APPLICATIONS OF LINEAR TRANSFORMATION THEORY TO THE
SYNTHESIS OF LINEAR ACTIVE NONBILATERAL NETWORKS

by

PHILLIP ABRAHAM BELLO LIBRARY

B.S., Northeastern University
(1953)

S.M., Massachusetts Institute of Technology
(1955)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF SCIENCE

at the '

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1959

Signature of Autho:_ ., , o - . . _ _ _ _ __ _ _ _
Depaf@ment of ElbctTical Engineering, May 18, 1953

-

Certified by - o . _ . . _ _ _ __ _ __
RS . ThesiIs Supervisor

Accepted by _ — e o o o S
Chairman, Depéi;méﬁ%éﬁ CommiZtee on Graduate Students

/
/

/



APPLICATIONS OF LINEAR TRANSFORMATION THEORY
TO THE SYNTHESIS OF LINEAR ACTIVE
NONBILATERAL NETWORKS

by
PHILLTP ABRAHAM BELLO

Submitted to the Department of Electrical Englneering on May 18,1959 in
partial fulfillment of the requirements for the degree of Doctor of
Science.

A new approach to the synthesis of active nonbilateral linear
networks is presented in this thesis - the linear transformation
theory approach. The 1dea of using linear transformations as an aid
in the analysis and synthesis of active nonbilateral linear networks
1s due to Guillemin(1,2), By analysis of an active nonbillateral
network through linear transformations it is meant a method whereby
the dynamic variables of the network are expressed in terms of those
of passive bilateral network by means of linear transformations. The
synthesis procedure is the inverse of the analysis procedure. One
starts with a passive bilateral linear network and through the agency
of linear transformations of dynamic varlables converts the passive
bilateral network into an active nonbilateral one with certain desired
network properties. In addition to presenting new results on the
synthesils of active nonbilateral networks, new results are presented
on the analysis of linear networks and the properties of driving point
and transfer functions of active nonbillateral linear networks.

A method of analysis of linear networks is presented that 1s
applicable to networks whose elements may have any number of terminals.
This analysis me?hgd was arrived at as a generalization of a method
due to Guillemin(Z2), It has been found that the method of analysis
presented in this thesis is very similar to a special case of Kron's(16)
method of analysis which involves "tearing networks". The simllarity
is evidenced by making a correspondence between "torn networks" in his
method and the multiterminal-pair network element of the analysis method
of this thesis. Whereas the "torn network" of Kron may contain internal
sources, the multiterminal-pair element is assumed to be homogeneous,
i.e., to exhibit no terminal-pair voltages and currents when unexcited
externally. An advantage of the analysis method of this thesis 1s its
simplicity. No tensor algebra or notation are involved and in fact the
method requires little more knowledge in its application than an
ability to write conventional loop and node equations.when mutual induc-
tance is present. Some attention is given in fthe sectilon on network
analysis to the special situation in which the equilibrium matrix of a
network composed of MTP (multiterminal—pair) elements may be found by
a simple addition of the parameter matrices of the component MTP ele-~
ments. The Additive Class of networks is deflned. An Additive network
has the property that not only loop and node but also mixed equilibrium
-matrices may be evaluated by addition of matrices describing the
behavior of component MTP elements.



Both real and complex (frequency dependent) linear transformations
are considered as an ald in obtalning synthesls techniques for active
nonbilateral linear networks, Specific attention 1s given to RC net-
works containing active nonbllateral resistive MTP elements. Certain
difficulties are found in using real linear transformations and final syn-
thesis techniques are developed only with The use of complex linear
transformations. As a prelimlnary to the development of synthesis
techniques using complex linear transformations ;an investigation is
made into the complex natural frequencies caused by the introduction
of an active nonbilateral three terminal resistive device into a
passive bllateral RC network. The approach used is general from the
point of view that three terminal (or multiterminal) active nonbilateral
devices may be handled that do not have a description on either an
impeédance or admittance basis but only on a mixed basis. IT 1s shown
that the zeroes of a certain Characteristic Determinant are the complex
poles of the network. A new expression 1s given for the driving point
impedance of a network consisting of a passive bilateral network with
an embedded multiterminal active nonbilateral device.

With the aid of complex linear transformations three new trans-
fer function synthesis techniques are derived. Each technigue involves
2 two terminal-pair passive bilateral RC-networks and one three ter-
minal active nonbilateral resistive device. The first two synthesis
techniques will synthesize any stable transfer function to within a
constant multiplier. The third synthesis technique is somewhat
restricted with regard to the complex pole locations of the relevant
transfer function., However, this third synthesis technique is of con-
siderable theoretical interest since the three terminal active non-
bilateral device involved may, without loss of generallty, be special-
ized to a Gyrator. Since a Gyrator is passive (in fact, lossless),
the "activity" of the active nonbilateral resistive device 1s not a
necessary requirement to obtain complex natural frequencies in an
RC network. Further support is gilven to this statement when 1t is
demonstrated that an RC network with embedded active bilateral resis-
tive devices must have its natural frequencies constrained to the
o axis. Thus, in fact, it is the nonbilaterality rather than the
activity of the embedded active nonbilateral resistive device that
allows Ethe natural frequencies of an "active" RC network to become
complex,

An effective analytic approach to the study of the fundamental
properties of driving point and transfer functions of passive bilateral
networks is based upon expressing the network functions in terms of the
energy functions assoclated with,K the network. This approach was
initially formulated by Brune 17) and further elaborated upon by
guillemin(3518). This thesis presents a number of new properties of
active nonbilateral networks which are derived by extending the energy
function approach to active nonbilateral linear networks.

Thesis Supervisor: Ernst A. Guillemin
Title: Professor of Electrical Engineering



ACKNOWLEDGEMENT

The author is deeply grateful to Professor E. A.
Guillemin for inspiring the original interest in this
research and for his supervision of the work. Thanks
are also due to Professors P. M. Lewis and S. J. Mason
for their helpful comments throughout the course of

the thesis research.



2.

4

TABLE OF CONTENTS

Chapter 1

Introduction

Introduction
The Class of LLF Networks
Previous Synthesis Results

Linear Transformation Theory and Linear Active-
Nonbilateral Networks

Use of Linear Transformations 1n Thesis
1.5.1 General Approach

1.5.2 Specific Approach

Summary of Thesis Results

1.6.1 Analysis

1.6.2 Synthesis

1.6.3 Properties

Chapter 2

Analysis of Linear Networks

Introduction

The Multiterminal-Pair Network Element
Formulation of Equilibrium Equations
2.3.1 Systematic Approach

2.3.2 Formulation by Inspection

2.3.3 Different Representations of MP Network

Evaluation of Equilibrium Matrix by Matrix Addition

2.4.1 Impedance and Admittance Matrices

2.4.2 Mixed Matrices

12
lz

17

21
24
24
27
35
36
38
40

42
44
50
50

61
65
65

73



5.1

TABLE OF CONTENTS (Continued)

Chapter 3

Analysis of LLF:R Networks By Linear Transformation Theory

Introduction
Guillemin's General Method

3.2.1 Network Analysis with Generalized Cut-Set
and Tie-Set Matrices

3.2.2 Application of Linear Transformations
Implications of No Dependent Source
Real Transformations Directly Upon Equilibrium Matrix

Complex Transformations

Chapter 4

Applications of Real Transformations to the Synthesis
of RC-LLF:R Transfer Functions

Introduction

Synthesis Through Transformation of the Branch
Parameter Matrix

4,2.1 General Approach

' 4.,2.2 Example

4,2,35 Synthesis of R-LLF Element

4,2.4 Synthesis of L-LLF and C-LLF Elements

Gain Insertion

Application of Congruent Transformation After Gain

Insertion :
Chapter 5

Complex Natural Frequencies of an RC-LLF:R Network

Introduction

90
94
105

111

116

117
117
123
126
133

136

144



- 5.2

5.3

5.4

5.5

6.1
6.2

6.4

TABLE OF CONTENTS (Continued})

Characteristic Determinant

5.2.1 Impedance and Admittance Matrix Formulation
5.2.2 Mixed Matrices

5.2.3 Mixed Matrix Formulations

Constructible Specifications on Complex Pole Locations
5.3.1 g and r-Type Characteristic Determinants
5.3.2 k and h-Type Characteristic Determinants
Discussion of Specific Three-Terminal R-LLF Devices
5.4.1 Cases (1) and (2); G Matrices

5.4.2 Case (3); G Matrices

5.4.3 Case (4); G Matrices

5.4.4 Case (5); G Matrices

5.4.,5 Other Cases; R, K, and H Matrices

General Expression for Driving Point Impedances

Chapter 6

Applications of Complex Linear Transformations to the

Synthesis of Transfer Functions of RC-LLF:R Networks

Introduction
Synthesis Technique No. 1
6.2.1 Transfer Impedance

6.2.2 Transfer Admittance, Voltage Ratio,
Current Ratio

Synthesis Technique No. 2
6.3.1 Transfer Impedance
6.3.2 Transfer Voltage Ratio

Synthesis Technique No. 3



TABLE OF CONTENTS (Continued)

6.5 Examples
6.5.1 Synthesis Technique No. 1
6.5.2 Synthesis Technique No., 2

6.5.3 Synthesis Technique No. 3

Chapter 7

Some Properties of Driving Point and Transfer Impedances

of LLF Networks

7.1 Introduction
7.2 LLFPB Networks
7.3 LLF Networks

7.4 Properties of LLF:R Networks



1.5.1

1.5.2
 2.2.1
2.2.2
202.3

2.2.4
2.3.1
2.3.2

2.4.1
2'4.2

2.4.3
2.4,4

2.4.5

3.3.1
3.3.2

4.2.1
4.2.2
4.2.3
4.2.4

LIST OF FIGURES

LLFPB Reference Network
Constructible Specifications on Two Terminal-Pair

" RC Networks Without Ideal Transformers

Representation of Tree of Inductances as a
Multiterminal-Pair Network

Representation of Three Terminal-Pair Device by
Three Mutually Coupled Branches

An MTP Element which Provides a Partial Description
of It's Assoclated MP Network

Two MTP Elements for the Same Assoclated MP Network
Analysis Example

Example Showing Relationship Between Branch Parameter
Matrices

Example Illustrating Addition of Parameter Matrices

Manner of Excitation of Typical Branches of an
Additive Network to Have Parameter Matrices Add

Different Ways of Exciting Two Terminal-Pair Network

Network of Figure 2.4.16 Excited with Voltage and
Current Sources

MTP Elements wlth Mixed Excitation

An LLF:R Network with %Zd = 0

Reference LLFPB Network for LLF:R
Network of Figure 3.3.1

Networks for Example of Section 4.2

A Simple Positive Resistance Box

LIFPB Network with Simple Resistance Box

Coupled Tree Branch Representation



4.2.9

4.2.10

4,3.1
4.3.2
4,3.3
4.35.4
4.4.1
4.4.2

4.4.3

4.404
4.4.5
4.4.6

4.4.7

4.4.8

LIST OF FIGURES (Continued)
Realization of Building Block with Gyrator and
Resistances

Realization of Bullding Block with Ideal Vacuum
Tube and Resistance

The General Grounded Two Terminal-Pair Circuit
Element

Synthesis of R-LLF MTP Element for Example of
Section 4.2,2

Realization of Negative Inductance and Capacitance

Realizations of Capacitive and Inductive Versions
of Ideal Vacuum Tube

A Restricted Network Allowing Gain Insertion
LLFPB MTP Elements for Network of Figure 4.3.3
LLFPB Network to Have Galn Inserted

LLF:R Network with Gain Inserted

Simple LLFPB Network Allowing Gain Insertion
Network of Figure 4.4.1 with Gain Inserted

Formation of MTP Network by Selection of New
Terminal Pairs

Network Pertinent to Obtaining the Tie Set Matrix B

A Specialized Version of the Network of Figure 4.4.1

LLF:R Network After Congruent Transformation

LLF:R Network of Figure 4.4,5 with Reference
Network of Figure 4.4.4

Network of Figure 4.4.6 with Paralleled RC Network
Definition of Terminal Pairs for LLF:R Network
with Additive Admittance Matrices

Network of Figure 5.2.1 with [ess]g Null

$ni
[WA

-
A
[N}

j—
[N
U

ot
(N
ui



5.2.4

5.2.5
5.2.6

5.2.8
5.2.9

5.2.10
5.3.1

5.302
5.3.3

5'3'4

5.3.5

LIST OF FIGURES (Continued)

Definition of Terminal Pairs for LLF:R Network
with Additive Impedance Matrices

Network of Figure 5.2.3 with [éss]r Null

Mixed Excitations for a Two Terminal Pair Network

Mixed Excitatlons and Circuit Symbols for Two
Terminal-Pair R-LLF Device

Definitions of Terminal Palirs for LLF:R Network
with Additive Mixed Matrices

Network of Figure 5.2.7 with [ess]k Null

Definition of Terminal Pairs for LLF:R Network
with Additive Mixed Matrices

Network of Figure 5.2.9 with [ess]h Null

Special Situations Leading to Constructible
Specifications; g-Type Characteristic Determinant

Illustration of the Condition 2\ = 0

12

Special Sltuations leading to Constructible
Specifications; r-Type Characteristic Determinant

Some Conditions Leading to Constructible
Specifications; k-Type Characteristic Determinant

Some Conditions Leading to Constructible
Specifications; h-Type Characteristic Determinant

RC-LLF:R Network Permitting Arbitrary Assignment
of Natural Frequencies; Gl—Type Matrix

RC-LLF:R Network Permitting Arbitrary Assignment
of Natural Frequenciles; GZ—Type Matrix

Network with Transfer Impedance 212

RC-LLF:R Network Permitting Arbitrary Assignment
of Natural Frequencies; Kl—Type Matrix

RC-LLF:R Network Permitting Arbitrary Assignment
of Natural Frequencies; Kz—Type Matrix

=
[$>]
M

178

179

18z

10



5.5.1

5.5.2

6.201

6.3‘1

6.3.2

6.3.3
6.3.4
6.4.1

6.5.1

6.5.2

6.5.3

7.3.1

7.3.2

LIST OF FIGURES (Continued)

LLF:R Network Relevant to Determining General
Expression for Impedance

A AN A
Definition of the Impedances zg,zr,zk,zh

RC-LLF:R Network Applicable to Synthesis Technique
No. 1

RC-LLFPRB Network with Open Circuit Impedance
Matrix

Network Configuration Applicable to Synthesis
Technique No. 2

RC-LLF:R Network Applicable to Synthesis
Technique No. 2

RC-LLFPB Reference Network
RC-LLFPB Network for Synthesis Technique No. 2

RC-LLF:R Network Applicable to Synthesis
Technique No. 3

Network for Illustrative Example: Synthesis
Technique No. 1

Network for Illustrative Example: Synthesis
Technique No. 2

Network for Illustrative Example: Synthesis
Technique No. 3

The Ideal and Generalized Ideal Transformer

Relevant to the Physical Interpretation of
Equation 7.3.25

196

199

[aV] V]
[av} ™o
V] | o

P
&
&

A}
[a]
(]

11



CHAPTER I

INTRODUCTION

1.1 Introduction

The work in this thesls is concerned primarily with the appli-
cation of linear transformation theory to the synthesis of active-
nonbilateral lilnear networks. New results are also presented on the
frequency domain properties of such networks and the general problem
of linear network analysis. The idea of using linear transformation
theory as an aid both in the analysis and synthesis of active-
nonbilateral linear networks is due to Guillemingl’z) A brief dis-
cussion of his fesults and others in this area will be found in
Section 1.4 after a discussion of the class of networks dealt with
in this thesis in Section 1.2, and a discussion of recent results
in the synthesis of active-nonbilateral networks using nontrans-
formation theory approaches in Section 1.3. In Section 1.5 there
1s presented the method of approach used in this thesis to synthesize
active-nonbilateral networks by means of linear transformation
theory and a discussion 1s given of the resulting types of problems

that arise. Finally Section 1.6 gives a brief summary of the thesis.

1.2 The Class of LLF Networks

The active-nonbllateral class of networks considered in this
thesis may be regarded as a logical extension of the class of net-
works commonly designated as LLFPB(S) (linear, lumped, finite,
'passive, bilateral). An LLFPB network is conveniently defined as

any network consisting of an interconnection of resistances,
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inductances, and capacitances. These elements are all positive and
yield symmetric, positive-definite parameter matrices. If the
resistances, inductances, and capacitances are allowed to take on
negative as well as positive values, the network may lose 1ts passive
character but must still remain bilateral. The branch parameter
matrices are still symmetrical but they no longer define positive
definite quadratic forms. The mathematical significance of a non
positive-definite resistance parameter matrix is that under some
conditions of network exciltation, the net average power into the
network may become negative. Physically, this means that the network .
is delivering average power into the circuit external to itself
rather than absorbing average power from it. The mathematical
significance of non positive-definite capacitance and inductance
parameter matrices is that under some conditions of network excita-
tion the net stored capacitive or inductive energy may become nega-
tive. Physically,.this means that the inductive or capaciltive
portion of the network is delivering average energy into the network
external to itself rather than absorbing average energy from it.

We might properly denote this class of networks as LLFB (linear,
lumped, finite, bilateral) dropping the letter P from LLFPB because
the network may no longer be called passive, but retaining the

letter B since the network is still bilateral.

We may now drop the bilaterality restriction in the following
way. Considef that in addition to fthe resistances, inductances, and
capacitances of the LLFPB network we add three types of multiterminal

black boxes - capacitive, inductive, and resistive. Thus the
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capacitive black box would be described by a s.c. admittance»matrix
eéual to the product of a real matrix and s (the complex frequency
\}ariable)° The real matrix need be nelther bilateral nor define a
positive definite quadratic form. Entirely analogous statements

apply to the inductance and resistance boxes. Through a method
suggested by Guillem:i.n(2> these black boxes may be handled as far

as network analysis 1s concerned like ordinary resistances, inductances,
and capacitances. When this is done one finds that the inductance, .
resistance, and capacitance parameter matrices of a network containing
such black boxes become non-symmetrical and do not define positive
definite quadratic forms. We will use the letters LLF (linear,

- lumped, finite) to denote such a network, i.e., a network consisting
of positive inductances, resistances, and capacitances plus resis-
tance, capacitance, and inductance black boxes of the type described
above. It will be convenient to have an abbreviation for each of
these types of boxes. The following definitions appear to be appro-
priate:

R-LLF: Active-Nonbilateral Resistance Box
L~-LLF: Active~-Nonbilateral Inductance Box

C-LLF: Active-Nonbllateral Capacitance Box

It would be convenient to have a further notation for an LLFPB
network containing black boxes of only one or two of the types.above.
We will use the following notation:

LLF:X: A network consisting of positive resistances, inductances,

capacitances and black boxes of the types X-LLF where X
may be one of the letters R, L, or C.

LLF:XY: A network consisting of positive resistances, inductances,
capacitances and black boxes of the two types X-LLF and
Y-LLF when X, Y may be any two of the letters R,L,C.

14



If all three types of boxes are involved the letters LLF will be
ﬁsed. Thus the class of networks which contain positive R,L,C plus
active-nonbilateral resistance boxes would be designated by LLF:R.

The question naturally arises at this point as to the corres-
pondence between the class of active-nonbilateral linear networks
defined above and the physical active-nonbilateral networks appearing
in practice. It 1s clear immediately that just as with LLFPB net-
- works, delay lines or any other elements are omitted if they‘have
impedances or admittances that are non-rational func¢tions of. the
complex frequency variable s.

This follows from the more or less obvious fact that the
incluSion of black boxes of the type described in an otherwise
- LLFPB network leaves the rational character of network functions
unchanged. It should be noted also that we have been confining
ourselves right from the start, to a discussion of time invarient
linear systems, i.e., systems whose behavior is described by linear
differential equations with constant coefficients

-Excluding the above classes of networks, the remaining possi-
bllity for linear active-nonbilateral networks appearing in practice
1s the class of networks that may be formed by interconnecting
resistances, inductances, and capacitances with vacuum tubes and
transistors. It is assumed that the latter elements are being
Operated under small signal conditions so that the incremental
‘behavior of the devices are linear. If one is concerned with a
- range of operating frequencies that is sufficiently low one may

regard the vacuum tube and transistor to be active-nonbilateral
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resistance boxes and thus members of the class R-LLF. For frequencies
above this range one finds that shunt capacitances across terminal
pairs come into play. Thus for a large range of frequencies circuits
containing vacuum tubes and transistors still belong to the class
LLF:R even though the individual vacuum tubes and transistors do not
belong to R-LLF. This comes about from the fact that in this range
of frequencies, the active-nonbilateral character of these devices
is reslistive rather than inductive or capacitlve in character. Of
course if the operating frequency of the vacuum tube or transistor
is pushed too high then transit time effects come into play. This
causes the vacuum tube or transistor to be no longer representable
as an R-LLF device with lumped terminal capacitances.

It appears then that from a practical point of view the class
of networks LLF:R warrants our first consideration as far as the
development of synthesls methods is concerned. Furthermore it will
be demonstrated in Chapter 4 that the black boxes belonging to L-LLF
and C-LLF may be synthesized from networks of the class LLF:R. Thus
both from a theoretical and a practical point of view there doeslnot
appear to be any Jjustification for giving anything but a passing
glance at the other classes of LLF networks defined above. This is ~
Just the attitude that will be taken in this thesis even though
some of the results would require small modification to be applicable
to the classes of LLF networks other than LLF:R.

If a network consists of only resistances and capacitances
Plus R-LLF devices we will designate it an RC-LLF:R network. The
extension of this notation to other two element kind combinations is

clear.
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1.3 Previous Results

In this section we will discuss some previous results in the
syntheslis of active-nonbilateral linear networks that have been
arrived at using a non-transformation theory approach. We will
confine our attention to synthesis methods involving a small number
of R-LLF devices.

Networks containing vacuum tubes, transistors, resistors,
inductors, and capacitors have had a wide variety of applications
in communications technology. Some of the important ones are listed
below:

1. Amplification of signals

2. Compensation of existing non-ideal characteristics of
system such as with feedback amplifiers.

3. Simplification of linear transfer function synthesis due
to the isolating property of vacuum tubes

4. Compensation for parasitic dissipation in passive elements.
Examples are afforded by the Q-multiplier and to stretch
a point - the oscillator

5. The general ability to relax various restrictions imposed
on the driving point and transfer functions of LLFPB
Networks. 1In particular the ability to make two-element
kind network functions behave as general as three-element
kind network functions.

Items 1 through 4 are familiar applications. But item 5 is
relatively new and perhaps represents the most fascinating item to
a network theorist like the author who has only recently left the
warm shelter of LLFPB network theory. It is demonstrated in this
latter discipline that the natural frequencies of RC (and RL) net-
Works are confined to the negative-real axis. This is unfortunate

Since the theoretical capacitive element is far closer to the physical
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capacitive element than is the theoretical inductance to its physical
counterpart. This non-ideal behavior of the physical inductor is
especlally noticeable at low frequencies. Thus a design of an RC
network based on ideal R and C for low frequency applications will

be much more likely to yield the results predicted than a similar
design involving inductances. In addition the inductors required
for low frequency application become bulky and costly.

Linvill(é) was apparently the first person to demonstrate the
general character obtainable for the transfer function of an active-
nonbilateral RC network. He developed a general transfer impedance
synthesis method involving two passive bilateral RC networks in a
cascade connection separated by a negative impedance converter.

By this connection any specified stable transfer function can be
realized to within a constant multiplier. The negative impedance
converter is an ideal two terminal-pair element that yields at one
- terminal pair the negative of the impedance connected at the other
terminal pair. Subsequent work by others(5’6) has produced very
good practical negative impedance converters. In the realization
of the negative impedance converter two or more vacuum tubes or
transistors are required. The total number of elements in the RC
networks 1s of the order of magnitude of the number of elements that
would be required to synthesize the specified transfer function by
an RLC network and thus the synthesis method does not require an
increase in network complexity.

Following Linvill, Horowitz(7) modified Linvill's method so
that the negative impedance converter was not explicitly used. His

method involves the manipulation of dependent sources leading to a
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realization of the active element directly in terms of at most two
transistors. The final result is as general as Linvill's.

Recently Yanagisawa(s) presented a general transfer admittance
synthesis method which involves a negative impedance converter plus
two RC networks in a parallel type rather than a cascade type of
connection. The advantage of this method over Linvills lies in the
fact that the RC networks can be so simple that an L type network
configuration 1s sufficient. The final result is that four driving
point impedances are required to be synthesized rather than two two
terminal-pair RC networks with complex transmission zeroes (in the
general case) as with Linvill's method.

We should also mention the work of DeClarisgg) He has shown
that any stable (denominator polynomial Hurwitz) driving point
function can be realized with R's, L's, C's, and a two terminal-pair
device called a "controlled" source. When considered as a grounded
two terminal-pair device, the '"controlled" source may be regarded as
an ideal vacuum tube. An ideal vacuum tube is defined here as an
incremental model of a vacuum tube which has infinite plate resistance
and no interelectrode capacitance. (There is a dual controlled source
which he mentioned, but this has no realization in terms of an ideal
vacuum tube). Some of his synthesis methods require that an ungroundec
two-terminal pair "controlled" source be used. In this case one
cannot use the ideal vacuum tube alone. A possible theoretical reali-
zation for the ungrounded two-terminal pair controlled source is an
ideal vacuum tube in cascade with an ideal transformer. In particular
he gave a synthesis method for a driving point impedance in terms of

R's, C's and one controlled source. However, although it was not
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explicitly stated, the method will only work if the "controlled"
source 1is an ungrounded two terminal-pailr network.

According to well-informed sources Kinnarawalla® has developed
a method of synthesizing any p.r. driving point impedance using one
negative 1mpedance converter plus assoclated resistances and capa-
citances. TUnfortunately there appears to be no published record
of this method.

The above researchers have clearly demonstrated that an RC
network with an embedded R-LLF device (assuming we can call a nega-
tive impedance converter an R-LLF device) may have driving point
and transfer functions of a general character. However none of
these people have investigated the following general question:
how do the parameters of an arbitrary embedded R-LLF device influence
the locations of the complex natural frequencies of an RC-LLF:R
network? In the work mentioned above either the R-LLF device or the
network configuration or both are frozen a-priori. Both the negative
impedance converter and the ”controlléd" source have given general
results. Is there something special about these devices? Are there
other devices that will do as well? Are there other typés of network
configurations that will yield as general results as those used by
Linvill, Horawitz, and Yanagisawa? These questions have been inves-
tigated in this thesis using a linear transformation theory approach
to the study of active nonbilateral networks. It is believed that
considerable light is shed upon the above questions. A synthesis
Procedure is given involving an ideal vacuum tube plus two two

terminal-pair RC networks that allows the synthesis of an arbitrarily

¥Bell Telephone lLab., Murray Hill, N.J.
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specified stable transfer impedance or voltage ratio to within a
constant multiplier (no pole at infinity). Another general synthesis
procedure 1s given for synthesizing any dne of the four possible
transfer functions (impedance, admittance, voltage, and current).
This method involves the same configuration as Linvill used with

the negative impedance converter but involves a new R-LLF device.

It is also shown that fairly general transfer functions may be
fealized using a gyrator although complete generality is not obtain-
able here.

1.4 Linear Transformation Theory and Linear Active-Nonbilateral
Networks

The concept of applying linear transformation theory as an aid
to the analyslis and synthesis of active-nonbilateral linear networks
is due to Guillemingl’z) His initial impetus for considering the
application of linear transformations to the study of active-
nonbilateral linear networks came from a consideration arising in
the formulation of equilibrium equations for LLFPB networks. He
noted that if, for example, one cut-set v 1is used to define node-
palr voltage variables and another cut-set a is used to formulate
Kirchoff current equations, then the equilibrium equations on the
hode basis become unsymmetrical. If the cut set a is used both for
defining an independent set of node pair voltages and for formulating
Kirchoff's current equations, the node equilibrium matrix becomes
5ymmetrical. One may readily show that the node-pair voltages for

the symmetrical formulation of equilibrium equations are related to

those for the unsymmetrical formulation through a real non-singular
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transformation matrix. Thus we have a situation in which an LLFPB
network is characterized by an unsymmetrical admittance matrix by
effecting an appropriate linear transformation of node pair voltage
variables. The intriguing possibility then suggested itself to
Guillemin that if LLFPB networks could be characterized by non-
symmetrical impedance or admittance matrices through a linear
transformation of dynamic variables, active-nonbilateral linear
networks might well be characterizable in terms of symmetrical
impedance or admittance matrices through use of a linear transforma-
tion of variables. Or, more to the point, perhaps the dynamic
variables of an active-nonbilateral network could be expressed
elther in terms of those of an LLFPB network, or else in terms of
those of a simpler active-nonbilateral network. Guillemin has
demonstrated this supposition to be true in at least one general
sense. He demonstrated the following fact. Let there be given a
network of the class LLF:R excited in some particular fashion. To
be specific let us apply current sources at a set of independentv
node pairs. Let the response quantities be node pair voltages.

Then we can find an LLFPB network (there are actually an infinite
humber) with the same set of current sources applied whose node pair
voltages are related to those of the LLF:R network through a real
non-singular transformation matrix. However, in addition to the
current sources applied to the LLFPB network there must also be
Voltage sources applied in all the links. Moreover these voltage
~8ources are dependent rather than independent. Specifilcally the 1link
‘Voltage sources are related to the LLFPB node pair voltage through

a@ real transformation matrix. Thus while such a representation
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allows the dynamic variables of an LLF:R network to be expressed in
terms of those of an LLFPB network one must contend with dependent
sources in the LLFPB network.

A rather interesting result was derived by Guillemin<2) using
a linear transformation of network variables wherein the elements
of the transformation matrix are functions of the complex frequency
variable s. Specifically, he represented the node pair voltages
of a multistage transistor amplifier as a linear transformation of
those of a multistage vacuum tube amplifier. This transformation
theory approach leads to a synthesis technique wherein one may design
a multistage transistor amplifier to have the same transfer impedance

(lO) elaborated

as the multistage vacuum tube amplifier. Masenten
upon this result in his Masters Thesis.

Another, more specialized, synthesis method using real trans-
formations has been derived by Nashed(ll) and Stockham(lz). This
method allows gain to be inserted in the transfer functions of a
network, if certain conditions with regard to network configuration
are satisfied. Nashed's method of approach is more general than
Stockham's. However an examination of his results and Stockham's
show an inconsistency. Namely, the network configuration which
Stockham proved allows gain insertion is not in the class of networks
that Nashed claims allows gain insertion. This inconsistency has
been resolved by the author as a byproduct of some general investi-
gations of the application of linear transformation theory to the
. 8tudy of active-nonbilateral linear networks. The result arrived at
~1s more general than those of Nashed and Stockham both with regard

:tO approach and with regard to possible network configurations which

~allow gain insertion by applying linear transformation theory.
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1.5 Linear Transformation Approach Used in This Thesis

1.5.1 General Approach

In this section the general approach will be presented that is
used in this thesis for applying linear ftransformation theory to
the synthesis of LLF:R networks. It 1s an approach which is inva-
riably used when one starts developing design or synthesis methods
for any new field. An appropriate name for this approach might be
"synthesis through analysis'". It proceeds in the following way.
First existing methods of analysis are studied or, possibly, new
methods of analysis are developed. 1In general, different techniques .
of analysis will be found to be particularly effective with different
classes of systems. Thus one finds a pairing of analysis techniques
with system classes perhaps on the basis of ease of analysis or a
simplicity of viewpoint that allows a good understanding of the basic
physical mechanisms involved. Having found these pairs an attempt
is made to develop synthesis methods by an appropriate inversion
of the results of analysis.

Applying the above thougts to using linear transformation theory
to synthesize LLF:R networks one must study existing methods of
analysis or else develop new methods of analysis. By analysis we
mean in our case the process by which the‘dynamic variables of an
LLF:R network are represented in terms of those of an LLFPB network
by means of some nonsingular transformation matrix. The transforma-
tion matrix may be either real or complex (i.e. a function of
8 =0+ jw). Next we must attempt to find LLF:R network configurations

and techniques of analysis that, in combination, allow as simple an
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interpretation as possible of the physical processes involved, i.e.
of the mechanism by which in retrospect the linear transformation
effects a conversion of network passivity and bilaterality into non-
passivity and nonbilaterality. Presuming that we have found such
analysis techniques we carry through an analysis of some specific
configurations. Examination of the results of this analysis will
hopefully point to methods whereby one may reverse the process and
say, Synthesize a transfer function otherwise unobtainable by an
LLFPB network.

Exactly how the above ideas were put into use in this thesis
will be discussed in this and the following section. First let it
be noted that, in the large, no new methods of linear transformation
theory analysis of LLF:R networks were developed. Rather existing
methods, all due to Professor Guillemin, were either specialized,
modified, or extended. In particular a search was made for those
methods of analysis which did not lead to dependent sources embedded
in the LLFPB reference network, since 1t was felt that the presence
of dependent sources could only occlude an understanding of the
basic physical processes involved in the transformation theory
approach. Thus Guilemin's general analysis method was studied only
with respect to determining the conditions under which dependent
Sources do not appear. As a result of this investigation a rather
general result was discovered. This result is discussed in detail
in Chapter 3, Section 3.2. In brief, if an LLF:R network with open
circuit impedance matrix Z satisfies certain conditions with regard
to topology, then we may express its voltages and currents in terms
of those of an LLFPB network with impedance matrix 9 and no dependent

Sources will appear.
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Further investigations along different channels than the above
were carrled out to determine linear transformation theory analysis
techniques that allowed a representation of an LLF:R network in
terms of an LLFPB network without dependent sources. The results
of these further investigations are réported in Sections 3.3 and
3.4 of Chapter 3. Both complex and real linear transformations are
considered. The complex transformation methods discussed lead to
easily interpretable results when the embedded R-LLF device has a
small number of terminals. Some interesting results were found
with real transformations. It is shown in Section 3.3.1 that the
method arrived at by specializing Guillemin's branch transformation
analysls method so that no dependent sources appear is a special
result of a quite different approach. This latter approach also has
resolved the viewpoints of Nashed and Stockham, as discussed in
Section 1.4, with regard to inserting gain.

Following the above general investigations of analysis tech-
niques in Chapter 3, analysis of particular network configurations
is carried through in Chapters 4 and 6. In particular the methods
of analysis were applied to LLF:R networks consisting of an RC-LLFPB
network of a general character in conjunction with one three-terminal
R-LLF device. The motivation for such a restriction should be
apparent from the discussion of Section 1.3. In the following section
a general discussion is given of the difficulties that arise in
designing synthesis methods through applying the "synthesis through
analysis" method to synthesis of active-nonbilateral linear networks

by linear transformation theory.
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1.5.2 Specific Approach

Let us suppose that we have analyzed an LLF:R network into an
LILFPB network and a set of linear transformations. We will confine
ourselves here, for illustrative purposes, to discussion of the
situation 1n which current sources are the excitation and the node
pair voltages are the responses. Let it now be assumed that through

some method of linear transformation analysis we obtain

o
Qig = 14
A

where the pairs iS,e and is’é’ all column matrices (or vectors),
represent the current excitation and node pair voltage responsé of

the LLF:R network and the corresponding quantities for the LLFPB
reference network, respectively. The transformation matrices P,Q

are assumed to be nonsingular but not necessarily real, i.e., they
may be a function of s = 0 + jw. If Z and deenote the o.c. impedance
matrix of the LLF:R network and the LLFPB reference network, then

by- definition

e = Zi (1.5.2)
and

A AN

e = Zig (1.5.3)

If Eq. 1.5.3 is premultiplied by Q and Eq. 1.5.1 are used we find that

e = (Pgb)is (1.5.4)
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from which we deduce that

A
7 = P70 (1.5.5)

Thus the palr of transformations (1.5.1) cause the LLF:R o.c. im-
pedance matrix to be expressed as the result of a premultiplication
and postmultiplication of nonsingular matrices upon the o.c. impedance
matrix of the LLFPB network. Conversely, if an LLF-R o.c. impedance
matrix is expressible in the form (1.5.5) then its current excitation
vector Qs and voltage response vector Q are related to those of the
LLFPB network with o.c. impedance matrix VA through the transformations
(1.5.1).

Let us restate the assumptions relating to the specific example
we shall discuss. We have avallable an active-nonbilateral network
consisting of an RC-LLFPB network with one embedded multi-terminal
RLLF device. This RC-LLF:R network has an o.c. impedance matrix %
defined for a certain set of accessible terminal pairs. Through
analysis by linear transformation theory it is presumed that we have
found an RC-LLFPB network with o.c. impedance matrix Q such that
Eqg. 1.5.5 is satsified.

We may make one general observation at this point. If P and Q
are real then the o.c. impedance poles of the RC-LLF:R network are
identical to those of the RC-LLFPB network. This comes about from
the fact that each element of the Z matrix is expressed by (1.5.5)
as linear combinations of the elements of the 2 matrix. Thus without
further manipulation of some type real transformations appear to lead

to rather restricted results for RC-LLF:R networks. One possible

approach to extend the usefulness of real transformation is based
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upon the following thought. While real transformations of the type
in Eq. 1.5.1 leave the poles of the open circuit driving point
impedances constrained to the negative real axis, the zeroes of the
impedances are not so constrained. This comes about from the fact
that through the agency of real transformations, the RC-LLF:R driving
point impedances are expressed not only as linear combinations of
RC-LLFPB o.c. driving point impedances but also of RC-LLFPB transfer
impedances. Since a short circuit constraint placed at a terminal
pair with impedance zeroes at complex frequencies will yield a network
with natural frequencies at these same complex frequencies we may
achieve through the intermediary of real transformations upon an
RC-LLFPB network an RC-LLF:R network with natural frequencies in the
complex plane. These ideas are put to use in Chapter 4.

If the transformation matrices P and Q are functions of s then
the o.c. impedance poles may lie anywhere. The poles of Z are, in
general, the poles of P,Q, and Q. While the poles of Q must lie
along the negative real axis the poles of P and Q need not be
constrained in this way. In the methods of synthesis derived in this
thesis that use complex linear transformations, the elements of P and
Q are also functions of the elements of %. In such a case the ele-
ments of Z will, as a rule, be nonlinear functions of the elements
of 2?’ In addition they will be functions of the parameters of the

multi-terminal R-LLF device of the RC-LLF:R network. From observation

*It may appear that an inconsistency exists at this point since linear transforma-
tions of the network variables have produced RC-LLF:R driving point and transfer
functions which are nonlinear functions of those of the RC-LLFPB reference net-
work. However there is no inconsistency here since Eq. 1.5.1 which define analysis
by linear transformation theory show that e and i_ are linearly related to e and
iS respectively whether or not P and Q involve thé elements Z.
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of the elements of Z it is possible to determine driving point and
transfer functions which clearly exhibit the possibility of complete
generality in the location of zeroes and poles. For purposes of
discussion, suppose that examination of Z shows that the o.c. driving

point impedance at terminal pair l(zll) has the form

az
Z = 34 (1.5.6)

11
PZzz = CZyg

where Zzzs Z10s and Zz, are open circuit impedances for the LLFPB
reference network and a,b,c are constants dependent upon the R-LLF
device embedded in the RC-LLF:R network. It is important to note
that the specifications on the RC-LLFPB network involve four terminal

pairs as shown below.

RC-LLFPB

Figure 1.5.1. LLFPB Reference Network

What one would like to do with Z11 is synthesize it for an
arbltrarily prescribed set of poles and zeroes. Having an ex-
bPression for Z11 of the form of Eq. 1.5.6 in which it can be recog-
nized that Z11 has the potentiality of complete generality in

location of poles and zeroes is far from having a synthesis method.
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Before one can synthesize Z11 to specification, the following steps
must be completed in order.
A
1. Sufficient conditions for realizability of Zzzs Qiz, and
934 must be determined so that one can be sure a specified
set of these network functions come from a 4 terminal-pair
RC-LLFPB network
2. An Algorithm must be found such that one may go in a step

by step procedure from a sggcif%ed p%le-zero pattern for
Z11 to a set of functions Zzzs 4199 e that satisfy the

sufficient conditions established in item 1.

3. The RC-LLF:R network must be synthesized

Let us discuss these problems in order. First we note from
Eq. 1.5.8 that if we are to synthesize z,, we must be able to specify
a set of functions 933 %12, and 934 which may actually come from a
4 terminal-pair RC network. It will be presumed that the RC-
network does not contain ideal transformers. The reason for this
is that the LLF:R networks considered in this thesis have LLFPB
subnetworks intimately related if not identical, to the corresponding
reference LLFPB networks. In such a case, the synthesis of the
LLF:R network involves also the synthesis of the LLFPB reference
network. No attempt is made in this thesis to use ideal trans-
formers in synthesizing RC-LLF:R networks since 1t is felt that by
so doing one has defeated the original purpose of studying such net-
works. After all, an ideal transformer is a limiting form of a pair
of mutually coupled coils. Inclusion of such elements in RC networks
makes them in effect RLC networks since any practical realization
involving transformers will actually introduce inductance.

To find sufficient conditions for specifying QSS’ 912, and 934

we must put ourselves in the position of synthesizing the 4 terminal
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RC Network of Fig. 1. The general problem of multiterminal-pair
synthesis of RC-LLFPB networks without ideal transformers is a
presently unsolved problem of network synthesis. Exactly what can

be done without ideal transformers is summarized in Fig. 1.5.2 for

RC Networks.

Any RC Any RC May Not Be
Specified
nA A , A
Y11(¥55) Y1 (to within a constant) Yool¥yq)
i multiplier
o
o A A A A
o z2..(255) z,-, (to within a constant) Zoo(24)
§ 11Vv~22 12 multiplier 22 711
& A A A
A Y11 V22 I12
0
a A A A
211 Zo2 212

Figure 1.5.2. Constructible Specifications on
Two Terminal-Pair RC Networks
Without Ideal Transformers
We will call the specifications of Fig. 1.5.2 constructible
specifications for obvious reasons.
Reference to Fig. 1.5.2 indicates that we may synthesize for
one driving point admittance (impedance) and a transfer admittance

(13) that may

(impedance). There is a maximum constant multiplier
be specified in the transfer function. The following dilemma thus
arises - we need to synthesize a four terminal-pailr RC-LLFPB network
for certain prescribed driving point and transfer functions but we

only have available synthesis methods which allow a synthesis of two

terminal-pair networks for the specifications of Fig. 1.5.2. Since
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it is not the intent of this thesis to develop methods of multiterminal-
pair RC-LLFPB network synthesis no significant work in this direction
was accomplished. Rather, the following obvious approach to a

possible solution of the dilemma is followed. The multiterminal-pair
RC-LLFPB network is restricted to a makeup of two terminal-pair
RC-LLFPB networks. In our illustrative example we would interconnect

a number of two terminal-pair RC networks to form a four terminal-

pair RC network. We attempt to arrange the two terminal-pair

component networks so that the quantities QSS’ g12’ and Q34 become
functions of constructible component network functions as indicated

in Fig. 1.5.2. Thus, for example, if for some arrangement of

component RC networks we find that 912 is a function of both driving

a

a . a
11° Zoos and the transfer impedance 212

RC component network, a, we will be in trouble unless we can specia-

point impedances z of an
lize this latter RC network to a Tv’ T, or L type configuration of
driving point functions. This latter type of specialization is
sometimes effective but frequently such a specialization restricts
Q&Z considerably in character and prevents a final realization of
’zll with completely general specifications. Such a method of syn-
thesizing a four terminal-pair RC-LLFPB network is clearly a "cut
and try" method which requires a certain degree of ingenuity for its
effective use.

Let us suppose that we have managed to subdivide the 4 terminal-
pair RC-LLFPB reference network into two terminal-pair component

Subnetworks such that Z11 becomes expressed in terms of network

functions involving "constructible" specifications. Suppose for
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example that two subnetworks are involved. If we have completed

step 1 one possible form for 211 is

a

a b b
Z f(zll’ZlZ’yZZ’y12) (1.5.7)

11 7

where f 1s some rational function of its argument. We now turn our
attention to step 2. This involves finding a realizable set Zil’

a b b s e s s .

2125 Yops Yo when z1, is initlally specified. It is the first step
at which the process of analysis 1s reversed i.e., the process of
synthesis becomes initiated. One must find an Algorithm such that

gilven z,, one may find in a step by step procedure a realizable set

of RC-LLFPB two terminal-pair driving point and transfer functions

Za za b b
11°%1229222971 2"

The solution of the last problem is subdivided into two parts.
One part involves synthesizing the RC-LLFPB portion of the RC-LLF:R
network and the other part involves synthesizing the R-LLF portion
of the RC-LLF:R network. It would be well to recall that we initially
started with the RC-LLF:R network. This was "analyzed" into an
RC-LLFPB network and a set of linear transformations of dynamic
variables. Thus the RC-LLF:R network configuration is known a-priori.
The synthesis of the RC-LLFPB portion of the RC-LLF:R network will
in general be a difficult task since this will be a multiterminal-
pair RC network. Fortunately in the networks discussed in this thesis
the RC-LLFPB portion of the RC-LLF:R network is closely related to
or identical to the reference RC-LLFPB network. This results in the

fortuitous result that a solution of step 1 above is also a solution
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of the first part of step 3. With regard to the second part of

step 3, we note that there is no general practical method available
at present for synthesizing a multiterminal-pair R-LLF device for
prescribed s.c. conductance matrix. By practical it is meant a
synthesis method which involves components which are commercially
available transistors and vacuum tubes in addition to positive re-
sistance. In Chapter 4 there 1s presented a theoretical method
which involves positive and negative resistances plus ideal vacuum
tubes. From a practical point of view one would prefer to use a
synthesis technique which involves an R-LLF device with as few
terminals as possible. The minimum number which can produce general
results in 211 is three. This arises from the fact that a two
terminal R-LLF device 1s only a negative or positive resistance

and, as demonstrated in Chapter 7, a network consisting of positive
and negative resistances plus positive capacitances cannot have
natural frequencies off the real axis. The various synthesis tech-
niques have thus involved only a three-terminal R-LLF device in order
to keep the R-LLF portion of the RC-LLF:R network as simple as

possible.

1.6 Summary of Thesls Results

In this section we will summarize the new results afforded by
the thesis. We will consider subjects in the order in which they
appear in the thesis. The work falls into three categories:

(1) Analysis of linear networks

(2) Synthesis of transfer functions through application of
linear transformation theory

(3) Properties of driving point and transfer impedances of
LLF networks
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1.6.1 Analysils

A method of analysis of linear networks 1s presented that 1s
applicable to networks whose elements may have any number of terminals.
The method is conventional in that it involves a formulation of
equilibrium equations and their subsequent solution for the desired
network properties. This is in contrast to methods like those of
Mason(l4) and Percival(l5) for instance which might be termed
"purely" topological in nature. By a '"purely topological method"
it is meant that the desired network properties are found by operations
upon a suitably constructed network graph.

The analysis method described in Chapter 2 was arrived at as a
generalization of a method due to Guillemin(z). In Guillemin's
method the network elements are R's, L's, C!'s and multiterminal
active-nonbilateral resistive devices. FEach multiterminal-pair
device, which 1s assumed to have node-to-datum terminal pairs
assigned, 1s represented for purposes of analysis by a tree of
branches and a set of linear equations with real coefficients rela-
tively the voltage and currents of the branches. Once the multi-
terminal pair resistive devices are replaced by a tree of branches
conventional methods of network analysis are found applicable. In
Chapter 2 the network elements are all MTP (multiterminal-pair)
devices which are not necessarily resistive in character. The only
requirement is that the terminal-pair voltages and currents be
related by linear equations. The definition of terminal pairs for
each MTP element is arbitrary. To each definition of terminal pairs

there corresponds a different branch representation. The concept of

the associated MP (multiple) network is introduced as the physical
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network corresponding to a MTP element but with no assignment of
terminal pairs. Since a network with a given number of nodes may
have terminal pairs assigned in a large number of ways, each MP
network is said to be describable by a large number of MTP elements -
one for each different assignment of terminal pairs. The relation-
ship between the impedance and admittance matrices is given for those
MTP elements that describe the same associated MP network.

Some attention is given to the special situation in which the
equilibrium matrix of a network composed of MTP elements may be
found by simple addition of the parameter matrices of the component
MTP elements. The Additive class of networks is defined. An
Additive network has the property that not only loop and node
equilibrium matrices but also mixed equilibrium matrices may be
evaluated by addition of matrices describing the behavior of the
MTP elements. The Additive class of networks is found in Chapters
S and 6 to be of particular importance in the application of
complex linear transformations to the synthesis of LLF networks.

It has been found that the method of analysis of Chapter 2

(18) method of analysis

is very similar to a special case of Kron's
which involves "tearing networks" if we make a correspondence between
"torn networks" in this method and the MTP element in Chapter 2.

Where as the "torn network" of Kron may contain internal sources

the MTP element is assumed to be homogenous, i.e., to exhibit no
terminal palr voltages and currents when unexcited externally. An
advantage of the method of Chapter 2 is its simplicity. No Tensor
algebra or notation are involved and in fact the method requires
little more knowledge in its application than an ability to write
conventional loop and node equations when mutual inductance is present.
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1.6.2 Synthesis
In Chapter 3 some particular techniques of LLF:R network analysis

through linear transformation theory are presented. The techniques
involve both real and complex linear transformations. In Chapters
4 and 6 these analysis procedures are reversed in accordance with
the "synthesis through analysis" procedure outlined in Section 1.5.
Chapter 4 deals with real transformations and Chapter 6 with complex
transformations. The synthesis methods arising from real trans-
formations had the general difficulty of being unable to meet the
"econstructible" specifications requirement discussed in Section
1.5.2. One particular case was found to meet the constructible
specifications requirement. However attempts at finding an Algorithm
as required in step 2 of Section 1.5.2 have not been successful.
Chapter 6 considers the use of the complex linear transformation
techniques of Chapter 3 in order to use the "synthesis through
analysis" method to synthesize transfer functions of RC-LLF:R net-
works. As groundwork for the material of Chapter 6, Chapter 5 in-
vestigates the complex natural frequencies caused by the introduction
of an R-LLF three terminal device into an RC-LLFPB network. It is
shown that the zeroes of a certain Characteristic Determinant are
the complex poles of the network. Attention is given to conditions
on the R-LLF device and the RC-LLFPB network such that the Charac-
teristic Determinant involves RC-LLFPB network functions that con-
stitute constructible specifications on two terminal pair networks.
This is done as an aid in developing potentially acceptable transfer
functions (i.e. those having the possibility of general pole-zero

locations) which involve only constructible specifications. The
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approach used is general from the point of view that R-LLF devices
may be handled that do not have a description on either an impedance
or admittance basis but only on a mixed basis.

The following question is investigated for some specific R-LLF
devices. Can an RC-LLFPB network be found such that when the R-LLF
device is embedded in the RC-LLFPB network, the resulting RC-LLF:R
network will have a prescribed set of natural frequencies? A
number of R-LLF devices are found to allow an arbitrary assignment
of complex natural frequencies. The gyrator, a passive R-LLF device,
is found to allow a fairly general assignment of complex natural
frequencies. Thus the "activity" of the R-LLF device is not a
necessary requirement to obtain complex natural frequencies.

Support is given to this statement in Chapter 7 where 1t is demon-
strated that an RC-LLFPB network with embedded active bilateral
resistive devices 1s constrained to have ¢ axis natural frequencies.

Thus in fact it is the nonbilaterality of the R-LLF device rather

than its activity which allows the natural frequencies of an RC-LLF:R
network to become complex.

At the close of Chapter 5 a new expression is given for the
driving point impedance of a network consisting of a passive network
~wWith an embedded MTP R-LLF device. Particular expressions are given
for the cases in which the R-LLF device has three terminals and is
only describable in one of four possible ways (impedance, admittance,
and two mixed cases).

In Chapter 6 three new general transfer function synthesis
techniques are presented that involve two two terminal-pair RC-LLFPB

networks and one three terminal R-LLF device. Two of these techniques
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will synthesize any stable transfer function to within a cqnstant
multiplier. The R-LLF device involved in the third technique
includes the gyrator as a special case and does not allow a com-
pletely general assignment of poles. The R-LLF device involved in
the second technique is an ideal vacuum tube and that 1n the third
technique an R-LLF device involving a singular short circult admit-
tance matrix. Since the primary emphasis of this thesis is to
present a new approach to the synthesis of LLF:R networks, the
linear transformation approach, no special attention is given to
the practical design of the R-LLF devices involved. References are
given in the literature to cases where practical realizations are
discussed forrparticular cases of the R-LLF.devices of Synthesis Tech-

niques 1 and 3.

1.6.3 Properties

An effective analytic approach to the study of the fundamental
properties of driving point and transfer functions of LLFPB networks
is based upon expressing the network functions in terms of energy
functions associated with the network. This approach was initially
formulated by Brune(l7) and further elaborated upon by Guillemings’ls)
Chapter 7 presents a number of new properties of LLF networks which
are derived by extending the energy function approach discussed above
to LLF networks. In making this extension it is found that the so
called energy functions_Fo, To and VO of Reference 3 become complex.
When they are resoived‘into real and imaginary parts the interesting

result appears that thevreal parts are a function only of the sym-

metric portions and the imaginary parts are a function only of the
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skew-symmetric portions of the parameter matrices of the embedded

R-LLF, L-LLF, and C-LLF devices.

Rather than listing here specific properties derived in Chapter

7, the reader is referred to the statement of these properties in

Chapter 7.
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CHAPTER 2

ANALYSIS OF LINEAR NETWORKS

2.1 Introduction

In this chapter a method of analyzing linear networks is
presented that 1s applicable to networks whose elements may have any
number of terminals. The method is conventional in that it involves
a formulation of equilibrium equations and their subsequent solution
for the desired network properties. This 1s in contrast to methods

(14) (15)

like those of Mason and Percival

s for instance which might be
termed "purely topological" in nature. By a "purely topological
method" it is meant that the desired network properties are found by
operations upon a suitably constructed network graph without the
intermediary operation of formulating equilibrium equations.

In the method of analysis proposed here each multi-terminal
element is represented, for purposes of definlng voltage and current
variables, by a tree whose nodes are the terminals of the multi-
terminal element. The tree 1is constructed by creating branches
between those terminal pairs at which node pailr voltages are defined.
By this artifice we see that the number of ways independent node
pair voltages may be assigned at the terminals of a multi-terminal
element of n nodes is Jjust the number of different trees that may be
formed from n nodes. This number is nn'z.

Since each node-palr voltage exists across a branch and since

the driving current at a node palr may be identified with the

corresponding branch current we may regard the s.c. admittance matrix
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(or o.c. impedance matrix) as a "generalized" branch parameter matrix
of the multl-terminal element. Each of the possilble nn"z branch
parameter matrices are related by simple congruent transformations.

It 1s clear that a graph of the interconnection of these branches
together with the branch parameter matrix is sufficlient to character-
ized the multi-terminal element. 1In fact, we may say that the multi-
terminal element has been represented with regard to terminal behavior
by a set of mutually coupled branches. These branches differ from a
set of mutually coupled inductors in only two respects: the coupling
coefficients are functions of s (the complex frequency variable) and
the coupling between branches is not necessarily bilateral. Conven-
tional methods of network solutions are found to be applicable despite
these differences. As far as dependent sources are concerned there

i1s no more need to 1nclude them in the analysis than there is to
include them in the analysis of LLFPB networks with mutually coupled
inductances.

After each multi-terminal device has been represented by a set of
branches, according to the dictates of necessity or convenilence, one
may use the conventional methods of defining voltage and current
variables to analyze the network. The construction of cut-set and
tle-set matrices proceeds as in networks wherein the coupling between
branches is purely billateral. Just as with the purely bilateral case
one may write the equilibrium equations at the outset by using the
loop method or the node method of analysis. Herein lies the advantage

19)

of this method over Shekel's( It is well known that some problems

are better suited to the loop method than the node method. With
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Shekel's method we are not only constralned to use the node basils but
we must use the node to datum variables. What 1s claimed for the
method of analysis presented in this section is a much greater degree
of flexibility than 1s present in Shekel's method.

In Section 2.4 some attention 1s gilven to the special situation
in which equilibrium matrices may be found by addition of branch
parameter matrices of component multiterminal network elements. The
additive class of networks 1s defined. An additive network has the
property that not only loop and node equilibrium matrices but also
mixed equilibrium matrices may be evaluated by addition of component
branch parameter matrices.

The flexlbility in the proposed method of analysis has been found
very useful in problems associlated with applying linear transformation
theory to the synthesis of LLF:R networks.

In the following sectlon we will discuss the characterization
of the multiterminal-pair network element as a set of mutually coupled

branches.

2.2 The Multiterminal-Pair Network Element

In this section it will be shown that a multiterminal-pair
3*

homogeneous linear network may be completely characterized, as far as
terminal-pair behavior is concerned, by a tree (or a number of trees)
of mutually coupled branches. The quickest way to understand this

characterization is to start with a tree of mutually coupled induct-

ances and represent 1t as a multiterminal-pair network.

# A homogeneous multiterminal-pair linear network is defined as a linear network
which exhibits zero terminal-pair voltages and currents when not excited
externally by voltage or current sources.
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Fig. 2.2.1 Representation Of Tree Of Coupled Inductances
As A Multiterminal Pair Network

Figure 2.2.l1la depicts three mutually coupled inductances arranged in
a tree. The positive reference directions are indicated for the
branch voltages (- to + in direction of arrow) Vs V2, v5 and branch
currents jl, 32, and js. These branch voltages and branch currents

are related as follows

(v -SL118L125L15— EA
Vol = [8Lypslyoslyg Jo (2.2.1)
V3 sLyzsl,zshssf | J3
The matrix
(L)7095T5]
L= |LjpL,5L,s (2.2.2)
IEEREREE]

is the branch inductance parameter matrix for the three inductances

of Fig. 2.2.la. If the matrices v and J are defined as
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v [
v= vyl J=|dp | (2.2.3)

then Eq. 2.2.1 becomes

v = sLj (2.2.4)

Let us suppose that someone has presented us with a three terminal
pair black box andvdesires to know the open circult lmpedance matrix.
This blaék box is shown in Fig. 2.2.1b. Terminal pairs 1, 2, and 3 are
defined unambiguously by the arrows denoting the positive reference
o and Vg
A similar claim may be made for the arrows denoting the positive

directions for the corresponding terminal pair voltages Vl’ v

reference directions for the terminal pair currents but this 1s some-
what more difficult to see because of the sharing of a common node by
adjacent terminal pairs; When measurements are made at the terminal-
pairs of the black box to determine the relationship between the

te¥minal-pair voltages and currents 1t is found that
| v =2 . (2.2.5)
where

Z = sL (2.2.6)

The matrix 2 is the open circuit impedance matrix of the three
terminal-pair device and L is given by Eq. 2.2.2. It 1is clear that 1f
the black box of Fig. 2.2.1lb were embedded in some linear network we

would not disturb the operation of this network if the black box were

replaced by the tree of mutually coupled coills of Fig. 2.Z.2a.
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Fig. 2.2.2 Representation of Three Terminal-Pair Device
By Three Mutually Coupled Branches

In making this replacement we need only be sure that each coil replaces
the correct terminal pair. Then the current through coil s (s = 1,2,3)
and the voltage across coll s become identical to the current cir-
culating on terminal pair n and the voltage across terminal pair n
réspectively.

Generalizing the above ideas, it is proposed that the three

terminal-pair device of Fig. 2.2.2a with o.c. impedance matrix

—211212213-
Z = 251255253 (2.2.7)
%5 11232233;
(where ij does not necessarily equal zkj) may be replaced in any

network by the three coupled branches of Fig. 2.2.2b. The branch
Impedance parameter matrix of these coupled branches is just the
matrix Z. It may be worthwhile to summarize the general procedure
followed in replécing the multiterminal-palr element by a group of

coupled branches:
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1. A branch is created across each terminal-pair of the MTP
(multiterminal-pair) element such that branch s is across
the sth terminal pair.

2. The voltagé and current of the s®h branch are defined to be
identical to the voltage across the sth terminal pair and
the current circulating on the sth terminal-pair,
respectively.

3. The MTP network 1s removed leaving a set of mutually coupled
branches with branch impedance parameter matrix defined
identical to the open circuit impedance matrix of the MTP
network.

A black box with a number of terminals sticking out has been

called an MP (multipole) network(zo).

By pairing the terminals or
nodes of a given MP network one may generate a large number of MTP
networks. If the MP network has n + 1 nodes one may select at most
n independent terminal pair voltages. We may readily understand
this fact from the branch representation of an MTP network, since it
is well known that a network containing n + 1 nodes has at most n
in@ependent branch voltages which moreover are those belonging to a
trée of branches. Thus i1f an MTP network contains n terminal pairs
and n + 1 nodes, the set of mutually coupled branches representing
it will form a tree. If the number of nodes 1s greater than n + 1
the branches will form a group of isolated trees. It will be
convenient to regard an MTP network as being formed from an associlated
MP’network which is physically the same device as the MTP network but
which has no defined terminal pairs.

The following two definitions will be used:

1. The associated MP network will be sald to be completely

described by the MTP network if the equivalent branches
of the MTP form a single tree.

2. The assoclated MP network will be said to be partlally
described by the MTP network if the equivalent branches
oI’ the MTP form more than one isolated tree.
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It will be recalled that these MTP network elements are to be
interconnected in an arbitrary fashion to form a larger network. In
general, the final network can be solved only if the MTP elements
completely describe their associated MP networks. This should be
obvious since if an MTP element only partially describes its
associated MP network, there are undefined terminal pairs which may
be excited when the MTP element 1s connected into a larger network.

A common example of an MTP element which partially describes
its associated MP network is the ungrounded two terminal-pair as

shown in Fig. 2.2.3 with its coupled branch representation.

T — — )
! t 4 b
vi V2 h I 2| |2

MTP ELEMENT COUPLED BRANCHES

Fig. 2.2.3 An MTP Element Which Provides A Partial
Description of It's Associated MP Network

'Unless specifiéally stated to the contrary it will be assumed in
the subseqﬁent discussions that the MTP elements dealt with completely
describe their associated MP networks.

The number of MTP elements that may be formed from a single MP
network of n nodes is Jjust equal to the number of different trees
that may be constructed to connect all n nodes. This number may be
shown to be equal to nn-2. Thus in our example of Filg. 2.2.2 the
assoclated MP network has 4 nodes so that 42 or 16 different MTP
elements may be formed from it. Two such elements and their coupled

tree branch representations are shown in Fig. 2.2.4. For clarity of

presentation the positive reference directions are shown only for
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terminal pair voltages. The arrow on a branch indicates the positive

direction of branch voitage.

'g A
v v
: 2
' v
d _ B

2 I

Fig. 2.2.4 Two MTP Elements For the Same Associated MP Network

The question naturally arises as to the relationship between the
branch impedance (or admittance) parameters of each of the n""2 NP
elements having the same associated MP network. This question will

be answered in Section 2.3.3.

2.3 Formulation of Equilibrium Equations

2.3.1 §Zstematic Approach

It 1s presumed that a network 1s to be analyzed which consists
of an interconnection of MTP elements. The first step consists of
replacing each MTP element by a tree of coupled branches. When this
kis done the network becomes composed of two-terminal elements. The
Selection of an independent set of voltage and current variables

proceeds as with LLFPB networks(ls)- Let us presume that we are
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going to formulate equilibrium equations on the loop basis. The
network 1s assumed to have n + 1 nodes, b branches, anddéylinks. By
the usual methods a tie set matrix is found which defines an
independent set of loop currents. This matrix will be called.Eé%
with the subscripts,éﬂb denoting the fact that it has_# rows and b
columns. Let e denote the column matrix of voltage sources in loops

- —

esl

e =| e
s s2

.

(2.3.1)

| "ol

where, e.g., esl;is the sum of the voltage sources on loop 1, etec.

Also let_iurepreSent:the column vector of resulting loop currents,

1= |1 | (2.3.2)

4
Let us assume that the network consists of an interconnection of m
MTP elements. It will also be assumed throughout that these MTP
elements are distinct from one another in the sense that there 1s no
coupling between the branches of one MTP element and any other. The
MTP eleménts are ordered in some convenient way by labeling them with
the integers 1,2, ++m. Then the branches of MTP element 1 are

numbered in order. Following this the branches of MTP element 2

are numbered and so forth until all the branches of the network have
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been labeled. The column matrix of branch currents J and the column ma-

trix of branch voltages v.may then be represented in the partitioned for

- - 7v -
Jq 1

J= 13| v=[V, (2.3.3)
J |v
-m.J bmJ

where Jk’ Vk are column matrices representing the branch currents

and voltages of the kth MTP element. The relationship between v and jJ

is then

v = I] (2.3.4)

where the branch parameter matrix I is gilven by

zl 0 0 .
0] z2 0 .
I = ; (2.3.5)
O . . L]
. Zm

The matrix 2y is the branch parameter matrix of MTP element k, 1.e.,

v, =23, , (2.3.6)

The zeroes appearing in I are null matrices.
Now the loop source voltage matrix eg 1s related to the branch

voltage matrix v by

%va = e (2.3.7)

S

which is a statement of Kirchoffs Voltage Law, while the branch

current matrix J is related to the loop current matrix 1 by
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@}bi = J (2.3.8)

where %[% i1s the tile set matrix and %;b is 1its transpose? Equations
2.3.7 and 2.3.8 are of course ldentical to those used in LLFPB
network analysis. So far the only analytical difference noticeable
between setting up equilibrium equations for LLFPB networks and for
the class of networks under study is the character of the branch
parameter matrix, I. In LLFPB analysils thils customarily takes the

form

I=|o [sc]*l 0 (2.3.9)

0 0] Sy

where r is a real non-singular diagonal matrix (the branch resistance

matrix), o'l is a real non-singular diagonal matrix (the branch
elastance matrix), and.l?is a real square non-singular symmetrical
matrix (the branch inductance matrix). Each of these matrices
defines a positive definite quadratic form. Both Equations 2.3.5 and
2.3.9 are of the same form but our submatrices Zys Z5, = Z, are of a
more general character. They may be unsymmetrical and both rational
and irrational functions of s. It 1s only assumed that they are non-
singular.

The formulation of equlilibrium equations now proceeds just as in
the LILFPB case. The expression for the branch voltages in terms of
the branch currents Egq. 2.3.4, 1s used in Kirchoffs Voltage Law
Equations, Eq. 2.3.7. This ylelds an expression relating source
voltages and branch currents as follows
#* We are assuming that the consistency conditions are fulfilled, i.e. that the

same tie set matrix is used for defining loop current variables as is used for
writing Kirchoffs Voltage Law. See Ref. (18) page 79. ez




Blpld = &g (2.3.10)

Subsequent use of Eq. 2.3.8 which expresses the branch currents in

terms of the loop currents yields

e, = @/%192%1 - 2y (2.3.11)

where

204+ &1 (2.3.12)

is the equilibrium matrix for the network on the loop basis. The loop
currents are solved for by inverting %Z&/in the usual fashion. We

have used the subscriptAéLZ%o denote that it is an,éax.éymatrix.

1= %éifs =,§?Mfs (2.3.13)
where | |
EZL/ﬁ géj/ (2.3.14)

is appropriately called the short circuilt admlttance matrix of the
network.

If it is desired to see how the branch parameter matrices of the
individual MTP elements enter into the formation of Z one may proceed

as follows. Partition the tie set matrix in the following way

Blp = [Bli62:~~-{ﬁm] (2.3.15)

th MTP element

The matrix Bk'hasaz rows and as many columns as the k
has branches. If the expressions for @/b and I as given by Eq's.
2.3.15 and 2.3.5 respectively are used in Eq. 2.3.12 one finds that

the equilibrium matrix Z takes the form
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m
t t t t
ZX/E = 512151 + 522252 4+ eee + Bmszm = Z ﬁkzkak (2.3.16)

=1
If we define
Z =f3zr3t (2.3.17)
k k"kk . te
then %fﬁ takes the simple form
m
Zﬁ/ﬁz Zl +"'ZZ‘+ eee Zm= z Zk (2.3-18)
: 1
It is clear that the matrices Zk are the analogue of the loop
parameter matrices in LLFPB analysis. In fact we will call Z, the

k
loop parameter matrix of the kth MTP element. Equation 2.3.18 states
that the equilibrium matrix of the network on the loop basis is the
sum of the loop parameter matrices of the individual MTP elements.

To illustrate the above 1deas an example will be given.

ELEMENT | T* !
e, in _ ) ’ 2
Q Q O »-0 1' L)
2
‘ kj:> 3
ELEMENT 2
3 - 4 | 5 |—»
Fig. 2.3.1

(a) (b)
Figure 2.3.18 shows a metwork consisting of an interconnection of two

MTP elements. A voltage source e; is applied and it is desired to
determine the current 12. The definition of terminal pairs does not
appear on this figure but 1is clear from inspection of Figure 2.3.1lb

in which each MTP element has been replaced by a set of mutually
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coupled branches.

on this latter figure.

and branches 3, 4, and 5 belong to MTP element 2.

Fig. 2.3.1b shows that the tie set matrix is

O o0 |1 o ©

A set of independent loop currents is indicated
Branches 1 and 2 belong to MTP element 1

Inspectilon of

(2.3.19)

The matrices Bl and 62 which are obtained by partitioning élb as

discussed above are given by

o - ~—

O O 1

Bl = 1 -1 BZ = 0

o -1 0
. N L

yO
o

1
o -1

(2.3.20)

The branch impedance parameter matrices of MTP elements 1 and

2 are defined below
211%12

Zo1%22

233%34%35

243%44%5

253254 %55

-

(2.3.21)

Equation 2.3.17 may be used now to calculate the loop parameter

matrices

Z) = PBzBy =10

0] z

0

211%25572757 257

227%21

Zoo”

z

0]

z

22

12

-

(2.3.22)
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_ t _ -
Zo = BoZaBy = 243 244 %45

-

Then the equilibrium matrix Z is

- -

223 234 ~235
Z =2, + 2, =]z Z, A2 A2 =2 -2 _ (2.3.23)
1 2 43 “447"117%227%127%21 2,207,
fzss Zop"2217%54 Zopt255

The rest of the solution is straightforward from this point on and
needs no further discussion.

The process of formulating equilibrium equations on the node
basis is dual to the procedure discussed above for formulating
equilibrium equations on the loop basis and i1t is felt does not need
any extensive elaboration. However the pertinent equations will be

summarized. First we define the quantities

e
isl 1
i e
152 2
ig.= . e = |, (2.3.24)
isn en
L . L -

where iS is the column matrix of source currents applied at n
independent node pairs and e is the column matrix of n resulting
node pair voltages. The branch voltages Vv and branch currents J are
defined by Eq. 2.3.3. However the relationship between v and j is
specified by the branch admittance matrix A
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- - - -
-1
-1 . .
0 Zy 0 : o ¥, O
-1 _
A=TT = o =10 o (2.3.25)
-1 . .
0 . .. 0] z_ 0 0 ¥,
L . L .
where
-1
Ve = %y (2.3.26)

is the branch admittance matrix of the kth MTP element. Thus

j = AV (2.3.27)

It i1s presumed that a cut set matrix % has been selected both for
defining node-pair voltages and for writing Kirchoff current
equations. This matrix has n rows and b columns. The equations

analogous to Eq's. 2.3.7 and 2.3.8 are

%npd = is
abe=v (2.3.28)
n'b L 4 .

and following the same pattern as for Eq. 2.3.12 we find that the

equilibrium equations on the node basilis become

i =Y e (2.3.29)

(2.5.30)
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By partitioning an in the same way as %fb was we find that

b
n
Ynn — Yl + Y2 + 0 o Ym = Z Yk (205.31)
1
where
Y = a7y.al (2.3.32)
k k'k 'k e
is the node parameter matrix of the kth MTP element and
= ' oo
@, = [@1: o | | an] (2.3.33)

indicates the partitioning of the cut set matrix. With the open

clrcuit impedance matrix defined as

|
Zan = Yan (2.3.34)

we obtain
e=12 1 : (2.3.35)

as the solution for the set of Eq. 2.3.29.

2.3.2 Formulation By Inspection

The previous section has presented a systematic approach to the
formulation of equilibrium equatlions on the node or loop basis for a
network consisting of an interconnection of MTP elements. It 1s
possible to bypass completely all the matrix manipulations required
by such a systematic formulation and write down the equilibrium
equations by inspection. The procedure followed is identical to that

followed when writing equilibrium equations by inspection on the node
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or loop basis for LLFPB networks containing mutual inductance. There
1s one new twist which however causes no additional difficulty: the
coupling between branches is not necessarily bilateral as for
mutually coupled inductances. The procedure 1s best understood by
example. Thus let us write loop equations for the network of

Fig. 2.3.1b. We first consider 12 = i3 = 0 and add up the voltage

drops in the direction of positive current for loop 1. This con-

tribution is 11253. Next we conslder il = 0, 13 = 0 and find the

voltage drops contributed in loop 1 by 12. We note that this 1is just

iz The last subscript 4 denotes the branch, 4, which is inducing

2734°
voltage into the loop under consideration and the first subscript 3
denotes the branch in the loop which has voltage induced across it
by virtue of a coupling from branch 4. The sign of the contribution

is readily determined with the aid of the positive reference directions
for branch voltage and currents and positive reference directions for

loop currents. Note that i, passes through branch 4 in the direction of

2
positive branch 4 current (always opposite to the positive direction

of branch voltage). Thus the voltage induced across branch 3 is by
definition in the direction of the arrow on branch 3. Now let

i, =0, i, = 0 and find the voltage induced in loop 1 by loop current

2
We note that voltage will be induced across branch 3 since branch

1
i .
S5 is coupled to branch 3. However 15 i1s in a direction opposite to
the positive direction of j5. Thus the volﬁage induced in branch 3
will be of a polarity opposite to that indicated by the branch 3
arrow. The contribution to loop 1 is thus - 13235 and the first loop

equation reads
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+ 1 - 1.z (2.3.386)

2734 3735

€1 = 11233
The other equations may be written by inspection in the same fashion.
Of course if the network is very complicated the systematic formulation
of the previous section may be more advisable to use. One may sim-
ilarly write equations on the node basis by inspection. In theory
this 1is no more difficult and follows an entirely dual pattern. It
may be expected that most engineers will need to acquire some practice
in formulating equations on the node basis since few people have had
practice in writing equilibrium equations on the node basis with

mutual inductance present.

. *
2.3.3 Different Representation of MP Network

As discussed in Section 2.2 one may construct from a given MP
network of n nodes, nn_2 different MT?*network elements. We may
determine the relationship between the branch parameter matrices of
two MTP elements having the same associated MP network in the
following way. Let MTP element 1 have branch impedance parameter
matrix Zqe The definition of terminal-pair voltages for MTP element
2 1s given and‘it is desired to find the relationship between its
branch impedance parameter matrix Z, and that for MTP element 2,
represent MTP element 1 as a tree of mutually coupled branches.
Excite this network with voltage sources placed and numbered to
coinclde with the terminal-pair voltages defined for MTP element 2.
It 1s readily seen that the equilibrium matrix which relates this set
of source voltages and the resulting response currents is Jjust 255
# It will be recalled that an MP (multipole) network is one which is only

accessible at a set of nodes. Thus an MP network may be represented as a box

with a set of nodes extruding. An MIP (multiterminal-pair) network is an MP
network with a set of terminal-pairs assigned.
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the branch impedance parameter matrix of MTP element 2. We may apply

Eq. 2.3.12 where we identify

I = z1
2947 %2
Pop = 54 (2.3.37)

Here B is the tile set which defines loop currents on MTP element 1
that have been created by insertlng the n terminal-pair voltage
sources of MTP element 2. Each source inserts a link into MTP element
1l and it is assumed that loop currents have been ldentified with 1link
currents. The B matrix 1s clearly square and n x n since there are n
loop currents and MTP element 1 has n branches. Moreover it is
clearly a nonsingular matrix. Thus we have, using the definitions

*
2.3.37 in Eq. 2.3.12

z, = 6let (2.3.38)

3¢
Now a dual analysis on the admittance basis would show that
y. = ay,a’ (2.3.39)
2 1 L] .

where Yic is the branch admittance matrix of the kth MTP network

(k = 1,2) and o is the cut set matrix used to define the node-pair
voltages of MTP element 2 on the tree representation of MTP element 1.
Here a is an n X n non-singular matrix. By inverting Eq. 2.3.38 we

obtain the following relationship between a and B,

a= (Y (2.3.40)

l.e. a and B are inverse transposes of one another.

# Assuming the consistency conditions.are applicable.
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It 1s easy to show that the determinants a and B are equal and

have the magnitude unity. From Eq. 2.3.40 we obtailn

det a = (2.3.41)

det B

But since a and B both contain as elements + 1l's or - 1l's, their
determinants must be integers. The only integers which will satisfy
Equation 2.3.41 are +1 and - 1.

An illustrative example willl now be given.

a b c d a b c d
1 2 3
f 2 3
ELEMENT | ELEMENT 2
(a)
€ €2 €3
. N 3 ]
I 'I 2 l2 ‘3 Fig. 20203

(b)
Fig. 2.3.2a shows the coupled tree branch representations of MTP
element 1 and MTP element 2 with both having the same associated MP
network. Suppose that the branch impedance parameter matrix of

element 1 1s given as

- -

211%12%13

1 Z51200%03 (2.3.42)

231%32%33
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It 1s desired to determine Zs e In Fig. 2.3.2b, element 1 is excited

by three voltage sources with polarity and location to correspond to

the terminal pair voltages of element 2. By inspection of this figure

we determine that the tie set matrix is

-1 1 0°
B = o -1 1 (2.3.43)
o 0o -1

Thus

-1 1 of |%11%12%13] [-1 o o

5 ‘ ' Z51%502%03 1 -1 O (2.3.44)

31732733 -

These matrix products are readily formed yielding
Z11%%227%127%21 Z23%2127%137%22  Z137%23

2o = |230%25172317%20  Z33%%327%327%p3  Z237%33 (2.3.45)

zZ

2z17%32 2327%33 35

As discussed in Section 2.2, when the associated MP network is
only partially described by an MTP element, the branch representation
of the MTP element becomes not one tree but a group of isolated trees.
If we generate new MTP .elements by redefining terminal palrs
separately on these isolated trees, then the arguments above may be
applied directly to determine the relationship between the parameter
matrices of these MTP elements. It will be noted that in the case of

a partially described MP network the B matrix may be partitioned into a
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number of submatrices 1n the manner indicated for I, Eq. 2.3.5,
since loop currents may belong to only one of the 1solated trees

representing MTP element 1.

2.4 Evaluation of‘Equilibrium Matrlx by Matrix Addition

2.4.1 Impedance and Admittance Matrices

For some speclal situations one may evaluate the equilibrium
matrix by "parameter matrix addition" of the MTP elements. The
reason for quotes 1s that 1t 1s not generally the parameter matrices
which are added but rather parameter matrices or their principal
submatriceg which have been properly augmented by addition of an
equal number of rows and columns of zeroes. Whenever the conditilons
are present for matrix addition one may of course obtaln the
equilibrium equations very quickly. Examination of Eq's. 2.3.18 and
2.3.31 show that the equilibrium matrix on the loop and node basis
is always obtainable by summing directly the loop parameter and node
parameter matrices respectively of the component MTP elements. Let

us repeat the equation for the loop parameter matrix of the kth MTP

element.
7 =B z BL (2.4.1)
k k"k"k e
We recall that 2y 1s the branch impedance matrix of the kth element
and Bk is that submatrix of the tie set matrix e;% which tells how
‘ th

the loop currents traverse the = branches of the k MTP element.

A zero indicates that a branch 1s not traversed. A + 1 indicates

# A principal submatrix P of a square matrix S is any square matrix formed from
S by striking out rows and corresponding columns.
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that a branch has been traversed in the direction of positive branch
current and a - 1 indicates a traversal in a direction of negative
branch current.

When the matrix Z, (for all k) is either equal to z,, to a prin-
cipal submatrix of Z)s OT to versions of these which are augmented by
rows and columns of zeroes then the conditions will be said to exist
whereby the equilibrium matrix may be evaluated by the addition of
component element parameter matrices. A loop parameter matrix Zk
which has any one of the four forms indicated above will be called a
Simple loop parameter matrix. It is readily seen from Eq. 2.4.1 that
the necessary and sufficient condition for zk to be Simple (for gen-
eral Zk) 1s that the matrix resulting when all null columns and rows
have been removed from Bk be either the unit matrix or the negative
of the unit matrix. In terms of the actual network variables this
may be stated as follows. The loop parameter matrix of the kth MTP
element will be Simple if the following three conditions are satisfied.

(1) Each tie set contains (or equivalently each loop current

traverses) at most one branch of the MTP element k. Each
branch of MTP element k is contained in only one tie set.

(2) The set of tie sets, Ty, which do contain a set of

branches, By, of MTP element k, all contain the branches in
the same algebraic sense. (This 1s equivalent to the
statement that Bk has elements of the same algebraic sign).

(3) The numbering of the elements of Ty 1s in the same order

as the corresponding elements of By. That is, 1if we
arrange the numbering of the loop currents defined by T
in ascending order, then the corresponding branches which
they traverse are also numbered in ascending order.
Condition (3) is meaningful only if condition (1) is
satisfied since only in this case will there be a one-one
correspondence between elements of Tk and elements of Bk’

It is readily seen from item (3) that many loop parameter

matrices may be made Simple by just renumbering the branches in 5k'
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It will be assumed in any subsequent discussion that such renumbering,
if applicable, has been carried out. This renumbering simply
correspbnds to an interchange of columns of Bk to convert it into a
diagonal matrix.

All the above statements and definitions can be carried over in
dual form to discuss the conditions under which the node equilibrium
matrix may be formed by "node parameter matrix" addition. Only the
final statements dual to. (1), (2), and (3) will be given. The node
parameter matrix of the kth MTP element will be Simple if the

following three conditlons are satisfied.

(1) Each cut-set contains at most one branch of MTP element k.
Each branch of MTP element k is contained in only one cut-
set.

(2) The set of cut-sets, Ck, which do contain a set of branches,
, of MTP element k all contain these branches in the same

A
a%gebraic sense. (This is equivalent to the statement that
o has elements of the same algebraic sign).

(3) The numbering of the elements of C, is in the same order as
the corresponding elements of A . Condition (3) is mean-

ingful only if Condition (1) is satisfied since only in this
case will there be a one-one correspondence between elements
of C, and elements of A .

k k
A renumbering of branches in Bk will sometimes allow Condition
(3) to be satisfied. This corresponds to interchanging columns of Q. -
It should be noted that if all the MTP elements have node to
datum terminal pairs with a common datum then the conditions for
formulation of the node equilibrium matrix by node paramater matrix
addition are satisfied. However it should be clear that the node to

datum assignment with common datum is not a necessary condition for

parameter matrix addition.
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Two examples will now be given to illustrate the formulation of

equilibrium matrices by addition of branch parameter matrices.

ELEMENT | J 2 [
a b c
BT AR
ELEMENT 2 | |
X A 5 > 6 |
T R
o d e f
(a) (b)
] 2 | 2 >
i — € €r—»
e i e
°) D 2) °2 Ois Oi
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- 3 4 o= ~—a 3 4 |—»-
5 & 6 o 45 & 6 (o
D | W e

. ) < ) e W
®s, ~eg i Oj
tc) 4 $3 (d) sq
Fig. 2.4.1 Example Illustrating Addition Of Parameter Matrices
In Fig. 2.4.la a network is shown that consists of an interconnection

of two MTP elements. Its equivalent branch representation is shown

in Fig. 2.4.1b. It will be noticed that MTP element 2 only partially
describes its assoclated MP network. However this will cause no
difficulty so long as the complete network is excited 1n such a way
that the two trees of MTP element 2 are never connected. In

Fig. 2.4.1c, the network of Fig. 2.4.la is shown with 4 voltage sources
applied in 4 loops. Inspection of this.figure shows that the loop
parameter matrices of MTP elements 1 and 2 are Simple. Thus the

equilibrium matrix 2 relating the loop currents 1., i,, i1,, and 1
IV 1’ 22 tze and iy
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to the source voltages €g1° ©52° €537 eS4 may be evaluated by simple

addition. To indicate thls fact compactly let zq be the branch

impedance parameter matrix of element 1 and let =z the branch

2,
impedance parameter matrix of element 2 be partitioned as follows

zZ | 4

a| b
Zy = - B (2.4.2)
ZC ' Zd
where
233%34 Zz5%36
g T ’ 2y T
EZ43244J _245246_
F-Z Z ] -Z Z ]
53°54 5556
ZC = F) Zd = (2-4:-3)
Z Z z Z
| “63764 | | “65766 |

It is readily seen that

|
z1 I 0 yAA

Z, = -]-— z, = (2.4.4)
0 ' 0 ZCZ

so that the loop equilibrium matrix %Za(is

Z.x?= 2.+ 2, = - —-— = — (2.4.5)

In Fig. 2.4.1b the network of Fig. 2.4.la 1s excited by 4
current sources applied at 4 independent node pairs. Inspection of
this figure shows that the node parameter matrices of elements 1 and

2 are simple. Thus the equilibrium matrix Ynn relating the node palr
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voltages €15 €55 €35 €, to the source currents isl’is2’ 133, 134 may
be evaluated by simple addition. Proceeding in the same fashlon as
for the preceding example let yq» yz be the branch admittance
parameter matrices for MTP elements 1 and 2. Let Vo be partitioned

as follows

yayb
Vo = (2.4.8)
ycyd
where
- -3 - -1
V33534 I35936
Yo = , ’ Ip =
V43544 Y45Y46
£ e . -
Y53Y54 V55956
Vo = Vo = (2.4.7)
y63y64J V65966
It 1s readily seen that the node parameter matrices are
v 1o y. Iy
1] ajy| b
Yl = _.l_. Y2 = _l____ (2.4:08)
0 0 y y
I c | °d
so that the node equilibrium matrix Ynn is given by
ya+ylf Yy
Y, =Y +Y, = — == (2.4.9)
yC I yd

We see that the network of Fig. 2.4.l1a has the following
interésting attribute. It is possible to define loop currents and

node pair voltages such that both the node and loop parameter
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matrices of the MTP elements are not only Simple but are of the same
form for the same MTP element. Note also that MTP element 1 has node
and loop parémeter matrices which differ from the corresponding branch
parameter matrices only 1n an augmentation by rows and columns of
zeroes.

The following definitions will be helpful in subsequent discus-
siohs. A Simple loop parameter or node parameter matrix will be
called Complete if it is identical to the corresponding branch
parameter matrix or differs only by an augmentation with null rows
and columns. A network composed of MTP elements will be called an
Additive network if 1t 1s possible to define loop currents and node
palr voltages such that the node and loop parameter matrices of each
MTP element are Complete, Simple, and of the same form. The network
of Fig. 2.4.la is an example of an Additive network. It is not
difficult to see that the necessary and sufficient conditions for a
network to be Additive are that its coupled branch representation be
such that

(1) All loops contain one or two branches.

(2) If there are two branches, these branches belong to
different MTP elements.

Thus the branches of an Additive network may be divided into
two classes: those which are paralleled with another branch and
those which are not (isolated branches). If it is desired to have
the admittance equilibrium matrix equal to the sum of the branch
admittance parameter matrices of the MTP elements then current sources
- are placed across branches. If it is desired to have the impedance
equilibrium matrix equal to the sum of the branch impedance parameter

matrices of the MTP elements, voltage sources are placed in loops
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formed by the paralleled branches and are placed in parallel with
the isolated branches. Filgure 2.4.2 illustrates the above

described manner of exciting an additive network. In Fig. 2.4.2a

Fig. 2.4.2
' EZI:I 3
° (@) l
'SI | e| 2
| (b) BRANCHES
2 8 3 COUPLED
| ) 2 3 in e,

o
o

(c)

there 1s shown a pair of typical paralleled branches and an isolated
branch of an additive network. 1In Fig. 2.4.2b these are excited by
current sources and in Filg. 2.4.2c by voltage sources in the correct
fashlon to make the equilibrium matrices equal to the sum of

parameter matrices.

Additive networks have a further interesting and useful property

which will be discussed in the following section.
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2.4.2 Mixed Matrices

A multiterminal-palr network 1is usually described either by a
short circult admittance matrix or an open circuilt impedance matrix.
If voltage sources are applied at terminal pairs the equilibrium
matrix is the open circult impedance matrix. The solution matrix is
the short circult admittance matrix - the inverse of the equilibrium
matrix. If current sources are applied at terminal pairs'the
equilibrium matrix is the s.c. admittance matrix and the solution
matrix is the o.c. Impedance matrix. There are situations under
which one may desire to drive some terminal pailrs with voltage sources
and the rest with current sources. The response variables are then
both terminal-pair voltages and currents. A matrix relating such a
mixed excitation and response is called a mixed matrix. If there are
n terminal pairs then 1t is clear that there are 2n matrices which
can be defined such that an excitation or response quantity is either
a terminal-pailr voltage or current but not both. Of course two of
these are the conventional o.c. impedance and s.c. admittance matrix
so that there are Zn"l mixed matrices. The various m nodes of
excltatlion are shown in Fig. 2.4.3 for a grounded two terminal-pair
network.

An MTP element can be characterized with regard to terminal-
palr behavior by what might be cailed a mixed branch parameter matrix.
A network which consists of an interconnection of MTP elements and a
number of points of entry (i.e. soldering type insertion of current
sources of pliers type insertion of voltage sources) 1s itself an

MTP network. We have discussed the formulation of equilibrium
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Fig. 2.4.3 Different Ways Of Exciting Two Terminal-Pair Network

equations on the node or loop basis for such a network but such
equilibrium equations imply either excitatior by voltage sources in
loops or by current sources across node-pairs but not both. Under
some conditions 1t is desirable to formulate equilibrium equations
on a mixed basis with some voltage sources and some current sources
and with response quantities that are voltages across current sources
and currents through voltage source. No detailed discussion of this
problem will be given here. Rather a specific situation will be
studied which will be of use later on in the thesis. This is the
situation in which the network is of the Additive type. We will
show that if the network is Additive,mixed equilibrium matrices for
the network can'by appropriate choice of loop currents and node pair
voltages, be set equal to the sum of mixed branch parameter matrices

of the component MTP elements.
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Instead of giving a general proof a specific situation will be
analyzed and the generalization wlll be clear to the reader.
Consider the network of Filg. 2.4.1 excited as indicated in Fig. 2.4.4

by one current source and three voltage sources.

FoT T

Flg. 2.4.4 Network Of Fig. 2.4.1b Excited With Voltage
And Current Sources

The equilibrium equations for this network will be of the form

151 = U11%1 * Paglp * Pygls + Pty

22 = 82181 " Vpplp t+ Upzls * Uply

g3 = 83181 t Usplp + Uzzlz +ousydy

ey = 8,18 + Ui, +u Ll +u 1) (2.4.10)
The coefficient ajl is a voltage transfer ratio. It is the ratio of

e ., to el with i, =1, = i1, = 0. The coefficient b is a current

sJ 2 3 4 - ij

transfer ratio. It is the ratio of i to ij with €y = i, =0

sl k
(k = j). The other coefficients are admittances and impedances.
When writing equations on the mixed basis some are applications of
Kirchoff's Current Law and some are applications of Kirchoff's

Voltage Law. Thus the first equation of 2.4.10 is the result of an
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application of Kirchoff's Current Law and the last three are
applications of Kirchoff's Voltage Law. Let us now write the
equilibrium equations for MTP elements 1 and 2. The manner of

excitation of these elements is indicated in Fig. 2.4.5.

Fig. 2.4.5
e e
3 4

The mixed equations for MTP element 1 are

D Do) sl

eé%)‘= aé%)egl) + ué%)iél) (2.4.11)
and those for MTP element 2 are

D = Do) 4 oD b1 oD

o2« ofDafe) 2 uD1fF) T3 D

oD = D) DL D D

eég) _ aii)e§2) N uig)iéz) N uig)iéz) N Uii)iiz) (2.4.12)

We adjust the sources until
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N
~—

(
1
= iél) (2.4.13)

DN —~ =~
(]
~—

If we now connect the two networks as indicated 1n Fig. 2.4.4

with
tgy = 1M 4 a?)
i olf) ol
€53 = eég)
(2) (2.4.14)

884 = es4

the operation of the individual elements will be undisturbed since
branch voltages and currents will remain the same as before the

connection. Using Eq's. 2.4.11 to 2.4.14 we obtain the desired

result
_ (1) (2) _ (1) (2)
Upp = Uyp° +ugpt bgp = bypt 4+ bgs
_ (1) (2) _ (1) (2)
ayy = 857" + a5, Usy = Uss’ + Uss (2.4.15)

All other coefficients in Eq. 2.4.10 are equal to the corresponding
ones in Eg. 2.4.12. It should be noted in closing this section,
that the positive reference directions used for source currents and
voltages applied to MTP element 2 to define its mixed branch
parameter matrix do not coincide with the positilive reference

directions for its branch voltages and currents. This was necessary
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in order for Eq. 2.4.15 to hold. If the positive reference

directions for the sources are changed then some of the above

equations will generally have to be modified by multiplying various
coefficients by -1l. Assuming that source positive reference directions
are defined appropriately we may state the following general conclu-
sion. If for an Additive network source voltages are placed in

series with paralleled branches and across isolated branches

(see Fig. 2.4.2c¢c) while current sources are placed in parallel with
paralleled branches and isolated branches (see Fig. 2.4.2b) then the
mixed equilibrium matrix of the network is equal to the sum of the

mixed branch parameter matrices of its component MTP elements.
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CHAPTER 3

ANALYSIS OF LLF:R NETWORKS
BY LINEAR TRANSFORMATION THEORY

3.1 Introduction

In this chapter we will discuss a number of network configura-
tions which allow an LLF:R networks to be analyzed by llnear trans-
formation theory such that it may be represented by an LLFPB network
and a set of linear transformations relating dynamic variables in
the two networks. Since we are confining ourselves to a discussion
of LLF:R networks it will always be possible to consider the net-
work under investigation to be composed of MTP elements of two kinds:
those that are LLFPB and those that are R-LLF.

As discussed in Section 1.4 of Chapter 1, Guillemin has found a
general method of analysis by linear transformation theory which
leads to dependent sources in the reference LLFPB networks. This
method is presented in Section 3.2. The presentation here differs
fromg@guillemin's in that the network is assumed to be composed
entirely of MTP elements which are represented by mutually coupled
branches as discussed in Chapter 2. The MTP elements are either
LLFPB or R-LLF. Thus the branches of the network may be called
LLFPB or R-LLF depending upon whether they are associlated with an
LLFPB MTP element or an R-LLF element. In Gulllemin's presentation,
on the other hand, the network consists of MTP elements which are
R-LLF and R's, L's, and C!'s. The MTP elements are assumed to have
node to datum terminal-palrs and are replaced by a set of mutually

coupled branches. Thus 1n his presentation also, the branches may
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be classifled as LLFPB or R-LLF, but the LLFPB branches are ordinary
resistances, inductances, and capacitances as opposed to the more
general LLFPB coupled branches of the presentation of Section 3.2.

Basic to the method of analysis of LLF:R networks through
linear transformation theory found by Guillemin 1is a method of.
linear network analysis developed by Guillemin some . time ago(zl);
This method is presented in Section 3.2.1 for the case of a network
consisting of MTP elements. It is a method of analysis in which it
is possible to define generalized cut-set and tie-set matrices which
are square and non-singular. In Section 3.3.the .general transforma-
tion theory method of analysis of Section 3.1 is examined to
determine some/condiﬁions under which no dependent sources appear
in the LLFPB reference network. A rather general result is presented.
In brief, if an LLF:R network represented by mutually coupled
branches satisfies certain restrictions with regard to topology and
with regard to the character of the embedded R-LLF elements, then we
may express 1ts voltages and currents in terms of those of an LLFPB
network and no dependent sources are required in the LLFPB network.

Section 3.4 considers the possibility of effecting transforma-
tlons directly upon the equilibrium matrix of the LLF:R network
rather than indirectly through the branch parameter matrix as in
Section 3.2. In this way the possibility of dependent sources
appearing is removed a priori.

While Sections 3.2 to 3.4 are concerned with analysis methods
involving real linear transformations, Section 3.5 considers particu-

lar analysis methods using complex linear transformations. The
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starting polnt for the ideas in this section is method of analysis
suggested by Guillemin® in which a LLF:R network containing one
vacuum tube is analyzed by means of complex linear transformationé.
The LLFPB reference network is obtained from the LLF:R network by
omitting the vacuum tube. This method has been considerably ex-
tended and forms the basis for some of the more IiImportant results of

the thesis presented in Chapters 5 and 6.

3.2 @Guillemin's General Method

3.2.1 Network Analysis with Generalized Cut-Set and Tie-Set Matrices

In this Section we will outline a method of analysis of linear
networks in which the cut-set and tle-set matrices are square and
non-singular. The network to be analyzed 1s assumed to be composed
of MTP elements that have been represented by coupled tree branches.
Let there be b branches, n + 1 nodes, and,é7links. Formulation of
node equilibrium equations is summarized by Equations 2.3.28 to
2.3.30, and formulation of loop equilibrium equations is summarized
by Equations 2.3.7, 2.3.8,v2.3.10, and 2.3.11. The cut-set matrix
%p contains n rows and b columns while the tie-set matrix sz con-
tains*é?rows and b columns. We will first consider formulating
equilibrium equations on the node basis for a slightly modified net-
work for which the cut-set matrix o is non-singular and contailns %
as a submatrix. Then we will consider formulating equilibrium

equations on the loop basis for the original network modified in a

fashion dual to that for which the cut-set matrix o was defined.

# Unpublished memo.
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In this case a non-singular tie-set matrix B will result for which
B/ 1ls a submatrix.

Modify the original network by open circuiting the_# independent
loops defined by Qé%. By this procedure34fadditional independent
terminal palrs are created. Since there are already n independent
terminal pairs defined by %y 2 the total number of independent
terminal pairs is brought to

n+.4=">= (3.2.1)
Now exclte these b ferminal pairs with current sources and write the
node equilibrium equations. It should be noted that branches in the
original network have not been removed but rather current sourcee
have been placed in series with some of them. The cut-set matrix
now contains b rows and b columns and must be non-singular since
there are as many independent columns in a cut-set matrix as there
are independent node palrs. The column matrix of source currents

1 can be arranged to have the form

]
i = _ (3.202)

I

where :"LS is the column matrix of source currents applied at the
original node pairs and i; is the column matrix of source currents
applied at the new node pairs. In affect what we have done is allow
the loop currents to become current sources - then the voltages
across these loop current sources become node pair voltages. If ]
is the column matrix of branch currents and o 1s the cut-set matrix

for the augmented network, then
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al =1 (3.2.3)
1s Kirchoff's current low written with the aid of the cut-set
schedule. Since thekeolumns of the cut-set schedule are the coef-
ficlents 1n a set of linear equations which relate branch voltages

and node pair voltages we have also

a e=v (3.2.4)
where v is the column matrix of branch voltages and e, the column
matrix of node pair voltages, takes the form

et
-e—= - » (3'2-5)

where e' 1is the column matrix of new node pair voltages and e, is
the column matrix of ofiginal node pair voltages. Since o is non-
singular 1t is possible to invert Equations 3.2.3 and 3.2.4 with

the result

J=a " 1 (3.2.6)

o]
i
—
Qd‘
—
!
< =

Now 1f we partition o as indicated below

b 4

o= 2u- - (3.2.7)
%p

where %y has j rows and k columns then Equation 3.2.3 takes the form
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afnd = 1g | (3.2.8)

OLnb‘j = is

The matrix %oy is seen to be Just the cut-set matrix defined for the
network before augmentation by the new terminal pairs. The matrix
ay, expresses the loop "source" currents in terms of the branch
currents. To formulate the equillbrium equations we note that the
relationship between branch voltages and branch currents 1s speci-
fied by Equation (2.3.27). We may use Equation (2.3.30) directly

to obtain

Y = oAa (3.2.9)

where Y is the equilibrium matrix on the node basis for the aug-

mented network. Thus
I=Ye (3.2.10)

We have been assuming that the loop currents are current sources
and that the voltages across these current sources are node pailr
voltages. However, Equation (3.2.10) will still be valid if we
assume that these node palr voltages are produced by voltage
sources and the currents through these sources are loop currents.

In other words if we assume that

e = e' (3.2011)

s 1
1 =
v iS

where eq is now the column matrix of voltage sources and iv 1s the

column matrix of loop currents, then
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- = Y -= (3.2.12)

In Equation 3.2.12 i1t is not appropriate to call Y an equillbrium

matrix any longer. If we partlition Y in the following fashilon

YL\ s

Y = | (3.2.13)
Ynjg|Yhn
where ij has j rows and k columns, then
1, = Yy + Yy &y (3.2.14)
is = Yn/es + Ynn eV

It will be recognized that the submatrix Yhn 1s the conventional
node equilibrium matrix since it relates source currents to node
pair voltages with no voltage sources in the loop (eS = 0).

We may proceed now on an entirely dual basis. Modify the
original network by putting short circuits across node pairs defined
by the cut-set matrix % ® By thils artifice n additional independent
loops are created beyond the.1¢loops already defined by @Zb' Thus
there are now n +nx?= b independent loops. Now excite these b loops
with voltage sources and write the loop equilibrium equations. The

tie-set matrix now contains b rows and b columns and 1s non-singular.

The column matrix of source voltages'g can be made to take the form

e =|-- (3.2.15)
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where eg is the column matrix of source voltages applied in loops of
the original network and eé is the column matrix of source voltages
applied across node pairs. In effect what we have done 1s allow the
node pair voltages to become source voltages - then the currents
leaving these node pair voltage sources become loop currents. If v
is the column matrix of branch voltages and B is the tie-set for the

augmented network, then
Bv = ¢ (3.2.16)

is Kirchoff's voltage law written with the aid of the tie-set
schedule. Since the columns of the tie-set schedule are the coef-
ficilents in a set of linear equations which relate branch currents

and loop currents we have also

81 = g (3.2.17)

where j is the column matrix of branch currents and'z, the column

matrix of loop currents takes the form

v

- (302018)
it

[,
i

where iv is the column matrix of original loop currents and i' is
the column matrix of new loop currents. Since B 1s non-singular it

is possible to invert Equations 3.2.16 and 3.2.17 with the result

v=pRf"e (3.2.19)
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If we partition B as indicated below

FA°

B=|--- (3.2.20)
Bnb

where Bjk has J rows and k columns then Equation 3.2.16 takes the

%/bv = e (3.2.21)

Bnbv = %s

The matrix ng is seen to be Jjust tie-set matrix for the
original network. The matrix ahb expresses the node pair voltage
sources in terms of the branch voltages. Equilibrium equations on
the loop basis are ready formulated row just as indicated by

Equations (2.3.11). Thus

~o

e = 71 | (3.2.22)
where
7 BIBt , (3.2.23)
and
IT=a"" (3.2.24)

1s the branch impedance . parameter matrix.

We have been assuming that node pair voltages are due to
voltage sources and currents leaving these voltage sources are loop
currents but Equation 3.2.22 will be valid if we assume that current
sources are applied at node pailrs and that the voltages across these
sources are node pair voltages.
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In other words we may assume that

e. = e (3.2.25)
1= 1

where e, is the column matrix of node pair voltages and is is the
column matrix of current sources applied to node pairs. If we
partition Z as follows

2 b

7 = (3.2.26)
Zod %on

then with the assumptions (3.2.25), Equation (3.2.22) becomes

e Zjl Z/Zn iv
N I Esedinasiy B I (3.2.27)
eV ZHZ Zl’ln iS

It may be recognized that the submatrix ij 1s the conventional loop
equilibrium matrix since it relates source voltages to loop currents

with no current sources applied at node pairs (iS =0). We will

define

e=|-2]; 1i=|+2 (3.2.28)

J=oa" 1 (3.2.29)
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and Equations 3.2.19 read
V=21 e (3.2.30)

i =

|

—

w
ct
| S—
1

=
[

A comparison of Equations 3.2.29 and 3.2.30 show that

a = (tzt)—l s B = [at]-l (3.2.31)

i.e. the generalized cut-set and tile-set matrices are inverse trans-
poses of one another. From Equation 3.2.31 or comparison of Equa-

tion 3.2.27 and 3.2.12 it becomes clear that

Y=2 (3.2.32)

If the cut-set %p and the tie-set @jb are chosen in the fol-
lowing particular fashion, the matrices a and B take an especially
simple form. Choose %y such that node pair voltages correspond to
tree branch voltages and choose be such that loop currents are
identified with link currents. In addition, number the branches so
that the firstugtmenches are links and the last n are tree branches.

Then it is not difficult to see that
_ |
By = [ U0 180n] (3.2.33)

Bnb

I

il

[
= [y10]
“nb [
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where U:J 1s a J x J unit matrix, @/n is an/x n matrix, and angis
an n xuzgmatrix. From Equation 3.2.31 one may readily deduce that

By = - an/ (3.2.34)

It should be noted that a numbering of the branches such that
the firstaé7are links and the last n are tree branches is not
necessarlly consistent with the method of numbering suggested in
Section 2.3. Thus the branch parameter matrices will not have the
simple form of I and A of Equations 2.3.4 and 2.3.25 respectively,
although, of course, they can be put in that form by a renumbering

of branches.

3.2,2 Application of Linear Transformations

In thls Section it will be shown how an LLF:R network with
generalized admittance matrix Y (see Equation 3.2.12) may be analyzed
by linear transformation theory in terms of an LLFPB reference network
with generallized admittance matrix'Q, voltage and current matrices

A A
e and 1, and a set of real non-singular transformation matrices 7 and

v such that
A
i =71
3.2.35
A ( )
e =v " e

Since the network under consideration is LLF:R 1ts MTP elements
are either LLFPB or R-LLF. One may number the R-LLF branches con-
secutively so that all the R-LLF branch parameter matrices may be

grouped as a single real submatrix of A, the branch admittance
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parameter matrix of the network. By well known techniques one may
find real non-singular matrices which upon pre-or-post or both pre-
and‘post-multiplication of A convert the real submatrix into one
which comes from the branch parameter matrices of a group of posi-
tive resistance (R-LLFPB) boxes. The resulting matrix ﬁ 1s then

expressible in the form

A=P ~AQ (3.2.36)

where P,Q are real non-singular matrices. The matrix Q may be
regarded as the branch parameter matrix of an LLFPB network which
differs from the LLF:R network with branch parameter matrix A in
that the R-LLF MTP elements of the LLF:R network have become R-LLFPB
MTP elements. 1In fact the relationship 3.2.36 implies that

A
J=7PJ (3.2.37)

1A
v=Ql¥

where 9, J are the branch current column matrices of the LLFPB and
the LLF:R networks, respectlvely, with analogous interpretation for
V' and </’\

It 1s assumed that the topology and the assignment of voltage
and current variables is the same for the LLF:R and the LLFPB net-
work. Then the generalized cut-set and tie-set matrices o and B are

the same for both networks. From Equations 3.2.29 and 3.2.30 we

deduce that

A A

i=aj ; 1=aj (3.2.38)
A A -

e =8V ; e =BV
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Usling both Equations 3.2.38 and 3.2.37 we find

N - -1 - -

1=ty = apta e = (3.2, 39)
A | -

e = BQv = BQRP 1y = ve

where the transformatilion matrices are given by

T = aPa (3.2.40)

v = BB

Now according to definition

N AN
i=Ye (3.2.41)

1=Ye

A
The relationship between Y and Y 1s readily determined by premulti-
plying the first equation in 3.2.41 by 7 and then using the

equalities in Equation 3.2.39. The result is
N
Y = 7Y (3.2.42)

Equations 3.2.42 and 3.2.39 constitute, in a sense, an analysis
of the’LLF:R netowrk into an LLFPB network and a set of linear trans-
formation relating voltages and currents in the two networks.
However, we note that the matrices 1 and e or Q and Q have elements
which are both source quantities and response quantities. Thus,
suppose the LLF:R network is excited only by current sources at

node pairs. The matrices e and 1 take the form

e =|-- 1 =] - (3.2.43)
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Let the matrix v be partitioned in the form

o =| 22 VI (3.2.44)

where Djk is a J x k matrix. Then application of the second equa-

tion in 3.2.39 shows that

A) |

A ®s '5£l|1ﬂﬂ1 © ?/nev

e == ﬂ- —3 - —— ' ——— —— I R (302045)
v ‘%LZpUnn ey “nn®v

i.e.

A 3.0.4

®s = %Ynsy (5.2.46)

A —

v = °mn®v

If we solve for e, in the second equation in 3.2.45 and use this in

the first equation we find that

A -1A
s = %/®nn’y (3.2.47)

Thus in addition to current sources applied at node palrs, the LLFPB
reference network must have voltage sources in loops whose values

depend upon node pailr voltages - 1.e. dependent voltage sources.

Moreover, examination of the first equation in 3.2.39 shows
that the current sources in the LLFPB network are not only a func-
tion of the current sources in the LLF:R network but also a function
of the loop currents of the LLFPB network. Thus the current sources

also are dependent current sources.
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Of course 1t 1s not necessary to use both P and Q to transform
an LLF:R A matrix into an LLFPB A matrix. If Q 1s chosen a unit
matrix then v also becomes a unit matrix. In such a case e = & and
dependent voltage sources do not appear. However, the current
sources in the LLFPB network are still dependent upon loop currents

in the LLFPB network. In the followlng sectlon consideration is

given to specilal conditions which do not lead to dependent sources.

3.3 Special Condition Leading To No Dependent Sources

General conditlons for the existence of no dependent sources
in the reference network are readily found from Equatlion 3.2.39.
Let m be positioned in the same fashion as v in 3.2.44. Then we
may expand Equation 3.2.39 as follows (we invert the first equation

in 3.2.39 to avoild defining new quantities).

A N
1, = Tyl + Tlnis (3.3.1)
A N

s = ™fiy + Tyl

and

N
e

|

s = Ofeg +vpe, (3.3.2)

2
A%

Dn[?S + O n8y
It may be seen by inspection of Equations 3.3.1 and 3.3.2 that
A
the current source matrix 1S and the voltage source matrix és of the

reference network will

(1) Dbe related to 1, and e, respectively, by real transforma-
tion matrices

(2) Dbe independent of voltages and currents in the LLFPB
reference network.
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only if the matrices vhxgand Bén are null, i.e., only if
T4 = O (3.3.3)

Yn =0
Application of the conditions 3.3.3 to Equations 3.3.1 and

AN
3.3.2 yleld the relationships between is and is’ and eq and Qg as

&)
iS = Tonls (3.3.4)
A _ e
s = Ynn®s

Now the equilibrium matrices of interest are the node and loop
equllibrium matrices of the network, Yhn and Zz[, respectively. We
wlll confine all discussion in this section to the case in which
current sources are applled at node-pairs but no voltage sources
are applied in loops. The situation in which voltage sources are
applled in loops and no current sources are applied at node pairs
is a dual situatlon and all the arguments and discussion may be
carried over in dual form. Thus, in this section we will be con-
cerned with the node equilibrium’matrix Yhn' The relationship

A
between Yhn and Yhn may be determined from Equation 3.2.42 as

A A A N
Yon = ”ﬁ[?Zé?/h + vﬁjﬁinbnn * Tan'n E/n * Tin'nn®nn (5.5.5)
Since we are cconfining ourselves to the condition in which no
dependent sources exist in the LLFPB reference network we apply the

restrictions 3.3.3 to Equation 3.3.5 with the result that

N\

on = "an¥nn®nn (3.3.6)
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Thus we come to the useful result that conditions 3.3.3 which lead
to no dependent sources also lead to a simple expression for the
relationship between the node-equilibrium matrices of the LLF:R net-
work and the LLFPB reference network. By inverting Equation 3.3.6
we obtain the relationship between the o.c. impedance matrices of

these networks as

-1A -1
Znn = °nn%nnnn (3.3.7)

We will now determine some interesting implications of the
requirement that n}ugand 32% be null. To make the algebraic manipu-
lations as simple as possible we will assume that node-pair voltages
are ldentified with tree branch voltages and loop currents with link
currents. In this situation the o and B matrices assume the simple
forms

Y| %

B = - 'a-— a=|--- oo (3.3.8)
0] | n ‘%yé'ph

if the branches are numbered so that the first,éyare,links and the
last n are tree branches. It will be further assumed that the LLF:R
network contains one imbedded R-LLF MTP element and that the branches
of this element are contalned in the group of tree branches selected
for the network. Let this R-LLF MTP element have s branches and let
these branches be the last numbered branches of the LLF:R network.
The branch admittance parameter matrix of the LLF:R network then

takes the form
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where the total number of tree branches is glven by

n==%xk

L

4y

-

+ 8

Tk

Tkk

g

SS

-t

(3.3.9)

(3.3.10)

Because we have numbered all the links first the A matrix dées not

take the simple form of Equation 2.3.25 as discussed at the end of

Section 2.

matrix of the R-LLF MTP element.

3.10

The matrix Bss 1s the branch admittance parameter

The other matrices in Equation

5.3.9 represent the branch admittance parameter matrix of the LLFPB

portion of the LLF:R network.

To convert our A matrix into the

A . 4
matrix A of an LLFPB network we can pre- and post-multiply A as

A
follows to form A

p—

>

A A
Y4 Yk
A A

Y 0 Yux

Uy o0 o
o U 0
o o0 Pl
-?‘// Y O
§k£ Pac O
0 o &

6]

0

(3.3.11)
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1

-1
s and st are chosen so that

where the submatrices P;

-1 -1 .
ss = FgsBss®ss (3.3.12)

0>

i1s the branch parameter matrix of an R-LLFPB MTP element, i.e., an
s terminal pair black box composed of positive resistances.

We desire to determine expressions for whdéand Bén in order to
find what conditions must be satisfied to make them null. The trans-

formation matrices P and Q are, by inspection of Equation 3.3.11,

r . - .
Uug 0 0 Uug o o
p=|0 U, o0 Q=10 U o
0 0 P 0 0 Qg (3.3.13)
- . L -

By evaluating w and v according to Equation 3.2.40 we can determine
expressions for vnj!and %/n in terms of submatrices of P and Q
respectively. To this end let the matrices a and B be partitioned

as follows

B 7 B T
S B4 w o o
=10 Uy 0 a=fa g U, 0]
0 0 Ug ag 4 0 Ug (3.3.14)
. . L R

where the matrices B n and angghave been partitioned as follows

Byn = TQZ& %f%]

i
o, /= Eiii (3.3.15)
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Note that th
schedule for
set schedule

poses of one

N/

aaﬁ

or

e 4=
A d =

Applyin

expressions

T g
?1%

Examina

{US - P

8:1%s
where the O
By taking th

Equation 3.3

e matrix %é% ls the last s columns of 9}% the tie-set

the network and asjzis the last s rows of the cut-

O"nb

of the network. Since anjgand ééh are negative trans-

another
t
- %Zk
————— (3.3.16)
t
- %/s
Bt (3.3.17)
jk . L

t
Pls
g Equation 3.2.40 we readily determine the following

for anfand Eéh’

[ (3.3.18)
{Us Pss %g
|
0 :EZS{QSS - Ug}
tion of these equations indicates that if
ssf9% /=0 (3.3.19)
- U} =0

indicates a null matrix then rnj/and ?Zn will be null.
e transpose of the first equation in 3.3.19 and using

.17 this becomes

99



84{Pss - Us} =0 (3.3.20)

Thus if @é% 1s orthogonal to both the matrix [st - US] and the
matrix [Pss - US]’ vnlgand E/n will become null. If we desire to
have complete freedom in the choice of Pss and Qss then @é@ must be
a null matrix for Equation 3.3.19 to be satisfied. Let us consider

this latter situation, i.e.,

Bly = O (3.3.21)

Equation 3.3.21 states that the last s columns of the tie-set matrix
@Z%, contaln only zeroes. If the last s columns of the tle-set
matrix contain only zeroes, then no loop currents can circulate on
the last s branches of the network. It 1s then clear that these
branches must be an isolated set of tree branches, so to speak,
waving in the breeze. But the last é tree branches are by construc-
tion, just the mutually goupled branch representation of the R-LLF
MTP element embedded in the LLF:R network. We have then arrived at
a trivial result, namely, to perform arbitrary transformations PSs
and st upon an arbitrary 8y5s according to Equation 3.3.12 in order
to convert the R-LLF MTP element into a positive resistance box,
the R-LLF device must be completely isolated from the LLFPB portion
of the LLF:R network.

Let us suppose that we wish only to transform a portion of By

i.e., let the matrices PSs and st take the form

U, o u, O ( |
p =] - Q= 3.3.22
SS . sSS
O Pyq 0 Quq
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where Pdd’ Qdd are arbitrary real nonsingular d x d matrices and
U, is an r x r unit matrix (s = r + d). If we use these restricted
expressions for PSS and st in Equation 3.3.19 then they take the

form

Blaf2gs - Uy} = 0 (3.3.23)

@/d{Pdd - Ud} =0

where the matrix é/s has been partitioned as follows

I
BYs = [f%l% (3.3.24)
Thus @éh represents the last d columns of the tie-set matrix eéb‘

If we desire Pdd’ Qdd to be arbitrary, then

?Zd = 0 (3.5.25)

if Equation 3.3.23 is to be satisfied.

Whereas Equation 3.3.21 leads to trivial results, Equation
3.3.25 does not,as will now be @hown. Equation 3.3.25 implies that
the last d branches of the R-LLF MTP element form a set of tree
branches on which no loop currents circulate. However, the saving
grace here is that remaining branches of the R-LLF element, r in
number, are not restricted in this way. Thus these r branches or
terminal-pairs may be connected with LLFPB branches or terminal-
pairs to form the LLF:R network. Such an interconnection of an
MTP R-LLF element with an MTP LLFPB element to form an LLF:R net-

work is shown in Figure 3.3.1
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|
r+1 o- o- ——o
2
r+2 o-— o— —0
| R-LLF | LLFPB
| | i
| '
s=r +d o—— N —— —0
r

]

Figure 3.3.1 An LLF:R Network With %éﬁ = 0

In this figure the R-LLF element and the LLFPB element have node to

datum terminal-pairs assigned although thls need not be done.

I

r+l om—mo| o~ 5
POSITIVE 2

r+2 o— o —o

' RESISTANCE : LLFPB |

| B O X !

s=r+d o— o ‘___lo
r

I

Flgure 3.3.2 Reference LLFPB Network
for LLF:R Network of Figure 3.3.1

The reference LLFPB network has exactly the same form except that

the R-LLF box becomes a reslstance box. Figure 3.3.2 illustrates
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the form of this reference network. The branch parameter matrix
8ss must be restricted in form since only then can one expect to
produce an LLFPB branch parameter matrix QSS with the restricted
transformation matrices of Equation 3.3.22. To understand the
restrictions on B,g We use the expressions for PSS and st given by
Equation 3.3.22 and carry out the matrix products shown in Equation

3.3.12 to evaluate @SS* First partition By 28 follows

grr grd
Bss = (3.3.26)
Ear &aq
Then
i E ] 3.3
Up © ||8er &gl |V © (5.3.27)
A
g =
ss -1 -1
| © Psal|8ar 8aal|° Saq
Epp | grd Q'dd grr grd
I -1 1l A A
L.Pdd 8sr 1Faa 8aa Wal| |8ar gde

Given a gss,it would be very difficult to determine whether it
were of the form to permit transformation to an LLFPB branch para-
meter matrix gss in the manner indicated in Equation 3.3.27.
However one may of course generate permissible 845 matrices by

reversing the procedure, i.e., starting with a é;s and forming gss by

#* It is worth reminding the reader at this point that the parameter matrix g__ need
not be diagonal as is required for the conventional branch conductance parameter
matrix. Of course, among other restrictions, it must be symmetrical and define
a positive definite quadrative form.
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A
8. = P g

sS ss s (3.3.28)

SS

To determine the relationship between the LLF:R o.c. impedance
A
matrilx Znn and the reference LLFPB o.c. lmpedance matrix Znn we must

employ Equation 3.3.7. To this and we must evaluate T and v

nn nn'*
These are readily found to be
- - - -
Uk o o0 Uk o o)
Tm =19 Up 0|3 vp=1]070U, o (3.3.29)
0O © Pdd o O Qdd
e A
If we partition Znn and Znn in the same manner as Ton and v We
find that
-1 A -1
Znn =0 - Znn Ton (3.3.30)
i 1T [ A boA IA p-1
“kk Zkr %kd| |_ %kk ! "kr | %kd Fdad |
= N 1A A -1
= | %rk %pr %ra| = ek | Zpp l Zrd Pdd
14 -1 /\ -1
Zak Zar deJ 933 2 !Qdd dr|Qdd ad Faa
e =

Observation of Equation 3.3.30 indicates that the transfer
impedances among the first k + r terminal pairs of the reference
LLFPB network are identical to those of the LLF:R network.

Equation 3.3.19 may be pursued further but this will not be

done here,
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3.4 Real Transformations. Directly Upon Equilibrium Matrix

In the previous Sectlon there is presented a method of analysis
of LLF:R networks by linear transformation theory that begins by
effecting real transformations upon the branch parameter matrix of
the network to convert it into the branch parameter matrix of an
LLFPB network. These linear transformations are shown to imply a
second set of linear transformations which relate the dynamic
variables in the LLF:R..network and those in the reference LLFPB
network. A difficulty with this approach, beyond the appearance of
dependent sources in the reference network is the quite indirect
correspondence between transformations effected upon the branch
parameter matrix and the resulting modification of the conventional
o.c. impedance matrix Znn or short circuilt admittance matrix EZZ'
An alternative approach 1s conceivable in which one attempts to
effect transformations directly upon the equilibrium matrix. In
this way the appearance of dependent sources in the reference net-
work is ruled out a priori. However the difficulty with this
approach is that there is no simple way of determining the structure
of the reference network from inspection of its equilibrium matrix.
The approach to this latter problem followed in this Section is to
find conditions under which transformations directly upon the
equilibrium matrix of the LLF:R network canl be interpreted simply
in terms of transformations upon R-LLF MTP elements of the LLF:R
network. We willl only concern ourselves with the node-equilibrium
matrix since an entirely dual argument follows on the loop basis.

Let us assume that the branches of the network are numbered

not in the manner of Sections 3.2 and 3.3 but as in Section 2.3.
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The branch admittance matrix then takes the form indicated in
Equation 2.3.25. Suppose that the LLF:R network consists of two
LLFPB MTP elements and one R-LLF MTP element. The branch admittance

matrix A may be represented in this case as

N -
Y o o©
A
A=]o Y, o (3.4.1)
© ° &

A A
where Yy yz are branch admittance matrices of LLFPB elements 1 and
2 and 8z 1s the branch admittance matrix of the R-LLF element. The

node equilibrium matrix Ynn is then given by (See Section 2.3)

A
Yh=Y +Y +G (3.4.2)

2 3

N N :
where Y1 and Y2 are the node parameter matrices of LLFPB elements

1l and 2 and G3 1s the node parameter matrix of the R-LLF element.

The node parameter matrices are as follows

A N
A A

£
Gz = 038505

where G5 Qos Qg are submatrices of the cut-set matrix %y @S

indicated below

%p = [“1 :“2 :a3] (3.4.4)
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As discussed above we desire to perform transformations upon
Yhn directly and to find the condlitions under which these transforma-
tions affect only the R-LLF element in the LLF:R network. Group

A

A
Y1 and Y2 together as follows

A
+ Y, (3.4.5)

Then premultiply Yhn by a real nonsingular matrix Pnn and postmulti-
ply it by a real nonsingular matrix an. We then find wilth the aild
of Equations 3.4.2 and 3.4.5 that
a t
Ponnn®n = Pan¥enn + Pnn®383%Q0, (3.4.6)

We are searching for conditions under which

N N
P Y =Y (3.4.7)
and
P__a ¢ - 0T8T o (3.4.8)
%3833, = 0zT185T,0z .

where T, and T, are real nonsingular matrices. In order to avoid
dealing with the cut-set submatrices it was decided to specialize
to the case where the node parameter matrices were Simple and Com-
plete. (See Section 2.4 for definitions.) In this way the trans-
formations Pnn and an upon G3 can be directly interpreted in terms
of transformations upon 8- At first scrutiny one might conclude
that Equation 3.4.7 can only be satisfied in the trivial case in
which Pnn and an are unit matrices. However this 1s not the case.

Thus let Y take the particular form
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- A .
y; o o©

A

Y=|o 92 o (3.4.9)
o o o

A .
This form for Y indicates that elements 1 and 2 are isolated. Thus
in the LLF:R network, MTP elements 1 and 2 are coupled only through
resistive coupling provided by the R-LLF element.

Let Pnn and an be given by

nn

“nn

=

(3.4.10)

where a, b are real numbers, Uf is r x r unit matrix which is

A
assumed to have the same number, r, of rows and columns as ye, Uk

is a k x k unit matrix wlith the same number of rows and columns

A
as yi, and Pdd’ Qdd are arbltrary real nonsingular d x d matrices.

Then one may readily verify that Equation 3.4.7 1s satisfied.

where gmn has m rows

&k

grk

| Bak

Eyr

gI‘I’

gdr

8ra
grd

€4a

and n columns.

Then

Let

(3.4.11)
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B "1

a .
Brk % Skr 2 B1q%a
PG - | 2g e b Q (3.4.12)
nn San a °rk rr €rq dd et
1p 1 p P
a ‘da®ak b TaaBar FaaBaaag

For some R-LLF elements the branch admittance parameter matrix
8z can be of such a form that numbers a, b and matrices Pdd’ Qdd can

be found such that
A A

8z = O3 = PnnGz@nn = PunBsQp (3.4.13)
1s the branch admittance parameter matrix of an LLFPB MTP element.
Although 1t may be difficult to determine whether an arbltrarily
selected 8= has this property one may always generate 8= matrices
wilth this property by starting with an LLFPB matrix QS and forming
gz Dy

1A -1
gz = P 8:Q (3.4.14)

It would be well at thils point to make a few comments about
the topological restrictions implied by the form of Q and G3
(Equations 3.4.9 and 3.4.11). First we note that the network con-
tains n = r + k + d terminal pairs. The d x d null submatrix in
the lower righthand corner of Q indicates that the LLFPB portion of
the LLF:R network contains only r + k terminal pairs. Examination
of G3 shows that the R-LLF MTP element is assumed to contain

n=r+%k+d terminal pairs. However, because of the d x d null

A
submatrix in Y only the first r + k terminal pairs of the R-LLF
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element are connected with the LLFPB elements to form the LLF:R
network. Thus d terminal pairs of the R-LLF element are isolated.
Let us assume that 8= has been selected so that gé as given by

Equation 3.4.14 1s an LLFPB branch parameter matrix. Then

A
v, =P Y Q. (3.4.15)

is an LLFPB node equilibrium matrix. If we let a = b = 1 and

evaluate the o.c. impedance matrix

7 =YL= P'lQ“l - % P (3.4.16)
nn nn nn annn - an nn- nn *=

we find that 1t is identical to Equation 3.3.30. Thus we have
arrived at a result of the same form as the previous section which
considered transformations directly upon the network branch para-
meter matrix.

On the other hand we get a new result of a restricted nature
if we let Pdd and Qdd be unit matrices but a and b be unrestricted

real numbers, namely,

[ 1 1 [A A A T i
a Ur 0 o) er rk rd an 0 0
-1 A A A
Zop = o b U of |2, 2y Zpgll o bPU o (3.4.17)
A A A
o} o} Ud Zdr zdk zdd o} o} Ud
A b A 1A |
Zrr @ Zrk a3 %rd
_a/\ 1A
1P %kr “kk b %kd
A b/\ A
& Z4p Z2ak  Zad
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Thus 1n thls case the transfer impedances between certain groups of
terminal pairs of the LLF:R network are related to the corresponding
group of transfer impedances of the reference LLFPB network by a
real constant multiplier. 1In particular we note that if a transfer
impedance 1n one direction is multiplied by a constant c¢ then the

transfer impedance in the opposite direction is multiplied by 1/c.

3.5 Complex Transformations

In this section we will confine ourselves to a study of net-
works of the Additive type (See Section 2.4). It will be recalled
that for networks of this type, the equilibrium matrices can be
selected so that they are the sum of the parameter matrices of the
component MTP elements. This statement applies to a formulation of
equilibrium equations on any basls - admittance, impedance, or
mixed. We willl demonstrate a simple method whereby an Additive
LLF:R network may be analysed into an LLFPB network and a set of
complex linear transformations relating the dependent vafiables in
the LLF:R network and in the reference LLFPB network. The reference
network 1s identical to the LLFPB portion of the LLF:R network with
approprlate short-circult or open-circuit constraints applied at
terminal pairs. We will keep the following discussion general in
the sense that 1t may be applied to equilibrium equations formulated
on any basis.

Thus let & be the equilibrium matrix of the network. We will
assume that the LLF:R network consists of an interconnection of an
LLFPB MTP element with an embedded R-LLF MTP element of a smaller

number of terminal pairs. Then we can represent éﬁby
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=P +E (3.5.1)

where P the parameter matrix of the LLFPB element and E the para-

meter matrix of the R-LLF element take the forms

| |
e )
Pss lPsr ss

P=|77 7 - E=7"" "~ (3.5.2)
P 0 | 0

A subscript mn on a submatrix denotes an m x n matrix. It is clear

from 3.5.2 that the R-LLF element is assumed to have s branches or

termlnal pailrs while the LLFPB element has r + slferminal palrs.

The equilibrium matrix of the reference network,é?, wlll be assumed

identical to P, i.e.,

é\= P (3.5.3)

This matrix may be obtained from Euby letting €5 become null. If
e g Were a branch admittance matrix then letting e.g become null
would correspond in the LLF:R network to removing the R-LLF element
and placing open circult constraints across those terminal pairs of
LLFPB element which were connected to the R-LLF element. On the
other hand if e,g Were a branch impedance matrix, letting it become
null would correspond to placing short circuit constraints across
terminal pairs of the LLFPB element. If e g Were a mixed parameter
matrix some terminal pairs of the LLFPB element necessitate open
circult constraints and other terminal pairs would necessitate short
circuilt constraints when e.s becomes null.

In order for the reference network equilibrium matrix to be

nonsingular, P must be nonsingular. Assuming this to be true we may

perform the following manipulation on Equation 3.5.1.
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£ = P[U + P'lE] £t (3.5.4)
where
A
- v +€71E (3.5.5)

and U is an (r + s) x (r + s) unit matrix.

By this artifice the equilibrium matrix of the LLF:R network
becomes expressed in terms of that of an LLFPB network by means of
the transformation matrix T—l. We are interested primarily in the

solution matrices, the inverses of the equilibrium matrices,

s=&71 (3.5.6)
A

A -
s =€t
These are related by

A
S =18 (3.5.7)

where
A 1-1

T = [U + SE] (3.5.8)

We wlll now evaluate the transformation matrix t. To this end

A
partition S in the same form as P in Equation 3.5.2,

s 8

A SS sr

S={A A (3.5.9)
SPS SPP

Then carrying out the operations to form 1“1
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AN
-1 Us © Sss sr | [®ss ©
T = +1 A A (3.5.10)
o} Ur Srs Srr o} o}
L
i A
US + Sssess o
= | A

Srsess Ur

We may invert 1—1 to form 1 by writing the matrix equation

implied by T—l and then by algebraic operations forming the inverse

1

set of equations. Thus v ~ implies the set of matrix equations

A .
{?s + Sssesé}xl +0 =y (3.5.11)
{Srsess}xl Xy = Vo

From the first equation we solve for Xqe Using this value of Xq in
the second equation we solve for Xoe The inverse set of equations

reads

A -1
U, + S g8gqp Vp + 0 =X (3.5.12)

Thus i1f we defilne

A -1
T = {ﬁs + sssess} (3.5.13)

Then the transformation matrix 1 is given by

T o}
T = (3.5.14)

A
- Srsess T Ur
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Examlnation of this matrix indicates that T postmultiplies the
first column. Thus we may express T as the product of two simpler
matrices

U oll{T o
T = (3.5.15)

A
- {Srsess} Up{]© Ur

Since 1 1s a complex transformation matrix the natural fre-
A
quencies of S will be generally both the natural frequencies of S

and T. Evaluating the determinant of S we find that
A
detS = detr -« detS (3.5.186)

But inspection of Equation 3.5.15 shows that the determinant of the

first matrix is unity and of the second matrix is T. Thus
N
detS = detT « detS (3.5.17)

We may then state that the natural frequencies of S caused by

the introduction of the R-LLF device are the poles of detT or the

zeroes of detT_l. Thus these natural frequenciles are roots of the
equation
A
det|Ug + S e | = © (3.5.18)

It should be noted that gss 1s the solution matrix of that portion of
the LLFPB reference network "seen" from the s terminal pairs con-
nected to the R-LLF device. The matrix €. is the branch parameter
matrix of the R-LLF device. If e, 1s a branch admittance matrix
then g;s will be an o.c. impedance matrix. If e is a branch im-

S

A
pedance matrix then Sss will be a s.c. admittance matrix. If egq is

A
mixed then SSS will also be mixed.
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CHAPTER 4

APPLICATIONS OF REAL TRANSFORMATIONS TO
THE SYNTHESIS OF RC-LLF:R TRANSFER FUNCTIONS

4.1 Introduction

In Chapter 3 some particular techniques of LLF:R network analysis
through linear transformation theory were presented. The techniques
involved both real and complex linear transformations. In this and
succeeding chapters these analysis procedures will be reversed. We
will start with an LLFPB network and through the agency of linear
transformations convert it into an LLF:R network. Our primary in-
terest will be to generate RC-LLF:R transfer functions of a general
character by starting with an RC-LLFPB network. This chapter will
deal with the qpplication of real linear transformations to the
generation of such transfer functions. Thus in Section 4.2 we
consider the inversion of the analysis procedure of Section 3.3.

The possible synthesis methods arising in this manner appear to be
undesirable both from the point of view of the complexity of the
R-LLF device required and the difficulty of synthesizing the LLFPB
portion of the LLF:R network. The latter difficulty arises from the
fact that in the synthesis procedure a complete s.c..admittance
matrix must be synthesized for a grounded two terminal pair RC
network. In the phraseology of Chapter 1, Section 1.5.2, it was
not possible to meet the '"constructible" specifications requirement.

In Section 4.3 a method of inserting gain in the transfer
functions by means’of real linear transformations 1s considered.
This method arises as an inverse of an analysis procedure of Section

3.4. It has already been stated that this gain insertion result has
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previously been found by Nashed and Stockham. Section 4.4 considers
a synthesis method which involves making a congruent transformation
of the s.c. admittance matrix after gain has been inserted by the
method of Section 4.3. The congruent transformation is of the type
arising when a new definition of terminal pairs is made for a MTP
element. By using a simple congruent transformation in conjunction
with gain insertion an RC-LLF:R voltage transfer function of a
general character is found. The network consists of one three-
terminal RC-LLFPB network and one three-terminal R-LLF device. A
final synthesis algorithm was not developed for this voltage trans-
fer function since the expression for this transfer function involved
a specification of the complete s.c. admittance matrix of an RC-LLFPB
grounded two terminal-pair network. Thus just as in Section 4.2 it
was not possible to meet the '"constructible" specifications require-
ment. It is found however that if this network is specialized to a
m configuration and placed in parallel with an RC-LLFPB grounded two
terminal pair, the constructible requirement can be met and still
have a potentially general voltage transfer function. However
attempts at finding an algorithm as required in Step 2 of Section

1.5.2 have not been successful.

4.2 Synthesis Through Transformation of the Branch Parameter Matrix

4.2.1 General Approach

In this Sectlon we consider the problem of reversing the analysis
procedure of Section 3.3. Such a reverse procedure consists of
starting with an LLFPB network that has a specific type of configuratio

as exemplified by the network of Figure 3.3.2. The application of
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real linear transformations converts the positive resistance box to

an R-LLF device but leaves the LLFPB sub-network unchanged. As a
result the o.c. impedance matrix Q;d seen from the set of terminal
pairs r + 1 through r + d for the LLFPB network and the corresponding
o.c. impedance matrix de for the LLF:R network become related through
pre- and post-multiplication by real transformation matrices as in-
dicated below

P-l

-1
Zga = QqaZaafaa (4.2.1)

The s.c. admittance matrix seen from these terminal pairs then

takes the form

Yaq = PddQﬁded (4.2.2)
where

Yaq = Zag

Qdd = Qéé (4.2.3)

are the s.c. admittance matrix of the LLF:R and the LLFPB network,
respectively. We will assume that the LLFPB network is RC. Then

we readily see that the s.c. admittance poles and the o.c. impedance
poles of the LLF:R network are the same as the corresponding ones
for the LLFPB network. Thus i1f we wish to achieve complex natural
frequencies for the RC-LLF:R network we may not have either all o.c.
constraints or all s.c. constraints at all of terminal pairs. By
selecting the transformation matrices Pdd and Qdd appropriately we
should be able to form a driving point admittance yjj’ say, at

terminal pair j of the RC-LLF:R network which has zeroes at specified
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locations in the complex plane. This comes about from the_fact that
Equation 4.2.2 implies that not only transfer but driving point ad-
mittances of the RC-LLF:R network are expressed as linear combinations
of the driving point and transfer admittances of the RC~LLFPB network.
If we open circuit terminal-pair j and leave the other terminal pairs
short-circuited, the resulting network has complex poles where yjj had
zeroes. Thus voltage transfer functions between the other d - 1 ter-
minal pairs and terminal pair J or transfer admittances among the
d - 1 terminal pairs should have zeroes and poles which may be placed
quite generally in the compléx plane

To 1llustrate the above ideas let d = 2 and r = 2 in Figures
3.3.1 and 3.3.2. The resulting reference RC-LLFPB network and the
corresponding RC-LLF:R network are shown in Figures 4.2.la and

4.2.1b respectively.

3 !
o O
POSITIVE
RESISTANCE RC~LLFPB
4 BOX 2
['e W ) o
()
3 _
o WE— O
|
R—LLF RC-LLFPB
4 2
[ o M— O

(b)
Figure 4.2.1. Networks for Example of Section 4.2

119



Since d = 2, the matrices Ydd and Ydd are 2 x 2 and for the networks
of Figure 4.2.1 correspond to s.c. admittance matrices of grounded

two terminal-pair networks. Let the transformation matrices Pdd and

Qdd be given by
=~ . B .
P11 Frp ) 92
a q
P21 P22 21 ZZJ

A
and the s.c. admittance matrices Ydd’ Ydd by

i (A AT
Iz3 Iz4 Iz3 I34

v = Yaa = |, (4.2.5)
Y43 Y44 I34 Y4n

Then Equation 4.2.2 takes the more detailed form

A A
V33 Y34 P11 Praf Y33 V34| %1 %2
= A A (4£.2.8)
Yaz Y44 Po1 Paz| Y34 Yaa||%1 922

By appropriate choice of Pdd and Qdd we can form an expression
for Y3z that may have zeroes anywhere in the complex plane. Thus

from Equation 4.2.6 we find that Va3 has the general expression
= 3 + 4 + + » 4.2.7
V33 = Y33P11%1 y34[?11q21 qllplZ] Y44P12%1 (4.2.7)

Now as a general rule we can say that the zeroes of transfer
functions or the zeroes of the difference between two driving point
functions can have complex plane zeroes of unrestricted nature.

Thus we should specialize the coefficients in Equation 4.2.7 so that
?53 1s either directly proportional to 934 or to the difference of

A
Vzz and §44. Consider the following possibilities
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VAl
(a) Pyp = a3, =0 then yz5 = P11957193y

Il

A
(b) pyq = 0 then y; 5 = A11P14Y5a (4.2.8)

|
0

[\

l_l

A N
(¢) Pyydpy + Q11P1p = O Bhen yzo = ¥a2P19d17 + T,y Prp Apg

Actually case (c) is more general than cases (a) or (b) since
the difference between two driving point functions has zeroes which
may be placed arbitrarily while the zeroes of Vg4 MaY not be placed
arbitrarily since it is a grounded ftransfer function. Let us then

consider case (c¢) with the further specialization

pll = qll =1 (4:.209)
If we let
p12 = _q21 = X (4:.2.10)

Then V33 takes the form

A 2N
yss = y33 - X y44: (4:.2.11)

If we now open circuit terminal pair 3 and leave terminal pair 4 short
clrcuited, the poles of the RC-LLF:R network will be determined by

A A
the zeroes of Yz = x2y44. The voltage transfer function from

terminal pair 4 to 3 is given by

y
34
a = - — (402.12)
34 y35

and the general expression for V34 obtained from Equation 4.2.6 is

A A A
Yzq4 = Jz3P11%2 * y34[p11q22 + p12q12]+ Y44P12922 (4.2.13)
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With the parameter values of Equations 4.2.9 and 4.2.10, Va4 becomes

= -9 8 s - + % 2.14
V34 = Y3z F y34[§22 quz] Y44*22 (4.2.14)

The expression for Y34 May be simplified by letting

0 =1 (4.2.15)

Qoo = ¥V 5 QA

Our final expression for the voltage transfer ratio 8z, becomes
A 2A
Yz ¥ X V34

A 2A
Yz3 7 X Jyq

a (4.2.18)

34 =
We have thus arrived at an RC-LLF:R voltage transfer function which

is potentially capable of having considerable generality in the
location of poles and zeroes. But, as discussed in Chapter 1, Section
1.5.2, three additional steps must be completed before one can specify
a set of poles and zeroes for 8z4 and obtain the RC-LLF:R network
which exhibits this transfer function. We are unable to complete

the first step since the expression for 8z, involves a specification
of the complete s.c. admittance matrix of the reference RC-LLFPB
network from terminal pairs 3 and 4. In fact it has not been found
possible to specialize the elements of Pdd and Qdd to alter this

situation and at the same time obtain an a of a sufficiently

34
general character. Thus the results of this section will be only

of academic interest until further results are available on the
necessary and sufficient conditions for realization of s.c. admittance

matrices of grounded two-terminal-pair RC-LLFPB networks (containing

no ideal transformers).
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4.2.2 Example

In this section we will consider a simple choice for the
positive resistance box of Figure 4.Z2.la and then obtain the branch
admittance matrix 8ss of the R-LLF device required in the network
of Figure 4.2.1b such that the voltage transfer ratio of this net-
work has the form of Eguation 4.2.16.

The general expression for 8ss is obtained from Equations

3,3.27 and 3.3.28 as

A
rr grd r

c
O
0a>

A A
0 Pyq  Ear Eaa O Quq

A A i
&rr  8rgaq
= A A
P3aBar FaaBad%ad (4.2.17)

A
In our example d = r = 2 so that 855 and g,g are 4 x 4 branch para-

meter matrices. In Figure 4.2.2 a simple positive resistance box is

shown.
3 9 ]
O————g—— AW o
L o
29379
4 g2 2
o @A o
294 92

t—

Figure 4.2.2. A Simple Positive Resistance Box
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The resulting RC-LLFPB reference network 1s shown in Figure 4.2.3.

3 9 o 2 92 4
o- MV o4 LLFPB O———WW\ 0
g3-g| g4_92

Figure 4.2.3. LLFPB Network With Simple Resistance Box

It should be noted that the positive resistance box consists of
nothing more than resistance voltage dividers hung on the terminals
of the RC-LLFPB subnetwork. Thus 1t may be expected that the syn-
thesis for a prescribed set of driving point and transfer functions
at terminal pairs 3 and 4 should not be essentially any more difficult
than synthesizing for a set of driving point and transfer functions
at terminal pairs 1 and 2. It should be noted that the driving point
and transfer functions at terminal pairs 1 and 2 are those for the
general grounded RC network with resistance termination at both
terminagl pairs.

The branch admittance parameter matrix of the positive resistance

box 1is readily found to be

-
g, O | g, 0

1

0 g 10 &

Bog = ' (4.2.18)
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If the transfornation parameter values given by Equations
4.2.9, 4.2.10, and 4.2.15 are used in Equation 4.2.4, the transforma-

tion matrices assume the form

p— —~ B -

1 X 1 1

4d = Qg = (4.2.19)

=p21 pzzm

The transfer function a34 does not depend upon the coefficients
Poy ahd Poo S0 wWe are free to choose them according to convenience.

We will choose

Poj =

I
o

Py (4.2.20)

Since the resulting 85 has an especially simple form when this is

done. Following Equation 4.2.17

-gl 0 1 1 —gl —gl
—-A — —
8pg = grded - -
0 -g -x 0 Xgs O
i 1] R R
- ar - ~ _
1l x -8 0 “8, —85X
P 2 = =
8ar dd®dar = =
1 0}{]0 ~85 -gl 0
- -t - = - (4.2.21)
r~ -1r 1r -1 - -1
2
1 x gz 0 1 1 837X 8, 8z
N
83a = Paa8aq%%a = =
1 0]10 g -x 0 g g
L JL. 4:--- - =3 3 3—1
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Thus the branch admittance matrix of the R-LLF MTP element is given

by

There are at present no general practical methods of synthesizing
a multiterminal—pair R-LLF black box for prescribed s.c. admittance
matrix. By a practical method 1t is meant a synthesis method which
involves a realization in terms of practical devices such as vacuum
tubes and transistors. In Section 4.2.3 a theoretical method is
presented which involves a realization in terms of ideal vacuum tubes
(or gyrators) and positive and negative resistances. Using the
results of Section 4.2.3 it i1s shown in Section 4.2.4 how an L-LLF
or C-LLF multiterminal-pailr black box may be realized in terms of

R-LLF devices plus positive capacitances and inductances.

4.2.3 Synthesis of R-LLF Element

We consider here the problem of synthesizing an R-LLF MTP
element for prescribed branch admittance pargmeter matrix. It is
assumed that the associated MP network is completely described by
the MTP element. Thus if the MTP element has n terminal pairs it
also has n + 1 nodes,

The first step in the synthesis procedure consists of changing
the synthesis specifications to a node to datum branch admittance

parameter matrix. This is readily accomplished with the results of
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Section 2.3.3. Thus let gés be the original specified branch
admittance matrix. It is aésumed that the coupled tree branch repre-
sentation of the desired network is given together with gés. Then

we select any node as datum and determine the branch admittancé
matrix 85 that accompanies this selection of node to datum variables.

According to Section 2.3.3 the relationship between gés and 855 is

t
Bgg = ABLLQ (4.2.23)

where o i1s a cut-set matrix which defines the node-to-datum variables
of the second MTP element upon the coupled branch representation of
the first origihally specified MTP element. Clearly a synthesis of
85s for the node-to-datum case automatically synthesizes gés for the
original case.

The second step in the synthesis procedure consists in showing
how the n x n node-to-datum admittance matrix 85 can be synthesized
from node-to-datum MTP elements with 2 x 2 admittance matrices. Let
N denote the MTP element with parameter matrix 8ys° Since node to

datum variables are assigned for N, it has the coupled tree branch

representétion of Figure 4.2.4.

| 2 n n+l

T : v

Figure 4.2.4. Coupled Tree Branch Representation of N
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Consider each branch of N to be divided into n - 1 sub-branches.
The sub-branches of a particular branch are not coupled to one another
but each sub-branch of a branch k is coupled to exactly one sub-branch
of some other branch j and to no other sub-branches in the network.
Suppose the pair of coupling coefficients between branches j and k
is [%jk’gki]' Then the coupled sub-branches of branches J and k,
denoted as j' and k', are assumed to have the pair of coupling
coefficients [gjk’gkil. The self admittances of the sub-branches of
a particular branch j of N are constrained only in the respect that
their sum must equal the self admittance of the original branch j.
If we remove a pair of coupled sub-branches j', k' from N, it is
readily seen that the coupling between branches j and k of the
resultant network becomes zero and the self admittances of branches
J and k are reduced by the self admittances of j' and k'. We note
that this pair of coupled sub branches is an MTP element with three
terminals and node to datum variables assigned. If becomes clear
that successive removal of all pairs of coupled sub branches will
leave a network with a null parameter matrix. If now the three-
terminal MTP elements are reinserted in the same locations from
which they were removed one obtains the network N with parameter
matrix 85

The last step consists of synthesizing the three terminal
building blocks. As is well known each building block may be con-
structed from ideal vacuum tubes (or gyrators) and resistances

(positive and negative). This is readily done as follows. Let

€11 812

g = (4.2.24)
€21 822
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be the branch admittance matrix of a typical three terminal bullding

block. The matrix g 1ls separated into the sum of a symmetric and

a skew symmetric matrix as follows

€11 812

8o, 8
521 Gzz

r

811

[gl2 + g21]

l—gIZ + gZJ]-

2

2

€22

0]

[821 B glé] , 0
- ,

¥
'@21"g1J
z

(4.2.25)

The first matrix can be constructed from a network containing

positive and negative resistances as indicated below

812 T 827

1
87 ~ 5 (815 + 857) 3855

—AAA
A A A4

The second matrix is that of a gyrator

(22)

1
-2 (81 + 859)

We will use the

following circuit symbol to denote a gyrator with transfer admittance

a from terminal pair 1 to terminal pair 2.

—_—

| -a

o——0H | 0
a 0

o

The arrow
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denotes the fact that a 1s the transfer admittance from the left
hand to the right hand terminal pair.
A parallel connection yields the desired branch parameter

matrix as shown in Figure 4.2.5.

9,9+9,,
2
>
(92i-%12) [
0 - 9 92
log—-
92,92 0
| ‘ 5 | 921 922
= z(92*92i0 2 I 9272(92%92) L

ﬁVL

Figure 4.2.5. Realization of Building Block With
Gyrator and Resistances

There 1s an alternate realization of g in terms of an ideal vacuum
tube and resistancés. To obtain this realization we need only find
a realization of a gyrator in terms of an ideal vacuum tube and

resistances. An ideal vacuum tube has the branch admittance matrix

and circuit symbol below,

, ’

0 0 I 0 0] 2

¢ = o— | o
La 0 a Y
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where a > 0. The typical gyrator admittance matrix can be regarded

as the sum of the ideagal VT admittance matrix and another matrix as

follows
a - a
0] -5 0 0 0 >
= + (4.2.26)
a - a
= 0 a 0] 5 0

g
2
A A
——
) 0
“U 2
a 0

AAA
yYvy
I

Nl e
N o

Consequently the typical building block may have the realization

indicated in Figure 4.2.6.

~9y,
AV
_ -
0 0 9, 9.2
| 4,
g, 0
2792 g g
e+ 21 22
g,t9,, 295,19, B _

Figure 4.2.6. Realization of Building Block With
Ideal Vacuum Tube and Resistances
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The particular realization shown assumes that g, > 85 If this
is not tfue then the appropriate realization is found by interchanging
the numbers 1 and 2 on the diagram.

It will be convenlent to define a circuit symbol for the general
three terminal R-LLF device with a prescribed s.c. admitfance matrix.
This'symbol is shown in Figure 4.2.7 together with the corresponding

set of coupled branches and 1ts branch admittance parameter matrix.

—_—) a b
a 9 92 b } f 9y 92
[ S —— 0
9, LY | 2
: 21 Y22
g
o o o o

Figure 4.2.7. The General Grounded Two Terminal Pair
R-ILLF Circuit Element

The’arrow denotes that the lower left transconductance 8oq is
the s.c. transfer admittance from terminal-pair a-ground to terminal
pair b-ground, i.e., a source to sink relationship in the arrow
direction.

As an example of the application of the R-LLF MTP element
synthesis‘technidue of this section we may consider the synthesis
of the matrix 8s5s of Equation 4.2.22. Since the procedure is
straightforward only the final result is given. This is shown in
Figure 2.4.8. Note that only one three-terminal non-bilateral
element is réquired. This can be deduced by inspection of 8ss
which shows that non-bilaterality exists only between branches 2

and 3.
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§295-ng‘-g‘ ?:-9, 92 29,-9,
&

Figure 4.2.8. Synthesis of R-LLF MTP Element For
Example of Section 4.2.2

4.2.4 Synthesis of L-LLF and C-LLF Elements

From the results of Section 4.2.3 it is readily seen that an
L-LLF or C-LLF MTP element can be synthesized for prescribed branch
admittance matrix if the corresponding typical three terminal
building block can be constructed. For a capacitive MTP element

the building block has the parameter matrix

—

€11 €12

Yo = 8 (4.2.27)
C21 czzJ
L.

while for an inductive MTP element the building block has the para-

meter matrix

y = % (4.2.28)
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It is also clear from the discussion of the previous section that
these typical blocks can be built if negative capacitors and induc-
tors plus the counterpart of the ideal vacuum tube (IVT) are avail-
able. We shall now demonstrate that a negative capacitance (induc—
tance) can be built from é positive inductance (capacitance) and
positive and negative resistances. Then we shall show that the
counterpart of the IVT for the capacitive case (inductive case) is
constructible from two IVI's and one inductance (capacltance) apart
from a change in sign of the transfer admittance which does not
affect‘the synthesis procedure. Let the three terminal element

with branch parameter matrix

be called an activator. This element has the realization and circuit

symbol shown below.

-q 0 a
o- AW o o—— —0

A
\ g

A4
o
a

One may readily demonstrate that a unit (a = 1) activator is a nega-

tive admittance inverter. Thus if a capacitance of C farads is

connected across one terminal pair, the admittance seen at the other
1

terminal pair is - 55 ° This latter admittance is precisely that of
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a negative inductance of C henries. A similar argument follows for
the construction of a negative capacitance. Figure 4.2.9 shows the
realization of a unit negative inductance and a unit negative capa-

citance is the fashion just described.

0 | 0 [
O oO—
] 0 I 0 »
HENRY —» -~ = | FARAD -l FARAD—» %I HENRY
(o] O

Figure'4.2.9. Realization Of Negative Inductance And Capacitance

~Other values of inductance and capacifance are obtained by impedance
leveling. The realization of capacitive and inductive versilons of

the IVT are demonstrated in Figure 4.2.10.

— _— —_—
| 0o o o o > 1 |o o
0O o o0— —o0 o—
S - I 0 I 0 - -s 0
-1 0 |
g g
O O (o,
CAPACITIVE VERSION
— —_— —
| o o o o o o o
o— ——0 o—
190 c
- i 0 I 0 -5 ©
s = =
-1 0 p—
g g
(e, C (e,

INDUCTIVE VERSION

Figure 4.2.10. Realization Of Capacitive And Inductive Versions Of
Ideal Vacuum Tube
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Note that the sign of the transfer admittances are negative. If
positive signs are desired they may be obtailned in a variety of ways.
But from a theoretical point of view this 1s not necessary since it
1s easy to see that the three terminal building block may be con-

structed with devices of either algebraic sign.

4.3 Gain Insertion

In this section we consider the inversion of a very special
linear transformation theory analysis procedure which is found in
Section 3.4. For this analysis procedure the o.c. impedance matrix
of the LLF:R network and that of the LLFPB reference network are
related according to Equation 3.4.17. Examination of this equation
indicates that this analysis procedure will lead to a method whereby
gain may be inserted in transfer impedances. We note, however, that
the LLFPB network which is to have gain inserted is restricted with
regard to topology as 1s clearly indicated by the form of Q in
Equation 3.4.9. From the discussion centering around this equation
one may readily deduce that gain may be inserted between two terminal
pairs of an LLFPB network in the fashion indicated by Equation 3.4.17
only if these terminal pairs can be assocliated with MTP elements
which have at most one node in common. Thus if these MTP elements
are to be coupled they must be coupled by resistance coupling. It
may be deduced from Equations 3.4.11 to 3.4.14 that it is this passive
resistance coupling which becomes active and nonbilateral when gain
is inserted. To illustrate these ideas we may assume that the equi-

A
librium matrix of the LLFPB network, Ynn’ has the form

A A A _
Y. =Y+G (4.3.1)
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where

y, 0 0]
A A
Yy=|0 'y, o0 (4.3.2)

is the combined Simple and Complete node parameter matrix of three

isolated LILFPB MTP elements and

_/\ A /\—
&kk Bkr &ka
A A A A
G = | 8rk Brr 8rq (4.3.3)
A A A
| Bk Bar 8qd |

1s the Simple and Complete node parameter matrix of a positive
resistance box which provides coupling between elements 1, 2 and 3.

A
We may then write Ynn in the form

A A A
Yk Skr 8ka

A A A A

Ynn = grk yrr grd (4°5'4)
A A A
8ak &dr Yad

where
A A A

A A N

Ypp = J2 T Bpp

A A A

Yaqa = Y3 * 844 (4.3.5)
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Gain can be inserted between two terminal pairs so long as they

cannot both be associated with the same LLFPB element (yl,yz,ys).

This gain insertion is accomplished by pre- and post-multiplying

Yy

n by transformation matrices as indicated below to form Ynn - the

node equilibrium matrix of an LLF:R network with the required gain.

nn

ws! T 5

ol

a
c

kk

A
g

rk

A
Cax

“> plo O

olo

om>
2]
Q.

A A A ]
vk Bkr Sxd
A A A

grk yrr grd

A A A

8ak &ar Yad

e

aUk 0 0
0 bUr 0
0 0 cqi

(4.3.8)

To see how the o.c. impedances of the LLF:R network are related

to those of the LLFPB network we invert Equation 4.3.6 to obtain

nn

nn

i
>

o i)

ol

O

0 A A
er zrk rd
A A

0 Zyr Zxk %kd

—lU A A

¢ Y4l| %ar Zax 2aq

c A h

2 %rd

C A

b %kd

A

24d

—

0 0

bUr 0

0 cUdu
(4.3.7)
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where
A Q A

Z
er rk “rd
A A_l A A A

= = A

Zn nn kr Zkk %xd
A A A

Zap 24k quJ (4.3.8)

is the o.c. impedance matrix of LLFPB network. We note that the
transformation effected upon the s.c. admittance matrix is the same
as that effected upon its inverse, the o.c. impedance matrix. This
arises from the fact that an in Equation 4.3.6 is subjected to a
collinear transformation. Examination of Equation 4.3.7 shows that
1f gain is inserted between two terminal pairs associated with
different MTP elements then the same gain is inserted between all
terminal pairs.

The topology of the LLF:R network (coupled branch topology) is
the same as the original LLFPB network. Also the first three MTP
elements with parameter matrices 91,92, and 93 are the same in both
networks. However the positive resistance MTP element of the LLFPB
network with parameter matrix 8 i1s replaced in the LLF:R network by

an R-LLF box with parameter matrix

N A c/\
Bk Err 3 8ka
A
grk

> oo

A
8rd (4.3.9)

[]
Il
log [}

s
oo

rr

A A
€ar 8aa |

A
a b
c 8axk ¢

It has been stated previously that Nashed and Stockham have

also arrived at essentlally the same method of gain insertion. It
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was also mentioned that there was a contradictlon between statements
made by Nashed with regard to the type of LLFPB network configuration
permitting gain insertion and an actual gain insertion method given
by Stockham. The reason for Nashed's incorrect conclusion with
regard to the type of network configuration permitting gain insertion
i1s that his LLFPB equilibrium matrix was only a special case of
Equation 4.3.4. 1In his equilibrium matrix the submatrices of the
equilibrium matrix of Equation 4.3.4 became single elements. Since
he assumed node to datum variables he interpreted his equilibrium
matrix as arising from a network of the configuration indicated in
Figure 4.3.1. This type of network is more restricted than need be

for gain insertion.

— e c———— —— VA — — —— —

<
N

AA
Vv

Flgure 4.3.1. A Restricted Network Allowing Gain Insertion

To illustrate Stockham's particular result, specialize the
A A A
Y , Y, and G matrices to the form shown below

nn
A A ] T ]
Ji1 140 O 00 }o 0
Aooa ] A A A A A
’ Vig Y2 | © O 1914 %8s |78 O |8 By
o e i Syt DDA RS el ey I DY
N R RN ° ¥ 0 -g |ggg O By By
A A
o o | Y54 Va4 00 {o 0

140



A .
Y11 Y12 : 0 O
A A A | A o A A
A V12 Vg2 t B55) 78 Ypr Srk
Y el mme e m e == | =
nn __/\ ‘ A A A A A
0 & | Y33 t Bgg Y34 | Bir ik
A A . o
0O O : V34 Yaa {+.3.10)
L. .

We will assume that MTP elements 1 and 2 are ungrounded two terminal -
pair networks. Thus these elements will only provide a partial
description of their associated MP networks. However, these elements
will be connected with the positive resistance box to form the LLFPB
network in such a way that these partial descriptions are satisfac-
tory. In Filgure 4.3.2 the three elements are shown with their

coupled branch representations.

? ' A A
Yn Yz
Vi I V2 A A [

| | Yiz Y22 ]

Y3z Y34

1

Yas Yaa

[ S— 0

Iys —9

J
i

-9 96 I

o

Figure 4.3.2. LLFPB MTP Elements For Network Of Figure 4.3.3



Figure 4.3.3 shows the interconnection of these elements to form

A
an LLFPB network with equilibrium matrix Ynn given by Equation 4.3.10.

g
o—no o A ? —o
A ‘1 3 A A
e | iz 295579 396679 is 2 e,
o——-—‘ O Vo)

——
NQH Q
»—
Y — > ————P O
-
l)

e | 2 5 6 3 4 3,
| = |
S o o ———o0

Figure 4.3.3. LLFPB Network To Have Gain Inserted

Now according to the general discussion given above we can insert
gain between the following groups of terminal pairs (1,2), (2,3),
(3,4) but not between 1 and 2 or between 3 and 4. We insert gain by

forming Ynn as follows

-1 AA A b A
a Uy 0 Ypr 8k [[2Uz O Yrr 7 Brk
Y = =
nn
-1 A A a A A
0 ® V2] | Bur ik |0 PU2| | % Bkr Vi
A A b A T
v, 0 rr 7 &rk
+ .
A a A A
0 ¥, b Bkr Bkk | (4.3.11)

The node parameter matrix of the R-LLF device is readily obtained as
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a AN -
0O-1% 8 8 ©
0

i 0 0] (4.3.12)

A
The open circult impedance matrices Znn and Znn are related by

— -— — 1 pa— L — -
-1 A A A b A
a U, O Z2pr %rk aU2 0 Zrr 3 %prk
Z = =
nn
-1 A A a A A
O P %k AP U2 B ke Zkx
- = A A b A b A ]
211 %12 %13 214 211 %12 3T %13 37 %14
A A b N b A
221 %22 %23 Zo4 212 %22 & %23 3 %24
= =la A g A A A
231 %32 %33 Z34 % %13 b %23 %33 %34
a A a A A A
| %41 %42 %43 %44 |b %14 ® %24 %3¢ P4 | (4.5.13)

Thus the transfer impedances are changed by a factor %-when going
from terminal pairs (1,2) to terminal pairs (3,4) but are multiplied
by the reciprocal 2 when going in the oppositve direction. The

LLF:R network with the gain inserted i1s shown in Figure 4.3.4.

—_—
b
o O :“ ad —0—4__-—-0
--g d
e
€ | e, b es 2 e
O] _—

Figure 4.3.4. LLF:R Network With Gain Inserted
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The circuit symbol for the R-LLF element 1s in accordance with the

general definition of Figure 4.2.4.

4.4 Application of Congruent Transformation After Gain Insertion

While the synthesis method of the previous section éllows gain
to be inserted into R-C networks it does not change the locations of

A A
the poles or zeroes of the elements of Ynn or Z . We will show that

nn
if a simple congruent transformation is applied after gain insertion,
the zeroes of driving point impedances and admittances may be caused
to become complex. This congruent transformation if of the type
arlising when a new definition of terminal pairs is made for an MTP
element. The general idea is as follows. Consider an LLFPB network
with equilibrium matrix an as given by Equation 4.3.4, i;e}, a
network which allows gain insertion. Let us suppose gain has been
inserted forming an LLF:R network with o.c. impedance matrix given
by Equation 4.3.7. If some of the terminal pairs of this network
are brought out and the remainder of the network is enclosed in a
black box one obtains a multiterminal-pair network. With the avail-
able terminals one may define new terminal pairs with associated
o.c. impedance matrices. As discussed in Section 2.3.3 the various
o.c. matrices for new definitions of terminal pairs are related by
simple congruent transformations. Thus suppose Zl 1ls the o.c.
impedance matrix of a multiterminal-pair LLF:R network Nl which has
arisen by the gain-insertion method of the previous section. The
number of terminal pairs of Nl can be less than n, i.e., although
there are n terminal pairs defined to form the equilibrium matrix

Y ne We may bring out less than n terminal pairs to form N In

n 1°

144



-1

such a case Z, is found from Znn = Ynn by striking out rows and

1
columns corresponding to terminal pairs that are not used. It
should be noted that the resulting MTP network Nl will in general
only provide a partial description of its associated MP network.
Thus in defining terminal pairs on Nl one must observe the pre-
cautions discussed at the end of Section 2.3.3. Assuming these
precautions have been observed we form a new MTP network N2 from

N, by defining a new set of terminal pairs. The o.c. impedance

1
matrix of N2,22, is related to that of N1 by

Z, = BZ,8"° (4.4.1)

where B is the tie set matrix which defines the branch-loop currents
of N2 upon the mutually coupled branch representation of Nl' From
the results of the previous section we may relate Zl to an LLFPB o.cC.
impedance matrix g by means of a simple collinear transformation is

follows

A -1
Z, = CZC (4.4.2)

where the transformation matrix C 1s diagonal. The elements of Zl
and Q differ only by constant gain factors. Thus if Z is an RC-LLFPB
o.c. matrix then Nl is an RC~-LLF:R network whose o.c. driving point
and transfer impedances are individually identical in character to
those of an RC-LLFPB network. Thus the zeroes of driving point
impedances lie on the negative real axis. This situation becomes

changed by application of the congruent transformation of Equation

A
4.4.1. The expression for 22 in terms of Z is then
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Z, = aczclpt (4.4.3)

To illustrate the above ideas we will consider a simple example

in some detaill.

—_—————y 3
r w—f—2——|RC-LLFPB

2

9—

O>—PO N

o> —Pp

9,

o>

X<

3

' |
| | -
' |
L —_——— —d

—_p
o S — <b>—-l>L-b

7

Flgure 4.4.1. Simple LLFPB Network Allowing Gain Insertion

Consider the RC-LLFPB network of Figure 4.4.1. It will be recognized
that this network is a special case of that of Figure 4.3.3 in which

network 1 is just a shunt admittance and
g=82
Bgs = 81 + &5 (4.4.4)

If we insert gain according to the method of the previous section

we obtain the network of Figure 4.4.2 where we have let
a=1; b= x (4.4.5)
without any loss in generality.

Now let us enclose the networks of Figures 4.4.2 and 4.4.1 in
boxes and bring out only terminal pairs 1 and 4. In this way we
form two grounded two terminal-pair networks. The o.c. impedance
matrix of the RC-LLF:R network, Zl’ is related to the o.c. impedance

A
matrix Z of the RC-LLFPB network (see Figure 4.3.13) by
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N A A i
Z11 %14 L0 211 214! O} 217 X214
7. = = | D=
1 o 111 A A o ’ -1A A
241 %44 X 214 %44 XJ X 214 244
(4.4.6)
-3
| 2 93,  ~Xg, 3 a
g 3 . —@—{RC-LLFPB |— 9
-X95 g9
2
e' yl 92 €3 €4
O J’ " _L 7.y
0

Figure 4.4.2. Network Of Figure 4.4.1 With Gain Inserted

The network Nl with o.c. impedance matrix Zl is shown in
Figure 4.4.3a with 1ts coupled branch representation. In Figure
4.4.3b there is shown a new MTP network N2 and its coupled branch
representation. This network has been formed from Nl by defining
new terminal pairs as indicated in this figure. The terminal pair
e

1 and gé. In Figure 4.4.4 the branch-

loop currents of N2 are shown circulating upon the coupled branch

voltages for N2 are labeled

representation of Nl° By inspection, the tie set matrix B is

-1 0

B = (4.4.7)
- l l .
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Figure 4.4.3. Formation Of MTP Network By
Selection Of New Terminal Pairs

Q

Figure 4.4.4. Network Pertinent To Obtaining The Tie Set Matrix B

The o.c. impedance matrix of N2 1s obtalned by use of Equation

4.4,l‘as follows
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XZ
11 14
ZZ =
-1A A
-1 l; X 214 244 0 1
[~ A A A
211 Z11 T *%14
A -1A A A ~1.A
2] T X T2y, Zyy t By, - (x + x )zl4
211 %12
207 Zog | (4.4.8)

=3

Of particular importance is the expression for 222, the driving

point impedance at terminal pailr z of N2,

~ M A
zZ Z + Z

“1.A
22 7 711 - (x+x )214 o (4.4.9)

44

This impedance may have zeroes anywhere provided x = 1. This is

most easily understood by recognizing that
A A A 2A o
Z =279+ 2,, - 22y, (4.4.10)

is a p.r. dfiving impedance of an RC-LLFPB network. With the

impedance of Equation 4.4.10 we may express'%’22 as

(4.4.11)

It is not difficult to demonstrate that 222 may have zeroes
placed anywhere in the complex frequency plane provided x is suffi-
ciently greater than 1. When x = 1 then 222 = g and its zeroes lie
on the negative real axis. This might have been expected since it

should be recognized that x = 1 1s a condition that makes N2 an
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RC-LLFPB network. If we short terminal pair z of N, and leave
terminal pair 1 open the resulting network has natural frequencies
located at the zeroes of Eéz and these are complex. Consequently
the voltage transfer ratio from terminal pair 2 to terminal pair 1
should be a transfer function whose poles and zeroes may be quite

generally located. This transfer function is given by

~ A A

~ z Z - X2

412 = le = A A — = TR (4.4.12)
Zoo 2y + Z4y - (x + x )214

and does represent a transfer function which 1s potentially capable
of exhibiting poles and zeroes of a rather general character.
However; as discussed in’Chapter l, Section 1.5.2, three additional
steps must be completed before one can specify a set of poles and
zeroes for 3&2 and then obtaln the RC-LLF:R network which exhibits
this transfer function. Unfortunately we are unable to complete
the first step since the expression for 5&2 involves a specification
of the complete s.c. admittance matrix of the reference RC-LLFPB
network with o.c. matrix 2. One possible course of action that
might be followed to complete step 1 for the particular RC-LLFPB
network under discussion here, Figure 4.4.1, is to specialize the

network as indicated in Figure 4.4.5.

[ 2 9, 3 a4 | 4
o0— MN—— Y, o) o Yg T 0
y' 92 y3 E yA yC
o o o o

Figure 4.4.5. A Specialized Version Of The Network Of Figure 4.4.1
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The conductances 8, and g, are absorbed into Vo and vy in the fashion
indicated such that the final network assumes a 7 configuration. To

find an expression for 8,0 in terms of Ypr Ipo and Yo we note that

A A A

A Jaa A 14 A I11

lez—A—y—-, Zl4=—'z§_——, 244=-_A—3—7- (4:-4.13)
so that 3&2 can be written in the equivalent form

A A

~ Yy + Xy

&, = - ih L. (4.4.14)

1z 7.+ + (x + x l)A

11 7 Y4a J14

But from Figure 4.4.4

A

Y11 =9, t Vg

A

Y14 = 7B

A

Yag = Yo + Iy (4.4.15)
so that

~ Vo - (x - 1)y

B, = - ¢ — (4.4.16)

Yot Vg - (x + x - Z)yB

From Figure 4.4.5 we deduce that

yA= yl +82

B g +7V,

Yo = V3 (4.4.17)



Examination of the denominator of the expression for 312 given
in Equation 4.4.16 show that the poles of 3&2 are determined by the

zeroes of the difference beftween two driving point admittances,

(v, + vg) and (x + x7t - 2)yg- In order to obtain realizable RC
admittances v and Yo and positive values for gl_and 8o it 1is

necessary and sufficient that Yy and Ip satisfy the following ine-

qualities
yA(O) > &2
vglo) < g (4.4.18)

in addition to being p.r. and RC admittances. One may always select
values for 8, and 8o to satisfy Equation 4.4.18 and thus the poles
of a,p may be placed arbitrarily. However it is not difficult to
see that the zeroces of a,, may not be placed arbitrarily since the
numerator expression involves the same admittance as the denominator
expression in Equation 4.4.16. One may increase the freedom obtain-
able in locating the zeroes by placing another network in parallel
with the LLF:R network.

Before we discuss this possibility it will help to clarify the
babove discussioh if a more detailed picture is given of the network
N2 that results after the congruent transformation. The definition

of terminal pairs for N, is shown in Figure 4.4.3b and the network

2

N, is shown in Figure 4.4.2. With the help of these figures one

1

may draw N, as indicated in Figure 4.4.6. The reorientation of

2
terminal pairs "tips" the R-LLF device sideways. The R-LLF device
shown in Figure 4.4.6 has the same assoclated MP network as the one

in Figure 4.4.2 however new terminal-pairs have been defined to
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"right" the device. It is clear by comparison of Figures 4.4.6 and
4.4.2 that the R-LLF MTP elements of these figures differ only in
the selection of datum node - O for Figure 4.4.2 and 1 for Figure
4.4.6., If the reference LLFPB network is the specialized one of

Figure 4.4.5 the network N2 takes the form shown in Figure 4.4.7.

4 0
O—— RC-LLFPB O
4 4
>
-1
~ g g (X "” v ~
é, o 2 2 e,
31 gp(x=1)  g(x+x'-2)g,

| 1.

o O
|

Figure 4.4.6. LLF:R Network After Congruent Transformation

4. .
o Y3 O
%

' (x'-1)
e, % i ¢

3 95(x=1) g,~(x+x'-2) g,

l :
O o)
!

Figure 4.4.7. LLF:R Network of Figure 4.4.5 With
Reference Network Of Figure 4.4.4
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We have shown that the poles of the voltage transfer functilon

212 for the network of Figure 4.4.7 may be located arbitrarily in
the complex frequency plane (of course complex poles occur in

complex conjugate pairs)u However the zeroes are restricted. We may
increase the generality of location of the zeroes of 312 by placing

a grounded two terminal-pair RC-LLFPB network in parallel with that
of Figure 4.4.7 as shown in Figure 4.4.8a. It is clear from in-
spection of this latter figure that v and Vo may be absorbed into
the paralleled network without loss of generality. When this is

done the network takes the form shown in Figure 4.4.8b. The voltage
transfer ratio A12 of the Network of Figure 4.4.8b from terminal

pair 2 to 1 is readily found from the relationship
A, = = (4.4.19)

where le, Yll are s.c. transfer and driving point admittances for

the same network. One may determine that

Vo = (x = 1)y
A, = - 1z B (4.4.20)
12 = =)
yll + gl - (X + X - Z)yB

where 512, iil are s.c. transfer and driving point admittances for

the paralleled network. Inspection of Equation 4.4.20 indicates not
only that the zeroes of A12 may be placed quite generally but that
step 1 of Section 1.5.2 has been completed, i.e., only "constructible"
specifications are involved in Alzo The next step of the synthesis
procedure as outlined in Section 1.5.2 is the formulation of an

Algorithm whereby one may go from a specified pole-zero pattern for
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Figure 4.4.8. Network Of Figure 4.4.8 With
Paralleled RC Network

AIZ to physically realizable functions 512’ The author

V110 -
has bteen unable to successfully complete this second step. No
discussion will be given of the difficulties involved but it will
be stated that the source of these difficulties stems from the fact

that §12 can only be synthesized to within a constant multiplier

when §il 1s completely specified.
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CHAPTER 5

COMPLEX NATURAL FREQUENCIES OF AN RC-LLF:R NETWORK

5.1 Introduction

In Chapter 3 some particular techniques of LLF:R network
analysis through the use of linear transformations were presented.
The techniques involved both real and complex linear transformations.
In Chapter 4 the analysis techniques involving real transformations
were studled with the 1dea of inverting the analysis procedure and
forming synthesis procedures. Chapter 6 will consider the use of
the complex linear transformation analysis techniques of Chapter 3 as
an aild in synthesizing transfer functions of RC-LIF:R networks. As
groundwork for the material‘of Chapter 6, Chapter 5 will investigate
the complex natural frequencles caused by the introduction of an
R-LLF three terminal device into an RC-LLFPB network. It is shown
in Sectlon 5.2 that the zeroes of a certain Characteristic Determinant
are the complex poles of the network. This determinant involves the
parameters of the R-LLF device and the RC-LLFPB network in a
relatively simple fashion. Attention is given in Section 5.3 to
conditions on the R-LLF device and the RC-LLFPB network such that the
characteristic determinant involves RC-LLFPB network functions that
have "constructible" specifications. This is done as an aid in
developing potentially acceptable transfer functions (i.e. those
having the possibility of general pole-zero locations) which
involve only "constructible" specifications. The approach used is

general from the point of view that R-LLF devices may be handled
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that do not have a description on an impedance or admittance basis.
In Sectlon 5.4 the following question 1s investigated for some
épecific R-LLF devices. Can.an RC-LLFPB network be found such
that when the R-LLF device 1s embedded 1n the RC-LLFPB network, the
resulting RC-LLF:R network will have a prescribed set of complex
natural frequencies? A number of R-LLF devices are found to allow
an arbitrary assignment of complex natural frequencies. It 1s shown
that while the natural frequencies introduced by a gyrator may be in
the complex plane they may not be generally assigned. Specifically
the complex natural frequencies introduced by a gyrator are
constrained to be the short circuit natural frequencies of the series
combination of an RC and an RL impedance.

In Sectlion 5.6 a general expression is given for the driving
point 1mpedance of an LLFPB network containing an embedded R-LLF

device.

5.2 Characteristic Determinant

5.2.1 Impedance and Admittance Matrix Formulations

In Section 3.5 of Chapter 3 it was demonstrated that the natural
frequencles caused by the introduction of an s terminal-pair R-LLF

device Into an LLFPB network are zeroes of the determinant

A [ Q ] (5
= det|Ug + S_ge .2.1)

The determinant in Eq. 5.2 will be called the Characteristic
Determinant. The combination of the LLFPB network and the R-LLF

device are assumed to form an Additive network as discussed in
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A

Section 3.5 US 1s an s x s unit matrix, SSS 1s the s x s solution

matrix of network seen from the s terminal pairs connected to

R-LLF device, and e is the s x s branch parameter matrix of R-LLF

S8
device that is used in formulating equilibrium equations for the
LLF:R network. In thils section we will consider the form that
Eq. 5.2.1 takes when SSs is an impedance or admittance solution
matrix.

First conslder the case in which SSS i1s a Z x Z open circuit

impedance matrix and eqs is a Z x Z branch admittance matrix as

indicated below
7A é -
A Z11%12
Ss)

sSs z Q Q
B 12 2%

[

811872

n
()]

(5.2.2)

[sd] , -
° 8218

A A
where the subscripts on SSS and s denote that SSS 1s given by an
o.c. impedance matrix and ss 1s characterized by admittance
parameters. It is clear that we are discussing the case in which a
three terminal R-LLF device described by admittance parameters is
embedded 1n an LLFPB network. Figure 5.2.1 indicates the definition
of terminal palrs involved such that the LLF:R network 1s Additive
and the admittance equilibrium matrix 1s the sum of the branch
admittance parameter matrices of the LLFPB MTP element and the
R-LLF MTP element. The center terminal of the R-LLF device is labeled

with a g to denote that the parameters indicated on the circult
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< e| eo —>
LLFPB

Figure 5.2.1. Definition Of Terminal Pairs For LLF:R Network With
Additive Admittance Matrices

Symbol apply to a branch admittance description of the R-LLF device.
Note that the LLFPB device 1s shown with only two terminal pairs.
For the work of this chapter it is not necessary to evidence the
other terminal pairs involved. They may be considered to be
contained within the box labeled LLFPB in Fig. 5.2.1. The voltages
e, and e, are terminal.pair response voltages to current sources
11,12 appllied across the terminal pairs 1 and 2, respectively. When

[eSJ becomes null, i.e. 811 = 815 = = 0, one obtains the

€21 T 822
reference LLFPB network. Letting [ess] become null effectively

removes the R-LLF network and places the current sources il and i2

across the LLFPB network as indicated in Fig. 5.2.2.

I Vo NS
)
°

A
® 2
LLFPB
Figure 5.2.2. Network of Figure 5.2.1 With €4q Null
g
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A
17 e2 to the

A A

The matrix [Sss] then relates the response voltages e
z A

. It should be noted that [Sss]

current sourcé excitations il’ i2

z
is the o.c. impedance matrix of a grounded two terminal-pair LLFPB
network.

If we use the definitions of Eq. 5.2.2 then Egq. 5.2.1 becomes

A A
1 0 211%12| 1811812
det +

1 A A
0 212%22] |821822

where the superscript g is used to denote that the R-LLF device is

= 28 (5.2.3)

described by g parameters.

If the matrix operations are carried out in Eq. 5.2.3 and the
determinant 1s evaluated one arrives at the equation

+ AgAZ + 811211 F Bo5Zos + [glz + 821] 21 = A (5.2.4)
We will call Ag a g-type Characteristic Determinant
The complex frequencies which are zeroes of AE are natural
frequencies of the LLF:R network with o.c. constraints across

terminal pairs 1 and 2. In Eg. 5.2.4 we have used the definitions

LN A A
2= Z91%0 7 239
Ag =g .8, - & 2 (5.2.5)
11822 12 L

To obtain the Characteristic Determinant in the case wherein
the R=LLF device 1s described by a branch impedance parameter

A

matrix we let S and e take the forms
ss S8
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T
FA | V11712
S ] =
S8
Y olA A
V12922]
_ .
11512
e = = R (5.2.6)
[°2¢],
erlrzz

A} A
where the subscripts on SSS and €.s denote that Sss is given by a
s.c. admittance matrix and eys is characterized by impedance

parameters.

>
i Viz
Vo Voo
. r
e i) 0 iz e
LLFPB Figure 5.2.3

Figure 5.2.3 indicates the definition of terminal pairs involved
such that the LLF:R network 1s Additive and the impedance
equilibrium matrix is the sum of the branch impedance parameter
matrices of the LLFPB MTP element and the R-LLF MTP element. The
center terminal of the R-LLF device 1s labeled with an r to denote
that the parameters indicated on the circult symbol apply to a
branch impedance description of the R-LLF device. The currents

i i, are response loop-currents to source voltages e. and e

1’ 72 1 2’
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11 12 T To1 = Too

one obtains the reference LLFPB network. Letting [ess] become null
r
effectively removes the R~-LLF network and places the voltage sources

respectively. When [ess] becomes null, i.e., r., = r._ = r
r

eq and e2 across terminal pairs of the LLFPB network as indicated in

A
Fig. 5.2.4. The matrix [Sss] then relates the response currents
v

i

17 12 to voltage sources el, ez.
e e
M) 2
W/
—_ . /—\
I in
LLFPB
- Pigure 5.2.4. Network of Figure 5.2.3 With e4g Null
‘ S r
If we use the definitions of Eq. 5.2.6 then Eq. 5.2.1 becomes
- -/\A_—r i
1 0 V11912 11712
det < + L = AT (5.2.7)
o 1 V12922 |F21 22

where the superscript r denotes the fact that the R-LLF device is
described by r parameters. If the matrix operations are carried out
in Egq. 5.2.3 and the determinant 1s evaluated one arrives at the

equation

A r
rooVos = A (5.2.8)

)3
+ 21912

+ +r

9 (
11711 T2

/ﬁ\“

1+ ArAy + r

this determinant will be called an r-type Characteristic Determinant.
It applies to the case wherein the R-LLF device is described by a

branch impedance parameter matrix. Equation 5.2.8 is dual to

Equation 5.2.4 since they pertain to dual situations. Thus Equation
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5.2.8 could have been written by inspectlon. In Equation 5.2.8 we

have used the definitions

L_A A
Y =911922 = Y32

2
r11F22 7 T2 (5.2.9)

Ar =

It 1s not difficult to see from the above discussion that

terminal pairs have been defined in such a way that [%sé] and
y

[éss are inverses, 1l.e.,
z

[A A A A -1
211%12]| 1Y11%12
A AN |[TIA A

(5.2.10)

Z12%22| V1222

In addition, if [ess is not singular (and thus [%Sé] is not

g r

singular)

1-1
811812 [F11T12

(5.2.11)

€21%22] |"21"22]
However Equation 5.2.4 applies whether Ag = O or not and Equation
5.2.8 applies whether Ar = O or not. Thus the pair of Equations
5.2.4 and 5.2.8 are able to handle the situation in which the R-LLF
device can only be described either on an impedance or an admittance
basis but not both. However there are situations in which the
R-LLF device cannot be described on either an admittance or an
impedance basis. In such sifuations a mixed basis description
suffices. Thus the following sections discusses the formulation of
the Characteristic Determinant for a mixed solution matrix SSS and

mixed parameter matrix eSS,
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5.2.2 Mixed Matrices

A description of a multiterminal-pair network on a mixed basis
is one in which some voltages and some currents are dependent or
response quantities rather than all voltages or all currents. We will
not consider the mixed cases in which both the voltage and current at
a terminal palr are regarded as dependent or independent quantities
since such cases have no physical correspondence as far as the
formulation of equilibrium equations is concerned.

Figures 5.2.5a and b show a two terminal-pair grounded network
with the two possible types of mixed excitation, 1.e., a voltage
source at one terminal pair and a current source at the other terminal

pair. In Fig. 5.2.5b the response variables are the current at

—>
Q

! = Of

(a)

R Eaaior:

(b)

)

Figure 5.2.5. Mixed Excitations For A Two Terminal-Pair Network

terminal pair 2 and the voltage at terminal pair 1. The equilibrium

equations for this case read as follows
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1) = ujg8; +bod,

°2 = %21%1 * Upplz (5.2.12)
where i1 and e2 are source variables and
UpqPy5
U = (5.2.13)
851%2

is the equilibrium matrix. The first equation in 5.2.12 is an
application of Kirchoff's Current Law and the second equation is an
application of Kirchoff's Voltage Law. In Fig. 5.2.5a the response
varlables are the voltage at terminal pair 2 and the current at
terminal pair 1. The corresponding equilibrium equations are

given by

e) = Vi1, + a8,

1, = byl + Vools (5.2.14)
where e and i2 are source quantities and
V11%12
V = (5.2.15)
P21V22

is the solution matrix. If U and V are not singular then it is clear

that
U=V (5.2.16)

since the inverse of the equilibrium matrix is the solution matrix.

We may regard the solution matrix for one mixed basis description as
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the equilibrium matrix of the other mixed basls description. The
elements of these mixed matrices are related to the open circuit
impedances and the short circuit admittances. Let
N RANRAY: Z11%12
Y = 7 = (5.2.17)
V21722 %21%22
be the s.c. admittance matrix and the o.c. impedance matrix as

conventionally defined. Then

z V. z, V.
a‘k = —JE: -— __‘]_1_(_ ; b.k = - sz= —JE
ey Y33 ’ 33 Tk
1 1 1 1
Uqqg = —— 5 Uy, = — 3 V.. =— , v _=— (5,2.18)
11 Z14 22 . Yoo 11 Vi1 22 Zoo

Since the mixed matrices of a two terminal pair R-LLF device
are real, special symbols will be used for the elements of these
matrices Jjust as with impedance and admittance matrices. Figures
5.2.6a and b illustrate the circult symbols for a two terminal-pair
R-LLF device when mixed matrix descriptions are used. The

equilibrium equations for the network of Fig. 5.2.6b are given by

11 = Kyp8p + Kpodo
e, = kyjeq + K58, (5.2.19)
where 11 and e2 are excitations and
ki1Kq0
K = v (5.2.20)
ko1Ko0
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ho hoo T

(a)

n koo

(b)

Figure 5.2.6. Mixed Excitations and Circuit Symbols For
Two Terminal-Palr R-LLF Device
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is the equilibrium matrix. The equilibrium equations for the

network of Fig. 5.2.6b are given by

It

ey = hyyly + hyse,

iz = h,q1, + hyoe, (5.2.21)

whefe el and i2 are excitations and

hy1fie
H = (5.2.22)
Y
is the equilibrium matrix. Since H and K are real versions of U and

A% respectiVely one may construct the set of equations analogous to

Eq's. 5.2.16 to 5.2.18.

5.2.3 Mixed Matrix Formulations

In this section we will obtain characteristic determinants for
the cases where the R-LLF device 1is described by mixed equililibrium
matrices. Consider first the case in which the R-LLF device is

described by a K type equilibrium matrix. PFigure 5.2.7 indicates

>
k), kj2
ko) koo
k
o e2 >
i| —
- >
| :'2
LLFPB

Figure 5.2.7. Definition Of Terminal Pairs For LLF:R Network
With Additive Mixed Matrices
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the definition of terminal pairs involved such that the LLF:R
network 1s Additive and the mixed equilibrium matrix is the sum of
the mixed equilibrium matrix of the R-LLF MTP element and that of
the LLFPB MTP element. In this case we choose gss and e g @S

indicated below

A AT
upp Py
e, -
u A A
%1 Yoz
ki1K9p
[ess] = =K (5.2.23)
_SS8lk K K
21722
When [ess]k,becomes null, i.e., kll = k12= kZl = k22 = 0 one obtains

the reference LLFPB network. Letting [ess] become null effectively
k

removes the R-LLF device and places the voltage source e, and

1
current source 12 across terminal pairs of the LLFPB network as
A
indicated in Fig. 5.2.8. The matrix [SS;I then relates the response
u
A =2
O
A ‘
/4‘2-\‘ 92
LLFPB
- Filgure 5.2.8. Network Of Figure 5.2.7 €qs Null
k

A A
quantities il’ e, to the sources el, i The minus slgns are used in

2 2°
A
the definition of the elements of [Sss] so that Eq.'s 5.2.18 may be

A
used to relate parameters of [@SS] with those of [SSS] and [§;s] .
} y . z

u
The minus signs are needed due to the different positive reference

directiohs assigned for the voltages ahd currents of the network of
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Flg. 5.2.8 and those of Fig's. 5.2.2 and 5.2.4. For an LLFPB

network
A A
P12 = T | (5.2.24)

l.e., the voltage transfer ratio in one direction is the negative of
the current transfer ratio in the opposite direction. When we use

the definitions of Eq. 5.2.23 and Eq. 5.2.24, Eq. 5.2.1 becomes

Ca [AAT LAY
1 0 U11857 115712
K
det + b= A 5.2.25
N A A A Q ( )
0 ~e21"ze] ko1 22

If the matrix operatiohs are carried out in Eq. 5.2.25 and the

determinant evaluated we obtain the Characteristic Determinant

1 4 AKAU + KoqUqs + KooUos + (Koo - Kk = AK (5.2.26)

11%11 22%22 21 12)851

where the following definitions have been used

2
bk = kyqKop = Kqp
AAA A,
Au = ujqUss + 8 (5.2.27)

The determinant in Eq. 5.2.26 will be called a k-type Characteristic
Determinant.

We will consider now the case in which the R-LLF device is
described by an H type equilibrium matrix. Figure 5.2.9 indicates
the definition of terminal pailrs involved such that the LLF:R network
is Additive and the mixed equilibrium matrix is the sum of the mixed
equllibrium matrix of the R-LLF MTP element and that of the LLFPB

MTP element. In this case we choose SSS and eSS as indicated below
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iy hi2
h2 ho2
h 2
& el 62
. O
—O—
1 T
LLFPB | Figure 5.2.9
(4 4]
A 11 12
(5] , -
v A A
P21 Voo
hy;hy2
[ess]h = = H (5.2.28)
h,-h
2122
When[ess]h becomes null, i.e., h11 = h12 = h21 = h22 = 0, one obtains
the reference LLFPB network. Letting[éSJ become null effectively
h

removes the R-LLF device and places the current source il and the

voltage source e, across the LLFPB network as shown in Fig. 5.2.10.

. 2
O—g—O—1
A
€ i
2
LLFPB
Figure 5.2.10. Network Of Figure 5.2.9 With eqg Null
h
A / T3
The matrix[SSS] relates the response quantities 31 and 12 to the
v
sources il and €, The reason for the minus sign in[ﬁss] 1is the
A v
same as for[§ss] . For an LLFPB network
u
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Thus Eq. 5.2.1 becomes
[ A AL ]
1 0 Vi1 12| [M11Pae
detd + NS (5.2.30)
o 1 A A h..h
212 Vezf| 2122
- - - =
which leads to the characteristic equation
_ Ah
1+ AhAV + hygVyg + hyov,, + (h12 - h21)a12 = A (5.2.31)
The following definitions have been used
A A A 2
Av = vllv22 + a,,
A A AN 2
Ah = hyih,, - hy, (5.2.32)

The determinant in Eq. 5.2.31 will be called an h-type

Characteristic Determinant.

5.3 Constructible Specifications on Complex Pole Locations

5.3.1 g and r - Type Characteristic Determinants

In this section we consider ways in which the g-type and r-type
Characteristic Determinants may be specialized such that only
"constructible" specifications are made upon the LLFPB network which
is now considered to be RC. This is a preliminary step to finding
potentially acceptable driving point and transfer functions (1.e.
those having the possibility of general pole-zero locations) which

involve only constructible specifications. We will discuss the
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g-type Characteristic Determinant first. Thils 1s rewritten below for

convenlence
AA A A .
L+ 8ghz + 811211 + BppZpy + [B1p B Z1p = A (5.3.1)

Examination of this determinant indicates 5 situations in which
constructible specifications are involved upon the RC-LLFPB network.
These are listed in table form in Fig. 5.3.1 with the corresponding
specialized Characteristic Determinants and constructible specifica-

tions. Cases (3) and (4) have obvious variants of identical form by

Specifications on
Specialized Parameters Characteristic Determinant RC-LLFPB Network
: A A A A
= » = = g
1 |Ag =05 g5 * 8y = 0 |1+ &1327 *+ 8%y =A 2112%22
A A g A A A
2 |Ag = 05 21, = 0 L+ e%1y * Bpp%pp <A 2119%903 21 = O
3| g, =gy e, =0 |1+g, R, =A 2
12 11 22 21712 12
= A A g A A
bl gy =ep=0 1+ 8yp%pp * By17yp =A 2929219
Aozl N AN A A _glAA A
5|8e# 052, =0 1+ Aezyy%p * B11%11 ¢ BppBiap TAT| By3s%pp5 215 = O
Figure 5.3.1. Special Situations Leading To
Constructible Specifications:
g-Type Characteristic Determinant
redefining terminal pairs. It should be noted that in cases (1)
through (4) the G matrix is singular, i.e., Ag = O. Thus the
corresponding R-LLF devices have no representation 1n terms of R
matrices although some may be represented by H cr K matrices. The

forms of the G matrices for cases (1) through (5) are listed below
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€17 8 )
811 812
(2) G, = 5 811855 = 815857 (5.3.3)
821 E22
o0 0
8,7 O
"0 0|
(47) G4: = (50305)
21 &22
€11 812
821 gzz.

Note that in cases (2) and (5);212 is required to be zero. In such
a case the RC-LLFPB network must decomposable into two isolated sub-

networks as shown in Fig. 5.3.2.

R-LLF

bo—

RC-LLFPB RC-LLFPB
| 2

Figure 5.3.2. Illustration Of The Condition 7, = O
Since the r-type Characteristic Determinant is dual to the g-

type we obtain the dual table shown in Fig. 5.3.3. Note in cases

(1) through (4) that the R matrix is singular. Thus the corresponding
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Specifications on
Specialized Parameters Characteristic Determinant RC-LLFPB Network
1Ar = 05wy, +xpy =0 (1o By v nyfy, AT R T
2|Ar = 03 3/’\12 =0 Loy * rzzé’\ze =AF 911’ 9225 912 =0
3|t =Ty =m0 |1 myyyp tAT 932
b ryy =1y =0 1+ rzzé’\zz + 1y <A 922’ 912
5|Ar # 03 g’\lz =0 1 +‘Ar3/"\ll§\'22 + 1Py + ppy <A F110 a3 B = 0

Figure 5.3.3.

R-LLF devices have no

Special Situations Leading To
Constructible Specifications:
r-Type Characteristic Determinant

representation in terms of G matrices although

some may be represented by H or K matrices. It is readily seen that

case (5) of Fig. 5.3.3 is identical to case (5) of Fig. 5.3.1.

Consequently Fig. 5.3.

3 lists only four new possibilities for con-

structible specifications rather than 5. The R matrices for these

four cases are listed below

riq r )

(1) R, = 3 Tyqlpp = = T (5.3.7)
-r rza
11 Ti2 >

(2) R, = 3 TiTop = Tps (5.3.8)
F21 Tez)
0 0
er 0
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11 Tiz
(4) R, = R R # . (5.3.10)
T21 Ta2
. A A
The condition Vip = O has the same conseqguences as for z12 = 0 since
2
Yoo = - 12
1z N

5.3.2 k And h-type Characteristic Determinants

In this section we consider ways in which k-type and h-type
Characteristic Determinants may be specilalized such that only
"constructible" specifications are made upon the RC-LLFPB network.
We will consider the k-type Characteristic Determinant first. This is

rewritten below

A A A

11911 t Kpplpp + (kg - k

21 1p)857 = Ok
A
a

1 +'AkAG + k

The functions Gll’ 622, and may be expressed in terms of the y

21
A «
and z functions with the aid of Eq.'s 5.2.18. 1In terms of these

functions
Q A
11 Q 2 Y22 A > 721 é A
11 I22 11 Y22

Also one may readily determine that

n
AL = oL o A22 (5.3.11)
Y22 %11

The R-LLF devices with the G matrices of cases (1), (2), (4), and

(5) and in Fig. 5.3.1 the R matrices of cases (1), (2), and (5) in
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Fig. 5.3. are such that K matrix description exist. Consequently they
provide a number of sltuations in which the parameters of the K type
Characteristic Determinant may bec.specialized to attain constructible
specifications. Since they do not add anything new there is no point
in bringing them up in the present discussions. Rather we will only
mentlon those speclalizations of the parameters of the k-type
Characteristic Determinant which lead to R-LLF devices with no R or G
matrix description. The conditions for the non-existence of R or G

matrix descriptions are that

kll =0

kpy = O (5.3.12)

In such a case the k-type Characteristic Determinant becomes

1 - Kk .Ab (k PRA N
- Kok Au+ (kyy - kyp)ay, = (5.3.13)

This determinant may be rewritten in terms of z parameters as below

’ A
22 12 Lk
1 - kyokyy 5 + (kyqp - Kq5) .y A (5.3.14)
11 11
or
A A A k
21 = KipkpiZap * (Kpy - Kyp)Zip = A72p, (5.5.15)

Examination of Eq's. 5.3.13 to 5.3.15 indicates that constructible
specifications wlll be obtalned in the following three situations

indicated in Fig. 5.3.4.
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Specialized Characteristic Specifications On
Parameters Determinant LLFPB Network
/\
V4
_ . _ 22 _ AN N
1 [kyp = Kop =05 295 = 1 - KkypKsg R - 21192503275 = O
11
e |2
_ _ _ 22 _ A
2 [kyp = Kpp = 0 5 kg = Kyp | 1 = Kypkoy K- 2112252
11
_ Ak A A
5 1 kijp =0 1+ kypa,, =4 2129211

Fig. 5.3.4 Some Conditions Leading To Constructible Specifications:

k-Type Characteristic Determinant

The forms for the K matrices of the R-LLF devices for cases (1)

through (3) are listed below

0

(1) x, -
| %21
0

(2) K, -
K
0

(3) K, =
ka1

k

12

1©

=

0]

(5.3.16)

(5.3.17)

(5.3.18)

By direct analogy with the k-type characteristic equation we may

construct the table of Fig. 5.3.5 for the h-type Characteristic

Determinant.

It is readily seen that cases (1) and (2) of Fig. 5.3.5 lead to

the same R-LLF device as cases (1) and (2) of Fig. 5.3.4.

case (3) represents a new result.

0 0

h21 0

Thus only

The H matrix for thils case is

(5.3.19)
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Specialized Characteristic Specilfications On
Parameters Determlnant LLFPB Network
A
- - 11 _ A A A
1fhyy = Bap =05 245 1= hpphsy AT A7 21122523212 = ©
22
2
- - 11 _ ,h|A A
2 {hyg =hy, =05 hyy =hppf 1 -hyphoy A" A7) 2110255
22
h A A
3 h12 = 0 1 + h21312 A 212,222

Flg. 5.3.5 Some Conditions Leading To Constructible Specifications:

h-Type Characteristic Determinant

5.4 Discussion 0f Specific Three Terminal R-LLF Devices

In this section the following question 1s investigated for some

specific R-LLF devices that involve Characteristic Determinants with

constructible specifications.

Can an RC-LLFPB network be found such

that when the R-LLF device is embedded in the RC-LLFPB network the

resulting RC-LLF:R network will have a prescribed set of complex

natural frequenciles?

To answer this question we form the

Characteristic Determinant pertinent to the particular description

of the R-LLF device and then see what restrictions there are on its

zeroes.

We will consider first the R-LIF devices and LLFPB networks that

are pertinent to cases (1) through (5) of Fig. 5.3.1 and then we

wlll discuss the cases of Figures 5.3.3, 5.3.4, and 5.3.5.

5.4.1 Cases (1) and (2); G Matrices

The Characteristic Determinant for cases (1) and (2) is shown

below equated to a rational fraction in (s).
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A8 - P(s)

A
= 1+ 879297 + 855255 = 6 (5.4.1)

P(s) and Q(s) are polynomials in s with real coefficients. Since we
are assuming that the LLFPB network is RC, then Qll and QEZ have
their poles constralned to the negative real axls. It follows that
the poles of Ag which are the zerces of Q(s) must lie on the negative

real axis. Thus let

Q(s) = (s + Gl)(s + 02)---(3 + on) (5.4.2)
where the
o, >0; J=1,2¢+n o # o, (5.4.3)

It is assumed that P(s) is a polynomial in s of the nth degree.
We note first of all that if both 811 and g22 are positive then the
zeroes of P(s) which are the zeroes of Ag, must lie on the negative
real axis. This follows from the obvious fact that if 811 and oo
are > 0O then Ag is, according to Eq. 5.4.1, equal to an RC-LLFPB
driving point impedance.

If 84 and g, are both negative then A& is expressible in the

form

A8 =1 - 2Z(s) = g%g} (5.4.4)

where Z(s) is an RC-LLFPB driving point impedance. It then follows
that P(s) is the difference between the denominator and numerator
polynomials of an RC-LLFPB driving point impedance. One may readily
demonstrate that such a P(s) not only has all its zeroes on the o

axis but may have at most one zero on the positive real axis.
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The remaining possibillity is that 811 and oo be of opposite
algebralc sign. It will now be demonstrated that for this situation
P(s) may have zeroes located arbitrarily in the complex plane. To
prove this fact we will assign a P(s) with arbitrary zeroes and then
find an algorithm whereby one may find physically realizable

A
impedances Qll and z22. Let

S + ++. 8.8 + a (5.4.5)

1 0]

where the a's are restricted only in that they are real. Expand

P/Q in partial fractions. This expansion takes the form

n
+ —
k k k
P(s) 1 z_z__ Z__L_
SO =1+ - - (5.4.8)
Qls 1 s Oj s + of s + GJ

Some of the residues will be positive and some will be negative. The
last equality in Eq. 5.4.6, where k} and k3 are positive, evidences

this fact in an obvious fashion. If we compare Eq. 5.4.6 with Ag in

Eq. 5.4.1 and make the identifications

+
Y S
11 gll s + oj

k.,
/z\22 _ 1 Z _ (5.4.7)
822 s + OJ

A A
then z44 and 222 will be p.r. and RC if

817 > 05 8,5, <0 (5.4.8)
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An interesting point here 1s that any set of g's which satisfy

A

A
Eq. 5.4.8 will lead to p.r. and RC, z;; and z Thus for case (1) we

22°
conclude that if le = 0 and the R-LLF device has a G matrix of the
form
a b—
G, = ; ad = be (5.4.9)
-¢ -d

then the resulting RC-LIF: device may be synthesized to have natural

frequencies arbitrarily placed in the complexkplane. Since le = 0,
the RC-LLF:R network must take the configuration indicated in Fig. 5.4.
o0 @ bl o |
RC-LLFPB -c -d RC-LLFPB
l g 2

Figure 5.4.1. RC-LLF:R Network Permitting Arbitrary Assignment
Of Natural Frequencies: Gl Type Matrix

For case (2) we do not have to assume that Zio = O but then we have

the restriction

b=c (5.4.10)
leading to
a b >
G, = ; ad = Db , (5.4.11)
-b -d

The RC-LLF:R network in this case is not restricted to the configura-
tion of Fig. 5.4.1 but to the more general configuration of Fig. 5.4.2.
While the above procedures allow complex natural frequencies to be

arbitrarily assigned no attention has been given to the problem of
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a b

~-b -d
g_. %g __1

RC-LLFPB

Figure 5.4.2. RC-LLF:R Network Permitting Arbitrary Assignment
0f Natural Frequencies: Gz Type Matrix

synthesizing RC-LLF:R transfer functions for specified pole-zero
locations. This problem is discussed in Chapter 6 where terminal
pairs are brought out from the RC-LLFPB networks. To maintain the
natural frequencies as designed in this section one must observe the
usual precaution of inserting voltage sources by a plier-type entry
and current sources by a soldering iron-type entry into the RC-LLFPB

networks.

5.4.2 Case (3); G Matrices

The Characteristic Determinant for case (3) is

P(s

g _ -
A =1 + gzlzl2 = Qs (5.4.12)
A
If we solve for z12 we obtain
A _ 1 [P<s) - Q(s)]
Z1p = 21 16 (5.4.13)

We note that le 1s the transfer impedance of a grounded two-
terminal pair RC-LLFPB network. The necessary and sufficient

conditions for realizability of Q&Z are

(1) that it have simple negative real poles with real residues

(2) that the numerator polynomial have all positive coeffi-
cients and degree < degree of denominator polynomial.
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Condition (1) is automatically satisfied by selecting Q(s) as below

Q(s) = a(s + cl)(s + 02) cee (s + cn) (5.4.14)

where the o's are positive and a is a positive constant. Let us
assume first that g,; 1s positive. Then (2) can only be satisfied
if P(s) has all positive coefficients. This is easily seen from the
fact that -Q(s) has all negative coefficients. Consequently if P(s)
has negative coefficients then P(s) - Q(s) will at least have nega-
tive coefficilents in the same locations. Thus for 851 positive the
assignment of natural frequencies must be the zeroes of a polynomial
in s with positive coefficients.

If we let 851 be negative then it is readily seen that P(s)
becomes unrestricted. This is best seen by rewriting Q&z for this

case as follows

215 = lgill [Q 5 P] (5.4.15)

Since Q has positive coefficients we may always adjust o in Eq. 5.4.14

such that Q@ - P has positive coefficients, whether or not P has
positive coefficients. From a practical point of view, the case where
€51 > 0 1s not less useful from Zoq < O since a stable transfer
function always has a denominator polynomial which is Hurwitz and
a Hurwitz polynomial has positive coefficients. It will be recog-
nized that the G matrix for case (3) is that of an ideal vacuum tube
when 851 > 0.

In practice when one synthesizes z12 one makes an initial synthesis
synthesis which yields 215 to within a constant multiplier. Then

impedance leveling adjusts the transfer impedance to the desired
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constant multiplier. It may be seen then, that regardless of the

A
value of 8,1 One may obtaln a physically realizable 221.

5.4.3 Case (4); G Matrices

The characteristic equation for thils case is

A A

g _
A7 = 1+ 855255 + 857205

We are interested in the generality of location of the complex roots

of

g . _ A A
A% =0 =1+ 855255 T 857275 (5.4.18)

But these are also the complex roots of the equation

A
14+ —2ddE (5.4.17)
1+ 835%25

obtained from Eq. 5.4.6 through dividing by 1 + g22é22' No complex
roots are removed by this operation since 1 + g22é22 has only real

axis zeroes whether or not 820 is negatlve. We may place

821 A

Z
12
€a2 _ P(s) (5.4.18)

SR N Y €
22

€22

Now the expression

1 A

I 212

Z1p = T A
4+ Z

8pp 22

(5.4.19)

will be recognized as the transfer impedance of the network of

Fig. 5.4.3.
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Figure 5.4.3? Network With Transfer Impedance le

With this definition of 212 Eq. 5.4.18 assumes the form

_ E(s)
1+ gy12y, = A (5.4.20)

Note that this equation 1s identical 1n form Eq. 5.4.12 for case

(3). Thus solving for Z,, We obtain

_ 1 |P~-Q
21 = Ep1 [ 3 ] (5.4.21)

If we assume that 8o 1s positive then we can adjust the

impedance levels of the passlve network, without loss in generality,

by letting
A
A Ce
2z &y
A
g o d2
1z 80
N
2 %12 ( hm termi (
Zip - Zyp = i—:—zgg one ohm termination) 5.4.22)
We define
g
u = —2i (5.4.23)
822
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as the amplification factor of the R-LLF devlce since when gzl and
8o, are positive the R-LLF device has a G matrix identical in form
to that of a vacuum tube at low frequencies (incremental linear
operation) in which l/g22 is the plate resistance and g,; is the

transconductance. For 851 positive and normalization as indicated

in Eq. 5.4.22, Eq. 5.4.21 becomes
N P - Q,
215 = u[ 3 ] (5.4.24)

is an RC-LLFPB transfer function, the implications of

2
Since 12

Eq. 5.4.24 are almost identical to those of Eq. 5.4.13. Thus if
u > 0, P must have positive coefficients while if u < O, P may be
generally assigned. There is however one important difference
between the situation of Eq. 5.4.24 and Eq. 5.4.13. This is that
while any value of 8o1 in Eq. 5.4.13 willl lead to acceptable le
functions, any value of u in Eq. 5.4.24 will not. To undefstand

A
this fact note that 2 1s constrained to be the transfer impedance

12

of an RC-LLFPB network terminated in 1 ohm while le is not restricted

in this way. Thus while incorrect constant multipliers resulting
from a synthesis of le can be compensated for by a change in

A
impedance level, this is not generally the case with 212. Synthesis

A A
of 212 requires the simultaneous synthesis of Zoo and le. Synthesis

to be synthesized to within

is also specified(ls). A

procedures presently avallable allow élZ

some maximum constant multipller when Qéz

change in impedance level of 6&2 1s accomplished only by a change in

level of QZZ’ 912, and the one ohm termination by the same amount.
It will be demonstrated that if 855 1s negative and 851 is

positive then P can be chosen arbitrarily subject again to the
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condition that u may not be fixed a priorl. 1In this case the

Characteristic Determinant has the form

P(s

g _ - -
88 = 1+g, 2, lgEZI Zop = Tle (5.4.25)

A
Expand P/Q, 912, and 2z in partial fractions (degree of P and Q the

22
same)

EHed- )
(J)

A 12
z215(8) = Eis o,

(J)
k
/Z\ZZ(S) ‘2%“?&; (5.4.286)

If we equate residues we find that

g21 §2 lgzzlk(j) ( ) (5.4.27)
It is clear that positive values of kg%) and kég) may be found to

satisfy Eq. 5.4.27 whether or not k(J) i1s positlive. Since any poles

A
that 912 has must also be contained in z we must always have

22
ég) > 0 when k(J) # 0. For a specified 222( s) one can synthesize
ZlZ(S) only to within a maximum constant multiplier. Thus the set

of residues k§g) may all be off by a constant multiplier. It may

be seen that 1f we are free to choose the ratio g21/|g22| as large
as we wish we can always compensate for any constant multiplier.
If 812 and 80 are both negative one may show that in general

P(s) must have positive coefficients.
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5.4.4 Case (5); G Matrices

We will only consider here the situation in which

and the Characteristic Determinant is
P

The complex zeroes of AE are also those for the function

1
211

Let us first assume that 815 and gzl are of the same sign.

this case Eq. 5.4.31 takes the form

1

A -

211

812821%11%22

A
A T B12821%22 T Q(sT

;’é
Hglzgzli 22 ~

(5.4.28)

(5.4.29)

(5.4.30)

(5.4.31)

In

(5.4.32)

It will now be shown that P(s) in Eq. 5.4.32 has its zeroes

constrained to the o axis.

partial fraction expansion.

has no zero at a:,Kl— has the
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S d
Loy 25 €11 - (5.4.33)
1

The poles of l/zll located at s = - ay 3 j=1,2, +++ n where o, is

positive. The quantities klg, kli are positive. Now the sum
n
25 k
S
1

satisfies all the requirements for a p.r. RC impedance. Thus the

Q!-—’L:.

(5.4.34)

RC admittance

- Z (5.4.35)

is the difference between a constant and an RC impedance. It

follows that

0 A
5%2% = %31 - [%'+ 810857 222] (5.4.36)

Thus P(s) is expressible as the difference between the numerator and
denominator polynomial of an RC imbedance° Such a difference has
its zeroes on the o axis with at most one positive ¢ axis zero.

When l/zll has a zero at infinity one may still demonstrate
that P(s) has zeroes on the real axis although the number of positive
real axis zeroes has not been determined at present. The proof
offered here is somewhat indirect and makes use of a property of LLF
networks demonstrated in Chapter 7. This property is that an
RC-LLF:R network containing only active bilateral devices has its

natural frequenciles constrained to the real axis. To apply it to
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our present situatlon we note that if 812 = 851 the form of

Eq. 5.4.32 remains unchanged. Thus P(s) 1s no less general when
810 = 851" But when 810 = 859 the R-LLF device becomes bilateral.
Thus applying the theorem we conclude that P(s) has only negative
real axis zeroes whenever 81 and 851 are of the same sign.

Let us now assume that 815 and g21 are of opposite sign. Then

Eq. 5.4.31 may be rewritten in the form

Qéz = g%g% (5.4.37)

§11 - Iglzgzl
An RC admittance behaves exactly like an RL impedance when
considered as a function of s. Thus the zeroes of P(s) are
constrained by Eq. 5.4.37 to be located no more generally than the
zeroes of the sum of an RC and an RL impedance. Another way of
saying this is that the zeroes of P(s) are the short circuit natural
frequencies of the series combination of an RC and an RL impedance.
It 1s difficult to state 1in a precise quantitative way how such
zeroes are restricted. It 1s readily seen that J axls zeroes are
forbidden. In a qualitative way one can see that a number of zeroes
in the same area making small angles with the jw axis will, in
general, be forbidden. The reasoning behind this statement is the
fact that in the jw axis vicinity of such zeroes the phase of P(s)
increases very rapidly by many radians. Since P/Q is a p.r. function
its phase may not go beyond i_v/? radians. Thus the increase in
phase of P must be matched by a corresponding increase in phase of
Q(s). But Q(s) has only negative real poles which are located

distantly from that portion of the Jw axls under discussion. Thus
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the phase contribution from Q(s) will vary too slowly to compensate
for the phase change of P(s). One may conjecture, however, that if
we augment P/Q as follows to form P'/Q!

1 PQ’Z
- Q—Q—J-—

@4*3

where Q2 and Ql have negative real zeroes, that the phase change of
P(s) may be accommodated. The i1dea is that with enough poles and
zeroes on the negative real axils we can approximate rather general
phase characteristics.
-—_2 — o—
When g21g12 = -g~ and ’ngl = lglzl the R-LLF device becomes a

gyrator with G matrix

0. &
G = o (5.4.38)

-g O
Thus we have demonstrated that a gyrator in a network configuration
like Fig. 5.3.2 produces a resulting RC-LLF:R network whose natural
frequencies are no more general than the short circuit natural
frequenciles of the series combination of an RC and an RL impedance.
We will now demonstrate that a gyrator quite generally embedded in
an RC-LLFPB network leads to an RC-LLF:R network with the same
restrictions. The characteristic equation for a generally embedded
gyrator (912 # 0) is

AN
A8 = 1+ gPAz = 1 4 g° 22 (5.4.39)
I11

where we have used the identity
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NS>

A
Az = == (5.4.40)
11

<

It is clear that the complex zeroes of Ag of Eq. 5.4.39 are also

zeroes of
A 2A _ P(s

Since Equation 5.4.41 1s identical in form to 5.4.37 we have clearly

obtained the desired result.

5.4.5 Other Cases; R, K, and H Matrices

Cases (1) through (5) of Fig. 5.3.3 wherein R matrices are used
are dual to those of Cases (1) through (5) of Fig. 5.3.1 where G
matrices are used. Consequently the discussion of Sections 5.4.1
through 5.4.4 may be carried over in dual form in order to discuss
the locatlons of the natural frequencies of an RC-LLF:R network with
embedded R-LLF devices described by the R matrices of Fig. 5.3.3.
This process of duallzing the statements of the previous sections
i1s quite straightforward and will not be carried through.

We will now consider the R-LLF devices and LLFPB networks that
are pertinent to Cases (1) through (3) of Fig. 5.3.4. For Case (1)

the Characteristic Determinant is given by

(5.4.42)

The complex zeroes of Ak are the same as those of P(s) in the

following equation
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A A P(s)
Zyy - k21k12222 = alsT (5.4.43)

Clearly if ksq and klZ are of opposite sign then the zeroes of P(s)
lie on the negative real axis since P/Q is a p.r. RC impedance in
this case. When k21 and k12 are of the same sign then Eq. 5.4.43

becomes

A A P(s)
217 - |%p1¥92| %2 = T

(5.4.44)
It is readily shown that the zeroes of P(s) may now be assigned

without restriction (providing of course as we have been assuming
throughout that complex zeroes occur 1n conjugate pairs). To this

end expand P/Q in partial fractions as indicated in Egq. 5.4.6 and

then identify

+
2 =1+ }g._jil__
%11 7 =
s + O
J
e
@ = = 25 J - (5.4.45)

22 |kpiKyp! Mg 4 o]

The impedances éll and Zoo thus constructed are p.r. RC lmpedances.
It is then clear that a network of the configuration shown in

Fig. 5.4.4 may have an arbitrary set of complex natural frequencies
specified. Case (2) yields a Characteristic Determinant with complex
zeroes as generally located as zeroes of P(s) of Eq. 5.4.44. Thus
the network of Fig. 5.4.5 may have its natural frequencies

arbitrarily assigned. When b = ¢ = 1 or k = 1 the R-LLF devices in
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RC~-LLFPB RC-LLFPB
{ K 2
o © Ol

Figure 5.4.4. RC-LLF:R Network Permitting Arbitrary Assignment
Of Natural Frequencies: K, Type Matrix

1

—_——p

0 K

K 0]

K
. |
| Figure 5.4.5

RC-LLF PB K2 Type Matrix

Figures 5.4.4 and 5.4.5 become Negative Impedance Converters. A

Negative Impedance Converter has the K matrix

0 1
(5.4.46)

=~
Il

1 0

Linvill(é) has already demonstrated that a Negative Impedance Converter
in the network configuration of Fig. 5.4.4 allows a general assign-
ment of natural frequencies.

The Characteristic Determinant for Case (3) of Fig. 5.3.4 is

A
AT = 1+ kyq8,7 = alsT (5.4.47)

A
If we solve for the voltage transfer ratio a,q Wwe find

1 [P - Q] (
a . = 5.4.48)
21 kpq Q
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This case 1s entirely analogous to Cases (5) of Fig's. 5.3.1 and
5.3.3. We may state by analogy that if k21 1s positive then P is
restricted to have positive coefficients while 1if k21 1s negative P
is unrestricted. There is an important difference between Case (3)
of Fig. 5.3.4 and Cases (5) of Fig's. 5.3.1 and 5.3.3. This is that
while 912 and 912 may be synthesized exactly, 221 can only be
synthesized to within a maximum constant multiplier. Thus while
any g,q Or Ty, would suffice to obtain the desired P(s) in Cases (5)
of Fig's. 5.3.1 and 5.3.3 only values of !k21| sufficiently large
will be suitable for Case (3) of Fig. 5.3.4.

Of the situations shown in Cases (1) through (3) of Fig. 5.3.5
only Case (3) presents a new R-LLF device. The discussion of the
possibilities of the R-LLF device of Case (3) of Fig. 5.3.5 is

identical to that just completed for Case (3) of Fig. 5.3.5.

5.5 General Expression For Driving Point Impedance

In the previous sections we have been concerned with the complex
natural frequenciles caused by the introduction of an R-LLF device into
an LLFPB network. Only those terminal pairs of the LLFPB network

were evidenced that were connected to the R-LILF device. We now

R-LLF

S —

LLFPB
boxd

Filgure 5.5.1. LLF:R Network Relevant To Determining
General Expression For Impedance
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extract a terminal palr x from the LLFPB network as shown in

Fig. 5.5.1 and 1nquire as to the nature of the impedance, z, seen
looking into this terminal pair. The poles of this impedance are

the natural frequencies of the LLF:R network with x open while the
zeroes are the natural frequencies of the LLF:R network with x shorted.
We have previously determined that any complex natural frequencies of

the LLF:R network are zeroes of the Characteristic Determinant

A
A = det {Uss + Sssess}
When we examine the impedance at x we are concerned with two sets of

complex natural frequencies. Those which exist for x open and those

which exist for x shorted. Thus we define two Characteristic

Determinants
Ao
Do = det qU_ + S_ce . (5.5.1)
and
A det 4U oo )
© = e ss T SosCss (5.5.2

A
in which Ssg i1s the solution matrix of the LLFPB network seen from

the s terminal pairs connected to the R-LLF device when x 1s shorted.

A :
Correspondingly ng is the solution matrix with x open.

It is then clear that the impedance seen at x may be expressed

in the form

A
AO det {Uss + Ssgess}
z(s) = F(s) — = F(s) Ao (5.5.3)
00 det {Uss + Sssess}
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The determinant AO contains the complex zeroes and Aoo contains the

éomplex poles. We may determine F(s) in the following fashion.

First we note that

{AO} . = det {Uss} =1
SS8S=

0
{AGJ = det {USS} =1 (5.5.4)
€s8=0
Thus
F(s) = [2(s)] fo0e] = © (5.5.5)
oo]

i.e. F(s) is the impedance seen at terminal pair x when the
equilibrium matrix of the R-LLF device becomes null. As discussed
previously letting [%ss] become null effectively removes the R-LLF
device and places either open circuit or short-circult constraints
upon the set of terminal pairs of the LLFPB network that were
connected to the R-LLF device. If[%sé]were described by a G matrix
then open-circult constraints would be applicable. If [ess] were
described by an R matrix then short-circult constraints would be
applicable. If I%ss] were described on a mixed baslis some terminal
pailrs would be shorted and some opened.

To illustrate the above 1deas we willl consider a three terminal
R-LLF device. There are then four types of Characteristic
Determinants depending upon whether the device is described by a
G, R, H, or K matrix. The impedance z(s) takes the four possible

forms indicated below

g r k h
Z\s) = Zg A8 R I S Ak - “h Ah o0
@ (e0] 0] O
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The appropriate R:LLF networks are shown in Fig. 5.2.1, Fig. 5.2.3,
Fig. 5.2.7, and Fig. 5.2.9 with the terminal pair x still contailned

within the LLFPB network. One may readily define the impedances

Qg, 3, %, and 2 with the aid of Fig's. 5.2.2, 5.2.4, 5.2.8, and
5.2.10. Extract the terminal pair x from the LLFPB network and then
let the source quantities in these figures vanlish. By this means we

A A
find that Qg, 2.5 Zyo and éh are defined as shown 1in Fig's. 5.5.2a,

b, ¢ and d respectively.

1]

[T [T

Figure 5.5.2

X
3, ° 4, ° W

The general expression for z(s) will be written out below for

the case in which the R-LLF device 1s described by a G matrix

AO A 0 A 0 ARY
2(s) = B 1+ DghZ” + 819297 + 8pp%5 + (895 + g21)212
g @ oo
1+ 0g02® + g1 8 + gy,00, + (81, + 852,
(50507)
/‘a
where ng is an impedance of the LLFPB network with x shorted while

z?i 1s the corresponding impedance with x opened. It 1s of interest

to consider some specific cases. Let
199



R

G, = (5.5.8)
-& -g
0 o

G = (5.5.9)
g 0
O O

G, = (5.5.10)
0 &g

Gg = (5.5.11)
-g 0

It will be recognized that G2 through G5 are special versions

of Cases (2) through (5) of Fig. 5.3.1. The device with matrix G,
of Eq. 5.5.8 will be called an Activated Gyrator. The devices
corresponding to G matrices of Eg's. 5.5.9 through 5.5.11 will be
recognized as an Ideal Vacuum Tube, Vacuum Tube, and Gyrator,

respectively. The corresponding expressions for driving point

impedances are

A0 A o]
A LT g[zll - Zpp
zz(s) = 2, A XS (5.5.12)
1+ g[zll - 222]
A O
1+
2. (s) = % %12 (5.5.13)
3 g1 4+ g2% o
8212
A A O
A L1t g[zzg + 212]
z,(s) = z (5.5.14)
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AO
Al o+ ngz
z-(s) = 2 (5.5.15)
5 & 1 1 g2nB®

The expression 5.5.13 has already been derived by De Claris(g)

although in an entirely different fashion.
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CHAPTER 6

: APPLICATIONS OF COMPLEX LINEAR TRANSFORMATIONS
‘ TO THE SYNTHESIS OF TRANSFER FUNCTIONS
OF RC-LLF:R NETWORKS

6.1 Introdﬁctibn

In Chapter 3 some particular techniques of LLF:R network
analysls through the use of linear transformations were presented.
The techniques involved both real and complex linear transformations.
In Chapter 4 the analysis techniques involving real transformations
were studied with the 1ldea of inverting the analysis procedure and
forming synthesis procedures. The inversion process was not
entirely successful since the "constructible" specifications re-
quirement was not met in general. In Chapter 6 the analysis
techniques involving complex linear transformations are lnverted
successfully. Three general transfer functlon synthesls procedures
are presented that involve 2 twoUterminal-palr RC-LLFPB networks
and one three termlnal R-LIR device described by a G matrix. Two
of these methods willl syntheslize any stable transfer function to
within a constant multiplier. The starting point for developing
these synthesls prOcedures 1s an analysis of RC-LLF:R networks of the
type described in Chapter 5 which lead to constructible specifica-
tions on locations of complex natural frequencies. Specifically,
network Configurations and R-LLF devices suggested by Sectlon 5.4.1,
5.4.3, and 5.4.4 are used. The three synthesis techniques are
presented in Sectilons 6.2; 6.3, and 6.4. Section 6.5 presents an
1llustrative example of transfer function synthesis for each of the

three synthesls technlques.
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6.2 Synthesis Technique No. 1

6.2.1 Transfer Impedance

In this section we will first analyze the LLF:R network of
Figure 6.2.1 with the aid of complex linear transformations in the
manner discussed 1n Sectlon 3.5 of Chapter 3, as a preliminary to

the synthesis procedure.

_—
o] b
i RC-LLFPB i ¢ —d RC-LLFPB i
e3 €4
A © g & B
| I ]
ad =bc g

Figure 6.2.1 LLF:R Network Applicable To
Synthesis Technique No. 1

It wiil be recognized that this network falls under case (2) of
Figure 5.3.1 and has been discussed with regard to generality of
location of complex natural frequencles in Section 5.4.1 of
Chapter 5. 1In particular the network of Figure 6.2.1 1s obtained
from that of Figure 5.4.1 by extracting a terminal pair from each
RC-LLFPB network, leaving an RC-LLF:R network with 4 terminal pairs.
Let us assume that current sources are placed across terminal pairs
so that the response quantities are terminal-pair voltages. We
may now apply the results of Sectlon 3.5 to express the o.c. im-

pedance matrix Z of this RC-LLF:R network in the form

A
A/ (6.2.1)

203



where Z is the o.c. 1lmpedance matrix of the network with the R-LLF

device removed (leaving open circult constraints at terminal pairs

1l and 2) and © 1s a complex transformation matrix.

In order to

glve a deslred partitioned expression for 7 it will be necessary

A
to express Z and Z in partitioned form.

N>

Of course, for Q,

Zy2 '215
|
222 | %23
|
Zz5 1253
|
Za2 | %43
A A
Z12 1213
A A
Zo2 | %23
A A
%30 | 233
A 1a
242 | 743
2
Jk

3

a

kj®
The branch admittance matrix of the R-LLF device is

d

= -y

Zss Izsr
-1 __
|
er er
L. | -
r —
|
zss 'Zsr
_.._l__ -

VA Z

l"Sl SS

(6.2.2)

(6.2.3)

(6.2.4)

In terms of the matrices defined in Equations 6.2.2, 6.2.3 and 6.2.4

we may express the complex transformation matrix v as (See Equation

3.5.14),
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T | 0
T=fFr— = T— = (6.2.5)
A n
7ergssm, Ur
- ' -
where
A 1
T = Us.+“zssSss (6.2.8)

Use of 1 as expressed by Equation 6.2.5 in Equation 6.2.1

" ylelds the following partitioned expression for Z,

Zss :Zsr T.,‘Zss : T ZSr
== - b — - — - —q— — — — — (8.2.7
O T Y B R ST
Zpg :er Zpg = ZpgBggT Zss, rr = %rs8ssT Zsp

We will be interested in this sectlon 1n the transfer impedances
between terminal pairs 3 and 4 of Figure 6.2.1, Zz4s Zyze These are
elements of the submatrix er given by

A A A
Z_ =12 yA T Z

rr rr ~ “rsBss® “4sr (6.2.8)

To determine er as glven by Equation 6.2.8 we need to evaluate the
LLFPB open circuit impedance matrix Q. Figure 6.2.2 shows the

RC-LLFPB network with o.c. 1lmpedance matrix Q.

& | Re-LLFPB 3 & RC-LLFPB [ §
e - I

A
Figure 6.2.2 RC-LLFPB Network With 0.C. Impedance Matrix Z
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The networks A and B are isolated so that transfer relations are

A
zero between the terminal pairs (1,3) and (2,4). Thus Z takes the

form
[ A | A i
Zqq © '213 o
A
o) Zoo 'o Zoy
-4 ——
2“1 6 (2.0
31 | 223
Al A
o z42| o Zay
and the submatrices
F"A e
Z o
N 11 A
lgg = A 2z
o Zoo
L -l
—Q -
31 ©
- 2
rs A rr
o Zy0
R i

il

N>

13

0

A
zZ

34

-

(6.2.9)

(6.2.10)

The remaining matrix needed to evaluate er is T. This is given by

pe

1l o

o

#

A
211

@)

a

5k

-1

(6.2.11)
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where Ag, the Characteristic Determinant, is given by

g _ N _A
A% =1 + az)q - dzg, (6.2.12)
A A
Continuing the evaluation of 2,z and Zz, WE note that
- T ar T1r -
N A A
, Zzy © a b l—dé22 --bz11 2)z ©
Z T7 = - 1
rsfss” “sr T A A A A Zg
o Z40| |-C -d “CZyo 1+az11 o Zoy
i 1L JL it J
(6.2.13)
T A Al A A A A
azzy bz | [(1-d255)z,5  -bzy %,
= - 2
B A A A A A |aB
-ez,, -dz,, 255212 (1+aé11)z24

A
Since er contains no off diagonal terms, the off dilagonal terms af

A

A
ergssT Zsr yleld Zzy and z directly. By inspectlon of Equation

43
6.2.13 these are given by

A A A A A A A
abZz1Z1125, - DZz725,(1 + az)q) Z31%24
234:.—_. g = —b—g___.
A A
(6.2.14)
A A A A A
. cafy By,0) 5 + 08,2151 - af,p) _ o Aasee
43 7B - G

Since Zy3 and Zzy differ by a constant multiplier we need only
examine Zyzs the transfer impedance from terminal palr 3 to terminal

pair 4 of the RC-LLF:R network of Figure 6.2.2. This 1is given by
A A
dz. .z
7, . = kD 42 (6.2.15)
437 1y A . - af
+azy 22
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It is clear that 2,z is a potentially satisfactory RC-LLF:R transfer
function from the point of view of generallty of location of poles
and zeroes. Moreover, constructible specifications are clearly
involved sinde 9&1 and é13 are a drilving point and transfer function
of network A and ézz, %42 are a driving point and transfer function
of network B. Thus we have completed the first of three steps which
must be completed before Z,z may be synthesized to specifications.
(See discussion in Section 1.5.2 of Chapter 1). The next step is to
form an Algorithm whereby physically realizable Qll’ QiS’ 922, and

Q42kmay be determined from a glven pole-zero specification of Zyze

This is readily done as follows. Let

( ) N(s

_ N{(s Qls

245 = Bls) D 5] (6.2.16)
Q(s)

where N(8) and D(s) are polynomials in s with real coefficients.
The polynomial Q(s) 1s of the .same degree as D(s) and has negative

real zeroes,

Q(s)

1

(s + Ul)(s + 02) ceee (8 + cn)

i

D(s) = s +a 5"t 4 eees dgs 4+ A (6.2.17)

A partial fraction expansion of D/Q then has the form

xt k-
Dis) -1 +-zg - ZS d (6.2.18)

Qls S + 0

where
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+

kJ >0
(6.2.19)
kJ >0
If we now ldentify
+
o }.zi kj _ Pll(s)
Hoasgy 0;  Qga(s)
(6.2.20)
Z = —3-:-2 kg = PZZ(S)
22 " dlg o7 pls)
where
Q(s) = Qqp(s)Qy,(s) (6.2.21)

then (assuming a,d > o) %11 and %22 will be p.r., RC driving point
A
impedances. It remains to determine Z3 and %42. This 1is readily

done by factoring N/Q in the form

N(s) _ Ni3(s)Np(s)

- = 6.2.22
Q(s) © @ 1(8)Q,,(5) ( )
where the factors le and N24 of N(s) are chosen so that
N, z(s) N, (s)
15 = 22 (6.2.23)

213 = Q,(8) 242 = Qoo(s)

are RC-LLFPB transfer impedances. Since Qll and Q22 already have

negative real zeroes we need only require that the degree of le
. A

(N42) 1s not greater than the degree of Q (Q22). Otherwise 2.

(942) would have a pole at infinity, which is forbidden for an

209



RC-LLFPB transfer impedance. There 1s one speclal sltuation in
which this requirement cannot be met. This 1s the special case in
which the following three conditions exist at the same time

(1) N(s) has all complex zeroes

(2) the degree of N 1s the same as the degree of D

(3) the degrees of Q); and Q,, are odd.
or Q
13 42
infinity when Equation 6.2.22 and 6.2.23 are used. This difficulty

A
Then i1t will be found that either z willl have a pole at

is easily remedied by augmenting N and D by a factor (s + a) as

indicated below

N(e) _ N(s)(s + ) L e

S

D(s) ~ D(iq(i : af = D(s)%%S;L ) (6.2.24)
Qs

where (s + a) is a factor not contained in Q(s). Of course Q(s)
must also be provided with an additional factor to maintain the
degree of N(s)(s + a) the same as that of Q(s). It 1s clear from
the above that an Algorithm has been established whereby one may go

from a specified pole-zero pattern for 2,3 to physically realizable
A A A

2110 2130 Zpp0 @n 2°
to within a maximum constant multiplier, Zy3 will have a maximum

N A A
d Zy Since Z13 and Z4p Can be synthesized only
constant multiplier. If we were free to choose ¢ we could have any
constant multiplier we might desire. The last step 1n synthesizing

z 1s that of synthesizing the LLFPB and the R-LLF portion of the

43
RC-LLF:R network. Since, as discussed in Section 1.5.2, our
reference LLFPB network is identical to the LLFPB portion of the

RC-LLF:R network, the establishment of the Algorithm in step 2
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effectively solves half of step 3, the synthesis of the LLFPB
portion of the RC-LLF:R network. The remaining half of the problem

is the synthesis of an R-LLF device with G matrix
G = ad = bc (6.2.25)

As far as the synthesis procedure is concerned, the numbers a, b,
¢, and d may be any real numbers that satisfy ad = be. A particular
case of such a device has already appeared in the literature.
Horowitz® shows a device composed of two transistors which realizes

a G matrix of the form of Equation 6.2.25 for the particular case

in which
b = -a
(6.2.26)
c = -d ‘

As discussed in the introductory chapter the primary emphasis
of this thesis 1s to present a new approach to ﬁhe synthesis of
LLF:R networks, the linear transformation theory approach. It 1is
not within the scope of this thesis to be concerned with the
practical design of R-LLF devices. Thus, no detailed discussion
willl be given of the practical realization of the R-LLF devices.
appearing in this chapter.‘ It is felt, however, that the nature

of the devices are such that practical realizations are possible.

6.2.2 Transfer Admittance, Voltage Ratio, Current Ratilo

When current sources are placed at terminal pairs 3 and 4 in

addition to 1 and 2 of Figure 6.2.1 the solution matrix is an open

#See page L0 of reference 7..
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¢ircult impedance matrix Z. By using a complex transformation

matrix the elements of Z are expressed in terms of those of an LLFPB
A

open circuit impedance matrix Z. The prevlous sectlon has developed

a synthesls technique for the transfer impedance z If we apply

43°
voltage sources at terminal pairs 3 and 4 and still use current

sources at 1 and 2 the solution matrix becomes a mixed matrix, say,

Ml° By using a complex transformation matrix the elements of M1
may be expressed In terms of those of an LLFPB mixed solution matrix
74

M, . One may then develop a synthesis technique for the transfer

admittance Va3 in an entirely analogous fashion to that developed
for Z,3 in the previous section. Similarly one may apply a current
source at 4 and a voltage source at 3 and still use current sources

at 1 and 2. The mixed solution matrix M, may also be expressed 1n

2
terms of an LLFPB mixed matrilx ﬁé, A synthesis technique for the
voltage transfer ratio 8,z may then be developed. Finally 1if we
apply a current source at 3 and a voltage source at 4 then one may
deal with the synthesils of the transfer current ratio blS' The
detalls of the matrix manipulations used to find expressions for
Y4z 2435 and b43 will not be given here. Since the procedure in
their evaluation is entirely analogous to the step leadlng to the
evaluation of Z,3 We may determine the correct expressions for V43
YT and b43'by a comparison of the elements of 2 with those of ﬁl’
ﬁz, and ﬁS’ The matrices ﬁl’ ﬁz, and QS are given below. The
soluticn matrix ﬁl relates the following quantities of the network

of Figure 6.2.2.
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e 4
e A 11
2 |_ 2
= Ml
13 e3
1 e
L 4 ] 4]
with Ml given by
L
I11
o
g\“ .
1 —/g —_—
31
0

The solution matrix ﬁ

€1
e
2 N
= M2
3
€4
A
with M2 given by

LA
o | a1z
|
|
1
A~ | ©
y22|
o | 1
| 223
A |
b

2

relates the quantities

(6.2.27)

(6.2.28)

(6.2.29)
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A o 14, o
Y11 |
A
A © 222 | ° Z24
Mo = o= — o — o L - 6.2.30
G ' IR o8
31 2
| 33
A A
o Z40 I o} Zy4
A -
The solution matrix M3 relates the gquantities
el i1
e | A |1
2 2
= M3 (6.2.31)
€3 13
14 €4
L. J L.
/\
with M3 given by
-A -
214 o] | 213 o
y | A
o} o
§ 24
i, =|—_ _ 22 | (6.2.32)
3 Q T AT T T T
31 © i 233 ©
o B8, 0
z
l 44 |
The voltage and transfer current ratios are related by
A A
ajk = 'bkj (6.2.33)

due to the bilateral nature of LLFPB networks. It should be noted

that all of these mixed matrices apply to the situation wherein
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terminal palrs 1 and 2 are excited by current sources. The reason
for this 1s that only in thils way may we be sure of describing the
R-LLF device by g parameters, i.e., the matrix . of Section 3.5

is, for this type of exciltation, a branch admittance matrix.

A
A comparison of the solutilion matrix Z of Equation 6.2.9 with

the mixed solution matrices of Equations 6.2.30, 6.2.31, and 6.2.32
allow us to write down expressions for Vyz0 843 and b43 by inspection.

To find Vyuz WE replace quantities in the expression for Zy=

(Equation 6.2.15) as indicated below

Zyz = Jy3

A A

213 =213

A A

Zyp== byp (6.2.34

A 1

211
$11

A 1
Zop ™ T
Io0

with the result

A 5

Voo o= — 15742 (6.2.35)

3 l+ a ?;— -d yi—

11 22
To find a,z We make the replacements

Z43 - 843
A A

21z — 8713 (6.2.36)
4 -t

11

Y11
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with the result

A, .2
8, = 13 24 (6.2.37)
43 1 A
1l +a4—-4d Zoo
Y11
To find b43 we make the replacements
Z43—= P43
N A
Zyo—= Dyo (6.2.38)
/7} 1
22— 0
Va2
with the result
N A
cz. b
13742
b43 == 3 (6.2.39)

1+ a Q
] -
. 1 522

It 1s readily seen that only constructible specifications are in-
volved in Y439 a43, and b45. This fact 1s perhaps more evident 1if

the following relationships are recognized

7
Q 13

A
A Y42
Dyp = - r

42 n
22

(6.2.40)

Thus synthesis of y43 iInvolves a synthesils of networks A and B for
a s.c. driving point admittance and transfer admittance; synthesis
- of Q45 involves a éynthesis of network A for driving point and trans-
fer admittance and network B for driving point and transfer

A
impedance; and synthesis of b42 requires a synthesis of network A
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for driving point and transfer impedance and network B for driving
point and transfer admittance.

The formulation of Algorithms to determine the constructible
LLFPB network specifications proceeds almost identically as with 243,
We will illustrate the procedure with the construction of the
Algorithm relevant to the synthesis of a specified b45 (to within a

constant multiplier). Thus suppose it is desired to synthesize

Perform the following steps.

1. Find the polynomials le, N42, Qll’ Q22, Pll’ and P22 which
are applicable to the synthesis of Zyz-

A N A A
2. Determine Vg0 Voo 213’ 211 as follows

A e(s)
Yoo = P,o(5)
A Nypls)
Yy = P, (5
A Pll(s)

11 Qlllsj
5 Ny (s)

13 Qll]si

The corresponding Algorithms for V43 and a43 are readily formulated

6.3 Synthesis Technlque No. Z.

6.3.1 Transfer Impedance

As a preliminary step in the development of the synthesis pro-

cedure we will first analyze the LLF:R network of Figure 6.3.3 wilth
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the ald of complex linear transformations in the manner discussed in
Sectlon 3.5 of Chapter 3. It will be recognized that this network
falls under case (3) of Figure 5.3.1 and has been discussed with
regard to generality of location of complex natural frequencies in
Section 5.4.2 of Chapter 5. The R-LLF device in Figure 6.3.1 is

recognized to be an Ideal Vacuum Tube.

————rl
o] o
9m o

LLFPB -RC

13 |

Figure 6.3.1 Network Configuration
Applicable to Synthesis
Technique No. 2

In contrast to the previous section the LLFPB network has only one
rather than two terminal-pailrs in addition to the two already con-
nected to the R-LLF device. The resulting RC-LLF network has three
terminal pairs. Let us assume iIn this section that current sources
are placed across terminal pairs so that the response quantities are
terminal-palr voltages. We may now apply the results of Section 3.5
to express the o.c. Impedance matrix Z of RC-LLF:R network in the

form

A\
= 72

N> N

where is the o.c. Impedance matrix of the network with the R-LLF

device removed (leaving open circult constraints at terminal pairs
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1 and 2) and 7t 1s a complex transformation matrix. Partitioned
A
expressions for Z and Z analogous to Equatlons 6.2.2 and 6.2.3 are

shown below

L 217 Z1p 1293
Z Z |
_ ss | “sr|_
2=|_"_"__|=1251 Zpp , %oz (6.3.1)
Z I Z —_— — — L_.._
PSI rr z Z z
231 Z32 | %33 |
EE ST
A A 11 12 l 13
A Zss Zsr A A A
Z = A A 17221 %22 | 252 (6.3.2)
er 2y Q Q IQ
X 31 32 | 33
. A A
in which zJk = ij‘
The branch admittance matrix of the R-LLF device is
o o)
Bsg = 3 &y > 0O (6.3.3)
8 o)

The partitioned expression in Equation 6.2.5 for the transformation
matrix 7t and that in Equation 6.2.7 for Z are valid here also. We

will be interested in the transfer impedance z Inspection of

13°
Equation 6.3.1 shows that this 1s an element of Zsr' According to

Equation 6.2.7, ZSr is given by

3
Z., =T ésr (6.3.4)

where T has the general expression given by Equatlion 6.2.6. In our

case
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il

2B

A
“8pZon

o

Log D
t8nZ12

where AP 1s the appropriate Characteristic Determinant,

A8

1 A
+ BpZ12

Applyling Equation 6.3.4 to evaluate Zsr we find

_
. _ z13 . j; 1 o]
sr gl_, A A
Zoz | B[ 8yZpp  148pZ95
- A “1
213
1+gmz12
A éisazz
2" L B
i i

The expression for z4

2
13
13 =

148,215

3 is then

(6.3.6)
(6.3.7)
2\
13
(6.3.8)
st
(6.3.9)
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It is clear that Z1z 1s a potentilally satisfactory RC-LLF:R transfer
function from the point of view of generality of location of poles
and zeroes. However, as discussed in Section 1.5.2 of Chapter 1,
there are three steps that must be completed in succession before

one may synthesize the RC-LLF:R network for prescribed z The

13°
first step 1s the requirement that constructible specifications be

iInvolved in the expression for z Examination of Equation 6.3.9

13°
shows that Zq3 is a function of two transfer impedances of a three
terminal-pair RC-LLFPB network. In order to obtain constructible
specifications, the three terminal-pair LLFPB network must be

restricted to a composition of two terminal-pair networks. The

particular composition used 1is shown in Figure 6.3.2.

—
(o} o
9m o
F——— == R e ]
| |
+ RC-LLFPB q— ¢, eg —»q |
" €3 | A ' } |
e |
| RC—LLFPB |
B |
| I
| I
b e e —— —— e e ]

Flgure 6.3.2 Network For Synthesis
Technique No. 2

Expressions for 913 and él in terms of the driving point and

2

transfer impedances of networks A and B will now be evaluated.
Filrst, the o.c. impedance matrix of network A, ZA’ and network B, ZB
are defined below,
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p 1 po -—
A A B B
Z Z Z Z
z, =| Bz e (6.3.10)
A A B B
#31 %33 B

The network with o.c.

3.

N

impedance matrix Z is shown in Figure

RC-LLFPB
? RC-LLFPB ¢, B gg
e
3
N . L l i

Figure 6.3.3 RC-LLFPB Reference Network

We may evaluate the transfer impedances Q13 and'é:\12 by inspection of
Figure 6.3.3 if we make use of the following well known expression®
for the transfer impedance le of two networks 1n cascade.

I T

12 = (1 z
Zéz) + Zgl)

(6.3.11)

(1) (2)
where z12 and 212

second network respectively.

are the transfer impedances of the first and

§§) and zé%) are the

driving point impedances of the component networks that are appli-

The impedances 2z

cable to the terminal pairs that Jjoin the two networks.

We 1immediately determine that

3 Reference 3, page 372
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A B

A 213%11
13 A B
Z11 *t %13
(6.3.12)
B _A
A Z12%11
12 = _A B
211 T 211
A A
Using these expressions for 2% and z12 in Equation 6.3.8 we
find that zA zB
_ 13711
213 = R B B A (6.3.13)

211 T 211 T 81271
Examlnation of Equation 6.3.13 shows that we have completed

step 1, i.e., only constructible specifications are made upon 2z

The next step is to find an Algorithm which will yield physically

A
realizable zll,vzi‘3 and Z?l’ z?z when a specified pole-zero pattern

Examination of Equation 6.3.13 shows that 2,z will
?1 has zeroces. This 1s undesirable

because the zeroes of Z?l must lie on the negative real axis of the

is given for Zize

in general have zeroes when z

complex frequency plane., We may kill two birds with one stone by

letting
B ‘ A
Z1 = B 274 (6.3.14)
where B 1s a positive constant, because then 213 takes the form,
A A
B 213 B %13
Zyz = B "B +I° (6.3.15)
P+l gyg 14 BB
+8 12

The zeroes of z,z are those of zg Since network A may be an un-

3 3°
grounded two terminal-pair RC network, the zeroes of z%s and thus
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are unrestricted. The poles of z are the zeroes of the

213
equation

13

g .
m B Dis
1 + TP 212 = als ; (6.3.16)

where Q(s) i1s a factor that contains the poles of 2B From the

12°
discussion in Section 5.4.2 we recognize that a physically realizable
2?2 can be found for any pos. By ? B and any D(s) with positive
coefficients. Since a Hurwitz polynomial has positive coefficients,
it is clear that Z13 ls as general as any stable transfer function

as far as pole-zero locations is concerned

The construction of the Algorithm proceeds as follows. Let
z . = M8 (6.3.17)

be an arbitrary stable transfer function. Then let

A N(s

213 = qls (6.3.18)
and

B _1+p8 D(s) - Qfs)

Zip = 2 D) (6.3.19)

The polynomial Q@ is assumed to have the form

Q(s) = als + ol)(s + 62) cee (5 4+ 0,); g # o (6.3.20)
with o and the o's positive and to be of the same degree, n, as D(s).
For any selectlion of o's we may always find an a for which D-Q has

positive coefficients if D has positive coefficients. Of course, if

we are dealing with a denominator polynomial D(s) which is Hurwitz,
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then D must have positive coefficients. There 1s one limiting case
which can cause difficulty and that is when D(s) has all J axis
zeroes, Then D is either an even or an odd polynomial and no non-
zero value of o can be found for which D-Q has positive coefficients.
This difficulty is easily remedied by augmenting N and D by the
factor (s + ) where vy is a positive constant. Whereas D(s) may be
elther even or odd (s + v) D(s) will have no missing coefficients.

It is assumed that vy # 03 s J=1, 2 »» n., In order for zA to be a

12
A
13 must not have

a pole at infinite frequency. Thus the degree of N must not be

physically realizable RC-LLFPB transfer impedance z

greater than the degree of Q. Examination of Equation 6.3.19 shows
that the degree of Q must be equal or less than the degree of D in
order for 2?2 to have positive numerator coefficients (as is required

for a grounded transfer function). Thus the specified stable trans-

1
Once a realizable 2?2 has been found from Equation 6.3.19 a

fer function z z may not have a pole at infinity.

polynomial Plz(s) is selected such that

. P.,(s)
B 12

is a physically realizable RC-LLFPB impedance. An RC-LLFPB grounded

two terminal-pair network 1s synthesized to have driving point and

B B
transfer impedances 2112 Z1p* If o and g, are selected a prilori

B
then z12

fixed by Equatlion 6.3.19. Since in practice we can either synthesize

Z?l’ exactly and z?z to within a constant multiplier or else Z?l to

wilthin a constant multiplier and 2?2 exactly we must accept whatever

is specified completely, i.e., the constant multiplier 1is
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constant multiplier appears in z?l. Once z?l together with its
constant multiplier has been determlned by the synthesls procedures
we determine zél by Equation 6.3.14. Then Zél is synthesized exactly
and Zgz to within a maximum constant multiplier. The final result 1s
a synthesils of Zq3 to within a constant multiplier. Since the R-LLF
device used in the synthesls procedure may be represented as a

vacuum tube with no interelectrode capacitance and infinite plate
resistance, the RC-LLF:R network may be represented as shown in
Filgure 6.3.4 where the vacuum tube circuit symbol is used to repre-
sent the R-LLF device. If a sufficiently small shunt resistance can
be extracted at terminal pair 2 of network B, this may be used as the
plate resistance of the vacuum tube so that a physical vacuum tube

may be used (neglecting interelectrode capacitances), in this case.

6.3.2 Transfer Voltage Ratio

When a current source is placed at terminal pair 3 in addition
to current sources at terminal pairs 1 and 2 of Figure 6.3.2, the
solution matrix is an open circuit impedance matrix Z. By means of
a complex transformation matrix the elements of Z are expressed in
terms of those of an LLFPB open circuit matrix Q. The previous
section has developed a synthesls technique for the transfer impedance

z If we apply a voltage source at terminal pair 3 and still use

13°
current sources at 1 and 2, the solution matrix becomes a mixed
matrix, M. By using a complex transformation matrix the elements of
M may be expressed in terms of those of an LLFPB mixed solution
matrix ﬁo One may then develop a synthesis technique for the trans-

fer voltage ratio a1z in an entirely andogous fashion to that
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developed for 213 in the previous section. The details of the matrix
manipulations used to find the expression for ayz will not be given
here. Since the procedure in its evaluation is entirely analogous to
the steps leading to the evaluation of Z,z, We may determine the
correct expression for aqz by a comparilson of the elements of % with

A A
those of M. The solution matrix M relates the following quantities

as follows

ey 1y
A
e, | = M 12 (6.3.22)
1z 3
L J L _
A
where the matrix M has the form
(A I A ]
Vi1 Viz | %13
AN oa A A
R R = Mss) Msr
M=|a A | [=|a1n (6.3.23)
P31 P32 | Vss "rs | Mer
To obtain al3 we replace various network functions in Equation

6.3.9 as follows

213 = 213

A A

Z1p V1 (6.3.24)
A A

213 =913

with the result

A
a

15 (6.3.25)

a :::——-————7‘———
Bl + gy,
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From Equation 6.3.22 it 1s seen that Vyo is the transfer impedance
between terminal-pailrs 1 and 2 of Figure 6.3.3 when terminal pair 3

is shorted, and that a is the transfer voltage ratio between

13
terminal pairs 3 and 1 (voltage source at 3). One may readilly

determine that

A A A
A T1s Y13 813
13 73 -7 A I - 1
yll 1 4+ yll -+ —-B—-Z 1 + —K——ZB
11 J11%11
(6.3.26)
ZB 1
12 _A ZB
= Y11 12
12 © °B 1 A B
z1p vt 1+ V1%
Y11
A A A
where al3 = - yl3/y11 is a transfer voltage ratio of network A.

A
With these expressions for le and Vios the transfer voltage ratio

a1z takes the form
aﬁs
a,z = T (6.3.27)
A B
1+ y542
1 4 1 + ngB 11711
A B 12 1+ A ZB
Y11%11 Y11%11
If we let
A B
¥11%211 = P (6.3.28)
where B 1is a positive constant then
A
a
__8B 13
813 " B+ 1 g (6.3.29)
1+ m zB
1 +8 712
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The construction of an Algorithm appropriate to the determina-
A
tion of physically realizable a1z and 912 for a specified 813 is
essentlally identical to that for the determination of Z%S and 2?2

in the previous section.

6.4 Synthesis Technique No. 3

In this section we will present a transfer function synthesis
technigue which does not allow a completely general assigmnment of
pole locations. This synthesis technlque 1s presented primarily for
its collateral interest with a result of Chapter 7. This is in
regard to the fact that nonbllaterallty is the essential ingredient
that allows the assignment of complex natural frequencies in an RC

network.

The network to be considered is shown in Figure 6.4.1.

—_—
o b
RC-LLFPB i RC-LLFPB
ie3 A ep LS G 2 ez B ie4
L °
bC>0

igure 6.4.1 RC-LLF:R Network Applicable To
Synthesis Technique No. 3

It will be noted that the R-LLF device becomes a Gyrator when b = c.
Since a Gyrator 1s lossless, the RC-LLF:R network must in such a
case become passive. The synthesis technique to be presented re-
quires only that bc > o so that a gyrator is suiltable if desired.

It will be recognized that the type of network shown in Figure 6.4.1
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falls into Case 5 of Figure 5.3.1 and has been discussed in Section

5.4.4, It was demonstrated in this latter section that the natural
frequencies of such a network are constrained to be the zeroes of the
series combination of an RC and an RL impedance.

Since the cascade network of Figure 6.4.1 is of the same form
as that of Figure 6.2.1, the analysis by complex linear transforma-
tions follows an ildentical pattern. The matrix Q is the same in both

cases, Only the matrices T and gyg are different here. 1In our case

(o} b
By = e . ;3 be >o (6.4.1)
and
r A
~ - - a - -
1 o gll o) o} b 1
T = + \
A
0 1 o) Z -C o)
| 22
. = - - = ‘d (6.4’02)
i A |-1 i A
1 'bzll 1 —bzll
- = L
AS
A A
~cz22 1 cz22 1

where the Characteristic Determinant A% 1is glven by

A A
Z

g _
A° =1 4+ be 11222

(6.4.3)

We will concern ourselves only wilth the transfer impedance Zyz
although, Jjust as with Synthesis Technigque No. 1, we can derive

corresponding synthesis procedures for Vyzs B4z and b43° The

230



transfer impedance Zy3 is contained within the matrix er of Equation
6.2.7. Using Equation 6.2.8 and the expressions for 8gs and T

applicable in this section we find that

A A A A
¢ Z13%42 ¢ %1342
43T T e 8.2 1o 2 T (6.4.4)
11%22 be le + .
22
where we have used the relationship
2
_ 42
342 - é—— (60405)
22
Let us presume that 1t 1s desired to synthesize
(s) N(s
_ N(s) __ Q(s
Z43 = D(s) ~ D(s (6.4.6)
Qs

where as usual the polynomial Q(s) is of the same degree as D(s) and
has negative real zeroes. A partial fraction expansion of D/Q has

the form

% = 25__f££f;.+ 1 - 25__fiif: (6.4.7)

A
YV -

il
'._l
)
o7
-y
(-
i

will be p.r. and RC if its zero frequency value 1is positive, 1.e.,
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.
$o) =1 - Z-—*} >0 (6.4.8)
(o}
J

We will confine our attention to only those denominator poly-
nomials D(s) for which it is possible to find a Q(s) for which
inequality 6.4.8 is satisfied. 1In this case we may identify

1. Peals) 25 X3
z Q22(S) s + 0,
22 3
(6.4.9)
+
bC 9 K- P22(S) = ..__{{._J____
11 7 Q4 (8) s+ 0F
N A
to obtain physically realizable 211 and Zooe Then factor
N _ Nl:’)(s) N42(S) (6.4.10)
Q7 Qy1(8) g,(8) nE
where
U= Q392
(6.4.11)
N = NyaNyp
We may then identify
z (s) = NlS(S)
13 Qllisj
N,o(s) N,o(s)
A _ 42 A _A 42
342(3) = 'Q—Z—Z—(E)- H 242(8) = 342222 = ‘P-z—z(—s—)' (6.4.12)
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Since 911 as given in Equation 6.4.9 has a zero at infinity, then so
must 913. Thus one must select N,;(s) so that 1ts degree 1s less
than that of Qll' From similar considerations we deduce that the
degree of M,, may not exceed that of Q22(s). Thus the degree of
N(s) must be less than D(s). If y(o) is sufficiently large, then
some of this d.c. value may be added to Qll relaxing the requirement
that it have a zero at infinity. In such a case the degree of M(s)
may be equal to that of D(s), but no greater.

For an attempt at a practical realization of a Gyrator in

terms of vacuum tubes see Reference 23.

RC-LBLFPB |
3 | RC-LLFPB | 2
A
[ S——

Figure 6.2.4. RC-LLF:R Network For Synthesis Technique No. 2
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©.5 Illustrative Examples

6.5.1 Synthesis Technique No. 1

To illustrate synthesls technique No. 1 we shall consider the

synthesis of the transfer current ratio

[E‘:2 + 0.25] N(S)
43 [82 +0.2 s + 1.01]2 D(s)

(6.5.1)

with pole-zero pattern indicated below

the quantity K is a constant that may be determined after the
network has been synthesized.
For ease in presentation (and no loss in generality) the R-LLF

device of Synthesis Technique No. 1 18 chosen to have the G matrix

1 1
Gy = (6.5.2)
-1 =1
which corresponds to
a=b=c¢c=d4d=1 (6.5.3)

for the general R-LLF device applicable to this synthesis technique.
For such a G matrix, the network of Fig. 6.2.1 has the transfer

function
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X
Z
1+ 27 " T
Yoz

Proceeding as discussed in Section 6.2 we arbitrarily select
Q(s) = (s + .025)(s + 0.50)(s # 2.00)(s + 4) (6.5.5)

and from the partial fraction expansion

» 2
E + 0.25 + ;.o]

D(s) _
T = (550255 T 0.50) (s + 2.00)(s * £.00)
., 0.6635 . 4.048 _ _ _1.0252 _ _ _14.0141
- (s + 0.25) (s + 2.00) (s + 0.50) (s + 4.00)
(6.5.8)
We then make the identifications
A _ 0.6655  _4.048 _ 4.7115s + 2.3389 _ F11(5)
11°5+025 " 5+2.00° 2, 5055 ¢ 0.50 211087
A 1 8% 4 4.58 + 2.00 _ ()

Yoo T T1.0252 N 14.0141 =~ 15.0392s + 11.1079 PZZZSS
s + 0.50 s + 4.00 :

(6.5.7)

A A
The zeroes of b43 may be assoclated with z13 or b42. We choose to

A
assoclate them with b,,. Then

42
A 1
213 T 2
s® + 2.25s + 0.50
A s 4+ 0.25
byo = —3 (6.5.8)

s + 4.58 + 2.00
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From the equation

A
A Tz
a2 T A
I22

we determine that

A _ 32 + 0.25
Va2 = 15.0392s + 11.1079

(6.5.9)

Network B is synthesized by the parallel ladder techniquéﬁ
Since Network A has all transfer function zeroes at infinity, the

realization of Q as a Cauer Canonic forﬁrwith shunt capacitances

11
and series resistances is appropriate. The final reallzation is
shown 1n Fig. 6.5.1. Capacitance and resistance values are in

farads and ohms, respectively.

OHMS AND FARADS 5.647 5,015

2.687 Lo

242.86 94.70
NV

O
}
A\

n

[ =]

5Q£P}64 2122

i

00109 0199

Figure 6.5.1. Network For Illustrated Example:
Synthesis Technique No. 1

% Ref. (3) Page 555
## Ref. (3) Page 115
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6.5.2 Synthesis Technique NO. 2

We will illustrate synthesis technique No. 2 with the transfer

voltage ratio

2
s + 2s + 5 N(s)
8., = = K {57 (6.5.10)
13 32 + 2s + 10 D(s

that has the pole-zero pattern indicated below

Cf
o T 2 I
[ IW
1

-1
o] -j2 9%
X + -j3

For ease in presentation (and no loss in generality) the ideal

vacuum tube 1s assumed to have the normalized G matrix

0 O
G = (6.5.11)

1 O
which corresponds to a transconductance of 1 mho. In addition we
will arbitrarily assume that B = 1. The voltage transfer function

of the network of Fig. 6.3.4 then takes the form

aA
_1_ "3
81z = 3 - (6.5.12)
2 12
where 1t is assumed that
B 1
Z1, = 7% (6.5.13)
11

DY
PN
.\]



Proceeding as discussed in Section 6.3 we arbitrarily select

2 V2 _\_2{'_2_ (6.5.14)

Q(s) = 8" +2s +0.5= (s + 1 + —53)(s + 1 -

and determine 2?2 as

P._(s)
B D - Q 19 12
B _ 2 [ ]= - (6.5.15)
12 Q s 4+ 2s + 0.5 Q(s)

We must then form the driving point impedance z?l. Only the
B

numerator polynomial of 27, may be selected arbitrarily since the
denominator polynomial is Q. The z%ﬁ used is

B s + 1
zZo, = X (6.5.16)
11 [32 + 28 + 0.5]

The constant x is used to denote the fact that if 2?2 is to be

synthesized exactly then Z?l can be synthesized only to within a
constant multiplier. This multiplier is determined by the synthesis

procedure. In our case this multiplier turns out to be 38, 1i.e.,
X = 38 (6.5.17)

Applying Eq. 6.5.13

2
A1 Is” + 25 + 0.5
yll“%é‘[ s + 1 ] (6.5.18)

The voltage transfer function for network A is then given by

2
N e (6.5.19)
s° + 28 + 0.5

where Kl is a constant multiplier. The s.c. transfer admilttance

of network A is
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K

2
A A A _ 1 [s + 28 + 5]
Y13 = - ¥11813 = - 38 5T 1 (6.5.20)

Network B has its transfer function zerces at s = @. The

Cauer development of 21§ with shunt capacitances will automatically

ensure that zl? has its zeroes at s = . Network A has complex

zeroes of transmission and may be synthesized by the parallel ladder

development of Guillemin. The final network i1s shown 1n Fig. 6.5.2.
OHMS & 2276

FARADS __“50° .0146 —
~ 0 0
_—)l'__ I A i 0
0219 1 204
.007 31 97 g
38
O AN\

cens o]
L1

383

63.35 6335

AAN
vy

10315 < 0158

Figure 6.5.2., Network For Illustrative Example:
Synthesis Technique No. 2

Note that the shunt 38 ohms at terminal-pair 2 of Network B may be
used as the plate resistance of the normalized ideal vacuum tube.
If the combination is to represent a physical vacuum tube (after
impedance leveling) then the required amplification factor is

87 1

u = = 1738 = 8

(6.5.21)
€22
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6.5.3 Synthesis Technlque No. 3

The transfer impedance

_ 1 _ Ni(s

(s + l)(s2 + s + 1) 5

which is the third order Butterworth filter, wlll be synthesilized
with synthesis technique No. 3. Before thls may be done we must
find a polynomial Q(s) with negative real zeroes such that D/Q is
expressible as the sum of an RC impedance and an RL impedance

(or RC admittance). After some trial and error it is found that
Q(s) = (8 + 0.25)(s + 1.25)(s + 4.00) (6.5.23)

is sulitable since

(s) (s + 1)(s® + 5 + 1)

D _
Q(s) (s + 0.25)(s + 1.25)(s + 4.00)
0.1625 0.1193 3.782
= [s F 0.25 T 5 ¥ 1.25] + [1 - §'If4766] (6.5.24)

where the first term in brackets is an RC lmpedance and the second
term in brackets 1s an RC admittance. The R-LLF device for synthesis

technique No. 2 will be specialized to the case

b=c=1 (6.5.25)
so that
o 1
G = (6.5.26)
-1 0

It will be recognized that G5 is the s.c. admittance matrix of a
Gryator. With the Gyrator, the transfer impedance of the network
of Fig.6.4.1 becomes
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43 = T (6.5.27)

We then identify

A _ 0.1625 0.1193 _ 0.2818s + 0.2329

Zo. = + =
117 5 +0.25 " 5 + 1.25 2 _ 1 oo & 0.3125

Zop T 3,782

s + £.00

.

A 1 s + 4.00
= S (6.5.28)

Since Z,3 has its zeroces at s = @,

- s
13 52 4 1.55 + 0.3125
A 1

a —1

1z s + 4.0

A A 1
Z1p = 813%35 T 51 0.218 (6.5.29)

Since the transfer function zeroes of Networks A and B are at s = o,

A

a Cauer development of Qll and Zoo with shunt capacitances is

appropriate. The final network is shown in Fig. 6.5.3.

—_—
ohms and Farads 4184 0 | 1
‘c "Nv . AvAvAv Y o)
-1
s | | | 0 |
$ g I~ s
i3T O 3 .2644 217.349 e4
6.596 |3.549 l
1= - & <&

Figure 6.5.3. Network For Illustrative:
Synthesis Technique No. 3
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CHAPTER 7

SOME PROPERTIES OF DRIVING POINT AND TRANSFER IMPEDANCES
OF LLF NETWORKS

7.1 Introduction

An effective analytic approach to the study of the fundamental
properties of driving point and transfer functions of LLFPB networks
is based upon expressing these network functlons in terms of the energy
functions associated with the network. This approach is extended to
LLF networks in Chapter 7. As a result of this extension some new
properties of LLF networks are found. A particularly interesting
property is demonstrated for RC-LLF:R networks. Namely, that if the
embedded R-LLF devices are active and bilateral the resulting network
may not have complex natural frequencies, i.e., the natural frequencies
are restricted to the real axis. Thus the repeated emphasis of the

word active in the phrase Active RC Networks 1n many previous papers

is misdirected. It is not the activity of the so-called "active"

device involved but rather its nonbillaterality which allows the place-

ment of poles in the complex plane. The most elementary lossless non-
bilateral device 1s the gyrator. It 1s well known that an RLC driving
point or transfer function can be realized with positive resistors,
capacitors, and gyrators. But it has never been pointed out that not
only are the gyrators sufficient but they are also necessary 1f
generality of location of natural frequencies 1s to be obtalned. Of
collateral interest 1t is demonstrated in Section 6.5 of Chapter 6
that any transfer function (no pole at infinity) whose poles are equal

to the S.C. natural frequencles of the series combination of an RC
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and an RL impedance may be reallzed by means of posltive R's, C's,

and one gyrator.

7.2 LLFPB Networks

In this section we will discuss briefly the energy function
approach used to study the fundamental properties of driving point
and transfer functions of LLFPB networks. Let us consider first the
equllibrium equations formulated on the loop basis for an LLFPB net-

work, These take the form

A A A
e = [R +sL + = S]i (7.2.1)
AN A A

where R, L, and S are the reslstance, inductance, and elastance loop
parameter matrices, respectively. The column matrix e 1s that of

source voltages in loop s while 1 1s the column matrix of loop currents.
We shall assumej/ independent loops with source voltages in only the

first p loops. Thus

e 1
€2 1s
I R 7.2.2
e ep 1 p ( )
Q ip+l
0 1,
Ry | 7]

If we ehclose the network in a black box and bring out the p loop
voltage sources (without disconnecting them) we form a p terminal-pair

A .
black box. The loop branch parameter matrix pr of this MTP network
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relates the p voltages sources to the p currents traversing them.

These currents are by definition il,12 N ip. Thus 1f we define

the column vectors

€ 1
e2 12
E = . I = . oLl o
D : 'p : (7 2.3)
e i
| P] | D]
then
B =8 1
A

Of course pr is also the open circuit impedance matrix of the MTP

network.

The expression

/ b

* 25 %* ZS %
Q = ite = emim = emim

m=1 m=1

i

[Ip]t E, (7.2.5)

will now be formulated in two ways - in terms of operations upon

ANA A

R,L,S and upon Z__. The subscript t on a matrix denotes fthe transpose

19
of the matrix. It is readily seen that Q takes the two forms
B, M1 * 7.2.6
Q= 1,Ri_ + si Ll + < 1,81 = [Ip] . Zoplp (7.2.6)

ANA A
If we define R,L,S, and Z as follows
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A A A
F11 fiz *** Riy
g A A .
= |Ra1 Bpp .| L=
A A*
le LK BN R/[J
A A AT
S11 Sy *ct S1 4
q A A .
= |S21 S22 - |3 Zpp
A A*
LSjl e e e S///
then
p
‘ A A 3
I Z = 2525 z_ 1.1
£, Funte - 00 Surtet
r,s=1
L
EAN 25 A 2
ltRl = Rrslris FO
r,s:l
RA zg A "
ltLi = Lrsiris = To
r,s=1
L
161 25 § 1% =v
t - rsirTs o)
r,s=1

We may rewrite Equatlon 7.2.6 in the form

P

\Y

A * o

r,s=1

Zngl 1y = s

ris Fo + sT, +

(7.2.7)

(7.2.8)

(7.2.9)
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The importance of this equation lies in the fact that the so-called

energy functions Fo» T and VO are positive no matter how the network

o’
AA A
is excited provided R, L, and S are LLFPB loop parameter matrices. To

demonstrate this property of FO, T and Vo let the typical current ir

o’

be written in the form

i,=a,+ jb, (7.2.10)

where a, is the real part and br is the imaginary part of ir' The

typical product iri: in Equation 7.2.8 then may be written as

. *
idg = [ax,aS + brbs] + j[asbr - ar'bs] (7.2.11)
Substitution of this expression for iri: in the expression for FO

gives the equivalent expression

A
2525 rs[éras + b_b ] + J 2525 ﬁrs[asbr - arbs] (7.2.12)
r,s=1

r,s=1

Now due to the bilateral nature of LLFPB networks

A A

Rps = Rgp

It immediately follows that the second double sum in Equation 7.2.12

must vanish since the rs terms in the sum is the negative of the sr

term. Thus

g ZZ
F, = 2525 Rog8p2g + ﬁrs Ps (7.2.13)
r, S=1
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The two double sums in Equation 7.2.13 are known to be positive
definite quadratic forms¥and thus, as stated above, FO is positive for
all conditions of network excitation. 1In a parallel fashion one may
demonstrate that TO and Vo are the sums of positive definite quadratic
forms and thus are positive for any manner of network excitation. It
should be noted that an entirely dual discussion is applicable to the
case in which we initially formulate equilibrium equations on the node
basis.

A study of Equation 7.2.9 ylelds some fundamental properties of
LLFPB netwo§ks. These arise from the "positive real" character of

Fo + sTO +-1§. For a discussion of these properties the reader is

referred to the literatureX

7.3 LLF Networks

In this section we will consider the extension of the approach
of the previous section to LLF networks. As defined in the introductory
chapter an LLF network consists of branches which are the usual R's,
L's, and C's, plus multiterminal-pair black boxes., These black boxes
exhibit a resistive, inductive, or capacitive behavior. Let us con-
sider the formulation of equilibrium equations on the loop basis for
an LLF network. It will be assumed that the elements of the network
are MTP elements of four types: LLFPB, R-LLF, L-LLF, C-LLF. Fach MTP
element is replaced by a set of mutually coupled branches. The loop
equilibrium equations take the form

e = [Z/Z—&—R + sL+ls=s]i (7.3.1)

¥ Reference (3). Chapters 1 and 2.
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whereéé@, R, L, and S are the loop parameter matrices of the LLFPB
portion, the R-LLF portion, the L-LLF portion, and the C-LLF portion
of the network, respectlvely. The matrix e is the column matrix of
source voltages and the matrix 1 is the column vector of loop currents.
Assuming that voltage sources are present in the first p loops and

that there are‘Q loops, e and 1 take the forms

ey 1

e 1o
e = ep 1= ip

? Tp+1

0 :

" 1Y

Just as in the development in the previous section we may define

the column matrices Ep and Ip (Equation 7.2.3) and the open circuit

impedance matrix pr such that

= 7e3.2
Ep ZPPIP ( )

The Q function takes the two forms

1¥7 1¥R1 1%11 + £ 1%s1
Q= /Zl+tt+st +——tl

(7.3.3)
Q= [i ]t ppTp

If we give azg R, L, S, and Z the following definitions

pp
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9%

then

Il

il

211 %12 *°°

201 %22

bzpl e o0

P11 T1p2 *°°

o1 To2

E/ ¢ b0
/1

|

S11 P12 °°°

So1 S22

Ls,él s e e

r,s=1
L
25 rrsir:L
r,s=1
v/
*
Zz "ﬂ?siris =
s=1
L
.
Spstrts T
r,s=1
P

A A
212 o e Z];Z
A .
222 N
/\.
cee 7/4
‘4{2 tee /%)g
Yoo : (7.3.4)
coe ’féug
(7.3.5)
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The first double sum in Equations 7.3.5 1s of the same form as the

left hand side of Equation 7.2.9. Thus we may express 1t 1n the form

\Y
A o) -
zgzg 2, 1 1% = F  + sT  + — (7.3.6)

rsTr-s
r,s=1

where FO, To’ and Vo are each expressible as the sum of two positive
definite quadratic forms. With the functions F, T, and V defined in

Equation 7.3.5 we may write

p
i * 1 }_
2525 z i ds=F, +F + s(To + T) + S (VO + V) (7.3.7)
r,s=1

The functions F, T, and V are not expressible as the sum of positive
definite quadratic forms and in fact, are complex. We may separate
them into real and imaginary parts in the manner that will now be
described for F. First express the parameter matrix R as the sum of a

symmetric matrix Rb and a skew-symmetric matrix Rn as follows

R = Ry + R, (7.3.8)
where
Rb = %[R + Rt]
(7.3.9)
By = %[R - Rt]

One readily deduces from Equations 7.3.9 that
Rp = [Rb]t

Ry = - [Rn]t

(7.3.10)
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so that Rb is symmetric and Rn is skew-symmetric as desired. The

elements of R, and Rn are defined in terms of the elements of R as

b
follows

r(b) . _Jk * kJ r(b)
j 2 kj
(;.5011)

An) _fok T kg _(n)

jk = T = Ty

where rgi) is a typical element of Ry, and rgﬁ) is a typical element

of Rn’ The function F then takes the form

2525 b)i i + 3 2525 rs Ipd s (7.3.12)
r,s=1

r,s=1

Let us now define

b
r,s=1
_,Z (7.3.13)
___1_2 (n), .#
an T2 Trs irls
r,s=1
so that
F=F + JF (7.3.14)

It will now be demonstrated that Fn and Fb are real so that Fb is the
real and Fn is the imaginary part of F., To demonstrate these facts
we use in Equation 7.3.1l3 the expression for irig given 1in Equation

7.2.11. The following expressions are then obtained for Fy and Fn
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1 25 (o) [ ] 1 25 (o) [
z Tps' |8r3s Tt brbs + j‘? Prs _asbr - arbs

Fn = %Zz rl(’rs-l) PaSbI’ ~—. al"bs“1 -Jz ZZ (n) -al"aS + bI‘bs]

b -

o’
il

(7.3.15)

The second double sums in the expressions for Fb and Fn are readlly
seen to vanish because the rs and sr terms are of the same magnitude

but of opposite sign. Thus

Fy = %erwgg) [ar'as + brbs] z Z rs [iri:]
fam 300780 by - 20| = 3 227 w1

where Re[irig stands for the real part and Im[}rig] the imaginary part

il

(7.3.16)

#*
of iris'
The real functions Fb and Fn are implicit functions of the complex

frequency variable s which satisfy the equations

i

P (s) = F(s) (7.3.17)

Fn(s*)

I

-F_(s) (7.3.18)

To demonstrate Equations 7.3.17 and 7.3.18 one need only note that ir
and iS are real rational functions of the complex frequency variable s.
Thus when s 1is replaced by s¥ the real part of iri: stays the same but

the imaginary part changes sign. Equation 7.3.18 implies that.

F (o) = - F (o) (7.3.19)
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But this can only be true if

F (o) =0 (7.3.20)

As a final point it should be noted that Fb is a function only of the
symmetric part of R while Fn is a function only of the skew-symmetric
part of R, Thus if R has no skew-symmetric portion Fn = 0, while if
R has no symmetric portion Fb = 0, It is readily seen that R will
have no skew-symmetric portion if the R-LLF devices have symmetric
branch parameter matrices (0.C. impedance or S.C. admittance matrices)
and that R will have no symmetric portion 1f the R-LLF devices have
skew symmetric branch pérameter matrices. It is well known that an
R-LLF device with a skew-symmetric impedance (or admittance) matrix
is a lossless device, i.e., it can neither dissipate nor generate
power£24) Thus a network containing lossless R-LLF devices must have

Fb; O.

The above discussion may be carried along in parallel fashlon

for T and V to show that

(7.3.21)

]

\4 Vb + JVn

The real functions Tb, T Vb’ and Vn are given by

n)

1 N
Ty = ?'ZEZSJZ§S) apdg + brbs]

-

Tp = —'zgzilgn) agby - arbs]

-
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1 b ]
Vp = ?ZZ S]S’S) [aras + brbs_J
1 n )
V=73 ZZ Sés)[asbr - aby (7.3.22)

b n
where./ﬁs),,éK and sﬁg) are defined analogously to

rﬁz) and rgg).

It follows from Equation 7.3.22 that

Tp(s¥) = Ty(s) 5 T (s™) = -T(s) 5 T (o) =0

) (7.3.23)
Vp(s™) = V(s) 5 V(8™ = v (s) ; V(o) =0
Thus Equation 7.3.7 becomes
* _
ZSZS rsiris'“ {FO + Fy + JFr] + S[To + Tb + JTn]
r,s=1
s i lv.o+v, o+ Jv (7.3.24a)
s o) b n T

which is the desired extension of Equation 7.2.9 to LLF networks.
By formulating equilibrium equatlons on the node basls one may derilve

the expression dual to Equation 7.3.24a as gilven below

2525 yrs r §'= [Fo + Fb Al JFn] + S[Vo + vb + Jvn]
r,s=1

1l= _ —_
+ -S-[T + Ty + JTn] (7.3.24D)
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in which Vpgs TS = 1l .-+ p is the set of short circult admittances
for a network with p terminal pairs of access and en; T = l ... p are
terminal-pair voltages. To obtaln expressions for the functions on
the right hand side of Equation 7.3.24b one need only replace the
corresponding expression on the right hand side of Equation 7.3.24a

by its dual. Thus since

v
ro= 20 =) re {112}

r,s=1

its dual has the expression
- (b) }
—ZZ 23 Re eres
r,s=1

where n is the total number of independent node pairs (the dual of &,
the number of independent loops) and g( ) is an element of the symmetric
portion of the branch admittance matrix of the R-LLF portion of the
network. It 1is then only necessary to note which quantities in
Equation 7.3.24a and Equation 7.3.24b are dual. The pertinent dual

quantities are shown below

The dual of TJ is Vj

The dual of FJ is FJ

The dual of VJ :Ls»'FI".j

where

J =0, b, or n.
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We may give a physical interpretation to a quantity of the form

b
Z(s) = 2525 z XXX (7.3.25)
1

r,s=

as the driving point impedance of an active-nonbilateral linear network
Just as the corresponding expression for LLFPB networks was given a
physical interpretation by Brune¥ The quantity Z(s) will be called a
Brune form. In order to give a physical interpretation to the Brune
form we have to introduce a new device which 1s the logical generaliza-
tion of the ideal transformer to the case in which the turns ratio is

a complex quantity. An ideal transformer 1s shown in Figure 7.3.la.

X REAL X COMPLEX
X X
-— «—
i i i i2
3 W3 T
—
(a) ¥

( b)

Figure 7.3.1. The Ideal And Generalized Ideal Transformer

The arrow and symbol x indicate that e is stepped up by a factor of x

relative to €5 Thus the following mixed matrix equation characterizes

the ideal transformer

_ (7.3.26)

*See Reference 3, page 8.
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The net average power flowlng into a two terminal palr device 1s given

by
P,., = Re l.[e i¥* 4 e 1%l = RE ]esi® + X (7.3.27)
AV 21171 272 Sanli- A R | 272 o
For the 1deal transformer
-3
1 1s *
Ppy = = Refxe || + eply| = 0 (7.3.28)

as 1s well known because the ideal transformer 1s lossless.
The device of Figure 7.3.1lb which is the generalized ideal trans-
former 1s defined to have the followilng constralnts between 1its voltages

and currents.

_ (7.3.29)

The net average power flowing into this generalized transformer 1s

i*
Ppy = % Re|xe, [-_-}%J + ey1% = 0 (7.3.30)

i.e., the generalized transformer is a lossless device also. Note that
when x 1s real the generalized ideal transformer becomes the conven-
tional ideal transformer. Two arrows are used on the symbol for the
generalized transformer to distingulsh it from the conventional type.
One may regard the generalized ldeal transformer as a combination of
an ideal transformer and phase shifters since the complex character

of x merely indicates that 1l,el are phase shifted relative to 12,e2.
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A physical interpretation of Z(s) is now given. Figure 7.3.2

shows schematically a p-terminal pair network N. The voltages and

i — et—

Figure 7.3.2. Relevant To The Physical Interpretation
Of Equation 7.3.25

currents at the terminal pairs are denoted by el,il; ez,iz; voe ep; ip.
At each terminal pair the primary of a generalized ideal transformer
is placed and all the secondaries are connected in series. Since the
voltages on the secondarles are X1€1s Xo5€p,s ¢ xpep, we see that

the net voltage across their series combination is given by

e = X1€) + Xg€p + crr X € (7.3.31)

The common secondary current is 1 and is related to the varilous terminal

bair currents by
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(7.3.32)

In matrix notation we may rewrite the last two equations in the

form,
®1
e = [xlxz .. Xp]‘ e, (7.3.33)
e
p
and
1 *y
i b
2l 21721 (7.3.34)
1 x ¥

The terminal pair voltages and currents of N are assumed to be related

of Equation 7.3.4. Thus

by the 0.C. impedance matrix pr

= - - e ™ -1
211 *** Z1p] |11 °1
i e
2l=12 (7.3.35)
Z . eee Z 3 e
| “p1 pp| ["p| | ¢

If we substitute for the column matrix of currents the equivalent

éxpression in Equation 7.3.34 and then premultiply both sides by the
row matrix
[Xlxz tee Xp]
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we get, after notlng Equatlon 7.3.33,

b4 X*
11 °°° “1p 1
x| e
R A S R RS (7.3.36)
e x *
“pl pp

The left-hand side of this equation 1s recognlzed as being the matrix
equivalent of the double sum in Equation 7.3.25 and the ratilo e/1 is
the net impedance looking into the series combination of all the
transformer secondaries in Figure 7.3.2. Thus the Brune form 1s
given the simple physical interpretation of beilng the net impedance
formed through series connection of the p fterminal pairs of the net-
work, each provided with a generalized ideal transformer having an

independently controllable complex "turns" ratio.

7.4 Properties of LLF:R Network

The fact that the functions F, T, and V may be decomposed 1in the

followlng way

F

i

Fb + JFn
T = Tb + JTn

A

il

V. + JVn

b

indicates that there 1is a fundamental physical reason for regarding
the symmetric and skew-symmetric portilons of R-LLF, L-LLF, or C-LLF

branch parameter matrices as separate physical entities. Thus 1t is
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proper to investigate the forms that the Brune form takes when the
R, L, and R-LLF devices have elther symmetric or skew-symmetric

parameter matrlces. When

o=1; |4]%=1 (7.4.1)

Equation 7.3.24 ylelds the followlng general expression for the lmpedance

of an LLF network

1
zy(s) = F_ + Fy + JF_ + S[To + T+ JTn]+ —S-[Vo + V]

(7.4.2)

The expression le(s) is not a p.r. function, although it is a
rational function of s with real coefficients. This latter fact has
already been discussed in Chapter 1 but it is Instructive to prove
this result from Equation 7.4.2. To demonstrate the "real" character
of z,, (assuming rationality in s), i1t 1s only necessary, by definition

to show that z;; 1s real for s real. Forming zll(c),

2,,(0) = F(0) + Fy(o) + JF (o) + [T (o) + Ty(o) + IT,(0)]

+El,- [Vo(or) + V(o) + JVn(d)] (7.4.3)

But it has been shown in the previous section that

F (o) =T (¢0) = V(o) =0 (7.4.4)

Thus

211(0) = F_(a) + Fy(a) + o[T (o) + Tp()] + 2 [V,(0) + Vy(o)]

(7.4.5)

which is obviously real.
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We wlll now confine our attention to LLF:R networks, i.e.,
networks containing positive R's, L's, and C's in addition to R-LLF

devices. For LLF:R networks
T=0; V=20 (7.4.6)

and
* _ 1
r, s=1

The following two properties will now be demonstrated.

Property 1l: An LLF:R network containing R-LLF devices with only
skew-symmetric parameter matrices exhibits a positive
real Brune form.

Property 2: An RC-LLF:R or RL-LLF:R network containing R-LLF
devices with only symmetric parameter matrices must
have 1ts natural frequencies constrained to the o axis.

The network of Property 1 might properly be called an LLFP:R
network since the R-LLF devices involved are lossless. To demonstrate
Property 1 we note that the presence of only skew-symmetric R-LLF

parameter matrices implies that

Fb:‘-O {
so that
* 1 (7.4.8)
Z(s) = znglpdls = 8Ty + 5 Vo + Fy + JF 4.
r,s=1
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The Brune form Z(s) (or any rational function of s) 1s defined
to be positive real if
(2) It is real for real values of s

(b) It has a positive real part for values of s with a positive
real part.

The real character of Z(s) has already been demonstrated. Since

Re[Z(s)] = Re[sTo +-% vV, + FO] (7.4.9)

it is clear that (b) is satisfied also since the quantity

1

sT, + 5 V, + F, 1s a p.r. (positive real) function. Thus, Property 1

has been demonstrated.
The followlng properties may readily be deduced by application

of Property 1.

Property la: The driving point functions of an LLFP:R network are
positive real.

Property lb: For an LLFP:R network any jw axis poles must be simple
and the matrix of residues of driving point and trans-
fer impedances at a Jjw axlis pole must be a positive
hermitian matrix. In particular, jw axis poles of
driving point functions must be simple and have positive
real residues.

Property lc: The driving point functions of a network containing
positive Lt's, C's, and skew-symmetric R-LLF devices are
subject to the same restrictions with regard to s plane
behaviour as those of a positive L,C network. 1In
particular the natural frequencies of such a network
are constrained to the Jw axis.

Property la is obtained from 1 by letting p = 1 and Iill = 1 1in
Equation 7.4.8 for then the Brune form becomes equal to Zyq- Since
the reciprocal of a p.r. function is p.r. then l/zll is p.r. also.

Property 1b 1s obtained from the fact that if Z(s) is p.r. then

it must have simple J axis poles with positive real residues. From
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the simplicity of the J axis poles of Z(s) we deduce that the er(s>
must have simple J axis poles. If the residues of er(s) in their J
axls poles are denoted by k,, and those of Z(s) by k, then it 1s clear
that

p
_ 3*
k = 2525 kX XJ must be positive real (7.4.10)

r,s=1

The double sum is Just the Brune form that corresponds to the matrix

6f residues

Kyg Kyp voe Ky
Koy Koo .

K = . *
k cee k&
| pl PP

Equation 7.4.10 states that this Brune form must be positive real.

This can only be true if

k., = k¥ (7.4.11)

Thus the matrix of residues must be a positive hermitian matrix.

Property 1lc follows directly from Property 1lb.

We will prove Property 2 for RC-LLF:R networks and the proof
for RL-LLF:R networks will follow by analogy. The networks referred
to in Property 2 are properly designated as RC-LLFB:R and RL-LLFB:R.
We note first that if the R-LLF devices have symmetric parameter

matrices then

F = 0]
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When inductances are absent

Thus

p
zH-—ZZ 11*—V° F 7.4.,1
5) = Zrsirts =8 T (7.4.12)
r,s=1

If we assume that lill = 1 and p = 1 we obtain the following
expression for 211

v

O
z — + Fy ; Iil] =1 (7.4.13)

11 7
This impedance will have zeroes when

Vo

— + F =0 (7.4.14)

b=

The function VO will not be zero when lill = 1 except in trivial

situations. Thus values of s which satisfy Equation 7.4.14 are given

by

<

b

Since VO and Fb are real, 1t follows that the zeroes of zZ1q must lie
on the o axis. Of course, Fb may be negative so that positive real
axis zeroces of z,, are permissible. By using the dual expression

to Equation 7.4.13 we find that

Y11 = sVO + Fb (7.4.16)
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from which we deduce that the zeroes of driving point admittances
are also on the real axls. The analogous derivation for the RL-LLFB:R
network is clear. Thus Property 2 is demonstrated.

The following network properties may be derived from Property 2.

Property 2a: A network contailning positive capacitances (or inductances
plus positive and negative resistances, must have its
natural frequencies constrained to the o axis.

Property 2b: A network contailning positive capacitances, negative
inductances, and positive and negative resistances must
have its natural frequencles constrained to the ¢ axis.

Property 2c: A network containing negative capacitances, positive
inductances, and positive and negative resistances must
have its natural frequencies constralined to the ¢ axis.

Property 2a 1is obvious and Property 2c¢ is the dual of Property 2b.
Thus, we will demonstrate the truth of Property 2b only. This is
broven from Property 2 by noting that a negative inductance may be
obtained with a positive capacitance and positive and negative
resistances. The method of obtalning a negative inductance from a
positive capacitance and resistances has already been discussed in
Section 4.2.4. The network which does this 1s shown in Figure 4.2.6.

Before closing this chapter it should be noted that the Properties
la, 1lb, and lc are deducible from basic physical considerations. 1In
fact, a special case of 1b and lc have been demonstrated by carlin®
The general statement of property 1 is new and the method of proof
of Properties la, 1lb, and lc is also new. As far as Properties 2,

2a, 2b, and 2c¢ are concerned, they are entirely new.

*’Reference 24, page 27.
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