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ABSTRACT

This thesis reviews observational and theoretical work on the equatorial deep jets
and work related to the study of the role of the horizontal Coriolis parameter. Most existing
analytical models interpret the equatorial deep jets as either low frequency, long Rossby
waves or stationary, long Kelvin waves generated at or near the ocean surface. These
models are unable to answer the question of how wind generated energy propagates down
through the equatorial undercurrent and thermocline into the deep ocean. Existing numerical
models do not display deep jet features due mainly to their in low vertical resolution and the
high eddy viscosity associated with these models. These numerical models also suggest
that very little energy is able to get into the deep ocean. A natural question is raised: can the

equatorial deep jets possibly be interpreted as free, steady inertial motion below the

thermocline?

We develop a simple model for the deep jets as a free, stationary inertial motion.

After scaling the fluid dynamical equations in the appropriate regime, it is found that neither

the advective nonlinearity nor the horizontal Coriolis parameter can be neglected. An

important conservation equation, the so called potential zonal vorticity conservation

equation which governs the equatorial steady and zonal independent equatorial flow is

derived. From this conservation principle, an inertial equatorial deep jets model is

developed which captures some important features of the deep jets. The horizontal Coriolis

parameter is important in this inertial model.



The role of the horizontal Coriolis parameter has long been controversial in the

literature. We discuss this role for several equatorial flow systems. It is found that the

horizontal Coriolis parameter is not significant for inviscid linear equatorial waves due to

the presence of stratification in the real ocean. However, when the ratio of momentum eddy

viscosity to the density dissipation coefficient becomes small enough, the effect of the

horizontal Coriolis parameter becomes more important in a simple viscous model. Some

general aspects of this parameter have also been discussed in terms of angular momentum

conservation and energy conservation principles. It is suggested that for the ocean

circulation of large vertical excursion of the fluid particle, the horizontal Coriolis parameter

effect may not be small and should be included in future numerical models.
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Section 1. Review of observations and theories of
equatorial deep jets

1.1. Observations

Observation reveals an important phenomenon in equatorial oceans: the presence of

strong, alternating zonal currents with small vertical scale trapped near the equator. After

their first discovery by Luyten and Swallow (1976) in the western Indian Ocean, these

energetic flows called the equatorial deep jets (EDJ) were also observed in the Equatorial

Pacific (Hayes and Milbum, 1980; Leetmaa and Spain, 1981; Eriksen, 1981, Firing, 1987,

Ponte and Luyten, 1989) and in the Atlantic Ocean (Eriksen, 1982, Ponte, Luyten and

Richardson, 1989). A typical zonal velocity contour in the meridional plane obtained by

Firing(1987) is shown in Fig.1.1. The right panel shows that below the equatorial

undercurrent (with meridional extension 2-3 degrees north and south away from equator),

there are eastward and westward alternating jets starting from the westward equatorial

intermediate current down to about 2500m. The zonal velocity magnitude becomes smaller

for deeper jets. Although the left panel shows that the standard deviation of the

measurement is of the same order as the signal of the deep jets, this phenomenon is

generally believed to be a real feature, because it has been also observed in many other

locations. Fig.1.2, Fig.1.3, Fig.1.4 and Fig.1.5 are from Ponte and Luyten (1989),

Ponte(1988a) which show the zonal and meridional distributions of zonal velocity and

meridional velocity in the central Pacific equatorial ocean. Fig. 1.6 is a vertical wavenumber

spectrum (Ponte and Luyten, 1989) and clearly shows within the 95% confidence level

that the O(100m) jets signals are dominant.
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Some important features are summarized as follows which are generally true for

most equatorial deep jets observed in different geographical parts of equatorial oceans.

They are:

(1) Alternating zonal currents of velocity order 0(10 cm/sec) sit on the equator trapped to

within 1 degree north and south latitude from the equator. (The meridional trapping length

scale is of order 0(100 km));

(2) Very long zonal length scale of order longer than 10,000 km.

(3) Very small vertical scale approximately 0(100m), extend to the deep

ocean, although the signal becomes obscure in oceans deeper than 0(3000m).

(4) Large time scale of order more than 4 years (Ponte and Luyten, 1989). The motion is

not distinguishable from stationary (Firing, 1987) because the longest measurement record

for detecting equatorial deep jets is no longer than 4 years.

(5) Reasonable agreement found between direct zonal current measurements and

geostrophic velocities calculation from observed density field (Eriksen, 1982).

1.2. Theories

The interpretation of the jets as low-frequency surface forced, vertically propagating

linear equatorial waves has been advocated in the past. The first model was given by

Wunsch (1977). His model jets consist of long Rossby waves forced at the annual period

by a surface vertical velocity pattern of a particular zonal wavenumber and are unbounded

in the zonal direction. McCreary and Lukas (1986) hypothesized that the deep equatorial

jets might be near-resonantly excited, wind-forced, stationary Kelvin waves embedded in a

barotropic mean westward flow. Ponte (1988b) examined the effects of slowly varying

baroclinic westward flow on stationary Kelvin waves.

There are some difficulties associated with the current existing models. Ponte and

Luyten(1989) stated that interpretation of signals in terms of equatorial waves was



ambiguous, because of their relatively long spatial and temporal scales compared to that of

the record. They found that it was hard to fit the meridional structure of the model wave to

observations. The energy level decays too fast in the meridional direction away from the

equator in the wave model. The simplest hypothesis of linear waves in a resting basic state

ocean could not be rejected, but more complicated physics cannot be ruled out. There are at

least three major difficulties associated with the surface generated, downward propagating

wave models although they are still controversial. (1) Gent and Luyten (1985) claimed that

the existence of a strong thermocline peak in the Brunt VaiisAls frequency profile might

reflect most of the wave energy, preventing it from to penetrating through. (2) McPhaden et

al. (1986) suggested that the critical levels at depth were a significant barrier to vertical

energy propagation. Energy at short 0(100 m) vertical scales would be blocked from

entering the deep equatorial ocean by the existence of the shallow critical levels in the

eastward Equatorial Undercurrent and westward South Equatorial Current system. (3)

McCreary (1984) pointed that for reasonably long time scales, equatorial waves propagated

energy into the deep ocean at very shallow angles to the surface because the vertical group

velocity was very small - This assumes that the argument that energy propagates at the

speed of group velocity in such a varying background medium can still be used. The

turbulent diffusion may quickly dissipate most of the small vertical scale wave energy

before it could get very deep. All of these three difficulties proposed one question: how

does the wave energy get into the deep ocean? These difficulties have not been totally

resolved. Furthermore, the stationary models by McCreary and Lukas (1986), Ponte

(1988b) that relate the deep equatorial jets to stationary forced Kelvin waves rely on an

assumed deep westward mean flow that is poorly documented in observations. So the

above wave models are still questionable.

To avoid these difficulties, Ponte (1988b) suggested that some of the deep jets

might be forced by variations in the mean vertical-velocity field of the Equatorial

Undercurrent itself. Ponte (1990) also studied the deep lateral boundary processes (e.g.



western boundary currents) as an alternative energy source exciting the equatorial wave

guide at long time scales. However, the question of the origin of this forcing was not

examined.

More sophisticated numerical models have also been developed in the literature

(Philander and Pacanowski, 1981, 1984, Rothstein, et al., 1985, 1988) to simulate the

equatorial dynamics.. However, up to now no numerical model has successfully modeled

the equatorial deep jets. The major reasons may be of two types: (1) Nonlinear numerical

models need a large eddy viscosity to make the numerical calculation stable, and this large

unrealistic value of eddy viscosity may well dissipate the small scale energy associated with

the interesting features. (2) The current numerical models have too low vertical resolution.

Most models have fewer than 17 levels in the vertical and most of these levels are

concentrated in the upper ocean, trying to resolve the equatorial undercurrent. Thus,

understanding the dynamics of the deep jets remains an interesting problem. Therefore it is

important, if possible, to analyze the nonlinear dynamical system of the deep equatorial

ocean, even if only qualitatively.

Since the surface generated, or near surface generated energy is unlikely to

penetrate into deep ocean and since that the equatorial deep jets are in the nonlinear

dynamics regime (See Section 3), it is natural for us to ask a question: Can the equatorial

deep jets be interpreted as free, steady inertial motion? Although the above mentioned

numerical models addressed the nonlinearity, the low resolution and large eddy viscosity

prevented them from being able to answer this question. As a preliminary analysis, in this

thesis, we propose a simple model trying to answer this question qualitatively. The

conclusion is that it is possible.



Section 2. Review of the traditional approximation

The traditional approximation is widely used in geophysical fluid dynamics. The

main idea is that in a shallow ocean (8 = H/a <<1, H is the depth of ocean, a is the radius

of earth), the Coriolis acceleration associated with the horizontal component of the earth's

rotation and the vertical component of the fluid particle acceleration can be neglected

(Eckart, 1960). The significance of this approximation is that it greatly simplifies the

mathematical complexities of the physical problem and also emphasizes some important

physical features of interest.

After using this approximation, the vertical momentum equation becomes the

hydrostatic relation so that it is possible to obtain spatially separable solutions for linear

systems under favorable boundary conditions. Thus the traditional approximation not only

makes the analytical discussion of problems easier, but it also makes numerical

computation more efficient by using vertical modes or layer models. The validity of this

approximation has long been controversial (see Bjerknes et al. 1933, Proudman 1942,

Phillips 1966, 1968, Veronis 1968, Miles 1974, and Hendershott 1981). A definite

conclusion is still lacking. This thesis is not intended to give a universal criterion for the

validity of the traditional approximation. Rather, it studies some possible roles of the

Coriolis acceleration associated with the horizontal component of the earth's rotation in

some different physical situations, especially the equatorial dynamical systems. A short

review of the historical controversies and several models without the traditional

approximation is given in this section.

The traditional approximation is composed of three sub-approximations:

1) Neglect of the radial variation of the metrical coefficients ( r = a ). It has been shown

(Miles, 1974) that the errors are uniform in O(S) and are no more significant than those

implied by the assumption of a spherical planet with a uniform gravitational field.



2) Neglect of the Coriolis acceleration associated with the horizontal component of earth's

rotation, 2icospw, -20cospu in zonal and vertical momentum equations, respectively,

where 0 is the earth's rotational angular velocity.

3) Neglect of the vertical acceleration aw/at.

Miles (1974) showed that for N>>20, where N is the Brunt Viisals frequency

which characterizes the vertical static stability, approximation 2 dominates approximation 3.

So a large part of the controversy concerns the validity of neglecting the effect of the

horizontal Coriolis parameter* .

It has been recognized since the work of Bjerknes, Bjerknes, Solberg and Bergeron

(1933) that the above assumptions especially the neglecting of horizontal Coriolis parameter

amounts to more than a minor perturbation of the spectrum of free oscillations that may

occur in a thin homogeneous ocean. They realized that the hydrostatic assumption

excluded a class of free inertial (of period longer than one pendulum day) oscillations of the

homogeneous fluid.

Solberg (1928) showed that the assumption had little effect for the wave motion of

period shorter than one day. Proudman (1942) argued that the large aspect ratio 8

effectively eliminated these oscillations as major components of the astronomically forced

tide except possibly in the case of inertial oscillations near the poles and near the equator.

Stewartson and Rickard (1969) pointed out that the limiting case of a vanishingly

thin homogeneous ocean is a nonuniform limit for motion a<29 ( period longer than one

pendulum day, a is the temporal frequency of the wave motion). The solution obtained by

solving the equations and then taking the limit may be different from those obtained by first

taking the limit and then solving the resulting approximated equations. For motion o>2fl,

* The traditional approximation excludes a zonal Coriolis acceleration component term and
a vertica. Coriolis acceleration component term in zonal and vertical momentum equations
respectively. The usually used name "horizontal Coriolis component" is not very proper.
We will use "horizontal Coriolis parameter" to refer to both Coriolis acceleration
component terms which associated with the horizontal component of earth's rotation.
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no such difficulty appears to arise even for a rotating stratified fluid if N>>2a, the

expansion in 8 is regular. However, the difficulty does arise if N>>2Q and a<292 and

stems essentially from Coriolis accelerations coupling between barotropic and baroclinic

wave motions. The equatorial deep jets appear to be in this difficult range.

Phillips (1968), after a controversy with Veronis (1968), argued that it was the

realistically large stratification that saved the traditional approximation to the full linearized

equations when the ocean is very thin. However, his argument was in a WKBJ sense

which assumed that all the coefficients in the linearized equations were constants.

Furthermore, it was assumed in his analysis that waves were sinusoidal in all three

dimensions. The discussion was only made to the effect of the horizontal Coriolis

parameter on the dispersion relation. We know that the equatorial waves have a special

property that their meridional structures are trapped near the equator. The wave structure in

the meridional direction is in a guided wave form which is not sinusoidal. The vertical

Coriolis parameter approaches to zero and the horizontal Coriolis parameter reaches its

maximum at the equator. The assumption of constant coefficients in the equations is

questionable since the @-effect is essential to the waves. Then what is the effect of the

horizontal Coriolis parameter on equatorial waves, on the dispersion relation and also on

the wave spatial structure? What is the dynamical role of the horizontal Coriolis parameter

in general equatorial dynamics? Will the inclusion of other physical factors like

nonlinearity, momentum diffusion and density diffusion make things different? These

questions are still unanswered. Therefore, Phillips' argument is not conclusive and more

analysis is needed.

In fact, some theoretical analyses have been proposed in literature and some of the

results have suggested that the effect of the horizontal Coriolis parameter is significant. It

was first explicitly incorporated into the limit process producing the Laplace Tidal

Equations by Miles (1974) who addressed all assumptions by defining appropriately small

parameters and examining the properties of expansion in them. He found that the boundary



value problem for free oscillations of angular frequency a was not well posed if

a2<N2+4Q2, and that the governing partial differential equation is elliptic/hyperbolic on the

polar/equatorial sides of the inertial latitudes given by ±a = 20sinp if a<2<<N. The

coupling between barotropic and baroclinic modes is uniform in O(S) if a>202, but it

induces significant currents and vertical internal displacements between the inertial latitudes

if a<22<<N. This internal displacement could dominate those of the basic motion, but the

free surface displacement remains as in the traditional approximation. These two types of

motion are distinct in the limit 8-+0 and permit regular perturbation expansions in 8 if and

only if a>20; they are coupled for 8>0, and lead to singular perturbation expansions, if

a<20 (Miles 1974). Low frequency equatorial waves are in the range of a<2f<<N. It is

of interest to investigate this problem in more detail. Section 7 of this thesis is devoted to

this study.

Dobryshman (1980) studied extensively the equatorial atmospheric dynamics with

special consideration given to the horizontal Coriolis parameter. He always incorporated the

horizontal Coriolis parameter in his wave model (1987) and stationary meridional plane

modon model (1988). It was claimed that the parameter was very important. However, in

most of his studies, he always assumed that the pressure gradient was of a special form

claimed to be consistent with meteorological observations. In the oceanographic context,

the pressure gradient distribution associated with the oceanic motion signal in the equatorial

deep ocean is not clear at all. Pressure perturbations need to be computed from the

perturbed motion and are essentially an unknown variable. Therefore, in all of our analysis,

the pressure gradient is only obtained after the final equations have been solved.

Munk and Phillips (1968) showed that the neglected Coriolis terms in their study

were proportional to m113 (m is vertical mode number) for internal modes and the

traditional approximation may be untenable for small vertical scale internal waves. This

result suggested that for small vertical scale internal waves, the horizontal Coriolis

parameter might be significant.
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Models which include the horizontal Coriolis parameter for linear homogeneous

equatorial ocean systems have been studied in fair detail. Stern (1963), Aldridge(1967)

and Israeli (1972) found axisymmetric equatorially trapped normal modes in a rotating

spherical shell of homogeneous fluid that were extinguished by the hydrostatic

approximation in analytical, experimental and numerical approaches respectively.

Bretherton (1964) explained these modes as due to continued reflection of low frequency

inertial waves whose group velocity made a small angle with the axis of rotation between

the boundaries.

Grimshaw (1975) studied the propagation of internal gravity waves in a vertically

sheared flow considering the presence of the horizontal Coriolis parameter. He showed

that it was possible for internal gravity waves to transmit energy through critical levels if

certain relations were satisfied.

Joyce (1988) computed the zonal velocity correction due to the vertical component

of the Coriolis acceleration to the usual calculation of geostrophic currents near the equator.

He found that the correction was significant and reached a peak speed of 10 cm/s close to

the ocean surface.

The inaccuracies in measuring vertical velocity and pressure anomaly prevent us

from being able to have a direct estimate of the importance of the horizontal Coriolis

parameter from real field observations. It seems that this parameter plays a significant but

not dominant role in many analyses. Its dynamic role is still unclear.

This thesis is mainly in two parts. One develops a simple inertial model for the

equatorial deep jets and the other is a systematic examination of the role of the horizontal

Coriolis parameter in several equatorial dynamical models.

We carefully scale and simplify the governing equations in the equatorial deep jets

regime in Section 3 and find that neither the effects of horizontal Coriolis parameter not the

advective nonlinearity can be ignored. After a general discussion of the horizontal Coriolis

parameter in Section 4 we derive a temporary so called potential zonal vorticity
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conservation equation in Section 5. A simple nonlinear inertial model is developed in

Section 6 which is capable of capturing some important features of equatorial deep jets. The

P-effect due to the earth's sphericity confines the jets to the equator. The effect of density

anomaly sets their vertical structure. In Section 7, we study the effect of the horizontal

Coriolis parameter in equatorial linear inviscid waves. It is found that the effect on the

dispersion relation and the velocity structures is not significant because of the presence of

the realistically strong stratification, while the effect on the perturbed hydrostatic relation is

significant within some limited regions. After the inclusion of momentum friction and

density diffusion in Section 8, it is found that the importance of the effect depends on a

nondimensional parameter, -2= fd K, where f0=2Q is the value of the horizontal Coriolis

parameter at the equator, Av is the vertical eddy viscosity for the momentum and Kv is the

dissipation coefficient in the density equation. In the nonlinear equatorial deep jets model,

the effect of horizontal Coriolis parameter is significant.
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Section 3. Scaling and Simplification of Equations in
Equatorial Deep Jets Regime

We start from an equation set uniformly valid in Cartesian coordinate (Miles,

1974).
+ U + v + w - 21sinpv+2Qcosew (3.1.a)

- Ai+Aa2U
Po ax az2

av av av av(31b
Tt+ uT + vT + wF + 292sinepu (3. 1.b)

- a + Av 2
po ay az2

aw aw aw aw 20coseu (3.1.c)
at a-x +a-5y az

aP p a2w
- -l-~ g +Ay-

au av aw+T+- =0 (3.1.d)ax ay az

at ax ay az azo a2a- +__ + v- + w- =Kaa-

where the Boussinesq approximation has been used and the basic hydrostatic part of the

pressure has been removed. For simplicity, the horizontal diffusion terms have been

neglected. It should be noticed that the acceleration terms associated with the horizontal

Coriolis parameter are included in (3.1.a) and (3.1.c). Eddy viscosity and density

diffusivity are Ay and Ky, respectively, and will be assumed constant, as will be the

background vertical density gradient Other notation in the above equations is standard.

Although it is observed in the equatorial ocean that a mean meridional density

gradient associated with geostrophic zonal velocity exists (Joyce, 1988), as a first

approxirr.ation, we neglect this effect since this mean meridional density gradient is very

small and can hardly be distinguished from the perturbations.
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We scale the above equations by the following characteristic scales associated with

the observed equatorial deep jets. Noticing that the vertical Coriolis parameter vanishes on

the equator and gets larger away from the equator, the scaling is not completely uniform.

The following scales are chosen to characterize the equatorial deep jets.

t : T 2 4 years = 0 (1.3 x 108 sec)

x: L. = 10,000 km 0 (109 cm)

y: Ly = 100 km = 0 (107 cm)

z : D = vertical range of Equatorial Deep Jets, D= 2,000m= 0 (2 x 105 cm)

u : U = 0 (20 cm/s) zonal jets velocity magnitude

v : V = U = 0(20 cm/s). Measurements suggest that v and u are of same order

although v is more variable and is a little smaller than u.

w : W = D/Ly U. This relation is from the continuity equation and is due to the fact

that L>>Ly (see below)

P : Po = poU PL2 This scale is chosen so that the meridional momentum equation

is almost in geostrophic balance. That the zonal velocity could be calculated by geostrophic

method was reasonably well confirmed by direct current meter measurement although the

noise level was high (Eriksen, 1982). Greg Johnson (private communication) showed me

some density and N2 section contours which indicated that there was a trapped density

pattern near the equator between 10 N and 10 S, of vertical scale 0(400m).

p = magnitude of density perturbation,

Near the equator, the following approximations are highly accurate

sinp ~ <p = y/a (@-plane approximation)

cos(p -1

The nondimensionalized equations are

S -u+ 5iu--+ v-+ w - yv + T w (3.2.a)
at ax ay az



P 2
=-Si -p+ Ey-a2

ax az2

S -+ Siu-+ v-+w w + YU
at ax ay az

=P + 2v

2 aw 2 awS2 s--+ 2 RSiu-+
at ax

= - Fp+S2E

awv-+
ly

a2

az 2

awl
w---ru

az J

81 Ux + Vy + wZ = 0

+ Siu -+ v ap+
ax ay

a2 P
= K--

Ey =Av
D2$Ly

p=gD

poU@Ly2

KyLy
UD2

-az

R= U
PLY2

g, foD

3Ly2

Si

(3.3)

With typical EDJ scale and the following parameter values: a = 0 (6.4 x 103 km) =

0 (6.4 x 108 cm), fo = 292 = 1.4 x 104 rad/sec (the value of horizontal Coriolis parameter

at equator), $= 2 x 10-13 rad/(cm s), Av = K,= 0(102 cm2/s)

16

(3.2.b)

(3.2.c)

where

(3.2.d)

(3.2.e)

S= 1

Si = Ly/Lx

( The estimates of AV and
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Ky have many uncertainties; we temporarily choose this order in the calculation of

nondimensional numbers). Then, we have

S =3.3 x 10- 3  R =1.0

Si= 10-2 &2 2 x 10-2

Ey= 10-3 S1= 8 x 10-3

n = 1.0 F= 10- 3

where R and II characterize the size of advective nonlinearity and the horizontal Coriolis

parameter related acceleration terms in the equations. It is seen that in the equatorial deep

jets regime, neither of these two effects can be neglected at least by scaling argument.

In the limit S-40, Si--+0, 8 i-+0, &2-+0, we have our simplified equations

v2 - yv + w (3.4.a)

Iav av aP a2V( v +w +yu=- + Ev (3.4.b)ay +Wz ay aZ2

u= + Fp (3.4.c)

+ = =0 (3.4.d)

v -+w -+kw F,--2 where k= a-- (3.4.e)ay az az2  p z -e

This is the governing equation set for equatorial deep jets. F is hard to estimate

because we do not have the magnitude of the density anomaly which is associated with

deep jet flow. F-+ 0 implies that the density field can be determined passively from the

known velocity field. This decoupling between the density equation and the momentum

equation greatly simplifies the mathematical complexity. For a homogeneous ocean, this

decoupling is always true. However, in all of our discussions, F is not zero.

The density equation suggests that the conventionally approximated equation

usually used in wave model z + W = 0 overemphasizes the importance of the

vertical stratification in temporal density variations in the case of interest. For very low
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frequency motion, effects of advective nonlinearity and diffusion of density need to be

considered.

The zonal pressure gradient is ignored after using the scaling argument. From

observations we know that there is a strong PX in the upper 200m of equatorial ocean,

which is believed to be generated by westward trade wind and drives the Equatorial

Undercurrent. However, under the thermocline, the gross isothermal lines are almost

horizontal. There is no evidence that on a basin wide scale the zonal pressure gradient

below the thermocline is significant.

The assumption of no zonal variation is the approximation which was also used in

many undercurrent models (Stommel, 1960, Charney, 1960) although the zonal pressure

gradient was assumed to be constant in Charney's model. These models also assumed that

the surface layer was essentially decoupled from the deep ocean. The thermocline works as

a solid wall which blocks the mass and momentum transfer to the deep ocean. To study

deep ocean phenomena, this block has to be removed.

Most equatorial dynamical models neglect the horizontal Coriolis parameter effect.

One of the reasons for this is probably that these models were developed to model the

equatorial undercurrent and other surface trapped currents. The vertical scale associated

with them is so small that the horizontal Coriolis parameter is not important. However, for

the equatorial deep jets, although the vertical scale for any one jet is small, the overall

vertical extension of multiple jets is large, so the effect may not necessarily be neglected.

The next section is a general discussion of the horizontal Coriolis parameter from

the point of view of the conservation laws of angular momentum and of kinetic energy. In

section 5 and section 6, an inviscid case of governing equations (3.4.a)-(3.4.e) is

discussed. A so called potential zonal vorticity conservation equation is obtained and a

nonlinear equatorial deep jet model is developed.
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Section 4. General discussion on the horizontal Coriolis
parameter

The relative importance of two the Coriolis acceleration terms in the zonal

momentum equation is
2Qcospw cospw

7= - (4.1)20sinpv sinpv

where the numerator is associated with the horizontal Coriolis parameter and the

denominator is associated with the vertical Coriolis parameter. Aftq using the following

approximation close to the equator

cos (e -1 (4.2.a)

sin (p p = y/a (4.2.b)

where a is the radius of earth, then
aw (4.3)
yv

For many equatorial phenomenon, the zonal scale is very long, and the scale of w can be

obtained from the continuity equation as
O (W) = 0 4 UI (4.4)

where H is defined as the depth of the ocean, Ly is the meridional scale of the motion.

Now
7= A (4.5)Y Ly

when y is small, close to the equator, y>>1, and when y is large, away from equator,

y<<1. We define a meridional scale Ly as the distance away from the equator where the

two Coriolis terms are of same importance.
aH

= 1 (4.6)
Ly

Ly = (4. 7(4.7)
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For typical oceans, a = 6.4 x 106 m, H = 5 x 103 m, then Ly = 180 km, which is about

1.5*N or 1.5*S away from equator. For the atmosphere, if we choose height scale, H =

18 km then Ly = 340 km, which is about 3*N or 3*S away from equator. The above

argument seems to suggest that the Coriolis component associated with the horizontal

component of earth's rotation 2Dcose is not negligible within a significant meridional band

(-Ly, Ly). To study this in more detail, let us look at its role from the point of the view of

the principle of angular momentum conservation.

The exact angular momentum principle is
d rco~ u+Qcsp

rs(u + Ircose) = F xrcosP (4.8)

which can be obtained from the zonal momentum equation
du FX + 2 c + (v sine - w cose) (4.9)dt rc oUs 9
d a u a Iva a

where dt rcos r

F% is the total zonal external forcing exerted on fluid element under consideration.

A dimensional conservative form of Eq.(3.4.a) can be written as
u - y2+ 21z] = F. (4.10)dt a

where Vj v + wz and the coordinate system is set so that z is positive upwards and

z = 0 at ocean surface, y = 0 at equator and y is positive northward. It can be seen that if

the term 292cosew is neglected in the zonal momentum equation, then the third term on the

left hand side of (4.10) 20z will disappear at the same time. Equation (4.10) means that

the angular momentum u - - y + 2z is constant along a streamline in the meridional

plane if Fx = 0.

Under the scale of interest, we can also derive (4.10) directly from (4.8). Write r =

a+z, where a is the radius of the earth defined as the distance from the center of the earth to

ocean surface, for shallow ocean z<<a. Noticing that
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2
cosp~. 1I - for p = y/a <<1 (4.11)

2

the angular momentum in the argument of (4.8) can be approximated as

rcosp(u+C2rcosp)

= (a+z)(1 2 )u + 0(a+z) 2( - P2 2

= au + Q(a2 + 2az)(1-p 2) + O(z 2, zu, z(p2, ( 4) (4.12)

= !a2+ a[u - i y2 + 292z]

Apart from an additive constant C2a2 and a multiplication constant a, the conserved

identity is just [u - Q y2 + 2Qz], which is exactly the same argument on the left hand side

of (4.10). Therefore, (4.10) is consistent with the principle of angular momentum.

conservation if the equatorial -plane approximation and the shallow water approximation

H/a<<1 hold. In another words, to have a consistent angular momentum conservation

principle, 2Qz should be kept in the approximate angular momentum expression. Far from

Q 2
the equator, 29z is much smaller than j Y and the latter term dominates. The latitude at

which these two terms are of the same order is

L = 2H -+ L = f2OH (4.13)a Y Y

which is the same to (7) apart from a factor of 12.

If the projection of a three dimensional particle path on the meridional plane is a line

A-B-C as shown in Fig.4. 1, then this line is a streamline on that plane. A fluid particle

moves upward from A in equatorial deep ocean to near surface B, then moves poleward to

position C. Denoting the vertical and horizontal excursions as Az and Ay respectively, and

assuming Fx=O, there is no net zonal angular momentum torque forcing, the zonal velocity

at A and C relative to u(B) are

u(C) - u(B) = (4.14.a)
2

u(A) - u(B) = f0 Az (4.14.b)
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Equation 4.14.a is just the simplest form of the conservation of vertical potential vorticity

(planetary vorticity in this case). It approximately explains the trapping of the equatorial

undercurrent according to Fofonoff and Montgomery (1955) and Pedlosky (1987). For Ay

= 350 km, u(C) - u(B) = 120cm/s, this value is very close to the magnitude of the

equatorial undercurrent velocity. For f0 = 292 = 1.4 x 10-4 rad/sec, Az = 5 km, a velocity

difference between ocean surface and ocean bottom is about 70 cm/s. The same amount of

velocity difference can be attained by a meridional excursion of Ay = 250 km. Of course,

the vertical excursion Az of real motion will not be as large as the ocean depth generally.

For example, the presence of the stratification will prevent so large an excursion from

occurring. However, the effect of this difference can be strengthened or weakened by the

existence of zonal pressure gradients and other zonal forcing. Since the effects in different

dynamic models are different, separate discussions in specified situations are needed. The

next several sections are devoted to that. A general conclusion, however, is that close to

equator, within Jy <i Ha, the Coriolis acceleration term 2cospw cannot be neglected in

the momentum equation if the angular momentum conservation principle is to be satisfied.

From all three governing momentum equations, we can obtain an energy

conservation principle by multiplying the zonal, meridional and vertical momentum

equations by u, v, w, respectively and then summing
d (M2+V+ = -W.VP +(4.15)
dt 2 2 2/

It can be seen that if the Coriolis acceleration term -291cospu in the vertical momentum

equation is neglected, then the energy equation (4.15) will be incomplete. There would be

an extra term -21cospuw on the right hand side of (4.15). Although the inaccuracy maybe

small, after a long time integration of the governing equation the distortion of fluid motion

due to the small incompleteness in energy conservation may be significant. In the parameter

range of interest, ( see Section 3), this incompleteness is significant. So we reach another

conclusion, to satisfy the energy conservation equation, the vertical Coriolis acceleration
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term should be retained in the vertical momentum equation as long as 29cospw is

important in the zonal momentum equation.

Most work on equatorial dynamics has concentrated on the upper ocean (shallower

than 300m) phenomena, so the effect of horizontal Coriolis parameter is very weak because

of the short vertical ranges. However, many papers scaled the horizontal Coriolis parameter

to be negligible, even when the vertical scale was chosen to be the ocean depth, as in

Moore and Philander (1976). The reason may be due to their special choice of meridional

length scale Lx = Ly. It would not be very proper to scale many strongly meridionally

trapped narrow equatorial currents including deep jets as Lx = Ly.

The equatorial region where the horizontal Coriolis parameter is significant is small,

about 1*N ~1*S, and the analysis of the fluid dynamics within this region may be very

different from that outside. In mid-latitude f = 2Msino + $y, the two parameters

20sinoo and $ are all important, and 2Msinoo is the principal factor which satisfies the

geostrophic relation approximately. While at the equator, the P effect is dominant, 29sino

-4 O.The closer to the equator, the larger is P. The 3-effect is more significant in low

latitude than in high latitude. This may be the reason why that in low latitudes, the flow

tends to be more zonal than in mid-latitudes. The main feature of the equatorial dynamics is

that as the vertical Coriolis parameter approaches zero, the horizontal Coriolis parameter

reaches a maximum of 20 as the equator is approached.
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Section 5. Potential zonal vorticity conservation

To have the physical meaning clearer during the mathematical derivation, we will

use the dimensional variable formulations. From (3.1 .a) - (3.1 .e), by assuming two

important equatorial deep jets features,~~( 3' a " , and neglecting dissipation, we

have
au au

v + w - yv +f0 w = 0 (5.1.a)

vav av (I..b
- + w + yu = - (5.1.b)

aw aw 1  pv--+ w---fo u=--- g(5lc
a y az - PO aZ PO

v p+ + w ap= 05ay w az (5.1. d)

av aw
+ -;= 0 (5.1.e)

aPo
where ~---is the mean background vertical density gradient, a function of z only.a z

It is easy to rewrite (5.1.a) and (5.l.d) as

a @ya +fOZ = 0 (5.2)

(v + 9 p z = 0
a a z (5.3)

Eq. (5.2) and (5.3) are angular momentum conservation and total density

conservation respectively. The zonal angular momentum consists of three parts, the pure

zonal velocity relative to the earth, and the effects associated with the vertical component

and the horizontal component of the earth's rotation. The sum of the latter two parts may be
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@3y2

called the planetary zonal velocity, up = - + foz since both of them are related to the

earth's rotation.

If we define a streamfunction p in the meridional plane as

v = 54)
az ay

then,

U 2 + fo Z = Qi(e) (5.5)

P + -Od Z = Q2(eP)
a z (5.6)

where Qt(p) and Q2(e) are two arbitrary functions of (p. So in this case, the zonal angular

momentum and total density are conserved along streamlines in the y-z plane.

Another conservation equation can be obtained by eliminating the pressure P from

(5. .b) and (5. .c) and forming an equation for the zonal component of relative vorticity

a av a LU +au g ap
av + az y az z ay P 07 (5.7

The zonal component of relative vorticity is

a v aa (5.8)
az ay ay 2 a Z2-

Its variation when a fluid particle moves along a streamline in the y-z plane is

affected by:

(a) Y g + foa ; the scalar product of the Coriolis parameter f = (0, fo, s y) and the

zonal velocity shear V u = (0, )
ay az

g ap
(b) Po a y ; the meridional gradient of gravity force variation due to the presence of the

meridional gradient of density anomaly.
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Notice, by using (5.5)

@y -+ fo-
az ay

DQi aQi
(@y -+fo--)

a z a y
= Q, y a+ fo )

d e az ay

dQ JI, - + fo z

d Qi Sy2

=J9' d e 2 + fo Z (5.9)\d(p' 2 '

where the operator J (P, .) is the Jacobian, and using (5.6)
aP aQ 2  dQ (P dQ2j(,z)=J(, z ) (510)
a y a y dep ay de( de -p

So, equation (5.7) can be transformed into

J (,-V 2p+ d ( + foz dQ z) - 0 (5.11)( (9dje( 2 po de(

The second argument in (5.11) is a conserved quantity along streamlines in the

meridional plane, that is
2 d~j P2g dQ2

-V dP + d ( + foz) - d z = Q3(e) (5.12)

This conserved quantity may be called the zonal potential vorticity and is composed

of three parts

(a) -V2e , pure kinematic relative zonal vorticity;

dQi Ly2(b) - + foz) , the variation of zonal momentum across meridional streamlines

multiplied by planetary zonal velocity;

g dQ2
(c) po -ez, the variation of total density across meridional streamlines multiplied by

the geopotential.
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Equation (5.12) in the absence of Coriolis parameters (the second term on the left

hand side of the equation) has been derived by Long (1958) and Yih (1960) for a non-

rotating stratified fluid system. The solutions of their linearized equations were discussed in

detail and could successfully explain the phenomenon of flow over a barrier and flow into a

sink. We will explore the equatorial deep jet solution of the potential zonal vorticity

conservation equation (5.12) when the second term is included in the next section.
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Section 6. An inertial equatorial deep jets model

As reviewed in Section 1, we know that linear equatorial wave models are

incapable of fully explaining the deep equatorial deep jets due to the difficulty in showing

how wind generated energy propagates down to the deep ocean. The following question

was raised. Can this phenomenon be explained as free, inertial motion in the deep ocean

below the thermocline? From the scale analysis using observed magnitudes of the

phenomenon, it is seen that the advective nonlinearity cannot be simply neglected.

Although many equatorial phenomenon can be successfully interpreted by linear wave

models, even these phenomena may be in nonlinear range. It is still an interesting question

as to what is the effect of nonlinearity. This section proposes a nonlinear inertial model for

the equatorial deep jets.

From the last section, we know that steady, zonally independent equatorial ocean

dynamics are governed by three first integrations. They are: zonal angular momentum

conservation (5.5), total density conservation (5.6) and the potential zonal vorticity

conservation (5.12). We expect that the equatorial deep jets can be described by these

conservation equations. To discover exact solutions of them, it is natural to consider, as a

first step, the circumstances in which the potential zonal vorticity conservation becomes

linear in (p. At this stage, one may have two different approaches. Since the functions

Q1(9), Q2(P) and Q3(p) are related to the conditions away from the deep jets, one may

either try different far field conditions and see whether these conditions will make the

equations linear, or assume the equations to be linear to start with and inquire as to what the

corresponding conditions must be. It is difficult for us to follow the first approach since it

is as yet unclear what kind of relationship exists between the equatorial deep jets and the

extra-equatorial deep flow. It is also not clear how surface wind stress forces the deep flow

by penetrating through the equatorial undercurrent. Therefore, we will adopt the second
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approach. This is evidently more exhaustive and more economical if the linearized

equations are adequate. Of course, this is an ad hoc assumption. It is equivalent to

choosing a type of solution from an infinite number of possible solutions. The most general

linear form of Eq.(5.12) is
2 @3y 2 g- V 2p + ( A p + B )- + fo z )-z (C p + D =E Q + F (6.1)

2 PO

where three arbitrary functions are chosen as = Ae+B, 2 =C(p+D, Q3=Ep+F .It is
d(p d

observed that the equatorial deep jets are strongly trapped near equator, and we assume that

away from the equator, the meridional and vertical motion will approach zero, (p -> 0,

which requires from (6.1)

B=D=F=0 (6.2)

At this stage, assumption (6.2) is the best assumption we can make. ( A even stronger

condition, is v =0, in the Kelvin wave model.)

Then the corresponding arbitrary functions are

Qi()=A 2+Qio (6.3.a)2(

Q2((p)=w 2 +Q20 (6.3.b)2

Q3(p)=Ep (6.3.c)

From (5.4), (5.5) and (5.6), the zonal velocity, meridional velocity, vertical velocity and

density spatial structure can be written as

u = - foz + Aq2/2 + uo (6.4)

v az ay (6.5)

p+ PO dz=Ce2/2 +po (6.6)

where the constants uO and p0 are used to replace Q1o and Q20. They can be obtained after

the streanfunction has been computed from the potential zonal vorticity equation. It is
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noticed here that zonal velocity u consists of two major parts, the planetary zonal velocity

and a perturbation part. We explore separable solution of (6.1) now under condition (6.2),

let

<p=Y(y)Z(z) (6.7)

then the equations for the meridional structure and vertical structure respectively are

Y" + 2 + A 2 ) Y = 0 (6.8)
2g

Z" + [E -A2+ ( - Afo) z ] Z = 0 (6.9)PO

The double prime " stands for the second derivative with respect to y and z in (6.8) and

(6.9), respectively. The Y structure equation is an eigenvalue problem with Hermite

functions as eigensolutions which are all trapped near the equator if condition Y-a 0 as y

approaching to infinity is used. Let

y = Ly 4 (6.10)

where Ly is a meridional trapping scale, 4 is nondimensional, then
d2Y + [ X2.+ A @Ly 2/2] Y =0
d4 2 (6.11)

Having eigensolutions requires

A L4/2=-1 (6.12)

X2 = 2 j +1 j=0,1,2,3... (6.13)

then

Y=j=e-4 22Hj(4)

(2Jj!,1/2)1/2 (6.14)

where

Hj(4) =(- 1)Ie4- e-42 (6.15)
de

Eliminate Ly2 from (6.12) and (6.13), let Xj be the eigenvalue corresponding to the

jth mode Yj, then

X = - (2j+1)2 (6.16)
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We notice that there are many arbitrary constants in this model. These constants

can only be determined by fitting the solution to the observed features. So this model is

only a qualitative model used to see whether a pure free, inertial equatorial deep jets model

is possible. Eq. (6.16) states that the coefficient A has to be negative to have real

eigenvalues. The first three horizontal structure eigenfunctions of (6.14) are shown in

Fig.6.1.(a), Fig. 6.1.(b) and Fig. 6.1.(c), where , is a meridional nondimensionalized

coordinate. The trapping scale Ly from (6.12) is related with @ and A, where 5 is

associated with the earth's sphericity and A characterizes the amplitude of the alternating

part of the zonal velocity in (6.4). Because this model is nonlinear, the amplitudes of the

velocities can be finite. The vertical structure equation becomes

Z" + [E -(2j+1) + (-&C - Afo) z Z 0 (6.17)
2 PO

Let

81 = E - (2j+1) - (6.18)

82 = -LC - Afo (6.19)Po

and change the coordinates such that

(51+&2z) =aCl (6.20)

where the transformed coordinate T1 is positive everywhere to have oscillating solution

Z(z). Since z<0 everywhere, we need 82 < 0. Since Afo < 0, C must be negative. The

effects of the horizontal Coriolis parameter come from two places. A direct addition of

constant vertical shear foz to the zonal velocity (6.4) and some effect associated with Afo in

the vertical structure equation (6.17). Notice from (6.4) and (6.6) that C is the amplitude

of density anomaly and that A is the amplitude of zonal velocity anomaly. The significance

of this second effect depends on the magnitude of A and C. If the streamfunction is O($), C

is of the order of the density anomaly, O(10-3/ 02) x Po then A is O(10cm/s / $2 ). Thus,
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gC/p 0 is much much larger than AfO. So the effect of horizontal Coriolis parameter in the

vertical structure function is not important. The only effect is in the background zonal flow.

a can be chosen such that il is a nondimensional variable. If 5 1 > 0, the ocean

surface z=0 corresponds to il= Si/a 2 >0. Except for a translational change to vertical

structure, we can assume E=0 without affecting the solution. E=0 and F=0 in equation

(6.1) means that we have assumed constant potential zonal vorticity. This indicates that the

potential zonal vorticity does not change in meridional plane for all streamlines. Let

2
02

then

d2Z-
d +T1i2 =0 (6.21)

here the index j is attached to the constant y and the vertical structure function Z since they

are j dependent. Its solution can be obtained as
Zj (1) =T1/2[cjJ1/3(ZtjT3/2)+djJ. 1/3(.y.j3/2)] (6.22)3 3

If we impose Z=0 at two fixed depths, possibly representing the bottom of

thermocline and the ocean bottom, then (6.17) is also an eigenvalue problem. Here we have

too many undetermined constants, so we only examine the qualitative behavior of the

structures of the solution. The vertical structure J1/3 is shown in Fig.6.2, Ti is a vertical

nondimensionalized coordinate, when yj=1. This structure oscillates and its amplitude

decreases with depth. The oscillating vertical scale is also decreasing with depth. Another

root J.1/3 is of very similar structure except with a phase difference. The contour of the

streamfunctions for the first three horizontal structure functions and the vertical structure

function J1/3 are shown in Fig.6.3.(a), Fig.6.3.(b) and Fig.6.3.(c). The general solution

of the streanfunction is

p= Yj(y) Zj(z) (6.23)
j=0
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Note that the solution we have obtained is in a nonlinear flow regime and the

amplitudes of all variables need not necessarily be infinitely small. Streamlines, <p are the

contour lines in the meridional plane corresponding to the projection of fluid particles in

three dimensidnal space onto the meridional plane. It is clearly equatorially trapped. The

vertical structure is oscillating with depth. The vertical scale decreases with depth and the

amplitude also decreases with depth.

The meridional velocity and vertical velocity contours in the meridional plane for the

first mode are shown in Fig. 6.4 and Fig. 6.5. Notice that the meridional velocity becomes

larger in the deep ocean as the vertical scale of the streamlines becomes smaller. This may

not be realistic. However, our model neglected the effects of diffusion. Diffusion has a

more significant effect on deeper small scale motions. The model shows that the vertical

scale gets smaller in the deeper ocean, so the diffusion can dissipate the deep features

away. Thus the inclusion of dissipation may prevent the meridional velocity from

increasing with depth. The density anomaly structure is shown in Fig.6.6. It is oscillating

with respect to a mean which is increasing with respect to depth. This structure is not

necessarily unstable due to the presence of an acceleration toward the center of curvature in

the cell trajectory in the meridional plane. This density anomaly is also trapped at the

equator and with a vertical oscillating scale the same as that of the zonal velocity.

We can still see some features of EDJ in the very deep ocean from the

observations, but they are quite obscure. The effect of the bottom on the EDJ is not clear. It

seems that different dynamics are involved near the ocean bottom. So, a bottom boundary

condition is hard to propose. A similar problem occurs in the upper ocean for the upper

boundary condition. We know that the Equatorial Undercurrent above the EDJ and the

other currents like the North Equatorial Current, South Equatorial Current, North

Equatorial Counter Current and South Equatorial Counter Current all complicate the

problem. It is believed that surface wind stress and the associated surface zonal pressure

gradient are important for these surface or near surface current systems, especially the
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Equatorial Undercurrent. The connection between this system and the equatorial deep jets is

not clear. So a suitable upper boundary condition is not available. Even the meridional

condition we have used as p - 0 is not completely unarguable. These difficulties

prevented us from choosing the arbitrary functions Qi, Q2 and Q3 more realistically and

from determining the constants in the expressions for velocity and density more rigorously.

We can only describe the spatial structures of these variables in a very qualitative way.

The full solution of p comprises many modes. All of these modes are equatorially

trapped and alternating in the vertical. The projection of motion in the meridional plane

appears as multiple cells. Higher modes correspond to more cells in the y direction. It is

seen from the horizontal structure equation (6.11) that the -effect is the main reason for

trapping.

The zonal velocity, u, of (6.4) is composed of four additive parts.

(1) $y2/2, the contribution of the vertical Coriolis parameter in the zonal momentum

equation. It increases with latitude, the distance away from equator. So this zonal velocity

part is eastward away from equator relative to the flow on the equator. If Ly =100km =107

cm. This part is O(10cm/s).

(2) foz, the contribution of the horizontal parameter in the zonal velocity. This provides a

constant vertical shear. The deeper fluid moves eastward relative to the particle above it. If

z= lkm= 105cm, this part is O(10cm/s), which is significant.

(3) uo, a constant which can not be determined here.

(4) A(p212. The zonal velocity part associated with the meridional motion. It is oscillating

vertically about a mean which is increasingly westward in shallower ocean.

If f0 =0, this large scale mean shear will disappear, but the alternating anomaly part still

exist.

Planetary velocity is defined as up = - 20z in section 5 since both terms are

associated with the rotation of the earth. The angular momentum conservation states that for
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stationary, zonally independent equatorial flow, the zonal velocity has a background

contribution up. Since the dynamics of the upper equatorial ocean is controlled by surface

forcing, the westward trade wind acts as a main driving force to the equatorial upper ocean

current system. The background zonal velocity up makes sense only in the deep equatorial

ocean below the thermocline and very close to the equator ( a requirement of the -plane

approximation). The free inertial model shows that the equatorial deep jets are

superimposed on this background mean planetary flow. The following is to review some

observations which are consistent with this result.

The planetary zonal velocity is composed of two parts. The first part is a

parabolically distributed zonal velocity in the meridional plane. The zonal velocity of the

fluid away from the equator should move eastward relative to the fluid motion on the

equator. The second term is associated with a vertical shear. The zonal velocity (positive

refers to eastward) increases for the deeper flow. The deeper fluid moves eastward relative

to the zonal motion of shallower fluid.

(a) Indian Ocean.

Fig.6.7 shows the zonal velocity profiles observed by Luyten & Swallow (1976) in

equatorial Indian ocean. These profiles are made from stations distributed on the equator. It

is seen that a mean vertical shear exists for all profiles in the upper 2km.

Fig.6.8 is from Ponte and Luyten (1990), (a) and (b) are observed three month

apart. It is very clear that a mean vertical shear exists for all profiles in the upper 3000m.

(b) Pacific Ocean.

Fig.1.1 is from Firing (1987). This is an average of zonal velocity over 21 cruises.

The shaded area moves westward. The unshaded area moves eastward. It is seen that there

is a mean vertical shear. The fluids at depths between 200m and 1000m very close to the

equator generally move westward, while the fluids below 1500m generally move eastward.

It can also be seen that at latitudes, 1.50 N and 1.50 S, there are two big blocks of fluids

moving eastward. This can fairly well be described as planetary zonal velocity.
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Fig.1.2 and Fig.1.3 are taken from Ponte and Luyten (1989). They are zonal

velocity profiles along equator (Fig. 1.2) and across equator (Fig. 1.3). Fig. 1.2 again

shows a mean vertical shear in the upper 3000m of the oceans. The shears in all profiles are

highly correlated. Fig.1.3 shows the profiles of stations along a latitudinal section at 1380

W. The five profiles close to equator show the vertical shear in the upper 2000m. The other

two profiles located on 20 N and 20 S both show a eastward flow in the upper 1000m.

Fig. 6.9 (Hisard et al, 1970) and Fig.6. 10 (Wyrtki & Kilonsky, 1984) are contours

of zonal velocity along meridional sections. The measurements are too shallow, only

extending to 500m and 400m, respectively. However, the eastward flows can still be seen

about 1.50 away from equator. The upper portions of these two eastward flows are

sometimes called subsurface counter currents and are usually below thermocline extending

to depth.

(c) Atlantic Ocean.

Fig.6.1 1 (Ponte, et al. 1990) was the only profile available to us for the Atlantic

Ocean which also indicates a mean vertical zonal velocity shear on the equator.

Equatorial planetary zonal velocity is widely observed in all three major equatorial

oceans. This is the background large scale (relative to the size of the deep jets vertical scale)

mean motion. Thus observation confirms one of the results of the inertial model (section

6), that the equatorial deep jets zonal velocity signal is superimposed on a mean

background zonal planetary velocity. Although most measurements mentioned above are of

short temporal duration, the equatorial planetary zonal velocity patterns can be seen in all of

these observations.

So, the zonal flow is oscillating vertically relative to a larger scale mean motion

caused by the planetary zonal velocity and a part from the anomaly itself. The small vertical

scale part is also trapped near the equator.

Although it is impossible to determine all the arbitrary constants in the model due to

insufficient information on boundary conditions and far field conditions, we can do a
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consistency check since most of these constants are interrelated. The strategy is to suppose

that a single mode can inteprete the equatorial deep jets, and assume the magnitude of the

merional streamfunction is of order $ =O(5x 106 cm 2/s), and then calculate the magnitude of

the other variables based on some known information to see if these magnitudes are close

to reality.

From (6.5), the magnitudes of the meridional and vertical velocities can be

evaluated as 0(v)=O($/H) = O((5x10 6)/(5x10 5)) = O(10cm/s), O(w) =O($/Ly)=

0(5x10 6/107)= O(0.5cm/s). The vertical alternating scale can be estimated in the following

manner. From the vertical structure Fig.6.2, it can be seen that the alternating scale in the

nondimensional variable Ti is 0(1). Then from (6.20), the dimensional vertical scale is

Lz=a 2/&.Since y=1 is used in the plot, a2=&22/3 from the relation above (6.21). 82=gC/po

from (6.19) because the second part is very small as justified before. Then,

Lz=1/&21/ 3=(gC/po)-1/3 =0 (gx10-3/ $2)-1/3. If we plug in g=10 3 cm/s 2 and

$=O(5x10 6cm 2/s), then Lz=0(3x 104cm). Suppose the perturbed part of the zonal velocity

(6.4) is of order O(10cm/s), A$2=0(lOcm/s), then A=0.4x10-12 s/cm 3.Then, the

meridional e-folding scale Ly can be estimated from (6.12) as Ly=O((2/sA)1/ 4) = 2x1O6cm.

Therefore, it is seen that if we assume the equatorial deep jets are a single mode of

the free, inertial motions, the magnitude of all the variables except the meridional length

scale can be reasonably well fitted with observations. The model gives a meridional length

scale about five times smaller than that observed in reality. Several factors could modify the

meridional scale, including changes in the arbitrary chosen functions, and the presence of

dissipation. Exploration of these effects is beyond the scope of the present work.

This model in the nonlinear flow range presents some observed equatorial deep jets

features. However, it still has several defects. The velocity and density structures are still

arguable compared to observations. Both the horizontal and vertical viscous effects, the

thermodynamic forcing effect and the zonal variation effect are all neglected in this model.

However, it does show that the interpretation of equatorial deep jets in terms of free,
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inertial flow is possible, if more physical factors are included and more observational data

are known to provide better choice of the arbitrary functions. It is the advective nonlinearity

which is responsible for the existence of the alternating deep jets. To further study this

phenomenon, analytical solutions of the zonal potential vorticity equation with the different

types of conservative functions are needed. A complete understanding would require

numerical computation. For a three dimensional steady numerical model, very few zonal

grid points or modes are needed.
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Section 7. Role of horizontal Coriolis parameter in linear
equatorial waves

It is argued in Section 2. that the role of the horizontal Coriolis parameter in

equatorial dynamics is not very clear. We will examine its role in two linear cases. (1)

inviscid three dimensional low frequency waves. and (2) steady, viscous linear motion.

Using the traditional approximation, equatorially trapped waves have been studied for

many years ( Matsuno 1966, Moore and Philander, 1977). They have also been observed

in equatorial oceans ( Wunsch and Gill, 1976). The traditional approximation is difficult to

justify a priori, although some observations and some a posteriori justifications suggest that

the horizontal Coriolis parameter is not important. But when the equator is approached, the

neglected Coriolis acceleration terms are not necessarily smaller than the vertical Coriolis

parameter-related terms. It is expected that very close to equator, the dynamics would be

somewhat different from the dynamics when the traditional approximation is made. It is

interesting to look at the character and size of the differences.

For infinitesimal small amplitude, inviscid waves, we have governing equations

uniformly valid as follows:

ut - @yv + fow = -Px/po (7.1)

vt - pyu = -Py/po (7.2)

-fou = - - Pz - - g (7.3)
PO PO

Ux + Vy + wz = 0 (7.4)

Pt + wPOz =0 (7.5)

The notation fo = 2Q is again used. Very close to the equator

2fcosp 29

20sinp = 2M2p = 20 y/a = @ y.



40

These approximations are very good for y/a<< 1 to within 50 north or south away from the

equator. We notice that the vertical momentum equation is not a hydrostatic relation and the

time derivative of w is neglected. For low frequency waves, periods are longer than 1/20,

and w << u, so wt << fou. The Boussinesq approximation has been used. To make the

physical meaning of all terms clear during analysis , we still use dimensional variables.

The zonal vorticity equation can be constructed by eliminating variable P from (7.1) and

(7.2), we have

(vx-uy)t + pyUx + @yvy + @v - fowy = 0 (7.6)

Also eliminating P from (7.1) and (7.3), results in

uzt - pyvz + fo(ux+wz) = g (7.7)Po

By using (7.5) and (7.7), the density p can be eliminated

Uztt-pyvzt + fo (ux+ wz)t = N2wx (7.8)

where N = 9FOz is the Brunt VaisilA frequency. In the following study, it is

assumed that N2 is constant.This assumption is not generally valid for the real ocean, but it

should be sufficient to fulfill the purpose of only making the comparisons here.

We assume our solution is of form

- i(at+kx+mz)
V = V e (7.9)
w w

Then (7.4), (7.6), (7.8) give

(iki-Ey)ia+@yik+$yVy+$V-foWy=O (7.10)

iki- Vy+ imnw=0 (7-11)

-ima2ld + PymoV - foiavy = ikN2W (7.12)

Eliminating W from these three equations, we have

-am(ikV-iy)-km yi+impyVy+im3V+fo (ikii + vy)y = 0 (7.13)

-im2a 2U+@yVm2a-ifoamyy = kN2(-iki - vy) (7.14)
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Eliminating u from (7.13) and (7.14), an equation for the meridional velocity (amplitude

part) is

a(N2 +f2)Wyy + 2ifoampyfy (7.15)

+ [-a(k2N2-m2a 2) - p2y2m2a + PkN2 + ifomp(a]V = 0

This is a second order variable coefficient ordinary differential equation. Let V = G(y)Q(y),

choose G so that the coefficient of first derivative of Q with respect to y vanishes. Then we

obtain

.n 2

G = e 2(N +f (7.16)

Then, an equation for Q is

Q + [A- Cy2]Q = 0 (7.17)

where

A = - (7.18)
a(N2+fo) N2+fo'

CNm22
2 (7.19)

(N +f~)

Let y = kli, where X is a meridional scale parameter

+ [X2A - C2]Q =0 (7.20)

This is an eigenvalue problem, when

X4C = 1 (7.21)

2A = 2j+1 (7.22)

Q has eigen solutions. So, the dispersion relation is

- (k2N2-m2a 2) = (2j+1)mpN (7.23)

and

N N2+f2
o V Nm@
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Let 9j(1) be the solution of
2

-- 2+ [(2j+1)-TI = (7.24)

Then, the our meridional velocity is

i(at+kx+mz - f PO Y

2 2
v(x,y,z,t) = e 2(N +f) (

(7.25)

or, in real form

v = j(-)cos at+kx+mz - fom@3 Y2 + (.
2(N2+f) (7-26)

Discussion:

(a) Dispersion relation and group velocity

The horizontal Coriolis parameter fo does not appear in dispersion relation (7.23)

which suggests that the group velocity in the zonal and vertical directions has no

differences from that of the conventional equatorial wave model. If we use the generalized

equatorial wave model ( no traditional approximation is made) to explain the deep jets, the

difficulty with the vertical downward group velocity being too small to provide deep jets

energy from the upper ocean still exists. This result, combined with the scaling arguments

in section 3 again suggests that some nonlinear effects may be involved. It is seen in the

solution (7.26), that the y structure and z structure are not totally separable, a parabolic

phase contribution is in the phase. Although the effect of the horizontal Coriolis parameter

is missing in the dispersion relation, its effect is in the structure of the physical quantities

and needs to be studied. The following discussions address the role of the horizontal

Coriolis parameter on the meridional structure of various physical quantities.

(b) Phase and modified depth
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Although the dispersion relation (7.23) does not involve fo, the phase relation

(7.25) does. Given that
fom@3

0=at+kx+mz y2+@O
2(N2+f2)

l2
=at+kx+m(z 4 y2)+(Do (7.27)

2a(1+4 2)

where p=2Q/N denotes the ratio between the relative effect of the horizontal component of

earth's rotation near equator and vertical stratification. In most of the ocean and atmosphere

S<<1. Usually g=O. 1 away from thermocline. We can see that although there is phase

propagation in the y direction, it is not linear, which is different from the conventional

wave. The phase speed in the y direction depends on the latitude. If we define

22
zb= Z 2a(+ 2) as a modified depth, we can see that for the meridional velocity, the

effect of the horizontal Coriolis parameter is completely involved in the modified depth.

Fig.7.1 (a), (b) show the comparison of real depth and modified depth for different p. It is

clear that for large ±, the modification is very important, while for small i, the modification

is not significant.

(c) Meridional velocity structure

Apart from a phase modification, the modal velocity structure of the meridional

velocity structure is the same as the conventional structure except for an elongation or
2A

contraction factor (1+42)2 of meridional scale depending on the ratio p. The elongation

factor is graphed in Fig.7.2, which shows that when p is small, this modification is very

small.

For N2>>f2

+ f /m2-v = (pj(4-co art + kx +mnZ - fPy2 (7.28)
X 7 N2I

where
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X=(-N-)2
MP (7.29)

A meridional scale is associated with the extra term in the phase,

fom L = K (7.30)

2N22

If parameters f. = 292, D = m = 2 (Lz is vertical wavelength) are inserted, then

Ly = a: (7.31)

For Lx = 10,000km, Lz= 100 m, a = 6.4 x 103 km, 2 = 1.45 x 10-4 rad/s, and N = 10-3

rad/s, then, Ly = 120 km. Notice this scale is independent of frequency and meridional

mode number if the vertical wavenumber is given. So if there are lots of meridional modes

in the motion, this meridional length scale will still be the same.

Ly is proportional to the Brunt VaisAla frequency, so if the vertical wavelength is

much smaller than the variation scale of N, then Ly can be approximately viewed in a

WKBJ sense as being larger in the upper ocean and smaller in the deeper ocean. For long

vertical scale Lz motion, Ly is even larger.

(d) Zonal velocity

Knowing the meridional velocity, we can compute the zonal velocity from (7.14)

and get

- i(at+kx+mz f4 y2) (7.32)u = e ' 2(N2 An (Ur+iui)

where

fomNypj foam 2jNm7
ur= '2f j- (7.32.a)

(kN+ma)(N2 +f$) k2N2-m2 a2  N 2+f

U -N2mpygj i kN2 2jNm@ P-1 (. .b
(kN+ma)(N2+fIO) k2N2-m202 VN2+f2O

Using the -raditional approximation is equivalent to setting fo=0 in the above equations

which result in exactly the same solution as that obtained in the conventional way. When
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fo=O, the modified phase effect is missing and also ur-O. In the real ocean << 1, so the

contribution of ur to the amplitude is very small. Since the phase modification effect has

been discussed in (b), only comparisons of amplitude for modified and unmodified waves

under different set of parameters are discussed hereafter.

We choose the following values of physical parameters as our standard set and

make the comparison when one of them is changed: Meridional mode number j=3; vertical

wavelength Lz=600m; Brunt Vaissli frequency N=1.7x 10-3 rad/s; zonal wavelength

Lx=1OOOkm. The corresponding frequency can be computed from the dispersion relation

(7.23). Fig.7.3 (a),(b) show the comparison when meridional mode number is changed (a)

for j= 1 (b) for j=5. The solid curve shows the amplitude Vul +u of the meridional

structure for the modified wave and the dashed curve for the unmodified wave. It is seen

that the modification is very small. Fig.7.4 (a),(b) are the comparisons of amplitude under

a standard parameter set except that the vertical wavelength is changed: (a) for Lz=4000m

and (b) for Lz=100m. The difference is insignificant. Fig.7.5 (a),(b) show the effect when

zonal wavelength changes: (a) for Lx=107m (b) for Lx=10 5m. All these plots show that the

modifications are very small. Fig. 7.6 (a), (b) show the effect of vertical stratification. (a)

for N=10- 3 rad/s. (b) for N=0.2 x10-3 rad/s. It is seen that for small stratification, the

modification is very large. Fig. 7.7 (a), (b) show the effect on different types of waves: (a)

Y=1.4 x 10-7 rad/s for lower frequency wave and (b) a=5.1x10-6 for higher frequency

wave under same parameter set. It is seen that the modification is small for both higher and

lower frequency waves.

A short conclusion is that the effect of horizontal Coriolis parameter on linear

equatorial trapped waves is very small for a variety of physical parameters. It is the strong

stratification which prevents the modification from becoming important. Although the

phase M ~ ( modification has not been presented in plots, it can be seen that this
ui

modification is small since WU <<Iu , except at very few locations.
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(e) Vertical Velocity

From (7.11), the vertical velocity can be easily obtained as

i(at+kx+ m (7.33eW= e 2(Nz+f) (Wr+iwi) (7'33)

where

wr= -MfoPy(p - fool 2jNmP j-1 (7.33a)
(kN+ma)(N 2+f2o) k2N2-m2 2  N2+f2

maNoyepj mgy2 2jNm@"i= 2 2 j2m23 TPj-1 (7.33b)
(kN+ma)(N2+f0) k2N2-m2a2  N2+f~

Fig.7.8 shows the modification on the amplitude of the meridional structure of the vertical

velocity. The modification is small. We will not show the effect on density and pressure

perturbations since this effect is also small under real stratification conditions.

(f)Validity of the hydrostatic relation and the relative magnitude of the

Coriolis acceleration terms in the zonal momentum equation

The vertical momentum equation (7.3) is not fully hydrostatic. The goodness of hydrostatic

relation can be measured by the smallness of the following ratio,
f0u

P-9 (7.34)
PO

Its meridional distribution can be obtained by using (7.5)

ip W POz (7.35)

so

PON 2 .i(ot+kx+m fomp 2) (.6
P= m z 2(N2 +fo) (-wi+iwr) (7'36)g a

Then the amplitude of the above ratio is

r=0 jul (7.37)
~N2wl

Fig.7.9 (a), (b) show the size of y for different vertical wavelengths, (a) for Lz=4000m,

(b) for Lz=600m. It is seen that y is always less than one over all latitudes, and is generally
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small. In a few very localized places, it may close to 1. Fig.7.10 (a), (b) is similar to

Fig.7.9. Except for higher frequency waves, it is seen that the large y peaks are even more

localized. So the effect of the horizontal Coriolis parameter on the hydrostatic relation is

stronger at lower frequencies and at larger vertical wavelengths. However, the effect is

small except at a few very localized locations.

The relative size of the Coriolis acceleration terms in the zonal momentum equation

is of interest because the vertical Coriolis parameter approaches zero when the equator is

Iyv
approached. We plotted the ratio in the following graphs. Fig. 7.11 (a), (b) show the

ratio for low frequency waves under (a) Lz=600m, (b) Lz=4000m. The ratio is everywhere

very large except very close to equator (about 20km). Fig. 7.12 (a), (b) are for higher

frequency waves (a) Lz=600m, (b) Lz=4000m. It is seen that the fow term is important for

a certain range of latitudes, especially for long vertical wavelength waves. A preliminary

conclusion is that for linear equatorial waves, the effect of the horizontal Coriolis parameter

is more important for high frequency waves in the zonal equation and for low frequency

waves in the vertical momentum equation. Although from the relative size of terms in

momentum equations, we cannot neglect the effect of the horizontal Coriolis parameter,

from the solutions we get, under strong stratification we can use the unmodified wave

solution when the horizontal Coriolis parameter is being neglected. For the case, Nw0,

2 2f
A= -02 Q" + Mf-2 Q=O

(7.18) and (7.19) reduced to 2 , C=O. Equation (7.17) becomes

and its solutions are Q = e Y. So, meridional velocity is

i(t +kx +=i + y . This problem has been solved by Stern (1963) although hisv= e fn 2fo *

solution was expressed in a different form. The meridional scale associated with the extra

term in the phase is Ly = which is of the right order on the boundary where the two
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Coriolis terms in the zonal momentum equation are of the same importance for motions of

vertical scale, Lz.(Section 4)

For small vertical wavelength motions, the friction effect becomes important. The

difficulty in finding a suitable parameterization prevents us from having a good

understanding of the frictional effect. We temporarily assume that the friction term is of a

diffusive type with an eddy viscosity.

For simplicity, we study the vertical momentum friction effect with zonal variation

neglected. After the traditional approximation is used, our starting equations become

ut - yv =Ayuzz (7.3 8.a)
vt + yu =- LPy + Avvzz (7.38.b)

0 =- Pz+ gk (7.38.c)P 0 PO

Pt + w - =0 (7.38.d)az

Still looking for a wave type solution as in (7.9), a dispersion relation can be obtained as

am - i Av m3= '(2j+1)Nm$ (7.39)

Let a=ar+ioi, we see that the decaying e-folding scale is ai=Avm 3 which increases

when the vertical wavelength decreases. The increasing factor goes as the cube of the

vertical wavenumber.

The above analysis can be done in a similar way for equatorial Kelvin waves. This

section gives us confidence that for a linear inviscid equatorial wave system, the horizontal

Coriolis parameter effect can be neglected due to the presence in reality of stratification.

However, we cannot go one step further to believe that the effect is also negligible for all

other equatorial systems. The following section is to examine the effect of momentum

friction and density diffusion on the role of the horizontal Coriolis parameter.
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Section 8. Effect of momentum friction and density
diffusion

One of the extreme cases of the general governing equation derived in Section 3 is

that when R -+0, the nonlinearity can be ignored. The effect of advective nonlinearity has

been discussed in Section 5 and Section 6. In dimensional form, the linear continuously

stratified viscous model consists of the following
32

- y v + fow = A- a (8.1)aZ2

3y u=- I -+ Av~~ (8.2)Po ay az2

- fo u = p - - (8.3)po az PO
av aw (8.4
j- + -= 0 (8.4)ay az
w-= K, -- (8.5)az az2

where fo denotes the horizontal Coriolis parameter, which is 20 at equator. McPhaden

(1981) examined this system neglecting terms associated with f0. He tested the sensitivity

of his results to different turbulence parameterizations. One is characterized by Newtonian

cooling, the other has biharmonic form of friction. He assumed the dissipation was of these

forms mainly because in these ways the resulting problems were spatially separable and so

analytically tractable. We will still use equation set (8.1) - (8.5) to examine the role of the

horizontal Coriolis parameter since the problem is already spatially nonseparable. If we

assume our solution is of type,
u u
v =v ei"" (8.6)
w i

then, the amplitude of meridional velocity satisfies
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(_f__NA)yy+ 2 y (i f 3y2 - A2m4 )V=0 (8.7)
m2A K,m2 Inn

Let
fop f

V (y)= e 2 m(--&) Q(y) (8.8)
m1 K.m

then Q(y) satisfies

(1+f)Q"+ M(i-) - M6 m M2 y 2 Q0 (8.9)
a 40 a21+

where
, N2Pr

(8.10)

and Pr = is the Prandtl number. Now (8.8) becomes
mY (8.11)

v(y) = e~2 a (1+^?) Q(Y)

It is seen that the importance of the horizontal Coriolis parameter is characterized by

the nondimensional parameter y. If N is ten times larger than fo, as the usual case, then the

horizontal Coriolis parameter becomes important only when Ky is a hundred times larger

than Av. The estimate of eddy viscosity is far from satisfactory, especially in the deep

ocean. Santiago-Mandujana and Firing(1990) created a summary table (Table 1) of the

eddy viscosity coefficient estimates Av from upper equatorial ocean observations, but the

magnitude of which in various observations differs by at least an order of magnitude. We

are not going to study the model in detail. The conclusion we get is that the turbulent

diffusion may affect the importance of the horizontal Coriolis parameter.



Section 9. Concluding Remarks

Two topics have been discussed in this thesis. A nonlinear equatorial deep jets

model and the role of the horizontal Coriolis parameter. Both these topics are very difficult

to study and have been discussed in the literature for quite some time.

It is seen that the free, inertial model is a qualitatively consistent model capable of

describing many features of the equatorial deep jets. The meridional motion is confined to

the equator. The zonal velocity consists of a background of planetary zonal velocity and the

small vertical scale equatorial deep jets signal. The S-effect mainly determines the

meridional trapping of the jets. The magnitude of the density anomaly is what mainly

determines the vertical structure. It confirms the possibility of the interpretation of

equatorial deep jets as free, inertial motion below the thermocline. However, this model

still has several shortcomings. Since it involves several free constants which can not be

determined, the accurate comparison of vertical and horizontal jet scales of the model with

observations becomes very difficult. The model does not include momentum and density

dissipation, so the interpretation in the very deep ocean becomes quite qualitative. The

neglect of zonal dependence avoids the discussion of deep jets near eastern and western

boundaries. A scale matching of one mode of the model with observation reveals that the

latitudinal trapping scale of the model is five times smaller than that observed in the ocean.

If more modes are involved and better choice of the arbitrary functions is made, this

matching may become better.

Given the small vertical scale of the phenomenon, it is hard to do numerical

computations to resolve the jets. More field observations to measure the meridional velocity

as well as the zonal velocity are needed. Knowing the correlation of these two components

of the horizontal velocity may be of importance since it tells us the connection between the

meridional motion and the zonal velocity. A more systematic observational confirmation of
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the planetary zonal velocity is needed. Theoretically, more discussion of the potential zonal

vorticity equation is needed. It is of great interest to solve and interpret its solution when

different choices of the arbitrary functions are made. It is difficult to simulate a free, inertial

motion by numerical computation since its generation mechanism is unknown. One

possible way of doing numerical computational analysis on equatorial deep jets is to

develop a numerical model to solve the motion on a meridional plane with realistic forcing

and background density distribution. Then, a statistical average can be made to see if this

average compares well with the analytical solution proposed in Section 6.

The second topic discussed in the thesis is the role of the horizontal Coriolis

parameter. A general conclusion is still missing. In the simplified models used in the

previous several sections. It is found that this parameter is not important in linear inviscid

stratified equatorial waves. The role may be enhanced if momentum friction and density

dissipation effects are included and the ratio of one to the other is small. In the nonlinear

equatorial dynamics, it is seen that the horizontal Coriolis parameter-related term in the

zonal momentum equation acts as an important contributor to the conservation of angular

momentum. It provides a vertical background zonal velocity shear which is qualitatively

confirmed by observations. The effect of the horizontal Coriolis parameter in the vertical

momentum equation is belittled by the presence of density anomalies associated with the

fluid motion. It is suggested that these two terms be included in the future numerical

models dealing with large vertical scale motions. Most existing models mainly study the

fluid motion in the upper ocean. Future three dimensional models involving thermohaline

circulation may find some effects from this parameter.
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Fig.1.1. (a) Zonal current component along 1590 W for the period March 1982 - June

1983. Shown is the mean based on 21 cruises. Westward flow is shaded. (b) Standard

deviation. (from Firing, 1987)
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Fig. 1.6. Zonal velocity power spectrum with 95% confidence error bar (from Ponte and

Luyten, 1989). Notice in this figure, the length unit used is stretched meters instead of

usual meters.
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Fig.6.8. Zonal velocity along the equator measured during (a) April, 1979, (b) June, 1979.

(from Ponte and Luyten, 1990)



Fig.6.9. Meridional section of zonal velocity at 170 0E. Labeled currents are South

Equatorial Current (SEC), Equatorial Undercurrent (EUC), Equatorial Intermediate Current

(EIC), North Equatorial Countercurrent (NECC) and subsurface countercurrent (SSCC).

The current labelled AG is an agostrophic flow. (from Hisard et al., 1970)
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Fig.6. 10. Contours of geostrophic zonal velocity (cm/s). Shown is the mean average

across 150 0W - 158 0W based on 15 cruises. Solid: eastward, dashed: westward. (from

Wyrtki and Kilonsky, 1984)
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17 January, 1989 in the equatorial Atlantic at 00 N, 300 22'W. (from Ponte, Luyten and

Richardson, 1990).



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y (m) distance away from equator x105

- (b)

-. .

. .
- - -

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y (m) distance away from equator x105
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TASL 1. Eddy viscosity coefcimt enimate (A.) from uper ocean observato

A,
Autbr (10-1 m ,-') Method

HidakaMad Momnsi (1961) 1.0-2.0 Ekman layer compared with wind stres Tropical Packt
and srface current data.

Jones (1973) 3.9 Calculated A, as function of Richardson Equatorial Pacifc undercumnt
No. assuming a loganthmic velocity
profl;r, used measurements of current
shear, temperature, and salinity.

Smith (1974) 4 0 High-resoluton current meter Arctic Ocean
measurements of Reynolds resm.

Halpern (1974) 0.1-114 Ekman layer theory compared with Northeasern Pacaic
moored wind and current
observationL

Halper (1976) 5 5 Same as in Haloern (1974). COn of Oregon

Halpern (1977) 12.5 Balance between surface shear and wind Northwest Africa
stres moored wind and current data.

Kas and Olben (1979) 30 Time-dependent Ekman model applied Atlantic equatonal countercurrent
to inertial waves.

Halpern (1980) 5 6 Same as in Halpern (1977). Atlantic equatorial countercurrent

Crawford and Osborn (1981) 10 Dissipation method; measured turbulent Central equatonal Pacifc
dissipauon and undercurent shear.

Greget al. (1985) 2 0 Same as in Crawford and Osbor (1981) Central equatorial Pacic

Peters et aL (1988) 50 Same as tn Crawford and Osborn (1981) Central equatorial Packic

McPhaden et al. (1988) 1 0-180 Time-dependent Ekman layer, moored Western equatonal Packe
wind and current data.

Table 1. Eddy viscosity coefficient estimates (Av) from upper ocean observations. (from

Santiago-Mandujano and Firing. 1990)


