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Abstract— The Virtual Node Layer (VNLayer) is a program-
ming abstraction for Mobile Ad Hoc Networks (MANETs). It
defines simple virtual servers at fixed locations in a network,
addressing a central problem for MANETs, which is the absence
of fixed infrastructure. Advantages of this abstraction are that
persistent state is maintained in each region, even when mobile
nodes move or fail, and that simple wireline protocols can be
deployed on the infrastructure, thereby taming the difficulties
inherent in MANET setting. The major disadvantage is the
messaging overhead for maintaining the persistent state.

In this paper, we use simulation to determine the magnitude
of the messaging overhead and the impact on the performance
of the protocol. The overhead of maintaining the servers and
the persistent state is small in bytes, but the number of messages
required is relatively large. In spite of this, the latency of address
allocation is relatively small and almost all mobile nodes have an
address for 99 percent of their lifetime. Our ns-2 based simulation
package (VNSim) implements the VNLayer using a leader-based
state replication strategy to emulate the virtual nodes. VNSim
efficiently simulates a virtual node system with up to a few
hundred mobile nodes. VNSim can be used to simulate any
VNLayer-based application.

∗This work was supported in part by the Cisco Collaborative Research Initiative

I. INTRODUCTION

The central challenge of Mobile Ad-Hoc Networks
(MANETs) is the absence of fixed infrastructure. Fixed in-
frastructure in wireline networks improves scalability by per-
mitting imposition of a hierarchy on participating nodes and it
improves usability of the network by providing services from
fixed servers. In contrast, in a MANET, participating nodes
can enter or leave the network at will and may move rapidly
even while participating, making the network topology highly
dynamic and the links between mobile nodes very unstable.
The radio channel shared by mobile nodes is susceptible to
frequent interference and message collisions; the lifetime of
mobile nodes are constrained by battery power. These inherent
complexities make scalable implementation of services in a
MANET exceedingly difficult.

One important approach to achieving scalability in MANET
protocols is clustering [1]. The Virtual Node Layer (VNLayer)
[2] is a cluster-based approach that defines “virtual” servers
at fixed locations in the networks – called “Virtual Nodes”.
Several different VNLayer definitions and implementation
strategies have been discussed in the theoretical literature
[3][4][5]. A standard technique for implementing a VNLayer
is to divide the network into geographical regions at fixed
locations or moving in a controlled manner. Within each

region, a subset of the physical mobile nodes emulates a virtual
node, using replicated state machines and elected leaders. To
a physical node in a region, a virtual node works as if it is a
fixed server.

VNLayer provides a generalized abstraction to the program-
mers, hiding most of the MANET complexities from them.
The developers can deploy applications on both the mobile
devices and these virtual static servers with greater ease and
efficiency. In addition, state machines constantly running on
mobile nodes can keep the application state consistent among
participating physical nodes in a region. Therefore, although
individual physical node might fail or leave a region, the
virtual node of the region can maintain persistent state.

The VNLayer approach also has its disadvantages. Mobile
nodes are required to have some sort of GPS-like capability
so that they can know the region they are in. However, this
knowledge can also be used to good effect in applications
such as geographical based routing [6]. More resource and
processing power are required for the mobile nodes. The
operation of the VNLayer, especially the leader election and
state replication, generates extra message overhead.

In this paper, we present a case study of an implementa-
tion of a DHCP-like [7] address allocation server over the
VNLayer. DHCP is picked because it is a simple protocol
in wireline environment and dynamic address allocation in a
MANET is difficult. There are minor changes to the algorithm
to take advantage of the multiple region-based servers and to
account for mobility, but it is otherwise almost identical to the
familiar wireline DHCP.

The major performance results are that the VNLayer over-
head is small in bytes but high in total number of messages.
The latency of address allocation is relatively small and mobile
nodes have an address for most of their lifetime. This suggests
a general approach to developing services on a MANET,
in which wireline services are used directly or with minor
modifications over a VNLayer architecture.

In addition, a ns-2 [8] based simulation package, VNSim, is
designed to support VNLayer-based applications. Simulation
results show that VNSim can simulate a virtual node system
with up to a few hundred mobile nodes.

The paper is structured as follows. Section II explores the
background of this research. In section III, our specific im-
plementation of the VNLayer and the architecture of VNSim
is introduced. Section IV describes our example application,
a VNLayer-based address allocation algorithm. Performance
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evaluations on VNSim and the example application are given
in section V. Conclusions and future work are discussed in
section VI.

II. BACKGROUND

A. Cluster-based MANET Algorithms

The basic idea of clustering is to group mobile nodes into
clusters and inter-cluster communications are handled by a set
of cluster heads. A large number of clustering algorithms and
cluster-based MANET protocols have been designed.

In [1], Yu gave a survey of clustering algorithms, which cre-
ate a Dominating Set (DS) of the mobile nodes in a MANET as
the cluster heads. Clustering is used in many MANET routing
protocols. Cluster Overlay Broadcast (COB) [9] uses Least
Cluster Change (LCC) algorithm [10] for clustering. It works
similar to AODV[11], with route request messages and route
reply messages flooded only by cluster heads. Receiving a
route reply message, a cluster head marks itself as active for
the specific session. However, the route created by COB can
only be used once. CEDAR [12] is another cluster-based ad-
hoc routing protocol. Cluster heads (core nodes) are elected
using a special core extraction algorithm that creates a DS.
Routing messages are exchanged among the core nodes using
unicast.

In addition to using clusters, the VNLayer has state replica-
tion capability and maintenance of persistent state. In addition,
in most dynamic clustering schemes, the restructure of a
cluster can cause a neighbor cluster to restructure. This can
cause the restructure of more clusters. This is called the
rippling effect. The VNLayer is free of this issue because
its clustering is geographical region based. The leadership
or membership changes in one region will not affect other
regions.

B. Address Allocation in MANET

A robust address allocation scheme is critical to successful
message delivery and correct routing operation. However, it
is difficult to implement dynamic address allocation in a
MANET. There is no centralized entity that can provide ad-
dress service because any mobile node may leave the network
at any time. Mobile devices may move around quickly and the
wireless link between nodes may fail any time due to message
collision and channel congestion.

In [13], Perkins described a method in which a node joining
a MANET picks a random address and checks to see if there
is a valid route to the address. If so, it means the address has
already been taken. The joining node tries more addresses until
an unused one is found. The solution relies on flooding based
route searches. Address duplication can happen when a route
search fails to tell an address is in use. MANETConf [14]
offers a more comprehensive approach, in which the address
picked for a node will be confirmed and recorded by every
node in the network. A node leaving the network explicitly
gives up its address. However, control messages are distributed
to all the nodes using flooding. In our simulation studies, we
have found that flooding introduces unacceptable overhead.

III. IMPLEMENTING THE VNLAYER

In this section, we introduce the specific implementation of
VNLayer we used in our research.

A. Reactive VNLayer

In this paper, we use an implementation of the VNLayer
with fixed regions. In addition, each virtual node has a simple
message receive event-driven deterministic automaton built-in.
The operation of the automaton is defined by a msgReceive()
function. Responding to each message received, the automaton
in the virtual node modifies the state and determines a response
to be broadcast (if any). We call this specific implementation
the Reactive VNLayer[2]. For simplicity, we still use “VN-
Layer” for the rest of this paper.

B. VNLayer-based System

In a VNLayer-based system, a MANET is tiled with equal
sized square regions. The size of each region is small enough
that a message sent from one region can be heard by all
nodes in the same region and in the immediate neighboring
regions. Assuming the mobile nodes have GPS-like capability,
each node knows the region it is in. Selected mobile nodes
in a region jointly emulate a virtual server for the region,
which is called a virtual node. Inter-region messages are
always relayed through the virtual nodes. In each region,
the nodes emulating the virtual node run the same server
application code and process client messages exactly the same
way. However, only one node among them, an elected leader,
sends out the server response messages. The other nodes,
the non-leaders, buffer their response messages. Overhearing
the leader’s response messages, the non-leaders remove the
corresponding message from their buffers. The non-leaders
also keep their state synchronized with the leader’s state. In
case the current leader leaves or crashes, a non-leader node is
elected as the new leader of the region. The new leader sends
the messages left in its buffer. The non-leaders hence work as
backup servers for the leader.
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Fig. 1. Illustration of a virtual node system. A message from a pure client
node 3 in region 1.0 is forwarded to a non-leader node 7 in region 2.2 through
leader node 1,4,5 and 6. Non-leader node 2,7 and 8 work as backup routers.

Figure 1 illustrates a VNLayer-based system of 12 regions.
Each non-empty region has one leader node. The virtual node
in an empty region is down; when a mobile node arrives in the
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Fig. 2. The architecture of a mobile node simulated by VNSim, an ns-2
based virtual node simulator

region, it boots up and initializes the virtual node. Each node
may also host a client process. The nodes hosting only client
processes are called pure client nodes. In our simulations,
every mobile node is both a client node and a leader emulating
node.

C. Architecture of VNSim

VNSim, the VNLayer simulation, is structured in the same
way an implementation would be structured. As shown in
Figure 2, the VNLayer is built upon the ns-2 platform and
the application layer is built over the VNLayer. The VNLayer
interacts with the ns-2 platform, sends application layer and
VNLayer packets to the simulated channel and receives pack-
ets from the channel for the mobile node. It buffers application
layer packets before they are relayed to the application servers.
The VNLayer buffers packets generated by the application
layer and delivers them to the channel, depending on the role
played by the mobile node. The VNLayer reads and writes
application layer state variables to synchronize state between
leader and non-leader nodes.

On each mobile node, the VNLayer is implemented with
three ns-2 agents, JOIN, VNS and VNC. Agent JOIN provides
the node movement tracking and leader election functions. It
communicates region and leader status changes to the other
two agents on the same node, using two types of loopback
messages, REGION and LEADER. Agent VNS interfaces with
the application server process, buffers non-leader response
messages and synchronizes non-leader state with leader state.
Agent VNC interfaces with the application client process.
The application layer messages exchanged between the agent
VNC and agent VNS on the same node are also implemented
as loopback messages. On different mobile nodes, the JOIN
agents interact with each other for leader election.

1) Agent JOIN: Agent JOIN keeps track of node movement
and elects leaders among nodes in the same region.

Movement Tracking: Motion information about a simu-
lated mobile node, such as the current location, motion speed
and direction can be retrieved from the ns-2 platform. Using
this knowledge and the region setting, agent JOIN can tell
the current region a node is in. If it finds out a node is in a
different region, the id of the current region is recorded and a
REGION messages is sent to agent VNS and agent VNC on
the same node.

To improve the scalability of the simulation, instead of
checking the location continually, VNSim checks the location
only when a node enters the network; when it starts moving;

and when it crosses a region boundary. To generate region-
boundary crossing events, we use a node’s current location,
motion speed and direction to predict the next time the node
crosses a region boundary.

Leader Election: A simple leader election algorithm picks
the leader for a region. Each time a node enters a new
region, it first resets its status to requesting, sends out a
LeaderRequest message, and sets a request timer. Receiving
the message, the current leader of the region, if there is one,
sends a LeaderReply message declining the request. If another
requesting node receives the message, it compares the sending
time of its LeaderRequest message with the sending time of
the incoming message. If the receiving node sent its request
earlier, it sends a LeaderReply message to decline the request.
Otherwise, it gives up its request and becomes a non-leader.
Basically, the first node requesting leadership becomes the
leader.

If the request timer on a requesting node expires and no
LeaderReply message is received, the node considers itself
the region leader and starts to send out HeartBeat messages
periodically. Once the leader status is determined on a node,
agent JOIN sends a LEADER message to agent VNS. A
non-leader node sets a timer for the time that it expects the
next HeartBeat message from the leader. Every time the timer
expires and no HeartBeat message is heard on a non-leader, a
HeartBeat miss is recorded. A non-leader starts a new leader
request when two HeartBeat messages are missed.

Due to message losses, more than one leader may exist
in the same region. When this happens, one leader can hear
the HeartBeat messages sent by another leader. HeartBeat
messages carry the time when the sender becomes a leader.
Using this information, the leader that becomes the leader later
gives up its leadership.

2) Agent VNS: Agent VNS buffers incoming and outgoing
messages for the application layer, sends the server response
messages and synchronizes a non-leader’s state with the
leader’s state.

Packet Buffering: Incoming application messages are sent
to a buffer and delayed for a short period of time, during which
the messages are sorted based on their sending time. This is
to reduce the number of state synchronizations caused by out
of order messages.

Another buffer is used to store outgoing messages from the
application layer. A timer is used to schedule the sending of
the messages in the queue with a certain sending rate. Since
non-leader nodes do not send response messages, they do not
set the sending timer. When a non-leader turns into a leader,
it starts to set the sending timer.

State Synchronization: Each VNS agent tracks the state
variables to keep them synchronized between the leader and
non-leaders of a region. Since the leader and non-leaders in
the same region are supposed to prepare the same sequence of
responses to the client messages, a non-leader should receive
from the leader a copy of every message in its sending buffer.
When a non-leader can not find a match in its sending buffer
for a incoming messages, it triggers a state synchronization.
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Fig. 3. Flowchart of a VNLayer-based Address Allocation Algorithm

To synchronize its state with the leader’s, a non-leader clears
its sending buffer, sends out a SYN-REQ message and sets a
timer for the response. The leader node replies with a SYN-
ACK message carrying its state and the non-leader copies
the leader’s state into its own state. Agent VNS on a non-
leader stops relaying messages to the application server during
the synchronization process and re-sends SYN-REQ messages
until it receives a SYN-ACK.

Interacting with agent JOIN and the Application Server:
Agent VNS starts running or restarts each time when it
receives a REGION message, which is sent from agent JOIN,
telling the node the region it is in. It resets its state and waits
for the result of leader election from agent JOIN (LEADER
message). Once the leader status is determined, agent VNS
knows whether it should behave as a leader or non-leader.
On a leader node, agent VNS starts relaying messages to the
application server right away. On a non-leader node, agent
VNS will not relay messages to the application server before
it is done with synchronizing the application state with the
leader node. The application server process needs to provide
access to its state variables so that they can be read and written
by agent VNS.

3) Agent VNC: Agent VNC also starts running or restarts
when it gets a REGION message from agent JOIN. Its main
function is relaying messages between the wireless channel
and the application client.

IV. AN EXAMPLE VNLAYER-BASED APPLICATION

In this section, we introduce our VNLayer-based applica-
tion, a MANET address allocation algorithm.

A. Basic Protocol Operation

The address allocation protocol that we have implemented
on VNSim, is similar to DHCP. Figure 3 shows a simple
address allocation procedure. The virtual node in each region
is assigned a pool of addresses for its clients. A client node
that needs an address broadcasts a REQUEST message to its
region. Receiving the REQUEST message, the region leader
determines whether it has a free address in its address pool. If
so, it sends out an OFFER message and sets the status of the
address as pending. Receiving the OFFER message, the client
confirms that it wants the address with an ACQUIRE message.
The leader answers the message with an ACK message and set

the address’s status as assigned. Receiving the ACK message,
the client node can use the address for a lease time. A
short time before the lease time expires, the client sends out
a RENEW message. Once the leader receives the RENEW
message, it updates the lease time for the address and sends
back a RACK message. Receiving the RACK message, the
client uses the address for another lease time. The RENEW-
RACK cycle repeats. If the renewal process fails, the client
starts a new address request by sending out a REQUEST
message. On the other hand, on the leader, the lease for the
address eventually times out. The leader set the status of the
address back to free.

The non-leaders in a region process the client messages the
same way as the region leader does, except that they do not
send out their response messages and they synchronize if they
detect a divergence from the leader state.

B. Tweaks on the Protocol to Adapt it to MANET

Up to this point, the address allocation works almost the
exactly the same way as DHCP works. However, to make the
algorithm work, there are some adaptations needed.

A node in one region ignores most messages coming from
other regions, with three exceptions involving the virtual
servers (actually, the leaders and non-leaders implementing
them).

In the first case, when the local region leader runs out of
addresses, we allow the client address to be assigned by a
neighbor region. Therefore, a client’s REQUEST messages
can be forwarded by the virtual node to the virtual nodes
in neighbor regions. In addition, the subsequent OFFER,
ACQUIRE and ACK messages can also be forwarded to
neighbor regions.

In the second case, to avoid address duplication, when a
virtual node just boots up an empty region, it needs to set all
of its addresses as assigned for a whole lease time, because
it doesn’t know whether any of the addresses is still used
by some client that gets its address from the region and has
moved to another region. During this one lease time period,
the clients in the region need to get address from the neighbor
regions and the four types of messages mentioned above also
need to be forwarded to neighbor regions.

In our protocol, when a client message (REQUEST or
ACQUIRE, for example) needs to be forwarded, the local
virtual node broadcast the message to the neighbor regions.
At every forwarding hop, the virtual node appends its region
id into a source route carried by the client message. The server
messages, OFFER and ACK, for instance, are source routed
back to the client using the route recorded in the corresponding
client messages. Simulation shows that forwarding the four
allocation messages to the immediate neighbor regions is good
enough when the size of address pool at each region is large
enough, since a region can have up to 8 neighbor regions.

In the third case, because a client node may leave the region
where it originally got its address, clients must be able to
renew leases from remote regions. To let the clients keep their
addresses as long as possible, the renewal messages, RENEW
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and RACK, can be forwarded by as many virtual node hops
as necessary. The RENEW messages can be forwarded by
flooding, or, since the location of the virtual server is known
for a client, by unicast routing. The unicast routing protocol
repeatedly picks the neighbor region that is the closest to the
server region as the next hop. This generates much fewer
messages than flooding. The RACK message is also source
routed back to the client using the route carried in the
corresponding RENEW messages.

C. Discussions

The VNLayer-based address allocation protocol is a dis-
tributed server system with strong fail-over capability. The
burden of the address allocation service is shared by the
virtual nodes covering separate regions in the network. The
address allocation and inter-region message forwarding are
both handled by virtual nodes, each of which is emulated by
a leader and a number of non-leaders.

Although broadcasting is used in the protocol for client
messages such as REQUEST and ACQUIRE, the number of
hops that these messages can be forwarded is limited to 2.
This generates only two times the message overhead than the
case that these messages are not forwarded at all. If flooding
is used, the forwarding of RENEW message can cause heavy
message overhead. However, when unicast routing is used, the
renewal message overhead is proportional to the hop distance
between the client and the server region. The simulation results
show that the service is scalable with increasing network sizes.

Because any given address can only be allocated from a
single virtual node and a virtual node waits a whole lease
time after it is booted up in a previously empty region,
address duplication rarely happens. Due to clock skew or state
inconsistency between leaders and non-leader when leadership
switches, address duplication can still happen. The duplication
can be resolved easily because each client has to renew its
address lease. The server only acknowledges the RENEW
messages from the correct owner of the address. The clients
who can not get an RACK message give up the address.
Address leakage will not happen in the protocol because in
the absence of RENEW messages from the client using an
assigned address, the status of the address on a server always
goes back to free.

The problems with this VNLayer-based scheme are: First,
the virtual node layer generates extra message overhead.
Second, when a virtual node in a region is down, all the clients
that got their addresses from the region have to give up their
addresses when the renewal fails. Third, when the local virtual
node and all the neighbor virtual nodes run out of addresses,
a client may not be able to get an address even though there
might still be addresses available in the system. In this case,
REQUEST messages need to be forwarded to more regions.

V. PERFORMANCE EVALUATION

A. Simulation Settings

We ran our simulations using ns-2.31 on a Linux machine
with an Intel Pentium 3.20GHz CPU and 512M bytes memory.

TABLE I

SETTINGS FOR 4 MOTION SPEED MODES

slow med-slow med-fast fast
Minimum speed (m/s) 0.73 1.46 2.92 5.84
Maximum speed (m/s) 2.92 5.84 11.68 23.36

Minimum pause time (s) 400 200 100 50
Maximum pause time (s) 4000 2000 1000 500

Average cross time (s) 48 24 12 6

Freespace wireless propagation model is used. Two network
settings were used: a small network of 40 to 120 nodes that
contains 16 87.5m×87.5m regions in a 350m×350m and a
large network of 160 nodes that contains 64 87.5m×87.5m
regions in a 700m×700m area. All the mobile nodes are set
to implement the VNLayer as described in Section III. The
packet receiving range is set to 250m to make sure that a
message sent from a region can reach any node in the neighbor
regions. The region leaders are set to send out a HeartBeat
message every second. The lease time is set to 400 seconds.
Each simulation ran for 40000 seconds, or 100 lease times.
For each data point, the simulation are repeated 5 times with
different mobility traces. The address pool size is set to 30 to
reduce the chance that a server runs out of addresses.

We allowed the REQUEST and ACQUIRE messages to
be forwarded only once because this was almost always
enough. The renewal messages are allowed to be forwarded
by more hops. Two forwarding methods are used for the
RENEW messages, flooding and unicast routing. The flooding
of the RENEW message is controlled such that a virtual node
forward the same RENEW message only once. The unicast
routing we used is a simple best effort routing, in which the
neighbor region that is closest to the destination region of the
RENEW message is always used, no matter whether the region
is empty or not.

We evaluated the performance of the system with the nodes
moving at various speeds. Using the random waypoint model,
ns-2 mobility traces were generated for four speed modes:
slow, medium slow, medium fast and fast. The settings used
to generate the mobility traces for each speed mode are given
in Table I.

Slower speed means that it takes a node longer to travel
across a region so that it is less likely to be far away from
its server when it needs to renew its lease. For example, for
speed mode “slow”, the 2200 second average pause time is
5.5 times of the lease time. The average time for a moving
node to travel across a region is 48 seconds. This means that
during one lease period, a moving node on average may travel
across 8 regions. For the speed mode “fast”, the average pause
times and crossing times are 8 times shorter.

B. Simulation Speed

Table II lists the simulation time of VNSim for various total
numbers of nodes, with the 16 region network setting and
slow node motion. The simulation time increase is roughly
proportional to the square of the total number of nodes because
each node needs to handle messages from all of its neighbors.
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TABLE II

SIMULATION SPEED OF VNE AND VNSIM

40 nodes 80 nodes 120 nodes
VNSim simulation time 2.4 minutes 9.53 minutes 22.23 minutes

C. VNLayer Message Overhead

An important question is what the overhead is for state
synchronizations in a VNLayer-based system. Because SYN-
ACK messages can be big, large number of synchronizations
can cause heavy traffic. In addition, during state synchroniza-
tions, non-leader nodes that are out of sync ignore all client
messages. This can affect the failover capability of the system.

With the large network setting and speed mode “slow”
and “fast”, we did simulations with various renewal mes-
sage forwarding methods (flooding and unicast routing) and
forwarding hop limits (1 to 8). More details can be found
in the next two sections. In the worst case, the case with
speed mode “fast” and 8 hop flooding used for RENEW
messages, the VNLayer generates about 482 messages per
region per lease time. Over 75% of the messages are the
HeartBeat messages sent by region leaders. The numbers of
LeaderRequest and LeaderReply messages are on the order
of 24 and 50 per region per lease time, respectively. There
are more LeaderReply messages since multiple nodes may
respond to the same LeaderRequest message. The average
numbers of SYN-REQ and SYN-ACK messages are both
about 20 per region per lease time.

From the simulation results, it’s estimated that the packet
overhead generated by the virtual node layer from a single
region ranges between 200 bps and 450 bps. Because a node in
a region can hear messages from up to 9 regions, the combined
channel bandwidth overhead for any region can range between
2Kbps and 4.5Kbps, which is unlikely to affect the normal
operation of other protocols on the mobile nodes. However,
in terms of number of message overhead per allocation, the
figure can be over 500 messages, where 90% of the overhead
are the leader election messages.

D. Different Renewal Methods

The next problem is how to engineer the protocol to get
the best performance. The renewal process is critical because
when a renewal fails, a client has to stop using the current
address and ongoing sessions may have to be disconnected.
The number of addresses allocated to a client measures the
effectiveness of the renewal process. The more addresses that
the client has during a given period, the more times a session
may be disrupted.

There are two important engineering choices for the renewal
process. The first is how many hops a RENEW message is
allowed to be forwarded. The second is whether flooding or
unicast routing is used to forwarded the RENEW messages.
Using a higher hop limit increases the chance a RENEW
message reaches the server region and causes higher message
overhead. Flooding generates more messages than unicast
routing. A flooded RENEW message, however, is more likely

to reach the server region because the single path picked by
unicast routing may fail.

With the large network setting, we run simulations with
different forwarding hop limits for RENEW messages and
forwarding methods, under speed mode “fast” and “slow”.
The hop limit ranges from 1 to 8. With hop limit 1, RENEW
messages are not forwarded. With hop limit 8, RENEW
messages can be forwarded by up to 7 regions, including the
client’s local region.
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Fig. 4. Allocation performance with different renewal methods, fast moving
case

1) Fast Moving Case: With speed mode “fast”, the average
number of allocations per node ranges from 27 to 95 during
the 40000 second simulations, as shown in Figure 4. Re-
allocations do happen a lot in this case due to the fast
node motion speed. With hop limit 1, forwarding for renewal
messages are not allowed, almost every single renewal fails
and the client needs a re-allocation.

For the flooding case, with larger hop limits, each client
needs fewer and fewer re-allocations. However, this comes at
the cost of rapid increasing message overhead. The curve for
the number of allocations per client flattens as the hop limit
approaches 8.

For the unicast routing case, the allocations per client and
message overhead per region started the same as the flooding
case when the hop limit is 1 and 2. With these two hop
limits, using unicast routing on the RENEW messages doesn’t
save anything. After that, the number of allocations per client
decreases faster with higher hop limits. In addition, using
unicast routing generates much less message overhead because
only one forwarding path is used for every RENEW message.
With hop limit 8, the unicast routing case generates less
than one sixth of the message overhead of the corresponding
flooding case.

Figure 5 shows the renewal message overhead and renewal
delay. Using flooding, with hop limit 1, the renewal is limited
to the local region and a successful renewal takes exactly 2
messages, one RENEW message and one RACK message.
With larger hop limits, renewals take more messages and
time to finish. With hop limit 8, a renewal takes around 55
messages, showing that most of the regions are involved in
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Fig. 5. Renewal overhead with different renewal methods, fast moving case

the flooding of the RENEW messages.
With unicast routing, the renewal message overhead was

the same as the flooding case with hop limit 1 and 2. But
the average renewal message overhead increases much more
slowly than the flooding case. Even in the case with hop limit
8, a renewal on average takes less than 10 messages.
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Fig. 6. Distribution of addressless time with different renewal methods, fast
moving case

Figure 6 shows the distribution of the time percentages
that each client doesn’t have an address for. The value at
each data point is the percentage of clients that do not have
an address for more than a percentage of the simulation
time. When flooding is used for the RENEW messages, the
average addressless time percentages of the clients decrease
with higher hop limits. With hop limit 8, less than 4% of
the clients do not have an address for more than 0.2% of the
simulation time. The unicast routing cases show same trends,
we only show the hop limit 8 case here, which performs better
than the 4 hop flooding case and worse than the 6 hop flooding
case.

2) Slow Moving Case: With speed mode “slow”, we re-
peated the simulation. As shown in Figure 7, in the flooding
case, the average number of allocations per client goes up
with higher hop limits after hop limit 6. This means that when
nodes are moving slowly, flooding of RENEW messages by
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Fig. 7. Allocation performance with different renewal methods, slow moving
case

many hops can hurt the allocation performance with heavy
message overhead. In the unicast routing case, the number of
re-allocations per client keeps getting lower with increasing
forwarding hop limits while the message overhead increases
much slower than the flooding case. Here, the unicast routing
case performs much better than the flooding case.

The results above show that for this network setting, the
addresses allocation protocol with simple unicast routing out-
performs flooding under both speed modes. The virtual node
based system performs the best when unicast routing is used
for RENEW message and the forwarding hop limit is set to
8. With this parameter, the average allocation latency is 0.91
second and the average renewal latency is 0.16 second, with
160 fast moving nodes in the 64 region network.

E. Different Node Densities

Now we address scaling to larger number of mobile nodes in
the system. Using the small network setting and speed modes
from “slow” to “fast”, we run simulations with 40, 60, 80,
100 and 120 nodes, with unicast routing used for the RENEW
messages and the forwarding hop limit for renewal messages
set to 5.
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Fig. 8. Allocation performance with different node densities

From Figure 8, we can first see that with the small network
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setting, the allocation performance is much better than what
the system gets with the large network setting, because the
renewal messages now travels fewer hops.

The figure also shows that with higher node densities, the
allocations per client decreases quickly at first and then gets
stable or even rise up. At the beginning, with higher node
densities, the probability that a region is empty and the virtual
node in it is down drops very quickly and renewals are less
likely to fail. Then, when the node density becomes too high,
the benefit above will be offset by the increasing message
overhead. This suggests that the VNLayer-based system will
perform the best with a node density that is neither too low
nor too high.

With increasing node densities, the application layer mes-
sage overhead increases linearly because each node introduces
the same amount of application layer burden to the system.
In addition, with increasing node densities, the curves for
different motion speed modes get closer and closer to each
other. This indicates that with higher node densities, the system
is less sensitive to node motion speeds, because the virtual
nodes are more likely to function most of the time even when
nodes are moving fast. This helps the clients to keep their
addresses longer.

VI. CONCLUSION AND FUTURE WORK

The simulation results for the example application demon-
strate that the VNLayer approach can be used to adapt a
wireline protocol like DHCP for use in a MANET. The
message overhead introduced by the VNLayer approach is
about 200 to 400 bits per second in terms of bandwidth. With
most of the complexity handled by the VNLayer, the programs
for the application server and the client are both simple.

Simulation results were obtained for a wide range of con-
figurations, from a small 16 region network (350 meters by
350 meters) to a large 64 region network (700 meters by 700
meters) and for a variety of mobile node speeds, from a slow
walk to vehicle speed.

Our implementation of the VNLayer, VNSim is made
available online as an ns-2 package. VNSim is discrete event-
based, making it scalable. Simulation results showed that the
C++ based simulator is suitable for a network of up to a few
hundred mobile nodes. VNSim can be used to validate any
VNLayer-based application.

The performance evaluation of the protocol with VNSim
offered useful insights on how to engineer a protocol in a
VNLayer-based system. For example, we found the use of
a simple best effort geographical based unicast routing for
RENEW message can outperform the case when flooding is
used.

Leader election messages, especially the periodical Heart-
beat message compose the largest part of the VNLayer
message overhead. The leader election needs to be further
engineered to reduce the message overhead and election delay.
For example, knowing it has entered a different region, a leader
can send a message back to its original region to ask the non-
leaders to start leader election immediately. This can not only

shorten the leadership switching delay, but also reduce the
dependency on frequent sending of Heartbeat messages.

The state synchronization can also be engineered to reduce
the message overhead because the SYN-ACK messages can
be large. For example, state inconsistency tends to happen
on multiple non-leader nodes in a region at the same time, a
random backoff mechanism can be used by the non-leaders for
their SYN-REQ messages and one SYN-ACK message can be
used by every non-leader to update their states. In addition,
the total number of mobile nodes emulating the virtual node
can be reduced to a level such that consistent state can be
maintained and the overhead of state synchronization can be
minimized.

For the address allocation protocol, the routing mechanism
for the RENEW messages needs to be improved to increase
the success ratio of renewal attempts. A fail-over mechanism
can be used to backup state variables of a virtual node to
other virtual nodes so that even when the region is down,
a client can still contact one of the backup virtual nodes to
renew its address lease. Building on what we have learnt from
this research and the VNSim package, we are continuing our
research on VNLayer-based MANET routing protocols.
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