currents. This matrix will be called b
with the subscripts b denoting the fact that it has-Zrows and b

columns. Let es denote the column matrix of voltage sources in loops

e s

es es2  (2.3.1)

e

where, e.g., e 'is the sum of the voltage.sources. on loop 1, etc.

Also let i xrepresent the column vector of--.resulting loop currents,

i= i2  (2.3.2)

Let us assume that the network consists of an interconnection of m

MTP elements. It will also be assumed throughout that these MTP

elements are distinct from one another in the sense that there is no

coupling between the branches of one MTP element and any other. The

MTP elements are ordered in some convenient way by labeling them with

the integers 1,2,---m. Then the branches of MTP element 1 are

numbered in order. Following this the branches of MTP element 2

are numbered and so forth until all the branches of the network have



- -- W

been labeled. The column matrix of branch currents j and the column ma-

trix of. branch voltages yvmay then .be represented in the partitioned forms

J

j = 1J2

m

V1

V
2

m

(2.3.3)

where Jk' Vk are column matrices representing the branch currents

and voltages of the kth MTP element. The relationship between

is then

V = Ij

where the branch parameter matrix I is given by

I =

zl

0

0 0

zm

The matrix zk is the branch parameter matrix of MTP element k, i.e.,

Vk k k
(2.3.6)

The zeroes appearing in I are null matrices.

Now the loop source voltage matrix e is related to the branch

voltage matrix v by

(2.3.7)
b = e

which is a statement of Kirchoffs Voltage Law, while the branch

current matrix j is related to the loop current matrix i by

v and j

(2.3.4)

(2.3.5)



t2b (2.3.8)

t*
where B/b is the tie set matrix and p9b is its transpose. Equations

2.3.7 and 2.3.8 are of course identical to those used in LLFPB

network analysis. So far the only analytical difference noticeable

between setting up equilibrium equations for LLFPB networks and for

the class of networks under study is the character of the branch

parameter matrix, I. In LLFPB analysis this customarily takes the

form

r O O

I O sr 0 (2.3.9)

where r is a real non-singular diagonal matrix (the branch resistance

matrix), c 1 is a real non-singular diagonal matrix (the branch

elastance matrix), and .is a real square non-singular symmetrical

matrix (the branch inductance matrix). Each of these matrices

defines a positive definite quadratic form. Both Equations 2.3.5 and

2.3.9 are of the same form but our submatrices z 1  z2 , - zm are of a

more general character. They may be unsymmetrical and both rational

and irrational functions of s. It is only assumed that they are non-

singular.

The formulation of equilibrium equations now proceeds just as in

the LLFPB case. The expression for the branch voltages in terms of

the branch currents Eq. 2.3.4, is used in Kirchoffs Voltage Law

Equations, Eq. 2.3.7. This yields an expression relating source

voltages and branch currents as follows
* We are assuming that the consistency conditions are fulfilled, i.e. that the

same tie set matrix is used for defining loop current variables as is used for
writing Kirchoffs Voltage Law. See Ref. (18) page 79. 53



(2 . 3. 10)
p b j = e

Subsequent use of Eq. 2.3.8 which expresses the branch currents in

terms of the loop currents yields

es= /b ,i t. 1A=i (2.3.11)

where

is the equilibrium matrix for the network on the loop basis.

(2.3.12)

The loop

currents are solved for by inverting Z in the usual fashion. We

have used the subscriptjjto denote that it is anl x matrix.

(2.3.13)= =Y

where

(2.3.14)Z1

is appropriately called the short circuit admittance matrix of the

network.

If it is desired to see how the branch parameter matrices of the

individual MTP elements enter into the formation of Z one may proceed

as follows. Partition the tie set matrix in the following way

pb = p 2 L M]
(2.3.15)

The matrix pk has- rows and as many columns as the kth MTP element

has branches. If the expressions for pb and I as given by Eq's.

2.3.15 and 2.3.5 respectively are used in Eq. 2.3.12 one finds that

the equilibrium matrix Z takes the form

t
Z,;b 14b =



m

Z = t + P z20 + - -+ + Pz P = zk P
iZJ1 ~ 2 Z 2 2  mm m k~ ~k kk

k= 1

(2.3.16)

If we define

Zk kk

then Z takes the simple form

m

Z = Z + + - Z - Z k

(2.3.17)

(2.3.18)

It is clear that the matrices Zk are the analogue of the loop

parameter matrices in LLFPB analysis. In fact we will call Zk the

th
loop parameter matrix of the k MTP element. Equation 2.3.18 states

that the equilibrium matrix of the network on the loop basis is the

sum of the loop parameter matrices of the individual MTP elements.

To illustrate the above ideas an example will be given.

ELEMENT I

e i 2 el2

2

3
ELEMENT 2

(a) Fig. 2.3.1 (b)

Figure 2.3.1a shows a network consisting of an interconnection of two

MTP elements. A voltage source e1 is applied and it is desired to

determine the current 1 . The definition of terminal pairs does not

appear on this figure but is clear from inspection of Figure 2.3.lb

in which each MTP element has been replaced by a set of mutually
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coupled branches. A set of independent loop currents is indicated

on this latter figure. Branches 1 and 2 belong to MTP element 1

and branches 3, 4, and 5 belong to MTP element 2. Inspection of

Fig. 2.3.lb shows that the tie set matrix is

o 1 0 0

-1 0 1 0

I0 0 -

(2.3.19)

The matrices P and B2 which are obtained by partitioning t1b as

discussed above are given by0 0 1 0
1 -l P@2 = 0 1

0 -1 1L0 0

0
0J

-l

The branch impedance parameter matrices of MTP elements

(2.3.20)

1 and

2 are defined below

z

z33 z34 z35

43 44 45

z53 z54 z55

Equation 2.3.17 may be used now to calculate

(2.3.21)

the loop parameter

0 0

z + -z2-z -z
z1  22 12 21 22 12

2 2 - 2l 2

(2.3.22)



z33 z34 z35

z4 z -z4z43 4 54 z45

-Z54 -z54 z55

Then the equilibrium matrix Z is

Z = Z 2+ Z2

z3 3

z43

-z
53

z34 -z
3 5

z +z +z 22-z 2-z21 z22-zl2-z45

z22 -z21 z54 z22 +Z55

The rest of the solution is straightforward from this point on and

needs no further discussion.

The process of formulating equilibrium equations on the node

basis is dual to the procedure discussed above for formulating

equilibrium equations on the loop basis and it is felt does not need

any extensive elaboration. However the pertinent equations will be

summarized. First we define the quantities

sl e

i s2 2
iS. = e= . (2.3.24)

sn n

where is is the column matrix of source currents applied at n

independent node pairs and e is the column matrix of n resulting

node pair voltages. The branch voltages v and branch currents j are

defined by Eq. 2.3.3. However the relationship between v and j is

specified by the branch admittance matrix A
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tZ2 = 2 z2 02 =



0 0

0 z2-1

0

- z~ 1
m

yl

0

n%

y2

0 - - O y

yk = z k(2.3.2

is the branch admittance matrix of the kth MTP element. Thus

j = Av (2.3.2

It is presumed that a cut set matrix anb has been selected both for

defining node-pair voltages and for writing Kirchoff current

equations. This matrix has n rows and b columns. The equations

analogous to Eq's. 2.3.7 and 2.3.8 are

anb s

anbe = Vnb

6)

7)

(2.3.28)

and following the same pattern as for Eq. 2.3.12 we find that the

equilibrium equations on the node basis become

i = Y es nn
(2.3.29)

where

Y = anAat
nn nb nb (2.3.30)
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where

(2.3.25)

z 0 0



By partitioning a in the same way as 0-b was we find that

n

Ynn Y1 + Y2 + -- I k

where

k ak ka

is the node parameter matrix of the kth MTP element and

anb 1 a 2 --. an
I LI

indicates the partitioning of the cut set matrix. With the open

circuit impedance matrix defined as

z-lnn nn (2.3.34)

we obtain

e = Z inn s (2.3.35)

as the solution for the set of Eq. 2.3.29.

2.3.2 Formulation By Inspection

The previous section has presented a systematic approach to the

formulation of equilibrium equations on the node or loop basis for a

network consisting of an interconnection of MTP elements. It is

possible to bypass completely all the matrix manipulations required

by such a systematic formulation and write down the equilibrium

equations by inspection. The procedure followed is identical to that

followed when writing equilibrium equations by inspection on the node
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(2.3.33)
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or loop basis for LLFPB networks containing mutual inductance. There

is one new twist which however causes no additional difficulty: the

coupling between branches is not necessarily bilateral as for

mutually coupled inductances. The procedure is best understood by

example. Thus let us write loop equations for the network of

Fig. 2.3.lb. We first consider 12 = 3 = 0 and add up the voltage

drops in the direction of positive current for loop 1. This con-

tribution is 1 z33. Next we consider i1 = 0, 13 = 0 and find the

voltage drops contributed in loop 1 by i2. We note that this is just

i 2z 34 The last subscript 4 denotes the branch, 4, which is inducing

voltage into the loop under consideration and the first subscript 3

denotes the branch in the loop which has voltage induced across it

by virtue of a coupling from branch 4. The sign of the contribution

is readily determined with the aid of the positive reference directions

for branch voltage and currents and positive reference directions for

loop currents. Note that i passes through branch 4 in the direction of2

positive branch 4 current (always opposite to the positive direction

of branch voltage). Thus the voltage induced across branch 3 is by

definition in the direction of the arrow on branch 3. Now let

i = 0, i2 = 0 and find the voltage induced in loop 1 by loop current

13. We note that voltage will be induced across branch 3 since branch

5 is coupled to branch 3. However 13 is in a direction opposite to

the positive direction of j5 . Thus the voltage induced in branch 3

will be of a polarity opposite to that indicated by the branch 3

arrow. The contribution to loop 1 is thus - 13 z35 and the first loop

equation reads
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e z3 3 + 12 z3 4 ~ i3 z3 5  (2.3.36)

The other equations may be written by inspection in the same fashion.

Of course if the network is very complicated the systematic formulation

of the previous section may be more advisable to use. One may sim-

ilarly write equations on the node basis by inspection. In theory

this is no more difficult and follows an entirely dual pattern. It

may be expected that most engineers will need to acquire some practice

in formulating equations on the node basis since few people have had

practice in writing equilibrium equations on the node basis with

mutual inductance present.

2.3.3 Different Representation of MP Network

As discussed in Section 2.2 one may construct from a given MP

newr fnnds n-2
network of n nodes, n different MTP network elements. We may

determine the relationship between the branch parameter matrices of

two MTP elements having the same associated MP network in the

following way. Let MTP element 1 have branch impedance parameter

matrix z . The definition of terminal-pair voltages for MTP element

2 is given and it is desired to find the relationship between its

branch impedance parameter matrix z2 and that for MTP element 2,

represent MTP element 1 as a tree of mutually coupled branches.

Excite this network with voltage sources placed and numbered to

coincide with the terminal-pair voltages defined for MTP element 2.

It is readily seen that the equilibrium matrix which relates this set

of source voltages and the resulting response currents is just z2 '* It will be recalled that an MP (multipole) network is one which is only
accessible at a set of nodes. Thus an MP network may be represented as a box
with a set of nodes extruding. An MTP (multiterminal-pair) network is an MP
network with a set of terminal-pairs assigned.



the branch impedance parameter matrix of MTP element 2. We may apply

Eq. 2.3.12 where we identify

I = zz1

2

= (2.3.37)

Here p is the tie set which defines loop currents on MTP element 1

that have been created by inserting the n terminal-pair voltage

sources of MTP element 2. Each source inserts a link into MTP element

1 and it is assumed that loop currents have been identified with link

currents. The P matrix is clearly square and n x n since there are n

loop currents and MTP element 1 has n branches. Moreover it is

clearly a nonsingular matrix. Thus we have, using the definitions
*

2.3.37 in Eq. 2.3.12

z2=zp (2.3.38)2 1

Now a dual analysis on the admittance basis would show that

t
y2 = ay 1 a (2.3.39)

where yk is the branch admittance matrix of the kth MTP network

(k = 1,2) and a is the cut set matrix used to define the node-pair

voltages of MTP element 2 on the tree representation of MTP element 1.

Here a is an n x n non-singular matrix. By inverting Eq. 2.3.38 we

obtain the following relationship between a and 5,

a = (pt ~ (2.3.40)

i.e. a and P are inverse transposes of one another.

* Assuming the consistency conditions ,are applicable.
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It is easy to show that the determinants a and P are equal and

have the magnitude unity. From Eq. 2.3.40 we obtain

det a = d
det (2.3.41)

But since a and P both contain as elements + l's or - l's, their

determinants must be integers. The only integers which will satisfy

Equation 2.3.41 are +1 and -

An illustrative example will now be given.

ELEMENT I ELEMENT2

(a)

Fig. 2.2.3

(b)

Fig. 2.3.2a shows the coupled tree branch representations of MTP

element 1 and MTP element 2 with both having the same associated MP

network. Suppose that the branch impedance parameter matrix of

element 1 is given as

z =

z zl2z13

z 2 1 Z2 2 z23

z 3 1 z 3 2 z 3 3

(2.3.42)



It is desired to determine z2. In Fig. 2.3.2b, element 1 is excited

by three voltage sources with polarity and location to correspond to

the terminal pair voltages of element 2. By inspection of this figure

we determine that the tie set matrix is

-1 0

@ :0 -1 1 (2.3.43)

O O -li

Thus

-1z 11 2z13 -1 0 0

z2 0 -1 1 z21z22 z23 1 -l O (2.3.44)

- z 3 1 z 3 2 Z 3 3

These matrix products are readily formed yielding

z 1+z 22-z 2-z21 23+z12-z3-z22 zl3-z23

2= 32z21~ 31- 22 3 +22 -32 -23 23 Z3 3  (2.3.45)

z 31- z 32 z 3 2 - z 3 3  z33

As discussed in Section 2.2, when the associated MP network is

only partially described by an MTP element, the branch representation

of the MTP element becomes not one tree but a group of isolated trees.

If we generate new MTP .elements by redefining terminal pairs

separately on these isolated trees, then the arguments above may be

applied directly to determine the relationship between the parameter

matrices of these MTP elements. It will be noted that in the case of

a partially described MP network the P matrix may be partitioned into a
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number of submatrices in the manner indicated for I, Eq. 2.3.5,

since loop currents may belong to only one of the isolated trees

representing MTP element 1.

2.4 Evaluation of Equilibrium Matrix by Matrix Addition

2.4.1 Impedance and Admittance Matrices

For some special situations one may evaluate the equilibrium

matrix by "parameter matrix addition" of the MTP elements. The

reason for quotes is that it is not generally the parameter matrices

which are added but rather parameter matrices or their principal

submatrices which have been properly augmented by addition of an

equal number of rows and columns of zeroes. Whenever the conditions

are present for matrix addition one may of course obtain the

equilibrium equations very quickly. Examination of Eq's. 2.3.18 and

2.3.31 show that the equilibrium matrix on the loop and node basis

is always obtainable by summing directly the loop parameter and node

parameter matrices respectively of the component MTP elements. Let

us repeat the equation for the loop parameter matrix of the kth MTP

element.

Zk kzk (2.4.1)

We recall that z k is the branch impedance matrix of the kth element

and k is that submatrix of the tie set matrix which tells how

the loop currents traverse the branches of the kth MTP element.

A zero indicates that a branch is not traversed. A + 1 indicates
* A principal submatrix P of a square matrix S is any square matrix formed from
S by striking out rows and corresponding columns.



that a branch has been traversed in the direction of positive branch

current and a - 1 indicates a traversal in a direction of negative

branch current.

When the matrix Zk (for all k) is either equal to zk, to a prin-

cipal submatrix of zk, or to versions of these which are augmented by

rows and columns of zeroes then the conditions will be said to exist

whereby the equilibrium matrix may be evaluated by the addition of

component element parameter matrices. A loop parameter matrix Zk

which has any one of the four forms indicated above will be called a

Simple loop parameter matrix. It is readily seen from Eq. 2.4.1 that

the necessary and sufficient condition for Zk to be Simple (for gen-

eral zk) is that the matrix resulting when all null columns and rows

have been removed from Pk be either the unit matrix or the negative

of the unit matrix. In terms of the actual network variables this

may be stated as follows. The loop parameter matrix of the kth MTP

element will be Simple if the following three conditions are satisfied

(1) Each tie set contains (or equivalently each loop current
traverses) at most one branch of the MTP element k. Each
branch of MTP element k is contained in only one tie set.

(2) The set of tie sets, Tk, which do contain a set of
branches, sk, of MTP element k, all contain the branches in
the same algebraic sense. (This is equivalent to the
statement that Pk has elements of the same algebraic sign).

(3) The numbering of the elements of Tk is in the same order
as the corresponding elements of sk. That is, if we
arrange the numbering of the loop currents defined by Tk
in ascending order, then the corresponding branches which
they traverse are also numbered in ascending order.
Condition (3) is meaningful only if condition (1) is
satisfied since only in this case will there be a one-one
correspondence between elements of Tk and elements of sk'

It is readily seen from item (3) that many loop parameter

matrices may be made Simple by just renumbering the branches in
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It will be assumed in any subsequent discussion that such renumbering,

if applicable, has been carried out. This renumbering simply

corresponds to an interchange of columns of sk to convert it into a
diagonal matrix.

All the above statements and definitions can be carried over in

dual form to discuss the conditions under which the node equilibrium

matrix may be formed by "node parameter matrix" addition. Only the

final statements dual to.(l), (2), and (3) will be given. The node

thparameter matrix of the k MTP element will be Simple if the

following three conditions are satisfied.

(1) Each cut-set contains at most one branch of MTP element k.
Each branch of MTP element k is contained in only one cut-
set.

(2) The set of cut-sets, Ck, which do contain a set of branches,
A , of MTP element k all contain these branches in the same
a gebraic sense. (This is equivalent to the statement that
ak has elements of the same algebraic sign).

kk
(3) The numbering of the elements of C k is in the same order as

the corresponding elements of Ak. Condition (3) is mean-
ingful only if Condition (1) is satisfied since only in this
case will there be a one-one correspondence between elements
of C and elements of A

k k
A renumbering of branches in pk will sometimes allow Condition

(3) to be satisfied. This corresponds to interchanging columns of ak'

It should be noted that if all the MTP elements have node to

datum terminal pairs with a common datum then the conditions for

formulation of the node equilibrium matrix by node paramater matrix

addition are satisfied. However it should be clear that the node to

datum assignment with common datum is not a necessary condition for

parameter matrix addition.
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Two examples will now be given to illustrate the formulation of

equilibrium matrices by addition of branch parameter matrices.

ELEMENT I
a b jc

ab c
1 -C3 4

ELEMENT 2
5 6I

0 d 6e f
(a) (b)

22

e e 2
es 2 s 2

s2

3 434

5 6

e3 4

s 4 (c) s4 s 3 (d)

Fig. 2.4.1 Example Illustrating Addition Of Parameter Matrices

In Fig. 2.4.la a network is shown that consists of an interconnection

of two MTP elements. Its equivalent branch representation is shown

in Fig. 2.4.lb. It will be noticed that MTP element 2 only partially

describes its associated MP network. However this will cause no

difficulty so long as the complete network is excited in such a way

that the two trees of MTP element 2 are never connected. In

Fig. 2.4.lc, the network of Fig. 2.4.la is shown with 4 voltage sources

applied in 4 loops. Inspection of this figure shows that the loop

parameter matrices of MTP elements 1 and 2 are Simple. Thus the

equilibrium matrix Zjjrelating the loop currents il, i2 ' i, and i
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to the source voltages esl' es2' es3, es4 may be evaluated by simple

addition. To indicate this fact compactly let z be the branch

impedance parameter matrix of element 1 and let z2, the branch

impedance parameter matrix of element 2 be partitioned as follows

za zb
z = (2.4.2)

where

z33 z34  Z35z36
Za = , zb

Lz43z,, z45 z46j

z 53 z54 z 55 z56
Z= [, zd = (2.4.3)

z63 z64 z65z66

It is readily seen that

z O z a zb
Z 2= (2.4.4)

0 0 z c Zd

so that the loop equilibrium matrix Z is

za+z z
Z Z + Z 2  ~ - zbl (2.4.5)

z c zd_

In Fig. 2.4.lb the network of Fig. 2.4.la is excited by 4

current sources applied at 4 independent node pairs. Inspection of

this figure shows that the node parameter matrices of elements 1 and

2 are simple. Thus the equilibrium matrix Ynn relating the node pair



voltages el, e2  e3 , e4 to the source currents isli s2' i 3 , i s4 may

be evaluated by simple addition. Proceeding in the same fashion as

for the preceding example let y1 , y2 be the branch admittance

parameter matrices for MTP elements 1 and 2. Let y2 be partitioned

as follows

(2.4.6)
ya2 b

y2

L c d

where

y33 y34

L y43 y44

Y53 54

y I
[63y64J

35y36
Yb

Y45 46j

= IY65Y66j

(2.4.7)

It is readily seen that the node parameter matrices are

(2.4.8)

so that the node equilibrium matrix Y is given by

ya+y y b

1C Y2L (2.4.9)

We see that the network of Fig. 2.4.la has the following

interesting attribute. It is possible to define loop currents and

node pair voltages such that both the node and loop parameter
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matrices of the MTP elements are not only Simple but are of the same

form for the same MTP element. Note also that MTP element 1 has node

and loop parameter matrices which differ from the corresponding branch

parameter matrices only in an augmentation by rows and columns of

zeroes.

The following definitions will be helpful in subsequent discus-

sions. A Simple loop parameter or node parameter matrix will be

called Complete if it is identical to the corresponding branch

parameter matrix or differs only by an augmentation with null rows

and columns. A network composed of MTP elements will be called an

Additive network if it is possible to define loop currents and node

pair voltages such that the node and loop parameter matrices of each

MTP element are Complete, Simple, and of the same form. The network

of Fig. 2.4.la is an example of an Additive network. It is not

difficult to see that the necessary and sufficient conditions for a

network to be Additive are that its coupled branch representation be

such that

(1) All loops contain one or two branches.

(2) If there are two branches, these branches belong to
different MTP elements.

Thus the branches of an Additive network may be divided into

two classes: those which are paralleled with another branch and

those which are not (isolated branches). If it is desired to have

the admittance equilibrium matrix equal to the sum of the branch

admittance parameter matrices of the MTP elements then current sources

are placed across branches. If it is desired to have the impedance

equilibrium matrix equal to the sum of the branch impedance parameter

matrices of the MTP elements, voltage sources are placed in loops



formed by the paralleled branches and are placed in parallel with

the isolated branches. Figure 2.4.2 illustrates the above

described manner of exciting an additive network. In Fig. 2.4.2a

Fig. 2.4.2

(a)

Is 
I

(b)

(c)

there is shown a pair of typical paralle-led branches and an isolated

branch of an additive network. In Fig. 2.4.2b these are excited by

current sources and in Fig. 2.4.2c by voltage sources in the correct

fashion to make the equilibrium matrices equal to the sum of

parameter matrices.

Additive networks have a further interesting and useful property

which will be discussed in the following section.

BRANCHES
2 a 3 COUPLED

s2



2.4.2 Mixed Matrices

A multiterminal-pair network is usually described either by a

short circuit admittance matrix or an open circuit impedance matrix.

If voltage sources are applied at terminal pairs the equilibrium

matrix is the open circuit impedance matrix. The solution matrix is

the short circuit admittance matrix - the inverse of the equilibrium

matrix. If current sources are applied at terminal pairs the

equilibrium matrix is the s.c. admittance matrix and the solution

matrix is the o.c. impedance matrix. There are situations under

which one may desire to drive some terminal pairs with voltage sources

and the rest with current sources. The response variables are then

both terminal-pair voltages and currents. A matrix relating such a

mixed excitation and response is called a mixed matrix. If there are

n terminal pairs then it is clear that there are 2n matrices which

can be defined such that an excitation or response quantity is either

a terminal-pair voltage or current but not both. Of course two of

these are the conventional o.c. impedance and s.c. admittance matrix

so that there are 2 n- mixed matrices. The various m nodes of

excitation are shown in Fig. 2.4.3 for a grounded two terminal-pair

network.

An MTP element can be characterized with regard to terminal-

pair behavior by what might be called a mixed branch parameter matrix.

A network which consists of an interconnection of MTP elements and a

number of points of entry (i.e. soldering type insertion of current

sources of pliers type insertion of voltage sources) is itself an

MTP network. We have discussed the formulation of equilibrium
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Fig. 2.4.3 Different Ways Of Exciting Two Terminal-Pair Network

equations on the node or loop basis for such a network but such

equilibrium equations imply either excitatior by voltage sources in

loops or by current sources across node--pairs but not both. Under

some conditions it is desirable to formulate equilibrium equations

on a mixed basis with some voltage sources and some current sources

and with response quantities that are voltages across current sources

and currents through voltage source. No detailed discussion of this

problem will be given here. Rather a specific situation will be

studied which will be of use later on in the thesis. This is the

situation in which the network is of the Additive type. We will

show that if the network is Additive,mixed equilibrium matrices for

the network can by appropriate choice of loop currents and node pair

voltages, be set equal to the sum of mixed branch parameter matrices

of the component MTP elements.



Instead of giving a general proof a specific situation will be

analyzed and the generalization will be clear to the reader.

Consider the network of Fig. 2.4.1 excited as indicated in Fig. 2.4.4

by one current source and three voltage sources.

e.2

es3 
es4

Fig. 2.4.4 Network Of Fig. 2.4.lb Excited With Voltage
And Current Sources

The equilibrium equations for this network will be of the form

S u1 1 e1 + bl212

e2 2 =a21e1 u 22 2 i

e =S3 a31e1 + u32 i2

e =a e + u42 i2

+ b13 i3

+ u23i 3

+ u33i 3

+ u43 3

+ b i

+ u 244

+ u34 4

+ u i (2.4.10)

The coefficient a is a voltage transfer ratio. It is the ratio of

e to e with 12 = 3 = i4 = 0. The coefficient b is a current

transfer ratio. It is the ratio of isl to i. with e = ik = 0

(k = J). The other coefficients are admittances and impedances.

When writing equations on the mixed basis some are applications of

Kirchoff's Current Law and some are applications of Kirchoff's

Voltage Law. Thus the first equation of 2.4.10 is the result of an



application of Kirchoff's Current Law and the last three are

applications of Kirchoff's Voltage Law. Let us now write the

equilibrium equations for MTP elements 1 and 2. The manner of

excitation of these elements is indicated in Fig. 2.4.5.

I 2

(2) S (2) s2

x k y 1 1$2Z"

Fig. 2.4.5

The mixed equations for MTP element 1 are

i(1) = u le ()+ b(l)'i(l)
sl 11 1 12 2

(1) a + u (1) i()
s2 21 1 22 2

and those for MTP element 2 are

.(2) (2) e(2) +b(2) .(2) +b(2)i(2) +b(2)i(2)
sl = 1 u e1b2 2 +1b3 3 + 4 b

e(2) = (2) e (2) + u(2)i(2) + u(2)i(2) + u(2) (2)
sl 21 1 22 2 23 3 24 4

e(2) = a(2)e(2) + u(2) i(2) + u(2) (2) + u(2) (2)
s2 31 1 32 2 33 3 34 4

e(2) = (2) e (2) + u (2) 1 (2) + u (2) (2) + u(2) (2)
s3 41 1 42 2 43 3 44 4

We adjust the sources until

(2.4.11)

(2.4.12)



(2) (2)

2 2

If we now connect the two networks as indicated in Fig. 2.4.4

with

i ill) + 1(2)
sl s s

e(1) (2)
es2 s2 + s2

e e(2)
es3 s3

e s (2.4.14)

the operation of the individual elements will be undisturbed since

branch voltages and currents will remain the same as before the

connection. Using Eq's. 2.4.11 to 2.4.14 we obtain the desired

result

u =u_ + u(2) b b(l) + b (2)
11 11 11  12  12 12

1 a(l) (2) 22 (2) (2.4.15)
a21 = 21 +a21 u22 +u22

All other coefficients in Eq. 2.4.10 are equal to the corresponding

ones in Eq. 2.4.12. It should be noted in closing this section,

that the positive reference directions used for source currents and

voltages applied to MTP element 2 to define its mixed branch

parameter matrix do not coincide with the positive reference

directions for its branch voltages and currents. This was necessary



in order for Eq. 2.4.15 to hold. If the positive reference

directions for the sources are changed then some of the above

equations will generally have to be modified by multiplying various

coefficients by -1. Assuming that source positive reference directions

are defined appropriately we may state the following general conclu-

sion. If for an Additive network source voltages are placed in

series with paralleled branches and across isolated branches

(see Fig. 2.4.2c) while current sources are placed in parallel with

paralleled branches and isolated branches (see Fig. 2.4.2b) then the

mixed equilibrium matrix of the network is equal to the sum of the

mixed branch parameter matrices of its component MTP elements.



CHAPTER 3

ANALYSIS OF LLF:R NETWORKS
BY LINEAR TRANSFORMATION THEORY

3.1 Introduction

In this chapter we will discuss a number of network configura-

tions which allow an LLF:R networks to be analyzed by linear trans-

formation theory such that it may be represented by an LLFPB network

and a set of linear transformations relating dynamic variables in

the two networks. Since we are confining ourselves to a discussion

of LLF:R networks it will always be possible to consider the net-

work under investigation to be composed of MTP elements of two kinds:

those that are LLFPB and those that are R-LLF.

As discussed in Section 1.4 of Chapter 1, Guillemin has found a

general method of analysis by linear transformation theory which

leads to dependent sources in the reference LLFPB networks. This

method is presented in Section 3.2. The presentation here differs

fromGuillemin's in that the network is assumed to be composed

entirely of MTP elements which are represented by mutually coupled

branches as discussed in Chapter 2. The MTP elements are either

LLFPB or R-LLF. Thus the branches of the network may be called

LLFPB or R-LLF depending upon whether they are associated with an

LLFPB MTP element or an R-LLF element. In Guillemints presentation,

on the other hand, the network consists of MTP elements which are

R-LLF and R's, L's, and C's. The MTP elements are assumed to have

node to datum terminal-pairs and are replaced by a set of mutually

coupled branches. Thus in his presentation also, the branches may
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be classified as LLFPB or R-LLF, but the LLFPB branches are ordinary

resistances, inductances, and capacitances as opposed to the more

general LLFPB coupled branches of the presentation of Section 3.2.

Basic to the method of analysis of LLF:R networks through

linear transformation theory found by Guillemin is a method of

linear network analysis developed by Guillemin some time ago( 11,

This method is presented in Section 3.2.1 for the case of a network

consisting of MTP elements. It is a method of analysis in which it

is possible to define generalized cut-set and tie-set matrices which

are square and non-singular. In Section 3.3,the :general transforma-

tion theory method of analysis of Section 3.1 is examined to

determine some conditions under which no dependent sources appear

in the LLFPB reference network. A rather general result is presented.

In brief, if an LLF:R network represented by mutually coupled

branches satisfies certain restrictions with regard to topology and

with regard to the character of the embedded R-LLF elements, then we

may express its voltages and currents in terms of those of an LLFPB

network and no dependent sources are required in the LLFPB network.

Section 3.4 considers the possibility of effecting transforma-

tions directly upon the equilibrium matrix of the LLF:R network

rather than indirectly through the branch parameter matrix as in

Section 3.2. In this way the possibility of dependent sources

appearing is removed a priori.

While Sections 3.2 to 3.4 are concerned with analysis methods

involving real linear transformations, Section 3.5 considers particu-

lar analysis methods using complex linear transformations. The
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starting point for the ideas in this section is method of analysis

suggested by Guillemin* in which a LLF:R network containing one

vacuum tube is analyzed by means of complex linear transformations.

The LLFPB reference network is obtained from the LLF:R network by

omitting the vacuum tube. This method has been considerably ex-

tended and forms the basis for some of the more important results of

the thesis presented in Chapters 5 and 6.

3.2 Guillemin's General Method

3.2.1 Network Analysis with Generalized Cut-Set and Tie-Set Matrices

In this Section we will outline a method of analysis of linear

networks in which the cut-set and tie-set matrices are square and

non-singular. The network to be analyzed is assumed to be composed

of MTP elements that have been represented by coupled tree branches.

Let there be b branches, n + 1 nodes, and...llinks. Formulation of

node equilibrium equations is summarized by Equations 2.3.28 to

2.3.30, and formulation of loop equilibrium equations is summarized

by Equations 2.3.7, 2.3.8, 2.3.10, and 2.3.11. The cut-set matrix

anb contains n rows and b columns while the tie-set matrix peb con-
tains-rows and b columns. We will first consider formulating

equilibrium equations on the node basis for a slightly modified net-

work for which the cut-set matrix a is non-singular and contains anb

as a submatrix. Then we will consider formulating equilibrium

equations on the loop basis for the original network modified in a

fashion dual to that for which the cut-set matrix a was defined.

* Unpublished memo.
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In this case a non-singular tie-set matrix P will result for which

P.b is a submatrix.

Modify the original network by open circuiting the..1 independent

loops defined by $fb. By this procedureX additional independent

terminal pairs are created. Since there are already n independent

terminal pairs defined by anb, the total number of independent

terminal pairs is brought to

n+.=b (3.2.1)

Now excite these b terminal pairs with current sources and write the

node equilibrium equations. It should be noted that branches in the

original network have not been removed but rather current sourcea

have been placed in series with some of them. The cut-set matrix

now contains b rows and b columns and must be non-singular since

there are as many independent columns in a cut-set matrix as there

are independent node pairs. The column matrix of source currents

i can be arranged to have the form

i =(3.2.2)

where is is the column matrix of source currents applied at the

original node pairs and i' is the column matrix of source currents

applied at the new node pairs. In affect what we have done is allow

the loop currents to become current sources - then the voltages

across these loop current sources become node pair voltages. If j

is the column matrix of branch currents and a is the cut-set matrix

for the augmented network, then
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aj = 1 (3.2.3)

is Kirchoffts current low written with the aid of the cut-set

schedule. Since the columns of the cut-set schedule are the coef-

ficients in a set of linear equations which relate branch voltages

and node pair voltages we have also

t-a e =v (3.2.4)

where v is the column matrix of branch voltages and e, the column

matrix of node pair voltages, takes the form

el

e = 1 (3.2.5)

where el is the column matrix of new node pair voltages and ev is

the column matrix of original node pair voltages. Since a is non-

singular it is possible to invert Equations 3.2.3 and 3.2.4 with

the result

ja- 1 (3.2.6)

at~ve =[at]v

Now if we partition a as indicated below

afba = --- (3.2.7)
anb

where ajk has j rows and k columns then Equation 3.2.3 takes the form
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b (3.2.8)

anbJ = is

The matrix anb is seen to be just the cut-set matrix defined for the

network before augmentation by the new terminal pairs. The matrix

'/b expresses the loop "source" currents in terms of the 
branch

currents. To formulate the equilibrium equations we note that the

relationship between branch voltages and branch currents is speci-

fied by Equation (2.3.27). We may use Equation (2.3.30) directly

to obtain

Y = aAat (3.2.9)

where Y is the equilibrium matrix on the node basis for the aug-

mented network. Thus

I = Y e (3.2.10)

We have been assuming that the loop currents are current sources

and that the voltages across these current sources are node pair

voltages. However, Equation (3.2.10) will still be valid if we

assume that these node pair voltages are produced by voltage

sources and the currents through these sources are loop currents.

In other words if we assume that

e= el (3.2.11)

i = isv s

where es is now the column matrix of voltage sources and i is the

column matrix of loop currents, then
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ly e s
= Y -- (3.2.1

i s j ev

In Equation 3.2.12 it is not appropriate to call Y an equilibrium

matrix any longer. If we partition Y in the following fashion

Y1 VnY = --- --- (3.2.1
nJ Ynn

where Yjk has j rows and k columns, then

2)

3)

(3.2.14)17 = Y,, es + Y' ev
i s = nys + Y n ev

It will be recognized that the submatrix Ynn is the conventional

node equilibrium matrix since it relates source currents to node

pair voltages with no voltage sources in the loop (es = 0).

We may proceed now on an entirely dual basis. Modify the

original network by putting short circuits across node pairs defined

by the cut-set matrix anb. By this artifice n additional independent

loops are created beyond the Jloops already defined by fgb. Thus

there are now n +J/= b independent loops. Now excite these b loops

with voltage sources and write the loop equilibrium equations. The

tie-set matrix now contains b rows and b columns and is non-singular.

The column matrix of source voltages e can be made to take the form

e =(3.2.15)

es
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where es is the column matrix of source voltages applied in loops of

the original network and e' is the column matrix of source voltages
5

applied across node pairs. In effect what we have done is allow the

node pair voltages to become source voltages - then the currents

leaving these node pair voltage sources become loop currents. If v

is the column matrix of branch voltages and p is the tie-set for the

augmented network, then

pv = 7(3.2.16)

is Kirchoff's voltage law written with the aid of the tie-set

schedule. Since the columns of the tie-set schedule are the coef-

ficients in a set of linear equations which relate branch currents

and loop currents we have also

p i=j (3.2.17)

where j is the column matrix of branch currents and i, the column

matrix of loop currents takes the form

i4=1-- (3.2.18)itv

where iv is the column matrix of original loop currents and i' is

the column matrix of new loop currents. Since p is non-singular it

is possible to invert Equations 3.2.16 and 3.2.17 with the result

v e (3.2.19)

= pt]



If we partition P as indicated below

b
---[ nbJ

where Pjk has j

form

Sb v e

rows and k columns then Equation 3.2.16 takes the

(3.2.21)

pnb e

The matrix pib is seen to be just tie-set matrix for the

original network. The matrix snb expresses the node pair voltage
sources in terms of the branch voltages. Equilibrium equations on

the loop basis are ready formulated now just as indicated by

Equations (2.3.11). Thus

e = Zi (3.2.22)

(3.2.23)

I = A~ 1 (3.2.24)

is the branch impedance parameter matrix.

We have been assuming that node pair voltages are due to

voltage sources and currents leaving these voltage sources are loop

currents but Equation 3.2.22 will be valid if we assume that current

sources are applied at node pairs and that the voltages across these

sources are node pair voltages.
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where

Z = PIP

and



In other words we may assume that

el =ev (3.2.25)

i = i

where ev is the column matrix of node pair voltages and is is the

column matrix of current sources applied to node pairs. If we

partition Z as follows

(3.2.26)
ZP Zn

Z =

LZn Znn

then with the assumptions (3.2.25), Equation (3.2.22) becomes

e Z

Le v JLZ Znn LsJ

(3.2.27)

It may be recognized that the submatrix Z is the conventional loop

equilibrium matrix since it relates source voltages to loop currents

with no current sources applied at node pairs (i s 0). We will

define

ee] iv

v s
(3.2.28)

Then Equations 3.2.6 read

j =a- 1

e = [at]lv

(3.2.29)
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and Equations 3.2.19 read

V = p e (3.2.30)

i = p j

A comparison of Equations 3.2.29 and 3.2.30 show that

a = (Pt) , P = [ta l (3.2.31)

i.e. the generalized cut-set and tie-set matrices are inverse trans-

poses of one another. From Equation 3.2.31 or comparison of Equa-

tion 3.2.27 and 3.2.12 it becomes clear that

Y = Z~ (3.2.32)

If the cut-set anb and the tie-set pfb are chosen in the fol-

lowing particular fashion, the matrices a and P take an especially

simple form. Choose anb such that node pair voltages correspond to

tree branch voltages and choose P& such that loop currents are

identified with link currents. In addition, number the branches so

that the first . branches are links and the last n are tree branches.

Then it is not difficult to see that

b In] (3.2.33)

Onb o Unl

anb [an U
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where U is a j x j unit matrix, n is anJ x n matrix, and a is

an n xi matrix. From Equation 3.2.31 one may readily deduce that

= - an. (3.2.34)

It should be noted that a numbering of the branches such that

the first 2 are links and the last n are tree branches is not

necessarily consistent with the method of numbering suggested in

Section 2.3. Thus the branch parameter matrices will not have the

simple form of I and A of Equations 2.3.4 and 2.3.25 respectively,

although, of course, they can be put in that form by a renumbering

of branches.

3.2.2 Application of Linear Transformations

In this Section it will be shown how an LLF:R network with

generalized admittance matrix Y (see Equation 3.2.12) may be analyzed

by linear transformation theory in terms of an LLFPB reference network
A

with generalized admittance matrix Y, voltage and current matrices
A A
e and i, and a set of real non-singular transformation matrices w and

* such that

A
i =wi

(3.2.35)
-lAe = U e

Since the network under consideration is LLF:R its MTP elements

are either LLFPB or R-LLF. One may number the R-LLF branches con-

secutively so that all the R-LLF branch parameter matrices may be

grouped as a single real submatrix of A, the branch admittance
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parameter matrix of the network. By well known techniques one may

find real non-singular matrices which upon pre-or-post or both pre-

and post-multiplication of A convert the real submatrix into one

which comes from the branch parameter matrices of a group of posi-

tive resistance (R-LLFPB) boxes. The resulting matrix A is then

expressible in the form

= P A Q (3.2.36)

A
where PQ are real non-singular matrices. The matrix A may be

regarded as the branch parameter matrix of an LLFPB network which

differs from the LLF:R network with branch parameter matrix A in

that the R-LLF MTP elements of the LLF:R network have become R-LLFPB

MTP elements. In fact the relationship 3.2.36 implies that

A
= Pj (3.2.37)

v =Q v

A
where J, j are the branch current column matrices of the LLFPB and

the LLF:R networks, respectively, with analogous interpretation for
A

V and v.

It is assumed that the topology and the assignment of voltage

and current variables is the same for the LLF4R and the LLFPB net-

work. Then the generalized cut-set and tie-set matrices a and P are

the same for both networks. From Equations 3.2.29 and 3.2.30 we

deduce that

A A
i= aj ; i =a (3.2.38)

A A
e = SV ; e = gy

a



Using both Equations 3.2.38 and 3.2.37 we find

= aP~j= aP 1  i = T~wi (3.2. 39)

A -e = 0Qv = v = oe

where the transformation matrices are given by

7 = aPa~1 (3.2.40)

*0 = 0Q0~1

Now according to definition

/\ A A
i= Y e (3.2.41)

i =Y e

A
The relationship between Y and Y is readily determined by premulti-

plying the first equation in 3.2.41 by w and then using the

equalities in Equation 3.2.39. The result is

A
Y = rYo (3.2.42)

Equations 3.2.42 and 3.2.39 constitute, in a sense, an analysis

of the LLF:R netowrk into an LLFPB network and a set of linear trans-

formation relating voltages and currents in the two networks.
A A

However, we note that the matrices i and e or i and e have elements

which are both source quantities and response quantities. Thus,

suppose the LLF:R network is excited only by current sources at

node pairs. The matrices e and i take the form

0 i iv
e = -- i = -- (3.2.43)

Levj i s



Let the matrix D be partitioned in the form

nj nn
(3.2.44)

where D jk is a j x k matrix. Then application of the second equa-

tion in 3.2.39 shows that

'=; E= [- --- -- = ------
_ v _Dnli *Onn _ v lnne v

(3.2.45)

e = 1nev
Ae= = Dnnev

(3.2.46)

If we solve for ev in the second equation in 3.2.45 and use this in

the first equation we find that

-lAe ynnev 
(

Thus in addition to current sources applied at node pairs, the LLFPB

reference network must have voltage sources in loops whose values

depend upon node pair voltages - i.e. dependent voltage sources.

Moreover, examination of the first equation in 3.2.39 shows

that the current sources in the LLFPB network are not only a func-

tion of the current sources in the LLF:R network but also a function

of the loop currents of the LLFPB network. Thus the current sources

also are dependent current sources.

i.e.

(3.2.47)



and

e soe + oinev (3.3.2)

A
ev =v Dnfes + u nnev

It may be seen by inspection of Equations 3.3.1 and 3.3.2 that
A Athe current source matrix is and the voltage source matrix es of the

reference network will

(1) be related to is and es respectively, by real transforma-

tion matrices

(2) be independent of voltages and currents in the LLFPB
reference network
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Of course it is not necessary to use both P and Q to transform

an LLF:R A matrix into an LLFPB A matrix. If Q is chosen a unit

matrix then D also becomes a unit matrix. In such a case e = 1' and

dependent voltage sources do not appear. However, the current

sources in the LLFPB network are still dependent upon loop currents

in the LLFPB network. In the following section consideration is

given to special conditions which do not lead to dependent sources.

3.3 Special Condition Leading To No Dependent Sources

General conditions for the existence of no dependent sources

in the reference network are readily found from Equation 3.2.39.

Let Y be positioned in the same fashion as D in 3.2.44. Then we

may expand Equation 3.2.39 as follows (we invert the first equation

in 3.2.39 to avoid defining new quantities).

A A
iv = 7' i + 71nis (3.3 .1)

A A
i nlv + rnnis



only if the matrices nI and In are null, i.e., only if

7nf O (3.3.3)

Application of the conditions 3.3.3 to Equations 3.3.1 and
A

3.3.2 yield the relationships between is and is, and es and as

A
is =Tnnis (3.3.4)

A
s nns

Now the equilibrium matrices of interest are the node and loop

equilibrium matrices of the network, Yn and Zg , respectively. We

will confine all discussion in this section to the case in which

current sources are applied at node-pairs but no voltage sources

are applied in loops. The situation in which voltage sources are

applied in loops and no current sources are applied at node pairs

is a dual situation and all the arguments and discussion may be

carried over in dual form. Thus, in this section we will be con-

cerned with the node equilibrium matrix Yn. The relationship

between Ynn and Ynn may be determined from Equation 3.2.42 as

A A A
Ynn - VnAYPP n + Wn Innn + VnYn / n+nn nnn (3.3.5)

Since We are e confcining' ourselves to the condition in which no

dependent sources exist in the LLFPB reference network we apply the

restrictions 3.3.3 to Equation 3.3.5 with the result that

A
nn 7 nnynn'nn
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Thus we come to the useful result that conditions 3.3.3 which lead

to no dependent sources also lead to a simple expression for the

relationship between the node-equilibrium matrices of the LLF:R net-

work and the LLFPB reference network. By inverting Equation 3.3.6

we obtain the relationship between the o.c. impedance matrices of

these networks as

-lA -1
Zm mZm (3.3.7)
nn ~nn nn nn(337

We will now determine some interesting implications of the

requirement that r and on be null. To make the algebraic manipu-

lations as simple as possible we will assume that node-pair voltages

are identified with tree branch voltages and loop currents with link

currents. In this situation the a and p matrices assume the simple

forms

% = - - -a -- -- (3.3.8)0 U n1

if the branches are numbered so that the first Jare links and the

last n are tree branches. It will be further assumed that the LLF:R

network contains one imbedded R-LLF MTP element and that the branches

of this element are contained in the group of tree branches selected

for the network. Let this R-LLF MTP element have s branches and let

these branches be the last numbered branches of the LLF:R network.

The branch admittance parameter matrix of the LLF:R network then

takes the form
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A A

AA
A = Yk kk 0 (3.3.9)

0 0 gss

where the total number of tree branches is given by

n = k + s(3.3.10)

Because we have numbered all the links first the A matrix does not

take the simple form of Equation 2.3.25 as discussed at the end of

Section 2.3.1. The matrix g55 is the branch admittance parameter

matrix of the R-LLF MTP element. The other matrices in Equation

3.3.9 represent the branch admittance parameter matrix of the LLFPB

portion of the LLF:R network. To convert our A matrix into the
A

matrix A of an LLFPB network we can pre- and post-multiply A as
A

follows to form A

A A
U 0 0 y2 yk 0 U 0 0

A A A
A= OUk 0 ykJ Ykk 0 0 Uk 0 (3.3.11)

O 1 Ps 0 0 gs 0s

A A
= ykYi kk 0

0 0 gAs
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where the submatrices P and Q are chosen so that

A s-9 -
g5 5 = 55g s ss (3.3.12)

is the branch parameter matrix of an R-LLFPB MTP element, i.e., an

s terminal pair black box composed of positive resistances.

We desire to determine expressions for Tn,and Dn in order to

find what conditions must be satisfied to make them null. The trans-

formation matrices P and Q are, by inspection of Equation 3.3.11,

0

0 Uk 0

o 0 P 5

Uj0

0 Uk

0 O Qss (3.3.13)

By evaluating r and D according to Equation 3.2.40 we can determine

expressions for v nand Vn in terms of submatrices of P and Q

respectively. To this end let the matrices a and P be partitioned

as follows

0 Uk

0 0 U

0 0

akl Uk

0 U (3.3.14)

where the matrices n and anihave been partitioned as follows

In [k PAs]

[akI
a nasi

(3.3.15)

UI

UQ A



Note that the matrix is the last s columns of the tie-set

schedule for the network and

set schedule of the network.

aoi is the last s rows of anb the cut-

Since an/and Yn are negative trans-

poses of one another

t[---1= [---
a3  9L s4 Lt

(3.3.16)

t
a'kl k (3.3.17)

t
asl" ~ 7,z -

Applying Equation 3.2.40 we readily determine the following

expressions for nIand Yn .

nUs ss} as

n s - Us}

(3.3.18)

Examination of these equations indicates that if

{ Us - P asf= 0 (3.3.19)

- Us} = 0

where the 0 indicates a null matrix then r and Djn will be null.

By taking the transpose of the first equation in 3.3.19 and using

Equation 3.3.17 this becomes

or

Is fQs s



p Pss - U = 0 (3.3.20)

Thus if is orthogonal to both the matrix Qss - U and the

matrix P - u5], r nand Ue will become null. If we desire to

have complete freedom in the choice of P and Q then Ys must be

a null matrix for Equation 3.3.19 to be satisfied. Let us consider

this latter situation, i.e.,

0 (3.3.21)

Equation 3.3.21 states that the last s columns of the tie-set matrix

pfb, contain only zeroes. If the last s columns of the tie-set

matrix contain only zeroes, then no loop currents can circulate on

the last s branches of the network. It is then clear that these

branches must be an isolated set of tree branches, so to speak,

waving in the breeze. But the last s tree branches are by construc-

tion, just the mutually coupled branch representation of the R-LLF

MTP element embedded in the LLF:R network. We have then arrived at

a trivial result, namely, to perform arbitrary transformations P55

and Q upon an arbitrary g according to Equation 3.3.12 in order

to convert the R-LLF MTP element into a positive resistance box,

the R-LLF device must be completely isolated from the LLFPB portion

of the LLF:R network.

Let us suppose that we wish only to transform a portion of g ,

i.e., let the matrices P and Qss take the form

U O U 0r r
P = Q ss= (3.3.22)

L0 Pdd_ _ ddj
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where Pdd' Qdd are arbitrary real nonsingular d x d matrices and

Ur is an r x r unit matrix (s = r + d). If we use these restricted

expressions for Pss and Q in Equation 3.3.19 then they take the

form

/d {Qdd - Ud = 0 (3.3.23)

id {Pdd - Ud }

where the matrix p has been partitioned as follows

= [srB1 d (3.3.24)

Thus pd represents the last d columns of the tie-set matrix b'

If we desire Pdd' Qdd to be arbitrary, then

Yd = 0 (3.3.25)

if Equation 3.3.23 is to be satisfied.

Whereas Equation 3.3.21 leads to trivial results,Equation

3.3.25 does notas will now be Qhown. Equation 3.3.25 implies that

the last d branches of the R-LLF MTP element form a set of tree

branches on which no loop currents circulate. However, the saving

grace here is that remaining branches of the R-LLF element, r in

number, are not restricted in this way. Thus these r branches or

terminal-pairs may be connected with LLFPB branches or terminal-

pairs to form the LLF:R network. Such an interconnection of an

MTP R-LLF element with an MTP LLFPB element to form an LLF:R net-

work is shown in Figure 3.3.1
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r + 1 0- - -0
2

R-LLF LLFPB

s r + d

Figure 3.3.1 An LLF:R Network With p = 0

In this figure the R-LLF element and the LLFPB element have node to

datum terminal-pairs assigned although this need not be done.

P OS IT IV E 2
r 4-2 - .

RESISTANCE I LLFPB

I B 0 X
s =r + d o- - -. -o -. ...- 10

s +r

Figure 3.3.2 Reference LLFPB Network
for LLF:R Network of Figure 3.3.1

The reference LLFPB network has exactly the same form except that

the R-LLF box becomes a resistance box. Figure 3.3.2 illustrates
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the form of this reference network. The branch parameter matrix

ss must be restricted in form since only then can one expect to
A

produce an LLFPB branch parameter matrix g with the restricted

transformation matrices of Equation 3.3.22. To understand the

restrictions on g we use the expressions for Pss and Q given by

Equation 3.3.22 and carry out the matrix products shown in Equation

3.3.12 to evaluate g First partition g as follows

[rr rd
gss (3.3.26)

gdr gdd

Then

U : g : U o (3.3.27)r rr rd r
A
gss P-l -l0

m Pddt mdr gdd i dd

A A
grr grd Qdd grr grd

-1 P-l -l A

dd gdr I dd gdd Qdd gdr gdd

Given a gs, it would be very difficult to determine whether it

were of the form to permit transformation to an LLFPB branch para-

meter matrix g s in the manner indicated in Equation 3.3.27.

However one may of course generate permissible g ssmatrices by

reversing the procedure, i.e., starting with a g and forming g by

* It is worth reminding the reader at this point that the parameter matrix need
not be diagonal as is required for the conventional branch conductance parameter
matrix. Of course, among other restrictions, it must be symmetrical and define
a positive definite quadrative form.
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A
Pss g SS gss QSS (3.3.28)

To determine the relationship between the LLF:R o.c. impedance
A

matrix Z nn and the reference LLFPB o.c. impedance matrix Znn we must

employ Equation 3.3.7. To this and we must evaluate Yrn
These are readily found to be

and on'

Wnn

Uk

o0

o o
U 0

Ur 0

o Pdd

; 0nn

Uk

o Ur

If we partition Z and Z in the same manner as r nn
find that

Znn n n n

(3.3.29)

and un we

(3.3.30)

zkk zkr zkd

zrk z zrd

zdk
L

zdr zdd

I -

A A A -1
zkk z z kdPdd
AA A -iz rk zrr zrd Pdd

-1A Q-l A -l A -1
Qdd zdk dd z dr Qdd zdd Pdd

Observation of Equation 3.3.30 indicates that the transfer

impedances among the first k + r terminal pairs of the reference

LLFPB network are identical to those of the LLF:R network.

Equation 3.3.19 may be pursued further but this will not be

done here.
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3.4 Real Transformations Directly Upon Equilibrium Matrix

In the previous Section there is presented a method of analysis

of LLF:R networks by linear transformation theory that begins by

effecting real transformations upon the branch parameter matrix of

the network to convert it into the branch parameter matrix of an

LLFPB network. These linear transformations are shown to imply a

second set of linear transformations which relate the dynamic

variables in the LLF:R..network and those in the reference LLFPB

network. A difficulty with this approach, beyond the appearance of

dependent sources in the reference network is the quite indirect

correspondence between transformations effected upon the branch

parameter matrix and the resulting modification of the conventional

o.c. impedance matrix Z or short circuit admittance matrix Y .nn A %
An alternative approach is conceivable in which one attempts to

effect transformations directly upon the equilibrium matrix. In

this way the appearance of dependent sources in the reference net-

work is ruled out a priori. However the difficulty with this

approach is that there is no simple way of determining the structure

of the reference network from inspection of its equilibrium matrix.

The approach to this latter problem followed in this Section is to

find conditions under which transformations directly upon the

equilibrium matrix of the LLF:R network carl be interpreted simply

in terms of transformations upon R-LLF MTP elements of the LLF:R

network. We will only concern ourselves with the node-equilibrium

matrix since an entirely dual argument follows on the loop basis.

Let us assume that the branches of the network are numbered

not in the manner of Sections 3.2 and 3.3 but as in Section 2.3.
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The branch admittance matrix then takes the form indicated in

Equation 2.3.25. Suppose that the LLF:R network consists of two

LLFPB MTP elements and one R-LLF MTP element. The branch admittance

matrix A may be represented in this case as

yI 0 0

A
A= o Y 2  0 (341)

o o g

A A
where y1, Y2 are branch admittance matrices of LLFPB elements 1 and

2 and g3 is the branch admittance matrix of the R-LLF element. The

node equilibrium matrix Ynn is then given by (See Section 2.3)

A A
Ynn Y1 + Y2 + G3  (3.4.2)

A A
where Y and Y2 are the node parameter matrices of LLFPB elements

1 and 2 and G3 is the node parameter matrix of the R-LLF element.

The node parameter 'matrices are as follows

A A t
Y = a y a 1  (3.4.3)

A A t
Y 2 = a 2Y2 a2

t
G3 = a3 3a3

where a, a2 a3 are submatrices of the cut-set matrix anb as

indicated below

anb = a a2 a3 (3.4.4)
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nnynn~nn = Pnn Ynn + Pnnt33nn

We are searching for conditions under which

A A
P nny~nn =

(3.4.6)

(3.4.7)

and

Pnna3 3a3 nn
t

= 3l32'

where T and -2 are real nonsingular matrices. In order to avoid

dealing with the cut-set submatrices it was decided to specialize

to the case where the node parameter matrices were Simple and Com-

plete. (See Section 2.4 for definitions.) In this way the trans-

formations P nn and Qnn upon G3 can be directly interpreted in terms

of transformations upon g3. At first scrutiny one might conclude

that Equation 3.4.7 can only be satisfied in the trivial case in

which Pnn and Qnn are unit matrices. However this is not the case.
A

Thus let Y take the particular form

107

(3.4.8)

As discussed above we desire to perform transformations upon

Y nn directly and to find the conditions under which these transforma-

tions affect only the R-LLF element in the LLF:R network. Group
A A
Y and Y2 together as follows

A A A
Y=Y 1 + Y2  (3.4.5)

Then premultiply Ynn by a real nonsingular matrix Pnn and postmulti-

ply it by a real nonsingular matrix Qnn We then find with the aid

of Equations 3.4.2 and 3.4.5 that



A7

Y (3.4.9)

0 0 0
oo

This form 'for Y indicates that elements 1 and 2 are isolated. Thus

in the LLF:R network, MTP elements 1 and 2 are coupled only through

resistive coupling provided by the R-LLF element.

Let Pnn and Qnn be given by

aUk o o a~ Uk 0 0

P nn o bUk o 9m o b 1Ur o (3.4.10)

0 o Pdd o 0 Qdd

where a, b are real numbers, Ur is r x r unit matrix which is
A

assumed to have the same number, r, of rows and columns as y2, U k
is a k x k unit matrix with the same number of rows and columns

A
as Y , and Edd' dd are arbitrary real nonsingular d x d matrices.

Then one may readily verify that Equation 3.4.7 is satisfied. Let

G3 = 3 =

7 kk

rk

dk
(3.4.11)

where gm has m rows and n columns. Then
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a
gkk b kr a gkd~dd

= b
nnG3Qnn a rk b grd dd (3.4.12)

1 1
a ddgdk b ddr dd ddQdd

For some R-LLF elements the branch admittance parameter matrix

g3 can be of such a form that numbers a, b and matrices Pdd' Qdd can

be found such that

A A
3 3 Pnn3nn = nnE3 Qnn (3.4.13)

is the branch admittance parameter matrix of an LLFPB MTP element.

Although it may be difficult to determine whether an arbitrarily

selected g3 has this property one may always generate g3 matrices

with this property by starting with an LLFPB matrix g3 and forming

g3 by

-1A -1
g3 = nng3Qn (3.4.14)

It would be well at this point to make a few comments about
A

the topological restrictions implied by the form of Y and G

(Equations 3.4.9 and 3.4.11). First we note that the network con-

tains n = r + k + d terminal pairs. The d x d null submatrix in

the lower righthand corner of Y indicates that the LLFPB portion of

the LLF:R network contains only r + k terminal pairs. Examination

of G3 shows that the R-LLF MTP element is assumed to contain

n = r + k + d terminal pairs. However, because of the d x d null
A

submatrix in Y only the first r + k terminal pairs of the R-LLF
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elem

netv

Equa

is a

eval

= nn nn mn (3.4.15)

n LLFPB node equilibrium matrix. If we let a = b = 1 and

uate the o.c. impedance matrix

z .1.-A,-nn = nn = nnynnQnn = QnnZnnpnn

we find that it is identical to Equation 3.3.30. Thus we have

arrived at a result of the same form as the previous section which

considered transformations directly upon the network branch para-

meter matrix.

On the other hand we get a new result of a restricted nature

if we let Pdd and Qdd be unit matrices but a and b be unrestricted

real numbers, namely,

Ur 0 o

-l
o b Uk 0

o o Ud

A
zrr

A Az rk zrd

A A A
z kr zkk zkd

A A A
dr zdk zdd

aUr 0 0

0 bUk

0 0 Ud

A b A 1A
zrr a zrk z rd

a A
bzk

A
a z d

Az kk

b zdk

Azkd

AZ ddJ

ent are connected with the LLFPB elements to form the LLF:R

work. Thus d terminal pairs of the R-LLF element are isolated.
A

Let us assume that g3 has been selected so that g3 as given by

tion 3.4.14 is an LLFPB branch parameter matrix. Then

(3.4.16)

a

Znn (3.4.17)
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Thus in this case the transfer impedances between certain groups of

terminal pairs of the LLF:R network are related to the corresponding

group of transfer impedances of the reference LLFPB network by a

real constant multiplier. In particular we note that if a transfer

impedance in one direction is multiplied by a constant c then the

transfer impedance in the opposite direction is multiplied by 1/c.

3.5 Complex Transformations

In this section we will confine ourselves to a study of net-

works of the Additive type (See Section 2.4). It will be recalled

that for networks of this type, the equilibrium matrices can be

selected so that they are the sum of the parameter matrices of the

component MTP elements. This statement applies to a formulation of

equilibrium equations on any basis - admittance, impedance, or

mixed. We will demonstrate a simple method whereby an Additive

LLF:R network may be analysed into an LLFPB network and a set of

complex linear transformations relating the dependent variables in

the LLF:R network and in the reference LLFPB network. The reference

network is identical to the LLFPB portion of the LLF:R network with

appropriate short-circuit or open-circuit constraints applied at

terminal pairs. We will keep the following discussion general in

the sense that it may be applied to equilibrium equations formulated

on any basis.

Thus let e be the equilibrium matrix of the network. We will

assume that the LLF:R network consists of an interconnection of an

LLFPB MTP element with an embedded R-LLF MTP element of a smaller

number of terminal pairs. Then we can represent eby
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C = P + E (3.5.1)

where P the parameter matrix of the LLFPB element and E the para-

meter matrix of the R-LLF element take the forms

P ss 1Psr e ss 0

P = - E- = E (3.5.2)
P rs I Pss 0

A subscript mn on a submatrix denotes an m x n matrix. It is clear

from 3.5.2 that the R-LLF element is assumed to have s branches or

terminal pairs while the LLFPB element has r + s terminal pairs.
A

The equilibrium matrix of the reference network, E, will be assumed
identical to P, i.e.,

A
P = P (3.5.3)

This matrix may be obtained from 6 by letting ess become null. If

ess were a branch admittance matrix then letting ess become null

would correspond in the LLF:R network to removing the R-LLF element

and placing open circuit constraints across those terminal pairs of

LLFPB element which were connected to the R-LLF element. On the

other hand if ess were a branch impedance matrix, letting it become

null would correspond to placing short circuit constraints across

terminal pairs of the LLFPB element. If e55 were a mixed parameter

matrix some terminal pairs of the LLFPB element necessitate open

circuit constraints and other terminal pairs would necessitate short

circuit constraints when ess becomes null.

In order for the reference network equilibrium matrix to be

nonsingular, P must be nonsingular. Assuming this to be true we may

perform the following manipulation on Equation 3.5.1.
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(3.5.4)

where

T-1 = U + -lE (3.5.5)

and U is an (r + s) x (r + s) unit matrix.

By this artifice the equilibrium matrix of the LLF:R network

becomes expressed in terms of that of an LLFPB network by means of

the transformation matrix T~ . We are interested primarily in the

solution matrices, the inverses of the equilibrium matrices,

(3.5.6)S =E
A A
S =

These are related by

A
S = TS (3.5.7)

where

S= U + SE (3.5.8)

We will now evaluate the transformation matrix T. To this end
A

partition S in the same form as P in Equation 3.5.2,

A A
S ss Ssr

S A A (3.5.9)

T S rs o rrf

Then carrying out the operations to form T~-

113

$P U + P E] =E5~l



imp]

set

A[U + S er ss ss

LS rs ess

(3.5.10)

o

U r

We may invert T to form T by writing the matrix equation
-1ied by T and then by algebraic operations forming the inverse

of equations. Thus ~ implies the set of matrix equations

{ +A
fus+3 5s e }xl + 0 =Y (3.5.11)

{Srs 1ssxl + x2  y Y2

From the first equation we solve for x . Using this value of x1 in

the second equation we solve for x2. The inverse set of equations

reads

{Us + s e Sy 1 + 0 = x (3.5.12)

rsss Us + sse 1 +y 2

Thus if we define

T = fU + S sass{ sA - (3.5.13)

Then the transformation matrix T is given by

T
=

-{{Srsess}T

(3.5.14)
I
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detS = det - detS (3.5.16)

But inspection of Equation 3.5.15 shows that the determinant of the

first matrix is unity and of the second matrix is T. Thus

A
detS = detT - detS

We may then state that the natural frequencies of S caused by

the introduction of the R-LLF device are the poles of detT or the

zeroes of detT~. Thus these natural frequencies are roots of the

equation

d [ Adet[Us + S ss essl = o035.8
A

It should be noted that S , is the solution matrix of that portion of

the LLFPB reference network "seen" from the s terminal pairs con-

nected to the R-LLF device. The matrix e is the branch parameter

matrix of the R-LLF device. If e is a branch admittance matrix
A

then 3s will be an o.c. impedance matrix. If ess is a branch im-
A

pedance matrix then S, will be a s.c. admittance matrix. If e55 is
A

mixed then Sss will also be mixed.
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Examination of this matrix indicates that T postmultiplies the

first column. Thus we may express T as the product of two simpler

matrices

U s 0 T o

5 = (3.5.15)
- Srs e s Ur o Ur

Since T is a complex transformation matrix the natural fre-

quencies of S will be generally both the natural frequencies of S

and T. Evaluating the determinant of S we find that

(3.5.17)



CHAPTER 4

APPLICATIONS OF REAL TRANSFORMATIONS TO
THE SYNTHESIS OF RC-LLF:R TRANSFER FUNCTIONS

4.1 Introduction

In Chapter 3 some particular techniques of LLF:R network analysis

through linear transformation theory were presented. The techniques

involved both real and complex linear transformations. In this and

succeeding chapters these analysis procedures will be reversed. We

will start with an LLFPB network and through the agency of linear

transformations convert it into an LLF:R network. Our primary in-

terest will be to generate RC-LLF:R transfer functions of a general

character by starting with an RC-LLFPB network. This chapter will

deal with the application of real linear transformations to the

generation of such transfer functions. Thus in Section 4.2 we

consider the inversion of the analysis procedure of Section 3.3.

The possible synthesis methods arising in this manner appear to be

undesirable both from the point of view of the complexity of the

R-LLF device required and the difficulty of synthesizing the LLFPB

portion of the LLF:R network. The latter difficulty arises from the

fact that in the synthesis procedure a complete s.c. admittance

matrix must be synthesized for a grounded two terminal pair RC

network. In the phraseology of Chapter 1, Section 1.5.2, it was

not possible to meet the "constructible" specifications requirement.

In Section 4.3 a method of inserting gain in the transfer

functions by means of real linear transformations is considered.

This method arises as an inverse of an analysis procedure of Section

3.4. It has already been stated that this gain insertion result has
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4.2 Synthesis Through Transformation of the Branch Parameter Matrix

4.2.1 General Approach

In this Section we consider the problem of reversing the analysis

procedure of Section 3.3. Such a reverse procedure consists of

starting with an LLFPB network that has a specific type of configuration

as exemplified by the network of Figure 3.3.2. The application of
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previously been found by Nashed and Stockham. Section 4.4 considers

a synthesis method which involves making a congruent transformation

of the s.c. admittance matrix after gain has been inserted by the

method of Section 4.3. The congruent transformation is of the type

arising when a new definition of terminal pairs is made for a MTP

element. By using a simple congruent transformation in conjunction

with gain insertion an RC-LLF:R voltage transfer function of a

general character is found. The network consists of one three-

terminal RC-LLFPB network and one three-terminal R-LLF device. A

final synthesis algorithm was not developed for this voltage trans-

fer function since the expression for this transfer function involved

a specification of the complete s.c. admittance matrix of an RC-LLFPB

grounded two terminal-pair network. Thus just as in Section 4.2 it

was not possible to meet the "constructible" specifications require-

ment. It is found however that if this network is specialized to a

w configuration and placed in parallel with an RC-LLFPB grounded two

terminal pair, the constructible requirement can be met and still

have a potentially general voltage transfer function. However

attempts at finding an algorithm as required in Step 2 of Section

1.5.2 have not been successful.



real linear transformations converts the positive resistance box to

an R-LLF device but leaves the LLFPB sub-network unchanged. As a
A

result the o.c. impedance matrix Zdd seen from the set of terminal

pairs r + 1 through r + d for the LLFPB network and the corresponding

o.c. impedance matrix Zdd for the LLF:R network become related through

pre- and post-multiplication by real transformation matrices as in-

dicated below

Zdd dd Zdd Pd (4.2.1)

The s.c. admittance matrix seen from these terminal pairs then

takes the form

A
Ydd P dd dd~dd (4.2.2)

where

Ydd = Z

AA-1
Ydd =Zdd (4.2.3)

are the s.c. admittance matrix of the LLF:R and the LLFPB network,

respectively. We will assume that the LLFPB network is RC. Then

we readily see that the s.c. admittance poles and the o.c. impedance

poles of the LLF:R network are the same- as the corresponding ones

for the LLFPB network. Thus if we wish to achieve complex natural

frequencies for the RC-LLF:R network we may not have either all o.c.

constraints or all s.c. constraints at all of terminal pairs. By

selecting the transformation matrices Pdd and Qdd appropriately we

should be able to form a driving point admittance y , say, at

terminal pair j of the RC-LLF:R network which has zeroes at specified
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locations in the complex plane. This comes about from the fact that

Equation 4.2.2 implies that not only transfer but driving point ad-

mittances of the RC-LLF:R network are expressed as linear combinations

of the driving point and transfer admittances of the RC-LLFPB network.

If we open circuit terminal-pair j and leave the other terminal pairs

short-circuited, the resulting network has complex poles where y had

zeroes. Thus voltage transfer functions between the other d - 1 ter-

minal pairs and terminal pair j or transfer admittances among the

d - 1 terminal pairs should have zeroes and poles which may be placed

quite generally in the complex plane

To illustrate the above ideas let d = 2 and r = 2 in Figures

3.3.1 and 3.3.2. The resulting reference RC-LLFPB network and the

corresponding RC-LLF:R network are shown in Figures 4.2.la and

4.2.lb respectively.

3

POS ITI VE

RESISTANCE RC-LLFPB
4BOX 2

(a)

3-

R-LLF RC-LLFPB

4 2
0--

(b)
Figure 4.2.1. Networks for Example of Section 4.2
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Since d = 2, the matrices Ydd and Ydd are 2 x 2 and for the networks

of Figure 4.2.1 correspond to s.c. admittance matrices of grounded

two terminal-pair networks. Let the transformation matrices Pdd and

Qdd be given by

11 2 1
Pdd

P21 P22

and the s.c. admittance

3K :34
Ydd

Y43 Y44

q l1 q12
Qdd

q721 q22

A
matrices Ydd' Ydd

[A A -

Y33 Y34

Ydd =

Y34 Y44

Then Equation 4.2.2 takes the more detailed form

33 34 11 12 y33 y34  qll q12
A

43 44 21 P22 Y34 Y44 q21 q22

(4.2.4)

(4.2.5)

(4.2.6)

By appropriate choice of Pdd and Qdd we can form an expression

for y33 that may have zeroes anywhere in the complex plane. Thus

from Equation 4.2.6 we find that y33 has the general expression

A A
= y33 11q11 + y34[p11q21 + q p

A
y44p12q21

Now as a general rule we can say that the zeroes of transfer

functions or the zeroes of the difference between two driving point

functions can have complex plane zeroes of unrestricted nature.

Thus we should specialize the coefficients in Equation 4.2.7 so that

A A
y33 is either directly proportional to y34 or to the difference of
A A
y33 and y 44 . Consider the following possibilities
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(a) p1 2 = l= 0

(b) pl1 = q2= 0

then y33 = p12A

then y33 = AliPlqY 34

A A
(c) p11 q2 1 + q p12 = 0 then y33 = y3 3 p 11q11 + y44 p1 2 q2 1

Actually case (c) is more general than cases (a) or (b) since

the difference between two driving point functions has zeroes which

may be placed arbitrarily while the zeroes of y34 may not be placed

arbitrarily since it is a grounded transfer function. Let us then

consider case (c) with the further specialization

(4.2.9)
pll =qll =

If we let

(4.2.10)
Pl2 = ~q21 = x

Then y33 takes the form

A
y3 3 = y3 3

2A
xy44 (4.2.11)

If we now open circuit terminal pair 3 and leave terminal pair 4 short

circuited, the poles of the RC-LLF:R network will be determined by

the zeroes of y33
2A

-x 
4 4 .

The voltage transfer function from

terminal pair 4 to 3 is given by

y34a3 %y3333
(4.2.12)

and the general expression for y34 obtained from Equation 4.2.6 is

y34 = y33p11q 12 + y34 11q 22 + p1 2q1 2]+ y 4 p1 2q2 2

(4.2.8)

(4.2.13)
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A A
= Y3 + y 3 4 [q2 1 A- xq 121+ y44xq 22

The expression for y34 may be simplified by letting

q2 2 = 0 ; gl2 = 1

Our final expression for the voltage transfer ratio a34 becomes

A 2A
33 + x y34

a34 A/N 2A
y33 x44

(4.2.16)

We have thus arrived at an RC-LLF:R voltage transfer function which

is potentially capable of having considerable generality in the

location of poles and zeroes. But, as discussed in Chapter 1, Section

1.5.2, three additional steps must be completed before one can specify

a set of poles and zeroes for a34 and obtain the RC-LLF:R network

which exhibits this transfer function. We are unable to complete

the first step since the expression for a34 involves a specification

of the complete s.c. admittance matrix of the reference RC-LLFPB

network from terminal pairs 3 and 4. In fact it has not been found

possible to specialize the elements of Pdd and Qdd to alter this

situation and at the same time obtain an a34 of a sufficiently

general character. Thus the results of this section will be only

of academic interest until further results are available on the

necessary and sufficient conditions for realization of s.c. admittance

matrices of grounded two-terminal-pair RC-LLFPB networks (containing

no ideal transformers).
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(4.2.14)

(4.2.15)

With the parameter values of Equations 4.2.9 and 4.2.10, y34 becomes



4.2.2 Example

In this section we will consider a simple choice for the

positive resistance box of Figure 4.2.la and then obtain the branch

admittance matrix g of the R-LLF device required in the network

of Figure 4.2.lb such that the voltage transfer ratio of this net-

work has the form of Equation 4.2.16.

The general expression for g55 is obtained from Equations

3.3.27 and 3.3.28 as

[AA 1
U r 0 grr grd U r O

gss=

0 P A A]O dd gdr 9 dd 0 dd

A A
grr grd~dd

PA PA
ddgdr ddgddcdd (4.2.17)

A
In our example d = r = 2 so that gss and g55 are 4 x 4 branch para-

meter matrices. In Figure 4.2.2 a simple positive resistance box is

shown.

Figure 4.2.2. A Simple Positive Resistance Box
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The resulting RC-LLFPB reference network is shown in Figure 4.2.3.

3 9 2 92 4
0-LL F PB --- c0-.

93~91 
94~92 F

Figure 4.2.3. LLFPB Network With Simple Resistance Box

It should be noted that the positive resistance box consists of

nothing more than resistance voltage dividers hung on the terminals

of the RC-LLFPB subnetwork. Thus it may be expected that the syn-

thesis for a prescribed set of driving point and transfer functions

at terminal pairs 3 and 4 should not be essentially any more difficult

than synthesizing for a set of driving point and transfer functions

at terminal pairs 1 and 2. It should be noted that the driving point

and transfer functions at terminal pairs 1 and 2 are those for the

general grounded RC network with resistance termination at both

terminal pairs.

The branch admittance parameter matrix of the positive resistance

box is readily found to be

1 0 |-g 0

0 g2 10 -g2

g (4.2.18)
ss

-g 0 g3  0

0 -g210 g4
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If the transforration parameter values given by Equations

4.2.9, 4.2.10, and 4.2.15 are used in Equation 4.2.4, the transforma-

tion matrices assume the formL1 x1

P dd =

L21 P22j

(4.2.19)Qdd = ;
-x 0

The transfer function a34 does not depend upon the coefficients

P21 and p22 so we are free to choose them according to convenience.

We will choose

21

p22 = 0 (4.2.20)

Since the resulting g has an especially simple form when this is

done. Following Equation 4.2.17

grd = grdqdd

/\
gdr = Pddgdr

A
gd= Pdgdd

-g1 O 1 1 -g1 -g1

L0 g2 -x 0 [xg2 0

1 x -g 1 0 -g1 -g2X]
L1 0 10 -g 2 1 L91 0

1 x F
03

0

0

g J
-x 0

g3-x g4 g3

(4.2.21)
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Thus

by

the branch admittance matrix of the R-LLF MTP element is given

1 0

o g2  xg2
2

-g1  -Ig 3-x g 4

0

0

g3

(4.2.22)

There are at present no general practical methods of synthesizing

a multiterminal-pair R-LLF black box for prescribed s.c. admittance

matrix. By a practical method it is meant a synthesis method which

involves a realization in terms of practical devices such as vacuum

tubes and transistors. In Section 4.2.3 a theoretical method is

presented which involves a realization in terms of ideal vacuum tubes

(or gyrators) and positive and negative resistances. Using the

results of Section 4.2.3 it is shown in Section 4.2.4 how an L-LLF

or C-LLF multiterminal-pair black box may be realized in terms of

R-LLF devices plus positive capacitances and inductances.

4.2.3 Synthesis of R-LLF Element

We consider here the problem of synthesizing an R-LLF MTP

element for prescribed branch admittance parameter matrix. It is

assumed that the associated MP network is completely described by

the MTP element. Thus if the MTP element has n terminal pairs it

also has n + 1 nodes.

The first step in the synthesis procedure consists of changing

the synthesis specifications to a node to datum branch admittance

parameter matrix. This is readily accomplished with the results of
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Section 2.3.3. Thus let gs3 be the original specified branch

admittance matrix. It is assumed that the coupled tree branch repre-

sentation of the desired network is given together with g,. Then

we select any node as datum and determine the branch admittance

matrix g that accompanies this selection of node to datum variables.

According to Section 2.3.3 the relationship between g' and g isas ss

g = agt at (4.2.23)

where a is a cut-set matrix which defines the node-to-datum variables

of the second MTP element upon the coupled branch representation of

the first originally specified MTP element. Clearly a synthesis of

g for the node-to-datum case automatically synthesizes gt for the

original case.

The second step in the synthesis procedure consists in showing

how the n x n node-to-datum admittance matrix g can be synthesized

from node-to-datum MTP elements with 2 x 2 admittance matrices. Let

N denote the MTP element with parameter matrix g 5 . Since node to

datum variables are assigned for N, it has the coupled tree branch

representation of Figure 4.2.4.

I 2 n n+i

2 -n

Figure 4.2.4. Coupled Tree Branch Representation of N
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Consider each branch of N to be divided into n - 1 sub-branches.

The sub-branches of a particular branch are not coupled to one another

but each sub-branch of a branch k is coupled to exactly one sub-branch

of some other branch j and to no other sub-branches in the network.

Suppose the pair of coupling coefficients between branches j and k

is [ ,jg-'kj]. Then the coupled sub-branches of branches j and k,

denoted as jT and k', are assumed to have the pair of coupling

coefficients [gjk'k] . The self admittances of the sub-branches of

a particular branch j of N are constrained only in the respect that

their sum must equal the self admittance of the original branch j.

If we remove a pair of coupled sub-branches j', k' from N, it is

readily seen that the coupling between branches j and k of the

resultant network becomes zero and the self admittances of branches

j and k are reduced by the self admittances of j' and k'. We note

that this pair of coupled sub branches is an MTP element with three

terminals and node to datum variables assigned. If becomes clear

that successive removal of all pairs of coupled sub branches will

leave a network with a null parameter matrix. If now the three-

terminal MTP elements are reinserted in the same locations from

which they were removed one obtains the network N with parameter

matrix g s.

The last step consists of synthesizing the three terminal

building blocks. As is well known each building block may be con-

structed from ideal vacuum tubes (or gyrators) and resistances

(positive and negative). This is readily done as follows. Let

[1 1 912

g = (4.2.24)
921 922
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be the branch admittance matrix of a typical three terminal building

block. The matrix g is separated into the sum of a symmetric and

a skew symmetric matrix as follows

g1 1 g1 2

g2 2
[g1 2 + g 2 1l

2

F12 + g21
2

g22

0

g21 - 12
2

Ig2 1  ~ 2
2

(4.2.25)
The first matrix can be constructed from a network containing

positive and negative resistances as indicated below

12 + g21
2

2 1 (1g2 2 - (g1 2 + g 2 l)

The second matrix is that of a gyrator(22) We will use the

following circuit symbol to denote a gyrator with transfer admittance

a from terminal pair 1 to terminal pair 2. The arrow
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denotes the fact that a is the transfer admittance from the left

hand to the right hand terminal pair.

A parallel connection yields the desired branch parameter

matrix as shown in Figure 4.2.5.

2

1o

G 0- .L(g12+gl)

r 91 1 91P.

92 1  922
9 2 2 - ( 12 +9 2 1) - -&

Figure 4.2.5. Realization of Building Block With
Gyrator and Resistances

There is an alternate realization of g in terms of an ideal vacuum

tube and resistances. To obtain this realization we need only find

a realization of a gyrator in terms of an ideal vacuum tube and

resistances. An ideal vacuum tube has the branch admittance matrix

and circuit symbol below,

[OG =
a

o

0
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where a > 0. The typical gyrator admittance matrix can be regarded

as the sum of the ideal VT admittance matrix and another matrix as

follows

0 - 0 0 0

O a 0 -a

a2

0j
(4.2.26)

Thus .a gyrator has the realization indicated below
0

2 2

Consequently the typical building block may have the realization

indicated in Figure 4.2.6.

-12

0 0
2

922 +g 12

921

Figure 4 2.6. Realization of Building Block With
Ideal Vacuum Tube and Resistances
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The particular realization shown assumes that g21 > g1 2 . If this

is not true then the appropriate realization is found by interchanging

the numbers 1 and 2 on the diagram.

It will be convenient to define a circuit symbol for the general

three terminal R-LLF device with a prescribed s.c. admittance matrix.

This symbol is shown in Figure 4.2.7 together with the corresponding

set of coupled branches and its branch admittance parameter matrix.

a b

2 V Ia 911 912 b A911 g 12

9 2; 22 2 9 P21 922
9

Figure 4.2.7. The General Grounded Two Terminal Pair
R-LLF Circuit Element

The arrow denotes that the lower left transconductance g21 is

the s.c. transfer admittance from terminal-pair a-ground to terminal

pair b-ground, i.e., a source to sink relationship in the arrow

direction.

As an example of the application of the R-LLF MTP element

synthesis technique of this section we may consider the synthesis

of the matrix g of Equation 4.2.22. Since the procedure is

straightforward only the final result is given. This is shown in

Figure 2.4.8. Note that only one three-terminal non-bilateral

element is required. This can be deduced by inspection of g

which shows that non-bilaterality exists only between branches 2

and 3.
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4-

Figure 4.2.8. Synthesis of R-LLF MTP Element For
Example of Section 4.2.2

4.2.4 Synthesis of L-LLF and C-LLF Elements

From the results of Section 4.2.3 it is readily seen that an

L-LLF or C-LLF MTP element can be synthesized for prescribed branch

admittance matrix if the corresponding typical three terminal

building block can be constructed. For a capacitive MTP element

the building block has the parameter matrix

c l2

c22

while for an inductive MTP element the building block has the para-

meter matrix

1
dY' 5

[v11

LY21
'Yl 2

'22 (4.2.28)
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4
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c
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It is also clear from the discussion of the previous section that

these typical blocks can be built if negative capacitors and induc-

tors plus the counterpart of the ideal vacuum tube (IVT) are avail-

able. We shall now demonstrate that a negative capacitance (induc-

tance) can be built from a positive inductance (capacitance) and

positive and negative resistances. Then we shall show that the

counterpart of the IVT for the capacitive case (inductive case) is

constructible from two IVT's and one inductance (capacitance) apart

from a change in sign of the transfer admittance which does not

affect the synthesis procedure. Let the three terminal element

with branch parameter matrix

0 a

O

be called an activator. This element has the realization and circuit

symbol shown below.

-o 0 a

0C

One may readily demonstrate that a unit (a = 1) activator is a nega-

tive admittance inverter. Thus if a capacitance of C farads is

connected across one terminal pair, the admittance seen at the other

a 1

terminal pair is sc .This latter admittance is precisely that of
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O O O O 2 O O 2

1 O 1 O0__ -S O

9 9

0 0

S
-1 0O

o oi

CAPACITIVE VERSION

I- - o

O O O O 2 1 0 0 2
~- ~

OI I O OS

g g

p 0O

-1 0

INDUCTIVE VERSION

Figure 4.2.10. Realization Of Capacitive And Inductive Versions Of
Ideal Vacuum Tube
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a negative inductance of C henries. A similar argument follows for

the construction of a negative capacitance. Figure 4.2.9 shows the

realization of a unit negative inductance and a unit negative capa-

citance is the fashion just described.

HENRY I FARAD -1 FARAD--. I HENRY

0 0

Figure 4.2.9. Realization Of Negative Inductance And Capacitance

Other values of inductance and capacitance are obtained by impedance

leveling. The realization of capacitive and inductive versions of

the IVT are demonstrated in Figure 4.2.10.

..
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Note that the sign of the transfer admittances are negative. If

positive signs are desired they may be obtained in a variety of ways.

But from a theoretical point of view this is not necessary since it

is easy to see that the three terminal building block may be con-

structed with devices of either algebraic sign.

4.3 Gain Insertion

In this section we consider the inversion of a very special

linear transformation theory analysis procedure which is found in

Section 3.4. For this analysis procedure the o.c. impedance matrix

of the LLF:R network and that of the LLFPB reference network are

related according to Equation 3.4.17. Examination of this equation

indicates that this analysis procedure will lead to a method whereby

gain may be inserted in transfer impedances. We note, however, that

the LLFPB network which is to have gain inserted is restricted with
A

regard to topology as is clearly indicated by the form of Y in

Equation 3.4.9. From the discussion centering around this equation

one may readily deduce that gain may be inserted between two terminal

pairs of an LLFPB network in the fashion indicated by Equation 3.4.17

only if these terminal pairs can be associated with MTP elements

which have at most one node in common. Thus if these MTP elements

are to be coupled they must be coupled by resistance coupling. It

may be deduced from Equations 3.4.11 to 3.4.14 that it is this passive

resistance coupling which becomes active and nonbilateral when gain

is inserted. To illustrate these ideas we may assume that the equi-
A

librium matrix of the LLFPB network, Ynn, has the form

A A A

Ynn =Y + G (4.3.1)
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where

is th

isola

[ A
0 0

A

o y2 0
A

O O y3

(4.3.2)

e combined Simple and Complete node parameter matrix of three

ted LLFPB MTP elements and

A

A A

8kk gkr
A A

grk grr

A A

gdk gdr

A

Akd

A

grd

A

(4.3.3)

is the Simple and Complete node parameter matrix of a positive

resistance box which provides coupling between elements 1, 2 and 3.
A

We may then write Ynn in the form

A

Ynn

A A A

Ykk gkr gkd
A A A

grk Yrr grd
A A A

dk gdr dd

where

A A A

Ykk = yl + gkk

A A A

Yrr = y2 + g rr
A A A

Ydd =3 + gdd

(4.3.4)

(4.3.5)
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Gain can b

cannot both be associated with the same LLFPB element (y1 ,y2 ',.

This gain insertion is accomplished by pre- and post-multiplying

Y by transformation matrices as indicated below to form Y - the

node equilibrium matrix of an LLF:R network with the required gain.

0 0

-l
b U.

0 c-l Ud

b A c A
i kr a kd

a A ^
b grk Yrr

b A ^
F grr Ydd

A

ykk
A A

6kr gkd

A A A

grk Yrr grd

A A A

gdr Ydd

To see how the o.c. impedances of the LLF:R network are related

to those of the LLFPB network we invert Equation 4.3.6 to obtain

= -1
Znn nn

-1
a Uk 0 0

-10 b Ur

-10 0 cUd

b A c A
a rk a rd

A
zkk

b A
E zdk

c A

b Zkd

A
zdd

a

Ynn =0

aUk 0

bUr

0 c Ud

A

Ykk

a A
c gdk (4.3.6)

A
z
rr

A
zkr

A
Z dr

A A
zrk z rd,

A A
zkk zkd

A A
Zdk zdd

aUk

0

0

bUr 0

0 cUd

A
z
rr

a A
SZkr

a A
Szdr (4.3.7)
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where

A A A
Z rr zrk zrd

A A 1  A A A
Z = Y = zkr zkk zkd

A A A
zdr zdk zdd (4.3.8)

is the o.c. impedance matrix of LLFPB network. We note that the

transformation effected upon the s.c. admittance matrix is the same

as that effected upon its inverse, the o.c. impedance matrix. This
A

arises from the fact that Yn in Equation 4.3.6 is subjected to a

collinear transformation. Examination of Equation 4.3.7 shows that

if gain is inserted between two terminal pairs associated with

different MTP elements then the same gain is inserted between all

terminal pairs.

The topology of the LLF:R network (coupled branch topology) is

the same as the original LLFPB network. Also the first three MTP

elements with parameter matrices yly 2, and y3are the same in both

networks. However the positive resistance MTP element of the LLFPB
A

network with parameter matrix G is replaced in the LLF:R network by

an R-LLF box with parameter matrix

A b A c A
kk akr kd

a A A c AG grk grr b rd (4.3.9)

a A b^ A
c dk c gdr gdd

It has been stated previously that Nashed and Stockham have

also arrived at essentially the same method of gain insertion. It
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was also mentioned that there was a contradiction between statements

made by Nashed with regard to the type of LLFPB network configuration

permitting gain insertion and an actual gain insertion method given

by Stockham. The reason for Nashed's incorrect conclusion with

regard to the type of network configuration permitting gain insertion

is that his LLFPB equilibrium matrix was only a special case of

Equation 4.3.4. In his equilibrium matrix the submatrices of the

equilibrium matrix of Equation 4.3.4 became single elements. Since

he assumed node to datum variables he interpreted his equilibrium

matrix as arising from a network of the configuration indicated in

Figure 4.3.1. This type of network is more restricted than need be

for gain insertion.

Figure 4.3.1. A Restricted Network Allowing Gain Insertion

To illustrate Stockham's particular result, specialize the
A

Ynn' Y, and G matrices to the form shown below

0 0

0 0

S3A
y 3 3 y34
O yA

0 1y 34y 4 4

y O 0

A
0 2

00 0 0

A IA
O g 55 -g O

A A
0 -g g6 6 0

0 0 0 0

rA A
gr grk

A k

gk gkk~j
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r-A A
yll 12 1 0

A A A I A
y12 Y22 + g55 -g O

A A A A
O -g y33 + g66 34

0 0.
A

yL4

FA A ~
yrr grk
A A
gkr Ykk

.3. 10)

We will assume that MTP elements 1 and 2 are ungrounded two terminal-

pair networks. Thus these elements will only provide a partial

description of their associated MP networks. However, these elements

will be connected with the positive resistance box to form the LLFPB

network in such a way that these partial descriptions are satisfac-

tory. In Figure 4.5.2 the three elements are shown with their

coupled branch representations.

A A
YIl Y12
A A

12 Y22

A
y3 3
A
y3 4

A
y3 4
A
y4 4

2

3 4

75 6 T--

A
95 -9

"A

L-g g

Figure 4.3.2. LLFPB MTP Elements For Network Of Figure 4.3.5

A
Ynnl



Figure 4.3.3 shows the interconnection of these elements to form

A
an LLFPB network with equilibrium matrix Y nn given by Equation 4.3.10.

Figure 4.3.3. LLFPB Network To Have Gain Inserted

Now according to the general discussion given above we can insert

gain between the following groups of terminal pairs (1,2), (2,3),

(3,4) but not between 1 and 2 or between 3 and 4. We insert gain by

forming Ynn as follows

-̂  ^ b A
y gr aU2 0 y grkI

-l ^l^ a ^ ^
b 2 kr Ykkj O b U2 b kr kk

f^^ b A ~
Il grr grk

^ a ^ ^

O y2 bgkr gkk

The node parameter matrix of the R-LLF device is readily obtained as
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Fo

0 g55

0-

0

a A
E g

0 0

b A

g66

0 0 (4.3.12)

The open circuit impedance matrices Znn and Znn are related by

-1 ^ ^ ^ b ^
a U2 0 z zrk aU 2 0 zLb - zk

Z =I
-nn ^ ^ a A ^

O b U 2 z kr zkk O bU2 5zkr zkk

zzl zl zZ 1 1 z12 z13 z14

z 2 1 z22 z23 z24

z31 z32 z33 z34

z z 4 2 z4 3 z 44

A
zi

A b A b A ~
z-2 Ezl3 - z

A A b A b A
z12 z22 z23 a z24

a A a ^ A

b z l3  z23 z 3 3

a A aA A
z .Uz 24 z 3 4

A
z34

A
z

Thus the transfer impedances are changed by a factor when

(4.3.13)

going

from terminal pairs (1,2) to terminal pairs (3,4) but are multiplied

bby the reciprocal L when going in the oppositve direction. The

LLF:R network with the gain inserted is shown in Figure 4.3.4.

b

A-.2g g
e, ez b 66 es 2 e4

Figure 4.3.4. LLF:R Network With Gain Inserted
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The circuit symbol for the R-LLF element is in accordance with the

general definition of Figure 4.2.4.

4.4 Application of Congruent Transformation After Gain Insertion

While the synthesis method of the previous section allows gain

to be inserted into R-C networks it does not change the locations of
A A

the poles or zeroes of the elements of Ynn or Znn. We will show that

if a simple congruent transformation is applied after gain insertion,

the zeroes of driving point impedances and admittances may be caused

to become complex. This congruent transformation if of the type

arising when a new definition of terminal pairs is made for an MTP

element. The general idea is as follows. Consider an LLFPB network
A

with equilibrium matrix Ynn as given by Equation 4.3.4, i.e., a

network which allows gain insertion. Let us suppose gain has been

inserted forming an LLF:R network with o.c. impedance matrix given

by Equation 4.3.7. If some of the terminal pairs of this network

are brought out and the remainder of the network is enclosed in a

black box one obtains a multiterminal-pair network. With the avail-

able terminals one may define new terminal pairs with associated

o.c. impedance matrices. As discussed in Section 2.3.3 the various

o.c. matrices for new definitions of terminal pairs are related by

simple congruent transformations. Thus suppose Z1 is the o.c.

impedance matrix of a multiterminal-pair LLF:R network N1 which has

arisen by the gain-insertion method of the previous section. The

number of terminal pairs of N can be less than n, i.e., although

there are n terminal pairs defined to form the equilibrium matrix

Ynn, we may bring out less than n terminal pairs to form N . In



such a case Z is found from Z = Y by striking out rows and

columns corresponding to terminal pairs that are not used. It

should be noted that the resulting MTP network N1 will in general

only provide a partial description of its associated MP network.

Thus in defining terminal pairs on N1 one must observe the pre-

cautions discussed at the end of Section 2.3.3. Assuming these

precautions have been observed we form a new MTP network N2 from

N by defining a new set of terminal pairs. The o.c. impedance

matrix of N2.,Z2, is related to that of N1 by

Z2 = PZ4 1t

where B is the tie set matrix which defines the branch-loop currents

of N2 upon the mutually coupled branch representation of N . From

the results of the previous section we may relate Z to an LLFPB o.c.
A

impedance matrix Z by means of a simple collinear transformation is

follows

A

Z= CZC (4.4.2)

where the transformation matrix C is diagonal. The elements of Z
A

and Z differ only by constant gain factors. Thus if Z is an RC-LLFPB

o.c. matrix then N1 is an RC-LLF:R network whose o.c. driving point

and transfer impedances are individually identical in character to

those of an RC-LLFPB network. Thus the zeroes of driving point

impedances lie on the negative real axis. This situation becomes

changed by application of the congruent transformation of Equation
A

4.4.1. The expression for Z 2in terms of Z is then
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Z ~A -1l t

Z2 = PCZC

To illustrate

(4.4.3)

the above ideas we will consider a simple example

in some detail.

Figure 4.4.1. Simple LLFPB Network Allowing Gain Insertion

Consider the RC-LLFPB network of Figure 4.4.1. It will be recognized

that this network is a special case of that of Figure 4.3.3 in which

network 1 is just a shunt admittance and

g = g2

g5 5 = 6l + g2 (4.4.4)

If we insert gain according to the method of the previous section

we obtain the network of Figure 4.4.2 where we have let

a = 1; b = x (4.4.5)

without any loss in generality.

Now let us enclose the networks of Figures 4.4.2 and 4.4.1 in

boxes and bring out only terminal pairs 1 and 4. In this way we

form two grounded two terminal-pair networks. The o.c. impedance

matrix of the RC-LLF:R network, Z1 , is related to the o.c. impedance
A

matrix Z of the RC-LLFPB network (see Figure 4.3.13) by
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z 11z 11 0 z111 1 0 z 11 xz 1-1 1A A iFA AZ 1 -1 4

Lz z O14 z O x x z z

(4.4.6)

92 -Xg 3 4
- --- RC-LLFPB

-X92 92'

y 2 e3 e4

0

Figure 4.4.2. Network Of Figure 4.4.1 With Gain Inserted

The network N with o.c. impedance matrix Z is shown in

Figure 4.4.3a with its coupled branch representation. In Figure

4.4.3b there is shown a new MTP network N2 and its coupled branch

representation. This network has been formed from N1 by defining

new terminal pairs as indicated in this figure. The terminal pair

voltages for N2 are labeled e1 and e2. In Figure 4.4.4 the branch-

loop currents of N2 are shown circulating upon the coupled branch

representation of N . By inspection, the tie set matrix P is

-1 1
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0 ---

I 4

1 0

(a)

e2

0

(b)

Figure 4.4.3. Formation Of MTP Network By
Selection Of New Terminal Pairs

Figure 4.4.4. Network Pertinent To Obtaining The Tie Set Matrix P

The o.c. impedance matrix of N2 is obtained by use of Equation

4.4.1 as follows
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Z24

A
zl

A

L
-lA

- x z

A -
xz 14 I1l

Z44 0LI 1

A A
z - xz

1z x +4
A A I
II 11 + Z4 (x +z -- z 4

z Z1 1 Z 1 2

L Z21 Z221

Of particular importance is the expression for z22 , the driving

point impedance at terminal pair 2 of N2 '

z22 = A A
z22 =z11 +Z44

-1 A
-(x + x )z.

This impedance may have zeroes anywhere provided x = 1. This is

most easily understood by recognizing that

A A A
Z=Z11 +Z44

A
- 2z1 (4.4.10)

is a p.r. driving impedance of an RC-LLFPB network.

impedance of Equation 4.4.10 we may express z22 as

z 22 = z- (x + x - 2)z l

With the

(4.4.11)

A
It is not difficult to demonstrate that z2 2 may have zeroes

placed anywhere in the complex frequency plane provided x is suffi-
A A

ciently greater than 1. When x = 1 then z22 = z and its zeroes lie

on the negative real axis. This might have been expected since it

should be recognized that x = 1 is a condition that makes N2 an
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RC-LLFPB network. If we short terminal pair Z of N2 and leave

terminal pair 1 open the resulting network has natural frequencies

located at the zeroes of z2 2 and these are complex. Consequently

the voltage transfer ratio from terminal pair 2 to terminal pair 1

should be a transfer function whose poles and zeroes may be quite

generally located. This transfer function is given by

A A
z z -xzal211 14

12 A A1A

z 1 + z - (x + x )z

and does represent a transfer function which is potentially capable

of exhibiting poles and zeroes of a rather general character.

However, as discussed in Chapter 1, Section 1.5.2, three additional

steps must be completed before one can specify a set of poles and

zeroes for a12 and then obtain the RC-LLF:R network which exhibits

this transfer function. Unfortunately we are unable to complete

the first step since the expression for 'l2 involves a specification

of the complete s.c. admittance matrix of the reference RC-LLFPB
A

network with o.c. matrix Z. One possible course of action that

might be followed to complete step 1 for the particular RC-LLFPB

network under discussion here, Figure 4.4.1, is to specialize the

network as indicated in Figure 4.4.5.

I 2 91 3 4 1 4

Y1y -9 2 B 34

0 o-

Figure 4.4.5. A Specialized Version Of The Network Of Figure 4.4.1
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The conductances g1 and g2 are absorbed into y2 and y in the fashion

indicated such that the final network assumes a - configuration. To

find an expression for a12 in terms of yA' yB, and yC we note that

A 4 4  A ~Y1 4  A yli
z - z - y ;z -

11 t Ay 14 t ia

so that ^ can be written in the equivalent form12

(4.4.13)

al Aa12 F

But from Figure

y44 + xy14
A A

1. + y 4+ (X + x-1)1

(4.4.14)

4.4.4

A

Yl = + Y

A

Y1: =

A
y44 YC + B (4.4.15)

so that

a12

YA + yC

C- (x - 1)YB

- (x + x - 2)YB

From Figure 4.4.5 we deduce that

A 1l + 92

g1y2
B = + y2

yC =

(4.4.16)

(4'4'17)
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Examination of the denominator of the expression for fal2 given

122
in Equation 4.4.16 show that the poles of al12 are determined by the

zeroes of the difference between two driving point admittances,

(yA + yC) and (x + x-1 - 2)yB. In order to obtain realizable RC

admittances y1 and y2 and positive values for g1 and g2 it is

necessary and sufficient that yA and yB satisfy the following ine-

qualities

yAA~(O) > 9

yB(co ) K g1  44.8

in addition to being p.r. and RC admittances. One may always select

values for g1 and g2 to satisfy Equation 4.4.18 and thus the poles

of a1 2 may be placed arbitrarily. However it is not difficult to

see that the zeroes of a12 may not be placed arbitrarily since the

numerator expression involves the same admittance as the denominator

expression in Equation 4.4.16. One may increase the freedom obtain-

able in locating the zeroes by placing another network in parallel

with the LLF:R network.

Before we discuss this possibility it will help to clarify the

above discussion if a more detailed picture is given of the network

N2 that results after the congruent transformation. The definition

of terminal pairs for N2 is shown in Figure 4.4.3b and the network

N is shown in Figure 4.4.2. With the help of these figures one

may draw N2 as indicated in Figure 4.4.6. The reorientation of

terminal pairs "tips" the R-LLF device sideways. The R-LLF device

shown in Figure 4.4.6 has the same associated MP network as the one

in Figure 4.4.2 however new terminal-pairs have been defined to
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"right" the device. It is clear by comparison of Figures 4.4.6 a

4.4.2 that the R-LLF MTP elements of these figures differ only in

nd

the selection of datum node - 0 for Figure 4.4.2 and 1 for Figure

4.4.6. If the reference LLFPB network is the specialized one of

Figure 4.4.5 the network N2 takes the form shown in Figure 4.4.7.

Figure 4.4.6, LLF:R Network After Congruent Transformation

Figure 4.4.7. LLF:R Network of Figure 4.4.5 With
Reference Network Of Figure 4.4.4
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We have shown that the poles of the voltage transfer function

a12 for the network of Figure 4.4.7 may be located arbitrarily in

the complex frequency plane (of course complex poles occur in

complex conjugate pairs). However the zeroes are restricted. We may

increase the generality of location of the zeroes of a'12 by placing

a grounded two terminal-pair RC-LLFPB network in parallel with that

of Figure 4.4.7 as shown in Figure 4.4.8a. It is clear from in-

spection of this latter figure that y1 and y2 may be absorbed into

the paralleled network without loss of generality. When this is

done the network takes the form shown in Figure 4.4.8b. The voltage

transfer ratio A1 2 of the Network of Figure 4.4.8b from terminal

pair 2 to 1 is readily found from the relationship

A1 2  Y Yl2 (4.4.19)
11

where Y1 2 ' Y11 are s.c. transfer and driving point admittances for

the same network. One may determine that

A - -1 (4.4.20)
y + g - (x + x -2)yB

where y12 ' y11 are s.c. transfer and driving point admittances for

the paralleled network. Inspection of Equation 4.4.20 indicates not

only that the zeroes of A1 2 may be placed quite generally but that

step 1 of Section 1.5.2 has been completed, i.e., only "constructible"

specifications are involved in A1 2. The next step of the synthesis

procedure as outlined in Section 1.5.2 is the formulation of an

Algorithm whereby one may go from a specified pole-zero pattern for
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e2

e
2

(b)

Figure 4.4.8. Network Of Figure 4.4.6 With
Paralleled RC Network

Al 2 to physically realizable functions 2' 1 B. The author

has been unable to successfully complete this second step. No

discussion will be given of the difficulties involved but it will

be stated that the source of these difficulties stems from the fact

that y1 2 can. only be synthesized to within a constant multiplier

vhen y11 is completely specified.
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CHAPTER 5

COMPLEX NATURAL FREQUENCIES OF AN RC-LLF:R NETWORK

5.1 Introduction

In Chapter 3 some particular techniques of LLF:R network

analysis through the use of linear transformations were presented.

The techniques involved both real and complex linear transformations.

In Chapter 4 the analysis techniques involving real transformations

were studied with the idea of inverting the analysis procedure and

forming synthesis procedures. Chapter 6 will consider the use of

the complex linear transformation analysis techniques of Chapter 3 as

an aid in synthesizing transfer functions of RC-LLF:R networks. As

groundwork for the material of Chapter 6, Chapter 5 will investigate

the complex natural frequencies caused by the introduction of an

R-LLF three terminal device into an RC-LLFPB network. It is shown

in Section 5.2 that the zeroes of a certain Characteristic Determinant

are the complex poles of the network. This determinant involves the

parameters of the R-LLF device and the RC-LLFPB network in a

relatively simple fashion. Attention is given in Section 5.3 to

conditions on the R-LLF device and the RC-LLFPB network such that the

characteristic determinant involves RC-LLFPB network functions that

have "constructible" specifications. This is done as an aid in

developing potentially acceptable transfer functions (i.e. those

having the possibility of general pole-zero locations) which

involve only "constructible" specifications. The approach used is

general from the point of view that R-LLF devices may be handled
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that do not have a description on an impedance or admittance basis.

In Section 5.4 the following question is investigated for some

specific R-LLF devices. Can.an RC-LLFPB network be found such

that when the R-LLF device is embedded in the RC-LLFPB network, the

resulting RC-LLF:R network will have a prescribed set of complex

natural frequencies? A number of R-LLF devices are found to allow

an arbitrary assignment of complex natural frequencies. It is shown

that while the natural frequencies introduced by a gyrator may be in

the complex plane they may not be generally assigned. Specifically

the complex natural frequencies introduced by a gyrator are

constrained to be the short circuit natural frequencies of the series

combination of an RC and an RL impedance.

In Section 5.6 a general expression is given for the driving

point impedance of an LLFPB network containing an embedded R-LLF

device.

5.2 Characteristic Determinant

5.2.1 Impedance and Admittance Matrix Formulations

In Section 3.5 of Chapter 3 it was demonstrated that the natural

frequencies caused by the introduction of an s terminal-pair R-LLF

device into an LLFPB network are zeroes of the determinant

r A
i =det[US + S5 ess] (5.2.1)

The determinant in Eq. 5.2 will be called the Characteristic

Determinant. The combination of the LLFPB network and the R-LLF

device are assumed to form an Additive network as discussed in
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Section 3.5 U is an s x s unit matrix, S is the s x s solution

matrix of network seen from the s terminal pairs connected to

R-LLF device, and e is the s x s branch parameter matrix of R-LLF

device that is used in formulating equilibrium equations for the

LLF:R network. In this section we will consider the form that
A

Eq. 5.2.1 takes when S is an impedance or admittance solution

matrix.

First consider the case in-which S ssis a Z x Z open circuit

impedance matrix and e is a Z x Z branch admittance matrix as

indicated below

AA
A z 11zl2

Issjz A A
z12 z22

911912
e = I= G (5.2.2)

821 22J

A A
where the subscripts on S and e denote that S is given by an

o.c. impedance matrix and e is characterized by admittance

parameters. It is clear that we are discussing the case in which a

three terminal R-LLF device described by admittance parameters is

embedded in an LLFPB network. Figure 5.2.1 indicates the definition

of terminal pairs involved such that the LLF:R network is Additive

and the admittance equilibrium matrix is the sum of the branch

admittance parameter matrices of the LLFPB MTP element and the

R-LLF MTP element. The center terminal of the R-LLF device is labeled

with a g to denote that the parameters indicated on the circuit
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Figure 5.2.1. Definition Of Terminal Pairs For LLF:R Network With
Additive Admittance Matrices

Symbol apply to a branch admittance description of the R-LLF device.

Note that the LLFPB device is shown with only two terminal pairs.

For the work of this chapter it is not necessary to evidence the

other terminal pairs involved. They may be considered to be

contained within the box labeled LLFPB in Fig. 5.2.1. The voltages

e and e2 are terminal pair response voltages to current sources

i1 i2 applied across the terminal pairs 1 and 2, respectively. When

Ie Ss]g becomes null, i.e. g11 = g12 = g2 1 = g2 2 = 0, one obtains the

reference LLFPB network. Letting ess] become null effectively

removes the R-LLF network and places the current sources i and i2

across the LLFPB network as indicated in Fig. 5.2.2.

AA
e----ee 2

LLFPB

Figure 5.2.2. Network of Figure 5.2.1 With e Null
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FA A A
The matrix [ssJ then relates the response voltages el, e2 to the

zA
current source excitations i1 , 12 . It should be noted that [S]
is the o.c. impedance matrix of a grounded two terminal-pair LLFPB

network.

If we use the definitions of Eq. 5.2.2 then Eq. 5.2.1 becomes

detJ 1 01 z z12 g1112
A A

O l( zl 2z22J 21g22

(5.2.3)

where the superscript g is used to denote that the R-LLF device is

described by g parameters.

If the matrix operations are carried out in Eq. 5.2.3 and the

determinant is evaluated one arrives at the equation

A A A A
1 + AgAz + g z 11 + g2 2 z2 2 + [g1 2 + g2 1] z12 = A (5.2.4)

We will call og a g-type Characteristic Determinant

The complex frequencies which are zeroes of A are natural

frequencies of the LLF:R network with o.c. constraints across

terminal pairs 1 and 2. In Eq. 5.2.4 we have used the definitions

A A A
Az = z z22 - 12

Ag = g11g22 (5.2.5)

To obtain the Characteristic Determinant in the case wherein

the R-LLF device is described by a branch impedance parameter

matrix we let S and e take the forms
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A A

~ss~y =T1Y12

Sss]

L 1222J

r 1 r12
e R (5.2.6)

r21 r22

A A
where the subscripts on Sss and e denote that Sss is given by a

s.c. admittance matrix and ess is characterized by impedance

parameters.

VI 1 V12

V21 V22

LLFPB Figure 5.2.3

F'igure 5.2.3 indicates the definition of terminal pairs involved

such that the LLF:R network is Additive and the impedance

equilibrium matrix is the sum of the branch impedance parameter

matrices of the LLFPB MTP element and the R-LLF MTP element. The

center terminal of the R-LLF device is labeled with an r to denote

that the parameters indicated on the circuit symbol apply to a

branch impedance description of the R-LLF device. The currents

1, 1 2 are response loop-currents to source voltages e1 and e2 '
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respectively. When [e s] becomes null, i.e., rll = r12 = r21 = r22
one obtains the reference LLFPB network. Letting Iess] become null

effectively removes the R-LLF network and places the voltage sources

e and e2 across terminal pairs of the LLFPB network as indicated in
A

Fig. 5.2.4. The matrix [S then relates the response currents

i 1, i2 to voltage sources el, e2'
el e

2

LLFPB

Figure 5.2.4. Network of Figure 5.2.3 With e55  Null
r

If we use the definitions of Eq. 5.2.6 then Eq. 5.2.1 becomes

A A
1 0 11 Y12 r 11r 12

det + = Ar (5.2.7)

..O 1 y12y 22 r21r22

where the superscript r denotes the fact that the R-LLF device is

described by r parameters. If the matrix operations are carried out

in Eq. 5.2.3 and the determinant is evaluated one arrives at the

equation

A A A A r
1 + ArAy + r y1  + r22 y22 + (r12 + r21y 12 = A (5.2.8)

this determinant will be called an r-type Characteristic Determinant.

It applies to the case wherein the R-LLF device is described by a

branch impedance parameter matrix. Equation 5.2.8 is dual to

Equation 5.2.4 since they pertain to dual situations. Thus Equation
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5.2.8 could have been written by inspection. In Equation 5.2.8 we

have used the definitions

A A A A 2
Ay = y11y2 2 - 12

Ar = r 1 1 r22 - r122 (5.2.9)

It is not difficult to see from the above discussion that

terminal pairs have been defined in such a way that S and

s are inverses, i.e.,

z 11z12 11 Y12
A A A A
zA2z y12 22 (5.2.10)

In addition, if [e si is not singular (and thus [es is not

singular)

-1r11912 r 11r12

g2 192 2 Jr 21 r22  (5.2.11)

However Equation 5.2.4 applies whether Ag = 0 or not and Equation

5.2.8 applies whether Ar = 0 or not. Thus the pair of Equations

5.2.4 and 5.2.8 are able to handle the situation in which the R-LLF

device can only be described either on an impedance or an admittance

basis but not both. However there are situations in which the

R-LLF device cannot be described on either an admittance or an

impedance basis. In such situations a mixed basis description

suffices. Thus the following sections discusses the formulation of

the Characteristic Determinant for a mixed solution matrix S and
me

mixed parameter matrix e 5.
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5.2.2 Mixed Matrices

A description of a multiterminal-pair network on a mixed basis

is one in which some voltages and some currents are dependent or

response quantities rather than all voltages or all currents. We will

not consider the mixed cases in which both the voltage and current at

a terminal pair are regarded as dependent or independent quantities

since such cases have no physical correspondence as far as the

formulation of equilibrium equations is concerned.

Figures 5.2.5a and b show a two terminal-pair grounded network

with the two possible types of mixed excitation, i.e., a voltage

source at one terminal pair and a current source at the other terminal

pair. In Fig. 5.2.5b the response variables are the current at

0
e je

(a)

(b)

Figure 5.2.5. Mixed Excitations For A Two Terminal-Pair Network

terminal pair 2 and the voltage at terminal pair 1. The equilibrium

equations for this case read as follows
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l = u e + b 212

e 2 e 21el + u22 i2

where i1 and e2 are source variables and

u 11b12U =
aL21u 2 2j

(5.2.12)

(5.2.13)

is the equilibrium matrix. The first equation in 5.2.12 is an

application of Kirchoff's Current Law and the second equation is an

application of Kirchoff's Voltage Law. In Fig. 5.2.5a the response

variables are the voltage at terminal pair 2 and the current at

terminal pair 1. The corresponding equilibrium equations are

given by

e = v i + a2 e2

1 = b2 1 1 + v2 2e 2
(5.2 .14)

where e1 and i2 are source quantities and

(5.2.15)

is the solution matrix. If U and V are not singular then it is clear

that

U = V~1 (5.2.16)

since the inverse of the equilibrium matrix is the solution matrix.

We may regard the solution matrix for one mixed basis description as
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the equilibrium matrix of the other mixed basis description. The

elements of these mixed matrices are related to the open circuit

impedances and the short circuit admittances. Let

Y =
y2 1y2 2j

z = z2

zzz2
(5.2.17)

be the s.c. admittance matrix and the o.c. impedance matrix as

conventionally defined. Then

a j~k y ijk
jk z kk Yjj

aj = -

; bjk
- lk = yjk
zii Ykk

y1 1 y ,
- 2 ; 1 1 yll

1
V 2 2 z2

Since the mixed matrices of a two terminal pair R-LLF device

are real, special symbols will be used for the elements of these

matrices just as with impedance and admittance matrices. Figures

5.2.6a and b illustrate the circuit symbols for a two terminal-pair

R-LLF device when mixed matrix descriptions are used. The

equilibrium equations for the network of Fig. 5.2.6b are given by

i = k e + k2 i2

e2 = k2 1e 1 + k2 2e 2

where i1 and e2 are excitations and

(5.2.19)

(5.2.20)
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a Jig-



(a)

e k 2 2

(b)

Figure 5.2.6. Mixed Excitations and Circuit Symbols For
Two Terminal-Pair R-LLF Device
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The equilibrium equations for the

network of Fig. 5.2.6b are given by

e = h i + hl2 2

12 = 211 + h22 2

where e1 and i2 are excitations and

h 11 h121
Ih hl2H 2

Lh 21 h22

(5.2.21)

(5.2.22)

is the equilibrium matrix. Since H and K are real versions of U and

V respectively one may construct the set of equations analogous to

Eq's. 5.2.16 to 5.2.18.

5.2.3 Mixed Matrix Formulations

In this section we will obtain characteristic determinants for

the cases where the R-LLF device is described by mixed equilibrium

matrices. Consider first the case in which the R-LLF device is

described by a K type equilibrium matrix. Figure 5.2.7 indicates

pm

Figure 5.2.7. Definition Of Terminal Pairs For LLF:R Network
With Additive Mixed Matrices
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the definition of terminal pairs involved such that the LLF:R

network is Additive and the mixed equilibrium matrix is the sum of

the mixed equilibrium matrix of the R-LLF MTP element and that of
A

the LLFPB MTP element. In this case we choose S and e as

indicated below

AAl
u 1-b 2

uA A
-a 21 u 22

k 11kl2
ess kK (5.2.23)k21k221

ks~ [ 2 1k 2I2

When ess k becomes null, i.e., k = kl2== k =21 k22 =0 one obtains

the reference LLFPB network. Letting esk become null effectively

removes the R-LLF device and places the voltage source e and

current source 12 across terminal pairs of the LLFPB network as
A

indicated in Fig. 5.2.8. The matrix IS s) then relates the response
ue 2

62

LLFPB

Figure 5.2.8. Network Of Figure 5.2.7 e5  Null
k

quantities i, e2 to the sources e ,i. The minus signs are used in

[A
used to relate parameters of [ ]with those of Sssy and ss

s] uihtoe f[rs u yz
The minus signs are needed due to the different positive reference

directions assigned for the voltages and currents of the network of
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Fig. 5.2.8 and those of Fig's. 5.2.2 and 5.2.4. For an LLFPB

network

A A
b12 = 21 (5.2.24)

i.e., the voltage transfer ratio in one direction is the negative of

the current transfer ratio in the opposite direction. When we use

the definitions of Eq. 5.2.23 and Eq. 5.2.24, Eq. 5.2.1 becomes

1 O~ u11a21 k 11k12

det + jA=A Ak (5.2.25)
O 1 -a21u22 k21k22

If the matrix operations are carried out in Eq. 5.2.25 and the

determinant evaluated we obtain the Characteristic Determinant

1 + AkAu + k1 u + k2 2 u2 2 + (k2 1 - k1 2 )a2 1 =k (5.2.26)

where the following definitions have been used

Ak = k k22 - kl 2

A A A A 2
Au = u u22 + a2 1  (5.2.27)

The determinant in Eq. 5.2.26 will be called a k-type Characteristic

Determinant.

We will consider now the case in which the R-LLF device is

described by an H type equilibrium matrix. Figure 5.2.9 indicates

the definition of terminal pairs involved such that the LLF:R network

is Additive and the mixed equilibrium matrix is the sum of the mixed

equilibrium matrix of the R-LLF MTP element and that of the LLFPB
A

MTP element. In this case we choose S and e as indicated below
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Figure 5.2.9

A
v

S ]=

-b 21

h

lss-h]

A
-a

12

A
V 2 2 1

When [e 55 becomes null, i.e., h = hl2 = h21 = h2 2 = 0, one obtains

the reference LLFPB network. Letting ess h
become null effectively

removes the R-LLF device and places the current source i and the

voltage source e2 across the LLFPB network as shown in Fig. 5.2.10.
-- '2*

Figure 5.2.10. Networ OfIiue529Wth e Null
- h

The matrix j S] relates the response quantities e and 12 to the
v

sources i1 and e2. The reason for the minus sign in I S.]is the
v

same as for [SssI For an LLFPB network
u
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A
b 

=

Thus Eq. 5.

det

which leads

1 + Ah

The followi

AV = V

Av =
Ah = h

- a1 2

2.1 becomes

A A i
v1  -a~ h h1 0 11 -2 h11 12

+ = -A A ho 1 a12 v22  h2122

to the characteristic equation

Av + h 11v 1 1 + h22v 22 + (h12
- h2 1 )a1 2 = A

ng definitions have been used

A A
11v22 + a1 2

A 2
11h22 - 12

The determinant in Eq. 5.2.31 will be called an h-type

Characteristic Determinant.

5.3 Constructible Specifications on Complex Pole Locations

5.3.1 g and r - Type Characteristic Determinants

In this section we consider ways in which the g-type and r-type

Characteristic Determinants may be specialized such that only

"constructible" specifications are made upon the LLFPB network which

is now considered to be RC. This is a preliminary step to finding

potentially acceptable driving point and transfer functions (i.e.

those having the possibility of general pole-zero locations) which

involve only constructible specifications. We will discuss the
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(5.2.30)

(5.2.31)
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g-type Characteristic Determinant first.

convenience

A A A A g
1 + AgAz + g11z11 + g2 2 z2 2 + 1g12 + g2 1 z12 = A (5.3.1)

Examination of this determinant indicates 5 situations in which

constructible specifications are involved upon the RC-LLFPB network.

These are listed in table form in Fig. 5.3.1 with the corresponding

specialized Characteristic Determinants and constructible specifica-

tions. Cases (3) and (4) have obvious variants of identical form by

Figure 5.3.1. Special Situations Leading To
Constructible Specifications:
g-Type Characteristic Determinant

redefining terminal pairs. It should be noted that in cases (1)

through (4) the G matrix is singular, i.e., Ag = 0. Thus the

corresponding R-LLF devices have no representation in terms of R

matrices although some may be represented by H or K matrices. The

forms of the G matrices for cases (1) through (5) are listed below

173

Specifications on
Specialized Parameters Characteristic Determinant RC-LLFPB Network

A A A A
1 Ag = 0; g12 + g21 . 0 1 + g + g22z22 =A A

A A A AgA A A
2 Ag = 0; z 2  0 1 + g z + g22z22 =A ,z22; 0

A A
3 g12 g 11 = 922 ' 0 1 + g21z12 12

A A g A A
4 g11 "9gl2 = 0 1 + g22z22 + g2 1 z1 2  A z22z2

Ag;z2  0 AA A A =A A A A5 ; A 1 + Agz 11z22 + g 11z 1 + g 22z22 =A z1,z 22; '12 0

This is rewritten below for



(1) G =
L11 C

L-g g22J

g g 2 2
, 1 1 g22 -g

(2) G2

(3) G3 =

(4) G4 =

1 

L21

12]

g22J

, g1 1 92 2 = 12921

0 0

21 00 0
g 21 922

911
(5) G5

21

12

922J

' g119 2 2 # g12g21

Note that in cases () and ($) z12 is required to be zero. In such

a case the RC-LLFPB network must decomposable into two isolated sub-

networks as shown in Fig. 5.3.2.

Figure 5.3.2. Illustration Of The Condition z1 2 = 0

Since the r-type Characteristic Determinant is dual to the g-

type we obtain the dual table shown in Fig. 5.3.3. Note in cases

(1) through (4) that the R matrix is singular. Thus the corresponding
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Specialized Parameters

Ar = 0; r 1 2 + r21 = 0

A
0; y12 = 0

r12 =r11 =r 2 2 = 0

r =12 = 0

5|Ar / A
0; y2 = 0

Characteristic Determinant

A +A1 + r y + r22 22

A A
1 + r1ly11 + r22Y22

A r
1 + r21Y12 "A

A A
1 + r22Y2 2 +2112

Ar

Ar

r

A A A A r1 +Ary1y 22 + r y + r22Y22 =A

Specifications on
RC-LLFPB Network

A
y11'

A
yll'

A
Y12

A
y22'

AA
Y22

A
Y22

A
Y12 =

A
Y12

A A = 0

Figure 5.3.3. Special Situations Leading To
Constructible Specifications:
r-Type Characteristic Determinant

R-LLF devices have no representation in terms of G matrices although

some may be represented by H or K matrices. It is readily seen that

case (5) of Fig. 5.3.3 is identical to case (5) of Fig. 5.3.1.

Consequently Fig. 5.3.3 lists only four new possibilities for con-

structible specifications rather than 5. The R matrices for these

four cases are

r

(1) R =

-r

rj

r 2 2

listed below

; r r22 = -r

(2) R2 =

rll r12

Lr21 r2j
1r r22 = r12

0
(3) R3=

r 21

0

0
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; r11r22 / r12r21

A A
The condition y12 = 0 has the same consequences as for zl2 = 0 since

A

y 1z2 2
2 A

Az

5.3.2 k And h-type Characteristic Determinants

In this section we consider ways in which k-type and h-type

Characteristic Determinants may be specialized such that only

"constructible" specifications are made upon the RC-LLFPB network.

We will consider the k-type Characteristic Determinant first. This is

rewritten below

A A A
1 + AkAu + k11u + k22u22 + (k2 1

A
- k1 2 )a2 1 = Ak

A A A A
The functions u 11, u22, and a21 may be expressed in terms of the y

A
and z functions with the aid of Eq.'s 5.2.18. In terms of these

functions

1 A
A ;u 22zl

A
1 A z21

A' 21 A --

y22 z11

A
21

Y22

Also one may readily determine that

A A
A y11  2

Au = 1J = N

22 z1

(5.3.11)

The R-LLF devices with the G matrices of cases (1), (2), (4), and

(5) and in Fig. 5.3.1 the R matrices of cases (1), (2), and (5) in
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A
u l

(5.3.10)
r11 rl12

(4) R =

r 21 r 22



A Ak
1 - k1 2 k2 1Au + (k2 1 - k1 2 )a2 1 = A

This determinant may be rewritten in terms of z parameters as below

1 - k 2 + (k21221 21

A
z11

A
- kl2k 21 z22 + (k 21

- kl 2 ) = Ak

zl1

A k
- k 1 2 ) z1 2 = A1

Examination of Eq's. 5.3.13 to 5.3.15 indicates that constructible

specifications will be obtained in the following three situations

indicated in Fig. 5.3.4.
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L

or

(5.3.14)

(5.3.15)

Fig. 5.3. are such that K matrix description exist. Consequently they

provide a number of situations in which the parameters of the K type

Characteristic Determinant may bei.specialized to attain constructible

specifications. Since they do not add anything new there is no point

in bringing them up in the present discussions. Rather we will only

mention those specializations of the parameters of the k-type

Characteristic Determinant which lead to R-LLF devices with no R or G

matrix description. The conditions for the non-existence of R or G

matrix descriptions are that

k 0

k22 (5.3.12)

In such a case the k-type Characteristic Determinant becomes

(5.3.13)



r

Specialized
ParamPtPrs

Characteristic
Determinant

Specifications On
LLFPB Network

A
z

z22 k A A
2 k = k22 = 0 ; k21 = kl2 1 - k1 2 k2 1 -. A z 1 1 ,z 2 2

zi

A k A A
3 k12 = 0 1 + k2 1a2 1 =A z12,z11

Fig. 5.3.4 Some Conditions Leading To Constructible Specifications:
k-Type Characteristic Determinant

The forms for the K matrices of the R-LLF devices for cases (1)

through (3) are listed below

0

K= k21
kl2
0

0 k
K2=

k O

O O
(3) K 3 =

k 21 0

(5.3.16)

(5.3.17)

(5.3.18)

By direct analogy with the k-type characteristic equation we may

construct the table of Fig. 5.3.5 for the h-type Characteristic

Determinant.

It is readily seen that cases (1) and (2) of Fig. 5.3.5 lead to

the same R-LLF device as cases (1) and (2) of Fig. 5.3.4. Thus only

case (3) represents a new result. The H matrix for this case is

(5.3.19)
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(1)

(2)

H O
H 1=

h21 0

4



Specialized Characteristic Specifications On
Parameters Determinant LLFPB Network

zll h A A A
1 h h22  0 ; zl2 = 0 1 - hlh21 AAz 1 1 ,z2 2 ;zl2 = 0

11__ 22_12__12_21__A_________ z2z 22

A
z 11 hA A

2 h = h22 0 ; h21 = h12 1 - h2h21 T- = lzz22
z22

A h A A
3 h12 =0 1+ h2 1a1 2 = A zl2,z22

Fig. 5.3.5 Some Conditions Leading To Constructible Specifications:
h-Type Characteristic Determinant

5.4 Discussion Of Specific Three Terminal R-LLF Devices

In this section the following question is investigated for some

specific R-LLF devices that involve Characteristic Determinants with

constructible specifications. Can an RC-LLFPB network be found such

that when the R-LLF device is embedded in the RC-LLFPB network the

resulting RC-LLF:R network will have a prescribed set of complex

natural frequencies? To answer this question we form the

Characteristic Determinant pertinent to the particular description

of the R-LLF device and then see what restrictions there are on its

zeroes.

We will consider first the R-LLF devices and LLFPB networks that

are pertinent to cases (1) through (5) of Fig. 5.3.1 and then we

will discuss the cases of Figures 5.3.3, 5.3.4, and 5.3.5.

5.4.1 Cases (1) and (2); G Matrices

The Characteristic Determinant for cases (1) and (2) is shown

below equated to a rational fraction in (s).
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g A A _P s) (5.4.1)= 1 + gllzl + g 2 2 z 2 2 - Q s)

P(s) and Q(s) are polynomials in s with real coefficients. Since we

A A
are assuming that the LLFPB network is RC, then z and z22 have

their poles constrained to the negative real axis. It follows that

the poles of A which are the zeroes of Q(s) must lie on the negative

real axis. Thus let

Q(s) = (s + a 1 )(s + a 2)..-(s + an) (5.4.2)

where the

a > 0; j = 1,2---n a a k (5.4.3)

It is assumed that P(s) is a polynomial in s of the nth degree.

We note first of all that if both gll and g22 are positive then the

zeroes of P(s) which are the zeroes of Ag, must lie on the negative

real axis. This follows from the obvious fact that if gll and g22

are > 0 then A is, according to Eq. 5.4.1, equal to an RC-LLFPB

driving point impedance.

If g and g2 are both negative then A is expressible in the

form

A = 1 - Z(s) = (5.4.4)

where Z(s) is an RC-LLFPB driving point impedance. It then follows

that P(s) is the difference between the denominator and numerator

polynomials of an RC-LLFPB driving point impedance. One may readily

demonstrate that such a P(s) not only has all its zeroes on the a

axis but may have at most one zero on the positive real axis.
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The remaining possibility is that g and g be of opposite

algebraic sign. It will now be demonstrated that for this situation

P(s) may have zeroes located arbitrarily in the complex plane. To

prove this fact we will assign a P(s) with arbitrary zeroes and then

find an algorithm whereby one may find physically realizable

A A
impedances z11 and z2 2. Let

P(s) = sn + an-lsn-1 + -.. a s + a0 (5.4.5)

where the a's are restricted only in that they are real. Expand

P/Q in partial fractions. This expansion takes the form

n

(s) 1+ 1 + k k (5.4.6)
1T jis + a s ++

Some of the residues will be positive and some will be negative. The

last equality in Eq. 5.4. 6, where k+ and k. are positive, evidences
j 3

this fact in an obvious fashion. If we compare Eq. 5.4.6 with A in

Eq. 5.4.1 and make the identifications

A k +
A 1 k ___

z1 1 s + GT

A 1k
z22 g -J. (5.4.7)

22  s + a.

A A
then z11 and z22 will be p.r. and RC if

g11 > 0, g22 < 0 (5.4.8)
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An interesting point here is that any set of g's which satisfy

A A
Eq. 5.4.8 will lead to p.r. and RC, z and z2 2.

A
conclude that if z12

Thus for case (1) we

= 0 and the R-LLF device has a G matrix of the

a b
G =; ad = bc

C -dj
(5.4.9)

then the resulting RC-LUF: device may be synthesized to have natural

A
frequencies arbitrarily placed in the complex plane. Since z12 = 0,

the RC-LLF:R network must take the configuration indicated in Fig. 5.4.1

RC-LL F PB

a b
-c -d

g

RC-LLFPB

Figure 5.4.1. RC-LLF:R Network Permitting Arbitrary Assignment
Of Natural Frequencies: G1 Type Matrix

For case (2) we do not have to assume that z1 2

the restriction

b = c

= 0 but then we have

leading to

a b 2G2 =ad = b 
-b -d

(5.4.11)

The RC-LLF:R network in this case is not restricted to the configura-

tion of Fig. 5.4.1 but to the more general configuration of Fig. 5.4.2.

While the above procedures allow complex natural frequencies to be

arbitrarily assigned no attention has been given to the problem of
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networks.

5.4.2 Case (3); G Matrices

The Characteristic Determinant for case (3) is

- 1 + g2 1 z1 2 = s

A
If we solve for z12 we obtain

A Q1 (s) Q(S)
g 2 21 L Q (S ]

(5.4.12)

(5.4.13)

AWe note that z12 is the transfer impedance of a grounded two-

terminal pair RC-LLFPB network. The necessary and sufficient

Aconditions for realizability of z12 are

(1) that it have simple negative real poles with real residues

(2) that the numerator polynomial have all positive coeffi-
cients and degree < degree of denominator polynomial.
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a b
-b -d

9

RC-LLFPB

Figure 5.4.2. RC-LLF:R Network Permitting Arbitrary Assignment
Of Natural Frequencies: G2 Type Matrix

synthesizing RC-LLF:R transfer functions for specified pole-zero

locations. This problem is discussed in Chapter 6 where terminal

pairs are brought out from the RC-LLFPB networks. To maintain the

natural frequencies as designed in this section one must observe the

usual precaution of inserting voltage sources by a plier-type entry

and current sources by a soldering iron-type entry into the RC-LLFPB



Condition (1) is automatically satisfied by selecting Q(s) as below

Q(s) = az(s + a1 )(s + a 2 ) - (s + an) (5.4.14)

where the a's are positive and a is a positive constant. Let us

assume first that g21 is positive. Then (2) can only be satisfied

if P(s) has all positive coefficients. This is easily seen from the

fact that -Q(s) has all negative coefficients. Consequently if P(s)

has negative coefficients then P(s) - Q(s) will at least have nega-

tive coefficients in the same locations. Thus for g21 positive the

assignment of natural frequencies must be the zeroes of a polynomial

in s with positive coefficients.

If we let g21 be negative then it is readily seen that P(s)
Abecomes unrestricted. This is best seen by rewriting z1 2 for this

case as follows

b A 1z g21 [92 (5.4.15)

Since Q has positive coefficients we may always adjust a in Eq. 5.4.14

such that Q - P has positive coefficients, whether or not P has

positive coefficients. From a practical point of view, the case where

g21 > 0 is not less useful from z21 < 0 since a stable transfer

function always has a denominator polynomial which is Hurwitz and

a Hurwitz polynomial has positive coefficients. It will be recog-

nized that the G matrix for case (3) is that of an ideal vacuum tube

when g21 > 0.

In practice when one synthesizes zl2 one makes an initial synthesis

synthesis which yields z1 2 to within a constant multiplier. Then

impedance leveling adjusts the transfer impedance to the desired
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9 A A
A 0 = 1 + g 22z2,22 + g 21z12 (..6

But these are also the complex roots of the equation

1 + 2 1 z 12  =
1 + g22z22

(5.4.17)

obtained from Eq. 5.4.6 through dividing by 1 + g 22z22 No complex

Aroots are removed by this operation since 1 + g22 z22 has only real

axis zeroes whether or not g22 is negative. We may place

g21 A

1 + '22zl2 P(s)

1 + A(s)
g22  22

Now the expression

1 A

S 2 2 
zl2

12 12

g22 + z22

(5.4. 18)

(5.4.19)

will be recognized as the transfer impedance of the network of

Fig. 5.4.3.
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constant multiplier. It may be seen then, that regardless of the
A

value of g2 1 one may obtain a physically realizable z2 1 '

5.4.3 Case (4); G Matrices

The characteristic equation for this case is

-1+ 9A A
A = 1+ g22 z2 2 + g2 1 z12

We are interested in the generality of location of the complex roots

of

(5.4.16)



OHMS

Figure 5.4.3. Network With Transfer Impedance Z1 2

With this definition of Zl2 Eq. 5.4.18 assumes the form

1 + g21Zl2 = F(s)
21 12 Q(s) (5.4.20)

Note that this equation is identical in form Eq. 5.4.12 for case

(3). Thus solving for Z12 we obtain

Z g21
(5.4.21)

If we assume that g22 is positive then we can adjust the

impedance levels of the passive network, without loss in generality,

by letting

A
A z 22
z 22 g 2g22

A
zl12

zl12 g22'

Z12 1. 1 1z22 (one ohm termination) (5.4.22)

We define

921
922

(5.4.23)
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as the amplification factor of the R-LLF device since when g21 and

g are positive the R-LLF device has a G matrix identical in form

to that of a vacuum tube at low frequencies (incremental linear

operation) in which 1/g22 is the plate resistance and g2 1 is the

transconductance. For g2 1 positive and normalization as indicated

in Eq. 5.4.22, Eq. 5.4.21 becomes

=12 u (5.4.24)

A
Since Zl2 is an RC-LLFPB transfer function, the implications of

Eq. 5.4.24 are almost identical to those of Eq. 5.4.13. Thus if

u > 0, P must have positive coefficients while if u < 0, P may be

generally assigned. There is however one important difference

between the situation of Eq. 5.4.24 and Eq. 5.4.13. This is that

A
while any value of g21 in Eq. 5.4.13 will lead to acceptable z12

functions, any value of u in Eq. 5.4.24 will not. To understand
A

this fact note that Zl2 is constrained to be the transfer impedance

A
of an RC-LLFPB network terminated in 1 ohm while z12 is not restricted

in this way. Thus while incorrect constant multipliers resulting
A

from a synthesis of z12 can be compensated for by a change in
A

impedance level, this is not generally the case with Z1 2 ' Synthesis
A A A

of Zl2 requires the simultaneous synthesis of z22 and z 2  Synthesis
A

procedures presently available allow z12 to be synthesized to within
A (13)some maximum constant multiplier when z22 is also specified . A

A
change in impedance level of Zl2 is accomplished only by a change in

A A
level of z22, z1 2 , and the one ohm termination by the same amount.

It will be demonstrated that if g22 is negative and g21 is

positive then P can be chosen arbitrarily subject again to the
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condition tl

Characterist

= 1

Expand P/Q,

same)

P(s)
Q(s)

A
z12 (s)

z22 (s)

If we e

It is clear

satisfy Eq.

A
that z12 has

k(j) >whe
22

+ g21z 12 Jg2 2 j z22 = (5.4.25)

hat u may not be fixed a priori. In this case the

tic Determinant has the form

z12 , and z22 in partial fractions (degree of P and Q the

k + 1s + ogt

k(j)
12

22

quate residues we find that

(5.4.27)
- g2 2 jk =k

(j))
that positive values of k )and k~j a efudt12 a 22mabefudt

5.4.27 whether or not k( ) is positive. Since any poles

A
must also be contained in z22 we must always have

n kl) / 0. For a specified z22 (s) one can synthesize

(5.4.26)

z (s) only to within a maximum constant multiplier.12()ol towti amaiu cosatmlile. Thus the set

of residues k12 may all be off by a constant multiplier. It may

be seen that if we are free to choose the ratio g21+22 as large

as we wish we can always compensate for any constant multiplier.

If g12 and g2 2 are both negative one may show that in general

P(s) must have positive coefficients.
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g2 2
= 0

A
zl12 0

The R-LLF device then has the G-matrix

0

G5 =
921

12

0

and the Characteristic Determinant is

g= A A
- 1 - gl 2g2 1z1 z2 2

The complex zeroes of A are also those for the function

1 A
S- gl2g2 1 z22z11

P(s)

Q(s)

Let us first assume that g12 and g21 are of the same sign. In

this case Eq. 5.4.31 takes the form

1. A
-l ~g12321 z22

z111

P(s)

Q(s)
(5.4.32)

It will now be shown that P(s) in Eq. 5.4.32 has its zeroes

A 1
constrained to the a axis. When has no zero at o, 7 - has the

partial fraction expansion. 11
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(5.4.28)

(5.4.29)

(5.4.30)

(5.4.31)

5.4.4 Case (5); G Matrices

We will only consider here the situation in which

g,, = 0



z

The poles o

positive.

n

Z

satisfies a

RC admittan

yll=

is the diff

follows tha

P(s)
Qs = 7

O k1
k -1s1 - As + a yll (5.4.33)

f 1/z11 located at s = - a. ; J = 1,2, - n where a. is

The quantities k 1, k are positive. Now the sum

s (5.4.34)

11 the requirements for a p.r. RC impedance.

ce

Ok 1- r

Thus the

(5.4.35)

erence between a constant and an RC impedance. It

t

k - [ + gl2g21 z221 (5.4.36)

Thus P(s) is expressible as the difference between the numerator and

denominator polynomial of an RC impedance. Such a difference has

its zeroes on the a axis with at most one positive a axis zero.

When 1/z11 has a zero at infinity one may still demonstrate

that P(s) has zeroes on the real axis although the number of positive

real axis zeroes has not been determined at present. The proof

offered here is somewhat indirect and makes use of a property of LLF

networks demonstrated in Chapter 7. This property is that an

RC-LLF:R network containing only active bilateral devices has its

natural frequencies constrained to the real axis. To apply it to
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our present situation we note that if g1 2 - g2 1 the form of

Eq. 5.4.32 remains unchanged. Thus P(s) is no less general when

g12 g2 1 . But when g1 2 = g2 1 the R-LLF device becomes bilateral.

Thus applying the theorem we conclude that P(s) has only negative

real axis zeroes whenever g1 2 and g2 1 are of the same sign.

Let us now assume that g12 and g21 are of opposite sign. Then

Eq. 5.4.31 may be rewritten in the form

A A P(s)
yll + g 1 2 9 2 1 z 2 2  Q(s).37)

An RC admittance behaves exactly like an RL impedance when

considered as a function of s. Thus the zeroes of P(s) are

constrained by Eq. 5.4.37 to be located no more generally than the

zeroes of the sum of an RC and an RL impedance. Another way of

saying this is that the zeroes of P(s) are the short circuit natural

frequencies of the series combination of an RC and an RL impedance.

It is difficult to state in a precise quantitative way how such

zeroes are restricted. It is readily seen that j axis zeroes are

forbidden. In a qualitative way one can see that a number of zeroes

in the same area making small angles with the jw axis will, in

general, be forbidden. The reasoning behind this statement is the

fact that in the jw axis vicinity of such zeroes the phase of P(s)

increases very rapidly by many radians. Since P/Q is a p.r. function

its phase may not go beyond + r/2 radians. Thus the increase in

phase of P must be matched by a corresponding increase in phase of

Q(s). But Q(s) has only negative real poles which are located

distantly from that portion of the jw axis under discussion. Thus
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the phase contribution from Q(s) will vary too slowly to compensate

for the phase change of P(s). One may conjecture, however, that if

we augment P/Q as follows to form P'/Q'

_ PQ 2

Q1

where Q2 and Q have negative real zeroes, that the phase change of

P(s) may be accommodated. The idea is that with enough poles and

zeroes on the negative real axis we can approximate rather general

phase characteristics.

2When g2 1 12  -g and g 912 the R-LLF device becomes a

gyrator with G matrix

0 9G (5.4.38)
--g O

Thus we have demonstrated that a gyrator in a network configuration

like Fig. 5.3.2 produces a resulting RC-LLF:R network whose natural

frequencies are no more general than the short circuit natural

frequencies of the series combination of an RC and an RL impedance.

We will now demonstrate that a gyrator quite generally embedded in

an RC-LLFPB network leads to an RC-LLF:R network with the same

restrictions. The characteristic equation for a generally embedded
A

gyrator (zl2 / 0) is

A
=g 2 2 z22
= 1 + g Az = 1 + g (5.4.39)

where we have used the identity
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(5.4.40)

It is clear that the complex zeroes of A of Eq. 5.4.39 are also

zeroes of

A 2A P(s)
ygg + g z 2 2 = Q(s) (5.4.41)

Since Equation 5.4.41 is identical in form to 5.4.37 we have clearly

obtained the desired result.

5.4.5 Other Cases; R, K, and H Matrices

Cases (1) through (5) of Fig. 5.3.3 wherein R matrices are used

are dual to those of Cases (1) through (5) of Fig. 5.3.1 where G

matrices are used. Consequently the discussion of Sections 5.4.1

through 5.4.4 may be carried over in dual form in order to discuss

the locations of the natural frequencies of an RC-LLF:R network with

embedded R-LLF devices described by the R matrices of Fig. 5.3.3.

This process of dualizing the statements of the previous sections

is quite straightforward and will not be carried through.

We will now consider the R-LLF devices and LLFPB networks that

are pertinent to Cases (1) through (3) of Fig. 5.3.4. For Case (1)

the Characteristic Determinant is given by

A

A = k 1 - k 22
21 12 A

k 1
(5.4.42)

The complex zeroes of Ak are the same as those of P(s) in the

following equation
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AA P (S)z A 21kl2 22 Q(s) (5.4.43)

Clearly if k21 and kl2 are of opposite sign then the zeroes of P(s)

lie on the negative real axis since P/Q is a p.r. RC impedance in

this case. When k21 and kl2 are of the same sign then Eq. 5.4.43

becomes

A P F(s)z - Ik lkl z2 -zQ' s (5.4.44)11 2 12 -2 Q(s)

It is readily shown that the zeroes of P(s) may now be assigned

without restriction (providing of course as we have been assuming

throughout that complex zeroes occur in conjugate pairs). To this

end expand P/Q in partial fractions as indicated in Eq. 5.4.6 and

then identify

11 = 1 + k

A k 1k k (5.4.45)
22 k2 1 k12  s + a

A
The impedances z11 and z22 thus constructed are p.r. RC impedances.

It is then clear that a network of the configuration shown in

Fig. 5.4.4 may have an arbitrary set of complex natural frequencies

specified. Case (2) yields a Characteristic Determinant with complex

zeroes as generally located as zeroes of P(s) of Eq. 5.4.44. Thus

the network of Fig. 5.4.5 may have its natural frequencies

arbitrarily assigned. When b = c = 1 or k = 1 the R-LLF devices in

194



Figure 5.4.4. RC-LLF:R Network Permitting Arbitrary Assignment
Of Natural Frequencies: K Type Matrix

0 K

K 0

K

Figure 5.4.5

RC-LLFPB K2 Type Matrix

Figures 5.4.4 and 5.4.5 become Negative Impedance Converters. A

Negative Impedance Converter has the K matrix

(5.4.46)

Linvill(4) has already demonstrated that a Negative Impedance Converter

in the network configuration of Fig. 5.4.4 allows a general assign-

ment of natural frequencies.

The Characteristic Determinant for Case (3) of Fig. 5.3.4 is

k A P(s)A= 1 + k21 a21 Q(s)

If we solve for the voltage transfer ratio a21 we find

a21 k [Le

(5.4.47)

(5.4.48)
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This case is entirely analogous to Cases (5) of Fig's. 5.3.1 and

5.3.3. We may state by analogy that if k2 1 is positive then P is

restricted to have positive coefficients while if k21 is negative P

is unrestricted. There is an important difference between Case (3)

of Fig. 5.3.4 and Cases (5) of Fig's. 5.3.1 and 5.3.3. This is that

^ A A
while z12 and y12 may be synthesized exactly, a21 can only be

synthesized to within a maximum constant multiplier. Thus while

any g2 1 or r2 1 would suffice to obtain the desired P(s) in Cases (5)

of Fig's. 5.3.1 and 5.3.3 only values of Jk21 1 sufficiently large

will be suitable for Case (3) of Fig. 5.3.4.

Of the situations shown in Cases (1) through (3) of Fig. 5.3.5

only Case (3) presents a new R-LLF device. The discussion of the

possibilities of the R-LLF device of Case (3) of Fig. 5.3.5 is

identical to that just completed for Case (3) of Fig. 5.3.5.

5.5 General Expression For Driving Point Impedance

In the previous sections we have been concerned with the complex

natural frequencies caused by the introduction of an R-LLF device into

an LLFPB network. Only those terminal pairs of the LLFPB network

were evidenced that were connected to the R-LLF device. We now

R-LLF

LLFPB

X

Figure 5.5.1. LLF:R Network Relevant To Determining
General Expression For Impedance

196



extract a terminal pair x from the LLFPB network as shown in

Fig. 5.5.1 and inquire as to the nature of the impedance, z, seen

looking into this terminal pair. The poles of this impedance are

the natural frequencies of the LLF:R network with x open while the

zeroes are the natural frequencies of the LLF:R network with x shorted.

We have previously determined that any complex natural frequencies of

the LLF:R network are zeroes of the Characteristic Determinant

A = det U + Ssses
d {ss +Se}

When we examine the impedance at x we are concerned with two sets of

complex natural frequencies. Those which exist for x open and those

which exist for x shorted. Thus we define two Characteristic

Determinants

A0 =det Uss + Ss ss (5.5.1)

and

Ao = det uss +  S ss (5.5.2)

A 0
in which S is the solution matrix of the LLFPB network seen from

the s terminal pairs connected to the R-LLF device when x is shorted.

Correspondingly S s is the solution matrix with x open.

It is then clear that the impedance seen at x may be expressed

in the form

rA A
A0 det U + S5 Oe55j

z(s) = F(s) A-= F(s) s (5.5.3)
00 det U + Ss'ss
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The determinant A0 contains the complex zeroes and Ao contains the

complex poles. We may determine F(s) in the following fashion.

First we note that

} ess=0 = det U = 1

f e ss=O = det U = 1 (5.5.4)

Thus

F(s) = [z(s)] e = 0 (5.5.5)

i.e. F(s) is the impedance seen at terminal pair x when the

equilibrium matrix of the R-LLF device becomes null. As discussed

previously letting [e] become null effectively removes the R-LLF

device and places either open circuit or short-circuit constraints

upon the set of terminal pairs of the LLFPB network that were

connected to the R-LLF device. If[ess] were described by a G matrix

then open-circuit constraints would be applicable. If [e 5 ] were

described by an R matrix then short-circuit constraints would be

applicable. If [ess] were described on a mixed basis some terminal

pairs would be shorted and some opened.

To illustrate the above ideas we will consider a three terminal

R-LLF device. There are then four types of Characteristic

Determinants depending upon whether the device is described by a

G, R, H, or K matrix. The impedance z(s) takes the four possible

forms indicated below

g r k h
A 0 A A0 A A 0  A A0(556

z(s) = z r r = Zk Ak Z h Ah (5.5.6)

OD 00 00 0o
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The appropriate R:LLF networks are shown in Fig. 5.2.1, Fig. 5.2.3,

Fig. 5.2.7, and Fig. 5.2.9 with the terminal pair x still contained

within the LLFPB network. One may readily define the impedances

A A AA.z z zk and h with the aid of Fig's. 5.2.2, 5.2.4, 5.2.8, and

5.2.10. Extract the terminal pair x from the LLFPB network and then

let the source quantities in these figures vanish. By this means we

A A A A
find that Z, Zr zk, and Zh are defined as shown in Fig's. 5,5.2a,

b, c and d respectively.

LLFPB

(a)

I 2

LLFPB

X I
k c)

Figure 5.5.2
LLFPB

A. (d)
3 h

The general expression for z(s) will be written out below for

the case in which the R-LLF device is described by a G matrix

AO A 0 A 0 A O
A 1 + AgAz + gllzll + g2 2 z2 2 + (g12 + g2 1 ) z1 2Z(S) Zg 1+ AoD I D Aco JAO001 + AgAz + g11 11+ g22 z2 2 + (g12 + g2 9z1 2

(5.5.7)

AO0
where z is an impedance of the LLFPB network with x shorted while

z Go is the corresponding impedance with x opened. It is of interest

to consider some specific cases. Let
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G2=2

G3 =

G =

It wi

of Cases (2

of Eq. 5.5.

correspondi

recognized

respective]

impedances

g g

-g -g1S0
g

0g

O

-g

O

gj

g

O

l1 be recognized that G2 through G5 are special

(5.5.8)

(5.5.9)

(5.5.10)

(5.5.11)

versions

) through (5) of Fig. 5.3.1. The device with matrix G2
8 will be called an Activated Gyrator. The devices

ing to G matrices of Eq's. 5.5.9 through 5.5.11 will be

as an Ideal Vacuum Tube, Vacuum Tube, and Gyrator,

Ly. The corresponding expressions for driving point

are

AC~1

A 1 + g 11 - 22
z 2(s) = z AOO

S 1+ gz - z22

A O
A+ gz1 2

z3(s) z g2
1 + gz 2

[A O A O1A 1 + g Z 22 + 12z (S) = z
g A0

1 + 22 + 1z2

(5.5.12)

(5.5.13)

(5.5.14)
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z5(s) = 1 + g
5 g + gAc

1+ g Az
(5.5.15)

The expression 5.5.13 has already been derived by De Claris 9

although in an entirely different fashion.

201



CHAPTER 6

APPLICATIONS OF COMPLEX LINEAR TRANSFORMATIONS
TO THE SYNTHESIS OF TRANSFER FUNCTIONS

OF RC-LLF:R NETWORKS

6.1 Introduction

In Chapter 3 some particular techniques of LLF:R network

analysis through the use of linear transformations were presented.

The techniques involved both real and complex linear transformations.

In Chapter 4 the analysis techniques involving real transformations

were studied with the idea of inverting the analysis procedure and

forming synthesis procedures. The inversion process was not

entirely successful since the "constructible" specifications re-

quirement was not met in general. In Chapter 6 the analysis

techniques involving complex linear transformations are inverted

successfully. Three general transfer function synthesis procedures

are presented that involve 2 twoeterminal-pair RC-LLFPB networks

and one three terminal R-LLR device described by a G matrix. Two

of these methods will synthesize any stable transfer function to

within a constant multiplier. The starting point for developing

these synthesis procedures is an analysis of RC-LLF:R networks of the

type described in Chapter 5 which lead to constructible specifica-

tions on locations of complex natural frequencies. Specifically,

network Configurations and R-LLF devices suggested by Section 5.4.1,

5.4.3, and 5.4.4 are used. The three synthesis techniques are

presented in Sections 6.2, 6.3, and 6.4. Section 6.5 presents an

illustrative example of transfer function synthesis for each of the

three synthesis techniques.
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6.2 Synthesis Technique No. 1

6.2.1 Transfer Impedance

In this section we will first analyze the LLF:R network of

Figure 6.2.1 with the aid of complex linear transformations in the

manner discussed in Section 3.5 of Chapter 3, as a preliminary to

the synthesis procedure.

a b

f RC-LLFPB -C - RC-LLFPB
e3 fle4

A 9 18

ad bc

Figure 6.2.1 LLF:R Network Applicable To
Synthesis Technique No. 1

It will be recognized that this network falls under case (2) of

Figure 5.3.1 and has been discussed with regard to generality of

location of complex natural frequencies in Section 5.4.1 of

Chapter 5. In particular the network of Figure 6.2.1 is obtained

from that of Figure 5.4.1 by extracting a terminal pair from each

RC-LLFPB network, leaving an RC-LLF:R network with 4 terminal pairs.

Let us assume that current sources are placed across terminal pairs

so that the response quantities are terminal-pair voltages. We

may now apply the results of Section 3.5 to express the o.c. im-

pedance matrix Z of this RC-LLF:R network in the form

A
Z = TZ (6.2.1)
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where Z is the o.c. impedance matrix of the network

device removed (leaving open circuit constraints at

1 and 2) and T is a complex transformation matrix.

give a desired partitioned expression for T it will
A

to express Z and Z in partitioned form.

with the R-LLF

terminal pairs

In order to

be necessary

z 1z2 1z3 z14

z 2 1  z 2 2  Z 2 3  Z 2 4

--- - -1 - -- -
z 3 1  z 3 2  z33 z34

z42 z43 z

zss sr

Zrs Z

A

A
z

Az21

A
z3 1

Az 41

A A A
z 1 2 z1 3  z 1 4

A A1 A
z22 z23 z24 z s

z32 z33 z34 ss

A JA A
z 42 1z 43 z 4

(6.2.3)

Of course, for , j k

The branch admittance matrix of the R-LLF device is

a b:1 ad = bc (6.2.4)
-C -d

In terms of the matrices defined in Equations 6.2.2, 6.2.3 and 6.2.4

we may express the complex transformation matrix t as (See Equation

3.5.14),
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T 0

FT -T -- (6.2.5)
-Z g T Ur

rSss r]
where

-lT =Us +Zg (6.2.6)

Use of T as expressed by Equation 6.2.5 in Equation 6.2.1

yields the following partitioned expression for Z,

I -A A
Z Z TZ ssT Zsr

z j-A A A A A -- A(627

Z rs I Zrr Zrs -Zrs ss Zss rr rs ss Z

We will be interested in this section in the transfer impedances

between terminal pairs 3 and 4 of Figure 6.2.1, z34, z43. These are

elements of the submatrix Zrr given by

A A A
Z rr Zrr Zgrsss T Zsr (6.2.8)

To determine Zrr as given by Equation 6.2.8 we need to evaluate the
A

LLFPB open circuit impedance matrix Z. Figure 6.2.2 shows the

RC-LLFPB network with o.c. impedance matrix Z.

3RC- LLFPB RC-LLFPB
A B

A
Figure 6.2.2 RC-LLFPB Network With 0.C. Impedance Matrix Z



The networks A and B are isolated so that transfer relations are

zero between the terminal pairs (1,3) and (2,4).
A

Thus Z takes the

form

A IA
z o zl3z11 0 13

Al
o z22  o

A

o z42 0

and the submatrices

A [
Z ss 

A
0 z 22

z 31

rs
o0

01
A
z 42

0

z24

0

A
z34

AZ32

(6.2.9)

EAzl13 0

Ao z
0 Z 24J

(6.2.10)
z33 0

A
Z rr A

0 z 34

The remaining matrix needed to evaluate Z rris T.

1 o o a b ~

T =+
A

o 1 o z22 -c -d

1+az

-z A
cz22

1-

This is given by

Al
bz11

A1z
l-dz 22j

A
1-dz 22 -bz11

z 1A
cz 2 2 l+az 11

(6.2.11)
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where A, the Characteristic Determinant, is given by

g = 1 + az1
A-
u "z2.2

Continuing the evaluation

Zr g55 T Z sr

A A
of z43 and z34 we note that

A A A Az31o [a b 1-dz 2 2 -bz [z3 0

A A A A Ag
0 z42 c -d lcz22 l+az 10 z 2 4

(6.2.13)

A A A A
az31  bz3 1  (1-dz 22 )zl3

A A AA
-CZ 4 2 d 42 cz22 z13

A A-bz 1 1 z 2 4

(l+az )z24

1

Since Zrr contains no off diagonal terms, the off diagonal terms or
A A
Zrsgss T Z sr yield z34 and z43 directly. By inspection of Equation

6.2.13 these are given by

A A
abz 3 1 z 1 1 z 2 4 -

A A A)
bz 3l z24(1 + az 1)

z 34

z =

(6.2.14)
A A A A A

cdz 42 22 z13 + cz 42 zl3(1 - dz 22) z 1 3 z 4 2

cg

Since z and z differ by a constant multiplier we need onlyz43 and

examine z4 3, the transfer impedance from terminal pair 3 to terminal

pair 4 of the RC-LLF;R network of Figure 6.2.2. This is given by

z =

A A
dz13 z42 (6.2.15)

A
- dz 2 2
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It is clear that z43 is a potentially satisfactory RC-LLF:R transfer

function from the point of view of generality of location of poles

and zeroes. Moreover, constructible specifications are clearly
A A

involved since z and z13 are a driving point and transfer function

of network A and z2 2, z4 2 are a driving point and transfer function

of network B. Thus we have completed the first of three steps which

must be completed before z43 may be synthesized to specifications.

(See discussion in Section 1.5.2 of Chapter 1). The next step is to

A A Aform an Algorithm whereby physically realizable z11, z13 ' '2 2 , and
A
z4 2 may be determined from a given pole-zero specification of z43 '

This is readily done as follows. Let

N s)

z43 Q s (6.2.16)

Q s)

where N(.:) and D(s) are polynomials in s with real coefficients.

The polynomial Q(s) is of the .same degree at D(s) and has negative

real zeroes,

Q(s) (s + s + 2 .- (s + an)

D(s) sn + d n- n-1 + - 00 d 1 s + d (6.2.17)

A partial fraction expansion of D/Q then has the form

k+ k-
) + k y (6.2.18)

where
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k + > o

(6.2.19)
k > 0

If we now identify

s + Q11 (s)

(6.2.20)

k P2 2 (s)
22 d + Q22

where

Q(s) = Qll(s)Q22 (s)
(6.2.21)

A A
then (assuming a,d > o) z11 and z22 will be p.r., RC driving point

A A
impedances. It remains to determine zl3 and z4 2. This is readily

done by factoring N/Q in the form

N(s) N13 (s)N4 2 (s)

Qs) Q11 (s)Q22(s)
(6.2.22)

where the factors N13 and N24 of N(s) are chosen so that

z N13(s)
zl3 Q (s)

N42(s)
Z42 Q22 (s

are RC-LLFPB transfer impedances. Since Q and Q22 already have

negative real zeroes we need only require that the degree of N13
A

(N4 2 ) is not greater than the degree of Q11 (Q22). Otherwise zl3

(Z42) would have a pole at infinity, which is forbidden for an
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RC-LLFPB transfer impedance. There is one special situation in

which this requirement cannot be met. This is the special case in

which the following three conditions exist at the same time

(1) N(s) has all complex zeroes

(2) the degree of N is the same as the degree of D

(3) the degrees of Q and Q22 are odd.
A A

Then it will be found that either z l3 or z42 will have a pole at

infinity when Equation 6.2.22 and 6.2.23 are used. This difficulty

is easily remedied by augmenting N and D by a factor (s + a) as

indicated below

N(s)(s + a)
N(s) =N(s)(s + a) 'Q(s)
D(s) D(s)(s + a) =4D(s)(s +a

Q()

(6.2.24)

where (s + a) is a factor not contained in Q(s). Of course Q(s)

must also be provided with an additional factor to maintain the

degree of N(s)(s + a) the same as that of Q(s). It is clear from

the above that an Algorithm has been established whereby one may go

from a specified pole-zero pattern for z4 3 to physically realizable

A A A A A A
z11, z13, z22, and z4 2. Since z13 and z4 2 can be synthesized only

to within a maximum constant multiplier, z43 will have a maximum

constant multiplier. If we were free to choose c we could have any

constant multiplier we might desire. The last step in synthesizing

z43 is that of synthesizing the LLFPB and the R-LLF portion of the

RC-LLF:R network. Since, as discussed in Section 1.5.2, our

reference LLFPB network is identical to the LLFPB portion of the

RC-LLF:R network, the establishment of the Algorithm in step 2
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effectively solves half of step 3, the synthesis of the LLFPB

portion of the RC-LLF:R network. The remaining half of the problem

is the synthesis of an R-LLF device with G matrix

a b

G =J ad = bc (6.2.25)
-c -dj

As far as the synthesis procedure is concerned, the numbers a, b,

c, and d may be any real numbers that satisfy ad = bc. A particular

case of such a device has already appeared in the literature.

Horowitz* shows a device composed of two transistors which realizes

a G matrix of the form of Equation 6.2.25 for the particular case

in which

b =-a
(6.2.26)

c =-d

As discussed in the introductory chapter the primary emphasis

of this thesis is to present a new approach to the synthesis of

LLF:R networks, the linear transformation theory approach. It is

not within the scope of this thesis to be concerned with the

practical design of R-LLF devices. Thus, no detailed discussion

will be given of the practical- realization of the R-LLF devices.

appearing in this chapter. It is felt, however, that the nature

of the devices are such that practical realizations are possible.

6.2.2 Transfer Admittance, Voltage Ratio, Current Ratio

When current sources are placed at terminal pairs 3 and 4 in

addition to 1 and 2 of Figure 6.2.1 the solution matrix is an open

*See page h0 of reference 7..
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dircuit impedance matrix Z. By using a complex transformation

matrix the elements of Z are expressed in terms of those of an LLFPB
A

open circuit impedance matrix Z. The previous section has developed

a synthesis technique for the transfer impedance z43. If we apply

voltage sources at terminal pairs 3 and 4 and still use current

sources at 1 and 2 the solution matrix becomes a mixed matrix, say,

M1. By using a complex transformation matrix the elements of M

may be expressed in terms of those of an LLFPB mixed solution matrix
A
Mi. One may then develop a synthesis technique for the transfer

admittance y43 in an entirely analogous fashion to that developed

for z in the previous section. Similarly one may apply a current

source at 4 and a voltage source at 3 and still use current sources

at 1 and 2. The mixed solution matrix M2 may also be expressed in

terms of an LLFPB mixed matrix M2. A synthesis technique for the

voltage transfer ratio a43 may then be developed. Finally if we

apply a current source at 3 and a voltage source at 4 then one may

deal with the synthesis of the transfer current ratio b The13"

details of the matrix manipulations used to find expressions for

y4 3, a43 , and b43 will not be given here. Since the procedure in

their evaluation is entirely analogous to the step leading to the

evaluation of z43 we may determine the correct expressions for y43'
A A

a43, and b43 by a comparison of the elements of Z with those of M ,
A A A A
M2, and M3. The matrices M, M2, and 3 are given below. The

A
solution matrix M relates the following quantities of the network

of Figure 6.2.2.
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given by

1

y 1 1

0

A
b 3 1

A
0a 4

0

A
a 2 4

1
0

Z4 4

A
The solution matrix M2

e
2

-3

A
M

2

4

relates the quantities

(6.2.29)

A
with M 2 given by
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(6.2.27)

4

with M

A
M -

A
a a1 3

r 0
22

0 ~V~
z 33

(6.2.28)

-- aa ,

2

e
3

A



11 0

yl

0 
2 2

A
b 31

IA
'a

01

0 z 4 2

The solution matrix

A
=M 3

il

i2

3

e4

13 0

0 z24

1
Q 0

A
0 z 4

A
M3 relates the quantities

with M3 given by

~221

A
z 13

o $24

z33 0

1

z44

(6.2.32)

The voltage and transfer current ratios are related by

A A
ajk = -bkj (6.2.33)

due to the bilateral nature of LLFPB networks. It should be noted

that all of these mixed matrices apply to the situation wherein
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A
M 2 (6.2.30)

e

e 2

e 3

(6.2.31)

z11

0

z 31

A
N3

A
0 b42



z 43 Y43

A A
zl1 3 -a al3

A A
z4 2 - b4 2

A 1zl11 9 1

A 1
z
22 y 22

with the result

y4 3

A A
cab13 42

1 - a - d 1
(6.2.35)

To find a43 we make the replacements

z43 _8 a4 3

A A
13 * a13

A 1
Z 11, 11

(6.2.36)
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(6.2.34

terminal pairs 1 and 2 are excited by current sources. The reason

for this is that only in this way may we be sure of describing the

R-LLF device by g parameters, i.e., the matrix e55 of Section 3.5

is, for this type of excitation, a branch admittance matrix.
A

A comparison of the solution matrix Z of Equation 6.2.9 with

the mixed solution matrices of Equations 6.2.30, 6.2.31, and 6.2.32

allow us to write down expressions for y4 3 , a43 and b43 by inspection.

To find y43 we replace quantities in the expression for z43

(Equation 6.2.15) as indicated below



with the result

a43

A A
ca 13z24

d z221 + a 7 - -
y11

To find b43 we make the replacements

z43 -* b43

A A
z 42... b42

A 1

z22 s

w ith the result

b43

Albcz 13b42
d1 a z

It is readily seen that only constructible specifications are in-

volved in y43 , a4 3, and b4 3. This fact is perhaps more evident if

the following relationships are recognized

A
A y13
a13

(6.2.40)
A

A 42
b 42 ::A

y22

Thus synthesis of y4 3 involves a synthesis of networks A and B for

a s.c. driving point admittance and transfer admittance; synthesis

A
of a43 involves a synthesis of network A for driving point and trans-

fer admittance and network B for driving point and transfer

A
impedance; and synthesis of b4 2 requires a synthesis of network A
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for driving point and transfer impedance and network B for driving

point and transfer admittance.

The formulation of Algorithms to determine the constructible

LLFPB network specifications proceeds almost identically as with z43 '

We will illustrate the procedure with the construction of the

Algorithm relevant to the synthesis of a specified b43 (to within a

constant multiplier). Thus suppose it is desired to synthesize

b =N(s)
43 Ds)

Perform the following steps.

1. Find the polynomials N1 3, N4 2 ' Q1 1 ' Q22 ' 11, and P22 which

are applicable to the synthesis of z43'
A A A A

2. Determine y4 2 ' y2 2, zl3 , zll as follows

A Q22 (s)
y2 2 =P 22(s)

N42 (s)
y4 2  P22

z lQ(s)

N1 3 (s)
Q11 (s)

The corresponding Algorithms for y43 and a43 are readily formulated

6.3 Synthesis Technique No. 2.

6.3.1 Transfer Impedance

As a preliminary step in the development of the synthesis pro-

cedure we will first analyze the LLF:R network of Figure 6.3.3 with
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the aid of complex linear transformations in the manner discussed in

Section 3.5 of Chapter 3. It will be recognized that this network

falls under case (3) of Figure 5.3.1 and has been discussed with

regard to generality of location of complex natural frequencies in

Section 5.4.2 of Chapter 5. The R-LLF device in Figure 6.3.1 is

recognized to be an Ideal Vacuum Tube.

o o-0

e1  0gm o

el 9 e2

LLFPB - RC

Figure 6.3.1 Network Configuration
Applicable to Synthesis
Technique No. 2

In contrast to the previous section the LLFPB network has only one

rather than two terminal-.pairs in addition to the two already con-

nected to the R-LLF device. The resulting RC-LLF network has three

terminal pairs. Let us assume in this section that current sources

are placed across terminal pairs so that the response quantities are

terminal-pair voltages. We may now apply the results of Section 3.5

to express the o.c. impedance matrix Z of RC-LLF:R network in the

form

Z = Z
A

where Z is the o.c. impedance matrix of the network with the R-LLF

device removed (leaving open circuit constraints at terminal pairs
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1 and 2) and T is a complex transformation matrix. Partitioned
A

expressions for Z and Z analogous to Equations 6.2.2 and 6.2.3 are

shown below

Z rZss Zsr

L Zrsj rr

-A
A ss

Z
z rs

Alzsr
Az rrrrj

z z z

21 22 23

z31 z32 z33

A
zl

A
z21
A
z 31

A

A A
Z 2 2 Z23

--- I-- -

Z 32 33

A A
in which zjk = zkj'

The branch admittance matrix of

o o
gs gm > o

gm oj

the R-LLF device is

(6.3.3)

The partitioned expression in Equation 6.2.5 for the transformation

matrix T and that in Equation 6.2.7 for Z are valid here also. We

will be interested in the transfer impedance z1 3. Inspection of

Equation 6.3.1 shows that this is an element of Zsr. According to

Equation 6.2.7, Zsr is given by

sr T 2 (6.3.4)

where T has the general expression given by Equation 6.2.6. In our

case
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- -+-1(37

TA A
o 1 z 21 z 22 g

l gmnzl2 0
A =(6.3.6)

z22

1 0

A A 1322

~ mz22 1+gmzl2

where A is the appropriate Characteristic Determinant,

Ag = 1 + gA1 (6.3.7)

zl

Applying Equation 6.3.4 to evaluate Z sr we find

Zr zl13 0 z13 (6.3.8)

z23 9mz22 1gmnzl2 z23

13

~1 zl2

A 13 22
z 23 ~ gm 1+gm 12

The expression for zl13 is then

A

z 13 1 3(6.3.9)
13 1gm21 2
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It is clear that zl3 is a potentially satisfactory RC-LLF:R transfer

function from the point of view of generality of location of poles

and zeroes. However, as discussed in Section 1.5.2 of Chapter 1,

there are three steps that must be completed in succession before

one may synthesize the RC-LLF:R network for prescribed z 13 . The

first step is the requirement that constructible specifications be

involved in the expression for z13. Examination of Equation 6.3.9

shows that zl3 is a function of two transfer impedances of a three

terminal-pair RC-LLFPB network. In order to obtain constructible

specifications, the three terminal-pair LLFPB network must be

restricted to a composition of two terminal-pair networks. The

particular composition used is shown in Figure 6.3.2.

Io o

9mo

T3 RC-LLFPB eie2
e3 A

RC-LLFPB
B

Figure 6.3.2 Network For Synthesis
Technique No. 2

frA A
Expressions for z 3 and zl2 in terms of the driving point and

transfer impedances of networks A and B will now be evaluated.

First, the o.c. impedance matrix of network A, ZA, and network B, ZA B
are defined below,
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Z A = A B
Z A = z zl 3 Z B = z1

zA zA ZB
z31 z33 z21

B
z1 2

B
z 2 2

(6.3.10)

A
The network with o.c. impedance matrix Z is shown in Figure

6.3.3.

RC-LLFPB

B e?

Figure 6.3.3 RC-LLFPB Reference Network

/\ A
We may evaluate the transfer impedances z13 and z12 by inspection of

Figure 6.3.3 if we make use of the following well known expression*

for the transfer impedance Z12 of two networks in cascade.

z ()z (2)
z1 2 = 1 12(2)

z21 + z
(6.3.11)

where z and z are the transfer impedances of the first and

second network respectively. The impedances z (2) and z(l) are the11 22

driving point impedances of the component networks that are appli-

cable to the terminal pairs that join the two networks.

We immediately determine that

* Reference 3, page 372
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A
zl3

A
zl2 =1

Using

find that

z 
=

z

z A11

A B

+ z B
11

(6.3.12)

B A

zl~
z A + z B
11 11

A A
these expressions for zl3 and z1 2 in Equation 6.3.8 we

ZA zB
zl3z1

k .3 .13)A +B +B Az + z + gmzl2 z T

Examination of Equation 6.3.13 shows that we have completed

step 1, i.e., only constructible specifications are made upon z13 '

The next step is to find an Algorithm which will yield physically

realizable z A z A and z B z 2 when a specified pole-zero pattern
z1  z13  z1  z12

is given for z13 * Examination of Equation 6.3.13 shows that z1 3 will

in general have zeroes when zB has zeroes. This is undesirable11hazeos Thsiuneial

because the zeroes of zB must lie on the negative real axis of the

complex frequency plane. We may kill two birds with one stone by

letting

z p zA (6.3.14)

where p is a positive constant, because then z13 takes the form,

A zA
zzl3  13

1 1+1 +g mz l2  g B
T+ ~ l+ 12

(6.3.15)

AThe zeroes of zl3 are those of z13. Since network A may be an un-

grounded two terminal-pair RC network, the zeroes of z 3 and thus
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z are unrestricted. The poles of z13 are the zeroes of the

equation

(6.3.16)

where Q(s) is a factor that contains the poles of z B From thez12. rm h

discussion in Section 5.4.2 we recognize that a physically realizable

z 2 can be found for any pos. gm, p and any D(s) with positive

coefficients. Since a Hurwitz polynomial has positive coefficients,

it is clear that zl3 is as general as any stable transfer function

as far as pole-zero locations is concerned

The construction of the Algorithm proceeds as follows. Let

z l3 Ds (6.3.17)

be an arbitrary stable transfer function. Then let

A3

and

zB l + P D(s) - Q(s)
12 g m Q(s)

The polynomial Q is assumed to have the form

Q(s) a(s + a 1 )(s + a2 ) ... (s + an); (6.3.20)
3j /

with a and the a's positive and to be of the same degree, n, as D(s).

For any selection of a's we may always find an a for which D-Q has

positive coefficients if D has positive coefficients. Of course, if

we are dealing with a denominator polynomial D(s) which is Hurwitz,
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(6.3.19)

+ m zB D s)
1+1 + P zl2 !_ Q(S)



then D must have positive coefficients. There is one limiting case

which can cause difficulty and that is when D(s) has all j axis

zeroes. Then D is either an even or an odd polynomial and no non-

zero value of a can be found for which D-Q has positive coefficients.

This difficulty is easily remedied by augmenting N and D by the

factor (s + y) where y is a positive constant. Whereas D(s) may be

either even or odd (s + y) D(s) will have no missing coefficients.

It is assumed that y a-; j = 1, 2 -n. In order for z 2 to be a

physically realizable RC-LLFPB transfer impedance z A must not have13

a pole at infinite frequency. Thus the degree of N must not be

greater than the degree of Q. Examination of Equation 6.3.19 shows

that the degree of Q must be equal or less than the degree of D in

Border for z 1 2 to have positive numerator coefficients (as is required

for a grounded transfer function). Thus the specified stable trans-

fer function zl3 may not have a pole at infinity.

Once a realizable z 2 has been found from Equation 6.3.19 a

polynomial Pl2(s) is selected such that

B P1 2 (s)z (6.3.21)

is a physically realizable RC-LLFPB impedance. An RC-LLFPB grounded

two terminal-pair network is synthesized to have driving point and

transfer impedances z 1 , z 2 If a and gm are selected a priori

then z 2 is specified completely, i.e., the constant multiplier is

fixed by Equation 6.3.19. Since in practice we can either synthesize

z , exactly and z 2 to within a constant multiplier or else z towihi 12 11

within a constant multiplier and z B exactly we must accept whatever
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constant multiplier appears in z . Once z together with its

constant multiplier has been determined by the synthesis procedures

we determine z by Equation 6.3.14. Then z is synthesized exactly

and z 2 to within a maximum constant multiplier. The final result is

a synthesis of z13 to within a constant multiplier. Since the R-LLF

device used in the synthesis procedure may be represented as a

vacuum tube with no interelectrode capacitance and infinite plate

resistance, the RC-LLF:R network may be represented as shown in

Figure 6.3.4 where the vacuum tube circuit symbol is used to repre-

sent the R-LLF device. If a sufficiently small shunt resistance can

be extracted at terminal pair 2 of network B, this may be used as the

plate resistance of the vacuum tube so that a physical vacuum tube

may be used (neglecting interelectrode capacitances), in this case.

6.3.2 Transfer Voltage Ratio

When a current source is placed at terminal pair 3 in addition

to current sources at terminal pairs 1 and 2 of Figure 6.3.2, the

solution matrix is an open circuit impedance matrix Z. By means of

a complex transformation matrix the elements of Z are expressed in
A

terms of those of an LLFPB open circuit matrix Z. The previous

section has developed a synthesis technique for the transfer impedance

zl3. If we apply a voltage source at terminal pair 3 and still use

current sources at 1 and 2, the solution matrix becomes a mixed

matrix, M. By using a complex transformation matrix the elements of

M may be expressed in terms of those of an LLFPB mixed solution
A

matrix M. One may then develop a synthesis technique for the trans-

fer voltage ratio a1 3 in an entirely andogous fashion to that
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developed. for zl3 in the previous section. The details of the matrix

manipulations used to find the expression for al3 will not be given

here. Since the procedure in its evaluation is entirely analogous to

the steps leading to the evaluation of z1 3, we may determine the
A

correct expression for a13 by a comparison of the elements of Z with
A A

those of M. The solution matrix M relates the following quantities

as follows

e i

A
e2 =M 12 (6.3.22)

3 3

A
where the matrix M has the form

A |A
V11  V12 al3

A A ^ A 1
A 21 22 23 MssI Msr

M= - J (6.3.23)

b31 b32 v33 Mrs Mr

To obtain a13 we replace various network functions in Equation

6.3.9 as follows

z13 a 13
A A
z1 2 v12  (6.3.24)

A A
z13  a 13

with the result

a13 a13 A (6.3.25)
1+ gmv 12
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From Equation 6.3.22 it is seen that v1 2 is the transfer impedance

between terminal-pairs 1 and 2 of Figure 6.3.3 when terminal pair 3

is shorted, and that a13 is the transfer voltage ratio between

terminal pairs 3 and 1 (voltage source at 3). One may readily

determine that
A A A

A 13 Y1 3  a13
a1 3  A 1 1

Y11 1 + yl + -- 1 +AB11 1+ A B
z 11yl z1

(6.3.26)
B 1

z12 A B

v 1 2  + - 1 + y z

1 A

where a3 3 /y 1 is a transfer voltage ratio of network A.

A A
With these expressions for a13 and v1 2, the transfer voltage ratio

a13 takes the form

A

a13 1 al3 (6.3.27)

1 B1 + y z
1 + A B + gmzl2 1 B

11 1 + y 1

If we let

y Alz = p(6.3.28)

where p is a positive constant then

A

a3 a13  (6.3.29)

1 + + Z1 2

228



The construction of an Algorithm appropriate to the determina-
A A

tion of physically realizable a1 3 and z1 2 for a specified al3 is

essentially identical to that for the determination of zA and zl
13 12

in the previous section.

6.4 Synthesis Technique No. 3

In this section we will present a transfer function synthesis

technique which does not allow a completely general assignment of

pole locations. This synthesis technique is presented primarily for

its collateral interest with a result of Chapter 7. This is in

regard to the fact that nonbilaterality is the essential ingredient

that allows the assignment of complex natural frequencies in an RC

network.

The network to be considered is shown in Figure 6.4.1.

0 b

RC-LLFPB RC-LLFPB

e3 A e -c - e2 B e4

bC>O

Figure 6.4.1 RC-LLF:R Network Applicable To
Synthesis Technique No. 3

It will be noted that the R-LLF device becomes a Gyrator when b = c.

Since a Gyrator is lossless, the RC-LLF:R network must in such a

case become passive. The synthesis technique to be presented re-

quires only that bc > o so that a gyrator is suitable if desired.

It will be recognized that the type of network shown in Figure 6.4.1
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falls into Case 5 of Figure 5.3.1 and has been discussed in Section

5.4.4. It was demonstrated in this latter section that the natural

frequencies of such a network are constrained to be the zeroes of the

series combination of an RC and an RL impedance.

Since the cascade network of Figure 6.4.1 is of the same form

as that of Figure 6.2.1, the analysis by complex linear transforma-
A

tions follows an identical pattern. The matrix Z is the same in both

cases. Only the matrices T and gss are different here. In our case

o b

gss; bc > o (6.4.1)

and

-AA
0 b 11 - 0 1

1

A A
-cz22  1 o 2 2  1

where the Characteristic Determinant Ag is given by

g A A
A= 1 + bc z 11z22 (6.4.3)

We will concern ourselves only with the transfer impedance z43

although, just as with Synthesis Technique No. 1, we can derive

corresponding synthesis procedures for y43 , a43, and b43. The

230



transfer impedance z43 is contained within the matrix Zrr of Equation

6.2.7. Using Equation 6.2.8 and the expressions for gss and T

applicable in this section we find that

A A A A
c zl3z4 2  c z13a42

z43  A + (6.4.4)
1122 bz +22

where we have used the relationship

A

a z 42 (6.4.5)
22

Let us presume that it is desired to synthesize

N s

z43 (6.4.6)

Qts

where as usual the polynomial Q(s) is of the same degree as D(s) and

has negative real zeroes. A partial fraction expansion of D/Q has

the form

k + k-+ + 1 - (6.4.7)
s + (T s + CT

where k and k- are positive. The admittance

Al k

w + pe

will be p.r. and RC if its zero frequency value is positive, i.e.,
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A k~
Y(o) = 1 - Z >0 (6.4.8)

We will confine our attention to only those denominator poly-

nomials D(s) for which it is possible to find a Q(s) for which

inequality 6.4.8 is satisfied. In this case we may identify

1
z2 2

22(S) k~
y = 1 -

s + ~

A P 2 2 (s) k__
bc z = s + a

i)

to obtain physically realizable

N
Q --

N13 (s)

Q11 (s)

an A
z 11and z 22. Then factor

N42(s)

Q22 ( s)

where

Q Q 11Q22

N N N13 N42

We may then identify

A
z1,3(s)

(6.4.11)

N13 (s)

Q (s)

A N4 2 (s)
a42Q 2 22(

A
z 42(s)

A N4 2 (s)
= 4 2 z2 2 -P22(s

(6.4.9)

(6.4.10)

(6.4.12)
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A
Since z as given in Equation 6.4.9 has a zero at infinity, then so

A
must z13. Thus one must select N13 (s) so that its degree is less

than that of Q 1 . From similar considerations we deduce that the

degree of M42 may not exceed that of Q22(s). Thus the degree of

N(s) must be less than D(s). If y(o) is sufficiently large, then
A

some of this d.c. value may be added to z11 relaxing the requirement

that it have a zero at infinity. In such a case the degree of M(s)

may be equal to that of D(s), but no greater.

For an attempt at a practical realization of a Gyrator in

terms of vacuum tubes see Reference 23.

Figure 6.2.4. RC-LLF:R Network For Synthesis Technique No. 2
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6.5 Illustrative Examples

6.5.1 Synthesis Technique No. 1

To illustrate synthesis technique No. 1 we shall consider the

synthesis of the transfer current ratio

2
S -+

b43 = K 2
[ s + 0.2

5 N(s)
2 K N(s)

S + 1.01]

with pole-zero pattern indicated

(6.5.1)

below

xx
Sjw

-.1 2
0*r 0~

the quantity K is a constant that may be determined after the

network has been synthesized.

For ease in presentation (and no loss in generality)

device of Synthesis Technique No. 1 is chosen to have the

Gl=

which corresponds to

a = b = c = d = 1

the R-LLF

G matrix

(6.5.2)

(6.5.3)

for the general R-LLF device applicable to this synthesis technique.

For such a G matrix, the network of Fig. 6.2.1 has the transfer

function
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A A

b4 z13 b42
b4 3  A

1 + z -1

Proceeding as discussed in Section

Q(s) = (s + .025)(s + 0.50)(s

6.2 we arbitrarily select

+ 2.00)(s + 4) (6.5.5)

and from the partial fraction expansion

[S2D s)
Q s)

+ 0.25 + .0
(s + 0.25)(s + 0.50)(s + 2.00)(s + 4.00)

+ 0.6635
(s + 0.25)

4.048
+ (s + 2.00)

1.0252
(s + 0.50)

14.0141
(s + 4.00)

(6.5.6)

We then make the identifications

A 0.6635z = s + 0.25

A

22 1.0252
s + 0.50

4.7115s + 2.3389 11

s4 + 2.25s + 0.50 lls)

s2 + 4.5s + 2.00 Q22 (s)
15.0392s + 11.1079 P227

4.048
+ s + 2.00

1

+ 14.0141
s + 4.00

(6.5.7)

A
of b 43 may be associated with z 13

A
associate them with b4

z13

A
b42

A
or b 42 * We choose to

2. "Then

s2 + 2.25s + 0.50

-- 05-~
s2 + 0.25 (6.5.8)
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From the equation

A
A Y42
b42 di th

Y22

we determine that

A s2 + 0.25
Y42 = 15.0392s + 11.1079 (6.5.9)

Network B is synthesized by the parallel ladder technique.

Since Network A has all transfer function zeroes at infinity, the

A *
realization of as a Cauer Canonic form with shunt capacitances

and series resistances is appropriate. The final realization is

shown in Fig. 6.5.1. Capacitance and resistance values are in

farads and ohms, respectively.

.1588 .1112

OHMS AND FARADS

'31

Figure 6.5.1. Network For Illustrated Example:
Synthesis Technique No. 1
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6.5.2 Synthesis Technique NO. 2

We will illustrate synthesis technique No. 2 with the transfer

voltage ratio

s2 + 2s + 5 N(s)
a13 = 2 = K D s)s + 2s + 10

(6.5.10)

that has the pole-zero pattern indicated

X + j3

0 -+ j2

-, ~ r
-j2

-j3

For ease in presentation (and no loss in generality) the ideal

vacuum tube is assumed to have the normalized G matrix

0 0
G =

1 0

(6.5.11)

which corresponds to a transconductance of 1 mho. In addition we

will arbitrarily assume that @ = 1. The voltage transfer function

of the network of Fig. 6.3.4 then takes the form

aA
a 1 13

1 3  
2 1 + 1 z B

2 12

where it is assumed that

B 1
z1 1 = -A

below

jWt

(6.5.12)

(6.5.13)
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Proceeding as discussed in Section 6.3 we arbitrarily select

Q(s) = s + 2s + 0.5 = (s + 1 + 2 )(s + 1 (6.5.14)

and determine z1 as12

B [D- 19 = 12(s)
s + 2s + 0.5 = (6.5.15)

We must then form the driving point impedance zB. Only the

numerator polynomial of zB may be selected arbitrarily since the11

denominator polynomial is Q.The zB used is11

B s + 1 1
S11 [s2+ 2s + 0.5J (6.5.16)

The constant x is used to denote the fact that if z is to be

B
synthesized exactly then z can be synthesized only to within a

constant multiplier. This multiplier is determined by the synthesis

procedure. In our case this multiplier turns out to be 38, i.e.,

x = 38 (6.5.17)

Applying Eq. 6.5.13

A 1 s2 + 2s + 0.5
1 38 L s + 1 (6.5.18)

The voltage transfer function for network A is then given by

a = 2 + 2s + 5 Kl
12 + 2s + 0.5

(6.5.19)

where K1 is a constant multiplier. The s.c. transfer admittance

of network A is
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A A A 1 s + 2s 5
1 - 1 1a1 3 38 s + 1

(6.5.20)

Network B has its transfer function zeroes at s = oo. The

Cauer development of z with shunt capacitances will automatically

ensure that z has its zeroes at s = o. Network A has complex

zeroes of transmission and may be synthesized by the parallel ladder

development of Guillemin. The final network is shown in Fig. 6.5.2.
OHMS a 22.76
FARADS ._w._. .0146

Figure 6.5.2. Network For Illustrative Example:
Synthesis Technique No. 2

Note that the shunt 38 ohms at terminal-pair 2 of Network B may be

used as the plate resistance of the normalized ideal vacuum tube.

If the combination is to represent a physical vacuum tube (after

impedance leveling) then the required amplification factor is

u = 1/38 = 38 (6.5.21)
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6.5.3 Synthesis Technique No. 3

The transfer impedance

z =K 2
(s + )(s + s + 1)

Ns (6.5.22)

which is the third order Butterworth filter, will be synthesized

with synthesis technique No. 3. Before this may be done we must

find a polynomial Q(s) with negative real zeroes such that D/Q is

expressible as the sum of an RC impedance and an RL impedance

(or RC admittance). After some trial and error it is found that

Q(s) = (s + 0.25)(s + 1.25)(s + 4.00) (6.5.23)

is suitable since

(s + )(s2 + s + 1)
(s + 0.25)(s + 1.25)(s + 4.00)

S0.1625 + 93 1
s 0.25 s+ .25J + s

where the first term in brackets is an

term in brackets is an RC admittance.

technique No. 2 will be specialized to

b = c = 1

3.782
+ 4.00 (6.5.24)

RC impedance and the second

The R-LLF device for synthesis

the case

(6.5.25)

so that

0 1
G5 = (6.5.26)

It will be recognized that G5 is the s.c. admittance matrix of a

Gryator. With the Gyrator, the transfer impedance of the network

of Fig.6.4.1 becomes
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A A
z ~z 13 a12

z4 3  / a
z + -

z 22

We then identify

A 0.1625 + 0.1193 _11 s + 0.25 s + 1.25

A 1 s + 4.
-22 3.782 s + 0.

0.2818s + 0.2329

s2 + 1.5s + 0.3125

00
218

1 -s + 4.00

Since z43 has its zeroes at s = co,

A 1
zl3 s2 + 1.5s + 0.3125

A 1
a12 s+ 4.0

A A
z12 =a 2z22

1
s + 0.218

Since the transfer function zeroes of Networks A and B are at s = oo,

A A
a Cauer development of z11 and z22 with shunt capacitances is

appropriate. The final network is shown in Fig. 6.5.3.

Urims and Farads

i3I

Figure 6.5.3. Network For Illustrative:
Synthesis Technique No. 3
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CHAPTER 7

SOME PROPERTIES OF DRIVING POINT AND TRANSFER IMPEDANCES
OF LLF NETWORKS

7.1 Introduction

An effective analytic approach to the study of the fundamental

properties of driving point and transfer functions of LLFPB networks

is based upon expressing these network functions in terms of the energy

functions associated with the network. This approach is extended to

LLF networks in Chapter 7. As a result of this extension some new

properties of LLF networks are found. A particularly interesting

property is demonstrated for RC-LLF:R networks. Namely, that if the

embedded R-LLF devices are active and bilateral the resulting network

may not have complex natural frequencies, i.e., the natural frequencies

are restricted to the real axis. Thus the repeated emphasis of the

word active in the phrase Active RC Networks in many previous papers

is misdirected. It is not the activity of the so-called "active"

device involved but rather its nonbilaterality which allows the place-

ment of poles in the complex plane. The most elementary lossless non-

bilateral device is the gyrator. It is well known that an RLC driving

point or transfer function can be realized with positive resistors,

capacitors, and gyrators. But it has never been pointed out that not

only are the gyrators sufficient but they are also necessary if

generality of location of natural frequencies is to be obtained. Of

collateral interest it is demonstrated in Section 6.5 of Chapter 6

that any transfer function (no pole at infinity) whose poles are equal

to the S.C. natural frequencies of the series combination of an RC
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and an RL impedance may be realized by means of positive Rts, Cts,

and one gyrator.

7.2 LLFPB Networks

In this section we will discuss briefly the energy function

approach used to study the fundamental properties of driving point

and transfer functions of LLFPB networks. Let us consider first the

equilibrium equations formulated on the loop basis for an LLFPB net-

work. These take the form

[A A 1Ale = R + sL + _ S (7.2.1)

A A A
where R, L., and S are the resistance, inductance, and elastance loop

parameter matrices, respectively. The column matrix e is that of

sourbe voltages in loop s while i is the column matrix of loop currents,

We shall assume/ independent loops with source voltages in only the

first p loops. Thus

e2
e 2 12

e= e i= ip (7.2.2)

0 i
p+1

0 i

If we enclose the network in a black box and bring out the p loop

voltage sources (without disconnecting them) we form a p terminal-pair
A

black box. The loop branch parameter matrix Zpp of this MTP network
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relates the p voltages sources to the p currents traversing them.

These currents are

the column vectors

Ep

e

e 2

0

e
P,

I=p

by definition i ,12 ''' p *

i

Thus if we define

(7.2.3)

then

A
E = Z I
p pp p

Of course

network.

A
Z is also the open circuit impedance matrix of the MTP

The expression

Q= it = Z m
m= 1

p

m m
m=1

Ip t Ep
(7.2.5)

will now be formulated in two ways - in terms of operations upon
A A A A
R,L,S and upon Zpp. The subscript t on a matrix denotes the transpose

of the matrix. It is readily seen that Q takes the two forms

*A *A i*A * A
Q = itRit + sitLi + - Si pt Z pp]I9

A A A nA
If we define R.,L,S, and Z as follows

(7.2.4)

(7.2.6)
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A
R

R

A

12 R

22

A
R

A
R21

A
Rh

-A1

A
S21

A
S12

A
S22

= z
r, s=1

; Z pp

A
L

L2 1

A
L12
AL 22

A
Z11

A
z21
A.
z

'''A

V

A
z12
A
z2 2

0 *0

A
... z lp

A
zpp

(7.2.7)

A *r
zrs r s

A *

Rrs r s =F

(7.2.8)

Lrs r s

A *
Srs r s 0

We may rewrite Equation 7.2.6

p

zsi r s = F 0 + sT 0 + s
r, s=1

in the form

(7.2.9)
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'' A1

A

S =

then

['pit

*A
itRi

A

ZppI p

r, s=1

i =Li

r., s=1

*A
it

r, s=1



The importance of this equation lies in the fact that the so-called

energy functions F, T0, and V0 are positive no matter how the network

A A A
is excited provided R, L, and S are LLFPB loop parameter matrices. To

demonstrate this property of F0, T0 , and V0 let the typical current ir

be written in the form

(7.2.10)
ir = ar + jbr

where ar is the real part and br is the imaginary part of ir. The

typical product i i * in Equation 7.2.8 then may be written asr s

(7.2.11)iri = [aa + bbsl + j asb - arbsrsr s rs Lr r

Substitution of this expression for i i* in the expression for Frgs o

gives the equivalent expression

F =R rs[aras + brbsl + R rs [asbr - arbs]

rL s=1.U3 = _j.

(7.2.12)

Now due to the bilateral nature of LLFPB networks

A

Rrs
A
Rsr

It immediately follows that the second double sum in Equation 7.2.12

must vanish since the rs terms in the sum is the negative of the sr

term. Thus

F = YYR aa + bb
^o .~L- rs rs 4J.J rs r s

r,s=l r,s=l

(7.2.13)
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The two double sums in Equation 7.2.13 are known to be positive

definite quadratic forms*and thus, as stated above, F0 is positive for

all conditions of network excitation. In a parallel fashion one may

demonstrate that T and V0 are the sums of positive definite quadratic

forms and thus are positive for any manner of network excitation. It

should be noted that an entirely dual discussion is applicable to the

case in which we initially formulate equilibrium equations on the node

basis.

A study of Equation 7.2.9 yields some fundamental properties of

LLFPB networks. These arise from the "positive real" character of

F + sT + -. For a discussion of these properties the reader is

referred to the literature.

7.3 LLF Networks

In this section we will consider the extension of the approach

of the previous section to LLF networks. As defined in the introductory

chapter an LLF network consists of branches which are the usual Ris,

Lis, and C's, plus multiterminal-pair black boxes. These black boxes

exhibit a resistive, inductive, or capacitive behavior. Let us con-

sider the formulation of equilibrium equations on the loop basis for

an LLF network. It will be assumed that the elements of the network

are MTP elements of four types: LLFPB, R-LLF, L-LLF, C-LLF. Each MTP

element is replaced by a set of mutually coupled branches. The loop

equilibrium equations take the form

e = Z1 + R + sL + I S i (7.3.1)

Reference (3). Chapters 1 and 2.
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where Zgf R, L, and S are the loop parameter matrices of the LLFPB

portion, the R-LLF portion, the L-LLF portion, and the C-LLF portion

of the network, respectively. The matrix e is the column matrix of

source voltages and the matrix i is the column vector of loop currents.

Assuming that voltage sources are present in the first p loops and

that there are loops, e and i take the forms

e 2

e
p
0

0

i =

2

i
p

Just as in the development in the previous section we may define

the column matrices Ep and Ip (Equation 7.2.3) and the open circuit

impedance matrix Zpp such that

(7.3.2)
Ep = ZppIp

The Q function takes the two forms

Qi * 1 *
Q = it li + itRit + sitLi + -j itSi

(7.3.3)

Q = [ t zppIp

If we give Z , R, L, S, and Z the following definitions
pp
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z1 2
--- z pi

z22-

--* z

12 r

22

12

22

Z/i=

A A
7 z

A
z21

zA

11

121

l2
A
z2 2

- *

Aa.. z

zI

2 .' 1j

22

AS*it Il
r, s=

A
i tRi =

r, s=1

i Li =

[I*)I

A
z rs r s

rs r s

(7.3.5)

r , s=1

i Si ss r *
r, s=1

p

zppIp =
r, s=1

z i rrs rs

Z pp

z 1

z21
z

z p1

rl r

r

s

r21

s
2 1

S

(7.3.4)

then
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IL A "0z i i* =F + sT +-
rs rs 0 0 5

(7.3.6)

r, s=1

where Fo, To, and Vo are each expressible as the sum of two positive

definite quadratic forms. With the functions F, T, and V defined in

Equation 7.3.5 we may write

1Lz ir s*= F + F + s(T + T) + (V + V) (7.3.7)

r, s=l

The functions F, T, and V are not expressible as the sum of positive

definite quadratic forms and in fact, are complex. We may separate

them into real and imaginary parts in the manner that will now be

described for F. First express the parameter matrix R as the sum of a

symmetric matrix Rb and a skew-symmetric matrix Rn as follows

R = Rb + R n
(7.3.8)

where

Rb = R + Rt

Rn= R - Rt]

One readily deduces from Equations 7.3.9 that

Rb = Rbit

Rn = - [Rn]t

(7.3.9)

(7.3.10)
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left hand side of Equation 7.2.9. Thus we may express it in the form



so that Rb is symmetric and Rn is skew-symmetric as desired. The

elements of Rb and Rn are defined in terms of the elements of R as

follows

r(b) r jk + rkj r(b)
jk 2 kj

(7.3.11)

r(n) rjk - r kj - (n)
jk 2 kj

where r (b) is a typical element of Rjk Rb

of Rn.

and r(n) is a typical element4k

The function F then takes the form

F = r(b)i i*+
r rsr

r, s=1

r (n)i i*rs r s

us now define

Fb= Zb 2
r,s=1

jF ns
r., s=1

r(b)i i*
rs r s

(7.3.13)

r(n)i i*rs r s

so that

F = Fb + JFn (7.3.14)

It will now be demonstrated that Fn and Fb are real so that Fb is the

real and Fn is the imaginary part of F. To demonstrate these facts

we use in Equation 7.3.13 the expression for i i* given in Equationr s

7.2.11. The following expressions are then obtained for F b and F n
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(7.3.15)

The second double sums in the expressions for Fb and Fn are readily

seen to vanish because the rs and sr terms are of the same magnitude

but of opposite sign. Thus

Fb~Z~ rs [aras + brbs] jZ r() Re ir

(7.3.16)

Fn r [asbr - arb = r ) imr

where Re iri stands for the real part and Imiri1 the imaginary part

of i i*46r s
The real functions Fb and Fn are implicit functions of the complex

frequency variable s which satisfy the equations

Fb(s) = Fb(s)

Fn(s*) = -Fn(s)

(7.3.17)

(7.3.18)

To demonstrate Equations 7.3.17 and 7.3.18 one need only note that ir

and is are real rational functions of the complex frequency variable s.

Thus when s is replaced by s* the real part of i i* stays the same but

the imaginary part changes sign. Equation 7.3.18 implies that.

Fn(cr) = - Fn(.) (7.3.19)

252

Fb r [aras + brb + r[asbr - arbs]

Fn 2- r a sbr -- arb - r aas + brbSl



But this can only be true if

Fn(O-) = 0 (7.3.20)

As a final point it should be noted that Fb is a function only of the

symmetric part of R while F is a function only of the skew-symmetricn

part of R. Thus if R has no skew-symmetric portion Fn = 0, while if

R has no symmetric portion Fb= 0. It is readily seen that R will

have no skew-symmetric portion if the R-LLF devices have symmetric

branch parameter matrices (o.C. impedance or S.C. admittance matrices)

and that R will have no symmetric portion if the R-LLF devices have

skew symmetric branch parameter matrices. It is well known that an

R-LLF device with a skew-symmetric impedance (or admittance) matrix

is a lossless device, i.e., it can neither dissipate nor generate

power (24 Thus a network containing lossless R-LLF devices must have

Fb = 0.

The above discussion may be carried along in parallel fashion

for T and V to show that

T = Tb + iTn
(7.3.21)

V = Vb + jVn

The real functions Tb, Tn' Vb, and Vn are given by

Tb = ar[as + brbs

Tn= jZZ4 )[asbr - arbs]
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Vb = s) [aras + brbs

Vn1= Is () [a br - arbsl

where J ,4e9, ( and s$) are defined analogously to

r (b)and r .

It follows from Equation 7.3.22 that

Tb(s*) = Tb(s) ; Tn(s*) = -Tn(s) ; Tn(o-) = 0

Vb(s*) = Vb(s) ; V = -V (s) ; Vn(c) = 0

Thus Equation 7.3.7 becomes

z i* = [F + Fb + JF + s To + Tb + jTn
r., s= 1

+ -s 0 + Vb + JVn (7.3.24a)

which is the desired extension of Equation 7.2.9 to LLF networks.

By formulating equilibrium equations on the node basis one may derive

the expression dual to Equation 7.3.24a as given below

rs ers= [ + Fb + JFn +si+ + Vb + Vn]

+~[Yo +TYb + y (7 .3.*24b)
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in which yrs; r,s = 1 ** p is the set of short circuit admittances

for a network with p terminal pairs of access and er; r = 1 *.. p are

terminal-pair voltages. To obtain expressions for the functions on

the right hand side of Equation 7.3.24b one need only replace the

corresponding expression on the right hand side of Equation 7.3.24a

by its dual. Thus since

Fb Z r Re {ir s}
r, s=l

its dual has the expression

n

Fb 9ZZ b) Re {er e
r,s=l

where n is the total number of independent node pairs (the dual of,d,

g(b)
the number of independent loops) and g is an element of the symmetric

portion of the branch admittance matrix of the R-LLF portion of the

network. It is then only necessary to note which quantities in

Equation 7.3.24a and Equation 7.3.24b are dual. The pertinent dual

quantities are shown below

The dual of T is V

The dual of F is T

The dual of V is T

where

j = 0, b, or n.
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We may give a physical interpretation to a quantity of the form

p

Z(s) z xrx* (7.3.25)
r,s=l

as the driving point impedance of an active-nonbilateral linear network

just as the corresponding expression for LLFPB networks was given a

physical interpretation by Brunet The quantity Z(s) will be called a

Brune form. In order to give a physical interpretation to the Brune

form we have to introduce a new device which is the logical generaliza-

tion of the ideal transformer to the case in which the turns ratio is

a complex quantity. An ideal transformer is shown in Figure 7.3.la.

X REAL X COMPLEX
X X

i il '2

Ie2 Ce2

-X*
( b)

Figure 7.3.1. The Ideal And Generalized Ideal Transformer

The arrow and symbol x indicate that e1 is stepped up by a factor of x

relative to e2. Thus the following mixed matrix equation characterizes

the ideal transformer

1 [:: (7.3.26)
1 2 ~ 3 pe

*See Reference 3, page 8.
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m -

The net average power flowing into a two terminal pair device is given

by

PAV = Re e i* + e2i = RE ei* + e2 2

For the ideal transformer

PA 1 Re e 2  + e *
PAV Y 7 ex2~ 2 2 =0

(7.3.27)

(7.3.28)

as is well known because the ideal transformer is lossless.

The device of Figure 7.3.lb which is the generalized ideal trans-

former is defined to have the following constraints between its voltages

and currents.el 0 x 1:
12 2*

(7.3.29)

The net average power flowing into this generalized transformer is

(7.3.30)12
PA = Re xe ~-+ e21 0

i.e., the generalized transformer is a lossless device also. Note that

when x is real the generalized ideal transformer becomes the conven-

tional ideal transformer. Two arrows are used on the symbol for the

generalized transformer to distinguish it from the conventional type.

One may regard the generalized ideal transformer as a combination of

an ideal transformer and phase shifters since the complex character

of x merely indicates that il,el are phase shifted relative to i2 'e2 *
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A physical interpretation of Z(s) is now given. Figure 7.3.2

shows schematically a p-terminal pair network N. The voltages and

X2 xp*
4. 2 4~

NI

Figure 7.3.2. Relevant To The Physical Interpretation
Of Equation 7.3.25

currents at the terminal pairs are denoted by el,il; e 2,i2; **ep e ; i

At each terminal pair the primary of a generalized ideal transformer

is placed and all the secondaries are connected in series. Since the

voltages on the secondaries are x1 el, x2e2 ' .'' xpep, we see that

the net voltage across their series combination is given by

(7.3.31)e = x 1 e1 + x22 + - -xpe

The common secondary current is i and is related to the various terminal

pair currents by
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In matrix notation we may rewrite the last two equations in the

form,

e = [x x 2 ''' xp] e2

e
p

(7.3.33)

and

x*
2

*

p

(7.3.34)

The terminal pair voltages and currents of N are assumed to be related

by the O.C. impedance matrix Zpp of Equation 7.3.4. Thus

z ... z lp

Zpl pp

il

.2

i
p

ep

(7.3.35)

If we substitute for the column matrix of currents the equivalent

expression in Equation 7.3.34 and then premultiply both sides by the

row matrix

x 1x2 '' p
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we get, after noting Equation 7.3.33,

z .-- z lp x1

x*

x x2 ''' p. = = Z(s) (7.3.36)

z --- z x

The left-hand side of this equation is recognized as being the matrix

equivalent of the double sum in Equation 7.3.25 and the ratio e/i is

the net impedance looking into the series combination of all the

transformer secondaries in Figure 7.3.2. Thus the Brune form is

given the simple physical interpretation of being the net impedance

formed through series connection of the p terminal pairs of the net-

work, each provided with a generalized ideal transformer having an

independently controllable complex "turns" ratio.

7.4 Properties of LLF:R Network

The fact that the functions F, T, and V may be decomposed in the

following way

F = Fb + iFn

T = Tb + JTn

V = Vb + iVn

indicates that there is a fundamental physical reason for regarding

the symmetric and skew-symmetric portions of R-LLF, L-LLF, or C-LLF

branch parameter matrices as separate physical entities. Thus it is
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proper to investigate the forms that the Brune form takes when the

R, L, and R-LLF devices have either symmetric or skew-symmetric

parameter matrices. When

p = 1; Ii12 = 1 (741)

Equation 7.3.24 yields the following general expression for the impedance

of an LLF network

z11 (s) = F0 + Fb + jFn + s[T0 + Tb + Tn]+ [V + Vb + jV

(7.4.2)

The expression zl1 (s) is not a p.r. function, although it is a

rational function of s with real coefficients. This latter fact has

already been discussed in Chapter 1 but it is instructive to prove

this result from Equation 7.4.2. To demonstrate the "real" character

of zll (assuming rationality in s), it is only necessary, by definition,

to show that z is real for s real. Forming z11 (o),

z11 (a) = F0(c) + Fb(a) + JFn(a) + a T(a) + Tb(a) + JT nG)]

+ e [Vo(a) + Vb(a) + JVn(a)] (7.4.3)

But it has been shown in the previous section that

Fn(a) = Tn() = Vn(a) = 0 (7.4.4)

Thus

z11 (a) = F0 (a) + Fb(a) + a [T0() + Tb(cY)l + a [Vo(ca) + Vb(a)l

(7.4.5)
which is obviously real. 261



We will now confine our attention to LLF:R networks, i.e.,

networks containing positive R's, L's, and C's in addition to R-LLF

devices. For LLF:R networks

T = 0; V = 0 (7.4.6)

and

p

Z(s) z i i*= sTe + V + F + Fb+jFn (74.7)

r,s=l

The following two properties will now be demonstrated.

Property 1: An LLF:R network containing R-LLF devices with only
skew-symmetric parameter matrices exhibits a positive
real Brune form.

Property 2: An RC-LLF:R or RL-LLF:R network containing R-LLF
devices with only symmetric parameter matrices must
have its natural frequencies constrained to the a axis.

The network of Property 1 might properly be called an LLFP:R

network since the R-LLF devices involved are lossless. To demonstrate

Property 1 we note that the presence of only skew-symmetric R-LLF

parameter matrices implies that

Fb = 0

so that

p

Z(s) = zri i* = sT + 1 V + F + JF (7.4.8)

r,s=1
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The Brune form Z(s) (or any rational function of s) is defined

to be positive real if

(a) It is real for real values of s

(b) It has a positive real part for values of s with a positive
real part.

The real character of Z(s) has already been demonstrated. Since

Re [Z(s)] = Re [sT +- V + F0] (7.4.9)

it is clear that (b) is satisfied also since the quantity

sT0 + 1 V0 + F is a p.r. (positive real) function. Thus, Property 1

has been demonstrated.

The following properties may readily be deduced by application

of Property 1.

Property la:

Property lb:

Property 1c:

Property

The driving point functions of an LLFP:R network are
positive real.

For an LLFP:R network any jw axis poles must be simple
and the matrix of residues of driving point and trans-
fer impedances at a jw axis pole must be a positive
hermitian matrix. In particular, jw axis poles of
driving point functions must be simple and have positive
real residues.

The driving point functions of a network containing
positive Lts, C's, and skew-symmetric R-LLF devices are
subject to the same restrictions with regard to s plane
behaviour as those of a positive L,C network. In
particular the natural frequencies of such a network
are constrained to the jw axis.

la is obtained from 1 by letting p = 1 and 1i11 = 1 in

Equation 7.4.8 for then the Brune form becomes equal to z11 . Since

the reciprocal of a p.r. function is p.r. then 1/z11 is p.r. also.

Property lb is obtained from the fact that if Z(s) is p.r. then

it must have simple j axis poles with positive real residues. From
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the simplicity of the j axis poles of Z(s) we deduce that the zrs(s)

must have simple j axis poles. If the residues of zrs(s) in their j

axis poles are denoted by krs and those of Z(s) by k, then it is clear

that

p

k = krYx x*r1rs rs
r, s=l1

The double sum

of residues

kp

k 21

K = .

k pl

must be positive real (7.4.10)

is just the Brune form that corresponds to the matrix

k1 2

k22

... k
pp_

Equation 7.4.10 states that this Brune form must be positive real.

This can only be true if

k =k *rs sr (7.4.11)

Thus the matrix of residues must be a positive hermitian matrix.

Property lc follows directly from Property lb.

We will prove Property 2 for RC-LLF:R networks and the proof

for RL-LLF:R networks will follow by analogy. The networks referred

to in Property 2 are properly designated as RC-LLFB:R and RL-LLFB:R.

We note first that if the R-LLF devices have symmetric parameter

matrices then

Fn = 0
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When inductances are absent

T0 = 0

p

Z(s) = § Zrs r s =+ Fb
r,s=1

If we assume that ii = 1 and p = 1 we obtain the following

expression for z ,

z +F ' i1  = 1

This impedance will have zeroes when

- + F =0
s

(7.4.13)

(7*4.14)

The function V0 will not be zero when 1i1 = 1 except in trivial

situations. Thus values of s which satisfy Equation 7.4.14 are given

by

S 0  (7.4.15)
Fb

Since V0 and Fb are real, it follows that the zeroes of z11 must lie

on the a axis. Of course, Fb may be negative so that positive real

axis zeroes of z11 are permissible. By using the dual expression

to Equation 7.4.13 we find that

(7.4.16)
y, = sVo + Fb
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from which we deduce that the zeroes of driving point admittances

are also on the real axis. The analogous derivation for the RL-LLFB:R

network is clear. Thus Property 2 is demonstrated.

The following network properties may be derived from Property 2.

Property 2a: A network containing positive capacitances (or inductances)
plus positive and negative resistances, must have its
natural frequencies constrained to the 1 axis.

Property 2b: A network containing positive capacitances, negative
inductances, and positive and negative resistances must
have its natural frequencies constrained to the a axis.

Property 2c: A network containing negative capacitances, positive
inductances, and positive and negative resistances must
have its natural frequencies constrained to the a axis.

Property 2a is obvious and Property 2c is the dual of Property 2b.

Thus, we will demonstrate the truth of Property 2b only. This is

proven from Property 2 by noting that a negative inductance may be

obtained with a positive capacitance and positive and negative

resistances. The method of obtaining a negative inductance from a

positive capacitance and resistances has already been discussed in

Section 4.2.4. The network which does this is shown in Figure 4.2.6.

Before closing this chapter it should be noted that the Properties

la, lb, and 1c are deducible from basic physical considerations. In

fact, a special case of lb and lc have been demonstrated by Carlin*

The general statement of property 1 is new and the method of proof

of Properties la, lb, and lc is also new. As far as Properties 2,

2a, 2b, and 2c are concerned, they are entirely new.

Reference 24, page 27.
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