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WakeWake--Up  QuoteUp  Quote

“The experience of the 1960’s has shown that for military 
aircraft the cost of the final increment of performance 
usually is excessive in terms of other characteristics and 
that the overall system must be optimized, not just 
performance.”

AIAA Technical Committee on Multidisciplinary Design Optimization (MDO)
White Paper on Current State of the Art
January 15, 1991
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Utility of System AttributesUtility of System Attributes
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Fundamental DilemmaFundamental Dilemma
System ArchitectsSystem Architects

System Architects don’t know how to quantify
the goodness of their architectures or concepts

Barrier (Methodology, Time Pressure, Uncertainty)

No feedback

System Designers spend a lot of time designing
or optimizing bad architectures or flawed concepts 

System DesignersSystem Designers
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OutlineOutline
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My Engineering Systems WorldMy Engineering Systems World
HST - Deployed 25 April 1990 (STS-31)
Program Cost at Launch: $ 2.2B

Parameters:
Length    13.2 m
Diameter  4.2 m
Mass  11,110 kg
Power     2.4 kW
Altitude   612 km
Inclination  28.5

Space-Based Observatory
Multipurpose UV/Visual/IR 
Imaging and Spectroscopy

Specifications:
Aperture D: 2.4 m
Wavelengths λ:  0.11-2.6 µm
Focal Ratio: f/24
Resolution:   0.044” at 0.5 µm
Encircled Energy: 0.86 at 0.1”
Pointing Stability:  0.007” RMS

Limitations:
MIR Observation λ>3 mm
Angular Resolution
Zodi/Albedo in LEO

Need a new generation
of space observatories
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Architecting versus System DesignArchitecting versus System Design
Architecture: “Art and Science of Building”*

Typical 
Decision 
Variables:

• Number of Satellites/Apertures , Constellation Type
• Operating Altitude (LEO, GEO, MEO, L2, Heliocentric)
• Aperture geometry (monolith, segmented, sparse)
• Modular vs Integral
• Structurally Connected vs. Formation Flying

“discrete”

Design:   “Drawing or outline from 
which something may be made”*

• Control system design (ACS, Optical Control)
• Structural design (truss, shells, Inflatables, E, I, G ... )
• Optical parameters (Aperture size D, focal ratio F/#)
• Thermal design (radiator size, cryocooler capacity)
• Detectors (CCD format, quantum efficiency,…)

Typical 
Decision 
Variables:

“continuous”
*[Oxford Dictionary of Current English, Oxford University Press, 1984]
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TPF Architecture ExplorationTPF Architecture Exploration
Inputs (Design Vector) Architecture Trade Space:

Heliocentric Altitude: 1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5 [AU]
Number of Collector Apertures: 4,6,8,10,12
Interferometer Type: SCI-1D, SCI-2D, SSI-1D, SSI-2D
Aperture Size (Diameter): 1,2,3,4 [m]

• Heliocentric Orbital Altitude
• Number of Apertures
• Interferometer Type
• Aperture Size

TPF Mission
Analysis Software

Outputs (Key Metrics)

• Total Lifecycle Cost 
• Total Mass
• Number of Images
• Cost per Image
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Architectural Trade SpaceArchitectural Trade Space
Exhaustive Trade Space Evaluation Which architecture gives

the best cost/function ?
Factorial Trade Space has a total of 640 solutions
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Pareto front

Optimal Solution:
Orbital Altitude = 4 AU
Number of Apertures = 8
Interferometer = SCI-2D
Aperture Size = 4m
CPI = 469.6 k$/image

Figure Courtesy: Cyrus Jilla
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Caution: Sensitivity AnalysisCaution: Sensitivity Analysis
Caution: Small changes in assumption at the design level can have

very LARGE consequences at the architecture level and influence decisions.

Option A:
TPF Freeflyer Architecture
1AU, 4 Apertures
SSI-1D, 2.5 m

Option B:
TPF Truss Architecture
1AU, 4 Apertures
SCI-1D, 2.0 m

Case 1: 933 images, $1006.6M, 1078 k$ CPI
Case 2:   919 images, $1006.6M, 1095 k$ CPI

Which architecture do
we choose ? Lowest CPI !

Case 1: 769 images, $769.5M, 1000 k$ CPI
Case 2:   633 images, $769.5M, 1215 k$ CPI

Case 1:  Reaction wheel imbalance Us=0.716 gcm   , Case 2: Us=7.16 gcm 
Conclusion:

System Architecting and System Design are intimately connected
and cannot be separated for high-performance systems. 
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Example 1a: Spacecraft DesignExample 1a: Spacecraft Design
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Requirement: Jz,2=5 µm

Goal: Find a “balanced” system design, where the flexible
structure, the optics and the control systems work together to

achieve a desired pointing performance, given various constraints
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Example 1c: Spacecraft DesignExample 1c: Spacecraft Design
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Ru 3000 3845 [RPM]
Us 1.8 1.45 [gcm]
Ud 60 47.2 [gcm2]
Qc 0.005 0.014 [-]
Tgs 0.040 0.196 [sec]
KrISO 3000 2546 [Nm/rad]
Kzpet 0.9E+8 8.9E+8 [N/m]
tsp 0.003 0.003 [m]
Mgs 15 18.6 [Mag]
Kcf 2E+3 4.7E+5 [-]
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Variables

Improvements are achieved by a 
well balanced mix of changes in the
disturbance parameters, structural

redesign and increase in control gain
of the FSM fine pointing loop. Centroid X
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Examples Architecting vs DesignExamples Architecting vs Design

Requirements: Service ceiling, endurance, range
weapons loading capability, RCSF-22 Raptor #01

Architecture: V-Tail versus single vertical, twin or
single engine, # of weapon stations

Design: Thrust to weight ratio, maximum TEF
deflection angle, wing NACA profile,...

(US Air Force Photo)

... Requirements: # passengers per route and day,
lbs. of cargo miles, average cruise speed

X2000
(Swedish State Railways)

Architecture: Tilting Mechanism versus track radius, 
# of cars per composition, Electrical versus Diesel

Design: Locomotive power [kW], max tilt angle, 
suspension control design, seating arrangement
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PDP PDP -- Part 1Part 1
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PDP PDP -- Part 2Part 2
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What is System Architecture?What is System Architecture?

• The structure, arrangements or configuration of system elements 
and their internal relationships necessary to satisfy constraints 
and requirements.  (Boppe)

• The arrangement of the functional elements into physical blocks.
(Ulrich & Eppinger)

• The embodiment of concept, and the allocation of functionality 
and definition of interfaces among the elements.  (Crawley)
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ESD.34 SA FrameworkESD.34 SA Framework
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OPM Product AttributesOPM Product Attributes
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Role of System ArchitectRole of System Architect
• The architect performs the most abstract, 

high level function  in product development 
• The architect is the driving force of the conceptual phase
• The architect

- Defines the boundaries and functions
- Creates the Concept
- Allocates functionality and defines interfaces 
and abstractions

- The architect is not a generalist, but a specialist 
in simplifying complexity, resolving ambiguity 
and focusing creativity

Advanced Topics:
- Legacy Systems and Reuse
- Supply Chain Impact
- Platforms and Product Families
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What is M(S)DO ?What is M(S)DO ?

• A methodology for the design of complex engineering 
systems and subsystems that coherently exploits the 
synergism of mutually interacting phenomena

• Optimal design of complex engineering systems which 
requires analysis that accounts for interactions amongst 
the disciplines (= parts of the system)

• “How to decide what to change, and to what extent to 
change it, when everything influences everything else.”

Ref: AIAA MDO website http://endo.sandia.gov/AIAA_MDOTC/main.html
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System Level OptimizationSystem Level Optimization

Why system-level, multidisciplinary optimization ?

• Disciplinary specialists tend to strive towards improvement 
of objectives and satisfaction of constraints in terms of the 
variables of their own discipline

• In doing so they generate side effects - often unknowingly-
that other disciplines have to absorb, usually to the 
detriment of the overall system performance

Example: High wing aspect ratio aircraft designs



22
Massachusetts Institute of Technology - Olivier de Weck

ESD.77J FrameworkESD.77J Framework
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MSDO ChallengesMSDO Challenges
• Fidelity/expense of disciplinary models

Fidelity is often sacrificed to obtain models with short computation 
times.

• Complexity
Design variables, constraints and model interfaces must be managed 
carefully.

• Communication
The user interface is often very unfriendly and it can be difficult to 
change problem parameters.

• Flexibility
It is easy for an MDO tool to become very specialized and only valid 
for one particular problem.

How do we prevent MDO codes from becoming complex, highly 
specialized tools which are used by a single person (often the developer!) 
for a single problem?
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Fidelity versus ExpenseFidelity versus Expense
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Diagram adapted by the author from Giesing, J.P., Barthelemy, J.-F.M., A Summary of Industry MDO Applications and 
Needs, AIAA Paper 98-4737, Presented at VIIth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Optimization 
and Analysis, St. Louis, MO, Sep. 1998.
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Competing TensionsCompeting Tensions

Performance

Schedule Risk

Cost

Ref: Maier, Mark W., Rechtin, Eberhardt,  “The Art of Systems 
Architecting”, 2nd Edition, CRC Press, 2000
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Multiobjective Optimization and Multiobjective Optimization and 
IsoperformanceIsoperformance
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ConclusionsConclusions

• Engineering Systems have to be designed and 
“optimized” for multiple objectives beyond performance

• We should consider not just single, “optimal” point 
designs but families of Pareto-optimal designs that 
achieve similar performance

• Good Engineering Systems are “balanced” and achieve 
their performance by evenly distributing the burden 
among subsystems

• Inherent tradeoffs between performance, cost and risk 
need to be made explicit and should be resolved in a 
deliberate manner 
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Research AgendaResearch Agenda
• What multiobjective methods are most suitable for 

Engineering Systems ?
• How to quantify Illities (e.g. Flexibility) and other 

criteria that resist quantification
• Understand the role of Constraints (e.g. Technology 

Infusion)
• Learn from position of past or existing systems in the 

trade space (e.g. B-52 vs B-58) - what would we do 
differently today?

• Establish a generic set of objective metrics related to 
functional classification of Engineering Systems 

• How to leverage optimization during CONCEPTUAL 
design phase?
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